
Modelling SIP Services Using Cress

Kenneth J. Turner

Computing Science and Mathematics, University of Stirling, Scotland FK9 4LA
kjt@cs.stir.ac.uk

Abstract. Cress (Chisel Representation Employing Systematic Specification)
is a notation and set of tools for graphical specification and analysis of services.
It is applicable wherever a system consists of base functionality to which may
be added selected services. The Cress notation is introduced for root diagrams,
service diagrams, and rules governing their behaviour. It is shown how Cress
can represent services in SIP (Session Initiation Protocol). For analysis, service
diagrams can be automatically translated into Lotos (Language Of Temporal
Ordering Specification) or SDL (Specification and Description Language). For
scripting, translation is into CPL (Call Processing Language) or CGI (Common
Gateway Interface). The structure of the portable Cress toolset is explained.

1 Introduction

1.1 SIP

In telephony, a service means capabilities that are packaged and sold to end-users, while
a feature is a self-contained aspect of a service. Most modelling approaches deal with
features and how they can be composed to form larger services. A critical lesson from
telephony is that services or features often interfere with each other in unexpected and
undesirable ways – the so-called feature interaction problem [3].

IP Telephony or VoIP (Voice over IP) is a hot topic that has attracted significant com-
mercial and research interest. The main standards deployed in this area are H.323 [6]
and SIP (Session Initiation Protocol [9]). Although H.323 is more widely deployed and
more mature, SIP is more flexible and better oriented towards providing new services.
For example it is being used for presence and instant messaging services, and has been
adopted for use in 3G mobile communications. However SIP services are a relatively
new area, and service creation environments for SIP are only just emerging. Since SIP
was designed from an Internet philosophy, it appears that some issues well known in tele-
phony have not yet been transferred to the SIP domain. For example, feature interaction
in SIP has received only limited attention [4].

This paper aims to clarify a number of important questions concerning SIP services:

– What is the nature of a SIP service? (see section 3.1)
– How might SIP services be modelled? (see section 3.2)
– How can SIP services be analysed and checked for compatibility? (see section 4.3)
– How can SIP services be prototyped? (see section 4.3)
– How can SIP models be used to create operational services? (see section 4.4)

D.A. Peled and M.Y. Vardi (Eds.): FORTE 2002, LNCS 2529, pp. 162–177, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Modelling SIP Services Using Cress 163

Establishing a SIP session involves the User Agent of each end-user. Although User
Agents can contact each other directly, it is preferable to establish sessions via Servers.
The most flexible kind is a Proxy Server. This is often combined with a Registrar that
receives notifications from users as to their current address (or even multiple addresses),
thus supporting mobility. If a session invitation is sent to the user’s Proxy Server, the
Server can direct the request to the user’s current location(s). Proxy Servers, and some-
times User Agents, also support service scripting. This allows the user to define call
preferences, e.g. how they may be contacted by certain individuals, at certain times, or
on certain subjects.A Redirect Server has the more limited role of returning a forwarding
address to the initiating user, requiring a further session request to be issued.

Very briefly, SIP works as follows; consult the SIP standard [9] or a textbook [10] for
more details. It may be helpful to note that SIP is patterned after HTTP. SIP commands
(‘methods’) are confirmed by responses. SIP responses carry a numeric code and a
text explanation. There are two broad classes of response: preliminary (e.g. session
establishment in progress) and final (e.g. session setup succeeded or failed). A user
initiates a SIP session by sending an Invite. The receiving user sends a Response that
may accept or decline the session. The initiating user confirms receipt of this by sending
an Ack. SIP negotiates the session media description, e.g. for audio and video. Even if
the session is established via a Proxy Server, media data is sent directly between the
users. To close a session, either party may send a Bye and confirm this with a Response.

1.2 Cress

This paper discusses a development of Cress (Chisel Representation Employing Sys-
tematic Specification). Cress is considerably evolved from its basis in Chisel, which
was developed by BellCore [1] for telephony services. Cress is a notation and set of
tools for graphical description and analysis of services [12]. It is graphical in order to
improve its attractiveness to an industrial audience. Cress has previously been used to
model and analyse IN (Intelligent Network) services [12]. Adaptation of Cress for SIP
has been fairly straightforward, though different service models have been required.

Unlike Chisel, Cress allows modular service descriptions and permits much more
flexible combination of services. Cress also has ‘plug-in’ application domains, so it can
be used outside traditional telephony. For example, the application to SIP is achieved by
plugging in a different vocabulary and framework.

A formal language or a programming language could, of course, be used directly to
model services. But Cress aims to make service descriptions more accessible to non-
specialists. Cress diagrams are more compact than their translations into other languages,
largely because they define services at a suitable level of abstraction. Cress is operational
in nature: it gives constructive, behavioural descriptions of services. Service diagrams
derive their formal meaning through translation to a target language.

Cress supports translation into implementation languages. In the context of SIP,
service diagrams can be translated indirectly into C, or directly into CPL or CGI. CPL
(Call Processing Language [8]) is used for SIP service scripting. SIP also has an HTTP-
like CGI (Common Gateway Interface) that is also intended for SIP scripting.

Cress is neutral with respect to the target application domain and target language. It
can therefore be used as a front-end for some other (formal) approach. Cress separates the

164 K.J. Turner

representation of services from their analysis, so it is open to various analytic techniques.
The Cress toolset is platform-independent, and so can be deployed widely.

Automated tool support has been developed to check the correctness of Cress dia-
grams and to translate them into various (formal) languages. Cress has a tightly defined
notation that can be converted automatically into formal specifications. Formal analysis
of services is based on a translation to Lotos (Language Of Temporal Ordering Specifi-
cation) or SDL (Specification and Description Language). This opens Cress up to many
formally-based techniques for analysing services and detecting interactions.

The Cress approach confers a triple advantage. First, it is a comprehensible graphical
notation for services. Second, it is automatically translated into a formal language for
rigorous analysis. Third, it is automatically translated into implementation languages
for deployment. Using Cress with SIP partly aims to define and analyse services, but
also to generate service scripts automatically. Although there are web-based tools for
web scripting, these are close to the scripting language employed (typically CPL). Cress
aims to abstract from this, and to add rigour when defining services.

2 Cress in General

2.1 Basic Diagrams

While reading this section, it may be helpful to refer forward to sample Cress diagrams
such as figures 2 and 6. A Cress diagram is a directed, possibly cyclic, graph of nodes
linked by arcs. A diagram describes the behaviour of a complete system, or of a service
that is added to a base system. A basic node has a number and an associated event, e.g.
1 Off-hook A to indicate subscriber A initiating a call. The node number is mainly for
identification, but is used when services are combined. An event carries a signal like
Off-hook and optional parameters like address A. If an event parameter has a known
value it is used in the event, otherwise the parameter receives a value in the event.

Events are classified as inputs or outputs (as far as the system being specified is
concerned). A composite node may contain several events in parallel, but these must be
all inputs or all outputs. Input nodes normally alternate with output nodes along a path,
but this is not a restriction. The signals in a node are used to determine if it is an input or
output node. However, it is permissible to use the same signal for both input and output.
(For example, a SIP User Agent may send or receive an Ack.) As a result, it may not be
possible to determine the input/output kind of a node. In such a case, the kind of node is
explicitly given by placing an input marker ‘<’ or output marker ‘>’ (mnemonic: from,
to) after the node number. A system may merely relay signals (e.g. a SIP Proxy Server).
To avoid many pairs of identical input/output nodes, the marker ‘&’ (mnemonic: and)
can be placed after the node number to mean consecutive input/output.

Each event may be associated with explicit assignments. These are normally sep-
arated by ‘/’, but this symbol can be omitted (as in Chisel) if there is no syntactic
ambiguity. Cress expressions allow the usual kinds of arithmetic, comparison, logical
and set operators. If there is no ambiguity, parentheses are conventionally omitted around
parameters, e.g. Ack A B means Ack(A,B).

As an example of a composite event, a node might contain:

12> Stop Ring A B / Busy A <− False ||| Ack A B

Modelling SIP Services Using Cress 165

This output node, numbered 12, occurs when B cancels a invitation to A because there
is no answer. A stops ringing from B, and its status is recorded as no longer busy. In
parallel, an acknowledgement of the cancellation is sent from A to B.

An empty node, meaning no event occurs, can be useful as a connector. It may join
a number of preceding and following nodes as a more compact way of linking all the
nodes. As in Chisel, an empty node may explicitly contain NoEvent.

The arcs linking nodes may be plain arrows or may be labelled with a boolean
condition as a guard. If branches of a choice are not guarded, the decision is determined
by the events that follow. If branches are guarded, the decision is determined by the
guard expressions. For convenience, an Else condition may be one of the alternatives.

A diagram must have a unique initial node. If cycles in a diagram mean that the
initial node cannot be determined, an artificial Start node may be added to the diagram.
A diagram may have several leaf nodes. Behaviour terminates here, or may cycle back
to the initial node (at the specifier’s discretion).

A large diagram may be split over several pages. Each section is lettered (to avoid
confusion with the numeric node labels). An arrow symbol points to the next diagram
section (e.g. B), which begins with this target label.

A Cress root diagram describes the basic behaviour of a system. An important
capability is being able to define additional service diagrams that modify the root diagram
(or other service diagrams). Diagrams are combined syntactically using either of the
methods discussed in section 2.3. Services are automatically combined with each other
and with the root diagram to yield a composite system description. This approach is
common in telephony, where the root diagram is POTS (Plain Old Telephone Service)
and the service diagrams are additional services like call waiting or call screening.

2.2 Rule Boxes

A major informality in Chisel concerns how variable values are changed by events. As
seen in [5], such rules are written in English. In Cress, a rule box gives a rigorous and
machine-processible definition. Diagram variables are declared explicitly, e.g.:

Uses Address A Address B
An address is the identification of a user (e.g. a SIP address). Other variable types
include Boolean, Message (voice message to a subscriber), PIN (Personal Identification
Number), Response (response code) and Time. Temporary variables like address A0..A9
and response R0..R9 are implicitly available. Any stands for an indeterminate value
(unknown or don’t care).

In addition to diagram variables, Cress supports status variables that capture user
information and preferences. For example, a SIP invitation needs to know if the called
party is busy or not. Status variables are typically indexed by address parameters. Thus
Busy P indicates whether SIP address P is busy. Status variables are also used to hold
user profile information such as what services have been set up, e.g. forwarding on busy.

Following the Uses statement, rules of various types can be given. For example,
variable initialisation rules can be given. These are actioned only when the required
values (A below) are known:

F : ForwardBusy A

166 K.J. Turner

Although the assignments triggered by an event can be written explicitly after the
event, this clutters a diagram and becomes repetitious. Instead, Cress allows rules to
be formulated for assignments. For example when the calling party hangs up before the
called party answers, the called party stops ringing and is no longer busy:

Stop Ring P Q / Busy P <− False

This is the same notation as used in an event node, except that the event parameters
are place-holders. If an event matches the pattern above, P and Q are set to the actual
parameters. An assignment rule may be overridden by an explicit assignment for the
same variable in an event node.

Expression rewrite rules may be defined, e.g. ‘idle’ means ‘not busy’:

Idle P <− ∼Busy P

Any use of Idle is then transformed into a use of Busy. This kind of rule in fact defines
a macro. Much more complex macros can be defined as shorthand notations (e.g. for a
billing calculation). Macros can also be used to introduce named constants (e.g. for a
time-of-day charge-band).

Occasionally useful, a signal transformation rule causes one signal to send another:

Start Billing P Q / LogBegin P Q P Time

meaning that when billing starts for a call from P to Q, the billing system gets a LogBegin
signal. The call is from P to Q, with P paying, starting at the current time.

2.3 Service Diagrams

The Cress notation introduced so far is essentially a convenient form of state transition
diagram. Where Cress makes a significant contribution is in its capabilities for com-
bining services. The particular services deployed for each user are listed in a special
configuration diagram (not illustrated here).

A service describes how it is inserted into another diagram. Typically this is the root
diagram, although services may modify other services; for brevity, ‘root diagram’ in the
following covers both cases. A service has a Uses statement to import the other diagrams
it needs. If services depend on each other hierarchically, the subsidiary diagrams are
imported automatically. In the simplest and commonest case, only the root diagram
need be named: Uses / AGENT (i.e. the SIP User Agent diagram). Variables required by
a service appear before ‘/’ (though variables are often unnecessary). Service behaviour
may be inserted into another diagram through splicing or instantiation.

Splicing Services. When a service is to be spliced it defines its attachment point in the
root diagram, e.g. AGENT 1. This source node gives the diagram name and node number.
(In fact, this is the main reason for having node numbers.) To attach to the first node of
a diagram, the node ‘number’ is given as Start. The source node for a service may bind
the values of service variables to those in the root diagram:

AGENT A<−X B<−Y 1

Modelling SIP Services Using Cress 167

i.e. substitute variables X and Y in the service diagram for A and B in the root diagram
when splice in behaviour starting at node AGENT 1.

Having located the point of attachment, a service defines what it alters in the root
diagram.A node and its successors may be added to the root. Part of the root diagram may
also be replaced in its entirety by identifying the original node, e.g. node AGENT 1 and
its contents 1 Off-hook A. The effect is to replace this node and what originally followed
it. Guards as well as event nodes may be added or replaced in a service diagram. A
service may simply add behaviour that terminates in its own leaf nodes. More usually
it continues with another part of the root diagram by referencing a target node like
AGENT 2. A target node may also have variable bindings like a source node.

Service Templates. A service should be spliced if it applies just once to the root diagram.
Another desirable condition for splicing is that the service has only very local effect on
the root diagram. A number of the Chisel services in [5] suffer from the problem of
replacing large parts of the root diagram. For example CFBL (Call Forward on Busy
Line) replaces about 80% of POTS, much of the diagram being similar to the original.
CFBL can also apply more than once in a call. A call may be forwarded several times,
for example, if successive forwarding numbers are busy. The original Chisel diagrams
can therefore really only be combined individually with the root diagram.

Cress allows services to be defined more conveniently as templates. The initial
template node states the event that may trigger it. For each matching trigger in the
root diagram, an instance of the service is inserted. The template body has unique start
and finish nodes, and may have its own leaf nodes. The start node is marked with
‘*’ (mnemonic: any match) after the node number, while the finish node is an empty
one (mnemonic: nothing further). The template is copied with substitution of actual
parameters, and placed after the triggering node in the root diagram.

Sometimes it is not desirable to apply a template. For example anywhere there is
an Invite to establish a SIP session, then forwarding services could apply. However
some uses of Invite are not to establish a session, but rather to renegotiate the session
media description. Template matching can be suppressed by placing ‘!’ (mnemonic:
don’t match) after an event’s node number.

2.4 Call Billing and Redirection

Cress (Chisel) is relatively unusual among modelling approaches in explicitly support-
ing billing. This is surprising since billing is a crucial aspect of services (for the operator
at least!). In fact billing itself can lead to interactions. Chisel has simple LogBegin and
LogEnd events to denote the start and end of billing. The calling, called and paying
parties are identified in these events. Normally the caller pays, but with freephone the
callee pays. More complex arrangements can exist, e.g. the caller pays for part of the
call and the callee pays the rest. Whereas billing is well understood in telephony or in
the context of the IN (Intelligent Network), billing is still the subject of study for SIP.
Nonetheless, Cress already has the ability to deal with billing aspects.

Billing first checks which party will pay. Various services then have the opportunity
to forward the invitation (unconditional, controlled by origin/time/subject, or depending

168 K.J. Turner

on destination busy). If the invitation is forwarded then the service chain is invoked again.
This is necessary because the new destination may have different charging arrangements.
By the time the invitation reaches its destination, it may have been forwarded several
times. The billing for each redirection may also be different.

The LogBegin/LogEnd events of Chisel are therefore insufficient. Although these
are allowed by Cress, Start Billing/Stop Billing events should be used instead. In fact,
these are macro events that expand to LogBegin/LogEnd events for each redirection.

Establishing a SIP session is a major nexus for services to be invoked. Fortunately
the service composition mechanism automatically handles the chaining of services. The
designer can describe each service in isolation (i.e. in a modular manner), and their
combination is automatic. In fact there are certain precedence rules that have to be
enforced. For example billing must be considered before forwarding, and subscriber
screening must be applied to the final SIP address obtained after forwarding. The Cress
tools automatically ensure that services are combined in a sensible order.

3 Cress for SIP Services

3.1 SIP Model

CPL (Call Processing Language [8]) and SIP CGI (Common Gateway Interface) might
appear to be adequate for defining SIP services. However they do not permit formal
analysis in the way that Cress does. The author also feels that CPL is too high-level (user-
oriented, but at some distance from the protocol) while SIP CGI is too low-level (closely
tied in with the protocol). The Cress representation therefore aims at an intermediate
level. The user interface is represented by familiar actions such as initiating, receiving and
closing sessions. This is mapped to an abstract representation of the protocol interface
such as issuing session invitations, re-establishing session parameters, and removing
users from sessions.

Before applying Cress to SIP, it is necessary first to decide how SIP should be
modelled. Figure 1 shows the key SIP elements. The upper interface of each User Agent
defines the service primitives that a SIP user sees. Like any service primitives, these are
abstractions of an actual interface.

SIP primitives are deliberately named using conventional telephone terminology.
For example a SIP user A starts or finishes a session with Off-hook A, though an actual
telephone may not be used. A SIP session is requested from user A to user B by Dial A B,
even though there may be no physical dial. User A is alerted to a potential session with
user B by Start Ring A B, though in fact a pop-up window or some other indication may
be used. Announce A R is used give user A a service response R, e.g. a progress signal
like a SIP ‘180 Trying’. User A can refuse an invitation with response R by invoking
Reject A R. If user A closes a session, user B is informed with Disconnect B A.

The lower interface of each User Agent deals with abstract SIP messages carried by
the protocol. That is, each User Agent converts between service primitives and protocol
messages. Many of the complexities of SIP are hidden. For example, most header fields
are not represented, and issues such as retransmission or messages crossing are ignored.
This is sufficient to represent major aspects of SIP for the purposes of service definition,

Modelling SIP Services Using Cress 169

User Agent

Announce,
Disconnect,
Start Ring,
Stop Ring

User Agent

Announce,
Disconnect,
Start Ring,
Stop Ring

Answer,
Dial,

Off-Hook,
On-Hook,

Reject

Ack,
Bye,
Invite

Response

Redirect
Server

Invite
Response

Answer,
Dial,

Off-Hook,
On-Hook,

Reject

Proxy
Server

Ack,
Bye,
Invite

Response

Fig. 1. Elements of SIP Model

but is certainly incomplete and not able to handle SIP services that depend on protocol
details. Figure 1 does not show the complete repertoire of SIP methods (e.g. those for
cancellation, registration, instant messaging, and third-party call control).A Proxy Server
sits between users and handles SIP messages, acting like a gateway. A Redirect Server
plays a much more limited role, sending a (forwarding) Response in answer to an Invite.

3.2 SIP Root Diagrams

Using Cress it is possible to define a root diagram for the external view of a SIP session.
As shown in figure 2, this describes the interface seen by the users in the session, omitting
all protocol messages and actions by servers. The diagram is too detailed to explain here,
but the brief summary of SIP in section 1.1 should help to make it comprehensible. This
kind of model is appropriate for describing IN-like services such as call forwarding or
conference calling. However, it is not so useful for SIP because SIP services can be
deployed in a number of places: in User Agents and in Servers. In addition, SIP call
services are also intimately bound up with the protocol. For these reasons, the Cress
treatment provides three root diagrams (User Agent, Proxy Server, Redirect Server) that
show the mapping between user service primitives and protocol messages.

The User Agent model in figure 3 describes one end (half) of a session. The diagram
is divided into originating (caller) and terminating (callee) parts. In fact, the SIP standard
[9] does not provide a complete state machine description of the protocol. Figure 3 is
therefore useful in its own right as an overview of SIP. But it is only an overview; it does
not cover many details of the protocols (such as handling header fields or timeouts). The
model is, however, sufficient to allow services to be added to the basic SIP behaviour.
Many of the protocol messages can be sent or received by a User Agent or Server, and
so are marked with ‘<’ or ‘>’ as discussed in section 2.1.

The Proxy Server model in figure 4 describes one session instance. Many of the
protocol messages are relayed. The shorthand notation ‘&’ mentioned in section 2.1 is
therefore convenient. Initially a Proxy becomes involved when an Invite is received. It

170 K.J. Turner

1 Off-hook A

2 Announce A DialTone

6 Start Ring B A |||
Start Ring A B

21 Announce A
BusyHere

5 Answer B 19 On-hook A

8 Stop Ring B A |||
Stop Ring A B |||
Start Billing A B

9 On-hook A

10 Disconnect B A |||
Stop Billing A B

11 On-hook B 14 On-hook A

12 On-hook B

13 Disconnect A B |||
Stop Billing A B

20 Stop Ring B A |||
 Stop Ring A B

22 On-hook A

Uses Address A Address B

Off-hook P / Busy P <- True
Answer P / Busy P <- True
On-hook P / Busy P <- False
Start Ring P Q / Busy P <- True
Stop Ring P Q / Busy P <- False
Idle P <- ~Busy P

A is the calling address
B is the called address

15 Reject B R1

17 Announce A R1

16 Stop Ring B A |||
 Stop Ring A B

18 On-hook A

3 Dial A B

Busy B

23 On-hook A

Idle B

Fig. 2. Cress Diagram for External View of SIP

passes this on, and relays any preliminary Response until there is a final response. If a
session is established, the Success response is followed by the Ack to this. The Proxy
now does nothing since the media streams are sent directly between the users. But it
relays the closing Bye and the Response to this. If, however, session establishment does
not succeed then the Failed predicate identifies a final but unsuccessful response. In this
case, the Proxy waits for a Response and then continues from a new Invite.

The Redirect Server model in figure 5 is very straightforward. It repeatedly receives
an Invite, and sends a Response with the ForwardTo address (if any) for the called user.

3.3 Sample SIP Services

A SIP service is considered to be a modification of the appropriate root diagram(s). An
unfortunate characteristic of SIP services is that their definitions may differ according
to where they are deployed. To give a flavour of the approach, the following shows some
simple call control services. More complex services such as Conference Calling have
also been represented in Cress. Cress is not limited to call control services. For example,
it could be adapted for web-like services such as supported by SIP servlets.

Figure 6 shows how a subscriber screening service can be defined in a Proxy Server.
The modifications are relative to the root diagram for the Proxy (figure 4). This service
aims to screen out session requests from an undesired user. Screening is triggered when
an Invite is received by the Server. If caller P is on the black-list (ScreenIn) for callee Q,

Modelling SIP Services Using Cress 171

A is the local address
B is the remote address

Uses Address A Address B

Off-hook P / Busy P <- True
Answer P / Busy P <- True
On-hook P / Busy P <- False
Start Ring P Q / Busy P <- True
Stop Ring P Q / Busy P <- False
Idle P <- ~Busy P Start

1 Off-hook A

2 Announce A DialTone

4 Dial A B3 On-hook A

5> Invite A B

9< Response B A R1

6 On-hook A

10 Start Ring A B

17 Announce A R1

Else

18 Announce A R1

Final R1

7> Bye A B

8< Response B A R3

11< Response B A R2

12> Stop Ring A B |||
Ack A B

R2 = Success

13< Bye B A

14 Disconnect A B

15 On-hook A

16> Response A B
Success

31> Start Ring A B |||
Response A B

Ringing

30< Invite B A

34 Answer A

35> Stop Ring A B |||
Response A B

Success

40< Bye B A

41 Disconnect A B

42 On-hook A

43> Response A B
Success

37 On-hook A

38> Bye A B

39< Response B A R5

32 Reject A R4

33> Stop Ring A B |||
Response A B R4

Idle A

44< Bye B A

45> Stop Ring A B |||
Response A B

Success

46> Response A B
BusyHere

Busy A

Originating Call Terminating Call

20 Announce A R2

R1 = Ringing

21 Announce A R2

Final R2
Else

36< Ack B A

19 On-hook A

22 On-hook A

Fig. 3. Cress Root Diagram for User Agent

the request is declined and session setup fails. Otherwise, the session request is processed
as usual (following the template end-node, where Proxy behaviour continues).

172 K.J. Turner

1& Invite A B

2> Response B A
Trying

A is the calling address
B is the called address

3& Response B A R1

4& Ack A B

5& Bye A B

6& Response B A R2

7& Bye B A

8& Response A B R3

R1 = Success

Else

Start
Uses Address A Address B

9& Ack A B

Failed R1

Fig. 4. Cress Root Diagram for Proxy Server

1< Invite A B

A is the calling address
B is the called addressStartUses Address A Address B

2> Response B A
ForwardTo B

Fig. 5. Cress Root Diagram for Redirect Server

1<* Invite P QUses / PROXY

2> Response Q P Decline

ElseP In ScreenIn Q

P is the calling address
Q is the called address

Fig. 6. Cress Service Diagram for Proxy Server Incoming Call Screening

A second SIP service is shown in figure 7. This time the service is deployed in a
User Agent, so the service modifies this root diagram (figure 3). If an Invite is received
by a busy user Q, the User Agent will respond to caller P if there is a forwarding address

Modelling SIP Services Using Cress 173

(ForwardBusy). The root diagram for a User Agent states what ‘busy’ means. According
to the rule box of figure 3, busy simply indicates that the user is engaged in an existing
session. However busy could be defined in other ways, e.g. if the user’s diary shows an
engagement for the current time. This could even depend on the caller and the subject.
For example, a user in an existing SIP session might wish to accept a new Invite if it is
from his manager, or if the subject is urgent.

Uses / AGENT 1<* Invite P Q

Else

2> Response Q P
Moved(ForwardBusy Q)

Busy Q &&
ForwardBusy Q != Any

P is the calling address
Q is the called address

Fig. 7. Cress Service Diagram for User Agent Forwarding on Busy

4 Tool Support

4.1 Toolset Structure

Figure 8 shows the Cress tools. Symbols are shown doubled where there may be several
files or several variants of a tool. The boxed area in figure 8 is the Cress toolset. Outside
this, the diagram editor and the target language tools are provided by others.

Cress is designed for versatility and portability. It is therefore not bound to any
particular diagram editor or target language. The tools are written in Perl 5, which runs
on a wide variety of platforms. In total the toolset is about 5000 non-comment lines of
code (five Perl scripts and five Perl modules). The code is quite intricate, and represents
about 9 man-months of work. However the investment in the infrastructure has produced
a general-purpose toolset of use in a variety of domains on a variety of platforms. To
help others use and adapt the toolset, the code is extensively commented.

The author prepares Cress diagrams using Lighthouse Design’s Diagram! editor that
runs on five different platforms. From preliminary investigations, it appears that a number
of other diagram formats are suitable for Cress (e.g. Adobe Illustrator, FrameMaker
MIF, and xfig). Many diagram editors can produce output in well-defined formats. Cress
is thus not dependent on a particular diagram editor. In future, it is planned to develop a
web-based editor for Cress diagrams.

Cress is also not bound to any particular target language. For formal analysis, trans-
lation to Lotos and to SDL is supported. E-Lotos was studied as a target language as it
confers some advantages relative to Lotos. However E-Lotos tools are only at an early
stage, so E-Lotos is not yet a target for Cress. For service scripting, Cress diagrams
can be translated to CPL or CGI. CPL is an intentionally restricted language, but SIP

174 K.J. Turner

Target
Language
Realisation

Target
Back-End

Analysis/
Simulation

Results

Target
Front-End

CRESS
Diagram

Target
Language
Framework

Code
Generator

Diagram
Editor

Lexer
Pre-

processor
Parser

Fig. 8. Cress Toolset

CGI scripts can do almost anything. Cress translates diagrams into a stylised form of
Perl for use as CGI scripts.

The target language framework is created using the target development environment.
Since the framework is fixed for a given domain and target language, it can be provided
as standard. IN and SIP frameworks for Lotos and SDL are currently available. SIP
frameworks are available for CPL and CGI. The framework provides the architecture in
which the services are embedded. For example, the SIP framework defines the behaviour
of the status manager and the billing system.

4.2 Toolset Usage

The designer prepares Cress diagrams using a convenient editor. The designer is assumed
to have a suitable development environment for the target language. Most development
environments allow pre-processing. A simple command or button click can activate
the Cress toolset automatically. The Cress pre-processor scans the target language
framework for Cress macro calls:

Cress(Types) (* generate domain-dependent types *)
Cress(Profiles) (* generate user profile information *)
Cress(Services) (* combine root diagram and services *)

Each of these is expanded to the corresponding definitions in the target language. The
types (and associated functions) are partly fixed and partly dependent on the domain
of application. Since (status) variables and signals are defined in tables loaded into the
tools, a change of domain is easy to arrange. The variable/signal tables are used while
checking diagrams, and are also used to generate the domain-specific types.

Each Cress macro call is expanded using the toolset. The lexer appropriate to the
diagram editor is called to build a rule list and event node graph for each diagram. The
parser is common, and checks the syntax and static semantics of each diagram separately.
The parser then combines the root and service diagrams, performing further consistency
checks. A number of optimisations are carried out on the graph to make code generation
more efficient. For example empty (NoEvent) nodes are removed where possible, Else is
moved to the end of alternative guards, and alternative inputs are ordered by signal name.
Finally the parser hands the graph to the appropriate code generator that outputs in the
target language. To the target development environment, a single (albeit very complex)
step of pre-processing has taken place. The translators have an option to produce detailed
comments in the generated code, thus simplifying maintenance of the tool output.

Modelling SIP Services Using Cress 175

Once the target language specification has been generated, the language back-end
tools can be used to simulate, analyse or implement the specification. Both Lotos and
SDL can be used for single-step or automated simulation. They can also be used for
state space exploration. Lotos has advanced analysis tools for state space minimisation,
equivalence checking, model checking, etc. Both Lotos and SDL can be compiled to
usable C for implementation. If a CPL or CGI script is generated from a Cress diagram,
the script is directly usable by a SIP User Agent or Proxy Server.

4.3 Formal Analysis

The emphasis in Cress so far has been on the representation and formalisation of services.
Cress work on detecting service interactions has been limited to date. The following
presents preliminary work, but in fact techniques developed by others can be adapted
for use with the specifications generated by Cress.

To check the correctness of services, each was simulated on its own when combined
with the appropriate root diagram. Human judgment was used in deciding significant
execution paths, the aim being to execute each path at least once. This procedure built
confidence in the service descriptions as well as creating a set of validation scenarios.

For simple services the number of paths to check is small. For complex services, the
number of interesting paths is just manageable. Conference Calling, for example, has
23 significant paths.

Validation scenarios are generated to characterise the expected behaviour of services
in isolation. The scenarios can then be encoded using the Antest (Anise Test) language
developed by the author for Anise [11]. Briefly, Antest is a flexible validation language
that expresses tests in terms of user-visible behaviour. Acceptance tests (behaviour must
happen) and rejection tests (behaviour must not happen) can be written. Tests may have
sequential or concurrent behaviour. Alternatives are permitted, and behaviour can be
made conditional on a service being present for a SIP address. In fact, Antest is used
to encode comprehensive use-case scenarios that synthesise the individual executions
obtained through simulation.

The Antest tool automatically translates validation scenarios into the target lan-
guage (currently only Lotos), and automatically runs them in parallel with a specifica-
tion. When services are combined individually with a root diagram, this merely confirms
the validity of the scenarios. More importantly, the validation scenarios can be run with
all services deployed. A common interpretation of service interaction is that a service
fails to perform as expected when other services are present. The manifestation of ser-
vice interaction when using Antest is either deadlock or non-determinism. Deadlock
means that one service prevented another from working. Non-determinism means that
an ambiguity arose.

In future work, the author intends to apply techniques developed from protocol
conformance testing [7] to derive use-case scenarios automatically. Another avenue to
be explored is the use of model-checking to verify that service properties are preserved in
the presence of other services. The current validation approach can check only specific
scenarios. Model-checking should allow such properties to be proved in general. An
approach based on symbolic model-checking [2] looks an attractive possibility, though
tools are currently under development.

176 K.J. Turner

4.4 Service Scripting

Cress diagrams can be translated into CPL scripts. For example, User Agent forwarding
on busy defined in figure 7 corresponds to the following CPL:

<incoming> # incoming call
<proxy> # forward call
<busy> # if callee is busy
<location url = ′′sip:forward@domain′′> # to forward@domain

</busy>
</proxy>

</incoming>

It should, however, be noted that it is not possible to translate an arbitrary Cress diagram
into CPL since the latter is much more restrictive. Instead, only certain patterns of Cress
diagram can be turned into CPL scripts. Furthermore, a Cress diagram is generic and
must be instantiated with user configuration data during translation to CPL.

Cress diagrams can also be translated into CGI scripts using stylised Perl. For
example, UserAgent screening defined in figure 7 corresponds to the following CGI/Perl:

if ($Method == $Invite) { # if method is Invite
if ($Busy ($Q) && # if callee is busy and

$ForwardBusy ($Q) != $Any) { # has a forwarding address
&Response ($Q, $P, # respond to caller

&Moved ($ForwardBusy ($Q))) # with forwarding address
}
}

It is much easier to translate a Cress diagram into CGI/Perl since this is much more
expressive than CPL. As the above example shows, the translation relies on a Perl frame-
work (not shown) that establishes variables (Perl prefix ‘$’) containing the SIP method
and its parameters. These are obtained from the CGI script environment variables. In
addition, a number of Perl subroutines (Perl prefix ‘&’) are pre-defined to handle call
processing. For example, Response returns the CGI script output to the Proxy Server.

5 Conclusion

It has been seen that Cress is a graphical language for specifying systems with a base
functionality and additional services. The elements of the notation have been introduced
for root diagrams, service diagrams and rules. The particular contribution of Cress is its
ability to describe and combine services in a flexible and automatic manner. A portable
toolset enables thorough checking and translation of diagrams to various languages for
formal analysis (Lotos and SDL) and for scripting (CPL and CGI/Perl).

Preliminary work has been presented on service interaction detection using the speci-
fications generated by Cress. Future developments will include web support for graphical
service description and analysis. More complete interaction detection techniques will
also be developed. Although Cress has been illustrated with SIP services, it is applicable
to a number of other problem domains such as the IN.

Modelling SIP Services Using Cress 177

References

1. A. V. Aho, S. Gallagher, N. D. Griffeth, C. R. Schell, and D. F. Swayne. SCF3/Sculptor with
Chisel: Requirements engineering for communications services. In K. Kimbler andW. Bouma,
editors, Proc. 5th. Feature Interactions in Telecommunications and Software Systems, pages
45–63. IOS Press, Amsterdam, Netherlands, Sept. 1998.

2. M. Calder and C. E. Shankland. A symbolic semantics and bisimulation for full Lotos. In
M. Kim, B. Chin, S. Kang, and D. Lee, editors, Proc. Formal Techniques for Networked and
Distributed Systems (FORTE XIV), pages 184–200. Kluwer Academic Publishers, London,
UK, Sept. 2001.

3. E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, W. K. Schnure, and H. Velthuijsen. A
feature-interaction benchmark for IN and beyond. IEEE Communications Magazine, pages
64–69, Mar. 1993.

4. B. El Ouahidi and M. Bouhdadi. Internet/telecommunications integration: Towards IN-
capable SIP networks. Networks and Distributed Systems (Réseaux et Systèmes Répartis),
12(2):259–280, Oct. 2000.

5. N. D. Griffeth, R. B. Blumenthal, J.-C. Gregoire, and T. Ohta. Feature interaction detection
contest. In K. Kimbler and W. Bouma, editors, Proc. 5th. Feature Interactions in Telecommu-
nications and Software Systems, pages 327–359. IOS Press, Amsterdam, Netherlands, Sept.
1998.

6. ITU. Packet-Based Multimedia Communication Systems. ITU-T H.323. International
Telecommunications Union, Geneva, Switzerland, 2000.

7. Ji He and K. J. Turner. Protocol-inspired hardware testing. In G. Csopaki, S. Dibuz, and
K. Tarnay, editors, Proc. Testing Communicating Systems XII, pages 131–147, London, UK,
Sept. 1999. Kluwer Academic Publishers.

8. J. Lennox and H. Schulzrinne, editors. CPL: A Language for User Control of Internet Tele-
phony Services. Internet Draft CPL-01. The Internet Society, New York, USA, Mar. 2000.

9. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnson, J. Peterson, R. Sparks, M. Handley,
and E. Schooler, editors. SIP: Session Initiation Protocol. RFC 2543 bis 09. The Internet
Society, New York, USA, Feb. 2002.

10. H. Sinnreich and A. B. Johnston. Internet Communications using SIP. John Wiley and Sons,
Chichester, UK, 2001.

11. K. J. Turner. Validating architectural feature descriptions using Lotos. In K. Kimbler and
W. Bouma, editors, Proc. 5th. Feature Interactions in Telecommunications and Software
Systems, pages 247–261, Amsterdam, Netherlands, Sept. 1998. IOS Press.

12. K. J. Turner. Formalising the Chisel feature notation. In M. H. Calder and E. H. Magill,
editors, Proc. 6th. Feature Interactions in Telecommunications and Software Systems, pages
241–256, Amsterdam, Netherlands, May 2000. IOS Press.

	Modelling SIP Services Using Cress
	Introduction
	SIP
	CRES

	CRESS in General
	Basic Diagrams
	Rule Boxes
	Service Diagrams
	Splicing Services.
	ServiceTemplates

	Call Billing and Redirection

	CRESS for SIP Services
	SIP Model
	SIP Root Diagrams
	Sample SIP Services

	Tool Support
	Toolset Structure
	Toolset Usage
	Formal Analysis
	Service Scripting

	Conclusion
	References

