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Abstract. We propose three differential power analysis (DPA) counter-
measures for securing the public key cryptosystems. All countermeasures
are based on the window method, and can be used in both RSA and el-
liptic curve cryptosystems (ECC). By using the optimal countermeasure,
performance penalty is small. In comparison with k-ary method, com-
putation time of our countermeasure is only 105% in 1024-bit RSA and
119% in 160-bit ECC.

1 Introduction

Differential power analysis (DPA, [4]), proposed by Kocher et al., is an attack
that enables extraction of a secret key stored in a cryptographic device, such as
smartcard. In this attack, an attacker monitors the power consumption of the
cryptographic devices, then statistically analyzes the collected power signal data
to extract the secret key. This attack can be used against both secret and public
key cryptosystems.

Currently, DPA is known as a big threat against the smartcard security, and
the necessity of countermeasure for protecting the cryptographic device from the
DPA attack is described in many standards. For example, the countermeasure
against this attack is commented in FIPS 140-2, which is the US standard of the
cryptographic module. Moreover, the requirement for DPA protection is included
in the protection profile (PP), which is a list of smartcard security requirements
based on the ISO 15408.

Various DPA countermeasures have been already proposed. Data random-
izing is a well-known DPA countermeasure, in which the intermediate data is
randomly transformed inside the cryptographic device. By using this technique,
statistical analysis method on DPA attack is disabled, because the intermediate
data on the encryption is unpredictable to the attacker. DPA countermeasure
using data randomizing technique can be used both in secret and public key
cryptosystems. We focus on the countermeasure for public key cryptosystems in
the rest of this paper.

Previous DPA countermeasures for public key cryptosystems are described in
[1] [2] [3] [5] [7] [8] [9] and [10]. Some of these countermeasures have demerits in
comparison with the straight-forward implementation. Roughly speaking, these
demerits are divided into 3 types. The first demerit is that, the countermea-
sures involve a performance penalty. Especially, an exponent splitting technique
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described in [1] requires two times of the computation as that of the straight-
forward implementation. The second demerit is that, the countermeasures are
not always available in both RSA and elliptic curve cryptosystems (ECC). That
is, countermeasures described in [2] [3] [9] uses the technique by randomizing
the representation of projective coordinates, which are available only in ECC,
not in RSA. The third demerit is that, some countermeasures require the addi-
tional parameters. For example, a countermeasure described in [2] requires the
parameter φ(n) in RSA where n is a public modulo, or order of the base point in
ECC. This makes it hard to match the I/F of the cryptographic engine with and
without countermeasure, that is, a vulnerable engine can not easily be replaced
to a secure one.

In this paper, we propose three novel DPA countermeasures for securing the
public key cryptosystems. All countermeasures are based on the window method,
which is an efficient algorithm for computing the public key cryptosystems. By
using our countermeasures, all of the above demerits are avoided. In the first
countermeasure, we use the novel idea of ’overlapping window method’. In the
second countermeasure, we use the window method in which the pre-computed
table data is randomized. In the third countermeasure, we use a hybrid technique
of the first and second countermeasure. We call these countermeasures overlap-
ping window method (O-WM), randomized table window method (RT-WM) and
hybrid randomizing window method (HR-WM) respectively. These have different
characteristics, but have common three merits: (i) encryption operation is fast,
(ii) available in both RSA and ECC, and (iii) additional parameter is unneces-
sary. Merit (i) is that, the performance penalty of our countermeasure is small.
In comparison with the k-ary method, computation time of our countermeasure
is 119% in ECC and 105% in RSA. Merit (ii) dues to that our countermeasures
are base on the window method, and we show that two of our countermeasures
have high security against DPA attacks in both RSA and ECC. By merit (iii),
I/F of a cryptographic engine with and without DPA countermeasures can be
the same. That is, a vulnerable engine is easily replaced to a secure one.

We describe the previous data randomizing technique in section 2, our coun-
termeasures in section 3, security evaluation in section 4, DPA experiment result
in section 5 and performance comparison in section 6.

2 Data Randomizing Techniques

Data randomizing (blinding) is a well-known DPA countermeasure described
in [1] [2] [3] [5] [7] [8] [9] and [10]. These techniques make the intermediate
data on the encryption operation unpredictable to the attacker by randomly
transforming the data. Hence, an intermediate encryption data at a moment is
one of the possible values of the randomized data. We call the number of the
possible values of randomized data at a moment ’NRD’. It is easy to see that as
NRD is larger, DPA attack is harder, so that the security of the data randomizing
technique can be evaluated by NRD.

Previous data randomizing techniques that can be used for both ECC and
RSA are described in [1] [2] [5] [7] [8] and [10]. Among these countermeasures, we
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take up three typical methods in which NRD is clearly evaluated. These three
countermeasures are shown in following (A), (B) and (C).

(A) exponent blinding ([2]) : Instead of a secret key d, d′ = d + r × φ is used,
where r is randomly given and φ is an order. NRD is the number of possible
values of r.

(B) calculation randomizing ([7]) : Randomly choose the bit position of a secret
key d, then first perform a binary-method from the chosen bit to MSB, and
second, perform a binary-method from the chosen bit to LSB by using the
fist calculation result. NRD is log2d.

(C) exponent splitting ([1]) : From a secret key d, generate random numbers d1
and d2 that satisfy d = d1 + d2, then calculate ad1 × ad2 (mod n) = ad

(mod n). NRD is d.

We suppose that all above countermeasures provide enough security. That is,
NRD of (A), (B) and (C) ranges from log2d to d widely, but any countermeasures
listed above can attain enough security at current technology, because the size
of the spike is reduced to less than 1/100 of the device using a straight-forward
implementation.

On remarking the performance, two times modular exponentiation are re-
quired in (C), which makes the performance worse. So we compare our counter-
measure with (A) and (B).

3 Our Method

3.1 Overview

We propose three DPA countermeasures by improving the window method. First
one is overlapping window method (O-WM), second one is randomized table
window method (RT-WM), and third one is hybrid randomizing window method
(HR-WM). Each countermeasure has unique characteristics from the viewpoint
of operation, speed and security. Appropriate countermeasure can be chosen
according to the usage of the cryptographic devices (ex. encryption algorithm is
RSA or ECC). Details of our countermeasures are described in later sections. In
the rest of this paper, we use following notations.

– Our countermeasures can be used in both RSA and ECC, but we unified the
description for RSA for simplicity.

– We refer the ECC computation using the affine coordinates as ’ECC-2D’,
and that using the projective or Jacobian coordinates as ’ECC-3D’.

– d is the secret key, u is represented with u = log2d, wi is an index value
for the pre-computed table (i.e., wi is a window) and q is the number of wi.
(i.e., i = 0, 1, ..., q − 1.)

– EXPWM (w0, . . . , ws) represents the intermediate exponent (or scalar) value
when the table look-up operation proceeds from w0 to ws, where WM rep-
resents the type of window method, that is, k-ary, O-WM, RT-WM, or
HR-WM. For example, EXPk−ary(w0, . . . , ws) = (. . . (((2k × w0) + w1) ×
2k) . . .) × 2k + ws. Representations of EXPO−WM (), EXPRT−WM () and
EXPHR−WM () are described in the later section.
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– DATWM (a, w0, . . . , ws) represents the intermediate data value when the ta-
ble look-up operation proceeds from w0 to ws for an input value a, where
WM represents the type of window method. When O-WM or HR-WM is
used in ECC-3D, the number of possible values of DATWM (a, w0, . . . , ws) is
much greater than that of EXPWM (w0, . . . , ws), because of the redundant
data representation in the projective coordinates. The reason for this is given
in section 4-2.

– NRD means the number of possible randomized data values at any given
moment when using the data randomizing techniques, as described in section
2.

– AR is attenuation ratio that represents the ratio of the size of the spikes
that appears in the differential power trace with and without DPA counter-
measure. Detail of AR is described in section 4-1.

– bit(a, x, . . . , y) represents the concatenation of the bit values of a, which
is represented in binary, from the x-th to the y-th bit. (x = 0, 1, . . . ; y =
0, 1, . . . ; x ≥ y.) The bit values upper than the MSB are regarded as 0. e.g.,
if a = 6 = (110)2, bit(a, 0) = 0, bit(a, 1) = 1, and bit(a, 4, 3, 2, 1) = (0011)2 =
3.

3.2 Overlapping Window Method (O-WM)

The characteristic of the O-WM is that, two continuous windows wi and wi+1
’overlap’ each other at the same bit position of d. We show the steps of O-
WM in algorithm 1 and an overview in figure 1. In O-WM, wi and wi+1
are allowed to ’overlap’ at the same bit position of d (figure 1). By overlap-
ping the wi, plural possible values of {w0, . . . , wq−1} are generated for a fixed
d. Hence, the intermediate data on the encryption operation will be unpre-
dictable to the attacker by randomly choosing one of these values. We de-
note hi as the overlapping bit length between wi and wi+1. If the table look-
up operation in step 18 is finished for i = s, EXPO−WM () is represented as
EXPO−WM (w0, . . . , ws) = (. . . (w0 × 2k−h0 + w1) . . .)2k−hs−1 + ws, whose bit
length is s × k − (h0 + . . . + hs−1) and lowest hs-bit randomly value (figure 1).

In comparison with the k-ary method, the overhead for table making is the
same, but the number of repeating the table look-up operations is larger.

Note 1. For securing against SPA attacks, we recommend to set hi a fixed value
h that satisfy h ≥ k/2. This tweak provides a protection against the SPA by
observing only one time execution of the cryptographic device, because multi-
plication and square are repeated in constant pattern. h must satisfy h ≥ k/2
to prevent the bias distribution of wi.

3.3 Randomized Table Window Method (RT-WM)

The characteristic of the RT-WM is that, pre-computed table data is random-
ized. We show the steps of RT-WM in algorithm 2 and an overview in figure 2.
In step 5, pre-computed table data is generated by tab[i] = ai×2b+r (mod n),

where i is an index value and r is a b-bit random value. If step 19 is finished
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Algorithm 1. Overlapping window method (O-WM)
1: /* pre-computed table data making */
2: for (i = 0; i < 2k; i + +) tab[i] = ai (mod n);
3: /* window wi and overlapping length hi making */
4: /* generate random number q and 0 < h0, h1, . . . , hq−2 < k
5: which satisfy q × k + (h0 + h1 + . . . hs) = u.
6: For securing against SPA, hi are recommended to be
7: the fixed value h ≥ k/2. */
8: (hi, q) = GenRandom(); u′ = u − k; dtq−1 = bit(d, u − 1, . . . u′);
9: for (i = 0; i < q − 1; i + +) = {
10: wi = (Random number, max(0, dti − 2hi + 1) ≤ wi ≤ dti);
11: dti+1 = (dti − wi) × 2k−hi + bit(d, u′ − 1, . . . , u′ − (k − hi));
12: u′ = u′ − (k − hi);
13: }
14: wq−1 = dtq−1;
15: /* modular exponent process */
16: v = tab[w0]; i = 1;
17: while (i < q) {
18: v = v2k−hi (mod n); v = v × tab[wi] (mod n); i = i + 1;
19: }
20: Return(v);

1 0 1 0
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d=(1 0 1 1 1 0 1 1 0 ........ 0 1 0 1 1 0)2

..............

dt0

w0 random-)
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Fig. 1. Overview of O-WM and EXPO−WM (w0, . . . , ws)
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Algorithm 2. RT-WM (Randomized Table Window Method)
1: /* Generate random number */
2: r = (b-bit random number);
3: /* pre-computed table data making */
4: t = ar (mod n)
5: for (i = 0; i < 2; i + +) tab[i] = ai×2b × t (mod n)
6: /* window making phase */
7: dw = d; q=0;
8: while (dw ≥ r × 2k×q ) {
9: dw = dw − r × 2k×q; q = q + 1
10: }
11: for (i = 0; i < q; i + +) {
12: wi = bit(dw, b + (q − i) × k − 1, . . . , b + (q − i − 1) × k);
13: }
14: dm = dw (mod 2b)
15: /* modular exponent process */
16: if (q == 0) Return(adm (mod n));
17: v = w0; i = 1;
18: while (i < q) {
19: v = v2k

(mod n); v = v × tab[wi] (mod n); i = i + 1;
20: }
21: /* normalization */
22: v = v × adm (mod n);
23: Return(v);

d 1 0 1 1 10 1 1 0 0 0 1 0 1 0 1

0 1 0 011

0 1 0 011

0 1 0 011

r

r

r

b-bit

k-bit

10001011100011 1000

b-bit

dw

w0 wq-1 dm

EXPRT-WM(w0,...,ws)1 0 1 1 10 1 1 * * * * * *

b+k(s+l)-bit

=(...((2bw0+r)2
k+2bwl+r)...)2

k+2bws+r
b-bit

*:random

ad=(...(aw02
b+r)2k

...)2k

   awq-12
b+r   adm (mod n)

Fig. 2. Overview of RT-WM and EXPRT−WM (w0, . . . , ws)

for i = s, the EXPRT−WM () is represented as EXPRT−WM (w0, . . . , ws) =
(. . . ((w0 × 2b + r) ×2k + w1 × 2b + r) × 2k . . .)× 2k + ws × 2b + r, whose lowest
b-bit data is random value (figure 2). To obtain the final result ad (mod n),
the randomized data must be ’normalized’ at the end of the operation. This
normalization step is v = v × adm (mod n) in step 22, where dm is b-bit value
generated in step 14.
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In comparison with the k-ary method, the number of repeating table look-up
operations are the same, but the overhead for the computation of table making
and normalization are larger.

3.4 Hybrid Randomizing Window Method (HR-WM)

HR-WM is a combination technique of O-WM and RT-WM. We show the steps
in algorithm 3 and an overview in figure 3. Pre-computed table data generation

Algorithm 3. HR-WM(Hybrid Randomizing Window Method)
1: /* Generate random number */
2: r = (b-bit random number);
3: /* pre-computed table data making */
4: t = ar (mod n)
5: for (i = 0; i < 2k; i + +) tab[i] = ar (mod n);
6: /* window making phase */
7: dw = d; q = 0;
8: while (dw ≥ r × 2k×q) {
9: dw = dw − r × 2k×q; q = q + 1;
10 }
11: dm = dw (mod 2b); dw = dw/2b;
12: u′ = (k − h)(q−1); dt0 = bit(dw, u′ + k − 1, .., u′);
13: for (i = 0; i < q − 1; i + +) {
14: wi = (Randomnumber, max(0, dti − 2h + 1) ≤ wi ≤ dti);
15: dti+1 = (dti − wi)2(k−h) + bit(dw, u′ − 1, . . . , u′ − (k − h));
16: u′ = u′ − (k − h);
17: }
18: wq−1 = dtq−1;
19: /* modular exponent process */
20: if (q == 0) Return(adm (mod n));
21: v = w0; i = 1;
22: while (i < q) {
23: v = v(2(k−h)) (mod n); v = v × tab[wi] (mod n); i = i + 1;
10 }
24: /* normalization */
25: v = v × adm (mod n);
26: Return (v);

is the same as that in RT-WM, and wi is generated by combination operation
of RT-WM and O-WM (steps.2-18). In HR-WM, the overlapping length h is a
fixed value. If step 23 is finished for i = s, the EXPHR−WM () is represented as
EXPHR−WM (w0, . . . , ws) = (. . . (w0 × 2b + r) × 2k−h . . .) × 2k−h + ws × 2b + r,
whose lowest (b + h)-bit data is random value (figure 3).

Similar to RT-WM, overhead the computation of table making and normal-
ization are larger in proportion to b and h. But when HR-WM is used, security
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Fig. 3. Overview of HR-WM and EXPHR−WM (w0, . . . , ws)

is also strengthened by both effect of O-WM and RT-WM. So, these parameters
can be smaller than that in O-WM and RT-WM for attaining the same security
level. By setting parameters b and h, an optimal balance between performance
and security can be chosen. In HR-WM, h can be small value such as h = 1,
because h is not limited to h ≥ k/2.

4 Security Evaluation against DPA

In this section, we evaluate the security of our countermeasures. At first, we
describe a basic idea of the security evaluation, then discuss the security of
each countermeasure. We finally show that all of our countermeasures have high
security in ECC-3D, and RT-WM and HR-WM have high security in RSA and
ECC-2D.

4.1 Basic Idea

Before explaining the basic idea of the security evaluation, we explain the DPA
attack against the k-ary method. In this attack, the attacker repeats monitor-
ing the power consumption of a cryptographic device N times when inputting
plaintext a0, . . . , aN−1. We denote these monitored data V (ai, t) where t is time.

The attacker analyzes d by guessing each w0, . . . , ws according to this order.
If he already has guessed the correct w′

0, . . . , w
′
s−1 that satisfy {w′

0, . . . , w
′
s−1} =

{w0, . . . , ws−1}, he guesses w′
s = ws, then calculates the difference power trace

∆(t) as shown (1), where e (0 ≤ e < (plaintext length)) is a bit position for
calculating the differential. If a spike appears in ∆(t), w′

s turns out to be correct,
otherwise it turns to be incorrect.
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∆(t) =
2
N

(
∑

bit(DATW M (aj ,w′
0,...w′

s),e)=1

V (aj , t)

−
∑

bit(DATW M (aj ,w′
0,...w′

s),e)=0

V (aj , t)) (1)

The attacker’s possibility for succeeding in the above analysis depends whether
the spike will appear or not. Hence, as the size of the spike is smaller, the
analysis is harder. If the size of the spike is almost zero, he can’t distinguish
the correctness of the guessed w′

s. Therefore, the security against DPA can be
evaluated by the size of the spike.

Here we describe the basic idea for the evaluation of the size of the spike
when our countermeasure is used. In our method, ws is randomly chosen value,
so equation (1) can be transformed to the following equation (2), where Prob[X]
represents the probability that equation X holds. (Note that the differential
power trace for Prob[DATWM (aj , w0, . . . , ws) �= DATWM (aj , w

′
0, .., w

′
s)] is 0.)

∆(t) =
2
N

(
∑

bit(DATW M (aj ,w′
0,...w′

s),e)=1

V (aj , t)

−
∑

bit(DATW M (aj ,w′
0,...w′

s),e)=0

V (aj , t))

= Prob[DATWM (aj , w
′
0, . . . w

′
s) = DATWM (aj , w0, . . . ws)]

× 2
N

(
∑

bit(DATW M (aj ,w′
0,...w′

s),e)=1

V (aj , t)

−
∑

bit(DATW M (aj ,w′
0,...w′

s),e)=0

V (aj , t))

+Prob[DATWM (aj , w
′
0, . . . w

′
s) �= DATWM (aj , w0, . . . ws)]

× 2
N

(
∑

bit(DATW M (aj ,w′
0,...w′

s),e)=1

V (aj , t)

−
∑

bit(DATW M (aj ,w′
0,...w′

s),e)=0

V (aj , t))

= Prob[DATWM (aj , w
′
0, . . . w

′
s) = DATWM (aj , w0, . . . ws)]

× 2
N

(
∑

bit(DATW M (aj ,w′
0,...w′

s),e)=1

V (aj , t)

−
∑

bit(DATW M (aj ,w′
0,...w′

s),e)=0

V (aj , t)) (2)

From (2), the size of the spike will be smaller in proportion to Prob[DATWM (aj ,
w0, . . . , ws) = DATWM (aj , w

′
0, . . . , w′

s)]. Therefore, we evaluate the security by
maximum value of the probability that DATWM (aj , w0, . . . , ws) is computed in
the device. We call maximum value of the probability ’attenuation ratio’ (AR) in
the rest of this paper. (Note that the probability represents the ratio of the size of
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spike of (1).) For evaluating AR, we discuss the NRD of DATWM (aj , w0, . . . , ws),
then evaluate the DATWM (aj , w0, . . . , ws) that appears with highest probability.

4.2 O-WM

In O-WM, evaluation of AR differs among RSA, ECC-2D, and ECC-3D. This
means that the NRD of DATO−WM (aj , w0, . . . , ws) is evaluated using the NRD
of EXPO−WM (w0, . . . , ws) for RSA and ECC-2D, and is roughly evaluated us-
ing the NRD of the sequence {w0, . . . , ws} for ECC-3D. Therefore, we discuss
RSA/ECC-2D and ECC-3D separately.

Note 2. The difference between ECC-2D and ECC-3D is due to the difference of
the data representation in the projective coordinates. For example, when calcu-
lating 7A for A = (X, Y, Z) by (X1, Y1, Z1) = 2((11)2(X, Y, Z)) + (01)2(X, Y, Z)
or (X2, Y2, Z2) = 2((10)2(X, Y, Z)) + (11)2(X, Y, Z), these two points represent
the same point in affine coordinates, but X1 �= X2, Y1 �= Y2, Z1 �= Z2 will hold
with high probability.

To see this fact, let us assume that the device computes B1 = f1A + g1A or
B2 = f2A+ g2A in projective coordinates for point A and scalar values f1, f2, g1
and g2, when f1 + g1 = f2 + g2, f1, f2 > g1, g2, and the data representation of
f1A, f2A are different. Under this assumption, data representation of B1 and B2
will be different with probability 1 − 1/p where p is the size of the finite field.

In general, NRD of the data representation of Bz = fxA + gyA is ap-
proximated to (NRD of data representation of fxA) × (NRD of data
representation of gyA) when the data representation of fxA are different from
each other and fx > gy for any x, y. So, (NRD of data representation of
EXPO−WM (w0, . . . , ws)A) is approximated to (NRD of data representation
of 2k−hs−1 (EXPO−WM (w0, . . . , ws−1))A) × (NRD of data representation
of wsA), which is equal to the NRD of the sequence {w0, . . . , ws}.

RSA/ECC-2D. From figure 1, EXPO−WM (w0, . . . , ws) is s × k − (h0 + . . . +
hs−1)-bit and lowest hs-bit is randomized. Therefore, the probability (or AR)
that some EXPO−WM (w0, ..., ws) is used in the device, is represented as (3) for
some Wlen and Wval.

(Prob[s × k − (h0 + . . . + hs−1) = Wlen]) × (Prob[lowest hsbits = Wval])
= α(s, Wlen) × β(s, Wval) (3)

α(s, Wlen) depends on h0, . . . , hs−1 and β(s, Wval) depends on hs and ws+1,
which are independent each other. Therefore, the maximum value of (3) is a
product of each maximum value.

α(s, Wlen) equals to the maximum value when h0 +h1 + . . .+hs−1 = s×k/2
(note that 0 < hi < k). It can be calculated directly, or is approximated as a
normal distribution by the central limit theorem, if s is large enough. When hi

is fixed value h, α(s, Wlen) = 1.
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β(s, Wval) is a probability that the lowest hs-bit is equal to Wval. Taking
into account that hs varies 1 to k − 1, it is easy to see that varying only LSB
can occur for all hi (Note that 1-bit varying is included in hi-bit varying.) The
probability is represented as (2−1 + ... + 2−(k−1))/(k − 1), where (k − 1) is a
number of possible value hi.

We show the graph of maximum value of AR in figure 4 when k = 4 and
1 ≤ hi ≤ 3. This graph can be approximated to 0.15×s−1/2, decreases slowly for
s. So this is thought as ’weak’ DPA countermeasure, but it can be used to the
device whose SNR (signal-to-noise ratio) is small. Detail of the SNR is described
in [6].

Here we note that the probability is a mean value. It depends on the partial
value of the secret key d that decides the variable range of ws. (See step 10 in
algorithm 1.) As the partial k-bit of d corresponding to ws is smaller, β(s, Wval)
will be larger. (ex. In figure 1, partial k-bit of d corresponding to w0 is (1011)2,
that to w1 is (1110)2 and that to w2 is (1101)2.) When hi is fixed value h,
β(s, Wval) = 2−h.
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Fig. 4. AR when k = 4 and 1 ≤ hi ≤ 3(RSA, ECC-2D)

ECC-3D. Following (4) represents the probability that some sequence
{w0, . . . , ws} is used in the device.

(Prob[s × k − (h0 + . . . + hs−1) = Wlen]) × 2−(h0+h1+...+hs)

= α(s, Wlen) × 2−(h0+...+hs) (4)

If hi ranges 0 < hi < k, the upper bound of (4) is 2−(s+1), and if hi is a fixed
value h, (4) is equal to 2−h×(s+1).
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4.3 RT-WM

When RT-WM is used, intermediate encryption data is randomized by the pre-
computed table data, which is given by the b-bit random number. So, AR is
always equal to 2−b.

4.4 HR-WM

When HR-WM is used, NRD is represented as (NRD when using O − WM)×
(NRD when using RT − WM). If the encryption algorithm is RSA/ECC-2D,
NRD is 2h ×2b. In HR-RM, intermediate data at any given moment is randomly
chosen from one of the possible values. Therefore, AR is equal to 2−(h+b). In
ECC-3D, NRD is 2h(s+1) × 2b, so that AR is equal to 2−(h(s+1)+b).

Table 1. Measured AR from DPA experiment (O-WM in RSA k = 4, 1 ≤ hi ≤ 3)

ws w0 w3 w6 w9 w12

AR (expected) 0.0400 0.104 0.0775 0.064 0.0556
AR (experiment) spike1 0.0411 0.0863 0.0910 0.0672 0.113

spike2 0.0414 0.0915 0.109 0.0825 0.120
spike3 0.0373 0.0887 0.101 0.0653 0.0760
spike4 0.0398 0.115 0.140 0.0815 0.128

partial 4-bit of d (1101)2 (0111)2 (0110)2 (1111)2 (0000)2

5 DPA Attack Experiment

For O-WM in RSA case, we have verified effect of the protection against DPA
through the experiment. We monitored the power consumption for the RSA
encryption by using 4-ary and O-WM in which k = 4, 1 ≤ hi ≤ 3 and analyzed
the secret key. When monitoring the power consumption, we have input 20000
plaintexts and set the sampling ratio 100 MHz. We have analyzed the key by
making the difference power trace when guessing w0, w3, w6, w9 and w12, and
confirmed the spike to measure AR. In the analysis, we guessed the sequence
{w0, . . . , ws} when the size of the spike that appears in (2) is maximum value.

Figure 5 shows the example of the differential power trace, and table 1 shows
the expected and measured AR for 4 spikes appeared in the differential power
trace. In table 1, partial 4-bit of d corresponding to ws is also shown. The
expected AR is well approximated to the measured AR, and when the partial
4-bit value of d is small, the measured AR is larger than the expected value.

6 Performance Comparison

In table 2, we show the comparison of the performance and security of our
countermeasures. The input bit-length of the pre-computed table data is fixed
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Fig. 5. Differential power traces when guessing w3 (4-ary:upper, O-WM:lower)

Table 2. Performance comparison among proposed countermeasures

O-WM RT-WM HR-WM
Time table making 2k b(2 + 1

k′ ) + 2k′
+ 2k b(2 + 1

k′ ) + 2k′
+ 2k

exponent u(S + M
k−h

) (u − b)(S + M
k

) (u − b)(S + M
k−h

)
normalization - b(S + M

k′ ) + 2k′
b(S + M

k′ ) + 2k′

Security RSA,ECC-2D Cs−1/2(hi:random) 2−b 2−(h+b)

(AR) 2h(hi :fixed)
ECC-3D ≤ 2s+1 (hi:random) 2−b 2−(h(s+1)+b)

2h(s+1) (hi:fixed)
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Table 3. Performance Comparison with other countermeasures

O-WM RT-WM HR-WM Coron Messerges
ECC Addition 256 279 264 241 214

(160-bit) AR ∼ 2−6(2D) 2−20 2−11(2D) 2−20 2−7.32

∼ 2−80(3D) 2−61(3D)
RSA Multiplication 1552 1359 1416 1321 1536

(1024-bit) AR ∼ 2−7.23 2−20 2−11 2−20 2−10

Additional parameter No No No Yes No

to k-bit among these countermeasures, so that the RAM size of the table data
are the same. S represents a computation time of squaring (or doubling), and
M represents that of multiplication (or addition). In the ’table making’ row, we
assumed S = M and showed the performance by the times of the multiplication
(or addition). (Note that S and M are omitted in this row.) In the ’O-WM’
column, h represents the average value of hi, and AR is represented when each
window method is processed from w0 to ws.

In table 3, comparison of our countermeasures with the Coron’s (counter-
measure (A) in section 2) and Messerges-Dabbish-Sloan’s (countermeasure (B)
in section 2) countermeasure are shown. In our countermeasures, the parameter
are set to k = 4 (O-WM, RT-WM, HR-WM), h = 2 (O-WM) /1 (HR-WM),
b = 20(RT-WM) /10 (HR-WM). In Coron’s countermeasure, we suppose that
the length of the random value is 20-bit, and 4-ary method is used. In Messerges’
countermeasure, we supposed that binary-method is used for RSA, and signed-
binary method is used for ECC.

We have evaluated the performance of these countermeasures in 1024-bit
RSA and 160-bit ECC case, assuming the computation time for squaring and
multiplication (doubling and addition) are the same.

6.1 Countermeasure Choice for an Encryption Algorithm

Suitable choice of our countermeasures depends on the encryption scheme and
the environment of the device. We categorize them by encryption algorithm as
followings.

– RSA/ECC-2D : RT-WM or HR-WM is suitable, O-WM is not recommended.
In table 2, HR-WM looks like to be most suitable, but it is because param-
eters b are different between RT-WM and HR-WM. When parameters b are
the same in these two methods, RT-WM is most suitable.

– ECC-3D : All countermeasures are suitable, but the countermeasure can be
chosen according to the requirement. When the code size is required to be
small, O-WM is suitable, because its computation steps are simple, similar
to the k-ary method. Moreover, we recommend to fix hi for securing against
SPA attack. When the encryption speed is significant, suitable countermea-
sure depends on the bit length of the key. When using the short length key,
O-WM is suitable. When using longer length key, HR-WM and RT-WM will
be suitable in this order.
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7 Conclusion

We proposed three DPA countermeasures based on the window method, O-WM,
RT-WM and HR-WM. For O-WM, we assured the effect of the countermeasure
through the DPA experiment. When choosing the optimal countermeasure ac-
cording to the encryption scheme, the computation time ratio to k-ary method is
only 105% in RSA and 119% in ECC.. In comparison with the Coron’s counter-
measure, our countermeasure has the merit that additional parameter is unnec-
essary. In comparison with the Messerges’ countermeasure, encryption speed of
our countermeasure is 13% faster in RSA. Except O-WM in which overlapping
length is fixed, our countermeasure can protect against SPA by observing only
one time execution of the cryptographic device, because square and multiplica-
tion are repeated by the constant pattern.

References

1. Christophe Clavier and Marc Joye, “Universal Exponentiation Algorithm – A First
Step Towards Provable SPA Resistance”, CHES 2001, LNCS 2162, pp. 300–308,
Springer-Verlag, 2001.
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