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Abstract The vascular endothelium plays a fundamental role in the basal and dynamic
regulation of the circulation. Thus, it has a crucial role in the pathogenesis of hypertension.
A spectrum of vasoactive substances is synthesised in the endothelium; of these, nitric
oxide (NO), prostacyclin (PGI2) and endothelin (ET)-1 are the most important. There is
a continuous basal release of NO determining the tone of peripheral blood vessels. Systemic
inhibition of NO synthesis or scavenging of NO through oxidative stress causes an increase
in arterial blood pressure. Also, the renin–angiotensin–aldosterone system has a major
role in hypertension as it has a direct vasoconstrictor effect and important interactions
with oxygen free radicals and NO. Prostacyclin, in contrast to NO, does not contribute
to the maintenance of basal vascular tone of conduit arteries, but its effect on platelets
is most important. ET acts as the natural counterpart to endothelium-derived NO and
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has an arterial blood pressure-raising effect in man. Anti-hypertensive therapy lowers
blood pressure and may influence these different mediators, thus influencing endothelial
function. In summary, due to its position between the blood pressure and smooth muscle
cells responsible for peripheral resistance, the endothelium is thought to be both victim
and offender in arterial hypertension. The delicate balance of endothelium-derived factors
is disturbed in hypertension. Specific anti-hypertensive and anti-oxidant treatment is able
to restore this balance.
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The vascular endothelium synthesises and releases a spectrum of vasoactive
substances and therefore plays a fundamental role in the basal and dynamic
regulation of the circulation (Lüscher and Vanhoutte 1990). Due to its strategic
anatomical position, the endothelium is constantly exposed to the different
risk factors for atherosclerosis.

1
Endothelial Vasoactive Substances

The endothelium—probably the largest and most extensive tissue in the
body—forms a highly selective permeability barrier and is a continuous, unin-
terrupted, smooth, and non-thrombogenic surface. The endothelium synthe-
sises and releases a broad spectrum of vasoactive substances (Fig. 1), including
nitric oxide (NO), prostacyclin (PGI2) and endothelin (ET)-1.

NOprevents leucocyteadhesionandmigration into thearterialwall, smooth
muscle cell proliferation, and platelet adhesion and aggregation, i.e. key events
in the development of atherosclerosis (Bhagat et al. 1996; Bhagat and Vallance
1997; Boulanger and Lüscher 1990; Fichtlscherer et al. 2000; Hingorani et al.
2000; Ross 1999). NO, synthesised by NO synthase (NOS), is released from
endothelial cells mainly in response to shear stress produced by blood flow
(Anderson and Mark 1989; Furchgott and Zawadzki 1980; Joannides et al.
1995a, b; Palmer et al. 1988a, b; Rubanyi et al. 1986; Stamler et al. 1994; Vallance
et al. 1989), leading to relaxation of vascular smooth muscle cells (Fig. 1;
Palmer et al. 1988a). ET-1 acts as the natural counterpart to endothelium-
derived NO (Lüscher et al. 1990). In addition to its arterial blood pressure-
raising effect in man (Kiely et al. 1997; Vierhapper et al. 1990), ET-1 induces
vascular and myocardial hypertrophy (Barton et al. 1998; Ito et al. 1991; Yang
et al. 1999), which are independent risk factors for cardiovascular morbidity
and mortality (Bots et al. 1997; Kannel et al. 1969; O’Leary et al. 1999). ET-1
stimulates the release of inflammatory mediators such as interleukin (IL)-1,
IL-6 and IL-8, thereby antagonising the anti-inflammatory effects of NO. NO
itself plays an important role in clinical systemic inflammatory syndromes
when the inducible isoform of the NO-generating enzyme, iNOS, is activated.
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2
Nitric Oxide in Hypertension

2.1
Biological Actions

NO, originally described as endothelium-derived relaxing factor (EDRF), is
released from endothelial cells in response to shear stress produced by blood
flow, and in response to activation of a variety of receptors (Fig. 1; Anderson
and Mark 1989; Furchgott and Zawadzki 1980; Rubanyi et al. 1986; S. Moncada
and E.A. Higgs, volume I). NO is a free radical gas—with a half-life in vivo of
a few seconds—that is readily able to cross biological membranes (Furchgott
and Zawadzki 1980; Palmer et al. 1987; Stamler et al. 1992). After diffusion
from endothelial to vascular smooth muscle cells, NO increases intracellular
cyclic guanosine monophosphate (cGMP) concentrations by activation of the
enzyme guanylate cyclase, leading to relaxation of the smooth muscle cells
(Palmer et al. 1988a).

NO is synthesised by NOS from l-arginine (Palmer et al. 1988a). The con-
version from l-arginine to NO can be inhibited by false substrates for the NOS,
e.g. by NG-monomethyl-l-arginine (l-NMMA) (Palmer et al. 1988b). Since
there is a continuous basal release of NO determining the tone of peripheral

Fig. 1 Endothelium-derived vasoactive substances. Nitric oxide (NO) is released from en-
dothelial cells in response to shear stress and to activation of a variety of receptors. NO exerts
vasodilating and anti-proliferative effects on smooth muscle cells and inhibits thrombocyte
aggregation and leucocyte adhesion. Endothelin-1 (ET-1) exerts its major vascular effects—
vasoconstriction and cell proliferation—through activation of specific ETA receptors on
vascular smooth muscle cells. In contrast, endothelial ETB receptors mediate vasodilatation
via release of NO and prostacyclin. Additionally, ETB receptors in the lung were shown to
be a major pathway for the clearance of ET-1 from plasma. ACE, angiotensin-converting en-
zyme; ACh, acetylcholine; AII, angiotensin II; AT1, angiotensin 1 receptor; BK, bradykinin;
COX, cyclooxygenase; ECE, endothelin converting enzyme; EDHF, endothelium-derived
hyperpolarising factor; ETA and ETB, endothelin A and B receptor; ET-1, endothelin-1;
L-Arg, l-arginine; PGH2, prostaglandin H2; PGI2, prostacyclin; S, serotoninergic receptor;
Thr, thrombin; T, thromboxane receptor; TXA2, thromboxane; 5-HT, 5-hydroxytryptamine
(serotonin). Modified from Lüscher and Noll (1997)
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Table 1 Haemodynamic effects of NO synthase inhibition in healthy volunteers (modified
after Spieker et al. 2000a)

Baseline l-NMMA (mg/kg/min)

0.3 1.0

SBP 134±7 152±5 150±3*

DBP 73±4 87±5 85±5 †

SVR 1114±124 1413±145* 1973±203‡

HR 67±4 70±6 63±6

CI 3.5±0.3 3.1±0.2* 2.3±0.2§

SVI 53±6 48±6 38±5†

CVP 4±0.7 3.6±0.4 4.3±0.05

B/min 23.1±3.5 14±4.5 18.6±5.5

*p<0.05, †p<0.01, ‡p<0.001, §p<0.0001, for each data point compared with baseline values
Abbreviations: B/min, sympathetic bursts per minute; CI, cardiac index (l·min−1·m2); CVP,
central venous pressure (mmHg); DBP, diastolic blood pressure (mmHg); HR, heart rate
(beats/min); l-NMMA, NG-monomethyl-l-arginine; SBP, systolic blood pressure (mmHg);
SVI, stroke volume index (ml·min−1·m2); SVR, systemic vascular resistance (dyn·s−1cm−5)

blood vessels, systemic inhibition of NO synthesis causes an increase in arte-
rial blood pressure (Anderson and Mark 1989; Palmer et al. 1988a, b; Rubanyi
et al. 1986; Vallance et al. 1989). There are three types of NOS: two constitu-
tive and one inducible isoform. The former, which are present in endothelial
cells and neurons, are therefore called endothelial NOS (eNOS) and neuronal
NOS (nNOS), respectively. The inducible form (iNOS) is an important in-
flammatory mediator expressed in macrophages, vascular smooth muscle and
other cells in response to immunological stimuli (Palmer et al. 1992). NO has
also anti-thrombogenic, anti-proliferative and leucocyte adhesion-inhibiting
effects, and influences myocardial contractility (Anderson and Mark 1989;
Joannides et al. 1995a, b; Vallance et al. 1989). The haemodynamic effects
of pharmacological NO inhibition include an increase in blood pressure and
a decrease in cardiac output (Table 1).

2.2
NO in Experimental Models of Hypertension

Endothelium-derived NO-mediated vascular relaxation is impaired in sponta-
neously hypertensive animals (Table 2; Diederich et al. 1990; Dohi et al. 1990;
Lüscher and Vanhoutte 1986; Lüscher et al. 1986). Thus, the bioavailability of
NO is reduced. Surprisingly, the NO pathway is paradoxically up-regulated
in the resistance circulation and the heart of spontaneously hypertensive rats
(SHR) (Kelm et al. 1992; Nava et al. 1998). Adult SHR possess a higher eNOS
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Table 2 The nitric oxide (NO) pathway in selected experimental models of arterial hyper-
tension

Animal model Alteration in NO pathway

Spontaneously hypertensive rats (SHR) Up-regulation

Stroke-prone SHR (SHRSP) Up-regulation, but reduced bioavailability

Dahl salt-sensitive rats Down-regulation

Two-kidney, one clip experimental Impaired stimulated NO release,

hypertension (Goldblatt hypertension) intact basal NO release

DOCA salt hypertensive rats Impaired basal NO release

activity than their normotensive counterparts (Nava et al. 1995). Very young
pre-hypertensive SHR have, in contrast, similar eNOS activity to young nor-
motensive rats without a genetic background for hypertension, indicating that
the increased activity of eNOS in adult SHR is indeed related to hypertension
(Fig. 2). Moreover, the plasma concentrations of the oxidative product of NO
metabolism, nitrate, are higher in hypertensive rats than in normotensive con-
trols (Nava et al. 1998). These results indicate that the basal release of NO is
increased in hypertensive rats.

Thus, it appears that in SHR there must be a factor blunting the haemody-
namic effect of NO (Grunfeld et al. 1995). Indeed, NO production is increased
in stroke-prone SHR (SHRSP), but bioavailability is reduced (McIntyre et al.
1997). Direct in situ measurement of NO release by a porphyrinic microsen-
sor in SHRSP confirmed that hypertension is associated with increased NO

Fig. 2 Increased activity of constitutive nitric oxide synthase in cardiac endothelium of
spontaneously hypertensive rats (SHR, black bars). Adult SHR possess a higher activity
of constitutive nitric oxide synthase (NOS) than their normotensive counterparts (Wistar
Kyoto rats, WKY; open bars). Very young pre-hypertensive SHR have, in contrast, lower
constitutive NOS activity than the normotensive, indicating that the increased activity of
NOS in adult SHR is indeed related to hypertension. Modified from Nava et al. (1995)
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decomposition by superoxide anions, i.e. free oxygen radicals (Fig. 3; Tschudi
et al. 1996). Nevertheless, a further increase of NO by inhibition of arginase, an
enzyme which degrades l-arginine, the substrate of NO production by eNOS,
has been shown to improve endothelial function and prevent the development
of arterial hypertension in SHR (Demougeot et al. 2005).

In other models of hypertension—i.e. in Dahl salt-sensitive rats, in two-
kidney, one clip experimental hypertension, and in desoxycorticosterone ac-
etate (DOCA)-salt hypertensive rats—endothelium-dependent relaxation is
also impaired (Table 2; Dohi et al. 1991; Hayakawa et al. 1993; Hirata et al. 1995;
Lee et al. 1995; Lüscher et al. 1987a). In high-renin arterial hypertension such
as the two-kidney, one-clip model there is impaired stimulated NO release but
intact basal NO release (Artigues-Varin et al. 2002). Augmented NO production
may serve as a counteracting system against the activation of the angiotensin
receptor (AT1) in this high-renin model of hypertension (Cervenka et al. 2002).

NO production by eNOS is reduced rather than up-regulated in Dahl salt-
sensitive rats (Fig. 3; Hayakawa et al. 1993; Kakoki et al. 1999; Ni et al. 1999). l-
Arginine, the substrate of NO production by eNOS, normalises blood pressure
and simultaneously increases urinary excretion of nitrate, the degradation
product of NO, in Dahl salt-sensitive rats (Chen and Sanders 1991, 1993; Chen
et al. 1993; Hu and Manning 1995). Further mechanisms contribute to the
pathogenesis of salt-sensitive hypertension. These include:

– Decreased expression of endothelial ETB receptors, which mediate NO re-
lease (Hirata et al. 1995; Kakoki et al. 1999; Matsuoka et al. 1997)

Fig. 3 Heterogeneity of endothelial dysfunction in experimental hypertension. In spon-
taneous hypertension (left panel) nitric oxide synthase (NOS) is upregulated and nitric
oxide (NO) is inactivated by superoxide anions. In addition, the production of thrombox-
ane (TXA2) and prostaglandin H2 (PGH2) is increased. In salt-related hypertension (right
panel), NO production is reduced and the endothelin (ET) system is upregulated. ACE,
angiotensin-converting enzyme; ACh, acetylcholine; AII, angiotensin II; AT1, angiotensin 1
receptor; cGMP, cyclic guanosine monophosphate; COX, cyclooxygenase; ETA and ETB, en-
dothelin A and B receptor; ET-1, endothelin-1; L-Arg, l-arginine; M, muscarinergic receptor;
O2

–, superoxide anion; PGI2, prostacyclin; S, serotoninergic receptor; T, thrombin recep-
tor; Thr, thrombin; TX, thromboxane receptor; 5-HT, 5-hydroxytryptamine (serotonin).
Modified from Spieker et al. (2000b)
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– Altered expression of the constitutive brain NOS (nNOS) as well as the
iNOS isoform, possibly leading to alterations in renal sympathetic nervous
activity and sodium handling (Deng and Rapp 1995; Ikeda et al. 1995; Rudd
et al. 1999; Simchon et al. 1996)

Low functional levels of nNOS in the Dahl salt-sensitive rat may indeed con-
tribute to its salt-sensitivity (Tan et al. 1999). In other low-renin models of
hypertension, such as the DOCA salt-sensitive rat, there is augmented vascu-
lar superoxide production mediated via an ETA/NADPH oxidase pathway (Li
et al. 2003).

2.3
Nitric Oxide in Human Hypertension

There are several techniques for the assessment of NO bioavailability in man.
Most often, flow-mediated vasodilatation (FMD) of the brachial artery—
a marker of endothelial function—is assessed by high-resolution ultrasonog-
raphy (Fig. 4). Alternatively, endothelium-dependent or -independent vaso-
motion in response to intra-arterially infused vasoactive substances is as-
sessed using venous occlusion plethysmography. Among the most often used
endothelium-dependent vasodilators are acetylcholine and serotonin (5-hy-
droxytryptamine). Sodium nitroprusside or nitroglycerin serves as an endo-
thelium-independent vasodilator. Recently, new guidelines for assessment of
endothelial function and dysfunction have been published, underlining the
importance of standardised methods (Deanfield et al. 2005).

Endothelial dysfunction plays a crucial role in arterial hypertension (Brun-
ner et al. 2005). Endothelium-dependent vasodilatation in response to acetyl-
choline is impaired in patients with arterial hypertension, both in the forearm
circulation (Fig. 5; Creager and Roddy 1994; Hirooka et al. 1992; Linder et al.
1990; Panza et al. 1990, 1993a, b, c 1994; Taddei et al. 1994, 1995, 1997a) and
in the coronary vascular bed (Egashira et al. 1995; Treasure et al. 1993). Es-
pecially in populations at low risk, endothelial function measured by FMD is
related to the principal cardiovascular risk factors (Witte et al. 2005). There
is a strong correlation between endothelium-dependent vasodilatation in the
human forearm and coronary vascular beds (Anderson et al. 1995; Takase et al.
1998).

Basal NO activity is decreased in hypertensive patients (Calver et al. 1992).
Furthermore, urinary excretion of the metabolic oxidation product of NO,
15N nitrate, after administration of 15N-labelled arginine (i.e. the substrate for
the generation of NO) is reduced in hypertensive patients compared to nor-
motensive controls (Fig. 5; Forte et al. 1997). Thus, whole-body NO production
in patients with essential hypertension is diminished under basal conditions.
In line with these findings, the vasoconstrictor response to l-NMMA, an in-
hibitor of NO synthesis, is significantly less in hypertensive patients compared
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Fig. 4 Flow-mediated vasodilatation of the brachial artery is measured by high-resolution
ultrasonography (a). With the use of echo-tracking, arterial diameter can be measured
on a beat-to-beat basis (b). After establishing stable baseline conditions, flow-mediated
vasodilatation is measured after release of a blood pressure cuff placed around the wrist
and inflated to suprasystolic pressure for 5 min (c). The resulting hyperaemic blood flow to
the hand after release of the wrist cuff leads to a more or less pronounced vasodilatation of
the brachial artery, which is mediated by endothelium-derived nitric oxide (NO)

Fig. 5 a,b Endothelial dysfunction in arterial hypertension. a Patients with hypertension
exhibit decreased endothelium-dependent vasodilatation in response to acetylcholine com-
pared to normotensive controls. Modified from Linder et al. (1990). b Cumulative urinary
excretion of 15N nitrate after administration of 15N-labelled arginine, i.e. the substrate for
enzymatic production of NO. Urinary excretion of the metabolic oxidation product of NO,
nitrate, is reduced in hypertensive patients compared to normotensive controls. These data
show that whole-body NO production in patients with essential hypertension is diminished
under basal conditions. Modified from Forte et al. (1997)
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with normotensives, whereas there is no difference between hypertensives and
normotensives in the response to noradrenaline, an endothelium-independent
vasoconstrictor (Calver et al. 1992; Taddei et al. 1999a).

Normotensive offspring of hypertensive parents exhibit impaired endo-
thelium-dependent vasodilatation to acetylcholine (Taddei et al. 1992). Vaso-
constriction in response to an inhibitor of NO synthesis is also decreased in
such subjects, indicating impaired basal synthesis of NO (McAllister et al.
1999). Thus, derangement of endothelial function in hypertension is likely to
be caused in part by genetic factors, and is not just a consequence of ele-
vated blood pressure (although the haemodynamic factor makes an important
contribution) (Millgard and Lind 1998).

NO has a direct effect on vascular tone but, in addition, there is growing
evidence that NO influences vascular tone by interaction with the central
autonomic nervous system, resulting in sympatho-inhibitory effects in animals
(Lewis et al. 1991) and in humans (Lepori et al. 1998). This indirect effect may
also play an important role in the pathogenesis of arterial hypertension (Sartori
et al. 2005).

3
Oxidative Stress in Hypertension

Oxidative stress plays an important role in the pathogenesis of hyperten-
sion (Fig. 6). Superoxide anion (O2

−), an oxygen radical, can scavenge NO
to form peroxynitrite (ONOO−), effectively reducing the bioavailability of
endothelium-derived NO (Fig. 7; Rubanyi and Vanhoutte 1986; Tschudi et al.
1996). In addition, O2

− can act as a vasoconstrictor (Auch-Schwelk et al.
1989; Cosentino et al. 1994; Katusic et al. 1993; Katusic and Vanhoutte 1989).
Nicotinamide adenine dinucleotide (NADH) dehydrogenase, a mitochondrial
enzyme of the respiratory chain, seems to be a major source of O2

− (Tur-
rens and Boveris 1980). Expression of NAD(P)H oxidase in human coronary
artery smooth muscle cells is up-regulated by pulsatile stretch, generating
increased oxidative stress (Hishikawa et al. 1997). Another source of O2

− is
cyclooxygenase (COX) (Kontos et al. 1985). In contrast, xanthine oxidase,
another generator of superoxide anions, does not appear to play a signif-
icant role in essential hypertension (Cardillo et al. 1997; Hishikawa et al.
1997).

Paradoxically, NOS (i.e. the NO generating enzyme) can also produce O2
−

(Cosentino et al. 1998; Kerr et al. 1999; Stroes et al. 1998). Production of O2
−

in SHRSP, an experimental model of genetic hypertension, can be prevented
by NOS inhibition (Kerr et al. 1999). Administration of exogenous tetrahy-
drobiopterin (BH4), an essential cofactor for NOS, can reduce excess O2

− in
the aorta of SHRSP (Kerr et al. 1999). In pre-hypertensive SHR, the calcium
ionophore A23187 (a receptor-independent activator of NOS)-stimulated pro-
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Fig.6 Role of oxidative stress in the pathogenesis of endothelial dysfunction in hypertension.
Superoxide anion, generated by angiotensin II-activated NAD(P)H oxidase, by dysfunc-
tional NO synthase, and by cyclooxygenase, can scavenge the vasodilator NO to form the
highly reactive peroxynitrite. Peroxynitrite can damage cell membranes and oxidise lipids.
In addition, superoxide anion can act as a vasoconstrictor. ACE, angiotensin-converting
enzyme; ACh, acetylcholine; AII, angiotensin II; AT1, angiotensin 1 receptor; BH4, tetrahy-
drobiopterin; BK, bradykinin; COX, cyclooxygenase; ECE, endothelin-converting enzyme;
EDHF, endothelium-derived hyperpolarising factor; ETA and ETB, endothelin A and B
receptor; ET-1, endothelin-1; H2O2, hydrogen peroxide; L-Arg, l-arginine; NAD(P)H ox-
idase, nicotinamide adenine dinucleotide oxidase; O2

–, superoxide anion; OH, hydroxyl
radical; ONOO–, peroxynitrite; PGH2, prostaglandin H2; PGI2, prostacyclin; S, serotonin-
ergic receptor; SOD, superoxide dismutase; Thr, thrombin; TXA, thromboxane receptor;
TXA2, thromboxane; 5-HT, 5-hydroxytryptamine (serotonin). Modified from Spieker et al.
(2000b)

duction of O2
− was significantly higher than in control rats. NO release was

reduced in SHR aortas, with opposite results in the presence of exogenous
BH4. Thus, dysfunctional endothelial NOS may be a source of O2

− in pre-

Fig. 7 Superoxide anion (O2
−), an oxygen radical, is detoxified by superoxide dismutase

(SOD), forming H2O2 which is further metabolised by catalase. However, the reaction
between the two radicals O2

− and NO is three times faster than the detoxification of O2
− by

SOD. Depending on the relative concentrations of NOand SOD, there may be a propensity for
O2

− to preferentially react with NO. O2
− can scavenge NO to form peroxynitrite (ONOO−),

effectively reducing the bioavailability of endothelium-derived NO
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hypertensive SHR and may contribute to the development of hypertension and
its vascular complications (Cosentino et al. 1998; Jameson et al. 1993).

O2
− is finally detoxified by superoxide dismutase (SOD), forming H2O2

which is further metabolised by catalase (Fridovich and Freeman 1986). How-
ever, the reaction between the two radicals O2

− and NO is three times faster
than the detoxification of O2

− by SOD (Thomson et al. 1995). Depending on
the relative concentrations of NO and SOD, there may be a propensity for
O2

− to react preferentially with NO, resulting in decreased bioavailability of
NO. In SHR aortas, SOD (Sekiguchi et al. 2004) or the oral administration of
potent anti-oxidants such as flavonoids (Machha and Mustafa 2005) is able to
improve endothelium-dependent relaxation. This underlines the importance
of scavenging free oxygen radicals, as the imbalance between oxidative stress
and the anti-oxidant defence mechanism is considered a major factor in the
development of hypertension.

The gene for cytosolic SOD (i.e. SOD1) is located on the 21q22.1 region of
chromosome 21 (Levanon et al. 1985). Patients with Down’s syndrome (tri-
somy 21) have an extra copy of the SOD gene. Because of gene dosage excess,
their SOD activity is 50% greater than in the diploid population, leading to re-
duced O2

− levels (De La Torre et al. 1996). Patients with Down’s syndrome have
lower blood pressure levels, indicating a major role for O2

− in the regulation
of arterial blood pressure. Furthermore, the normal age-associated increase
of blood pressure is absent in patients with Down’s syndrome (Morrison et al.
1996).

3.1
The Renin–Angiotensin–Aldosterone System

The renin–angiotensin system plays a major role in hypertension (Fig. 1; Gold-
blatt et al. 1934; C. Dimitropoulou et al., volume I). Apart from the direct
vasoconstrictor effects of angiotensin II (ANG II), there are important inter-
actions between ANG II, oxygen radicals, and NO. Indeed, ANG II stimulates
the generation of O2

− by increasing the expression of the NAD(P)H oxidase
gene (p22phox and others) and increasing the activity of NAD(P)H oxidase
(Fukui et al. 1997; Laursen et al. 1997; Rajagopalan et al. 1996; Zafari et al.
1998). The vasoconstrictor effect of ANG II is enhanced in the absence of NO,
and diminished during co-infusion of anti-oxidant vitamin C (Dijkhorst-Oei
et al. 1999). Thus, the vasoconstrictor effect of ANG II is modulated by reactive
oxygen species, mainly O2

−, and their interaction with endothelium-derived
NO (Fig. 6). In addition, ANG II-induced oxidative stress results in the acti-
vation of several pro-inflammatory transcription factors (Cheng et al. 2005).
Statins, hydroxymethylglutaryl-coenzymeA(HMG-CoA) reductase inhibitors,
ameliorate ANG II-induced hypertension and vascular inflammatory response
independently of cholesterol reduction (Dechend et al. 2001). Inhibition of
NO synthesis by oral l-NAME increases the activity of the renin–angiotensin
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system and ANG II concentration (Vandermeersch et al. 2003). Studies suggest
that the protective effects of angiotensin-converting enzyme inhibitors on the
ANG II-induced inflammatory response are linked to the improvement of NO
bioavailability (Chen et al. 2003). Furthermore, ANG II increases the produc-
tion of ET in the blood vessel wall, which exerts vasoconstriction and induces
proliferation of the vascular smooth muscle cells (Moreau et al. 1997).

4
Prostaglandins in Hypertension

PGI2 is another endothelium-derived relaxing factor that is released in re-
sponse to shear stress (Fig. 1; Koller and Kaley 1990; Okahara et al. 1998; Pohl
et al. 1986; Rubanyi et al. 1986). PGI2 is synthesised by COX from arachi-
donic acid (Moncada et al. 1976). PGI2 increases intracellular cyclic adenosine
monophosphate (cAMP) in smooth muscle cells and platelets. In contrast to
NO, PGI2 does not contribute to the maintenance of basal vascular tone of
large conduit arteries (Joannides et al. 1995a). Instead, its platelet inhibitory
effects are most important. The synergistic effect of PGI2 and NO enhances
the anti-platelet activity (Radomski et al. 1987).

Depending on the animal model of hypertension and the vascular bed,
endothelium-dependent contractions to acetylcholine, a muscarinic receptor-
dependent stimulator of NO synthesis, have been documented (Fig. 3). Since
this response is inhibited by COX inhibitors and thromboxane receptor antago-
nists, the most likely contractile factors are thromboxane A2 and prostaglandin
H2 (Küng and Lüscher 1995; Noll et al. 1997).

Interactions between COX products and NO have been demonstrated (Yang
et al. 1991). Celecoxib, a selective COX-2 inhibitor, was able to improve en-
dothelial function and reduce oxidative stress (Hermann et al. 2003) as well
to reduce cellular inflammation in a model of salt-sensitive hypertensive rats
(Hermann et al. 2005). In humans, selective inhibition of COX-2 by celecoxib
lowers C-reactive protein levels and improves endothelial function in patients
with coronary artery disease (Chenevard et al. 2003). Short- (3 h) and long-
term (1 week) inhibition of COX-2 by celecoxib restores endothelial function in
hypertensive patients (Widlansky et al. 2003), whereas rofecoxib has no effect
(Title et al. 2003; Verma et al. 2001). In hypertensive patients, indomethacin,
a COX inhibitor, significantly increased the response to acetylcholine, an effect
that could be blocked by co-infusion of l-NMMA, an inhibitor of NO synthesis
(Taddei et al. 1997b). Therefore, COX inhibition restores NO-mediated vasodi-
latation in essential hypertension, suggesting that COX-dependent substances
can impair NO bioavailability. COX is indeed a source of the NO scavenger O2

−

(Kontos et al. 1985).
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5
Endothelium-Derived Hyperpolarising Factor

Inhibitors of the l-arginine pathway do not prevent all endothelium-dependent
relaxations (Richard et al. 1990). Since under these conditions vascular smooth
muscle cells become hyperpolarised, an endothelium-dependent hyperpolar-
ising factor (EDHF) of unknown chemical structure has been proposed (Fig. 1;
Taylor and Weston 1988; Vanhoutte 1987). There is evidence that a calcium-
dependent potassium channel on endothelial or smooth muscle cells is impor-
tant in mediating endothelium-dependent hyperpolarisation, a mechanism
that is impaired in arterial hypertension (Edwards et al. 1998; Fujii et al. 1992;
Van de Voorde et al. 1992). Endothelium-dependent hyperpolarisation may
also be involved in the compensation for the impaired NO system in patients
with essential hypertension (Taddei et al. 1999b; Takase et al. 1996).

As EDHF remains unidentified, its involvement in regulating vascular re-
activity is defined as the response that persists in the presence of combined
inhibition of NO and PGI2 synthesis. The relative contribution of the medi-
ators to endothelium-dependent dilatation (NO, prostacyclin and EDHF) is
inversely related to vessel calibre. NO- and PGI2-mediated responses are more
important in conduit vessels, whereas EDHF is more prominent in resistance
arteries (Shimokawa et al. 1996).

A recent study in eNOS−/− and COX−/− mice shows that EDHF is the pre-
dominant endothelium-derived relaxing factor in female mice, whereas NO
and PGI2 are predominant mediators in male mice (Scotland et al. 2005). The
disruption of both eNOS and COX genes resulted in elevated blood pressure
in male mice, whereas the female mice were protected against hypertension,
indicating that EDHF may contribute to the lower incidence of cardiovascular
disease in pre-menopausal women (Scotland et al. 2005).

6
The Endothelin System

Over a decade ago, a novel vasoconstrictor peptide synthesised by vascular
endothelial cells was identified (Hickey et al. 1985; Yanagisawa et al. 1988;
see A.P.Davenport and J.J. Maguire, volume I). The ET family consists of
three closely related peptides—ET-1, ET-2, and ET-3—which are converted
by ET-converting enzymes (ECE) from “big endothelins” originating from
large pre-proendothelin peptides cleaved by endopeptidases (Ikegawa et al.
1990; Ohnaka et al. 1993; Rossi et al. 1995; Shimada et al. 1994; Takahashi et al.
1993). The ET peptides are not only synthesised in vascular endothelial and
smooth muscle cells, but also in neural, renal, pulmonal and some circulatory
cells holding the genes for ETs (Inoue et al. 1989a, b). The chemical structure of
the ETs is closely related to neurotoxins (sarafotoxins) produced by scorpions
and snakes (Fleminger et al. 1989; Kloog et al. 1988). Factors modulating the
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expression of ET-1 are shear stress, adrenaline, ANG II, thrombin, inflamma-
tory cytokines (tumour necrosis factor α, interleukin-1 and -2), transforming
growth factor β and hypoxia (Barton et al. 1997; Boulanger and Lüscher 1990;
Boulanger et al. 1992; Dohi et al. 1992; Hieda and Gomez-Sanchez 1990; Kanse
et al. 1991; Kohno et al. 1989; Kourembanas et al. 1991; Miyamori et al. 1991;
Ohta et al. 1990; Shirakami et al. 1991; Woods et al. 1998; Yoshizumi et al. 1989).
ET-1 is metabolised by a neutral endopeptidase that also cleaves natriuretic
peptides (Abassi et al. 1992, 1993).

Imbalance of endothelium-derived relaxing and contracting substances dis-
turbs the normal function of the vascular endothelium (Lüscher 1990; Lüscher
and Vanhoutte 1990). ET acts as the natural counterpart to endothelium-
derived NO (Fig. 1), which exerts vasodilating, anti-thrombotic, and anti-
proliferative effects, and inhibits leucocyte adhesion to the vascular wall
(Boulanger and Lüscher 1990). In addition to its arterial blood pressure-raising
effect in man (Kiely et al. 1997; Vierhapper et al. 1990), ET-1 induces both vas-
cular and myocardial hypertrophy (Barton et al. 1998; Ito et al. 1991; Yang
et al. 1999), which are independent risk factors for cardiovascular morbidity
and mortality (Bots et al. 1997; Kannel et al. 1969; O’Leary et al. 1999). Indeed,
in patients with essential hypertension, carotid wall thickening and left ven-
tricular mass correlate with reduced endothelium-dependent vasodilatation
(Ghiadoni et al. 1998; Perticone et al. 1999a).

ET-1 has a paracrine rather than an endocrine mode of action, which is
reflected by plasma levels of ET-1 in the picomolar range (Sorensen 1991;
Wagner et al. 1992). Infusion of an ET receptor antagonist into the brachial
artery or systemically in healthy humans leads to vasodilatation, indicating
a role of ET-1 in the maintenance of basal vascular tone (Haynes and Webb
1994; Haynes et al. 1996). When ET-1 itself is infused, vasoconstriction follows
a brief phase of vasodilatation, which may be explained by relaxation of smooth
muscle cells caused by ETB receptor-mediated release of the vasodilators NO
and PGI2 (Fig. 1). In addition, ET-1 may exert effects on the central and
autonomic nervous systems and alter baroreflex function (Chapleau et al.
1992; Donckier et al. 1991; Gardiner et al. 1990; Kannan et al. 1994; Knuepfer
et al. 1989; Lysko et al. 1991; Mosqueda-Garcia et al. 1998; Nakamoto et al.
1991; Nambi et al. 1990; van den Buuse and Itoh 1993; Yang et al. 1990a, b).
In the kidney, sodium re-absorption is modulated (Sorensen et al. 1994) and
aldosterone secretion is regulated by ET-1 (Fig. 8; Rossi et al. 2003).

6.1
The Endothelin System in Hypertension

The ET system is activated in several but not all animal models of arterial hy-
pertension (Barton et al. 1998; Doucet et al. 1996; Hocher et al. 1995, 1996, 1999;
Lariviere et al. 1993a, b, 1995; Li et al. 1994; Miyauchi et al. 1989; Schiffrin et al.
1995a). Correspondingly, ET plasma levels have been reported to be elevated
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Fig.8 Pathophysiological role of endothelin (ET)-1. In the heart, ET-1 contributes to contrac-
tility. In addition to its vasoconstrictor effects in the systemic and pulmonary circulation,
ET-1 leads to hypertrophy of myocardial and smooth muscle cells. The pulmonary circu-
lation is an important source of ET-1, but is also involved in the clearance of ET-1. In the
kidney, ET-1 regulates sodium and water excretion. Modified from Spieker et al. (2001)

in certain patients with essential hypertension (Saito et al. 1990), but this ob-
servation is controversial (Miyauchi et al. 1992; Taddei et al. 1999a). The causal
role of ET-1 in the pathogenesis of hypertension thus remains unclear (Haynes
et al. 1998). As ET has pro-inflammatory, hypertrophic and pro-fibrotic prop-
erties in the heart, kidney and blood vessels, it seems to play a predominant
role in mediating complications of hypertension (Schiffrin 2005).

Because most ET-1 synthesised in endothelial cells is secreted abluminally,
it might attain a higher concentration in the vessel wall than in the plasma.
Indeed, significant correlations have been found between the amount of im-
munoreactive ET-1 in the tunica media and (1) blood pressure, (2) total serum
cholesterol and (3) the number of atherosclerotic sites (Rossi et al. 1999). In
blood vessels of healthy controls, ET-1 was detectable almost exclusively in
endothelial cells, whereas in patients with coronary artery disease, arterial
hypertension or both, sizeable amounts of ET-1 were detectable in the tunica
media of different types of arteries (Rossi et al. 1999). Furthermore, there is
evidence that certain gene polymorphisms of ET-1 and ET receptors could be
associated with blood pressure levels (Nicaud et al. 1999; Sharma et al. 1999;
Stevens and Brown 1995). Even at very low concentrations of ET-1, interactions
between ET-1 and adrenergic mediators lead to enhanced vasoconstriction
(Fig. 9; Yang et al. 1990b).

Moreover, in hypertensive patients, intra-arterial infusion of various ETA/B
receptor antagonists caused significantly greater vasodilatation than in nor-
motensive subjects (Fig. 10; Cardillo et al. 1999, 2004; Taddei et al. 1999a).
However, these findings remain controversial (Ferro et al. 2002; Nohria et al.
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Fig. 9 Threshold concentrations of endothelin-1 potentiate contractions to noradrenaline in
human arteries. In mammary artery rings, the contractions to noradrenaline were poten-
tiated by threshold and low concentrations of endothelin-1. The calcium antagonist daro-
dipine prevented the potentiation of the response to noradrenaline evoked by endothelin-1.
Modified from Yang et al. (1990b)

2003). If plasma levels of ET-1 are similar in normotensive and hypertensive
patients, then increased sensitivity to endogenous ET-1 must be postulated.
Indeed, sensitivity to endogenous and exogenous ET-1 is increased in hy-
pertensive patients (Nohria et al. 2003; Taddei et al. 1999a). One of the major
functional consequences is impaired exercise-induced vasodilatation in hyper-
tensive subjects, both in the coronary and the peripheral circulation (Fig. 11;
Frielingsdorf et al. 1996; Linder et al. 1990; Nohria et al. 2003; Panza et al. 1990).
Decreased bioavailability of NO may be involved in this phenomenon, since
NO antagonises some of the effects of ET-1.

Fig. 10 Forearm blood flow responses to intra-arterial infusion of the selective ETA receptor
antagonist BQ-123 (100 nmol/min), and the ETB receptor antagonist BQ-788 (50 nmol/min)
in hypertensive patients and normotensive controls. The vasodilator response to endothelin
antagonism is significantly enhanced in hypertensives. Modified from Cardillo et al. (1999)
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Fig. 11 Coronary luminal area change during exercise in hypertensive patients and nor-
motensive control subjects. Exercise-induced coronary vasodilatation is impaired in hyper-
tensives. Modified from Frielingsdorf et al. (1996)

7
Effects of Anti-hypertensive Therapy on the Vascular Endothelium
in Hypertensive Patients

In hypertensive animals, most classes of anti-hypertensive drugs (e.g. calcium-
channel blockers, ACE-inhibitors, AT1 receptor antagonists) improve endo-
thelium-dependent vasodilatation (Boulanger et al. 1994; d’Uscio et al. 1998;
Dohi et al. 1994; Lüscher et al. 1987b; Maeso et al. 1998; Rodrigo et al. 1997;
Takase et al. 1996; Tschudi et al. 1994). Surprisingly and in contrast to animal
experiments, anti-hypertensive therapy cannot consistently restore impaired
endothelium-dependent vasodilatation in patients with arterial hypertension
(Creager and Roddy 1994; Hirooka et al. 1992; Linder et al. 1990; Panza et al.
1990, 1993a, b, c, 1994, 1995; Taddei et al. 1994, 1995, 1997a). However, depend-
ing on the anti-hypertensive drug and its pharmacological profile, improve-
ments in endothelium-dependent vasodilatation can be achieved (Table 3;
Creager et al. 1992; Dawes et al. 1999; Ghiadoni et al. 2000, 2003; Hirooka et al.
1992; Lyons et al. 1994; Millgard et al. 1998; Millgard and Lind 1998; Panza et al.
1993c; Perticone et al. 1999b; Schiffrin and Deng 1996; Schiffrin et al. 1995a;
Schiffrin et al. 1995b; Sudano et al. 1998; Taddei et al. 1994, 1997c, 1998a; Yavuz
et al. 2003). The multifactorial aetiology of essential hypertension as well as the
duration of blood pressure elevation may explain certain inconsistent results
of different investigators (Cockcroft et al. 1994; Perticone et al. 1998).

Several calcium channel blocking agents have been successful in improving
endothelial function inhumanhypertension(Table3).Theanti-oxidativeprop-
erties of an anti-hypertensive drug are important, since oxidative stress plays
a central role in the pathophysiology of human hypertension. The endothelial
function of patients with hypertension is improved by acute administration of
ascorbic acid, an anti-oxidant vitamin, which protects against the decomposi-
tionofNObyO2

– (Taddei et al. 1998b). Scavengingof reactiveoxygenspeciesby
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Table 3 Effect of antihypertensive therapy on endothelial function in patients with arterial
hypertension

Reference Antihyper- Duration of NO-release Improvement

tensive treatment agonist/ in endo-

therapy antagonist thelium-

dependent

vasomotion

ACE inhibitors

Hirooka et al. 1992 Captopril Acute ACh Yes

Creager et al. 1992 Captopril 7–8 weeks MCh No

Enalapril 7–8 weeks MCh No

Taddei et al. 1998a Lisinopril Acute ACh No

Bk Yes

1 and ACh No

12 month Bk Yes

Lyons et al. 1994 Enalapril 6 weeks l-NMMA Yes

Millgard et al. 1998 Captopril Acute MCh Yes

3 months MCh Yes

Schiffrin et al. 1995b Cilazapril 1 and 2 years ACh Yes

Yavuz et al. 2003 Enalapril 6 months FMD Yes

Ghiadoni et al. 2003 Perindopril 6 months FMD Yes

ANG II

antagonist

Ghiadoni et al. 2000 Candesartan 2 months ACh No

12 months ACh Yes*

Bragulat et al. 2003 Irbesartan 6 months ACh Yes*

Yavuz et al. 2003 Losartan 6 months FMD No

Ghiadoni et al. 2003 Telmisartan 6 months FMD No

β-Blocker

Schiffrin and

Deng 1996 Atenolol 2 years ACh No

Dawes et al. 1999 Nebivolol Acute l-NMMA Yes

Ghiadoni et al. 2003 Nebivolol 6 months FMD No

Ghiadoni et al. 2003 Atenolol 6 months FMD No



The Vascular Endothelium in Hypertension 267

Table 3 (continued)

Reference Antihyper- Duration of NO-release Improvement

tensive treatment agonist/ in endo-

therapy antagonist thelium-

dependent

vasomotion

Ca antagonists

Hirooka et al. 1992 Nifedipine Acute ACh No

Millgard et al. 1998 Nifedipine Acute MCh No

Sudano et al. 1998 Nifedipine 6 months ACh Yes

Schiffrin and

Deng 1996 Nifedipine Chronic ACh Yes

Ghiadoni et al. 2003 Nifedipine 6 months FMD No

Taddei et al. 1997c Lacidipine 2 and ACh and Bk Yes

8 month

Lyons et al. 1994 Amlodipine 6 weeks l-NMMA Yes

Perticone et al. 1999b Isradipine 2 and ACh Yes

6 month

Ghiadoni et al. 2003 Amlodipine 6 months FMD No

Other

Panza et al. 1993c Various Chronic vs ACh No

(diuretics, 2 weeks ACh No

verapamil, withdrawal

β-blockers,

clonidine, α-

methyldopa)

Taddei et al. 1994 Potassium Acute ACh Yes

Abbreviations: ANG II, angiotensin II; ACE, angiotensin converting enzyme; ACh,
acetylcholine; Bk, bradykinin; Ca, calcium; FMD, flow-mediated vasodilatation; l-NMMA,
NG-monomethyl-l-arginine; MCh, methacholine; NO, nitric oxide *This effect was paral-
leled by an enhanced endothelium-independent vasodilatation to sodium nitroprusside

anti-oxidants may become an important therapeutic strategy (Nakazono et al.
1991; Tschudi et al. 1996), since chronic treatment with vitamin C is in fact able
to lower blood pressure in patients with hypertension (Duffy et al. 1999).

Treatment with candesartan, an AT1 receptor antagonist, reduced the va-
sodilator response to the mixed ETA/B receptor antagonist TAK-044 that was
initially more pronounced in hypertensive patients than in normotensive con-
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trols (Ghiadoni et al. 2000). This was paralleled by a reduction in circulating
plasma ET-1 levels. Furthermore, the impaired vasoconstrictor response to l-
NMMA in hypertensives was augmented by anti-hypertensive treatment. Thus,
the ANG II receptor blocker candesartan improves the basal release of NO and
reduces vasoconstriction to endogenous ET-1 in the forearm of hypertensive
patients. Irbesartan, another AT1 receptor antagonist, has also been investi-
gated in hypertensive patients. Long-term irbesartan treatment enhanced both
endothelium-dependent and -independent vascular vasodilatation responses.
In addition, irbesartan restored the vasoconstrictor capacity of l-NMMA, sug-
gesting a direct effect on tonic NO release, and decreased ET-1 production
(Bragulat et al. 2003). However, other AT1 receptor antagonists such as telmis-
artan and losartan did not improve endothelium-dependent vasodilatation in
hypertensive patients (Ghiadoni et al. 2003; Yavuz et al. 2003).

Interestingly, infusion of nebivolol, but not other β-blockers, intra-arterially
in the forearm of healthy subjects is associated with an increase in forearm
blood flow (Cockcroft et al. 1995). The increase in forearm blood flow achieved
by nebivolol can be prevented by co-infusion of l-NMMA. Similar results have
been obtained in the human venous circulation (Bowman et al. 1994). This
strongly suggests that nebivolol stimulates the formation of NO in the vascu-
lature and may therefore have an interesting haemodynamic profile which—
unlike other β-blockers—leads to peripheral vasodilatation in addition to the
classical β-blocking effects on the sympathetic nervous system, heart rate
and cardiac contractility (Van Nueten and De Cree 1998; Wallin et al. 1984).
Indeed, nebivolol also causes NO-dependent vasodilatation in hypertensive
patients (Dawes et al. 1999). However, this favourable effect did not last during
chronic treatment (6 months) with this new type of β1-blocker (Ghiadoni et al.
2003).

The effects of newer anti-hypertensive agents—e.g. ET receptor antagonists,
ECE inhibitors, and inhibitors of neutral endopeptidases cleaving natriuretic
peptides—on endothelial function in hypertension are awaited.

8
Conclusions

The vascular endothelium, synthesising and releasing vasoactive substances,
plays a crucial role in the pathogenesis of hypertension. Due to its position
between the blood pressure and smooth muscle cells responsible for peripheral
resistance, the endotheliumis thought tobebothvictimandoffender inarterial
hypertension. The delicate balance of endothelium-derived factors, which is
disturbed in hypertension, can be restored by specific anti-hypertensive and
anti-oxidant treatment.
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