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Abstract. The polychoric correlation coefficient is a measure of association be­
tween two ordinal variables. It is based on the assumption that two latent bivariate 
normally distributed random variables generate couples of ordinal scores. Categories 
of the two ordinal variables correspond to intervals of the corresponding continuous 
variables. Thus, measuring the association between ordinal variables means esti­
mating the product moment correlation between the underlying normal variables 
(Olsonn, 1979). When the hypothesis of latent bivariate normality is empirically 
or theoretically implausible, other distributional assumptions can be made. In this 
paper a new and more flexible polychoric correlation coefficient is proposed assum­
ing that the underlying variables are skew-normally distributed (Roscino, 2005). 
The skew normal (Azzalini and Dalla Valle, 1996) is a family of distributions which 
includes the normal distribution as a special case, but with an extra parameter 
to regulate the skewness. As for the original polychoric correlation coefficient, the 
new coefficient was estimated by the maximization of the log-likelihood function 
with respect to the thresholds of the continuous variables, the skewness and the 
correlation parameters. The new coefficient was then tested on samples from simu­
lated populations differing in the number of ordinal categories and the distribution 
of the underlying variables. The results were compared with those of the original 
polychoric correlation coefficient. 

1 Introduction 

Data in the social and medical sciences are often based on ordinal measure­
ments and represented in contingency tables. A first approach to the analysis 
of this kind of variables is to measure their association in order to know if 
some relationship exists and to quantify its strength. To achieve this purpose, 
it is possible either to estimate the concordance between the scores of each 
ordinal variable or to assume tha t those variables derive from the categoriza­
tion of some continuous variables. 
The first type of measure includes Kendall 's r , Somers' e, Goodman and 
Kruskal's 7 and many others more (Agresti, 2004). They estimate the asso­
ciation between ordinal variables comparing the frequencies of each category 
without any distributional assumption. The polychoric correlation coefficient, 
instead, is based on the assumption tha t the ordinal variables derive from 
partit ioning the range of some continuous normally distributed variables into 
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categories. Consequently, it does not compare two sets of scores, but rather 
estimates the correlation between two unobserved continuous variables un­
derlying the two ordinal variables assuming a bivariate normal distribution 
with means zero and variances one. 
Some studies have been carried out in order to compare the most important 
measures of association. Joreskog and Sorbon (1988) performed an experi­
ment based on a bivariate normal distribution for the underlying variables 
and showed that, under this condition, the polychoric correlation coefficient 
is always closer to the real correlation than all measures evaluated in the 
same study. Moreover, the matrix of the polychoric correlation coefficients is 
largely used to replace the covariance matrix in order to estimate the param­
eters of structural equation models when the observed variables are ordinal. 
On the other hand, experience with empirical data (Aish and Joreskog, 1990) 
shows that the assumption of underlying bivariate normality seldom holds. It 
is also believed that this assumption is too strong for most ordinal variables 
used in the social sciences (Quiroga, 1991). Therefore, there is a need to find 
a shape of the underlying variables more plausibly compatible with the real 
data. 
Many studies performed in order to analyse the distributions of underlying 
variables showed that asymmetric distributions are very frequent. Muthen 
(1984) proved that the distributions of underlying variables can be highly 
skewed, causing lack of convergence and/or negative standard errors when 
estimating structural equation model parameters. Moreover, Muthen and Ka­
plan (1985) noticed that the presence of asymmetric latent distributions can 
bias the results of chi square tests used to assess the goodness of fit of struc­
tural equation models. The former studies suggest a need to find a distribution 
that takes into account the potential asymmetry of the underlying variables. 
In this paper a new polychoric correlation coefficient is proposed, based on 
the hypothesis that underlying variables have a bivariate skew normal distri­
bution (Roscino, 2005). The bivariate skew normal distribution (Azzalini and 
Dalla Valle, 1996) belongs to a family of distributions which includes the nor­
mal distribution as a special case, but with two extra parameters to regulate 
the skewness. As for the polychoric correlation coefficient, maximum likeli­
hood was used in order to estimate the new polychoric correlation coefficient 
under the assumption of underlying skew normally distributed variables. A 
simulation study was then carried out in order to compare the performance of 
the new coefficient with that of the original polychoric correlation coefficient. 
In the first section of this paper, the generalised polychoric correlation coef­
ficient is defined and estimated. In the second section the simulation study 
is presented and in the third section the results of the simulation study are 
shown and the efficacy of the new polychoric correlation coefficient is dis­
cussed. 
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2 An Extension of the Polychoric Correlation 
Coefficient 

The polychoric correlation coefficient (Olsonn, 1979) is based on the assump­
tion that underlying a pair of ordinal variables there is a couple of continuous 
latent variables which have a bivariate normal distribution. Ordinal variables 
X and F , with / and J categories each, are thus assumed to be related to 
underlying continuous variables Zi and Z2 by 

( X = i if ai-i < Zi < a ,̂ i = 1 ,2 , . . . , / . . 
\Y = j if 6 , - i < Z 2 < 6 „ j = l , 2 , . . . , J ^ > 

where Zi and Z2 have a bivariate normal distribution with correlation coeffi­
cient p and Gi and bj are referred to as thresholds. Measuring the polychoric 
correlation means estimating the product moment correlation p between un­
derlying normal variables. This correlation is estimated by the maximum 
likelihood method, assuming a multinomial distribution of the cell frequen­
cies in the contingency table. If n^j is the number of observations in cell (i, j ) , 
and K is a constant, the likelihood of the sample is given by 

where 

Pij = ^ 2 ^ , bj) - ^2{ai-i,bj) - ^ 2 ^ , ^ j - i ) + ^ 2 ^ - 1 , ^ j - i ) (3) 

and ^2 is the bivariate normal distribution function with unknown correlation 
coefficient p. The estimator of the polychoric correlation coefficient between 
variables X and Y corresponds to the value of p which maximizes equation 2, 
where the choice of the number of categories / and J has a crucial influence 
on the dimensionality of the likelihood function. 
A problem with the polychoric correlation coefficient concerns the robust­
ness of the method to departures from symmetric distributional assumptions. 
Quiroga (1991) carried out a Monte Carlo study in order to analyze the effects 
of the departure from the normal assumption on the estimation of the poly­
choric correlation coefficient. The author simulated samples from underlying 
distributions affected by asymmetry and showed that the polychoric corre­
lation underestimates the association between ordinal variables, particularly 
when the sample size is large and the categories are few. Such results reveal 
that there could be an advantage in considering a latent distribution more 
compatible with real data. As discussed in the Introduction, the underlying 
variables are often asymmetric (Muthen, 1984), therefore the bivariate skew 
normal distribution was chosen. 
A random variable Z = (^1,^2) is said to be distributed according to a 
bivariate skew normal SN{ai^a2^oo) if its density function is given by 

9{zi,Z2) = 2(j){zi,Z2; u;)^{aizi + ^2^2), (4) 
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where (/){'] co) is the bivariate normal distribution with nuh mean, unit vari­
ance and correlation co and <P{') is the univariate standard normal distribution 
function. Skewness ai and a2 can vary in (—cxo, cxo) and imply bivariate nor­
mality when they are both null. The correlation coefficient associated to the 
bivariate skew normal distribution is given by: 

cj - 27r~Mi(52 . . 
^^"^ ~ {(1 - 2n-^6l){l - 2^-i(52)}i/2 ' ^̂ ^ 

where Si and S2 are linked to ai a2 and co by expressions: 

61 — 62OJ 
ai {(1 - cj2)(l -cj^-6f-6^^ 26i62Cj)y^ 2 

_ h - Siuj 
""' " { (1 - CJ2)(1 - CJ2 - ^2 _ ^2 ^ 26i620j)y/^ ' ^ ^ 

with Si and S2 in [—1,1]. 
Under the new assumption, the joint distribution of the underlying variables 
Zi and Z2 is bivariate skew normal, as given in (4). Thus the product moment 
correlation of Zi and Z2, psN estimates the polychoric correlation coefficient 
between X and Y. 
As for the original polychoric correlation coefficient, the new coefficient is 
estimated by maximization of the log-likelihood function L (see 2) with re­
spect to the thresholds, the skewness and the correlation parameters, where 
the new expression of the probability Pij in the likelihood of the sample is 
equal to: 

Pij = P[X = iAY =j]=2 / (l){zi,Z2, Q)^{aiZi^a2Z2)dzidz2. (7) 

In order to work with standardized parameters, a different parametrization 
of the skew normal distribution was considered (Azzalini and Dalla Valle, 
1996). The correlation parameter uo was replaced by V̂ , where 

^ = {uj-5i52)[{l-5i){l-52)]-^^^ (8) 

and the skewness parameters ceiand a2 were replaced by 5i and 82 (see 6). 
The function sn.polychor (Roscino, 2005) was written in R to perform the 
maximization of the log-likelihood function using a numerical optimization 
method, according to Nelder and Mead (1965). This method works reasonably 
well for non-differentiable functions as it uses only function values and does 
not require to evaluate the gradient of the log-likelihood. 
The function sn.polychor ffist computes the maximum likelihood estimates 
of V̂ , 5i and 82 and their standard errors. Then, after replacing V̂ , 5i and 82 
with their estimated values in 8, it calculates uo and ^SN (see 5). 
The function sn. polychor is available on request by emailing the first author. 
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3 The Simulation Study 

The new polychoric correlation coefficient ^SN was calculated for 360 samples 
from simulated bivariate populations differing in the number of ordinal cat­
egories, correlation and skewness parameters of the underlying distributions, 
as shown in Table 1. One sample was considered for each combination of the 
parameters i/j, Si, S2, I, J and n. The sampling distribution of ^SN and p was 
analysed only for the combination {i/j = 0.5, Si = 0.7, S2 = —0.7, / = 3, J = 
3, n = 400) where 100 samples were extracted and means and standard errors 
of As AT, p, ^1, S2 were computed. The analysis of the sampling distributions 
associated with the remaining combinations of parameters is currently being 
undertaken and the results will be presented in the near future. 
The R library MASS was used to produce samples from bivariate normal dis­
tributions, while a new function called sn.simul (Roscino, 2005) was imple­
mented in order to generate samples from bivariate skew normal distributions. 
The generated samples of the underlying variables (Zi, Z2) were grouped ac­
cording to intervals and each interval was associated with a category of the 
corresponding ordinal variable. The values of i/j, Si and S2 were chosen to 

^ 
n 

(/, J) 
\{SuS2)\ 

["03 0 5 0 8 
250 400 600 800 
(2,2) (2,3) (3,3) (3,5) (5,5) 
(0,0) (0,0.7) (0.7,0.7) (0.7,-0.7) (0.4,0.4) (0.4,-0.4) 

Table 1. Parameters of the simulated distributions 

include as many different shapes of the distributions of underlying variables 
as possible. In particular, when Si and S2 are equal to zero, the underlying 
variables have bivariate normal distribution with correlation coefficient equal 
to i/j. For all the other cases, the simulated distributions are bivariate skew 
normals and the associated values of the polychoric correlation coefficient can 
be found in Table 2. 
The R functions sn.polychor and polychor (Johnson, 2004) were used to 

compute ^SN and p respectively. While the output of polychor consists of 
the estimators of psNj cti, bj (for i = 1, . . . , / and j = 1,..., J) with their 
standard errors, the function sn.polychor estimates the additional param­
eters V̂ , Si and S2 and their standard errors, together with psNj cti, bj (for 
i = 1,..., / and j = 1,..., J) and their standard errors. 
The values of ^SN and p were compared with the true value of the polychoric 
correlation coefficient for each of the simulated samples. The performance of 
both estimators with respect to the value of the polychoric correlation coeffi­
cient in the underlying population (as the absolute value of the difference) was 
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(^1,^2) 

(0,0) 
(0, 0.7) 
(0.7, 0.7) 
(0.7, -0.7) 
(0.4, 0.4) 
(0.4, -0.4) 

1 ^ 1 
0.3 0.5 0.8 
0.3 0.5 0.8 

0.2582 0.4304 0.6887 
0.4811 0.6293 0.8517 
-0.0364 0.1118 0.3341 
0.3453 0.5323 0.8129 
0.2158 0.4028 0.6834 

Table 2. Values of psN 

evaluated only for the combination {i/j 
3,n = 400). 

0.5, (5i =0.7,(^2 = -0 .7 ,7 = 3, J 

4 Some Results 

In this section some results of the simulations are summarized. It is clear 
that a complete evaluation of the performance of the estimator would need 
a more extensive simulation study which is currently being undertaken. 
The simulations involved one sample for each combination of parameters and 
showed that ^SN is always closer to the real correlation than p when: 

1. The number of categories of ordinal variables is small, ie. less than or 
equal to 3 (See Figure la, where the solid line represents the real poly-
choric correlation coefficient while the dashed and the dotted lines are 
respectively p and ^SN) or 

2. The sample size is large - 400 units or above, or 
3. The skewness parameters are discordant, that is when they have opposite 

signs (See Figure lb). 

Furthermore, under these conditions the estimators of the skewness parame­
ters are always very close to their values in the population. 
These results are confirmed by the analysis of the sampling distribution of 
^SN for the combination of parameters {i/j = 0.5, (5i = 0.7,(^2 = —0.7,/ = 
3, J = 3,n = 400). The mean and standard deviation of 'psN were equal to 
0.1173 and 0.0072 respectively while the mean and standard deviation of p 
were 0.1003 and 0.0651. The mean of 'psN is closer to p than the mean of p 
(see Table 2) and the standard deviation is lower than the standard deviation 
of p by a factor of almost ten. 
On the other side, the polychoric correlation coefficient is closer to the real 
correlation when: 

1. The sample size is small, or 
2. The number of categories is large. 
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Table 2X2 with n=250,Delta1=0 and Delta2=0.7 Table 3X3 with n=250,Delta1=0.7 and Delta2=-0.7 

Fig. 1. Value of the estimated correlation coefficients for each value of ip. 

For (/, J) = (5,5), the results showed a high degree of variability and were 
therefore of limited use. This case is currently being studied to improve the 
quality of the results. 
When the sample size is small, the poor results of the generalised polychoric 
correlation coefficient could be determined by an irregularity in the likelihood 
function of the bivariate skew normal distribution. Azzalini and Capitanio 
(1999) showed that for small sample sizes, the maximum likelihood estimators 
of the parameters of a skew normal distribution can overestimate their real 
values. This is due to the analytical expression of the likelihood function and 
cannot be modified using a different parametrisation. 
The conclusions of the paper of Joreskog and Sorbon (1988) hold when the 
number of categories of the ordinal variables is large. The authors compared 
six measures of ordinal association and found that the polychoric correlation 
coefficient is more robust to departures from normality in the presence of 
ordinal variables with a large number of categories. 

5 Conclusions 

In this paper we propose a new polychoric correlation coefficient based on 
the assumption that the underlying continuous variables are skew normally 
distributed. By definition, psN is equal to p when the underlying variables 
are normally distributed, but it is more fiexible than p as it takes into account 
the potential skewness of the underlying variables. 
An R function was written in order to compute ^SN and and 360 samples 
were generated with the aim of comparing ^SN and p. 
The examples presented in the simulation study indicates that ^SN is more 
appropriate than p when the sample size is large or the number of categories 
of ordinal variables is small or the skewness parameters have opposite signs. 
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On the other hand, the simulation study has shown tha t some further de­
velopments are needed in particular when the sample sizes are small or the 
number of ordinal categories is large. 
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