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Abstract. Software counter measures against side channel attacks con-
siderably hinder performance of cryptographic algorithms in terms of
memory or execution time or both. The challenge is to achieve secure
implementation with as little extra cost as possible. In this paper we
optimize a counter measure for the AES block cipher consisting in trans-
forming a boolean mask to a multiplicative mask prior to a non-linear
Byte Substitution operation (thus, avoiding S-box re-computations for
every run or storing multiple S-box tables in RAM), while preserving
a boolean mask everywhere else. We demonstrate that it is possible to
achieve such transformation for a cost of two additional multiplications
in the field.
However, due to an inherent vulnerability of multiplicative masking to
so-called zero attack, an additional care must be taken to securize its im-
plementation. We describe one possible, although not perfect, approach
to such an implementation which combines algebraic techniques and par-
tial re-computation of S-boxes. This adds one more multiplication oper-
ation, and either occasional S-box re-computations or extra 528 bytes of
memory to the total price of the counter measure.

1 Introduction

With the increasing research endeavors in the field of side-channel attacks both
hardware and software implementations of cryptosystems have to take into ac-
count various counter measures. The main techniques are timing attacks [10],
simple (SPA) and differential power analysis (DPA) [11], and electromagnetic
attacks [7] . A particularly worrying factor is that the first three attacks can be
mounted using cheap resources. The last one requires more sophisticated set-up,
including the design of special probes and development of advanced measure-
ments methods.

In what follows we do not describe how the attacks work; papers [10,11,9,13]
provide an excellent study of this topic; we just outline their main principles.
Side-channel attacks work because there is a correlation between the physical
measurements taken during computations (e.g., power consumption, computing
time, EMF radiation, etc.) and the internal state of the processing device, which
is itself related to the secret key. An SPA is an attack where the adversary can
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directly use a single power consumption signal to break a cryptosystem. For
example, if an implementation of a cryptographic primitive includes branches
that depend on the secret data, particularly, if the bodies of the ‘then’ and ‘else’
branches differ, an SPA attack can be successfully mounted with very inexpensive
resources.

A DPA attack uses statistical analysis to extract information from a collection
of power consumption curves obtained by running an algorithm many times with
different inputs. Then the analysis of the probability distribution of points on
the curves is carried on. The DPA uses a correlation between power consumption
and specific key-dependent bits which appear at known steps of the encryption
computations. For example, a selected bit b at the output of one S-box of the
first round of the Advanced Encryption Standard (AES) [6] will depend on the
known input message and 8 unknown bits of the key. The correlation between
power consumption and b can be computed for all the 256 values of 8 unknown
bits of the key. The correlation is likely to be maximal for the correct guess of
the 8 bits of the key. Then the attack can be repeated for the remaining S-boxes.

It has been claimed that all “naive” implementations can succumb to attacks
by power analysis technique. The only solution is to re-implement cryptosystems
taking into account a wide range of counter measures, although the cost in terms
of performance and memory usage can be high. General strategies to combat
side-channel attacks are [9]:

– de-correlate the output traces on individual runs (e.g., by introducing ran-
dom timing shifts and wait states, inserting dummy instructions, random-
ization of the execution of operations, etc.);

– replace critical assembler instructions with ones whose “consumption signa-
ture” is hard to analyze, or re-engineer the critical circuitry which performs
arithmetic operations or memory transfers;

– make algorithmic changes to the cryptographic primitives so that attacks
are provably inefficient on the obtained implementation, e.g., masking data
and key with random mask generated at each run.

It had been shown [3,9] that among these, algorithmic techniques are the most
versatile, all-pervasive, and may be the most powerful. Also, in many contexts
it is the cheapest to put in place.

In [1], Akkar and Giraud described a practical implementation of the AES
using a new adaptive masking method. The idea is the following: the message is
masked by means of a traditional XOR operation with some random X at the
beginning of the algorithm; and thereafter everything is almost as usual. The
XOR operation is compatible with the AES structure except for an inversion in
the field; hence the mask must be arithmetic on GF (28). For this, the authors
devised a technique of transforming a boolean mask into a multiplicative mask,
namely a modified byte substitution. Of course, the value of the mask at some
fixed step (e.g., at the end of the round) must be known in order to re-establish
the expected value at the end of the execution. Fig. 1 illustrates the difference
between one round of the AES with and without masking counter measure. In
what follows we review the proposed counter measure and suggest a new solution
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Fig. 1. One round of the AES with and without multiplicative masking counter mea-
sure.

based on the same idea; a solution that significantly simplifies the structure of the
algorithm and reduces the number of expensive field operations. After which we
conduct a security analysis of the simplified method and propose some techniques
for its secure implementation.

2 Adaptive Masking Method for AES

The block cipher Rijndael [6] became an official new advanced encryption stan-
dard (AES) in 2001. It means that the AES will be used as the standard crypto-
graphic algorithm for financial transactions, for telecommunication applications,
and in many areas where DES is currently used. The large potential market is
making it worthwhile for chip manufactures to run AES on their Smart Card
micro-controllers. Since Smart Cards are easy victims to side-channel attacks,
implementation of counter measures is mandatory. However, a price to pay must
not be prohibitive for devices such as Smart Cards that have limited memory;
and their on-line usage requires reasonable time performance.

2.1 The Rijndael Round

For simplicity, we consider the 128-bit block- and and key sizes version on the
basis that the cryptanalytic study of the Rijndael during the standardization
process was primarily focused on this version. For a complete mathematical
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specification of the Rijndael algorithm we refer readers to [6]. An encryption
module is shown in Fig. 2. The total number of rounds (counting the extra
round performed at the end of enciphering) is 10, the key block length and data
block length are both equal to 4.

Add Round Key 

Sub_Key

Plain Text

Byte Substitution Shift Row Mix Column Add Round Key

Sub_Key

Byte SubstitutionShift RowAdd Round Key 

Sub_Key

Encrypted
    Data

Fig. 2. The main flow of the algorithm.

In the Rijndael, the 128-bit data block is considered as a 4×4 array of bytes.
The algorithm consists of an initial data/key addition, 9 full rounds (when the
key length is 128 bits), and a final (modified) round. A separate key scheduling
module is used to generate all the sub-keys, or round keys, from the initial key;
a sub-key is also represented as 4 × 4 array of bytes. The full Rijndael round
involves four steps.

The Byte Substitution step replaces each byte in a block by its substitute in
an S-box. The S-box is an invertible substitution table which is constructed by
a composition of two transformations, as Fig. 3 illustrates:

– First, each byte Ai,j is replaced with its reciprocal in GF (28) (except that
0, which has no reciprocal, is replaced by itself).

– Then, an affine transformation f is applied. It consists of
• a bitwise matrix multiply with a fixed 8 × 8 binary matrix M ,
• after which the resultant byte is XOR-ed with the hexadecimal number

′63′.

The S-box is usually implemented as a look-up table consisting of 256 entries;
each entry is 8 bits wide; but it also can be computed “on-a-fly”. Although the
latter takes more time, it saves memory.

Ai,j A i,j
1

B i,j
Inversion Affine

transform. fin GF(2^8)

Fig. 3. Two steps of Byte Substitution transformation.
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Next comes the Shift Row step. Each row in a 4 × 4 array of bytes of data
is shifted 0, 1, 2 or 3 bytes to the left in a round fashion, producing a new 4 × 4
array of bytes.

In the Mix Column step, each column in the resultant 4 × 4 array of bytes is
considered as polynomial over GF (28) and multiplied modulo x4 +1 with a fixed
polynomial c(x) =′ 03′x3+′01′x2+′01′x+′02′. The operation of a multiplication
with a fixed polynomial a(x) = a3x

3+a2x
2+a1x

1+a0 can be written as a matrix
multiplication where the matrix is a circular matrix with the first row equal to
a0, a3, a2, a1, each subsequent row is obtained by a circular shift of the previous
one by 1 position to the left. Since multiplication is carried out in GF (28), the
product is calculated modulo irreducible polynomial m(x) = x8 +x4 +x3 +x+1,
or ′11B′ in hexadecimal representation.

The final step, Add Round Key, simply XOR-es the result with the sub-key
for the current round.

In parallel to the round operation, the round key is computed in the Key
Scheduling Block. The round key is derived from the cipher key by means of key
expansion and round key selection.

Round keys are taken from the expanded key (which is a linear array of
4-byte words) in the following way: the first round key consists of the first Nb

words, the second of the following Nb words, etc. The first Nk words are filled
in with the cipher key. Every following word W [i] is obtained by XOR-ing the
words W [i − 1] and W [i − Nk].

For words in positions that are multiples of Nk, the word is first rotated by
one byte to the left; then its bytes are transformed using the S-box from the
Byte Substitution step, after which XOR-ed with the round-dependent constant.

2.2 Adaptive Multiplicative Masking

It is easy to see that the problem of implementing a masking counter measure
comes from the Byte Substitution transformation, which is the only non-linear
part. One known solution [13] consists in masking a table look-up T which im-
plements the S-box with two boolean masks, the input mask Rin and the output
mask Rout, as follows: T [Ai,j ] = T ′[Ai,j ⊕ Rin] ⊕ Rout. This implies that the
masked table must be computed for each pair Rin, Rout. If done “on-a-fly”, it
takes time. Another solution is to fix a pair Rin, Rout prior each run, and pre-
compute table look-ups for all such pairs. If one wants to mask every byte in
128-bit data, it would require as much as 256×16 bytes, or 4K of memory, which
is not desirable for memory-limited devices like Smart Cards.

[1] suggests a method that allows to obtain the scheme without S-box re-
computations. The message is masked at the beginning of the algorithm by
XOR-ing it with a random value, generated for every new run; and thereafter
everything is nearly as usual.

Since the mask must be arithmetic on GF (28), the transformation “boolean
mask to multiplicative mask” is devised such that the first step of the Byte
Substitution, namely, the inversion in GF (28), produces a masked multiplicative
inverse of the input data, as shown in Fig. 4. Here Xi,j is an 8-bit random
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Fig. 4. Modified Byte Substitution with masking counter-measure.

value which masks data Ai,j and X1i,j = f(Xi,j) (this comes from the affine
property of f). Then, the reverse transformation “multiplicative mask to boolean
mask” is performed to restore an additive mask on the inverse data before an
affine transformation f takes place. The full scheme of the modified inversion
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Fig. 5. Modified inversion in GF (28) with masking counter measure.

is depicted in Fig. 5. As one can see, it requires an additional random variable,
Yi,j , one additional inversion, and 4 extra multiplications in the field. During
all stages of the modified inversion, intermediary values seem to be independent
from Ai,j .

While the masking methods, like in [13], must respect a masking condition
at each step of the algorithm, using the transformed method one only needs to
know the value of the mask at a fixed step (e.g., at the end of the round, or
at the end of a non-linear part). The expected value is re-established after the
computations at the end of the algorithm.
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3 Simplified Multiplicative Masking

The idea of the simplified transformed masking is the same as the one described
above. At the beginning of the byte substitution, the input value is Ai,j ⊕ Xi,j ,
where Xi,j is a random byte (we can safely drop indices i, j). We found a very
efficient method that allows us to have A−1 ⊕ X at the end of the inversion
without compromising value A. It can be described using solely algebraic laws
for operations in finite fields.

Let us approach our goal from two directions simultaneously: from the input
A⊕X working forwards to get A−1⊕X−1, and from the output A−1⊕X working
backwards, also towards A−1 ⊕ X−1.

1. Suppose, we managed to obtain A ⊗ X from A ⊕ X without compromising
A; then applying inversion in GF (28), we get A−1 ⊗ X−1. Here how it can
be done.
a) We want to have a multiplicative masking A⊗X from an additive mask-

ing A ⊕ X. A distributivity law (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) gives us
the idea. Substituting A for a and X for c, we get

(A ⊕ X) −→ (A ⊕ X) ⊗ X = A ⊗ X ⊕ X2.

b) To obtain a pure multiplicative mask, we have to get rid of X2. An
algebraic law a ⊕ a = 0 can be applied here

A ⊗ X ⊕ X2 −→ A ⊗ X ⊕ X2 ⊕ X2 = A ⊗ X.

c) At this stage, one can safely apply inversion in GF (28)

A ⊗ X −→ (A ⊗ X)−1 = A−1 ⊗ X−1.

2. Now we face a symmetric task of obtaining the additive mask A−1 ⊕X from
the multiplicative mask A−1 ⊗X−1. The algebraic law x−1 ⊗x = 1 will help
to get rid of the X−1; but before doing so, an additional step must be taken.
a) Ensure that the value A−1 will not be revealed in the process:

A−1 ⊗ X−1 −→ A−1 ⊗ X−1 ⊕ 1.

b) Now we can get rid of X−1:

A−1 ⊗ X−1 ⊕ 1 −→ (A−1 ⊗ X−1 ⊕ 1) ⊗ X = A−1 ⊗ 1 ⊕ X = A−1 ⊕ X.

Fig. 6 depicts this method graphically. Compare it with Fig. 5. As one can see,
ours is a significant simplification of the solution in [1]; it requires no extra
inversion in GF (28), and only two extra multiplications and one squaring.

One can argue that the first step in the “boolean mask to multiplicative
mask” transformation, can jeopardize the security of the masking because (a ⊕
x)⊗x is not fully random for a random x. Indeed, as has been pointed out in [5],
the equation (a ⊕ x) ⊗ x = y has either zero solution, or two solutions; namely,



194 E. Trichina, D. De Seta, and L. Germani

Inversion on
GF (2 8)

A xor  X XX2

A-1 xor  X

1

Fig. 6. Inversion in GF (28) with simplified multiplicative masking.

substituting x with z ⊗ a in the equation above, we obtain z2 ⊕ z = y/a2. We
know that the equation z2 ⊕ z = b has zero solution if Trace(b) = 1, and two
solutions if Trace(b) = 0. So (a ⊕ x) ⊗ x reaches only half of the elements in
GF (28). However, it is sufficiently random to serve the purpose.

If the original additive mask is restored at the end of the round, as illustrated
in Fig. 1, there are no limitations on the choice of the random 128-bits mask X
apart from the requirements that none of its bytes Xi,j is equal to zero.

However, one can imagine the computation scheme, where, instead of restor-
ing the original mask Xi,j at the end of each round, one simply goes on with
the computations, taking the value X1i,j = f(Xi,j) as the mask for the second
round, X2i,j = f(X1i,j) for the third, etc.

Only at the end of the computations the data is unmasked. The correspond-
ing “correction” on the mask has to be carried out in parallel with the main
algorithm. In this case, due to the nature of the Mix Column and Shift Row
operations, some of the random bytes XKi,j for the K-th round, K = 2, ...9,
can turn to zeros.

A mathematical analysis of the effect of the Mix Column and Shift Row
operations on bytes of the mask indicates, and a simple computer experiment
with all possible choice of random bytes for a 128-bit random confirms, that the
sufficient condition which effectively prevents this from happening is that no two
bytes of the initial 128-bit random X should be the same.
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4 Securized Implementation of the Simplified
Multiplicative Masking

Let us ask a question: how to implement the simplified multiplicative masking in
a secure way? A straightforward implementation can lead to a potential security
flaw, as had been pointed out in [2,4,8]. The flaw consists in the fact that mul-
tiplicative mask masks only non-zero values, i.e., zero input value is mapped
into zero by the inversion. In other words, if an attacker can detect that the
value before (i.e., Ai,j ⊗ Xi,j) and after (i.e., (Ai,j ⊗ Xi,j)−1) the inversion is 0,
he/she gets an information on Ai,j . An attacker can exploit this fact and mount
the first order DPA attack as if no masking has been applied.

Hence, not to reveal the weakness, nowhere in the implementation there
should be a moment where both, Ai,j ⊗ Xi,j and (Ai,j ⊗ Xi,j)−1, are read or
written in clear. In other words, the counter measure shown in Fig. 6 must be
implemented in a completely protected environment. Currently we are working
on such an implementation. The obvious solution stems from the nature of our
simplified masking.

Indeed, since the constant 1 is to be added to every entry of the inverse table
(see Fig. 6), it can be done in advance, while creating the table itself. This,
however, may not protect from the attacker who now, instead of looking for 0
as the resulting value of the table lookup will look for 1. The situation can be
remedied as follows.

– Prior to a run of the AES algorithm, all entries of a table are XOR-ed with
some random constant value K. Then the result of the table lookup for
(Ai,j ⊗ Xi,j) will be (Ai,j ⊗ Xi,j)−1 ⊕ K.

– The subsequent multiplication with Xi,j produces ((Ai,j)−1 ⊕ (K ⊗ Xi,j)),
which either can be carried to the affine transformation f with K ⊗ Xi,j as
a new random or can be replaced with Xi,j by further XOR-ing the table
lookup result with Xi,j ⊕ (K ⊗ Xi,j).

This adds 256 bytes and one more field multiplication to the implementation;
however, computing a simplified multiplicative masking is still more efficient
than re-computing S-boxes for every run.

Still, the problem remains: how not to reveal Ai,j⊗Xi,j during computations?
We do not have a good answer to this question yet, which undoubtedly weakens
our counter measure. To prevent reading Ai,j ⊗ Xi,j in clear from the inverse
table T , the upper-most operation ⊕ with X2 in Fig. 6 must never be actually
performed.

One solution is that operation ⊕ with (X2
i,j ⊕ M) for some a-priori chosen

M is carried out, simultaneously updating T in such a way that for a new table
T ′: T ′[B ⊕ M ] = T [B]. M could be chosen so that this re-computation amounts
to simple re-shufling of the indices; for example, if M = 1, T ′ is obtained from T
by simply “swapping” each even and odd entries. Obviously, from time to time,
M and, respectively, the table T ′ must be re-newed.

Another solution brings us back to S-box re-computations: instead of recov-
ering Ai,j ⊗Xi,j from Ai,j ⊗Xi,j ⊕X2

i,j a new table T ′ such that T ′[Ai,j ⊗Xi,j ⊕
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X2
i,j ] = T [Ai,j ⊗ Xi,j ] is computed. Since only the first and the last rounds are

most vulnerable to the DPA, it seems enough to apply re-computations (or store
two extra pre-computed S-boxes) only for these rounds.

A general algorithm to compute such T ′ given some table T and a random
value X is described below.

Look-up table re-computation.

Input: table T;
random X = (x_7, ..., x_1, x_0)

Output: table T’ such that T’[b+X] = T[b] for b = 0..255
T’ := T;
For every x_i from (x_7, ..., x_0) in random order do:

If x_i = 1 then
(1) split T’ into blocks, each block containing 2ˆ(x_i)

subsequent elements from T;
(2) swap pairwise j-th and j+1-st blocks;
(3) assign the result to T’;

Return T’

Notice, that the algorithm reads bits of X at random which provides some pro-
tection from an attacker during re-computations.

The proposed securized implementation of the simplified adaptive masking
is computationally more efficient than full S-box re-computations, thus repre-
senting a compromise between cost and security.

5 Conclusion

We have shown that the Modified Byte Substitution can be implemented in a way
that to some degree avoids a severe security flaw paying a price of additional
multiplications and RAM usage.

However, many security features are a matter of trade-offs. Described in this
paper implementation of the simplified multiplicative masking provides similar
protection as an S-box re-computation but has lower implementation costs, in
terms of both, memory and execution time; namely, the price to pay is, apart
from numerous XOR operations, only three to four extra multiplications in
GF (28) per round plus an occasional re-shuffling of the inverse table stored
in ROM. While may not ensuring a complete protection from a sophisticated
attacker due to an inherent vulnerability of a multiplicative masking in the field,
the method increases the number of power curves acquisitions and thus can be
sufficient for a low-end line of Smart Cards.

Another, quite different solution would be not to work in the field GF (28),
but in the field GF (28 + a) where a is chosen such that 28 + a is prime. The we
can avoid zero by replacing it by 28 + 1. This is what had been done in IDEA
cipher as a solution to the problem of inverting a number modulo 216 during
decryption [12].
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