Secure Elliptic Curve Implementations: An Analysis of
Resistance to Power-Attacks in a DSP Processor

Catherine H. Gebotys' and Robert J. Gebotys?

! Department of Electrical and Computer Engineering, University of Waterloo, Waterloo

Ontario Canada N2L 3G1
[cgebotys@optimal.vlsi.uwaterloo.cal

2 Wilfrid Laurier University, Waterloo Ontario Canada

Abstract. With the popularity of wireless communication devices a growing
new important dimension of embedded systems design is that of security. This
paper presents exploration of power attack resistance, using a statistical ap-
proach for identifying regions of the power trace which pose a possible security
threat. Unlike previous power analysis research, a new metric supporting small
timing shifts and complex processor architectures is presented. This research
helps to identify how to create secure implementations of software. Elliptic
curve point multiplications using the Weierstrass curve and Jacobi form over
192-bit prime fields were implemented and analyzed. Over 60 real measured
power traces of elliptic curve point multiplications running at 100MHz on a
DSP VLIW processor core were analyzed. Modification of power traces through
software design was performed to maximize resistance to power attacks in addi-
tion to improving energy dissipation and performance by 44% with a 31% in-
crease in code size. This research is important for industry since efficient yet se-
cure cryptography is crucial for wireless communication embedded system de-
vices and future IP enabled smart cards.

1 Introduction

Security is increasingly becoming important in current design methodologies for em-
bedded systems which concentrate on high performance, low cost, low power and low
energy. Design for security involves secure protocol implementation and power analy-
sis in addition to algorithm design. In fact power dissipation has a large impact on
security as well as cost and reliability of an embedded system. Not only must crypto-
graphic algorithms be high performance and low energy, but more importantly they
must be secure or safe from side channel attacks. A side channel attack[1,11] involves
obtaining useful information from the cryptographic application which may lead to the
revelation of the secret key. Useful information includes the amount of time it takes to
perform various operations or the variation of power dissipation during key computa-
tions. In the later case this is known as a power attack[1]. As an example, an attacker
who has obtained the secret key is able to eavesdrop on a confidential wireless com-

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 114-128, 2003.
© Springer-Verlag Berlin Heidelberg 2003

mailto:cgebotys@optimal.vlsi.uwaterloo.ca

Secure Elliptic Curve Implementations: An Analysis of Resistance to Power-Attacks 115

munication between two parties. Consider Mary, the victim, who wishes to encrypt a
conversation with Bob. She first has to set up a session key. Mary computes the ses-
sion key as: xP in elliptic curve cryptography (or y* mod n in RSA technology) where
x is the secret key and this computation is performed various times for different P’s
(or y’s). The attacker may know P (or y) and in addition may obtain the computations
times or may be able to monitor power dissipation. With this additional information
the attacker may eventually be able to compute the secret key, x [1]. When the attacker
has obtained the secret key, communication between Mary and Bob is not secure.
Alternatively, obtaining the secret key in other applications, such as smart cards, al-
lows one to illegally use phone or digital TV services. In power attacks, the dynamic
power of the processor is measured over time and is called a power trace [1,11,12,13].
In elliptic curve cryptography (ECC), the analysis of the power trace may reveal when
a point doubling occurs (or calculation of 2P), and when two points are being added
(such as 2P+P) in the computation of xP, thus revealing the secret key.

In SOC (systems on a chip) platforms, multiple DSP processor cores on the same
chip are common. Often these core processors run at different voltages, and use sepa-
rate power pins, thus secure implementations of cryptography on SOCs is important.
Cryptography on DSP processor cores is an important lower cost and lower power
dissipation alternative to cryptographic processor cores and general purpose processor
cores respectively. This paper for the first time presents a new metric for quantizing
security and design exploration for ECC on a DSP processor core. Results are based
upon over 60 real measured dynamic power traces performing point multiplication
with different keys. Additionally tradeoffs in code size, performance, and energy dis-
sipation for security are explored.

Currently research in power attacks of smart cards, have utilized general purpose
processors [1,11,12,13]. Typically smart card applications are not time critical and
energy dissipation is not a major concern since power is obtained from the card reader
(or ATM machine, etc). Power attacks of more sophisticated processors with parallel
instruction execution have not been reported in the literature. The measurement of
power while a processor is executing an application (or a power trace) has been used
in power-attacks of cryptographic devices, such as smart cards [1]. In particular the
analysis of the variation of power, and computations on a number of power traces can
be used to detect data and algorithmic dependencies [1]. This research studied the
correlation of power variation with data values being manipulated and instruction
sequencing. In the former case, known as differential power attacks, encryption appli-
cations were analyzed [1]. In the later case, known as a simple power attack (SPA), it
was concluded that the correlation was significant and techniques such as random
sequencing of instructions have since been investigated. Researchers have also inves-
tigated the use of DSP processors for encryption [2,5] as well as elliptic curve imple-
mentation [9], however their resistance to power attacks has not been addressed. Re-
searchers addressing smart card application have suggested security against power
attacks be achieved through 70% increase in computational cost [3], assuming a 192-
bit prime number and signed window method with r=5[14], using 16 multiplications
for both doubling and summing compared to 8 multiplications for a doubling and 16
for a summing. This is achieved through using different forms of the curve, such as

116 C.H. Gebotys and R.J. Gebotys

the Jacobi form, where mathematically the sum and the double of a point use the same
formula 3,8]. Other researchers have investigated the cubic form of the EC, known as
the Hessian form of the curve [8,10]. In this research a 33% improvement in perform-
ance overheads is achieved, since only 12 multiplications are required for both sum-
ming and doubling.

This paper will present a new metric for analyzing implementation security against
power attacks, the implementation security index (ISI), and design exploration of
performance, energy dissipation, code size in addition to security. It will be demon-
strated on a complex VLIW DSP processor core, the Star*core (SC140), developed by
Motorola and Lucent[4]. An elliptic curve cryptographic application is analyzed for
resistance to power-attacks trading off low energy dissipation, high performance, and
small code size. The uncertainty of security from power-attacks is explored with real
current measurements of the DSP hardware VLSI core in a chip. A previously sug-
gested power-attack resistant technique, the Jacobi form of the EC is also imple-
mented and analyzed for comparisons in implementation security.

2 Elliptic Curves and Software Implementation

This section will review the application, elliptic curve point multiplication in prime
fields and introduce the methodology used to develop a security index for measuring
resistance to power attacks. Prime field cryptography involves a significant number of
integer multiplies which can be performed very efficiently on DSP cores. In addition
to a chosen key length, there are many different fields, projective coordinates, and
types of elliptic curves that can be implemented. For added security portable devices
should be able to support numerous curves and fields. However it is important for the
designer to be able to choose which sets to implement on an embedded device, to
tradeoff performance, code size, energy dissipation, and security against power at-
tacks. The application, point multiplication, will be introduced in this section, fol-
lowed by a discussion of implementation methods.

Point multiplication was implemented using the Weierstrass equation of the elliptic
curve and the Jacobi form of the elliptic curve. Implementation details are provided in
appendix A, B respectively. All curves were implemented with 192-bit field opera-
tions, using prime polynomial x'”-x"-1. The Weierstrass equation of the curve was y’
=x"-3x"+b over 192-bit prime fields[6] (see Appendix A for details). However to avoid
the long latency of inversion in prime fields (Jacobi) projective coordinates [7,8] were
chosen. In our DSP processor core the field multiplication to inversion ratio was 0.014
(330 cycles / 23146 cycles) using a worst case time for inversion. The equations for
doubling and summing points in prime fields with Jacobi coordinates are given be-
low[8]. These coordinates were used in the SC140 implementation and correspond to
the cycle counts of the point double and sum for prime fields in table 1. Given point
P=(x,y,z), the point 2P = (x,Y,,z,,) is given below (point doubling) and the point
(X,¥,2,)+(x,¥,2,) = (x,¥,2,) is also given below for point summing.

Secure Elliptic Curve Implementations: An Analysis of Resistance to Power-Attacks 117

X[:9(x2 —24)2 —8y2x

Y12 :3v(x2 —z4)(4y2x—(3x2 + z4)+8y2x)—8y4

I =22

3= (s (27 = 31 (2902 = (g (2 + 11 (29) P20 (27 = 1) (29)D)?

v3 =y (23 = 3 e ()2 (g (22 = 3, ()22 xy)
— 323y (2 a2 D)3
3 = lez(xz(zl)z - x|(22)2)

The clock cycle counts for the prime field EC codes running on SC140 along with
the code size and average power measurements are given in table 1. The first row of
table 1 provides clock cycle counts for point multiplication using key $13 (where $
indicates hexadecimal notation), for illustration purposes, with a signed NAF imple-
mentation (no windowing). Using these codes with a 192-bit key point multiplication

can be performed in under 3ms running the DSP processor core at 300MHz (assuming
a signed NAF sliding window with r=5 as in [3]).

Table 1. Original Prime Field Code Implementation Characteristics on SC140

192-bit Prime Fields Clock Cycles Code Average
Size(bytes) | Power (mA)

Point Operations

Point Multiplication | 28,897 8,070 48.8

(k=$13) 3,177 5,008 47.9

Double 5,554 4,920 49.8

Sum

Field Operations

Multiplication 330 1,270 49.6

Squaring 213 2,212 51.6

Mod reduction 60 460 45.9

Addition 33 320 45

Subtraction 29 248 43.8

The modification of sum and double routines for security against power attacks was
explored by inserting redundant operations into the double and sum routines so that the
order and type of field operation were identical. Figure 1 illustrates the sum and dou-
ble routine modifications. Since the point summation was almost double the execution
time of the point double routine (see Table 1 cycle counts), it was split into two rou-
tines, suml and sum2 shown in each column in figure 1. Redundant Operations are
identified by __ or underscores preceding their operation in the table. Table 2 illus-
trates the original and modified EC codes with respect to the field operation counts.
The shifts are implemented for coefficient multiplications (ie. multiplies by 2,4,8).
Approximately 25 clock cycles are required on average to implement a shift of x num-
ber of bits (where x = 2,4,8). The only field operations which had variable clock cycle

118

C.H. Gebotys and R.J. Gebotys

counts were the modular reductions which may or may not be required after additions,
subtractions, or shifts. Also the modular reductions for the result of squarings and

0z

-0.2

0.4

03

o.

L

01

Fig. 2. Comparison of power traces of original code at bottom with power-attack resistant code

Double

bl =y *2
el=z"2

b2 = bl * bl
b = b2<<3
| 72=y2 *x2
3l=y*z
e2=x-el
e3=x+el
e=e2*el3
z12 = z31<<1
cl = e<<l1
c=cl+e
fl = bl<<2
a= fl*x
f3 = a<<1
dl=c*c
x12 =d1 - {3
y31=a-x3
y32 =y31 *¢
yl12=y32-b

|f= zls

Suml

728 =72 N2
z1s =z1 2
z2¢ = 72s * 72
__al=y2<<3
*x2

g =122s *x1

| th=x1-zls
___ga=x1+zls
zlc = z1s * z1
___om=g<<1
| ga=zlc<<1

ga =1z1*z2
la=ga<<1
i=yl*z2c
al=i-la

Sum2
hs =h *2
om=j "2
al =th * hs
__th=y2<<3
la=h* hs
th=1la*i
x3 = om - al
___be=al + om
z3=ga*h
___al=hs<<1
_ be=z3<<1
om=be+z3
___ga=hs<<2
la=hs*g
__al=la<<l1
___be=om*om
om = la —x3

___ga=om-al
al =om * j
y3 =al - th

Fig. 1. PA-resistant code, WR, for point doubling(1" column)

SPA-Prime Fields ECC for Measured energy over key $15

r HWW %iﬂ” i M i J%ﬂm i P il

I
500

1000

1500

2000 '2500

L
3000 3500

4000

Prime Fields: Measured Energy for key §15

WR1 for the same key at top

il Moy *nwnw“h WA (i i Mo
' DIUHDJI '191‘94 y

3500

Secure Elliptic Curve Implementations: An Analysis of Resistance to Power-Attacks 119

multiplications were variable (since the final summation may require one or two sub-
tractions of the prime polynomial [7]). These caused minor delay differences in our
codes. Additionally the signed NAF higher level algorithms were designed so that the
routines in between the suml, sum2, and double were also identical (ie. so one could
not distinguish sum followed by double or double followed by sum, or double followed
by double).

The direct implementation of the Weierstrass Curve with Jacobi projective coordi-
nates has a very low value of implemented security (or low resistance to power at-
tacks) on the DSP processor. This is illustrated in the power trace shown at the bottom
(2,3 column) of figure 2, where S is the sum routine and D is the double routine.
The power trace at the bottom, or original point multiplication, shows 8 bumps for the
double routine, where each bump is the power dissipation of a multiplication (field)
operation or a squaring (field) operation (narrower than the multiplication). This rise
in power dissipation is due to the higher instruction level parallelism in the code as
well as the use of higher power dissipating types of instructions, such as a 32X32 bit
integer multiplication. Since the point summation is almost double the execution time
of a point double, the power traces can easily be used to obtain the secret key and thus
are very vulnerable to power attacks on this VLIW DSP processor. The implementa-
tion with redundant operations is shown in the power trace at the top of figure 2. The
top power trace used an extra field and point summing multiplication at the beginning
of each double and sum’s routines to prevent the compiler from eliminating dual input
operands to the double routine (however a less costly shift field operations could have
been used). The two power traces in figure 2 perform point multiplication on the same
key but the top is far more resistant to simple power attacks.

3 Analysis of Uncertainty in Power-Attack Resistance

The power traces for several keys were obtained for the software implementations of
the Weierstrass curve(WR) and the Jacobi curve (JC) running on the SC140 DSP proc-
essor. In WR, the code was further optimized replacing redundant operations with
more efficient implementations and detailed assembly modification to ensure good
cycle-accurate timings of the sum routines and double routine. All power traces were
obtained by executing the cryptographic algorithms on the SC140 at 100MHz (for
illustration purposes, though power traces at 300MHz were very similar), using a
pattern generator and high speed oscilloscope to capture the power traces. In the
power trace plots the y-axis represents the current variation (in Amps centered by the
oscilloscope at zero, and amplified by the probe by a factor of 5) and the x-axis repre-
sents the time (currently sampled data points). Matlab was used for signal analysis of
the power waveforms.

120 C.H. Gebotys and R.J. Gebotys

a) Power traces, Mean +/- 2°s
0.2 T T T T T T T T

b) Differences of Sum/Dbl power fraces

Fig. 3. Top: means, variances; Bottom: differences of WRI sum/dbl power traces

a) Power traces, Mean +/-2"s
0.2 T T T T T

Fig. 4. Top: means, variances; Bottom: differences of JC sum/dbl power traces

Secure Elliptic Curve Implementations: An Analysis of Resistance to Power-Attacks 121

Table 2. Field operation counts for original Weierstrass EC code and modified EC code for
power-attack resistance

Sum Original | PA-resistant Code (WR)
of Multiplications 13 14
of shifts 4 10
of Squarings 0 4
of Additions/subtractions 6 12
Double

of Multiplications 4 7
of shifts 5 5
of Squarings 4 2
of Additions/subtractions 6 6
Cycles for key $0b 29,517 37,294
CodeSize 7,626 9,618

Initially code was implemented by modifying the code in figure 1, by specifically
removing the first redundant shift by 3 bits (or <<3) in the sum routines and replacing
b2<<3 by the first redundant multiplication (z2=y2*x2 becomes b=b2*8) in the double
routine to reduce the latency. Power traces of this code, WR1, were extracted and the
variances and the mean plus or minus two times the standard deviation were computed
for sumli, sum2, double and plotted in figure 3. It was compared to the variance and
standard deviation of power traces obtained from the Jacobi curve, JC, (which is
mathematically power-attack resistant, since the point doubling and summing use the
same routine) shown in figure 4. The superimposed Jacobian power traces in figure 4
each show 17 power bumps, all for multiplications except the last two which are
squarings (see Appendix B). The average variances of both double and sum power
traces were 3.12E-4 for the Weierstrass curve, WRI, and 1.911E-4 for the Jacobi
curve, JC.

However it is difficult to use this average variance or absolute differences of double
and sum power traces (as shown at the bottom of both figures) to determine which part
of the code needs to be modified to increase security. Note also in these figures that
the differences of the sum and double routines shown in the bottom plot of the figures
are high where the power traces have the highest slopes (due to timing shift effects
near the rise and fall of power dissipation during integer multiplication or squaring
routines), thus not providing much information.

To further analyze the power traces and identify regions of software implementa-
tion which were possibly insecure, the variances and means were integrated into an
implementation security index (ZSI), shown in equation (1).

- (D

(B () = % (1)
(51 0)* , (520)°

n ny

ISI, (1) =

122 C.H. Gebotys and R.J. Gebotys

Equation (1) utilizes the means, x, (1), x, () and standard deviations s, (z), s, (r) for each
time t and the number of power subtrace samples n,,n, . This formula could be used

to analyze differences in the power traces of the sum (sample set 1) and the double
(sample set 2) routines representing ISI; (t) , or it could be used to analyze larger
portions of the power trace including software implementations in between the sum
and double routines. For example, a subtrace sample could be any part of the power
trace such as a double followed by a double, DD, (or suml followed by a sum2, SS)
representing the IS1,,, () formula. Using this formula, areas of the power trace where
the variance was low and the means of the double and sum routines differed were
identified as a low security measure. In other cases if the differences of means were
small or variances were large then a high security measure is indicated by the statistic.
Figure 5 shows four plots of WRI, from top to bottom the variances (Vars), the
ISI, (t)" variable values (or ISI where peaks or valley’s indicate a security problem),
the difference of means (or DPA), and the actual sum, double means in the last bottom
plot (Means). The oval identifies a peak of ISI (1 90)” (in the x value near 190). This
peak identified a problem in the security of the software implementation of WRI, near
the second multiply. This problem was verified (see bottom mean plot) as a power
difference due to multiplying a number with a large number of zeros (192-bit number
= $08) in the double routine and not in the sum routine (where a normal multiplication
of two more random 192-bit numbers is performed). In the DSP processor, multipli-
cation with zero’s dissipates larger power than a random or all 1’s number (due to
precharged busses, etc). Note that the difference of means or DPA (plot below the
ISI, (#)") did not pick up any significant difference relative to the other regions of the
plot. The ISI, (t)' measure shows more variation over earlier t regions than the DPA
due to extremely small variances, since these subtraces were aligned at the beginning.

The modified code, called WR, removed the *8 from the double routine and re-
placed it with a redundant multiply of two full 192-bit numbers (whose result is put in
a temporary variable), and introduced shifts to accomplish the *8§ functionality, as
detailed in figure 1. The power trace of the modified code is shown in figure 6, where
the mean and variance and differences are plotted. In this figure the sum2-double
power subtraces are shown. A horizontal line is added for comparison of field opera-
tions in both routines. The ISI,,(t)" for the resulting code, WR, is shown in figure 7
and it has an average ISI (or mean of IISI, (1)) of 0.49. The peak circled in figure 7
of ISI, 97)" indicates a security leak.

It is interesting to note that the difference of means (DPA) also has peaked indicat-
ing a possible security leak. However DPA continues to peak through the rest of the
power traces in figure 7, whereas the ISI,,, ()" flattens out. Peaking through the
DPA indicates differences of means exist, however they are not significant according
to ISI, . (t)" since the variances are also large in these areas. Again these large vari-
ances and difference of means occur due to timing shifts in the power traces. For ex-
ample consider the DPA peak and valley centered near t=150. These result from the
timing shifts in the rise and fall of power dissipation of the 192-bit multiplication
routine. In this example, since the rise or fall of power is large, any timing shift will

Secure Elliptic Curve Implementations: An Analysis of Resistance to Power-Attacks 123

<
g

3

ISI °

~20

01
DPA
=01

Means o
01 | -

Fig. 6. Top: means, variances; Bottom: differences of sum/double subtraces of WR

create a large difference of means which is picked up by DPA methods. However in
ISI since the timing shifts produce a large variance over the many power subtraces, no
peak or security leak is correctly identified. Hence ISI, ,(7)" tends to identify which

124 C.H. Gebotys and R.J. Gebotys

-3

4x10
Vars zf P'\J L
I
I,.I
T I -0 5 w(\ il J‘.,f'-"imJ -m-\._N-...,M_J"‘iﬂ-._;-. AN _‘.;hc:f".l P
[} 50 ‘f 16? 150 200 250 300 350
50 y , T y T T
AN AN - =
T o e G PR (B] gt R e e el
ISI f
50 ; . \ , \ ;
L] 50 100 150 200 250 300 350
0.05 : i . . . ;
DP A ot '|‘J"—‘-"’|,,a*'ﬁ"'w‘. i,
-0.05 I -
(" 50 350
02 -
Means ° _J Wy
/
-02 !
50 350

Fig. 7. Variances, ISI (t)", DPA, and means of double-double/sum-sum power traces of WR

SD,DS

—0.01
=0.02
003/

—0.04 |/

—-0.05

20 22 24 96 98 100 102 104

Fig. 8. Hole produced by memory stalls in highly parallel section of integer multiplication

difference of means are in fact significant (or exist with small variances). However
the user must still verify that the ISI,,,, ()" peak is not a result of strictly very small
variances alone. Looking closer at this IS/, ,(97)" peak, figure 8 shows superimposed
power traces over this region and the hole or gap between the sum2 and double (and
suml) routines (see x-axis between 96 and 98). The peak indicates a valid difference
between the double and sum2 power traces due to memory stalls within the highly
parallel integer multiplication routine.

In the SC140 a memory stall will cause an extra one cycle delay whose power
characteristic is similar to a nop instruction (or no-operation instruction) which has the

Secure Elliptic Curve Implementations: An Analysis of Resistance to Power-Attacks 125

lowest power dissipation. In SC140, memory stalls will occur whenever more than one
request to the same memory module but a different row is made in the same processor
clock cycle. Since the DSP processor uses a unified memory space (where both pro-
gram and data is stored in same memory), memory stall identification is more com-
plex since it involves the program code as well. In this case, it was determined that in
the second sum routine, memory stalls due to conflicts between the program and the
loading of data in the middle of a loop with high instruction level parallelism caused
the power not to peak as much as it did in the other suml routine, or double routine.
The lower dotted traces in figure 8 are the sum2 routine, while the upper line traces are
the suml and double routines respectively.

The Jacobi form of the curve was also analyzed and the variances, ISI (t)" vari-
ables, and means are shown in figure 9. The final JC code had an average ISI of 0.44.
Figures 7 and 9 both show high absolute values of IS/ (t)" near the beginning of the
power traces and in some other areas. In these cases, the absolute peak occurs due to
very low variances and does not represent a security problem.

gX19
1.5
N | |
0.5 Y '| Y !
ol e it W '\,..'l iy “*\’\L"' k..u [t "" o el
o 100 ZDD SDD 600
20 :
10} || \
1 Ve A o
b v, II|| L WAV AN A
P 'f I
—zol L al L L L 1
o 100 200 300 400 500 6500
0.2
0.1} Fie
W .
o [\) f e NN NS .-"‘\
=0.1 : '
oz L n " n . 1
o 100 200 300 400 500 800

Fig. 9. Variances, ISI (t)", means of Jacobi form of curve, JC

The bar chart in figure 10 from left to right shows the energy dissipation (mJ) of
WR, JC and clock cycle counts for WR, JC for each key (ie. $b, $10, and a random
192-bit key). The number of clock cycles for key $b and $10 have been divided by 100
in the figure for scaling purposes. In figure 10, the cycle count of the 192-bit key is
divided by 10,000 (1.81M cycles for JC and 1.25M cycles for WR, a 44.7% improve-
ment) and the energy of the 192-bit key is divided by 100. The average ISI of WR and
JC is respectively 0.49 and 0.44. The energy per bit (energy dissipation of 192-bit key
divided by 192) of the WR and JC implementations is 10.37 and 14.96 respectively (a
44.2% improvement). The code size of WR is 9618 bytes compared to JC which only
requires 7338 bytes (since the double and sum are the same routine).

126 C.H. Gebotys and R.J. Gebotys

500
450
400
350
300
250
200
150
100

50

BWR (mJ)
BEJC (mJ)
OWR (cyc)
W JC (cyc)

$b $10 192-bit(/100)

Fig. 10. Energy dissipation and cycle comparison of WR with JC

4 Discussions and Conclusions

The methodology presented in this paper, has shown that ISI can provide important
information for cryptographic applications being implemented by embedded system
designers. Previous methods suggested, such as simple power attacks, or differencing
can be improved by exploring variances and ISI. This design exploration has been
used to develop code which has improved security yet lower energy dissipation and
higher performance compared to the Jacobi curve implementation. The lower energy
dissipation will be important for secure implementations in portable devices.

Unlike previous research mathematical approaches to power-attack resistance, this
research has examined techniques for ensuring the security of the software imple-
mentation through modification of power and energy dissipation. Design exploration
of verified elliptic curve point multiplication routines running on a complex VLIW
DSP processor core is presented. Previous methods suggested, such as SPA, or DPA
(not easily extended for complex architectures, since there are multiple active busses
each clock cycle) can be improved by exploring variances and IS/ which handle small
timing shifts. For the first time, a new metric, the implementation security index, IS7,
has been introduced for quantizing security of implementations. Real power traces
have been measured, and security from power-attacks verified with real hardware
VLSI chip power measurements. This methodology for the design of secure software
for the SC140 DSP processor can in general be applied to other processors.

Results show that WR code improves energy dissipation, performance, and imple-
mentation security index by 1.44 times, 1.44 times, and 1.11 times respectively com-
pared to our implementation of previously research routines, JC, with a 31% increase
in code size. This metric can be used for design exploration of security in addition to
performance, code size and energy dissipation. This research is crucial for supporting
a methodology for designing software that is not only optimized for performance,
power and cost, but also for implementation security.

Secure Elliptic Curve Implementations: An Analysis of Resistance to Power-Attacks 127

Acknowledgments. The author would like to thank NSERC, Motorola, and CITO for
their support through funding of this research. The author also would like to thank
R.Muresan for his acquisition of the power traces using [15] and A.Sathiananthan for
coding the cryptographic algorithms and running them on the Star*Core board.

References

P. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems”’, LNCS 1109, 1996.

2. S. Dusse, B. Kaliski, “A cryptographic library for the Motorola DSP56000”, vol 473,
LNCS, May 1990, pp. 230-244.

3. P. Liardet, N. Smart, “Preventing SPA/DPA in ECC systems using the Jacobi Form”,
LNCS 2162, May 2001, pp 391-401.

4. “Star*Core 140 DSP Core Reference Manual”, Motorola/Lucent, Sept 1999.

5. T. Wollinger, M. Wang, J. Guajardo, C. Paar, “How well areHigh End DSPs Suited for
the AES Algorithms?”

6. IEEE Std 1363-2000, IEEE Standard specifications for public-key cryptography, IEEE
computer Soc. 2000.

7. D. Hankerson, J. Hernandez, A. Menezes, “Software Implementation of NIST Elliptic
Curves over Prime Fields”, White Paper, www.certicom.com, 2000

8. Chudnovsky, D.V., G.V. Chudnovsky, “Sequences of Numbers generated by addition in
formal groups and new primality and factorization tests”, Applied Mathematics, Vol.7, pp
385434, 1986.

9. K. Itoh, M. Takenaka, N. Torii, S. Temma, Y. Kurihara, “Fast implementation of public-
key cryptography on a DSP TMS320C6201”, CHES 99, vol 1717, LNCS, 1999, pp. 61—
72.

10. M. Joye, J. Quisquater, “Hessian Elliptic Curves and Side-Channel Attacks” LNCS 2162,
May 2001, pp 402—410.

11. P. Kocher, J. Jaffe, B. Jun, “Differential Power Analysis” Crypto’99, LNCS 1666, 1999.

12. T. Messerges, E. Dabbish, R. Sloan, “Investigations of Power analysis attacks on Smart-
cards” USENIX workshop on Smartcard Technology, 1999.

13. O. Kommerling, M. Kuhn, “Design principles for Tamper-resistant Smartcard Processors”,
USENIX workshop on Smartcard Technology, 1999.

14. 1. Blake, G. Seroussi, N. Smart, “Elliptic Curves in Cryptography” , LMS 265, Cambridge
Univ. Press, 2000

15. R. Muresan, C. Gebotys, “Current consumption dynamics at instruction and program level
for a VLIW DSP Processor”’, ACM Proc. of ISSS, Oct 2001, pp. 130-135.

Appendix: A

The Weierstrass model [8,15] used was E : y*= x’- 3x +b (mod p) where (hexa-

decimal notation is denoted by 0x)
b=0x64210519e59c80e7 0fa7e9ab 72243049 feb8deec c146b9bl

128 C.H. Gebotys and R.J. Gebotys

p= OXlllllllllllllllllllllllllllllllellllllllllllllll (or

6277101735386680763835789423207666416083908700390324961279 or

x!%2-x%%.1) using (Jacobian) projective coordinates (where x=x/2",y=y/z’) and the following

NIST recommended x,y starting points and:

x = 0x188da80e,0xb03090f6,0x 7cbf20eb,0x43a18800,0xf4ff0afd,0x82{f1012

y = 0x07192b95,0x{fc8da78,0x63101 1ed,0x6b24cdd5,0x73f977a1,0x 1794811

z = 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000001
Other starting points were also investigated where 7> 1.

Example: the output values for key $0b were:

Value of x: 3e677863 ed84f02a 514987dd fSec9fee 26¢cbc7bf 8794ca26

Value of y: 75bed8f8 327b78cd eb1d339e d6e9d58d 856922e5 6¢3ca607

Value of z: 8¢83fb04 a32bc227 9e07¢3d0 6bfadlel ae9357aa 99a48ae5

Appendix: B

Jacobi form of curve, represented as an intersection of two quadratics[8,3] E: W + x*
-7 =0, KW +y -2'=0 , p = x'"-x"-1, with X’ [2] and starting points given as:
w={0x7a73b10f, 0xd4201d0c, 0xf0a56204, 0xba70362f, 0x2471ac47, 0x067277d1 };
x={0x12712cc2, Oxcbe55812, Ox2bcb2aaa, 0x00a9%e¢313, 0xc75¢9c34, Ox15d2b44a };
y={0x47fc02ce, 0xa38eca373, 0x2eae6122, 0xb9d9f5e6, 0xab9dd76a, 0x300be399 };
z={0x01379630, 0x88fd6a29, 0x50f0f425, 0xa78b7b28, 0x98fd71c7, 0xa23f074d };
k’={0x33148392, Oxa8alabb4, 0xd16e45ba, 0xa2451dbb, 0x983a69d4, 0x286eca33 };

Example: the output points for key $0b were

Value of w: 98d7bb57 b34b19d3 399b7ed 2371a568 4274c9aa 38297506

Value of x: 45cfa54b ee52c9a0 ca3b06bb c2c9641f 6634224 465267dc

Value of y: d2c1c135 e88469b2 £f695¢8c3 6362c15d 816fc025 dc1c8ba8

Value of z: alb9de72 e60f5d59 e5b92102 ¢1937046 b28420a3 1db8b731

Implemented Code: (c0,c1,c2,c3)= (a0,al,a2,a3)+(b0,b1,b2,b3)
a3bl=a3*bl , aOb2=a0*b2 , a2b0=a2*b0 , alb3=al*b3 , cOl= a3b1*a0b2 , cO=cOl+
a2b0*alb3, cl1=a3bl*alb3, cl=c11-a2b0*a0b2 , a3a2=a3*a2 , b3b2=b3*b2 ,
a3a2b3b2=a3a2*b3b2 , alal=a0*al , bOb1=b0*b1 , aDalbObl=a0al*b0bl ,
k~2a0alb0bl=k"2*a0alb0bl , c2= a3a2b3b2 - k*2a0alb0bl , a3bl_s= (a3bl) *2,
a2b0_s= (a2b0) *2 , c3=a3bl_s + a2b0_s

	1 Introduction
	2 Elliptic Curves and Software Implementation
	3 Analysis of Uncertainty in Power-Attack Resistance
	4 Discussions and Conclusions
	References
	Appendix: A
	Appendix: B

