Chapter 4

An assessment of the comparative accuracy of
time series forecasts of patent filings: the
benefits of disaggregation in space or time

Nigel Meade

Tanaka Business School, Imperial College London, London, UK

Module: E
Software: STAMP, TSP

1 Introduction

This work is concerned with methods for forecasting the filing of patents
and was carried out in conjunction with the European Patent Office. The
filings data were subdivided by:

¢ Blocs — European Patent Convention countries, Japan, US and the Rest
of the World.

¢ Industries — main Fields of Technology according to headings A—H of
the International Patent Classification (WIPO 2000).

The issues addressed are: the benefits of multivariate models versus uni-
variate ones in exploiting any correlations between the filings in different
blocs or industries; the effect of aggregation over time (from monthly to
annual data) and the effect of aggregation by bloc or by industry on the ac-
curacy of the forecast of total EPO filings. Two approaches are used: the
ARIMA framework and the dynamic linear model (DLM) in both univari-
ate and multivariate modes.

The main results are: monthly data does tend to provide greater accu-
racy in annual forecasts; there are no significant benefits to be gained by
multivariate modelling and no significant benefits are found from aggre-
gating over blocs or industries. There are benefits from using monthly
data, rather than annual data. The best modelling approaches are, for
monthly data, the univariate dynamic linear model; for annual data either
the univariate ARIMA or DLM could be used. The recommended forecast-
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ing approach provides a benchmark against which other forecasts drawing
on different data sources can be compared.

The filing of an application for a patent is the first step in achieving pro-
tection for intellectual property. The three major patent offices are the
European (EPO), the Japanese (JPO) and the US (USPTO) offices. The
examination of each application is a labour intensive process, involving
technological and legal expertise. The motivation for this study of the
forecasting of patent filings with the EPO is that the forecasts are a pre-
requisite for manpower planning at an aggregate scale and at the level of
availability of expertise in different technologies. The data used in this
study was made available in 2002 as part of an EPO research programme.
The programme looks at five different approaches to forecasting patent fil-
ings, see Chap. 2. These approaches include: survey methods; micro-level
studies of firms’ patenting practice; effects of inter-firm competition on
patenting behaviour; consideration of the flows of filings between patent
offices; time series modelling of aggregate filing data. It is this last topic
that is dealt with here.

The levels of aggregation at which patent filings are analysed are:

e Bloc level — filings are from the EPC contracting states, US, Japan and
the rest of the world.

e Industry level — nine industry groupings are used.

e Total filings within the EPO.

The objective is to identify the most accurate means of forecasting filings
within these categories. This analysis of patent filings, at several levels of
aggregation, uses two time series modelling frameworks.

The basic methodologies used are:

e ARIMA model.
e Dynamic linear model.

Three central issues are:

e [s there information in the filings within blocs or industries that would
lead to increased forecasting accuracy via the use of multivariate fore-
casting models?

e Does disaggregation over blocs or industries lead to improved forecast-
ing?

e Does disaggregation over time lead to improved forecasting? Does the
use of monthly data, rather than annual data, lead to greater forecasting
accuracy?
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In other words, is it better to forecast the filings from the blocs (or indus-
tries) individually and then consolidate them; or to simply forecast the
consolidated figures?

Out of sample forecasting accuracy over a one year ahead horizon is the
criterion upon which model performance is judged.

This chapter is divided into the following sections: a description and ex-
ploratory analysis of the data; a discussion about the forecasting methods
to be used; the application of the forecasting methods to the data; an analy-
sis of forecasting accuracy; forecasting accuracy over a longer horizon fol-
lowed by a summary and conclusion.

2 Data description

The data provided represent filings via two mechanisms: direct applica-
tions to the EPO (euro-direct) and via the Patents Cooperation Treaty
(euro-PCT-IP). For further details, see WIPO (2006a).

Data are available on both a monthly and a yearly basis. For the analy-
sis, the data were consolidated into bloc or industry series shown in Ta-
ble 4.1. The relative proportions of filings in the different world blocs and
industry groups at the EPO are shown in Fig. 4.1. Industry is used as short-
hand for the main field of technology according to the International Patent
Classification, see WIPO (2000).

Table 4.1. The countries / blocs and industries for which data are available

Bloc Code
European Patent Convention Signatories EPC
Japan Jp
United States us
Rest of world ROW
Total EPO
Industry Code
Human Necessities A
Performing Operations/Transport B
Chemistry; Metallurgy C
Textiles; Paper D
Fixed Constructions E
Mechanical Engineering F
Physics G
Electricity H
Other other
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Fig. 4.1. Proportions of filings by bloc and by industry (IPC main fields)

An important issue in this project is the extent to which filings from one
bloc or industry affect filings in another bloc or industry as this will impact
on the performance of multivariate models. The filings data over the pe-
riod available has trended upward throughout with the occasional hesita-
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tion. The data are graphed in Fig. 4.2, giving annual filings by blocs and
total EPO filings; and in Fig. 4.3, giving the filings by industry groupings.
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Fig. 4.2. Annual filings for EPO blocs
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Here we are interested in any evidence of one industry or bloc /eading an-
other. This is different to the patent family approach, see Hingley and Park
(2003), where the progress of filings at different offices is modelled. The
strong trend apparent in the data (X;) means that filings by bloc or industry
will be strongly correlated simply because of the common trend. For corre-
lations to be meaningful, the data need to be stationary, that is their mean
and variance should not change over time. Thus, it is more informative to
look at the correlation between annual changes in filings (X, - X,.;) as these
changes are stationary. The correlations are tabulated in Table 4.2.

Table 4.2. Correlations between annual changes in filings using annual data

By Bloc
Correlations between coincident annual changes
EP JpP US ROW

EP 1.00
JP 0.66 1.00
uUsS 092 0.62 1.00

ROW -0.67 -0.22 -0.78 1.00

Inter-bloc correlations are significant, correlations with rest of world and other
blocs either not significant or negative

No significant correlations were found at other lags

By Industry
Correlations between coincident annual changes
A B C D E F G H other
A 1.00
B 095 1.00
C 095 096 1.00
D 0.86 092 091 1.00
E 092 093 091 087 1.00
F 088 094 091 0.89 085 1.00
G 079 076 085 072 073 0.80 1.00
H 090 088 090 0.79 083 091 093 1.00

other -0.89 -0.84 -0.82 -0.77 -0.81 -0.70 -0.51 -0.64 1.00

Virtually all correlations significant. No significant correlations were
found at other lags
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Unfortunately, there was no evidence of a lagged relationship between
blocs or industries; that is, there was no evidence that a change in one sec-
tion preceded change in another. The different filings groups seem to re-
spond to the same stimuli at the same time.

In order to examine the possible presence of a lagged relationship fur-
ther, the exercise is repeated using monthly data, this extra ‘definition’ in
the data might reveal something hidden in the annual data. In order to
achieve stationarity, the seasonal effect is removed by ‘seasonal differenc-
ing’. The data used are (X; - X,.; - X.12 + X.13) and the correlations are
shown in Table 4.3.

Table 4.3. Correlations between monthly changes in filings using monthly data

By Bloc
Correlations between coincident monthly changes
EP JP [N ROW

EP 1.00
JP 0.73 1.00
UsS 0.66 0.64 1.00

ROW 0.02 021 0.00 1.00

Correlations with rest of world and other blocs either not significant or negative.
No significant correlations were found at other lags

By Industry
Correlations between coincident monthly changes
A B C D E F G H other
A 1.00
B 0.79 1.00
C 0.83 0.84 1.00
D 0.62 0.68 0.64 1.00
E 0.61 074 0.63 049 1.00
F 0.81 0.83 0.82 0.64 0.68 1.00
G 0.82 0.88 0.87 0.65 0.68 0.81 1.00
H 0.79 0.80 0.86 0.67 060 0.79 090 1.00

Other -0.21 -0.08 -0.09 -0.02 -0.13 -0.15 -0.12 -0.10 1.00

Virtually all correlations significant. Several slightly significant correlations were
found at other lags
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The correlations for monthly changes are typically lower than for the an-
nual data. This is due to the greater stringency that is asked for here, be-
cause changes have to happen not just in the same year but in the same
month. However, there was still little evidence of lagged effects.

3 Review and description of forecasting methods

The forecasting methods discussed here are extrapolative methods, this
means that the information set used for forecasting is the history of the
relevant variable or variables. Extrapolation in its widest context is dis-
cussed by Armstrong (2001). The three central issues mentioned in the in-
troduction will be discussed one by one here. Firstly, the value of using a
multivariate model rather than a set of univariate models will be examined.
If there is correlation between the set of series being forecast, then the
multivariate model may be expected to capture this extra structure and
hence produce more accurate forecasts. Preez and Witt (2003) compared
univariate and multivariate ARIMA and state space model based ap-
proaches to forecasting international tourism (the dynamic linear model is
a particular implementation of a state space model). The data were the
numbers of visitors to the Seychelles from four European countries. They
found that their multivariate (state space) model was uniformly least accu-
rate and that univariate ARIMA was, on average, most accurate. Their
findings demonstrate that the use of multivariate models can involve loss
of accuracy, perhaps due to constraints in their structure, as well as the op-
portunity of increased accuracy.

Secondly, the issue of cross-sectional aggregation will be examined.
Aggregation across the blocs of the EPO is a form of spatial aggregation, a
topic addressed by Miller (1998). He points out that the econometric litera-
ture is mainly concerned with the effects of aggregation on the density
functions of parameter estimates rather than forecasting accuracy. In his
study of forecasting economic variables, such as unemployment, in regions
within a US state, he found no real difference in accuracy between fore-
casts using disaggregated and aggregate data. Individual industry forecasts
are analogous to bottom up forecasts in the context of business forecasting,
while the alternative is the top down forecast where an aggregate forecast
is sub-divided. In this context, Schwartzkopf et al (1998) and Dangerfield
and Morris (1992) found that disaggregated (bottom up) forecasts tended
to be more accurate than aggregated forecasts.

The third issue raised was the effect of temporal aggregation, from the
patent filings perspective using annual data when monthly data is avail-
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able. The issue of time deformation is discussed by Stock (1988). He con-
siders the situation where there is an "operational time scale" rather than a
calendar scale. Essentially, events influence the rate of change of the proc-
ess being studied. Although a time transformation is not considered feasi-
ble here, it is possible that the evolution of the patent filing process is not
fully summarised by annual data and that monthly data provides more use-
ful information. This argument influenced Funke (1990), who used
monthly Vector AutoRegression (VAR) models to "capture the current
economic outlook as quickly as possible"” when forecasting industrial pro-
duction in OECD countries. Rossana and Seater (1995) find evidence of a
substantial loss of information when temporal aggregation of monthly or
quarterly data to annual data is performed. The information lost described
low frequency cyclical variation. Perhaps as a consequence of this, they
found that the aggregated annual data showed more long run persistence
than the underlying higher frequency data.

In order to try and illuminate these issues, two different time series
frameworks were used for modelling the data. These are ARIMA model-
ling and the dynamic linear model. Software for the analysis is Time Series
Processor (TSP') and Structural Time series Analyser, Modeller and Pre-
dictor (STAMP?) respectively. These frameworks will both be used in uni-
variate and multivariate modes to address the first issue. To address the
third issue, models will be derived using both monthly and annual data.
The second issue of cross-sectional aggregation will be examined by ag-
gregating over blocs and industries.

ARIMA modelling is well described in Box and Jenkins (1976) or Pank-
ratz (1983). For the stationary process, Z,, the general ARMA process has
p autoregressive terms and ¢ moving average terms.

Z,=9Z, .., 2,_,=a,—6a,,...—0,a,_, 1
The variable, a;, is a white noise term where:

a,~N(0,0°) and p(a,a,_;)=0 for k#0

We use the conventional notation where B is the backward difference op-
erator, B, where

BX,=X,, so B'X,=X,, and (1-B)X,=X,-X,

In this context, X; represents the number of patents filed at time ¢, and Z,
represents a stationary transformation of X;, after finding a suitable value

I See http://www.tspintl.com.
2 See http://stamp-software.com.
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for d. The estimation of the coefficients is achieved by maximum likeli-
hood, the necessary first step is the identification of p and ¢. This identifi-
cation is achieved by using an information criterion. The criterion balances
the marginal value of increasing the number of parameters; say by increas-
ing p by one, against the reduction in the variance of the noise term, a,.
The underlying intuition is that the criterion allows the extraction of the
underlying structure of the data without over-fitting the model. In the fol-
lowing analysis, the values of p and ¢ in ARMA(p,q) were chosen by
minimising Schwarz’s Bayesian Information Criterion (see, for example,
Mills, 1999). The criterion is:

In(7) @)
T

BIC=ln(6'2)+m

where there are T observations used to calculate the standard error 6, an
estimate of & where V(a,) = ¢ and m = p + ¢ coefficients estimated.

Monthly data are likely to exhibit seasonality, a pattern that tends to re-
peat itself every year. The most common ARIMA model for handling
monthly data is called the multiplicative model. It is a combination of two
models, one representing within year behaviour, with L observations per
year, and one representing annual behaviour. This can be denoted by
ARIMA(p,d,q)x(P,D,Q), and its equation is:

(I—Bd)(I—BDL)(1—¢IB...—¢pBP)(l_q)lBL“._(I)PBPL)XI _ 3)

(1-6,8..-6,87)(1-0,8"...-0,8% ),

The identification and estimation procedure is analogous to that for non-
seasonal series.

The multivariate version of ARIMA modelling used here is VAR. The
model is:

Z,=Uu+@Z, 4@, Z, ,+¢ @

where Z, is now a vector of length k of observations of £ stationary time
series and @; (i =1,... p) are k x k matrices of coefficients, i is a vector of
constants and ¢, is a vector of white noise terms with zero mean and a non-
singular covariance matrix. The vector time series, Z,, is formed by taking
first differences of the raw data. The order of the process, p, is normally
determined by likelihood ratio tests or by information criteria. However, in
the case of yearly data, shortage of observations dictates the maximum
value of p.

The dynamic linear model is founded on the simple hypothesis that a
time series can be decomposed into a level, a trend (called a slope in the
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software used), seasonality (if relevant) and a random component. The

model is a ‘state space’ model in that it is described by an observation

equation and several more equations describing the evolution of the states.
The observation equation is:

X =w+e  &~N(0.02) Q)
where the level, 4, is defined by
My =My + By +1 n, ~ N(O,a%) (6)
and the trend, /5, , is defined by
Bi=Bia+l  &~N(0.02) )

The random changes to level, 7, and trend, ¢;, and the random distur-
bances, ¢, about the level are each independent of each other. As a new

observation becomes available, estimates of the current level and trend are
revised. The forecast for & periods ahead is the current estimate of the level
plus k& times the current estimate of the trend, i.e.

E(Xpp | X, ) = £ + K, ()

This formulation is also called an unobserved components model. If the
noise terms identified earlier, 7 for level and ¢, for trend, are each related

linearly to the random disturbance, ¢, then the dynamic linear model is

said to be a single source of error model. In this case, the model described
is identical to the ARIMA(O, 2, 2) model. This type of parallel is discussed
by Gardner and McKenzie (1988). A dynamic linear model with multiple
sources of error as defined above cannot be well represented by the
ARIMA structure simply because it only admits one source of error. This
is discussed in Meade (2000). A framework of dynamic linear models with
a single source of error is given by Hyndman et al (2002). This covers ad-
ditive trend (the case used here), multiplicative trend and an absence of
trend. This framework also includes seasonal components that are mod-
elled as either additive or multiplicative terms.

STAMP, the dynamic linear modelling software, offers several options
for modelling seasonal variation. Seasonal factors can be fixed constants
(estimated from the data) or they can be modelled as stochastic trigono-
metric factors. The former alternative is equivalent to the additive seasonal
factor in Hyndman et al’s framework of state space models. However, the
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latter alternative was used for this analysis, because a model of the whole
seasonal profile is used rather than a set of disjoint factors. The seasonal
variation within a year is represented as a weighted sum of sine and cosine
waves (the fitting procedure is a form of Fourier analysis). The additive
seasonal factor for month m (=1, 12) is represented below.

prasEm) O

The Fourier series contains as many terms as necessary to capture the sea-
sonal profile, subject to there being no more terms than months. In other
words, this representation is usually more parsimonious (requires fewer es-
timates) than individual monthly factors.

The multivariate version of the dynamic linear model is a form of the
seemingly unrelated time series equations (SUTSE) model. SUTSE im-
plies a set of linear models linked only by their disturbances, which may
be correlated. If the linear disturbances are uncorrelated, then the proce-
dure is equivalent to separate linear models. The greater the correlation,
the greater the efficiency gain in estimation using this approach. Note that
multivariate dynamic linear model implies SUTSE, not vice versa.

SUTSE is a generalisation of (5,6 and 7) where vectors replace the de-
pendent variable and the level and trend parameters. The variances of uni-
variate disturbances, ¢? ,0'; ,05 become k£ x k covariance matrices,

Seasonal factor, = Z B, sin ( 27zr2nk
k

1

z,,Z,,Z. . A homogeneous model is used, where the covariance matrices

of the disturbances are assumed proportional to one another. That is
X, =q,%, and X =g X, where ¢, and g are scalar parameters.

4 Application of forecasting methods

For the analysis, all the data series are split into two regions. In the estima-
tion region, the data are used for model identification and parameter esti-
mation only. The remaining data are used for out of sample forecasting.
Since forecasting is done recursively on an annual basis, after a year has
been forecast, that year’s data is then included for parameter estimation for
the forecast of the following year. The estimation and forecast regions are
defined in Table 4.4.
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Table 4.4. Definition of estimation and forecast regions

Yearly Monthly
Total availability Start date 1979 1978 June
Finish date 2001 2001 Dec
Number of observations 23 283
Data used only for estimation Start date 1979 1978 Tune
Finish date 1994 1994 Dec
Number of observations 16 199
Data used for out of sample  Start date 1995 1995 June
forecasting and subsequent
estimation Finish date 2000 2000 Dec
Number of observations 6 72

Although data were available for 2001, their quality was suspect and these
data were not used in the evaluations of forecast accuracy.

Once the model has been identified for each series, the forecasting proc-
ess is carried out recursively. Forecasts from the model estimated using
data in the estimation region are prepared for up to a year ahead. This addi-
tional data is then used for parameter re-estimation; forecasts are prepared
for a year ahead and so on. In summary, forecasts with a maximum hori-
zon of one year are prepared sequentially for six origins at annual inter-
vals.

These sets of forecasts provide accuracy information on a multi-origin
and multi-horizon basis, as recommended by Fildes (1992). The measures
of accuracy used are root mean square error (rmse) and mean absolute per-
centage error (mape). Both of these measures are calculated over different
origins i=1,, I, over horizons 4= 1,, H, (for monthly data only in this
section, multiple annual horizons are examined in Sect. 4) and overall. If
the forecast origin is 7+ (i - 1)M (where: for annual data 7=16, M=1,1=5
and for monthly data 7= 199, M =12, I=5); then the % step ahead forecast
Yrig-nu,n 1 an estimate of the observation Yr.-ny+n and the error is

e =Yrai-tym+h — Yr+G-m,n - The percentage error is

100e¢; ,

p. -_—
L.h YT+(i—1)M+h :

The measures of accuracy are given in Table 4.5.
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Table 4.5. Definitions of accuracy measures used

root mean square error (rmse)

For
origin i

For
horizon h

Overall O

mean absolute percentage error (mape)

M 1
Overall O ZZ Pih

MAPE, =2=Li=L I’jw

As a general rule, the rmse is reported as the prime measure of accuracy
and mape is used as a supporting figure, often for comparison between se-
ries.

Accuracy over a horizon of one year is used as the main criterion for
comparison between models for two reasons. Firstly, a year is the shortest
common horizon for the annual and monthly data sets. Secondly, the coef-
ficients of both modelling procedures are estimated to best describe the re-
lationship between an observation at time ¢ and those observations avail-
able at time #-/. Each model has the objective of minimising the one period
ahead error variance.

The focus in this study is on a one-year forecasting horizon, because in
practice the forecasting exercise will be repeated at intervals of no more
than a year. Some analysis of forecasts for horizons of up to four years is
given in Sect. 6.

In the analysis, root mean square errors are used to estimate the one-step
ahead error standard deviation.

The application of the forecasting methods is described in the following
sub-sections.
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4.1 ARIMA univariate (annual data):

The values of p and q, for ARIMA(p, d, q), were chosen using the Bayes-
ian Information Criterion. In two (monthly) cases, non-differenced models
were used. Firstly, the results of forecasting annual filings are discussed,
then those for monthly data.

Aggregate forecasts of total EPO filings are produced; these forecasts
are the sum of forecasts of the components of the total EPO filings. These
components are either the four blocs (EPC, Japan, US, Other countries) or
industries (IPC main Section headings A — H). A comparative analysis of
this type produces a large volume of results, the policy adopted here is to
first give example tables for the ARIMA models using annual data; subse-
quently summary results are given. The example tables give an idea of the
relative difficulty of forecasting the different series, the summary tables
show the relative overall accuracy between methods.

For the four blocs (see Table 4.6), the US has the lowest mape; the rest
of the world has the highest. Forecasts labelled origin 1 are for 1995, based
on data up to 1994. Forecasts labelled origin 2 are for 1996, based on data
up to 1995, etc. The forecast based on aggregated blocs gives a similar
rmse to the direct forecast of total EPO filings. The rmses associated with
Origin 6 are typically high. These relate to the forecasts made at the end of
1999 for 2000. Total filings increased by 15% from 1999 to 2000 in con-
trast with the 7% growth experienced over the last ten years, 1990 to 2000.
All four univariate forecasts of total EPO filings are shown in Fig. 4.4.

Table 4.6. Summary accuracy of ARIMA forecasts of total EPO annual filings
forecasts by blocs

EPC JP UsS Rest of  Blocs Total

World aggregated  EPO

Std Error 1900 849 722 224 3211

Accuracy 1 895 97 659 52 1405 1129
by 2 575 1780 1759 310 4424 3754
ongin 34706 355 2221 841 8124 9750
(rmse ) 43927 103 983 749 5762 2352
5 539 144 278 172 845 1839

6 1863 2260 2796 3833 10753 10593

Overall rmse 2660 1186 1699 1638 6286 6212

Overall mape 429 491 4.11 8.91 4.68 4.38
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Fig. 4.4. One year ahead forecasts of total EPO filings for origins 1994 to 1999
from the four univariate models

The results of examining filings on an industry basis for the EPO are
summarised in Table 4.7. industries G (physics) and H (electricity) are the
most difficult to forecast with both high root mean square errors and high
mean absolute percentage errors. The residual category ‘other’ has a high
mape and high rmse showing that this balancing item is difficult to fore-
cast (see Fig. 4.3). Aggregation of industry forecasts to give an overall
EPO forecast is on average slightly better than the forecast of the total.
There were five out of six origins where the aggregate forecast was more
accurate than the direct forecast. It is worth remembering that industry
specific forecasts have value, in terms of matching skills to future work-
load, even if aggregation does not lead to greater overall accuracy.
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Table 4.7. Summary accuracy of ARIMA forecasts of EPO annual filings fore-
casts by Industry

Industry
A B C D E F G H other Aggre- Total
gated EPO
Std
Error 347 660 720 118 173 353 528 428 91 3211

Accuracy 1 256 197 582 2 47 119 846 404 324 1640 1129

by 554 711 553 51 8 167 529 1834 56 4540 3754
orgin 1224 905 1697 183 320 546 979 1288 91 7050 9750
(rmse ) 505 1190 651 44 241 988 350 1056 1166 4189 2352

61 71 272 121 177 606 930 189 439 14 1839
339 179 1330 152 41 609 3646 2262 2938 11498 10593
Overall rmse 612 685 982 113 181 585 1645 1382 1310 6093 6212
Overall mape 3.13 298 431 489 390 5.83 580 6.14 168.7 4.32 438
A: human necessities, B: performing operations/transport, C: chemistry; metal-
lurgy, D: textiles; paper, E: fixed constructions, F: mechanical engineering, G:
physics, H: electricity.

AN bW

For this section, results for blocs are summarised in Table 4.8, results for
industries are summarised in Table 4.9 and results for total EPO filings are
summarised in Table 4.10. In order to judge comparative accuracy, the
rank of each method for overall rmse is shown.

The lower the rank, the more accurate is the forecasting method. In ad-
dition, in order to gain an idea of how important the differences in rank
are, a geometric mean is given. The geometric mean for approach i is de-
fined below, where 7 filings series have been forecast:

GM, = \/H RMSE  for series j for approach i

min (RMSE) for series j

J=1

The reason for this measure is that it shows an average proportion indicat-
ing how far an approach deviates, on average, from the most accurate re-
sult.

4.2 ARIMA univariate (monthly data)

Aggregating monthly forecasts over time to provide annual forecasts does
not provide greater accuracy, compared to forecasts based on annual data,
for any bloc (see Table 4.8). Although aggregation across blocs gives a
more accurate forecast of total EPO filings than the direct forecast of total
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EPO filings; these are both less accurate than their forecasts based on an-
nual data (see Table 4.10). In Fig. 4.4, the greater accuracy of the annual
ARIMA forecast of total EPO filings is visible. Aggregation over the
monthly forecasts leads to greater accuracy than the annual industry mod-
els for only three out of the nine industries (see Table 4.9). Aggregation of
these industry forecasts gives a less accurate forecast of total EPO filings
than the aggregated direct annual forecast of total EPO filings (see Ta-
ble 4.10).

Table 4.8. Overall rmse levels for blocs (Rank of method shown in italics)

Aver- GM
Restof age
rmse EPC JP uUsS World  rank
Univariate ARIMA using
annual data 2660 5 1186 5 1699 7 1638 2 4.8 1.29
Univariate ARIMA using
monthly data 2721 7 1353 6 1675 6 1709 6 63 1.35

VAR using annual data 5226 8 2081 & 4935 & 1873 7 7.8 2.37
VAR using monthly data 1684 1 1866 7 1243 2 2095 & 45 1.27
Univariate DLM using an-

nual data 2674 6 1077 2 1581 5 1647 3 40 1.24
Univariate DLM using

monthly data 1898 3 1084 3 1380 3 1659 4 33 1.10
Multivariate DLM using

annual data 2346 4 1152 4 1575 4 1681 5 43 1.23
Multivariate DLM using

monthly data 1811 2 986 7/ 1169 I 1636 [/ 13 1.02
rmse defined in Table 4.5.

4.3 ARIMA multivariate (annual data)

For VAR modelling, the order of the process p is normally determined by
likelihood ratio tests or by information criteria. However, in the case of
yearly data, shortage of observations dictates the maximum value of p. For
the four (k = 4) EPO bloc series, there are fifteen years (7 = 15) of differ-
enced data. The constraint on the number of degrees of freedom is:

(T~ p)=hp>0, thus p<T/ .

This means that the maximum value for p is two for blocs. For modelling
individual industries (where k = 9) the situation is worse with a maximum
value for p of one.
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For blocs, the forecast accuracy of the VAR model over the last avail-
able six years is poor, and it is uniformly worse for each country than the
univariate result (see Table 4.8). The shortage of degrees of freedom may
have contributed to this poor performance. Repeating the exercise for in-
dustries (see Table 4.9) results in a poor forecasting performance by the
VAR models. The shortage of degrees of freedom is more severe here as
there are more industries than blocs.

4.4 ARIMA multivariate (monthly data)

In order to use stationary data, the data were transformed to (1-B)(1-B'*)X..
The number of lagged terms to include in the VAR was decided by Bayes-
ian Information Criterion (BIC). Although the maximum value for the
number of lags was of the order of twenty or so, the criterion led to the
choice of low values. For the blocs, the number of lagged terms was 2, for
industries, the number of lagged terms was 1. Note that the information
criterion indicates that recent annual changes are useful in prediction, i.e.
lags of 1 or 2 means that the data used for the forecasts are between one
and two years old.

In addition, it should be noted that the forecasting of monthly data (in
VAR) is more problematic than for annual data. Since no data later than
the current origin are available for forecasting, the lagged data required in
the forecast have to be replaced by forecasts. This means that monthly
forecasts for all countries (or industries) are made recursively one month at
a time.

The accuracy per bloc is similar to univariate ARIMA (monthly), where
there are improvements for the EPC and the US (see Table 4.8). For the
overall EPO filings, the forecast based on the aggregated bloc forecasts
yields a rmse of 5 307 (see Table 4.10). Similar results for the industries
within the EPO are shown in Table 4.9. Industry by industry, the monthly
VAR accuracy is similar to monthly univariate accuracy. Aggregating to
forecast annual filings, the monthly VAR is more accurate than the corre-
sponding univariate figure for four out of nine industries (industries C, F,
G and H). For the total EPO filings, there is an increase in accuracy with a
rmse of 4 462 compared to 6 743 for aggregated monthly ARIMA (see Ta-
ble 4.10).

4.5 DLM univariate (annual data)

Forecasts were computed recursively, using the same initial estimation re-
gion as defined in Table 4.4. The accuracy of forecasts using bloc annual
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data is summarised in Table 4.8. The accuracy of the dynamic linear model
for the industry groupings is summarised in Table 4.9. Broadly, the DLM
forecasts are similar to the comparable ARIMA ones.

4.6 DLM univariate (monthly data)

As explained earlier, the dynamic linear model was used on monthly data
with stochastic trigonometric seasonal factors. Here, for blocs, the monthly
rmse values are consistently lower than the comparable ARIMA rmse val-
ues. Aggregating across blocs to get an overall EPO filings forecast was
more accurate than the direct univariate forecast for both aggregated
monthly data and annual (see Table 4.10). The accuracy of forecasts by in-
dustry is summarised in Table 4.9. For six out of nine industries, the DLM
using monthly data was more accurate than the annual DLM. We see there
is no additional accuracy to be gained here by aggregating across indus-
tries (see Table 4.10). In Fig. 4.4, we can see that this forecast of total EPO
filings tends to be more accurate than the annual DLM and the ARIMA
models.

4.7 DLM multivariate (annual data)

The model chosen for forecasting was the homogeneous model that con-
strains the elements of the covariance matrix driving the disturbances to be
proportional to one another. There is a halfway house of trend homogene-
ity, where the constraint of proportionality only applies to level and slope
disturbances, not the error term. Experimentation showed that full homo-
geneity led to more accurate forecasts, so only these are reported. The ac-
curacy of the multivariate dynamic linear model using annual data for EPO
blocs is summarised in Table 4.8 and for industries in Table 4.9. The mul-
tivariate DLM is of similar accuracy to the univariate DLM.

4.8 DLM multivariate (monthly data)

For monthly data, the accuracy is summarised in Table 4.8 for EPO blocs
and Table 4.9 for EPO industries. For both blocs and industries this model
has a similar level of accuracy to the univariate DLM.
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Table 4.10. Overall rmse levels for different aggregated forecasts of total EPO fil-
ings

Type of

Aggregation Approach rmse  Rank GM
Univariate ARIMA using annual data 6212 13 1.44

As aunivariate Univariate ARIMA using monthly data 7374 17 1.70

time series Univariate DLM using annual data 6623 16 1.53
Univariate DLM using monthly data 4478 3 1.03
Univariate ARIMA using annual data 6286 14 1.45
Univariate ARIMA using monthly data 6511 15 1.50

VAR using annual data 7517 18 1.74
As an aggregate VAR using monthly data 5307 6 123
across blocs Univariate DLM using annual data 5796 9 134
Univariate DLM using monthly data 4328 1 1.00
Multivariate DLM using annual data 5989 10 1.38
Multivariate DLM using monthly data 4578 5 1.06
Univariate ARIMA using annual data 6093 11 1.4l
Univariate ARIMA using monthly data 5691 8 131
VAR using annual data 9501 19 220
As an aggregate VAR using monthly data 4462 2 1.03
across industries  Univariate DLM using annual data 6126 12 1.42
Univariate DLM using monthly data 4567 4 1.06
Multivariate DLM using annual data 10098 20 2.33
Multivariate DLM using monthly data 5417 7 1.25
rmse defined in Table 4.5.

5 Analysis of comparative accuracy

In order to judge whether the observed differences in accuracy matter it is
helpful to test the significance of the differences. Here we use the Fried-
man test for this task. The ranking of each treatment (forecasting method)
is calculated across the available blocks (forecasting origin and time se-
ries)®. The test first evaluates if the differences in the ranks can be ex-
plained as random variation between methods of similar accuracy, or if the
differences in ranks are due to greater accuracy of one or more methods. If
the hypothesis of no difference in accuracy can be rejected, the signifi-

3 Note that bloc is a national grouping; block is a grouping of data in this
hypothesis testing exercise.
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cantly more accurate methods can be identified. For details of the Fried-
man test, see Conover (1999).

We carry out three comparisons, over blocs, over industries and over to-
tal EPO filings. For EPO planning purposes, forecasts of filings by indus-
try and of total filings are of particular interest.

In each case, the block data are the errors for a one-year ahead forecast
over six origins and over the available series. For example for blocs, there
are four time series (EPC, JP, US and rest of the world) and six origins
giving twenty-four blocks.

For blocs, the multivariate version of the dynamic linear model using
monthly data is most accurate, but it is only significantly better than the
multivariate ARIMA using annual data, using the VAR model. In this
case, the main result is that the annual VAR is significantly worse than the
other methods.

For industries, the univariate monthly DLM is significantly more accu-
rate than all methods except the multivariate monthly DLM. The multi-
variate annual versions of ARIMA and the DLM are significantly worse
than the remaining models.

For the total EPO filings series, the methods include univariate forecasts
of the series and forecasts aggregated over blocs or industries. Three of the
four most accurate methods use the monthly univariate DLM, either on the
total filings directly or aggregating across blocs or across industries. The
use of monthly data dominates the rankings by accuracy.

One of the main issues of this study concerns the advantages of a multi-
variate model over a univariate model. Is there evidence of information
contained in the time series of filings for one bloc or industry that will im-
prove forecasting of filings in other blocs or industries? The answer is no;
for blocs a multivariate model was most accurate but not significantly
more accurate than its univariate counterpart; for industries there was no
evidence of greater accuracy from a multivariate model. This conclusion is
conditional on the industrial classification used here. It is not definitive for
all possible classifications.

For the issue of aggregation over time, the use of monthly data, rather
than annual data, does lead to greater accuracy in terms of ranking. In
terms of significantly greater accuracy, this is achieved for industries
where the most accurate two methods are significantly more accurate than
their versions using annual data. (DMU vs DAU and DMM vs DAM). A
similar statement applies to forecasts of total EPO filings, (Bloc DMU vs
Bloc DAU and Total DMU vs Total DAU).
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Table 4.11. Methods in descending order of accuracy by bloc, industry and total
EPO filings

For blocs
Average Is significantly more accu-
Framework Frequency Rank rate than:
DLM Monthly Multivariate (DMM) 3.6 AAM
ARIMA Annual Univariate (AAU) 4.0 AAM
DLM Monthly Univariate (DMU) 42 AAM
DLM Annual Univariate (DAU) 42 AAM

ARIMA Monthly Multivariate (AMM) 44 AAM
ARIMA Monthly Univariate (AMU) 45 AAM
DLM Annual  Multivariate (DAM) 45 AAM
ARIMA Annual Multivariate (AAM) 6.5

For industries
Average Is significantly more accu-

Framework Frequency Rank rate than:

DLM Monthly Univariate (DMU) 3.3 DAU, AMU, AMM,
AAU, AAM, DAM

DLM Monthly Multivariate (DMM) 3.7 AAM, DAM

DLM Annual Univariate (DAU) 42 AAM, DAM

ARIMA Monthly Univariate (AMU) 44 AAM, DAM
ARIMA Monthly Multivariate (AMM) 45 AAM, DAM

ARIMA Annual Univariate (AAU) 45 AAM, DAM
ARIMA Annual  Multivariate (AAM) 5.6
DLM Annual  Multivariate (DAM) 5.8
For EPO total
Average Is significantly more accu-
Framework Frequency Rank rate than
DLM Monthly Univariate (Bloc 5.0 Bloc AMU, Bloc AAU,
DMU) Ind DAU, Total AMU,

Bloc DAM, Bloc DAU,
Bloc AAM, Total DAU,
Ind AAM, Ind DAM
DLM Monthly Univariate (Total 5.2  Bloc AMU, Bloc AAU,
DMU) Ind DAU, Total AMU,
Bloc DAM, Bloc DAU,
Bloc AAM, Total DAU,
Ind AAM, Ind DAM
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Table 4.11. (cont.)

For EPO total
Average Is significantly more accu-
Framework Frequency Rank rate than
DLM Monthly Multivariate (Bloc 6.2 Bloc AAM, Total DAU,
DMM) Ind AAM, Ind DAM
DLM Monthly Univariate (Ind 6.2 Bloc AAM, Total DAU,
DMU) Ind AAM, Ind DAM
ARIMA Monthly Multivariate (Ind 8.2 Ind AAM, Ind DAM
AMM)
ARIMA Monthly Univariate (Ind 8.7 Ind AAM, Ind DAM
AMU)
ARIMA Monthly Multivariate (Bloc 9.5 Ind DAM
AMM)
DLM Monthly Multivariate (Ind 9.7 Ind DAM
DMM)
ARIMA Annual Univariate (Total 10.5 Ind DAM
AAU)
ARIMA Annual  Univariate (Ind 10.5 Ind DAM
AAU)
ARIMA Monthly Univariate (Bloc 11.7
AMU)
ARIMA Annual Univariate (Bloc 11.8
AAU)
DLM Annual Univariate (Ind 11.8
DAU)
ARIMA Monthly Univariate (Total 12.2
AMU)
DLM Annual Multivariate (Bloc 12.2
DAM)
DLM Annual Univariate (Bloc 12.2
DAU)
ARIMA Annual Multivariate (Bloc 12.7
AAM)
DLM Annual Univariate (Total 13.2
DAU)
ARIMA Annual Multivariate (Ind 15.2
AAM)
DLM Annual Multivariate (Ind 17.7

DAM)




66  Nigel Meade

For the issue of aggregation over blocs or industries leading to more accu-
rate forecasts of total filings, there was no significant evidence of this.

To achieve the greatest accuracy with one forecasting method, the uni-
variate DLM with monthly data is the most appropriate choice.

If by some diktat, the use of monthly data was forbidden, a similar
analysis can be carried out just using annual data. For blocs, the VAR
model with annual data is significantly less accurate than other methods.
For industries, the univariate ARIMA and DLM are significantly more ac-
curate than their multivariate counterparts. For total EPO filings there was
no significant difference detected between the methods. To achieve the
greatest accuracy using annual data, either univariate ARIMA or univariate
DLM could be used.

6 Forecast accuracy over a longer horizon

The analysis has concentrated on accuracy for the one year ahead forecast.
One explanation is that accuracy over short horizons is a guide to accuracy
over longer horizons. Another is that a wide-ranging comparison of accu-
racy over so many approaches and so many different series would have
become (even more) unwieldy with more than one horizon. At this stage,
two possible univariate forecasting strategies have been identified:

e Univariate DLM using monthly data.
e Univariate ARIMA using annual data.

A third method can be added to represent multivariate modelling:
e Multivariate DLM using monthly data

A comparison across horizons up to four years ahead is carried out using
these methods.

The accuracy of the two approaches when applied to blocs is summa-
rised by horizon in Table 4.12. Note that the rmses by horizon are calcu-
lated using fewer errors as the horizon increases (6 errors for one year
ahead, 3 errors for four years ahead). The accuracy of the approaches for
industries is summarised in Table 4.13. The accuracy deteriorates with
length of horizon for all methods, from a mape of around 5% at one year to
around 30% for four years ahead. The one to four year horizon forecasts of
total EPO filings by the DLM (monthly) are shown in Fig. 4.5. It can be
seen that the deterioration of accuracy with horizon is due to the forecasts
with origins of 1994 to 1996. By 1997, the forecasts have adapted to the
steeper trend.
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Table 4.12. Comparison of the accuracy of the two broad approaches over a 4

year horizon (blocs)

Approach Horizon  EP JP US Restof blocsag- Total
World gregated EPO
to give
EPO
forecast
1 2424 1174 1467 1629 5799 5751
ARIMA 2 5018 2068 2448 1898 10086 9976
39520 3252 5057 3028 19806 19137
rmse 4 15325 4881 8512 4518 32588 32494
1 1898 1084 1380 1659 4328 4478
DLM 24321 1739 2824 2141 8002 8818
(monthly 3 7618 1626 5875 3326 14478 14649
Univ.) 4 12128 2746 7388 4603 24991 26957
1 1811 98 1169 1636 4578
DLM 2 4007 1543 2431 2468 8678
(monthly 3 7066 1837 4204 4080 14680
Multiv.) 4 11398 2901 7728 6354 26915
1 461 469 329 848 450  4.60
ARIMA 2 866 10.89 6.66 13.34 8.69 8.31
3 1744 18.01 13.05 23.03 1673 16.13
mape 4 27.02 2729 2086 3236 2566 25.65
1 316 645 3.62 887 3.10 3.15
DLM 2 807 1002 7.64 15.18 6.20 7.24
(monthly 3 1417 856 14.09 2438 1206 11.62
Univ.) 4 2142 1511 18.07 3273 1930 20.54
1 291 521 3.00 11.37 3.23
DLM 2 728 788 6.67 20.18 7.19
(monthly 3 13.06 842 1032 2877 11.73
Multiv.) 4 20.01 1521 18.80 3638  20.67

rmse, mape, defined in Table 4.5.
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Fig. 4.5. DLM (Monthly) forecasts of total EPO filings with one to four year hori-
zons for origins 1994 to 1999

In Table 4.14, the geometric mean of the rmses of the methods compared
to the most accurate is shown for each method. It can be seen that the uni-
variate monthly DLM is more accurate on average than the monthly multi-
variate DLM, which is in turn more accurate than the annual ARIMA for
each of the horizons. In addition the most accurate forecast of total EPO
filings is the aggregated blocs forecast by univariate DLM (for all hori-
zZons).

Thus the results over horizons up to four years ahead support the find-
ings for a one-year horizon. The DLM approach maintains its superior ac-
curacy over longer horizons.
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Table 4.14. Comparison of geometric mean of rmse/minimum(rmse)

Horizon

(years)
Method 1 2 3 4
ARIMA annual 1.19 1.17 1.25 1.24
DLM monthly univariate 1.06 1.06 1.06 1.01
DLM monthly multivariate 1.08 1.11 1.09 1.12

7 Conclusions

This study has looked at the comparative accuracy of methods of forecast-
ing patent filings at the EPO on four different bases. The first basis for
comparison is the issue of whether there is a correlation structure between
filings by industry, or bloc, that can be exploited by using a multivariate
rather than a univariate forecasting model. For the more accurate models,
the monthly DLMSs, no significant difference in accuracy was found be-
tween comparable models. The implication here is an absence of a useful
correlation structure, the series respond similarly to common stimuli, but
do not affect each other.

The second basis for comparison is the effect of cross-sectional aggrega-
tion across blocs or industries. Again, concentrating on the monthly
DLMs, no significant difference in the accuracy of forecasts for total EPO
filings was found between the direct forecasts and aggregate forecasts over
blocs or industries. This corresponds with Miller’s (1998) findings.

The third comparison concerns temporal aggregation, here our findings
support those of Rossana and Seater (1995). Forecasts based on monthly
data ranked highest in all comparisons. For industries, monthly DLMs
were significantly more accurate than their annual counterparts.

The fourth basis of comparison is between the ARIMA and DLM
frameworks. For monthly data, the DLM is more accurate, for industries
and total EPO filings significantly more so, than monthly ARIMA. For an-
nual data, there was no significant difference between the univariate mod-
els. The seasonal modelling of the DLM seems to have better captured the
within year variation than the ARIMA model used. This has allowed the
DLM to then detect information about changing trends more effectively
than the ARIMA model.

It was also demonstrated that the greater accuracy of the univariate
monthly DLM persisted over horizons of up to four years.

This univariate forecasting exercise provides a benchmark against which
other forecasts drawing on different data sources can be compared. In ad-
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dition the DLM lends itself to further development by the introduction of
possible explanatory variables, such as research and development expendi-
ture, into the state equations.





