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Preface 

This volume contains revised versions of selected papers presented at the 
biennial meeting of the Classification and Data Analysis Group (CLADAG) 
of the Italian Statistical Society, which was held in Parma, June 6-8, 2005. 
Sergio Zani chaired the Scientific Programme Committee and Andrea Cerioli 
chaired the Local Organizing Committee. 

The scientific programme of the conference included 127 papers, 42 in spe­
cialized sessions, 68 in contributed paper sessions and 17 in poster sessions. 
Moreover, it was possible to recruit five notable and internationally renowned 
invited speakers (including the 2004-2005 President of the International Fed­
eration of Classification Societies) for plenary talks on their current research 
work. Among the specialized sessions, two were organized by Wolfgang Gaul 
with five talks by members of the GfKl (German Classification Society), and 
one by Jacqueline J. Meulman (Dutch/Flemish Classification Society). Thus, 
the conference provided a large number of scientists and experts from home 
and abroad with an attractive forum for discussion and mutual exchange of 
knowledge. The topics of all plenary and specialized sessions were chosen to 
fit, in the broadest possible sense, the mission of CLADAG, the aim of which 
is "to further methodological, computational and applied research within the 
fields of Classification, Data Analysis and Multivariate Statistics". 

A peer-review refereeing process led to the selection of 46 extended papers, 
which are contained in this book. The more methodologically oriented papers 
focus on developments in clustering and discrimination, multidimensional 
data analysis, data mining, and robust statistics with a special emphasis on 
the novel Forward Search approach. Many papers also provide significant con­
tributions in a wide range of fields of application. Customer satisfaction and 
service evaluation are two examples of such emerging fields. This suggested 
the presentation of the 46 selected papers in six parts as follows: 

1. CLUSTERING AND DISCRIMINATION 

2. MULTIDIMENSIONAL DATA ANALYSIS AND MULTIVARIATE STATISTICS 

3. ROBUST METHODS AND THE FORWARD SEARCH 

4. DATA MINING METHODS AND SOFTWARE 

5. MULTIVARIATE METHODS FOR CUSTOMER SATISFACTION AND SERVICE 

EVALUATION 

6. MULTIVARIATE METHODS IN APPLIED SCIENCE 

We wish to express our gratitude to the other members of the Scientific 
Programme Committee 

B. Chiandotto, N.C. Lauro, P. Monari, A. Montanari, C. Provasi, G. 
Vittadini 
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and to the specialized session organizers 

F. Camillo, M. Chiodi, W. Gaul, S. Ingrassia, J.J. Meulman 

for their abihty to attract interesting contributions, and to the authors, whose 
enthusiastic participation made the meeting possible. We would also like to 
extend our thanks to the chairpersons and discussants of the sessions for their 
stimulating comments and suggestions. We are very grateful to the referees 
for their careful reviews of all submitted papers and for the time spent in this 
professional activity. 

We gratefully acknowledge the University of Parma and its Department 
of Economics for financial support and hospitality. We are also indebted to 
Istat - Istituto Nazionale di Statistica and SAS for their support. 

We thank all the members of the Local Organizing Committee 

A. Corhellini, G. Gozzi, L. Grossi, F. Laurini, M.A. Milioli, G. Morelli, I. 
Morlini 

for their excellent work in managing the organization of the CLADAG-2005 
conference. Special thanks go to Prof. Isabella Morlini, for her skilful accom­
plishment of the duties of Scientific Secretary of CLADAG-2005, and to Dr. 
Fabrizio Laurini for his assistance in producing this volume. 

Finally, we would like to thank Dr. Martina Bihn of Springer-Verlag, Hei­
delberg, for her support and dedication to the production of this volume. 

Parma and Rome, 
June 2006 

Sergio Zani 
Andrea Cerioli 

Marco Riani 
Maurizio Vichi 
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Part I 

Clustering and Discrimination 



Genetic Algorithms-based Approaches 
for Clustering Time Series 

Roberto Baragona^ and Salvatore Vitrano^ 

Department of Sociology and Communication, 
University of Rome "La Sapienza", Italy 
roberto.baragona@uniromal .it 
Statistical Office, 
Ministry for Cultural Heritage, Italy 
svitrano@beniculturali.it 

Abs t r ac t . Cluster analysis is to be included among the favorite data mining tech­
niques. Cluster analysis of time series has received great attention only recently 
mainly because of the several difficult issues involved. Among several available 
methods, genetic algorithms proved to be able to handle efficiently this topic. Sev­
eral partitions are considered and iteratively selected according to some adequacy 
criterion. In this artificial "struggle for survival" partitions are allowed to interact 
and mutate to improve and produce a "high quality" solution. Given a set of time 
series two genetic algorithms are considered for clustering (the number of clusters 
is assumed unknown). Both algorithms require a model to be fitted to each time 
series to obtain model parameters and residuals. These methods are applied to a 
real data set concerned with the visitors flow recorded, in state owned museums 
with paid admission, in the Lazio region of Italy. 

1 Introduction 

Clustering time series, tha t is division of time series into homogeneous sub­
groups, is composed of several steps. First, pre-processing is almost always 
needed for removing or softening unwanted characteristics tha t may bias the 
analysis (for instance, outliers, missing observations and Easter and trading 
day effects). Moreover, adjustment for seasonality and trend could possibly 
be required to allow some methods to run properly. Among many available 
methods X-12 ARIMA (Findley et al. (1998)) and Tramo-Seats (Gomez and 
Maravall (1996)) are currently adopted by Statistical Authorities in many 
Countries. They are well founded on theoretical grounds and supported by 
computer programs tha t make easier their application. 

Then, the extraction of measurements may take place so tha t either the 
usual matr ix units (time series) per variables (the measurements) or a matr ix 
of distances between each pair of t ime series is available. Liao (2005) in a 
comprehensive survey distinguishes whether methods are based on the raw 
da ta directly, on features extracted from the da ta or on models built on the 
data . 
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Third step, choosing the cluster method, is closely related to the preceding 
step as the method largely depends on the available data structure. Four 
main classes may be distinguished, that is partitioning methods, hierarchical 
methods, density-based clustering and grid-based clustering (see, for instance, 
Berkhin (2002) for a comprehensive survey). 

The fourth step is concerned with the choice of the algorithm. As cluster­
ing problems arise in so many fields (these range from sociology and psy­
chology to commerce, biology and computer science) the implementation 
and design of algorithms continue to be the subject of active research. Over 
the last two decades a new class of algorithms has been developed, namely 
the optimization heuristics. Examples are evolutionary algorithms (simulated 
annealing, threshold accepting), neural networks, genetic algorithms, tabu 
search, ant colony optimization (see, for instance. Winker and Gilli (2004)). 
Optimization heuristics may cope with problems of high complexity whose 
potential solutions are a large discrete set. This is the case of the admissible 
partitions of a set of time series. In addition, assumptions on the form of 
the final partition (either hard or fuzzy assignments), for instance, or on the 
number of clusters (either known or unknown) are easily handled by optimiza­
tion heuristics and require only slight modifications of the basic algorithm. 
Clustering time series by meta heuristic methods was investigated by Barag­
ona (2001) while Pattarin et al. (2004) examined genetic algorithms-based 
approaches. 

In this paper genetic algorithms (GAs) are used for implementing two 
model-based-methods, the first one based on the cross correlations (Zani 
(1983)), the second one based on the autoregressive distance (Piccolo (1990)). 
Other optimization heuristics may be of use, but GAs seem to ensure most 
fiexibility and vast choice to meet the special requirements involved in clus­
tering time series. Both algorithms are tested on the data set of the visitors 
of museums, monuments and archaeological sites in the Lazio region of Italy. 

The rest of the paper is organized as follows. The next Section includes 
a description of the two clustering time series methods and the GAs are 
described. Results of the application to the real data set are displayed in 
Section 3. Section 4 concludes. 

2 Clustering Methods and Genetic Algorithms 

Given a set of time series two methods are considered for clustering. Both 
methods require a model to be fitted to each time series to obtain model 
parameters and residuals. The number of clusters g is assumed unknown. 
The fitted models are autoregressive integrated moving-average (ARIMA) 
models (Box et al. (1994)). The first method is aimed at grouping together 
time series according to the residuals cross correlations. The second method is 
aimed at grouping together time series that share a similar model's structure. 
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Let the time series {xt} be generated by the ARlMA{p^d^q){P^ D^Q)s 
model 

<P{B)^{B')V'^Vixt = e{B)e{B')at, (1) 

where {at} is a white noise process with finite variance a'^. The polynomials 
in (1) are defined 

^{B)^{B') = (1 - (^lE - . . . - ^^B^){1 - ^iB' - . . . - ^pB""') (2) 

0{B)O{B') = {l-OiB-...- eqB^){l - OiB' - . . . - OQB^'), (3) 

and have not common factors. B is the back-shift operator, that is B^Xt=Xt-k' 
Model (1) is stationary if the polynomial (2) has all roots outside the unit 
circle and is invertible if the polynomial (3) has all roots outside the unit 
circle. Under this latter assumption, the time series {xt} admits the infinite 
autoregressive representation Xt = EnkXt-k- The coefficients Hk are called 
TT-weights. 

For the first method a cluster is required to satisfy the following condition 
(Zani (1983)). Given a set of k time series { x i , . . . , x/^}, x^ = (x^^i,..., Xi^n)^ 
i = 1 , . . . , /c, a subset C which includes k' series {k' < k) is said to form a 
group if, for each of the k\k^ — l) /2 residuals cross-correlations Pij{r), we 
have 

\pijiT)\>cia) (4) 

for at least a lag r between —m and m, and i^jeC^iy^ j . A positive integer 
m has to be pre-specified which denotes the maximum lag. If all time series 
have n as a common number of observations, then choosing the significance 
level a = 0.05, say, gives the figure c{a) = 1 . 9 6 / Y ^ in (4). The previously 
stated definition does not exclude that a time series may belong to more 
than a single group. Then there are possibly several allowable partitions to 
consider, and their number may be very large. Meta heuristic methods, in 
particular GAs, were proposed by Baragona (2001) to find the best feasible 
partition. As an overall objective function a modification of the k-min cluster 
criterion (Sahni and Gonzalez (1976)) was assumed 

/+(Ci,C2,...,C,;5) = £ J2 <i' (5) 

where (5) has to be maximized and 

^tj =^^^{\Phji^)\}^ ^ = - m , . . . , m . (6) 

When using (5), it is crucial that each cluster be a group, according to (4), 
for, otherwise, any algorithm, unless prematurely ended, will put together all 
time series into a single cluster. 

The second method is new and has been developed along the same guide­
lines, except that the autoregressive distance proposed by Piccolo (1990) is 
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adopted instead of the cross-correlations-based dissimilarity index. Each time 
series {xt, t = 1, 2 , . . . n} is associated to the first m TT-weights of the autore-
gressive representation of the ARIMA model. The first m 7r-weights may be 
computed from the coefficients of the ARIMA model (1) using the equations 
given in Box et al. (1994). The positive integer m is a truncation point that 
has to be pre-specified. For each time series there is a set of measurements 
^v,i^^v,2, • • • ^v.rmV = 1, 2 , . . . /c that allows clusters to be determined. The 
TT-weights define the autoregressive distance 

\ h=l 

The distributional properties of the autoregressive distance (7) were studied 
by Piccolo (1990) under the assumption that the time series are uncorrelated. 
The presence of correlation between time series was shown (Corduas (1992)) 
to modify the distribution of (7). In Corduas (2000) an approximation is 
provided that allows a formal test to be established. The squared autoregres­
sive distance df is approximately distributed as a random variable axl + b 
where xl is the chi-squared random variable with u degrees of freedom. The 
constants a, b and u depend on the common (under the null hypothesis that 
the time series {xi^t} and {xj^t} are generated by the same ARIMA model) 
variance-covariance matrix of the estimated TT-weights. The condition for a 
set of time series to form a group has to be re-formulated in terms of the ap­
proximate critical values that may be computed for the squared distance (7). 
Two time series are allowed to be included in the same cluster if their squared 
distance is less than axUo^) + b, where xH^) is the (1 — ce)-quantile of the 
chi-squared distribution with u degrees of freedom and a is the significance 
level. 

It may be argued, extending the results reported by Corduas (1992), that 
if the cross correlations pij are close to unity the two methods are likely 
to yield similar results. Note that Tong and Dabas (1990) include the index 
(6), with r = 0, among the measures of dissimilarity for a set of time series 
models though no threshold-based constraints were introduced. 

GAs were introduced by Holland (1975) to provide evolutionary models 
for the adaptation process to the environment of individuals belonging to a 
given population. If the evolution of the best fit individual is recorded, GAs 
may be viewed as optimization tools. In this case, a numerical measure is 
used to evaluate the adaptation to the environment. This measure is called 
fitness function and it is the objective function which has to be maximized. 
The fitness function is not required to possess special mathematical prop­
erties but to be positive and non-decreasing function of the adaptation to 
the environment. Each potential solution to the optimization problem has to 
be coded as a string of £ characters, for instance a binary string of length £ 
(this string is usually called chromosome). There is no need to enumerate all 
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solutions, which has to be considered fairly impossible, but only a set of rules 
by which any string may be decoded in a meaningful way and assigned a pos­
itive real number. In practice GAs are useful because they allow very large 
spaces to be searched for solutions and very mild assumptions are required 
for the objective function. For a detailed description of GAs see, for instance, 
Goldberg (1989) and Haupt and Haupt (2004). Convergence properties have 
been discussed by Reeves and Rowe (2003), among others. 

GAs start with an initial population of candidate solutions (individu­
als) that are said to form a population though they are actually a sample 
from the set of potential solutions. The population evolves through a itera­
tive procedure. Each iteration usually includes three steps, that is selection, 
crossover and mutation. Selection is aimed at choosing the individuals with 
high fitness. Selection is done with replacement, so that many copies of the 
same individual may enter the next generation. The chromosomes of the se­
lected individuals are possibly combined, by means of the crossover operator, 
to produce new individuals. Mutation of some characters within the genetic 
pool may take place with usually small probability, 0.001 for instance. The 
generational gap is the fraction of the old population that is replaced by new 
individuals. If the new population entirely replaces the past one the gener­
ational gap is equal to unity. Iterations continue either after a pre-specified 
number of generations or when a stopping criterion is met. Often the elitist 
strategy is used, that is the best fit individual found in a iteration is inserted 
in the next generation unless a better individual is found (see, for instance, 
Jennison and Sheehan (1995)). 

Both methods are implemented by GAs with permutation encoding, often 
called ordered GAs (Jones and Beltramo (1991)). Time series are assigned la­
bels 1, 2 , . . . /c, and several random permutations are considered. For each one, 
a random number of cluster g is generated and the g time series at the top 
of the list are assumed as cluster centers. Then, aggregation of the remaining 
time series to the nearest center is performed. To improve the solutions, the 
permutations are evolved through some iterations by the GAs operators selec­
tion, crossover and mutation. These have to be specially designed according 
to chosen encoding method and distance measure. The ordered GAs proved 
to be very effective in practice as far as clustering procedures are concerned. 

3 Application to Real Data 

The number of visitors to cultural sites and state owned museums (according 
to the definition given by the International Council of Museums (ICOM)), 
with admission fees, in the Lazio region of Italy is collected monthly by the 
Statistical Office at the Ministry for Cultural Heritage. We considered 37 time 
series from January 1996 to December 2003. Adjustment for outliers and miss­
ing data, and ARIMA model (1) building were performed by the computer 
program Tramo-Seats (Gomez and Maravall (1996)). This program may be 
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downloaded from the web site http://www.istat.it. Ah series were reduced 
to have common number of observations 78. Two time series were discarded 
because the sites happened to be closed many times during the observation 
period. For all remaining 35 time series the ARIMA coefficients were used to 
compute the 7r-weights. Also, residuals from ARIMA models were recorded 
and the cross correlations were computed. All estimated ARIMA models used 
for cluster analysis passed the Ljung-Box test (based on the ffist 24 residuals 
autocorrelations) at the 5% significance level (at the 1% significance level for 
series 10). 

The first method groups series with cross correlations absolute values 
greater than 0.2219 (1.96 divided by the square root of the number of obser­
vations). The clusters that have been formed are reported in Table 1 (series 
are numbered from 1 to 35). 

Cluster 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

Time series 
2 5 10 11 14 15 21 22 
19 23 24 25 26 29 32 35 

6 7 27 30 31 
8 9 16 17 18 20 
4 12 13 28 33 

1 34 
3 

Table 1. Clusters of cultural sites visitors in Lazio, Italy (first method) 

The second method groups the time series according to the TT-weights. 
Time series may be grouped together only if their pairwise squared autore-
gressive distance is less than a threshold whose values for this data set have 
been found to vary in the interval [0.12, 0.17] (for this method thresholds for 
acceptance vary through time series pairs). The two methods are likely to 
yield similar results if the cross correlations are large. This is not the present 
case, however, as most cross correlations are less than 0.3, some are between 
0.3 and 0.5 and only one cross correlation exceeds 0.5 (it is about 0.6). We 
obtained 9 clusters that are reported in Table 2. First and second clusters 
contain 23 out of 35 series. Clusters 3 and 6 are very small. The first one 
includes series that are similar to series in clusters 1 and 2, while the second 
one contains series that are considerably different. As far as time series 26, 
34, 12, 17 and 23 are concerned, each one forms a single cluster. 

The first method seems to cluster together time series according to spa­
tial and typological closeness. Cluster 1 includes museums located in Rome. 
Cluster 2 include archaeological areas in Rome too. Cluster 3 includes ar­
chaeological areas as well, but out of Rome. The sites that belong to the 
historic / artistic local authority are in cluster 4. Evidence of typological 
clustering is provided by cluster 5, which includes four sites mostly archae-
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Cluster 

(1) 
(2) 
(3) 

(4), (5) 
(6) 

(7), (8), (9) 

Time series 
3 4 6 7 11 13 15 28 30 32 35 

1 2 9 10 16 18 19 20 21 24 25 33 
5 27 31 
26, 34 

8 14 22 29 
12, 17, 23 

Table 2. Clusters of cultural sites visitors in Lazio, Italy (second method) 

ological museums. The second method seems to group time series according 
to sites easy to access as perceived by visitors. This is a new interesting issue 
that emerges from cluster analysis. Foreign tourists, for instance, are unlikely 
to visit remote sites while it is easy for a school to visit sites nearby. Also, 
scholars may consider important to visit sites though difficult to access. These 
circumstances produce different time series dynamic behaviors. The first clus­
ter includes most archaeological sites out of Rome that are likely to attract 
mostly local public. Cluster 3 is very similar. Cluster 2 includes many muse­
ums in Rome that foreign tourists, for instance, hardly miss to visit. Clusters 
with single time series are explained by some special characteristics of the 
site. Cluster 4, for example, includes only Villa d'Este - Tivoli. Unlike most 
sites out of Rome, this site attracts a rather regular visitors fiow. Another 
example is cluster 5 that includes the archaeological tour: Colosseum, Pala­
tine Hill and Forum. This site too is peculiar as it sells combined tickets, that 
is tickets that allow the tourist to visit these and other sites. 

4 Concluding Remarks 

Genetic algorithms were designed to implement two methods for clustering 
time series. The first one is based on the residuals cross correlations, the 
second one on the time series models structures. As an example, the two 
methods are applied for clustering the time series of the visitors to the mu­
seums, monuments and archaeological areas of the Lazio region of Italy. The 
first method seems to group time series according to the spatial locations of 
the sites. The second method seems to group the time series together accord­
ing to both visitors typology and sites characteristics. Cross correlations are 
rather small (though larger than the critical values) and the two methods 
are expected to produce different results in this case. Performance of genetic 
algorithms may be considered quite good. Computations were fast and the 
results seem to be reliable and accurate. 
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Abs t r ac t . In this short paper we shall consider the Kernel Fisher Discriminant 
Analysis (KFDA) and extend the idea of Linear Discriminant Analysis (LDA) to 
nonlinear feature space. We shall present a new method of choosing the optimal 
kernel function and its effect on the KDA classifier using information-theoretic 
complexity measure. 

1 Introduction and the Problem 

Discriminant analysis (DA) is one of the popular multivariate methods which 
has a long history. DA is a classification problem tha t consists of assigning 
or classifying an individual or object to one of several known or unknown 
alternative classes (or groups) on the basis of many measurements on the 
individuals, objects, or cases. The goal of discriminant analysis is: given a 
da ta set with two or more than two classes (or groups), say, find the best 
feature or feature set either linear or non-linear to discriminate between the 
classes and maximize average class separation. Equivalently, we a t tempt to 
minimize the probability of missclassification. 

Recently in statistical da ta mining and knowledge discovery, kernel-based 
methods have a t t racted at tention from many researchers. As a result, many 
kernel-based methods have been developed. They have become popular tools 
for classification, clustering, and regression analysis in the machine learn­
ing community since the introduction of support vector machines (SVMs) 
during the early 1990s. The popularity of the method stems from the fact 
tha t kernel methods almost always outperform traditional multivariate sta­
tistical techniques. Now, we can carry out kernel based approaches to all 
the classical multivariate procedures. Examples of these include, kernel prin­
cipal component analysis (KPCA), kernel logistic regression (KLR), kernel 
Fisher discriminant analysis (KFDA), or in short kernel discriminant analysis 
(KDA), kernel canonical correlations (KCC), etc., to mention a few. These 
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methods are characterized by transformation of the input data to a high di­
mensional feature space, fohowed by apphcation of the technique in question 
to the transformed data. 

In this paper we shah consider Kernel Fisher Discriminant Analysis (KFDA) 
and extend the idea of Linear Discriminant Analysis (LDA) to nonlinear fea­
ture space. We shall present a new method of choosing the optimal kernel 
function and explore its effect on the KDA classifier. In general the problem 
of which is the most appropriate kernel for a particular real application or 
problem is still an open problem in the literature. In this short paper, we 
will introduce a new special form of the information-theoretic measure of 
complexity of Bozdogan (1988, 1990, 1994, 2000, 2004) to choose the optimal 
kernel function. 

We will illustrate our result using a toy example on a benchmark data 
set of Ripley (1994) and discuss future work on model selection in kernel 
methods. 

2 Kernel Discriminant Analysis (KDA) 

Reproducing Kernel Hilhert Space (RKHS) were developed by Aronszajn in 
1950. A RKHS is defined by a positive definite kernel function 

K:1V^ xlV^ ^ n (1) 

on pairs of points in data space. 
If these kernel functions satisfy the Mercer's condition (Mercer, 1909, 

Cristianini and Shawe-Taylor, 2000), they correspond to non-linearly map­
ping the data to a higher dimensional feature space JF by a map 

^:1V^ ^T (2) 

and taking the dot product in this space (Vapnik, 1995): 

K{x,y)=^{x)-^{y). (3) 

This means that any linear algorithm in which the data only appears in 
the form of dot products < x^,Xj > can be made nonlinear by replacing 
the dot product by the kernel function K(x^,Xj) and doing all the other 
calculations as before. In other words, each data point is mapped nonlinearly 
to a higher dimensional feature space. 

As is well-known the Fisher Linear Discriminant analysis (FLDA) or in 
short LDA, is one of the most frequently used classification techniques. In 
order to make LDA applicable to nonlinear data in a feature space induced by 
a Mercer kernel, we need to develop and utilize kernel methods also referred to 
''kernel machines". This approach gives rise to a nonlinear pattern recognition 
method which has very impressive performance on real data sets. 
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Assume that we are given the input data set TXY = {(^i, l/i), •••, (^n, Vn)} 
of training vectors x^ G x ^ ^ ^ ^^d the corresponding values of yi G 
3̂  ={1,2}. The yi are sets of indices of training vectors belonging to the 
first y = 1 and the second y = 2 class, respectively. The class separability in 
a direction of the weights a= [cei,..., an\ in the feature space T is defined 
such that the Fisher criteria: 

^ , , a'S%>a 
^ - ( - ) = ^ ' (̂ ) 

is maximized, where /S^, S^ are respectively the between and within covari-
ance matrices in the future space. That is, 

St = (mf - mf )(mf - mtf (5) 

2 

k=i 

with 
K = [/c(x^,x^-)](nxn),and 

rik .^j 

where Kj is the j-th column of K and Ik the index set of group k. 
The kernel discriminant function f{x) of the binary classifier 

a(x) - / 1 /^^ / (^) ^ 0' (7) 

can be written as 

= < ce ,̂ />:(x) > ^by, y ey. 

With ce being solved from (4), the intercept (or the bias) b of the discrimi­
nant hyperplane (8) is determined by forcing the hyperplane to pass through 
the mid point of the two group means. That is, 

5=_«'(^i±M. (9) 
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3 Regularized Kernel Discriminant Analysis (RKDA) 

Without loss of generality, dropping the superscript of S^ and S^, the coef­
ficients a are given by the leading eigenvector of S^SB-

Since the matrix Sw is at most of rank n — 1, it is not strictly positive 
and can even fail to be positive semi-definite due to numerical problems. 

Therefore, we regularize it by adding a penalty function / i / to overcome 
the numerical problem caused by singular within-group covariance Sw- In 
this case, the criterion 

Jpiw) = ——- - ^ (10) 

is maximized, where the diagonal matrix jil in the denominator of the crite­
rion (10) serves as the regularization term. If /i is sufficiently large, then Sw 
is numerically more stable and becomes positive definite. Another possible 
regularization would be to add a multiple of the kernel matrix K to Sw as 
suggested by Mika (2002, p. 46). That is, 

Sw{lA = Sw^lJiK, fi> 0, (11) 

but this does not work well in practice. 

If we let the covariance matrix IJw 

Uw = —Sw, (12) 
n 

then IJw degenerates when the data dimension p increases. In cases when 
the number of variables p is much larger than the number of observations n, 
and in general, it makes sense to utilize improved methods of estimating the 
covariance matrix Uw- We call these estimators smoothed, robust, or stoyki 
covariance estimators. These are given as follows. 

• The stipulated diagonal covariance estimator (SDE): 

^SDE = (1 - 7r)i:w + 7rDiag{IJw), (13) 

where TT = p{p — 1) [2n (trR~^ — p)] and where 

R = {Diag{Ew))-^^^Sw{Diag{Ew))-^^^ (14) 

is the correlation matrix. 
The SDE estimator is due to Shurygin (1983). SDE avoids scale depen­

dence of the units of measurement of the variables. 

• The convex sum covariance estimator (CSE): 
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Based on the quadratic loss function used by Press (1975), Chen (1976) 
proposed a convex sum covariance matrix estimator (CSE) given by 

ScSE -Sw + (1 
n-\-m n + m 

where Dw = {-trSiv)1p- For p>2,mis chosen to be 

2 [ p ( l + / 3 ) - 2 ] 

)Dw, 

where 

0 < m < 

P 

P-P 

(15) 

(16) 

(17) 

This estimator improves upon Ew by shrinking ah the estimated eigenval­
ues of Ew toward their common mean. Note that there are other smoothed 
covariance estimators. For space considerations, we wih not discuss them in 
this paper. For more on these, see Bozdogan (2006). 

4 Choice of Kernel Functions 

One of the important advantages of kernel methods, including KDA, is that 
the optimal model parameters are given by the solution of a convex optimiza­
tion problem with a single, global optimum. However, optimal generalization 
still depends on the selection of a suitable kernel function and the values of 
regularization and kernel parameters. See, e.g., Cawley and Talbot (2003, p. 

2). 
There are many kernel functions to choose from. The most common kernel 

functions are Gaussian RBF {c e1Z)^ polynomial {d e Af^c e1Z)^ sigmodial 
(a, h G 7^), PE kernel {r G IZ, f3 G ^-\-)^ Cauchy kernel (c G 7^+), and inverse 
multi-quadric (c G 7^+) kernel functions are among the most common ones. 

The main idea is that kernel functions enables us to work in the feature 
space without having to map the data into it. 

Name of Kernel 

Gaussian RBF 
Polynomial 

Power Exponential (PE) 
Hyperbolic tangent or Sigmoidal 
Cauchy 

Inverse multi-quadric 

K{xi,Xj) = 

e x p [ - ^ ^ ^ ] 
{{x,.xj)^c)^ 
e x p [ - ( M ^ ) / 3 ] 

tanh[a(x^ • x^) + b] 
1 

| | x i -x^- | | 2 

1 
Vl|x.-X,||2+c2 
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There are many other kernel functions, such as sphne functions that are 
used for support vector machines. In addition, many kernels have been devel­
oped for specific applications. However, in general it is very difficult to decide 
which kernel function is best suited for a particular application. This is an 
open problem among others. 

5 Information Complexity 

The choice of the best mapping function is not so simple and automatic. 
Presently a valid method for selecting the appropriate kernel function does 
not exist in the literature. Here, we propose to use the information complexity 
criterion of Bozdogan (1988, 1990, 1994, 2000, 2004) as our model selection 
index as well as our criterion for feature variable selection. 

Since in the kernel methods make use of orthogonal and highly sparse 
matrices, in this paper we propose the modified entropic complexity of a 
covariance matrix. 

Under a multivariate normal model, the maximal information-based com­
plexity of a covariance matrix IJ is defined by 

Ci(r) = | l n ( ^ ) - i l n | ^ | (18) 

=4in(ri(^) 

= ^ n ( ^ ) 
2 ^ / 

where Â  = l/s Y^ Xj = tr{IJ)/s is the arithmetic mean of the eigenvalues 

| l / 5 - / - \ / 
(or singular values) of i7,and U '̂ ^ = n '̂ j is ^^^ geometric 

Vi=i / 
mean of the eigenvalues of i7, and s = rank{E). 

• Note that Ci{E) = 0 only when all \j = A .̂ 

• Ci{-) is scale invariant with Ci{cE) = (7i(i7), c > 0. See, Bozdogan 
(1990). 

Under the orthogonal transformation T, the maximal complexity in (18) 
can be written as 
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CUIJ) =-lJ2^n{sX,) (19) 

j = i 

0 < Â  < - , j = l , 2 , . . . , 5 

j = i 

where O (•) denotes the order of the argument and the Taylor series expansion 
of ln(5Aj) used in (19) is about the neighborhood of the point 

Ai = A2 A. (20) 

At the point of eigenvalue equality C^(-) = 0 with C^(-) > 0 otherwise. 
See, Morgera (1985, p.610). 

We note that (19) is only one possible measure of covariance complexity. 
Any convex function (^(•), like — In(-), whose second derivative exists and is 
positive, may be used as a complexity measure, i.e., 

c;{-) = cJ2m^j)-<Pih (21) 

leads to an entire family of complexity measures, where c is a constant. 
With this in mind, van Emden (1971, p. 63, eq. 311) suggested a second 

measure of complexity of a covariance matrix based on the Frobenius norm 
given by 

CF{^) = - E 
trU 

(22) 

where E tr{IJ'IJ)^ the square of the Frobenius norm of IJ. In terms of 

the eigenvalues (or singular values), CF{^) reduces to 

CF{E) = -J2{\, Kf (23) 
i = i 

Note that CF{-) > 0 with Cp{-) = 0 only when all \j = A. Hence CF{-) mea­
sures the absolute variation in the eigenvalues and it is translation invariant. 
That is, CpiS + kl)) = CF{S). 

Since we can approximate Ci {S) as 

î(̂ ) = i B 
A , - A , 

(24) 

i = i 
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in terms of the eigenvalues (or singular values) Aj, j = 1 ,2 , . . . , 5, we can 

relate Ci{IJ) to the Frobenius norm characterization of complexity CF{IJ) of 

IJ (Bozdogan, 1988) by introducing CIF{IJ) given by 

II ^ l|2 / ^ \ 2 

c.Hi:) = - ^ ^ ^ = - ^ S ^ i ^ (25) 

4 rtr{E)-.2 

= 1 ^ 2 Z^(-^i ~ ^ o ) ^ 

4A, ,=1 

We note tha t CIF{') is a second order equivalent measure of complexity 
to the original Ci(-) measure. Also, we note that_Cii?(-) is scale-invariant and 
CIF{') > 0 with CIF{') = 0 only when all Xj = A.Also, CIF{') measures the 
relative variation in the eigenvalues. 

When it is assumed tha t the covariances are common between the classes 
or groups, we define ICOMP in KDA given by 

ICOMP{Ew) = nplog27r + n log |Z'vi/1 + np + 2CiF{f^w) (26) 

np log 27r + n log | — S^ | + np + 2 
4A, ,=1 

In our numerical results, however, it suffices just to use and score CIF{^W) 
by itself to choose the optimal kernel function in KDA in the next section. 
In the li terature cross-validation based criteria have been used. These type 
of criteria due to the high dimensionality of the feature space are too time-
consuming. Our approach shortens the model selection time. 

6 A Numerical Example 

In this section we illustrate our results using the binary classifier trained by 
the KDA on Ripley's (1994) two dimensional toy da ta of Utm = 250 training 
observations. Then, the classifier tha t is found is evaluated on the testing da ta 
of Ripley which has ritest = 1000 observations using support vector classifier 
(svmclass) to classify the input vector x. We obtain both the training and 
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test error. Our results are based on the modified version of the STPRTool 
Matlab Modules of Franc and Hlavac (2004). In our computation, we use 
svds function in Matlab to find the singular values of the large sparse within-
group covariance matrix Ew We experimented with our results by retaining 
/c = 4, and 15 largest singular values of Ew and scored the information-
theoretic complexity CIF{^W) for each of the alternative kernel functions. 
The results from this experiment are summarized in Table 1 below. We report 
the results for /c = 4 largest singular values only. The results up to the 15 
largest singular values of Ew are the same in terms of the ordering of the 
complexity CIF{IJW)-

Kernel Function 

Linear 
RBF 
Polynomial [2 1] 
Sigmoid [2 1] 

Training Error 

17.20% 
13.60% 
15.60% 
12.00% 

Test Error 

14.20% 
9.60% 
9.20% 
9.00% 

CIF{^W) 

5.0276 
4.5207 
4.6401 
4.0747* 

Table 1. Results KDA using different kernels functions and SVM Classifier. 

Note that the regularization parameter /i was set to a small value 0.001, 
and the regularization constant C was set to 10. Looking at the above table 
we see that sigmoid kernel function seems to be a better choice based on the 
minimum value of the complexity measure CIF{^W) for this data set with 
better training and test error percentages. The visualization of the classifiers 
as SVM classifiers are shown in Figures 1, and 2. 

7 Conclusion and Future Work 

In this sort paper, we introduced the information-theoretic complexity CIF{^W) 

as a new method for model selection in choosing the optimal kernel function 
in kernel discriminant analysis (KDA). We showed our results on a toy bench­
mark data set of Ripley to evaluate the performance of the optimal classifier 
based on the choice of the kernel function. Our method shortens the model 
selection time over the more time-consuming cross-validation method. 

The future work in this direction will involve several important problems 
in automating the choice of the regularization constant C, the regularization 
parameter /i and to study their effect on the classifier across different bench­
mark data sets and show the generalization ability of this new method. Our 
results, will be applied to real micro data mining data sets and the results 
will be reported elsewhere. 
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Fig. 1. Pattern of Ripley Training Data in the Feature Space. 

Fig. 2. Pattern of Ripley Test Data in the Feature Space. 
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Abs t r ac t . This paper outlines innovative techniques for the segmentation of con­
sumer markets. It compares a new self-controlled growing neural network with a 
recent growing /c-means algorithm. A critical issue is the identification of the "right" 
number of clusters, which is externally validated by the J[/MP-criterion. The em­
pirical application counters several objections recently raised against the use of 
cluster analysis for market segmentation. 

1 Introduction 

Market segmentation by means of cluster analysis is rated to be one of the 
most fundamental and most useful techniques of last century's marketing 
management practice. But recently it has been seriously criticized. According 
to Fennel et al. (2003) neither demographic nor psychographic variables are 
highly correlated with actual consumption behavior. Sheth and Sisodia (1999) 
claimed, tha t the validity of market segmentation is restricted to markets con­
sisting of only very few segments. According to their argumentation market 
segmentation becomes obsolete when subject to an increasing diversity of 
income, age, ethnicity, and lifestyle. Due to the heterogeneity of individual 
preferences in most consumer goods markets, the determination of an appro­
priate number of segments or clusters is a key question in almost any market 
segmentation study (Boone and Roehm (2002)). Moreover, Grapentine and 
Boomgaarden (2003) argue tha t difficulties in communicating with the target 
markets identified by clustering are the first of four foremost maladies of con­
temporary market segmentation. Based on this argumentation a substitution 
of segmentation by mass-customization would be desirable, but is impracti­
cable in most categories of frequently purchased consumer goods. Punj and 
Steward (1983) systematize marketers ' objections against the application of 
clustering algorithms into two streams of concerns: (1) methodical concerns 
(e.g. the theoretical understanding of different algorithms and properties of 
the available proximity measures) and (2) the weak guidelines regarding the 
choice of algorithms, particularly with respect to the danger of considering 
artifacts due to methodological options which may impair the validity of the 
results. In order to address the latter issue, they propose to compare the re-
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suits of different clustering algorithms applied to the same data set. Facing 
these challenges the present paper aims 

• to outline similarities and differences of modern segmentation techniques, 
in particular a growing /c-means and a growing neural gas clustering al­
gorithm, 

• to demonstrate the usage of the J[/MP-criterion (Sugar and James (2003)) 
and a test of multivariate normality (Mecklin and Mundfrom (2004)) for 
assessing the number of segments in a consumer market, and 

• to exemplify the development of a communication concept related to the 
identified segments. 

To achieve these aims we refer to a data set which describes attitudes and 
preferences concerning nutrition and consumption behavior. The respective 
market is highly fragmented because all four sources of diversity listed above 
contribute substantially to individual consumer behavior. To sketch the devel­
opment of a cluster-related communication concept we employ the advertising 
principles of Armstrong (forthcoming). 

The remainder of this paper is structured as follows: First, we outline three 
different methodologies that we are going to use for clustering consumer pro­
files, simultaneously determining an appropriate number of clusters in this 
market segmentation task. Subsequently, the results are compared and se­
lected clusters are interpreted with respect to the immanent nutrition and 
consumption behavior. Finally we briefly address the development of com­
munication strategies for these market segments. The paper concludes with 
a discussion of results and directions of further research. 

2 Methodology 

2.1 Determining the Optimal Number of Clusters by Means of 
the JC/MP-Criterion 

Let Xn = (xni , . . . ^Xnh ''' I^UL) ^ I^^, with n G { 1 , . . . , N}, denote the in­
put data to be analyzed, i.e. the individual profiles or feature vectors of the 
consumers considered. Assuming the features used for clustering are uncor-
related (and, therefore, do not provide redundant information) the distortion 
d{k) of a /c cluster solution can be estimated by the sum of squared errors 
based on Euclidean distances. Since the true distortion in fragmented markets 
is unknown, it must be calculated using the data at hand. The estimated dis­
tortion d{k) decreases with an increasing number of clusters and, thus, needs 
to be corrected by a power transformation in order to assess the optimal num­
ber of clusters /c*. Figure 1 outlines the procedure applied to calculate the 
J[/MP-criterion by using the estimated distortion (Sugar and James (2003)). 

The procedure also includes the case /c* = 1 and, therefore, checks ex­
plicitly for the absence of a group structure in the data. The transformation 
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1: Run standard /c-means for different numbers of clusters k = 1 , . . . , K. 
2: Calculate d{k) for A: = 1 , . . . , K and define d{0) = 0. 
3: Compute the jumps JUMP(k) = dr^{k) — dr^{k — 1) with transformation 

power y > 0. 
4: Determine the optimal number of clusters /c* = are max JUMP(k). 

ke{i,...,K} l___ 

Fig. 1. Computation of the J[/MP-criterion 

power y used in step 3 is not fixed to a certain value. Thus, we define y = ^ 
according to Sugar and James (2003). The J [ /MP-cr i te r ion will be used in the 
empirical part of the paper to externally validate the cluster number resulting 
from our modification of Hamerly and Elkan's (2003) G-means algorithm. 

2.2 Modi f i ed G r o w i n g A;-Means ( G K M ) 

The basic principle of our growing /c-means algorithm is to start with a small 
number of clusters and to expand this number until the consumer profiles 
assigned to each cluster fit a multivariate normal distribution tha t is centered 
at the cluster-centroids Oh- The whole procedure is outlined in Figure 2. 

1: Let k be the initial number of clusters (usually k = 1). 
2: Apply the standard /c-means algorithm to the given sets of consumer profiles. 
3: Let {cci, . . . , cCn,..., XN^} be the set of profiles assigned to centroid Oh-
4: Test whether the profiles assigned to each cluster h = 1 , . . . , A: are multivariate 

normally distributed. 
5: If the data meets the relevant criterion of multinormality, then stop with the 

respective optimal A:*, otherwise increase the number of clusters A: by 1 and 
return to step 2. 

Fig. 2. Modified growing /c-means algorithm 

To determine the optimal number of clusters, we consider the distribu­
tion of the observations (consumer profiles) assigned to the respective clus­
ters. The basic idea is to assume tha t the output of a clustering procedure 
is acceptable if the centroids provide substantial information concerning-at 
least- the majority of the cluster members. According to Ding et al. (2002) 
the /c-means algorithm can be regarded as a mixture model of independent 
identically distributed spherical Gaussian components. Thus, it is intuitive to 
presume tha t a cluster centroid should not only be the balance point but also 
the median as well as the modus of the multivariate distribution represent­
ing the cluster members. We refer to Mardia 's measure of the standardized 
^th QQIYIYSI moment (kurtosis) to check whether the profiles of the members 
assigned to a cluster h adhere to a multivariate normal distribution or not. 
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The corresponding null hypothesis reads: The consumer profiles assigned to 
centroid Oh are multivariate normally distributed. 

The measure is based on squared Mahalanobis distances, which are very 
helpful in detecting multivariate outliers (Mecklin and Mundfrom (2004)). 
The statistic for testing the above hypothesis is given by 

' ^ = ( 8 L ( L + 2)/iV.)V2 {h = l^...^k) (1) 

and 

^̂^ = A^ E ((^- - ^h)Sl\xn - OhYf (/I = 1,..., fe), (2) 
n=l 

with Sh denoting the cluster-specific sample covariance matrix and Nh equal­
ing the number of observations assigned to cluster h. 

The test statistic dh is asymptotically standard normally distributed with 
p-value p/i = 2(1 — P/v(|c^/i|)), whereby PN equals the cumulative probability 
of a standard normal distribution. The null hypothesis of multivariate nor­
mality is rejected for cluster h if ph is sufficiently small. Therefore, we favor 
that k* which meets the following condition: 

k* = arg max ( min ph ) (3) 

Thus, the algorithm stops growing when the distribution of the feature 
vectors of each cluster is, at least approximately, multivariate normal and 
tends towards small numbers of clusters. 

2.3 Self-Controlled Growing Neural Network (SGNN) 

Let ;B be a set of units Uh with h G {l , . . . , /c = \B\}^ and V the set of 
connections between these units, capturing the current topological structure 
of an artificial neural network. Each unit is represented by a weight vector 
Oh = (^/ii,''' i^hU''' ^ Ohh) ^ I^^- In fact, these weight vectors directly 
correspond to the centroids considered above. Figure 2.3 outlines the essential 
elements of the SGNN algorithm (Decker (2005)). 

As a result of the adaptation process outlined in steps 2-5, we get the 
connection matrix D , which describes the final topological structure of the 
neural network. Each unit Uh or rather the corresponding weight vector 6h^ 
represents a frequent (nutrition and consumption) pattern in the available 
survey data and is referred to as a prototype in the following. 
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1: Create an initial network comprising two non-connected units ui and U2 
with weight vectors 6i and 62 and initialize some internal control variables. 

2: Select randomly one input vector Xn and calculate the Euclidean distances 
\\xn — Oh\\ between Xn and each unit Uh G B. 

3: Connect the best and the second best matching unit Uh^est ^^^ ^hsecond^ ^^ 
this is not yet the case, and set the age of this connection cihsesthsecond — ^^ 

4: If either the activity Vh^est ~ exp(—||cCn — GhsestW) ^^ ^^^ training require­
ment of the best matching unit exceeds an appropriate threshold then 
update the weight vectors of unit Uh^est ^^^ ^^^ neighbors to which it is 
connected, else create a new unit Uhj^^^ in between Ohsest ^^^ ^^• 

5: Increase the age of all connections emanating from Uhsest ^Y one, update 
the internal control variables, remove all the connections that are "older" 
than a predefined upper bound aMax^ and remove all disconnected units. 

6: If the stopping criterion is not already reached, increase the adaptation 
step counter and return to step 2, otherwise create connection matrix D. 

Fig. 3. Outline of the SGNN algorithm 

3 Market Segmentation by Means of Growing 
Clustering Algorithms 

3.1 T h e D a t a 

The da ta set to be analyzed was provided by the ZUMA Insti tute and is part 
of a sub-sample of the 1995 GfK ConsumerScan Household Panel Data. It 
comprises socio-demographic characteristics as well as at t i tudes and opinions 
with regard to the nutrition and consumption behavior of German house­
holds. We exemplarily consider the at t i tudes and opinions of Â  = 4, 266 
consumers measured by means of L = 81, mostly Likert-scaled items (with 
1 = 'I definitely disagree.', . . . , 5 = 'I definitely agree. '). 

3.2 S e l e c t e d R e s u l t s 

According to the J [/MP-criterion the optimal number of clusters for the da ta 
at hand is 37. The GKM algorithm also results in a 37-cluster solution, where 
sets of 174 to 394 individual consumer profiles are assigned to 15 meaning­
ful clusters with centroids ^ 1 , . . . ,^15. Moreover, 22 outliers are assigned to 
single-object clusters. Applying the SGNN algorithm with auax = 81 (= L) 
results in a neural network tha t comprises 14 prototypes ^ 1 , . . . , ^14. In fact, 
SGNN leads to very similar results. 

Table 1 gives an exemplary description of those items tha t cause the high­
est distances between the GKM-cluster centroids 6^ and ^9 as well as between 
^10 and ^14. The table also displays the corresponding weights resulting from 
applying the SGNN algorithm. Obviously, the cluster profiles represented by 
the SGNN prototypes match the clusters obtained from the GKM algorithm 
to a substantial extent (the correlations are significant at level a = 0.01). 
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/ Brief item description 

3 Likes to have company 
15 Enjoys life to the full 
21 Prefers traditional lifestyle 
27 Quality-oriented food purchase 
33 Prefers fancy drinks and food 
34 Prefers hearty plain fare 
35 Prefers whole food 
42 Pays attention to antiallergic food 
43 Rates oneself slimness-oriented 
48 Eats vegetarian food only 
59 Counts calories when eating 
60 Prefers tried and tested recipes 
Pearson's correlation r (all items) 

6>3 

4.28 
3.15 
2.60 
3.13 
3.59 
2.89 
2.31 
2.91 
2.53 
1.32 
1.86 
2.13 

67 

4.31 
3.62 
3.51 
2.03 
3.15 
2.91 
2.28 
2.85 
2.82 
1.37 
2.18 
2.52 

0.86 

6>9 

3.65 
2.68 
3.62 
2.64 
1.70 
4.40 
1.63 
2.12 
1.68 
1.10 
1.41 
4.31 

OA 

3.64 
3.26 
3.93 
3.55 
1.83 
4.14 
1.89 
2.62 
2.12 
1.19 
1.72 
4.14 

0.90 

^ 1 0 

4.65 
3.72 
4.46 
4.37 
4.18 
4.55 
3.65 
4.45 
3.68 
1.82 
3.50 
4.50 

(95 

4.54 
4.26 
3.96 
3.45 
3.75 
4.19 
3.37 
4.11 
3.49 
1.65 
3.21 
4.06 

0.91 

OlA O2 

3.90 3.96 
3.59 3.22 
3.17 3.70 
2.40 2.26 
1.90 2.22 
3.23 3.50 
1.53 1.52 
1.96 1.94 
1.93 1.76 
1.22 1.10 
1.40 1.38 
3.08 3.06 

0.92 

Table 1. Parts of selected nutrition and consumption style prototypes 

When looking at the largest distances of singular items, we find that the 
members of GKM-cluster 10 are on average highly involved in food consump­
tion. The quality of food products (item 27) is of accentuated importance in 
comparison to the other GKM-clusters. This implies a strong preference for 
exclusive and fancy foods (item 33) as well as a strong preference for branded 
products (item 20). These consumers are characterized by health-oriented nu­
trition styles such as fat free foods (items 29 and 43), whole foods, or even 
vegetarian diets (item 48). The motivation for this behavior seems to stem 
from hedonistic (item 3) rather than well-founded health concerns. Their pri­
mary focus is on maintaining physical attractiveness and fitness (items 43, 
59, and 69), which is a premise for their active and sociable lifestyle. As a 
result of these characterizations we can refer to the respondents represented 
by cluster centroid ^10 as the hedonistic consumers. 

Contrastingly, the consumers of cluster 14 (represented by O14) pay less 
attention to nutrition. They are less concerned about food products with ad­
ditives or preservatives (item 44). Health-oriented food consumption behavior 
is less important in their lives. Moreover, they put emphasis on low prices 
(item 38). The origin and quality of the foods are secondary (item 27, 35, and 
42). Consequently, we can label this cluster as the uninvolved consumers. 

Cluster 3 (represented by ^3) comprises consumers who have a preference 
for natural, unprocessed foods (items 35, 42, and 44). This behavior is accom­
panied by a distinctive fondness for exclusive and, partly, even fancy foods 
(item 33). The members of cluster 3 are less motivated by "external" reasons 
such as staying fit and attractive (items 43, 59, and 69), but primarily aim 
to avoid the consumption of any kind of non-natural food ingredients (items 
35, 48, and 65). Nutrition and cooking play an important role in their life. 
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so they take nutrition tips very seriously. We can refer to this cluster as the 
health-oriented consumers. 

Cluster centroid O9 represents consumers who are critical of social or tech­
nical progress in their personal environment. This cluster stands out due to its 
traditional lifestyle (item 21 and 48). It shows a distinctive preference for do­
mestic foods and likes to stick to home made cooking, especially hearty plain 
fare (item 34) on the basis of tried and tested recipes (item 60). Vegetarian 
food is strictly rejected (item 48). Being rather uninvolved, these consumers 
are price conscious and shy away from purchasing new products (item 5 and 
9). Due to their distrust of advertising (item 11), these traditional consumers 
are also hardly interested in the branding of products. 

3.3 Def in ing R e l a t e d M a r k e t i n g C o m m u n i c a t i o n 

The advertising principles by Armstrong (forthcoming) advise us to cope 
with the strategic issues of deciding (1) which information should be com­
municated, (2) on the type of influence to focus on, (3) which emotions are 
associated with the offered products, and (4) how to increase the mere expo­
sure^ by providing the products with a suitable brand and image. 

Considering the hedonistic consumers the information should be related 
to the quality of the products due to the high involvement of the consumers 
concerned. The influence should be based on rational arguments which lead 
the recipients to favor the offers. The emotions to be created are t rust and 
prestige and the brand name should have semantic associations with self-
confldence and wealth. The brand should be associated with luxury. 

For the uninvolved consumers marketing communication should transmit 
the message "easy to prepare". The influences to focus on are "liking" and 
"attribution". Consequently, the communication should be persuasive but not 
pushing to avoid reactance. Suited emotions are pleasure and perhaps even 
provocation for the introduction of new offers to this segment. The brand 's 
name should have a semantic association with a free and easy lifestyle and 
links should be made to modern convenience products. 

4 Discussion and Implications 

Several general objections have been raised against the concept of clustering-
based market segmentation. This paper addresses these objections empirically 
by considering segments of the highly heterogeneous food market. Grasping 
the proposal of Punj and Steward (1983) we applied two modern growing 
clustering algorithms to a large empirical da ta set and obtained very simi­
lar results in terms of the identifled clusters. Therefore, we argue tha t the 
objection to possible artifacts and the weaknesses in guidance as to which al­
gorithms should be chosen, is less serious if da ta processing is done properly. 

^ The mere exposure effect is a psychological artifact utilized by advertisers: people 
express undue liking for things merely because they are familiar with them. 
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Although the vahdity of this imphcation is restricted to the case of sophis­
ticated algorithms like those considered in this paper, it provides a good 
start ing point for further research including different marketing da ta as well 
as other clustering algorithms. 

Furthermore, this paper also addresses the problem of identifying the 
number of clusters. The J [ /MP-cr i te r ion and the test of multivariate nor­
mality performed well in our study and led to the same results. 

Finally, we sketched the development of a related marketing communi­
cation for targeting the identified market segments properly. Of course, the 
development of marketing communication strategies is always a creative pro­
cess, but nonetheless market segmentation has been found to provide useful 
information about the motives necessary to appeal on. 

Summarizing these results we conclude tha t the objections against clus­
tering for the purpose of data-based market segmentation are at least not of 
such general validity as claimed in recent li terature. 
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Abs t r ac t . We deal with graphical representations of results of functional cluster­
ing and functional multidimensional scaling (MDS). Ramsay and Silverman(1997, 
2005) proposed functional data analysis. Functional data analysis enlarges the range 
of statistical data analysis. But, it is not easy to represent results of functional data 
analysis techniques. We focus on two methods of functional data analysis: functional 
clustering and functional MDS. We show graphical representations for functional 
hierarchical clustering and functional /c-means method in the first part of this pa­
per. Then, in the second part, graphical representation of results of functional MDS, 
functional configuration is presented. 

1 Introduction 

Graphical representations of multidimensional da ta are key techniques for 
analyzing da ta and have been studied by a large number of statisticians all 
over the world since 1960's. We can use not only static graphics but dynamic 
graphics using computers. Most statistical packages have excellent graphical 
functions. 

In most conventional da ta analysis methods, we assume tha t da ta are 
regarded as a set of numbers with some structures, i.e. a set of vectors or a 
set of matrices etc. Nowadays, we must often analyze more complex data . One 
type of complex da ta is the functional da ta structure; da ta themselves are 
represented as functions. Ramsay and Silverman have studied functional da ta 
analysis (FDA) as the analysis method to functional da ta since the 1990's. 
They have published excellent books on FDA (Ramsay and Silverman, 1997, 
2002, 2005). They deal with various methods for functional da ta in these 
books. 

We deal with graphical representations of results of functional da ta analy­
sis. There are so many methods for functional da ta analysis. Among them, we 
pick up functional clustering and functional multidimensional scaling (MDS). 
Clustering is a very popular method for da ta mining and we must apply var­
ious types of da ta including functional data . MDS is also an effective method 
for da ta analysis, because the structure of dissimilarity da ta can be difficult 
to understand. It is not easy to interpret the results even if we adopt con­
ventional MDS. We usually use scatter plot of configuration of objects and 
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scatter plot of dissimilarities versus Euclid distances separately. But, the re­
lations between the configuration and the residuals can not be investigated 
with these plots. Mizuta and Minami (1991) proposed another graphical rep­
resentation for MDS. We extend this method to functional MDS in this paper. 

2 Graphical Representations of Functional Clustering 

The purpose of cluster analysis is to find relatively homogeneous clusters 
of objects based on measured characteristics. Sometimes, we divide meth­
ods of cluster analysis into two groups: hierarchical clustering methods and 
nonhierarchical clustering methods. 

Hierarchical clustering refers to the formation of a recursive clustering of 
the objects data: a partition into two clusters, each of which is itself hier­
archically clustered. We usually use datasets of dissimilarities or distances; 
S = {sij;i^j = 1,2,.. . , n}, where Sij is the dissimilarity between objects i 
and j , and n is the size of the objects. Single Linkage is a typical hierarchi­
cal clustering method. We start with each object as a single cluster and in 
each step merge two of them together. In each step, the two clusters that 
have minimum distance are merged. At the first step, the distances between 
clusters are defined by the distance between the objects. However, after this, 
we must determine the distances between new clusters. In Single Linkage, 
the distance between two clusters is determined by the distance of the two 
closest objects in the different clusters. The results of hierarchical clustering 
are usually represented by dendrogram. The height of the dendrogram rep­
resents the distances between two clusters. It is well known that the results 
of Single Linkage and the minimal spanning tree (MST) are equivalent from 
the computational point of view. 

Mizuta (2003a) proposed the algorithm of Single Linkage for functional 
dissimilarity data S{t) = {sij{t);i^j = l , 2 , . . . , n } . The basic idea of the 
proposed method is that we apply conventional Single Linkage to S{t) and 
get functional MST, say MST(t). Then we calculate functional configura­
tion and adjust labels of objects. The results of functional single linkage are 
represented as motions of MST using dynamic or interactive graphics (Fig­
ure 1 (Left)). Nonhierarchical clustering partitions the data using a specific 
criterion. Most nonhierarchical clustering methods do not deal with a set of 
dissimilarities directly. They use a set of p-tuples: Z = {z ,̂ i = 1, 2 , . . . , n}. k-
means method is a kind of nonhierarchical clustering procedure which starts 
with initial seeds points (centroids), then it assigns each data point to the 
nearest centroid, updates the cluster centroids, and repeats the process until 
the centroids do not change. 

From the view points of functional data analysis, we assume that we have 
p-dimensional functions corresponding to n objects. We denote the functions 
for n objects depending on a variable t as Z{t) = {zi{t)}{i = 1, 2 , . . . , n). It 
is realistic that values Z{tj){j = 1, 2 , . . . , m) are given. We restrict ourselves 
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to two dimensional functional data and to the one dimensional domain. The 
number of clusters k is prespecified as a user parameter. The idea of func­
tional /c-means method is to repeat the procedure of the conventional /c-means 
method. At first, we apply conventional /c-means method to Z{tj) for each tj. 
Then, we adjust the labels of clusters. Even if we fix clustering method, there 
is freedom of labeling. We denote Ci{t) as the label of the i-th object at t for 
fixed K. We discuss about adjusting the labeling of ^(^2) with fixed Q( t i ) . 
(7*(t2) are the new labels of the objects that Xltt{^^(^i) = C^{t2)} takes the 
minimum value, where fl indicates the size of the set. A simple method for 
adjusting the labels is to use the cluster centers of the previous clustering for 
initial guesses for the cluster centers. We must pay attention to the fact that 
even if two objects belong to the same cluster at tj, it is possible that the 
two objects belong to different clusters at tj^. The results of the proposed 
functional /c-means method can be represented graphically. We use the three 
dimensional space for the representation. Two dimensions are used for the 
given functional data, one is for t, and the clusters are shown with colors. We 
apply an artificial data set to the proposed functional /c-means method and 
show the graphical representation. The data are two dimensional functional 
data of size 150. At first stage (t = 0), the data have relatively clear clusters 
and the clusters are destroyed along t. We set the number of the clusters at 
five. The results are shown in Figure 1 (Right). The figure is a snapshot of 
computer display. It is true that it is difficult to analyze the data from only 
this figure when the size of objects is too large. But, if we may use dynamic 
graphics, the results can be analyzed more effectively with interactive oper­
ations: rotations, slicing, zooming etc. We can find out the structures of the 
data. 

Fig. 1. Functional Single Linkage (Left), Functional /c-means (Right) 
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3 Residual Plot for Conventional MDS 

Multidimensional scaling (MDS) produces a configuration {xi} for the results 
of the analysis of input dissimilarity da ta {sij}. We usually investigate the 
configuration with the scatterplot or scatterplot matr ix of {xi} and verify 
the relation of the input dissimilarity da ta and the configuration with plot 
of the input dissimilarities versus the distances among the configuration. 
We can evaluate the results globally with this plot, but can not find the 
objects whose positions are singular. So, Mizuta and Minami (1991) proposed 
a graphical method for MDS, named residual plot for MDS, which represents 
the configuration and residuals simultaneously. The graph is depicted in the 
following steps. 

Calculate the distances dfj = | | a:̂^ 
Transform Sij to 5*̂ - such tha t 5*̂ -

Xj II {ij = l ,2, . . . ,n). 
a-\-bsij where a, b are the coefficients 

of the simple regression function of {dij} on {sij} in order to justify the 
scale of {sij}. 
Plot {xi} on the scatterplot or scatterplot matr ix and draw the segments 
from Xi in the direction of Xj (when dij > 5*) or draw the dashed 
segments from Xi in the counter direction of Xj (when dij < 5*) with 

length I di | / 2 ( i , j = l , 2 , . . . , n ) . 

The lengths of the segments represent the residuals of the configuration (Fig­
ure 2). We can use this graph to represent asymmetric dissimilarity data . 
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Fig. 2. Residual plots of conventional MDS 
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4 Functional Mult i Dimensional Scaling 

Functional MDS is introduced here (Mizuta, 2000). We assume tha t the dis­
similarity da ta among the n objects depend on two parameters , i.e. arguments 
u and v: S{u,v) = {sij{u,v)}. Wi th a conventional MDS method for each 
argument, the (functional) configurations X{u,v) are derived. Because the 
purpose of MDS is to investigate the relations among objects, the configura­
tions of objects may be rotated (transformed with orthogonal matrix)^. The 
goal of the method is to find out a functional orthogonal matr ix Q{u^ v) tha t 
adjusts X(ix, v) to Q{u^ v)X{u^ v) in order to get almost continuous functions. 
For the sake of explanation, we assume tha t the dissimilarity da ta are given 
in lattice points: {S{uk, 'U/)}(/c, / = 1 , . . . , TTI). 

The criterion of the method is to minimize 

n m m 
^ ^ ^ {\Q{uk-i,vi)xi{uk-i,vi) -Q{uk,vi)xi{uk,vi)f 
i=l 1=1 k=l 

MQ{Uk^Vi-i)Xi{Uk,Vi-i) - Q{Uk,Vi-i)Xi{Uk,Vi)\^) (1) 

with respect to {Q{uk, vi)}{k,l = 1 , . . . , TTI) and where Q{ui,vi) = I, etc. We 
can solve this optimization problem using elementary linear algebra. 

We show an actual example of the proposed method and graphical rep­
resentations of the results. The example da ta are facial data^. There are 6 
persons, and we have 25 pictures under different viewing directions for each 
person. Similarities between two faces depend on viewing conditions (Figure 
3(a)). The similarities between two persons for each condition are calcu­
lated with some degree of image matching method. We get {sij{u^v)}; i^j = 
1 , . . . , 6; IX, 'U = 1 , . . . , 5. Where ix, v are related to orientations (rotation of the 
camera around the vertical axis and the horizontal axis respectively). Figure 
3(b) shows the result of the proposed method. We can see the relations among 
6 faces. Figure 3(c) reveals the changes of the configuration of the 5th person 
with u^v. 

The proposed method can represent functional configurations of the ob­
jects. But, it is difficult to evaluate the functional configurations from the 
plot. The residual plots of the previous section can be extended for func­
tional MDS. The residual plot for functional MDS is a simultaneous plot 
of functional configuration and functional residuals tha t are represented by 
segments. 

^ Some researchers claim that the results of MDS may not rotated because the 
axes imply information. But I do not take this istance in this method. 

^ The facial data in this paper are used by permission of Softpia Japan, Research 
and Development Division, HOIP Laboratory. It is strictly prohibited to copy, 
use, or distribute the facial data without permission. 
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Fig. 3. Functional MDS (Facial Data) 

(c) Extraction of functional configuration 
of the object 5 

5 Concluding Remarks 

We mention graphical methods mainly for functional da ta analysis. Needless 
to say, there are enormous subjects related to graphical representation of 
da ta tha t we do not mention up to here. For examples, the use of motion 
{dynamic display)^ business graph, statistical package, SVG, X3D, XML etc. 
Data Analysis System with Visual Manipulation is not a statistical graph but 
one of graphical methods in a wide sense. The concept of "Visual Language" 
can be applied to the field of da ta analysis. 



Graphical Representation of Functional Clusters and MDS 37 

References 

MIZUTA, M. (2000): Functional multidimensional scaling. Proceedings of the Tenth 
Japan and Korea Joint Conference of Statistics, 77-82. 

MIZUTA, M. (2002): Cluster analysis for functional data. Proceedings of the 4th 
Conference of the Asian Regional Section of the International Association for 
Statistical Computing, 219-221. 

MIZUTA, M. (2003a): Hierarchical clustering for functional dissimilarity data. Pro­
ceedings of the 7th World Multiconference on Systemics, Cybernetics and In­
formatics, Volume V, 223-227. 

MIZUTA, M.(2003b): K-means method for functional data. Bulletin of the Inter­
national Statistical Institute, 54th Session, Book 2, 69 -71 . 

MIZUTA, M. and MINAMI, 11.(1991): A graphical representation for MDS. Bulletin 
of the Com^putational Statistics of Japan, 4, 2, 25-30. 

RAMSAY, J.O. and SILVERMAN, B.W. (1997): Functional Data Analysis. New 
York: Springer-Verlag. 

RAMSAY, J.O. and SILVERMAN, B.W. (2002): Applied Functional Data Analysis 
- Methods and Case Studies -. New York: Springer-Verlag. 

RAMSAY, J.O. and SILVERMAN, B.W. (2005): Functional Data Analysis. 2nd 
edition. New York: Springer-Verlag. 



Estimation of the Structural Mean of a Sample 
of Curves by Dynamic Time Warping 

1 

Isabella Morlini^ and Sergio Zani^ 

Dipartimento di Scienze Social!, Cognitive e Quantitative, Universita di 
Modena e Reggio Emilia, Italy, morlini.isabella@unimore.it 
Dipartimento di Economia, Universita di Parma, Italy, sergio.zani@unipr.it 

Abstract. Following our previous works where an improved dynamic time warping 
(DTW) algorithm has been proposed and motivated, especially in the multivariate 
case, for computing the dissimilarity between curves, in this paper we modify the 
classical DTW in order to obtain discrete warping functions and to estimate the 
structural mean of a sample of curves. With the suggested methodology we analyze 
series of daily measurements of some air pollutants in Emilia-Romagna (a region 
in Northern Italy). We compare results with those obtained with other flexible and 
non parametric approaches used in functional data analysis. 

1 Introduction 

This paper introduces a model based on Dynamic Time Warping (DTW) for 
computing the structural mean of discrete observations of continuous curves. 
Multivariate datasets consisting of samples of curves are increasingly com­
mon in statistics. One of the intrinsic problems of these functional da ta is the 
presence of time (or phase) variability beyond the well-known amplitude vari­
ability. Consider, for example, the problem of estimating the mean function 
of a sample of curves obtained at discrete time points, {^^(t)}, t = 1 , . . . , T, 
n = 1 , . . . , A .̂ The naive estimator x{t), the cross-sectional mean, does not 
always produce sensible results since it underestimates the amplitude of local 
maxima and overestimates the local minima. This is a severe problem because 
local extrema are often important features in physical, biological or ecologi­
cal processes. This issue is illustrated in Fig. 1, where the carbon monoxide 
(CO) curves, as measured by three air quality monitory stations in Bologna 
(Italy), are plotted together. The time axis varies from January 1st 2004 to 
February 29th 2004. From an ecological point of view, it is important to es­
t imate the average amplitude of peaks due to their effects on human health, 
but , as Fig. 1 shows, the cross sectional mean (the heavy line) underesti­
mates some of these peaks. For example, the maximum mean value around 
February 4th is underestimated ignoring the time variation, since it occurs 
a few hours earlier for one of the three stations. The spurts may vary from 
site to site, not only in intensity, but also in timing, since weather-factors 
influencing the quantity of CO may be timed differently for the different 
spatial locations of the monitory stations. Various proposals deal with the 
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Fig. 1. CO curves and cross-sectional mean (heavy line). 

time variability problem. Among others are landmark registration (Kneip 
and Gasser, 1992), continuous monotone registration (Ramsay and Li, 1998) 
and self modeling warping functions (Gervini and Gasser, 2004). The idea 
behind these methods is to estimate the warping functions Wn{t) for aligning 
each series n, (n = 1 , . . . , Â ) to a reference curve. Once the aligned values 
^n(0 — ^ni'Wnit)) circ computcd, the structural mean is then estimated by 
fi{t) = x*(t), that is by the cross sectional mean of the warped series. In this 
paper we propose a nonparametric method for estimating discrete warping 
functions which does not involve landmark identification and is based on the 
DTW algorithm. The method relies on a minimization problem which can 
be solved efficiently by dynamic programming. However, the most attractive 
feature is that it can be directly applied to multivariate series: principal com­
ponents and other multivariate analyses may be applied to the aligned series 
(Morlini, 2006). The paper is organized as follows. In Section 2 we brieffy 
introduce the model and the algorithm implemented in Matlab. A discussion 
about differences with other methods drawn from DTW is also included. Sec­
tion 3 presents an application regarding air pollutants in Emilia Romagna. 
In section 4 we give some final remarks. 

2 Est imation of Discrete Warping Functions 

To align two sequences xi{t) with t = 1,.. . ,Ti and X2{t) with t = 1,...,T2 
the classical DTW algorithm minimizes the following cost function: 

J2 {X^{i)-X2{j)f (1) 

Here w = {{i^j)} is di warping path connecting (1,1) and (Ti, T2) in a two 
dimensional square lattice which satisfies monotonicity and connectedness. 
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Fig. 2. Pictorial representations of step-paths a) The classical DTW step b) Steps 
with restrictions on the continuity constraints c) Step without connectedness. 

This means that both coordinates of the parameterized path w = {i{k),j{k): 
/c = 1,. . . ,K; i{l) = j ( l ) = 1; i{K) = Ti; j{K) = T2} have to be non de­
creasing and they can only increase by 0 or 1 when going from k to k -\- 1. 
Given N series Xn{t), the DTW finds the time shift for each pair of series. 
In the structural mean framework, the aim is to align the family of curves 
Xn{t) to an average time scale t* = 1 , . . . , T by minimizing a fitting criterion 
between the Xn{t) and the value y{t*). For this aim, a reference curve y as 
long as N non decreasing warping functions should be defined. As shown in 
Morlini (2004), from the warping path we cannot draw two warping func­
tions for aligning xi to X2 and X2 to xi , since a single point on one series 
may map onto a large subsection of the other series. In order to find a non 
decreasing - discrete - warping function to align, for example, X2 to xi, we 
may relax the boundary condition, such that i{K) = Ti and restrict the 
continuity constraint such that i{k) can only increase by 1 when going from 
/c to /c + 1 (the pictorial representation of this step in the warping path is 
reported in the left rectangle of Fig. 2). Note that this restriction may lead 
to unrealistic warping if the starting time for each series is arbitrary. The 
method is therefore convenient for series with a common starting time. If a 
windowing condition \i{k) — j{k)\ < u (with u being a given positive integer) 
is posted according to the concept that time-axis fiuctuations should not lead 
to excessive differences in timing and in order to prevent over-warping, the 
connectedness must be lost in some points of the warping path. Once the 
bound \i{k) — j{k)\ = u'ls reached, the continuity constraint must be relaxed 
and j{k) should increase by more than 1 when going from /c to /c + 1, other­
wise the path remains constantly on this bound. The index j(k) can be set 
equal to i(/c + 1) or to some integer in the interval (j(/c + 1), i(/c + 1)]. 

Regarding, for example, the daily CO values (see the next Section) the 
positive integer u is the maximum number of days for which we assume the 
same weather-factors infiuencing air pollution may be timed differently for 
the different spatial locations of the monitoring gauges. In general, this value 
should be kept according to the series time scale and to the maximum tempo­
ral distance for which features in different subjects may be logically compared. 
Since the defined warping function is always below the line w{t) = t, w{t) < t 
for every t = 1 , . . . ,T holds. If this condition is too restrictive, an alterna­
tive path for obtaining a non decreasing discrete warping function may be 
reached without connectedness. In this parameterized path, which is not new 
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in literature, w = {i{k)J{k)): k = 1, . . . ,K; i{l) = j ( l ) = 1, i{K) = Ti, 
j{K) = T2}, both coordinates are non decreasing and can only increase by 
1 or 2 (but not both by 2) when going from k to k -\- 1 (see Fig. 2c). The 
problem with the warping function derived from this path is that some values 
of the average time scale t* = 1 , . . . , T are missing since Wi{t) is not defined 
for alH = 1 , . . . , T. If missing values are obtained by linear interpolation, the 
warping function is no longer discrete. In the application of next section we 
set Wi{t) = Wi{t — 1) for values of t not defined in the path. As remarked in 
Morlini (2004), DTW applied to raw data may produce incorrect alignments 
from a geometrical perspective when pairing two values xi and X2 which are 
identical but the first is a part of a rising interval in series 1 and the second 
is a part of a falling interval in series 2. An additional problem is that the 
algorithm may fail to align a salient feature (i.e. a peak, a valley) simply 
because in one series this is slightly higher or lower than in the other one. 
We try to overcome these problems by smoothing the data before applying 
DTW and automatically selecting the smoothing parameter A of the cubic 
interpolating splines by cross-validation (see Corbellini and Morlini, 2004). 
We estimate smooth interpolating functions in order to obtain less-noisy and 
shape dependent data but we maintain discrete cost and warping functions. 
This peculiarity characterizes this approach over other methods drawn from 
DTW for aligning curves. In Wang and Gasser (1997, 1999) some cost func­
tions based on DTW are reviewed and a new functional of the interpolat­
ing splines and their derivatives is proposed. The main attractive feature of 
smoothing the data but maintaining a discrete cost function is perhaps the 
straightforward applicability of the results to multivariate series. This topic 
will be further illustrated in the next section. The problem concerning the ref­
erence vector may be solved with several possibilities (see Wang and Gasser, 
1997). The reference vector should be close to the typical pattern of the sam­
ple curves and should have more or less the same features as most curves. In 
choosing this vector a trade off between accuracy and computational effort 
should be considered. Here we propose the following iterative method: 

1. The longitudinal mean is considered as reference vector; 
2. Every series is warped to this vector and the structural mean together with 
the total warping cost are computed; 
3. The structural mean of step 2 is considered as the reference vector for the 
second cycle. The process is iterated until the warping cost has negligible 
changes, with respect to the previous ones. 
Computation is not intensive since a few iterations are usually enough. How­
ever, if the relative shifts among curves are large, then the cross-sectional 
mean might be too atypical to start with, since the structure gets lost. A 
more convenient method, in this case, is to take each vector Xn as reference, 
to warp every other series to this vector, compute the total warping cost and 
choose the reference vector as the one corresponding to the maximum cost. 
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3 An Application to Air Pollutant Data 

As an example to illustrate the technique presented in Section 2 for comput­
ing the structural mean, we consider measurements of the CO concentration 
in different sites in Emilia-Romagna. In the data set we have 1400 daily reg­
istrations (from January 1st 2001 to October 31st 2004) obtained by 67 air 
quality stations. A preprocessing step is made in order to replace missing and 
unreliable values (extreme points, as shown by boxplots, which are inconsis­
tent with values registered in the two closest days) with moving averages 
of length 5. Fig. 3 and Fig. 4 report boxplots of pre-processed data for each 
site. Fig. 5 shows the structural means, for all the study period, obtained with 
DTW with restrictions on the continuity constraint and a 12 days maximum 
time shift, with self modeling registration (4 components) and with landmark 
registration. As landmarks we have chosen, graphically, two peaks in January 
and two peaks in December for each year. Individual identification of land­
marks has been very difficult, time consuming and not so accurate since peaks 
in these and other months are much more than two. For these reasons, self 
modeling registration should be preferred as benchmark. Registered means 
for this method and modified DTW do not show significant differences. The 
linear correlation coefficient between the two series is equal to 0.95 and lines 
in Fig. 5 seem to overlap. Both methods are model-free and iterative. With 
a limited number of series, admittedly, the common starting reference vector 
clearly inffuences the results. Comparing the structural means computed by 
step b) and by step c) of Fig. 2 we note that rather than in amplitude, dif­
ferences are in timing of the peaks. This gives an insight into the validity of 
both steps, since in many real data sets timing of the peaks in the mean curve 
does not have an objective location and is not exactly identifiable. Therefore 
the main goal is to estimate the real magnitude of the spurts rather than 
their timing. 

Fig. 6 shows the 67 warping functions estimated by the different methods. 
Only the first 100 days are shown in order to have a clearer representation. 
Due to the windowing condition, functions estimated by DTW are not partic­
ularly irregular. They are, of course, step-wise functions. However, the steps 
are more visible in the case of restrictions on the continuity constraints rather 
than in the case without connectedness, since constant pieces are longer in 
the first case. Functions estimated by self modeling registration are always 
increasing and less wiggled. Landmark registration clearly produces illogical 
functions, too far from linearity, and leads to over-warping. As stated before, 
this is due to the difficulty of individualizing single landmarks in each series. 

Even if the models based on DTW work well in this example and lead to 
results comparable with other well-established methods, the potential use of 
these models is better illustrated with multivariate series. To align the vector 
valued series x(t) to the reference curve y(t) the function minimized in the 
DTW algorithm becomes: 
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Fig. 3. Boxplots of pre-processed CO values for the first 33 monitory stations. 

Fig. 4. Boxplots of pre-processed CO values for the last 34 monitory stations. 

E lly«-x(j)||^ (2) 
ii,j)ew 

where ||.|| is the Euclidean norm. This objective function is the straight­
forward generalization of the univariate case. As an example, Fig. 7 shows 
the structural means of the daily values of sulfur dioxide (S02) , ozone (03) 
and CO, computed considering vector-valued series in the D T W algorithm 
with restriction on the continuity constraint. The warping function is equal 
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Fig. 5. Structural means of the CO curves obtained with different methods. 
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Fig. 6. Warping functions (from January 1st 2001 to April 10th 2001). 

for each series and is computed considering simultaneously the values of the 
three pollutants, which are thought of different aspects of the same phe­
nomenon. To reduce noise, raw series are interpolated with tensor product 
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splines. Longitudinal means are also reported in the left-side panels. Here 
the amplitudes of the peaks are similar but structural means show less and 
better-defined peaks. Maxima of S02 and CO (which are typically winter 
pollutants) and minima of 0 3 (which is a summer pollutant) are well aligned 
and the trend for each pollutant is also much more evident in the structural 
mean. Comparing, for CO, the graph of the structural mean obtained with 
the vector valued series and the one obtained with univariate analysis, we 
see that in the first case marker events are estimated more accurately and 
spurts are better defined. Although we are mainly concerned with the struc­
tural means estimation, a potential use of improved DTW with the vector 
valued series may be the development of a daily pollution index based on 
the values of several pollutants simultaneously. For pollutants for which the 
structural mean is computed with common warping functions, this index may 
be reached with a principal component analysis of the structural means. For 
example, the first principal component of the structural means of CO, S02 
and 0 3 explains the 85 % of the total variability (Table 2) and has significant 
correlations with all the three means (Table 3). This component may be then 
used as a quality index based on the three pollutants CO, S02 and 03 , simul­
taneously. Breakpoints for this index maybe defined considering that scores 
have zero mean and one of the three structural means has a negative correla­
tion with the principal component. As an example. Table 4 reports possible 
breakpoints for the pollution index and frequency of days corresponding to 
each class. Note that breakpoints are considered with respect to the range of 
possible values and do not focus on health effects one may experience within 
a few hours or days after breathing polluted air. As a matter of fact, a pol­
lution index based on the first principal component of the structural means 
reached by improved DTW with vector valued series may overcome the two 
main drawbacks of official air quality indexes The first one is that it is not 
realistic to assume the same air pollution index as valid all over the world, 
since different areas are characterized by different climatic conditions, and 
both the construction of the index and the breakpoints should be data de­
pendent. The second drawback is that these idexes are usually referred to a 
single pollutant while the level of pollution should be considered with respect 
to the different pollutants simultaneously present in the atmosphere. Data 
reported in Tables 2, 3 and 4 illustrate the potential use of a principal com­
ponents analysis over the structural means obtained with multivariate series. 
However, this topic deserves further elaboration since the analysis should be 
performed over a wide range of pollutants. 

4 Conclusions 

The algorithm based on DTW is shown to work well in the air pollutants 
example, and to lead to results at least comparable to those reached by other 
methods. Of course, with a limited number of series, the initial reference 
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Strctural Mean Longitudinal IVIean 

KAJKjK/t 

MvAv^w 
Fig. 7. Estimated means of some pollutants (period 01/01/2001 - 31/10/2004). 

Component Eigenvalues Explained variability (%) 

1 

2 

3 

2.56 

0.33 

0.11 

85.4 

11.0 

3.6 

Table 1. Eigenvalues of the principal component analysis 

vector (the cross sectional mean, both for the algorithms based on D T W 
and for self modeling registration) clearly influences the results. In litera­
ture, proposals for computing the structural mean of a sample of curves have 
been almost always applied to a greater number of series and with a limited 
length. Further elaboration is therefore needed in order to apply the method 
to examples with a greater number of series. Computat ional t ime substan­
tially depends on the choice of the smoothing parameter of the interpolating 
splines. With the parameters estimated by cross validation, computational 
efforts are quite intensive. With parameters flxed a priori, equal for each se-
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Variable Component 1 

Structural mean CO 0.96 

Structural mean S02 -0.91 

Structural mean 0 3 0.90 

Table 2. Linear correlations between the first principal component and the struc­
tural means 

Score of principal component I Air quality Number of days 

| 0 . 5 | 

0.5 1 - 1 1 1 
1 1 - 1 1-5 1 
1.5 1 - 1 2 1 
2 1 - 1 2.5 1 
> 1 2.5 1 

Good quality 

Low pollution 

Moderate pollution 

High pollution 

Hazardous 

Very Hazardous 

360 

526 

376 

107 

19 

12 

Table 3. Possible breakpoints for the pollution index proposed 

ries, the algorithm is much faster. However, computational efforts are always 
negligible with respect to the other methods used in this study. 
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Abs t r ac t . We are describing here a sequential discriminant analysis method which 
aim is essentially to classify evolutionary data. This method of decision-making is 
based on the research of principal axes of a configuration of points in the individual-
space with a relational inner product. We are in presence of a discriminant analysis 
problem, in which the decision must be taken as the partial knowledge evolutionary 
information of the observations of the statistical unit, which we want to classify. 
We show here how the knowledge from the observation of the global testimony 
sample carried out during the entire period, can be of particular benefit to the 
classifying decision on supplementary statistical units, of which we only have partial 
information about. An analysis using real data is here described using this method. 

1 Introduction 

The Sequential Decisional Discriminant Analysis (SDDA) proposed is based 
on the relational inner product notion in the individual-space. We distinguish 
two or more than two groups of individuals, defined a priori by a nominal 
variable on which the same continuous variables are measured at different 
times. This sequential method is especially conceived to study evolutionary 
da ta in a classifying aim of evolutionary new individuals. The main aim of this 
method is to obtain at t ime a bet ter prediction performance of supplementary 
individuals during their evolution. The constraint being here to impose to the 
discriminant factors to belong to the subspace generated by all observations 
carried out during the period of information knowledge about the individual 
we want to classify. Contrary to the Part ial Decisional Discriminant Analysis 
(PDDA) also proposed, the SDDA takes into account the global information 
brought by the testimony sample in the classification decision. It is possible 
to carry out such an analysis according to the evolution in time of the sup­
plementary individual tha t has to be classified. Section 2 deals with a brief 
description of a Relational Euclidean Model and with a comparison between 
two proposed multiple discriminant analyses. The definition of a sequential 
method is given in section 3. Part ial and sequential methods of discriminant 
analysis are illustrated and compared on the basis of real data . 
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2 Discriminant Analysis in a Relational Model 

In this section, we propose in a Relational Euclidean Model two multiple 
discriminant analyses, then evaluate and compare their discrimination per­
formance through an empirical study. 

The Relational Euclidean Model is of some interest because the inner 
product in individual-space is relational, i.e. taking into account relation­
ships observed between variables. We recall the notion of this inner product 
introduced by Schektman (1978). 

{x^{t)]j = l,p}t=i,T, being T sets of p continuous same variables observed 
at different times and {y^; k = 1,̂ '} the dummy variables of the modalities 
of a nominal variable y, observed at the end of the period that is at the last 
time T. Let us denote: 
Et = Ex(t) = ^-^ [resp. Ey = W] the individual-subspace associated by du­
ality to the p zero mean variables {x^{t)]j = l ,p} [resp. zero mean dummy 
variables {y^; k = 1, g'}], 
Xt the matrix of the explanatory data at time t associated to the set of 
variables {x^{t)]j = l ,p} , with n rows-individuals and p columns-variables, 
X^ = [Xi , . . . , X t , . . . , X5] the evolutionary data matrix: juxtaposition of ta­
bles Xt, it's named partial if s is less than T and global if s is equal T, 
Y(^n,q) the data matrix associated to the set of variables {y^; k = 1, g'}, 
^ j ' = 0{^t}{t=i,T} = M^^ [resp. ^ 1 = (B{Et}{t=i,s} = M^̂ ] the global 
[resp. partial] explanatory individual-subspace, associated by duality to the 
T [resp. s first] sets of explanatory variables {x^{t);j = l,p}{t=i,T} [resp. 
{X^{t)'j = l,p}{t=l,s}i 
Dy the diagonal matrix of weights attached to the q modalities: [Dy]kk = ^f 
for all /c = l,^', where rik be the number of individuals which have the kth 
modality of y, 
^t = {xi{t) G Ef] i = l ,n} the configuration of the individual-points as­
sociated to Xt and N^ [resp. N^] the configuration of the individual-points 
associated to the table X ^ [resp. X^ ] in E^ [resp. ^ | ] , 
My [resp. Mt] the matrix of inner product in the space Ey [resp. Et]. 

Since, we are in the framework of a discriminant analysis, we choose Ma-
halanobis distance Mt = 1^^ in all explanatory subspaces Et and My = xl 
the Chi-square distance in Ey. So, M is a relational inner product, parti­
tioned and well-balanced matrix, of order Tp -\- q, in the individual-space 
E = E^ 0 Ey, according to all the couples of variables {x^{t);j = l,p}t=i,T 
and [y^] /c = 1, g'}, if and only if: 

Mtt = Mt = Vt'^ for all t = 1,T 
Mtt' = Mt[{VtMt)i]^Vtt'Mt^[{Vt^Mt^)i]^ = Vt^VtfV^t for all t ^ t' (1) 
Mty = Mt[{VtMt)i]^VtyMy[{VyMy)i]^ = VtVtyXl 

where Vt = ^XtDXt , Vy = ^YDY and Vty = ^XtDY are the matrix of 
covariances, L) = ^ /^ is the diagonal weights matrix of the n individuals 



Sequential Decisional Discriminant Analysis 51 

and In is a unit matr ix with n order. [{VtMt)'^]'^ [resp. [ (^y^y)^ ]^ ] is the 

Moore-Penrose generalized inverse of {VtMt)"^ [resp. {VyMy)"^] according to 

Mt [resp. My]. 

2.1 Re la t iona l Dec i s iona l D i scr iminant A n a l y s i s 

Let P^s the M-orthogonal projection operator in E^ = 0{^ t}{ t= i , s<T} 

subspace and Ng{x/y) = {P^s{ek{y); k = l^q} C E the configuration of the 

q centers of gravity points, where {ek{y); k = l^q} is the canonical base in 
Ey. 

Def in i t ion 

The Relational Decisional Discriminant Analysis (RDDA) at t ime s G ] 1 ;T] 
of the configuration N^ consists in making, in a REM, the following PCA: 

PCA [N^{x/y) = {P^{ek{y));k = l,q}; M; Dy]. (2) 

It 's a multiple discriminant factorial analysis and named partial (FDDA) 
if 5 G ] 1 ; T[, global (GDDA) if 5 = T, and it 's equivalent to the classical and 
simple discriminant factorial analysis if 5 = 1. 

2.2 Sequent ia l Dec i s iona l D i scr iminant A n a l y s i s 

Decisiveness is the second aim of any discrimination procedure allowing to 
classify a new individual in one of the q groups, supposed here, a priori 
defined by all the values of the sets {x^(t); j = l ,p}t=i,T-

Using generators of inner products, we choose the "best" intra inner prod­
uct Mt{a), a e [0; 1], in the explanatory subspaces Et according to a max­
imum explained inertia criterion. So the nature of Euclidean inner product 
My in Ey is of no importance; however, we opt for the Chi-square distance for 
its use simplifies calculations. For Mt, in the subspace Et, we use generators 
of within inner products Mt{a) to search the "best" one, denoted Mt{a'^), 
which optimizes criterion (Abdesselam and Schektman (1996)). 

In the context of the formal approach, we suggest these following simple 
formulas for choosing the inner product which maximizes the percentage of 
explained inertia: 

(^Mt{a) = alp ^ {1 - a)Vt'^ for all t = 1,T 
X'^Mtla) =aIp^ll-a)Vt with ceG[0,1] . 

These generators will evolve from the symmetrical position ^Mt(O) = V^^ 
(Mahalanobis distance) towards the dissymmetrical position ^Mt(O) = Vt in 
passing by the classical dissymmetrical position ^Mt( l ) = Ip = ^Mt ( l ) , 
where Ip is the unit matr ix in order p and V^^ the Moore-Fenrose generalized 
inverse of Vt. 
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In this case, the partitioned and weh-balanced matrix, of order Tp + q, 
associated to the relational inner product denoted M* in the individual-space 
E = E^ (B Ey, is written like this: 

' M* = Mtia"") for all t = 1,T 
M*, = M,K)[(y,M,K))^] + y,,.M,.K)[(y,.M,.K))^]+ for all t + t' 

^ Mty = M,{a^)[{VtM,{a^))h] + Vtyxl 

Let N^{x/y) the configuration of centre of gravity points associated to the 

configuration N^ = P ^ {N^) C E: the M*-orthogonal projection of global 

explanatory configuration N^ in the partial subspace E^ C E. 

Property 

The Sequential Decisional Discriminant Analysis (SDDA) at time 5 G [1; T—1] 
consists in making in E, the PDDA of the configuration N^, that is the 
following PCA: 

PCA[N^{x/y);M^;Dy]. (3) 

In (2) and (3), the configurations Ng{x/y) and N^{x/y) of the centre of 
gravity points are in the same subspace E^ = W^ of the Euclidean individual 
space E. 

3 Example - Apple Data 

From the Agronomic Research National Institute - INRA, Angers, France, we 
kindly obtained an evolutionary data set that contains the measurements of 
p = 2 explanatory variables: the content of both sugar and acidity of n = 120 
fruits of the same type of apple species at T = 3 different times - fifty days 
before and after the optimal maturity day - {ti: premature, t2'- maturity, ^3: 
postmaturity}. 

Note that for these repeated measurements of sugar and acidity, obviously 
it's not a matter of the same apple at different times but different apples of 
the same tree. 

This sample of size N = 120 is subdivided into two samples: a basic-
sample or "training set" of size Â i = 96 (80%) for the discriminant rule and 
a test-sample or "evaluation set" of size N2 = 24 (20%) for next evaluated 
the performance of this rule. 

Global Decisional Discriminant Analysis 

This first part concerns the performance of the discrimination rule of the 
GDDA, we use both explained inertia and misclassification rates as criteria 
for the two samples. At global time we obtain better discrimination results, 
indeed we show in Figure 1 that the q = 3 three groups-qualities of apples 
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{Gij G2j Gs} are differentiated and well-separated. Note tha t these groups 
are a priori well-known at the end of the last period. 

Table 1 and Figure 1 summarize the main results of the global discrimi­
nant analysis at t ime {^1,^2,^3}, i.e. s = T = 3. 

Inertia 

B-Between classes 
W-Within class 

T-Totale 
Explained inertia 

Samples 
Basic-sample (80%) 
Test-sample (20%) 

GDDA 

1.7986 
0.2014 
2.0000 
89.93% 

Misclassified 
0% 
0% 

Table 1. Explained inertia and misclassification criteria. 
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Fig. 1. Representations of the global analysis at time s = T = 3. 

So, with this good percentages for the criteria: 89.93% of explained inertia 
and 0% of misclassified for both basic and test samples, we can considerate 
this basic-sample of evolutionary da ta as a good global testimony sample to 
make partial or sequential analyses at t ime 5 = 1 and /o r 5 = 2, if we want 
to classify, into the three groups pre-defined at global t ime 5 = T = 3, new 
individuals which we only have partial information about, i.e. information at 
t ime 5 = 1 or 5 = 2. 

C o m p a r i s o n of d i s cr iminat ion rules 

This second part concerns the discrimination performances of the PDDA 
and SDDA methods. They are compared at t ime {^1,^2}, i.e. 5 = 2. 
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In Table 2, we show tha t the values of the discrimination and misclassifi-
cation criteria of the SDDA are better than those of the PDDA according to 
those of the GDDA in Table 1. 

PDDA 
1.6347 
0.3654 
2.0000 
81.73% 

Partial 

4.17% 
0% 

Criteria at time s = 2 
B-Between classes 

W-Within class 
T-Total 

Explained inertia 

Misclassified 
Basic-sample (80%) 
Test-sample (20%) 

SDDA 
1.7858 
0.2143 
2.0000 
89.29% 

Sequential 
0% 
0% 

Table 2. Comparison of the criteria 

The graphical results in Figure 2 also show tha t the groups are more 
well-separated with the Sequential method than with the partial method. 
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SstpKnfMl Mnalysis : Oassiffing 
l/TcfivMiials-tesf in tlm discriminant piarm 

V. 
Mxs 1: m.m^i, 

A3 OG1 DG2 

Fig. 2. Representations of the partial and sequential analyses at time s = 2. 

C o m p a r i s o n of classif icat ion rules 
This third part which is the main aim of this paper concerns the clas­

sification of new individuals at t ime {ti} and /o r {^1,^2}. This objective is 
schematically illustrate in Figure 3. 
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i i - prematurity 

X' ]Sugar 

11.60 

13.85 
13.10 

13.09 
12.00 

10.55 

X ' ' : Aeidiiy 

4.52 

5.58 
4.42 

4.01 
6.18 

8.40 

i2 
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12.60 

13.22 
14.00 

14J0 
12.00 

11.58 
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K" : Acidity 

4.78 

4.23 
6.76 

6.97 
4.15 
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= T=3 

tg - postmaturity 

X' : Sugar 

14.00 

U.38 
12.60 

13.15 
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12.06 
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3.10 
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3.40 
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Fig. 3. Classifying new individuals 

In Table 3 we summarize for each method the results of the affectation 
group and the distances between the centres of gravity and five anonymous 
supplementary individuals. 

G i 

1.183 
1.156 
1.121 
1.116 
1.832 

G2 
1.480 
1.156 
1.286 
1.996 
2.051 

Gs 
1.183 
2.463 
2.569 
1.007 
0 .371 

PDDA 
7 
? 

Gi 
Gs 
Gs \ 

New individual 
51 

52 

ss 
54 

55 

ISDDA 

Gi 
G2 
G2 
Gi 
Gs 

Gi 
1.163 
1.780 
1.738 
0.915 
1.196 

G2 
1.516 
0.495 
0 .515 
2.091 
2.084 

Gs 
1.345 
2.024 
2.050 
1.408 
1.123 

Table 3 . Distances - Classification of anonymous individuals at t ime 5 = 2 

Figure 4, shows the projection of these new individuals on the PDDA 
and SDDA discriminant plans at t ime {^1,^2}. An individual-point is affected 
to the group whose centre of gravity is the nearest. 

On the discriminant plan of partial analysis, where we take into account 
only the values of the variables at times ti and ^2, the two supplementary in­
dividuals 5i, and 52 are border points, they are unclassifiable. The individual-
point 53 is near the first group and the two other points, 54 and 55, are affected 
to the third group. 

Whereas, on the discriminant plan of the sequential analysis - i.e. we take 
into account all information brought by the global testimony sample, as well 
as the values of the variables at t ime ts, even if these values at t ime ts for 
these new individuals are unknown - we are led to classify 5i and 52 in one 
of the three groups more precisely, respectively in the first and the second 
group. As for 53, it 's allocated to the second group and finally, 54 and 55 are 
classified respectively in the first and third group. 
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Fig. 4. Representations of the partial and sequential analyses at time s = 2. 

4 Conclusion 

In this paper, we have presented a Sequential Decisional Discriminant Anal­
ysis of evolutionary da ta in a relational Euclidian context in a discrimination 
and classification aim. This method is particularly adapted because it enables 
to take at t ime a classifying decision of a new evolutionary individual about 
which we have only a partial information. It 's a simple and effective method 
which can be very useful in different fields especially in the medical field for 
diagnosis-making, where it is often important to anticipate before term in 
order to be able to intervene on time when necessary. 

A c k n o w l e d g m e n t s : I am grateful to Professor Yves Schektman for his 
helpful suggestions and precious advice he provides me. 
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Abstract. Consider the problem of classifying a number of objects into one of 
several groups or classes based on a set of characteristics. This problem has been 
extensively studied under the general subject of discriminant analysis in the sta­
tistical literature, or supervised pattern recognition in the machine learning field. 
Recently, dimension reduction methods, such as SIR and SAVE, have been used for 
classification purposes. In this paper we propose a regularized version of the SIR 
method which is able to gain information from both the structure of class means 
and class variances. Furthermore, the introduction of a shrinkage parameter allows 
the method to be applied in under-resolution problems, such as those found in gene 
expression microarray data. The REGSIR method is illustrated on two different 
classification problems using real data sets. 

1 Dimension Reduction Methods in Classification 

Dimension reduction methods, developed in the context of graphical regres­
sion, have been recently used in classification problems. Cook and Yin (2001) 
discuss dimension reduction methods, such as sliced inverse regression (SIR, 
Li (1991)) and sliced average variance estimation (SAVE, Cook and Weisberg 
(1991)), as graphical methods for constructing summary plots in discriminant 
analysis. Both methods are able to recover at least part of the dimension re­
duction subspace *Sy|x, a subspace spanned by the columns of the p x d 
{d < p) matr ix l3 such tha t F X X | ^ X . This implies tha t the pxl predictor 
vector X can be replaced by the dx 1 vector l3 X with no loss of regression 
information. Whatever d < p, we have effectively reduced the dimensional­
ity of the problem. Furthermore, the estimated summary plot might provide 
useful information on how to construct a discriminant function. 

The SIR method gains information on 5 y | x from the variation on class 
means, so it might miss considerable information when classes differ not only 
on their location. SAVE, on the contrary, uses information from both class 
means and class variances. However, it requires the estimation of more pa­
rameters, and the summary plot it provides may not be as informative as 
tha t provided by SIR when the majority of statistical information useful for 
classification comes from the class means. 
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Cook and Yin (2001) discuss the connection between these two methods 
and a second-moment method cahed SIR-II (Li, 1991). In particular, the sub-
space identified by the SAVE method can be seen as the sum of the subspaces 
given by SIR and SIR-II methods. In this paper we propose a regularized 
version of the SIR algorithm, called REGSIR, which gains information from 
variation on both class means and variances. Regularization will depend on 
two parameters selected by minimizing an estimate of the misclassification 
error. 

2 Regularized SIR 

The SIR algorithm is based on the spectral decomposition of Var(E(X|F)), 
with the eigenvectors corresponding to the non-zero eigenvalues which span a 
subspace of the dimension reduction subspace, that is *SE(x|y) ^ *^y|x- ^^ the 
original proposal Y was replaced by a sliced version, but in the classification 
setting this is not required since Y is already in discrete form. The sample 
version of SIR is obtained through the eigen-decomposition of E^^^M, where 

Tix = — y^(xi — x)(xi — x) is the covariance matrix, fk = rik/n is the 
i 

proportion of cases in each class for k = 1 , . . . , K classes, each of size n/̂  
(n = ^ ^ n/c), and the kernel matrix 

M = Var(E(X|r)) = ^ ^(xfc - x)(xfc - x )^ (1) 
k 

The above matrix is also known as the between-group covariance matrix. 
Given the decomposition E^^^M = VLV^, SIR directions are given by 

^ —1/2 ^ "T 

f5 = E ^ ' V and SIR variates are computed as f5 X. It can be shown that 
canonical variables used in linear discriminant analysis (LDA) are equivalent 
to SIR variates but with different scaling (Li (2000)). 

SIR-II gains information about *Sy|x from the variation in class covari-
ances. Thus, directions are estimated following the same procedure shown for 
SIR, but with a different kernel matrix given by 

M = E [ E x | y - E ( E x | y ) ] ' 

k 

where ^x\{j=k) = — /^ {Xi—Xk){xi—Xk)'^ is the within-class covariance 
i:{yi=k) 

matrix, and ^E{X\Y) = XI/c fk^x\{Y=k) is the pooled within-class covariance 
matrix. 

The proposed regularization approach aims at using information from 
differences both in class means and variances. Meanwhile, a shrunken version 
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of E x is used to overcome ill- and poorly-posed inverse problems (Friedman, 
1989). This latter goal is pursued defining the following convex combination: 

Ex(A) = (1 - X)±x + A ^ ^ ^ ^ ^ I (3) 
P 

where the parameter A (0 < A < 1) controls the amounts of shrinkage applied, 
and I being the identity matrix. As A ^ 1, E x (A) approaches a diagonal 
matrix with diagonal elements given by tr(5]x)/p, i.e. the average eigenvalue 
of the covariance matrix. 

The regularized kernel matrix is defined as 

M(A, 7) = (1 - 7 )M/ + jMii (4) 

where M / and M / / are, respectively, the kernel matrices in (1) and (2). The 
regularization parameter 7 (0 < 7 < 1) controls the convex combination of 
kernel matrices used by SIR and SIR-II. Finally, REGSIR directions are esti­
mated through the spectral decomposition of 5]x(A)~^M(A,7). The projec­
tion onto the estimated subspace is given by ^ X, where ^ = 5]x(A)~^/^V 
and V is the matrix of eigenvectors with associated eigenvalues (/i, ^2, • • •, Id)-

Depending on the value of the parameters (A, 7), we may have several 
special cases. SIR is obtained setting (A, 7) = (0,0), while SIR-II for (A, 7) = 
(0,1). For any given value of 7, as A ^ 1 the covariance matrix tends to be di­
agonal, hence treating the predictors as uncorrelated. Holding A fixed, the pa­
rameter 7 allows to obtain intermediate models between SIR and SIR-II, i.e. 
models which use information coming from both class means and variances. 
In practice, both parameters are often unknown, so they are determined by 
minimizing an estimate of the misclassification error. 

Once REGSIR directions have been estimated, cases can be projected 
onto S{P) with Y as marking variable. Such graphical representation may 
have a major descriptive and diagnostic value in analyzing data. However, 
a formal classification rule can be stated as C{x) = arg;. m.mSk{x), with the 
discriminant score defined as 

6k{x) = 0'^x - ^'^XkVw^\^'^x - ^'^Xk) + log \Wk\ - 21og(^fc) (5) 

where Wk = 'y^x\Y=k + (1 ~7)^E(x|y) is a regularized pooled within-group 
covariance matrix. The first term in (5) is the Mahalanobis distance ofx with 
respect to the centroid on S{f3)^ using Wk as scaling matrix. This matrix 
depends on a convex combination controlled by the parameter 7: for 7 = 0, 
W/c equals the usual pooled within-group covariance matrix, while for 7 = 1, 
each class has its own within-group covariance matrix. In this last situation, 
we are able to account for different degrees of dispersion within each class. 
The last terms in (5) are corrections, in analogy to Gaussian discriminant 
analysis, for different within-class covariances and class prior probabilities 
(Ef=i^/c = i). 
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The classification rule based on the discriminant score in (5) can be ap­
plied on a test set, if available, or on a cross-validated set to provide an 
estimate of the misclassification error, as well as for selecting the optimal 
pair of (A, 7) values. 

3 Applications to Real Data Sets 

In this section the proposed methodology is applied to remote sensing data 
on crops, which presents a multiclass problem with a complex structure, and 
to gene expression data, whose main feature is the very large number of 
variables (genes) relative to the number of observations (cells or samples). 

3.1 Remote Sensing Data on Crops 

Identifying and mapping crops is important for national and multinational 
agricultural agencies to prepare an inventory of what was grown in certain 
areas. This serves the purpose of collecting crop production statistics, yield 
forecasting, facilitating crop rotation records, mapping soil productivity, etc. 

A sample of 36 observations were classified into five crops: clover, corn, 
cotton, soybeans, and sugar beets (SAS Institute (1999)). Table 3.1 reports 
the number of observations, the means and the log-determinant of the covari-
ance matrices for the four predictors within each crop type. The dataset has 
a complex structure with quite different means and variances within group, 
and only 36 cases. For this reason it has been used in literature as an instance 
where quadratic discriminant analysis performs better than linear discrimi­
nant analysis (see Table 2). 

rik 

Xlk 

X2k 

X3k 

XAk 

iog(|5:fc|) 

Clover 
11 

46.36 
32.64 
34.18 
36.64 
23.65 

Corn 
7 

15.29 
22.71 
27.43 
33.14 
11.13 

Cotton 
6 

34.50 
32.67 
35.00 
39.17 
13.24 

Soybeans 
6 

21.00 
27.00 
23.50 
29.67 
12.45 

Sugar beets 
6 

31.00 
32.17 
20.00 
40.50 
17.76 

Table 1. Summary statistics for remote sensing data on crops 

Figure 3.1 shows the misclassification error for REGSIR obtained by cross-
validation (CV) on a regular grid of regularization parameters values. The 
minimum CV error is attained at 7 = 0.9, whereas the parameter A does 
not seem to play a crucial role here. Thus, most of statistical information for 
classification purposes is obtained from the kernel matrix of SIR-II, whereas 
the shrunken parameter is set to A = 0, which means that the kernel matrix 
M(A,7) in equation (4) is scaled by E x , the common estimate of the full 
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covariance matrix. For (A, 7) = (0,0.9) the REGSIR algorithm yields a train 
error equal to 0.44, which is smaller than the error at tained by LDA and the 
other dimension reduction methods, albeit it is larger than the error provided 
by QDA. However, the leave-one-out CV error for REGSIR is equal to 0.50, 
which is smaller than the CV errors for QDA and the other methods used in 
the comparison (see Table 3.1). 

REGSIR loo~CV error 

min=0.5at(?. = 0, y = 0̂ 9) 

LDA 
QDA 
SIR 
SIR-II 
SAVE 
REGSIR 

train error CV error 
0.50 0.67 
0.11 0.56 
0.53 0.75 
0.53 0.75 
0.53 0.75 
0.44 0.50 

Table 2. Misclassification errors 
for some classification methods 
applied to the crops dataset 

Fig. 1. Contour plot of the loo-CV error 
for re-gularization parameters on the grid 
( 0 , l ) x ( 0 , l ) 

3.2 Microarrays G e n e E x p r e s s i o n D a t a 

The monitoring of the expression profiles of thousands of genes have proved 
to be particularly promising for biological classification, particularly for can­
cer diagnosis. However, DNA microarrays da ta present major challenges due 
to the complex, multiclass nature and the overwhelming number of variables 
characterizing gene expression profiles. Here we apply REGSIR to simulta­
neously develop a classification rule and to select those genes tha t are most 
important in terms of classification accuracy. 

The REGSIR approach allows to overcome the under-resolution problem 
by setting the shrinkage parameter A > 0. Moreover, since gene expression 
profiles for different groups mainly differ with respect to their average pro­
files, the parameter 7 may be set to 0, so the regularization simplifies to a 
shrunken version of the ordinary SIR. Directions are estimated through the 
eigen-decomposition of 5]x(A)~^M/(A), and the classification rule based on 
the score in equation (5) is applied to allocate the samples. 

The inclusion of irrelevant genes often degrades the overall performances 
of estimated classification rules. Furthermore, identifying a small set of genes 
tha t is able to accurately discriminate the samples allows to employ a less 
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expensive diagnostic assay in practical applications. Therefore, gene selection 
is a crucial step and, in the context of dimension reduction methods, it aims 
at identifying a subset of genes which is able to linearly explain the pat terns 
variation in the estimated subspace. 

The criterion adopted to select the, say, g relevant genes is based on i?^, 
the squared correlation coefficient between a set of g genes and the REGSIR 

variates ^ X , using the proportions Ij/ J2i=i h iJ = ^J - - - jd) to reflect the 
importance of each estimated REGSIR variate. A backward iterative scheme 
is adopted: at each step only those genes which contribute the most to the 
overall pat terns are retained, then the REGSIR model is re-est imated and 
the accuracy of the resulting classifler evaluated. The screening of redundant 
genes depends on the cut-off value used in the R^ criterion: a large value, 
say 0.999, implies tha t one or few genes are removed at each step. On the 
contrary, the process can be accelerated for small values, say 0.9, since in this 
case a large number of redundant genes are eliminated at each iteration. This 
process is repeated until the flnal subset contains K — 1 active genes. The 
classiflcation accuracy of each gene subset may be assessed on the basis of its 
misclassiflcation error on a test set, if available, or on a cross-validated set. 

\—»— Training e 

n—I— \—I— \—I—r n—I—\—I—\—T" 

Genes subset 
Regularized SIR;A-=0.1 

Fig. 2. Misclassification errors for genes subsets applied to the SRBCT data 

This approach has been applied to da ta on small round blue cell tumors 
(SRBCT) of childhood (Khan et al. (2001)). Expression measurements for 
2308 genes were obtained from glass-slide cDNA microarrays, and tumors 
were classifled as: Burkit t lymphoma (BL), Ewing sarcoma (EWS), neurob­
lastoma (NB), and rhabdomyosarcoma (RMS). 63 cases were used as training 
samples and 25 as test samples, although flve of the latter were not SRBCTs. 



Regularized SIR in Classification 65 

Since a large number of genes show a near constant expression levels 
across samples, we perform a preliminary screening of genes on the basis of 
the ratio of their between-groups to within-groups sum of squares (Dudoit 
et al. (2002)). Figure 2 shows the misclassification error rates obtained by 
REGSIR with A = 0.1 for subsets of decreasing size obtained removing the 
redundant genes based on the R'^ = 0.99 criterion. Notably, the error rate 
is constantly equal to zero for many subsets, indicating that it is possible 
to remove several redundant genes without affecting the overall accuracy. 
Based on this plot, we might select the subset with, say, g = 12 genes as 
the "best" subset, because it is the smallest subset to achieve a zero error 
rate on both the test set and on 10-fold cross-validation. It is interesting 
to note that Khan et al. (2001) achieved a test error of 0% using a neural 
network approach and selected 96 genes for classification. Tibshirani et al. 
(2002) using shrunken centroids selected 43 genes, still retaining a 0% error 
on the test set. The REGSIR approach also achieves a 0% test error, but it 
uses far less genes. 

Figure 3 shows the training samples projected onto the subspace spanned 
by the REGSIR directions estimated using the "best" 12 genes, along with 
decision boundaries. The tumor classes appear clearly separated, in particular 
along the first two directions. However, the 10-fold CV error considering only 
the first two directions rises from 0% to 5.5%. 

Fig. 3. Scatterplots of estimated SIR variates using the best subset of 12 genes for 
the SRBCT data with decision boundaries 
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4 Conclusions and Open Issues 

The proposed REGSIR method appears to provide accurate classification 
rules on both real and artificial datasets we have studied so far. By a suitable 
choice of regularization parameters , it proves to be sufficiently ffexible to 
adapt to several situations. However, further research is required to improve 
efficiency of the algorithm, particularly for the selection of regularization 
parameters , and a systematic comparison with other classification methods 
should be investigated on several simulated scenarios. 

Finally, all the analyses and computations discussed in this paper have 
been conducted in R, a language and environment for statistical computing 
(R Development Core Team, 2005). Functions which implement the proposed 
methodology are freely available upon request from the author. 
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Abs t r ac t . In this paper some possible approaches to asymmetric multidimensional 
scaling with external information are presented to analyze graphically asymmetric 
proximity matrices. In particular, a proposal to incorporate external information 
in biplot method is provided. The methods considered allow joint or separate an­
alyzes of symmetry and skew-symmetry. A final application to Morse code data 
is performed to emphasize advantages and shortcomings of the different methods 
proposed. 

1 Introduction 

Square da ta matrices whose rows and columns correspond to the same set 
of "objects", like proximities (e.g. similarity ratings), preferences (e.g. socio-
matrices), flow da ta (e.g. import-export , brand switching), can be represented 
in low-dimensional spaces by scalar product or Euclidean distance models 
(MDS models). These models have to be suitably modified by increasing 
the number of parameters when not random asymmetry is present in the 
da ta (see e.g. Zielman and Reiser, 1996). In many applications additional 
information (external information) on the objects is available tha t could be 
conveniently incorporated in the da ta analysis. For instance, this allows to 
analyze the contribution of variables suggested from theoretical knowledge to 
the explanation of the relationships in the data . To this aim many methods 
were proposed in the context of symmetric MDS (see e.g. Borg and Groenen 
1997, chapter 10), while a lack of proposals seems to characterize asymmetric 
MDS. In this paper some possible approaches to take into account external 
information in asymmetric MDS are considered, including a method based 
on the unique decomposition of the da ta matr ix in its symmetric and skew-
symmetric components recently proposed by Bove and Rocci (2004). 

2 Direct Representation of Data Matrices by Biplot 
with External Information 

Biplot (Gabriel, 1971) is a useful technique of da ta analysis to display graph­
ically relationships between rows and columns of two-way matrices. This 
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method was also considered to represent asymmetric proximities by 2n points 
in a low-dimensional space (usually bidimensional). Approximate r-dimensio­
nal biplot of a square data matrix X = [xij], whose rows and columns corre­
spond to the same set of n objects, is based on the approximate factorization 
X = A B ' + ^, with r, the number of columns of A and B, less than the rank 
of X. The rows of matrices A and B provides coordinate vectors respectively 
for the n rows and columns of the data matrix and their scalar products ap­
proximate the entries of X. This direct representation of the data matrix can 
also be used to analyze symmetry and skew-symmetry by sum and difference 
of the two scalar products corresponding to the entries Xij and Xji. 

The r-dimensional biplot is obtained by minimizing the sum of squared 
residuals | | ^P , i.e., by the singular value decomposition of the data matrix 
X. 

When a full column rank matrix of external variables E = [ei,e2, ...,ep] 
containing additional information on the n objects is available, we can try to 
incorporate in the analysis the external information in order to improve data 
interpretation (e.g. data theory compatible MDS). In this case we usually 
seek for a constrained solution whose dimensions are linear combination of 
the columns of E, that is, we want the columns of matrices A and B to be 
in the subspace spanned by the columns of E. In matrix notation A = EC 
and B = ED where C and D are matrices of unknown weights, so that 

X = A B ' + ^ = E C D ' E ' + ^ (1) 

The best least squares estimate for C and D is obtained by minimizing 

/ i(C,D)= | | X - E C D ' E ' | | 2 (2) 

This problem can be solved by noting that if we rewrite E = P G , where 
P ' P = I and G is a square full rank matrix, then 

/i(C, D)= ||X - ECD'E'll^ = ||X||2 + IIP'XP - GCD'G' | |2+ 

-IIP^XPII^ (3) 

It is now clear that /i(C,D) reach the minimum when C = G"-""!! and 
D = G^-'-V where U V is the r-dimensional biplot of P ' X P . We refer to 
Takane and Shibayama (1991) and Takane, Kiers and De Leeuw (1995) for 
other examples of component analysis with external information. 

3 Generalized Escoufier and Grorud Model (GEO) 
with External Information 

A known result of linear algebra is that each square matrix can be uniquely 
decomposed into the symmetric and the skew-symmetric components. For our 
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data matrix, we can write: X = S + K, where S is the symmetric matrix of 
averages Sij = ^{xij -\-Xji) and K is the skew-symmetric matrix of differences 
kij = ^{xij — Xji). To analyse S and K jointly Escoufier and Grorud (1980) 
proposed the following EG model: 

M 

m=l 

where Sij is a residual term. When M = 1 the model allows us to represent 
objects in a plane (bimension) having coordinates (an^bn); for a pair of 
points in this plane, the scalar product describes the symmetric component, 
while twice the area of the triangle having the two points and the origin as 
vertices describes the absolute value of the skew-symmetric component, whose 
algebraic sign is associated with the orientation of the plane (positive counter­
clockwise, negative clockwise). The previous EG model can be considered a 
constrained version of the GEG model proposed by Rocci and Bove (2002) 

M 

Xij ^ y ^ [fy^im^jm ~r ^ira^jra) \ ^\^im^jm ^im^jm)\ ~r £ij \0) 
m=l 

where 7 = 0 if the data matrix is skew {Gower decomposition) and 7 = 1 
otherwise, while 6 >0. When 7 = 1 and M = 1 the GEG model is equivalent 
to Chino's GIPSCAL, while giving different weights to the skew-symmetric 
component we obtain Generalized GIPSCAL (Kiers and Takane, (1994)). 
GEG can be rotated simplifying the interpretation of bimensions. Bove and 
Rocci (2004) showed that the external information represented by the matrix 
E can be incorporated in the analysis by rewriting GEG in vector notation 
as 

M 

^ = I Z hi^m^m + b ^ b ; ^ ) + S{amW^ - hm^'J] + ^ (6) 
m=l 

By imposing a^ = E c ^ and b ^ = E d ^ , they obtain 

X = 7EH^"^E' + SEU^^^E' + ^ (7) 

where: H*̂ ^̂  = J2m(^rnC^m + ^m<^m) ^^ Symmetric, and 
jj(/c) ^ J^mi^rn^m ~ ^m<^m) ^̂  skcw. In vcctor notation 

^ = 7 ^ / ^ l ; ^ e , e ' , + ( 5 ^ / i , ^ f (e,e', - e , e ^ ) + e hj = l ,2, . . ,p (8) 

It follows from the last equation that the constrained representation of 
symmetry and skew-symmetry is a linear combination of the symmetry and 
skew-symmetry of the different planes determined by each pair of external 
variables. 
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4 Symmetric MDS of Skew-Symmetry with External 
Information 

A very simple idea to analyze the size of skew-symmetry, disregarding its 
signs, is to perform symmetric MDS of the matrix M obtained with the 
absolute values of the entries of the skew-symmetric component matrix K. 
Even in this case the coordinate matrix Y by which to represent the matrix 
M can incorporate external information by imposing Y = EC, where C is 
a matrix of unknown weights. Solutions for this problem can be found, for 
instance, in De Leeuw and Reiser (1980) and can be easily applied even 
with standard statistical software (e.g. PROXSCAL, SPSS-Categories). This 
approach seems useful especially when methods for the analysis of symmetry 
and skew-symmetry like biplot or GEG fail to provide explicative constrained 
solutions. 

5 Application to Morse Code Confusion Data 

A Morse code signal is a sequence of up to five tones represented by dots 
• (a short beep of 0.05 sec.) and dashes — (a long beep of 0.15 sec.) sepa­
rated by a silence of 0.05 sec. (e.g. the signal for A is short-silence-long, or, 
symbolically,-—). Rothkopf (1957) studied confusion rates on 36 Morse code 
signals (26 for the alphabet, 10 for the digits 0, . . . , 9). 598 subjects, who did 
not know Morse code, were required to state whether two signals listened 
one after another (separated by a quiet period of 1.4 sec.) were the same or 
different. The entries in the proximity matrix (36x36) are the percentages 
(rates) of roughly 150 subjects who responded "same" for the two signals they 
heard. The pairs of signals were presented in both orders, e.g. X following H 
(confusion rate 33%) and also H following X (confusion rate 6%). Symmetric 
MDS was performed on the symmetric part of the data by several authors. 
The obtained configuration could be partitioned by different criteria (e.g. 
number of elements in the signal, duration, type of composition, etc.) that 
could be used to explain the signal similarities. This suggested to Borg and 
Groenen (1997) to perform symmetric MDS externally constrained by two 
physical properties of the signals: signal type (the ratio of long versus short 
beeps) and signal length (varying from .05 to .95 seconds). They found that 
the difference in Stress of the constrained and the unconstrained solution was 
rather small (0.21 versus 0.18), so that the theory-consistent solution based 
on the two external variables seemed acceptable. 

Even if the symmetric part of the Morse code data is dominant (96% of the 
total SSQ without the diagonal) many authors argued that asymmetry may 
still reveal interesting not random relations. For instance, Gower (1977, p. 
I l l ) argued that " . . . a two-component signal followed by a three component 
signal gives more confusion than the reverse. This tendency is more prevalent 
for pairs of similar signals". Moreover, Borg and Groenen (1997, p. 406-407), 
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integrating skew-symmetry into the representation of the symmetrized data, 
noted that shorter Morse code signals were more often confused with longer 
ones than vice versa. 

We applied the three approaches presented in the previous sections in 
order to detect external variables explaining asymmetry in the Morse code 
data. We focused on bidimensional representations in order to make easier 
the comparison with previous applications on these data. 

Biplot and GEG class of models were applied constraining solutions by 
using different sets of external variables. The strong reduction in the fit of 
the skew-symmetry in the constrained solutions showed that these methods 
can not perform very well when the symmetric component is so relevant in 
the data. In fact, in the joint analysis of the two components the external 
variables tend to refiect much more symmetry than skew-symmetry. 

Symmetric ordinal MDS of the absolute values of the skew-symmetric 
component of the data provided the configuration depicted in Figure 1, with 
Stress=0.33. Even if the fit value does not seem so good, much of the size 

Fig. 1. Symmetric ordinal MDS of skew-symmetry 
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of relevant asymmetries can be easily detected in the configuration by point 
distances. For instance, the small distance between X ( ) and H (••••) or 
G ( ) and P ( ) represents their large asymmetry. 

The symmetric ordinal MDS solution was first constrained by signal type 
and signal length, used by Borg and Groenen (1997) for the symmetrized 
data. This caused quite an high increase in Stress, resulting equal to 0.42. 
The set of external variables was enlarged adding other four properties of the 
signal: number of dots, number of short/long beep inversion, presence of dot 
at the beginning, presence of dot at the end. The obtained configuration has 
Stress=0.37 and it is depicted in Figure 2. A comparison with the uncon­
strained solution reveals that many distances are adequately approximated, 
even if there are some differences (e.g the pairs 1-9, E-T, 2-M). Type, length 
and presence of dot at the beginning are the variables more correlated with 
first dimension, number of dots is the variable more correlated with second 
dimension. 

Fig. 2. Symmetric ordinal MDS of skew-symmetry with external variables 



Asymmetric MDS with External Information 75 

Quite peculiar are the aligned positions of the ten digits from left-top to 
r ight-bottom corner, given to the correlations between variables and dimen­
sions. 

In summary, these results seem to suggest tha t theory-consistent solutions 
for symmetry and asymmetry in these Morse code da ta need two different 
not disjoint sets of external variables. In particular, length and type cannot 
explain completely asymmetry, tha t occurs in several ways according to the 
peculiar position of dots and dashes inside the signal. 

6 Conclusions 

We have shown different possible approaches to incorporate external infor­
mation in asymmetric MDS. The choice between the different proposals also 
depends on the relevance of symmetric and skew-symmetric components. In 
some applications a direct representation of the da ta can make approaches 
like biplot preferable. In these situations even unfolding models incorporating 
external information could be considered. On the other hand, a direct anal­
ysis of symmetry and skew-symmetry performed by models like GEG could 
be most appealing when the two components have an easy interpretation and 
improve the analysis of the relationships between objects. 

When methods for joint analysis of symmetry and asymmetry fail to reveal 
theory-consistent explanations of the proximities, separate analysis of the two 
components should be preferred. Future developments of this study could 
regard a more detailed analysis of biplot with external information for skew-
symmetric matrices. 
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Abs t r ac t . This work addresses the problem of selecting appropriate architectures 
for Bayesian Neural Networks (BNN). Specifically, it proposes a variable architec­
ture model where the number of hidden units are selected by using a variant of 
the real-coded Evolutionary Monte Carlo algorithm developed by Liang and Wong 
(2001) for inference and prediction in fixed architecture Bayesian Neural Networks. 

1 Introduction 

A crucial problem which arises when dealing with Bayesian Neural Networks 
is tha t of determining their most appropriate size expressed in terms of num­
ber of computational units and /o r connections. In fact, too small a network 
may not be able to learn the sample data, whereas one tha t is too large may 
give rise to overfitting phenomena and cause poor "generalization" perfor­
mance, i.e. the performance of the model on out-of-sample da ta is unsatis­
factory (Neal (1996)). A few solutions have been proposed in the li terature 
to solve this problem. Rios Insua and Miiller (1998) proposed a reversible 
jump algorithm to move between architectures having a different number of 
hidden units. Miiller and Rios Insua (1998) proposed a Markov chain Monte 
Carlo scheme for inference and prediction within fixed-architecture feedfor­
ward neural networks. The scheme is also extended to the variable architec­
ture case, through the introduction of a geometric prior on the number of 
hidden units, providing a procedure to identify sensible architectures. Liang 
and Wong (2001) proposed a real-coded Evolutionary Monte Carlo (EMC) 
algorithm for inference and prediction within fixed architecture models. This 
is an extension of the EMC algorithm proposed by Liang and Wong (2000) 
for binary coded chromosomes. The algorithm works by simulating a popu­
lation of Markov chains in parallel where a different temperature is at tached 
to each chain. The population is evolved by applying three genetic operators: 
mutat ion, crossover and exchange. The most at tractive features of genetic al­
gorithms and simulated annealing are thus incorporated into the framework 
of Markov chain Monte Carlo. Bozza et al. (2003) proposed to incorporate 
a binary coded EMC step in the overall Markov chain Monte Carlo scheme 



78 Bozza and Mantovan 

that allows the Bayesian learning. In this work, we propose to extend the 
real-coded EMC algorithm to variable architectures models. 

The paper is organized as follows. The Bayesian Neural Network (BNN) 
model is introduced in Section 2. Section 3 illustrates the real-coded Evolu­
tionary Monte Carlo algorithm for fixed architecture models, while in Section 
4 the evolutionary algorithm is extended to the variable architectur case. Sec­
tion 5 presents the experimental results and, finally. Section 6 concludes the 
paper. 

2 The Bayesian Neural Network (BNN) Model 

Let us consider the following feed-forward neural network consisting of L 
input units with an extra "bias" unit WQ permanently clamped at +1 , w = 
{wo^wi, ...,wi, ...,WL-I), one intermediate layer of M hidden units, and a 
final layer of K output units, y = (i/i,..., tjk,..., yx)'-

M 

where n = 1,..., Â  is the number of observations, (3kj G M and 7̂ - G M^ denote 
respectively the connection weight from the hidden unit j to the output unit 
k and the connection weights from the input units to the hidden unit j , and 
r]j is the bias term of the hidden unit j . For the sake of simplicity, we set 
the r/j's equal to 0. The function '0(-) represents a tanh activation function. 
Other types of activation functions can be chosen, such as logistic activation 
function (see Bishop (1995)). 

This neural network model can be analyzed from a Bayesian viewpoint. 
Specifically, it can be viewed as a nonlinear regression of a response tjk on 
covariates w = {WQ^wi^ ...^wi^ ...^WL-I)'-

Vk Y.P^J^Wj^n^^t\ et^^N{^y). (2) 

From this, it follows that the conditional distribution of the response y^^^ 
is Gaussian. 

The prior distributions are assumed to be 7̂ - ^ iV(0, cr^/), Pkj ^ ^ ( 0 , cr^), 
Vj = 1,..., M, \/k = 1,..., K, cr-2 r^ Ga{iy, S). 

Without loss of generality, we assume K = 1. The log-posterior (up to an 
additive constant) of the model is: 

log ̂ ( ^ , 7 , (7-2 \D)(x-(^^u-l] \og{a^) 

N 

i^P^'^ 
= 1 

M 

^(-)-^/3,V^(7;.w(-)) 
M 02 M L 2 

j=l P j=l i=0 7 
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where/3=(/3l,... ,/3M)^7 = (7'l ,•••,7W)^^ = { (y^ ' ^wW) , . . , ( yW,wW)} . 
The posterior distribution is a complex function, thus it is not possible to 

obtain the marginal posteriors analitically. The complexity is due mainly by 
the nonlinearity and the multimodality. Multiple modes occur because prior 
and likelihood, and hence the posterior, are invariant with respect to arbitrary 
relabeling of the nodes. The posterior is also invariant with respect to the 
simultaneous change of the signs of f3kj and 7 -̂, since ip{—z) = —ijj{z). This 
problem can be solved by imposing an arbitrary ordering of the nodes, as in 
Miiller and Insua (1998). Liang and Wong (2001) outline how the evolution­
ary algorithm performs well in presence of multimodality and nonlinearity, 
and imposes no constraint on the parameter space. A real coded Evolutionary 
Monte Carlo algorithm is then implemented to explore the posterior distri­
bution. 

3 Real-Coded Evolutionary Algori thm for Fixed 
Architecture BNN 

Let us consider how the evolutionary algorithm works. Suppose we want to 
sample from: / (x) oc exp{—ilf(x)/t}, where x is a real-coded vector of the 
unknown parameters of the network (chromosome), H{x) is a fitness function 
(generally the log-posterior), and t is a scale parameter (temperature). So, in 
this case, H{x.) = — log 7r(7,^, cr~^ | D). 

A sequence of distributions / i(x), . . . , fNp{^) is constructed as follows: 

/.(x) = ^ e x p { - i 7 ( x ) / t j i = l,...,iV^ 

with Z{ti) = J2x ^^P {~H{xi)/ti}. The temperatures t i , . . , tNp form a ladder 
with ordering ti > ... > tj^^. Let X = {xi, ...^x^^} denote a population of 
samples, where x^ is a sample from /^(x), and Np is the population size. In the 
EMC algorithm, the Markov chain state is augmented as whole population 
instead of a single sample, and the Boltzmann distribution of the population 
is 

/(X) = ^ e x p i - ^ i J ( x O A , l . (3) 

where Z(t) = n^=i ^(^0- The population is updated by mutation, crossover 
and exchange operators. 

In the mutation operator one chromosome, say x/̂ , is uniformly chosen 
from the current population. A new chromosome is generated by adding a 
random vector: Zk = x/̂  + e/̂ . The random vector is usually chosen to have 
a moderate acceptance probability (20% — 50%). The new population Z = 
{xi, ...,z/c, ...,XArp}, is accepted with probability min( l , r^) according to the 
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Metropolis-Hastings rule, 

where T(-|-) denotes the transition probability between populations. This 
operator is symmetric, i.e the transition probability from x to z is the same 
as that from z to x. 

In the crossover operator, one chromosome pair, say x^ and x^, is selected 
from the current population X according to some selection procedure, such 
as random selection or roulette wheel selection. In the random selection, a 
chromosome is uniformly selected from the current population. In the roulette 
wheel selection each individual is assigned a weight and then is selected with a 
probability proportional to its weight. In this case, each individual is assigned 
a weight proportional to its "Boltzmann probability" 

p(x,) = exp(- i7(x, )A,) /Z (4) 

-N^ where Z = J2i=i^^P{~^{^i)/'^s) and tg is the selection temperature. Two 
offsprings ẑ  and Zj are generated by recombining the selected chromosomes 
x^ and Xj according to some crossover operators: real crossover (one-point, 
/c-point and uniform) and the snooker crossover. In this work, only the one-
point real crossover is considered. First, an integer crossover point is drawn 
uniformly; then ẑ  and Zj are constructed by swapping the gene to the right 
of the crossover point between parents. 
A new population Z = {xi,..., z^,..., z^, ...,XArp} is proposed and accepted 
with probability min(l,rc) according to the Metropolis-Hastings rule, 

r , = exp{-( i / (z , ) - i / (x,)) / t , - {H{zj) - H{^,))/t,} | | ^ , 

with T(Z|X) = P ( (x i ,x , ) I X ) P ( ( z „ z , ) I (x„x , ) ) . 
Real crossover is symmetric, that is P((z^,Zj) | (x^,Xj)) = P((x^,Xj) | 
(z„z , ) ) .So,T(X|Z)/T(Z|X) = P ( ( z „ z , ) | Z ) / P ( ( x „ x , ) | X). Throughout 
the paper, the parental chromosomes are chosen as follow. The first chromo­
some x^(xj) is selected according to a roulette wheel procedure with Boltz­
mann weights; the second chromosome Xj(x^) is chosen randomly from the 
rest of the population. The selection probability is then 

P((x , ,x , ) I X) = ( ^ _ l^2{-yi) [exp{-f f (xOAJ + exp{- i J (x , )A ,} ] . 

In the exchange operator, given the current population X and the attached 
temperature ladder t, (X, t) , the new population Z is obtained by making 
an exchange between x^ and x^ without changing the temperatures, that 
is (Z,t) = (xi , t i , ...,Xj,t^, . . . ,x^,tj, ...,XArp,tArp). The new population is ac­
cepted with probability min(l,re) 

/ ( X ) T ( Z | X ) - - ^ > " v " ••^-'••\t^ t 
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Typically the exchange is performed only on two individuals with neighboring 
temperatures , tha t is \ i — j \= 1. It can be shown tha t T ( Z | X ) = T ( X | Z ) . 

The real coded evolutionary algorithm, with the genetic operators de­
fined above, can be summarized as follows. Given an initial population X = 
{xi , ...,XArp} initialized at random, and a temperature ladder t = {t i , ...^tNp}j 
one iteration comprises the following steps: 

1. Apply mutat ion, one-point real crossover operators to the population 
with probability Pm, 1 — Pm-

2. Try to exchange x^ and x^ for Np pairs ( ,̂ j ) , with i sampled uniformly 
on 1,..., Â p and j = i±l. 

In the mutat ion step, each chromosome of the population is muta ted 
independently. In the crossover step, about 50% of chromosomes are chosen 
to mate . Note tha t the crossover operator works in an iterative way; tha t is, 
each time, two parental chromosomes are chosen from the updated population 
by the previous crossover operation. 

4 E M C Algori thm for Variable Architecture BNN 

The evolutionary algorithm presented in the earlier Section is now modified 
to allow the selection of the complexity. We consider the Bayesian Neural 
Network introduced in Section 2, (2), with an unknown number of hidden 
units. 

The initial population of models X is composed by several subpopula-
tions, X I , . . . , X M * , each of them represents a Bayesian Neural Network with 
a different number of hidden units, where M* denotes the maximum number 
of hidden nodes. The presence or the absence of a hidden unit is indicated by 
the correspondent connection weights: when the hidden unit is not present in 
the model they are set equal to zero. As an example, let us consider a BNN 
with two input units, one output unit and a maximum number of hidden 
units set equal to 4. The initial population in this case is composed by four 
subpopulations, containing the following models: 

X i 

X2 
X3 
X4 

(711, 721, A ; 0, 0, 0; 0, 0, 0; 0, 0, 0 
(711,721, A ; 712,722,/32; 0, 0, 0; 0, 0, 0 
(711, 721, A ; 712, 722,/52; 713, 723,/^s; 0, 0, o 

2 \ (711, 721, A ; 712, 722, P2\ 713, 723, Pz\ 714, 724, pA\ CF ) 

The genetic algorithms presented in the earlier section are adapted to the 
variable architecture case. 

The mutat ion operator works by adding a random quantity to the non­
zero gene of the selected chromosomes. In this way the mutat ion operator do 
not activate hidden units not present in the selected chromosomes. A peculiar 
at tention is dedicated to the gene representing the signal error: if a negative 
value is proposed, this is discarded and another value is proposed. 
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The crossover operator allows to propose models of intermediate complex­
ity among the ones with the selected chromosomes. A one-point crossover is 
implemented: the integer crossover point is sampled among multiples of the 
total number of the input and output units. So, if a model presents two input 
units and one output unit, then the integer crossover point is a multiple of 
three. In this way, the offsprings represent only fully connected units. For 
example, let us consider a pair of selected chromosomes x^ and x^ from dif­
ferent subpopulations, say for example subpopulation Xi and X4. Then ẑ  
and Zj are constructed by swapping the gene to the right of the crossover 
point between parents (excluding the gene corresponding to the signal error, 
which will be swapped last). The two offsprings ẑ  and z^ might represent 
models with one up to four hidden units, depending on the integer crossover 
point. 

The problem with this solution is that the Markov chain tends to get stuck 
in subspaces correspondent to the intermediate models. This is because, at 
each step, there will be proposed and eventually accepted models with an 
intermediate architecture. To avoid this, an alternative crossover operator 
is introduced. The alternative crossover operator works as follows. Once a 
chromosome pair is selected from the current population, we consider the 
one which represents the model with the lower number of hidden units acti­
vated. The integer crossover point is sampled between multiples of the total 
number of input and output units up to the number of connections of the 
smaller model. The two offsprings are obtained by swapping the parental 
genes in correspondence of the integer crossover point; the gene after the 
integer crossover point are set equal to zero. In this way, the two offsprings 
represent the lower architecture. 

The exchange operator works as in the earlier Section. 
The algorithm proposed works as follows. The EMC algorithm for fixed 

architectures is run for each subpopulation, initialized at random, as in Sec­
tion 3. The initial population is then given by several subpopulations, which 
are not initialized at random, but follow from a first run of the algorithm. 
The EMC for selecting the architecture works as follows: 

1. Apply mutation, one-point real crossover, alternative crossover with prob­
ability p ^ , Pc, Pac 

2. Try to exchange x^ and x^ for N^ pairs (i,^), with i sampled uniformly 
on 1,..., Nrp and j = i ± 1. 

5 A Simulated Example 

To test the effectiveness of the proposed procedure, we performed experiments 
on a simulated data set. We simulated ^1,^2, •••,l/ioo from (2) with M = 2, 
7 i = (710,711) = (2 , -1) , 72 = (720,721) = (1,1.5), (3 = (/?i,/?2) = (20,10), 
CT = 1, and the input pattern w = (l,Zt) where Zt = i-0.1 for t = 1,2,..., 100. 
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1 2 3 4 5 6 7 
0.165 0.400 0.180 0.155 0.060 0.020 0.015 0.005 

Table 1. Frequency of the different models in the final population. 

Number of hidden nodes 

Fig. 1. Frequency of the different models in the final population. 

This example is identical to the one in section 5.1 of Liang and Wong (2001) 
except for the signal error, which there was fixed at 0.1. The prior parameters 
are set as GJS = 20, cr̂  = 5, z/ = 0.01, 5 = 0.01. The population size is 
Np = 200. The mutation rate is 0.25, the crossover rate is 0.65, and the 
alternative crossover rate is 0.15. 

The population was initialized with subpopulations of the same dimension 
representing architectures with an increasing number of hidden nodes (from 
a minimum of 1 to a maximum of 10). 

We ran the algorithm five times independently. Each run comprised 10,000 
iterations. The overall acceptance rates of the mutation, crossover, alternative 
crossover, and exchange operators were respectively 0.32, 0.32, 0.15, and 0.83. 

The population evolved toward a population of models with 2 hidden 
units. Figure 1 shows the frequency of the different models in the final pop­
ulation. The proposed algorithm selected neural models having two hidden 
units with probability equal to 0.4. Table 1 shows the frequency of the dif­
ferent models in the final population. 

Figure 2 shows the maximum a posteriori (MAP) estimate of the regres­
sion line obtained from the model in the final population which presented the 
higher fitness among those with two hidden units. 
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Fig. 2. The Original Data and the MAP Estimate of the NonUnear Regression Line. 

6 Conclusions 

In this work we propose a Bayesian Neural Network model with variable 
architecture where the number of hidden units is selected by using a variant 
of the real-coded Evolutionary Monte Carlo algorithm. Opportune genetic 
operators are introduced to allow the selection of the optimal architecture. 
The dimension of the population and the definition of the genetic operators 
are critical points which need to be addressed with extreme attention. The 
results obtained on synthetic da ta show tha t the proposed algorithm allows 
to select models with a small number of hidden units. 
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Abs t r ac t . We propose a procedure to assess a measure for a latent phenomenon, 
starting from the observation of a wide set of ordinal variables affected by missing 
data. The proposal is based on Nonlinear PCA technique to be jointly used with 
an ad hoc imputation method for the treatment of missing data. The procedure 
is particularly suitable when dealing with ordinal, or mixed, variables, which are 
strongly interrelated and in the presence of specific patterns of missing observations. 

1 Introduction 

The paper draws on a practical problem which deals with the evaluation of 
vulnerability degree of a number of valuable historical-architectural buildings 
located in a Northern Italian Region. The start ing point is a wide set of 
ordinal variables which describe the buildings status and are affected by the 
problem of missing data . The underlying hypothesis of the analysis is tha t 
vulnerability represents the latent factor tha t cannot be measured directly 
but only indirectly by many variables, whose categories represent different 
aspects and different levels of the latent dimension. To solve the problem 
we adopt a statistical approach to extract latent factors, where buildings are 
statistical units (objects) and risk factors are variables. In this context we are 
interested in the major latent factor tha t describes buildings vulnerability. 
Furthermore, since we are dealing with ordinal data, the final indicator should 
be consistent with ordinal properties of the original data-set. The final result 
is the assessment of individual risk for each building in the sample. 

The proposal to the problem is Nonlinear Principal Component Analy­
sis, Nonlinear PCA (Gifi (1990)). The procedure is particularly suitable in 
this context because it incorporates the measurement level of variables into 
the analysis. In particular the method computes optimal 'quantification' of 
variable categories preserving categories ordination as required. In addition, 
data-set is affected by the problem of missing data, as it is often the case 
when dealing with this type of data . When missing da ta are present, addi­
tional at tention is required to the analyst. Many methods are available for 
missing da ta t reatment (Little & Rubin (2002)). From the point of view of 
nonlinear da ta analysis, up to the present one can distinguish among three 
different options. In the paper we discuss these different s tandard options. 
However, since in our case s tandard options do not yield any satisfactory 
ordination of the buildings, we propose an alternative method particularly 
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suitable to treat our specific pattern of missing data, but it could be adapted 
to handle more general cases. 

2 Nonlinear P C A 

The problem can be termed as measuring vulnerability of a building. Clearly 
vulnerability cannot be directly measured. The basic hypothesis of the analy­
sis is that every observed variables can be mapped into a single real number, 
that expresses building vulnerability. Observed variables concern different 
parts of the building, here called structural component (foundations, verti­
cal and horizontal structures, etc.). For each structural component, observed 
variables characterize different types (structural damages, biological degra­
dation, etc.) and different levels (damage severity, urgency of intervention or 
damage extension) of various aspects of vulnerability. Every variable is in­
tended to describe different aspects of the same one-dimensional phenomenon 
(vulnerability) that eventually we want to quantify. 

Let X be the latent variable to be measured on n units, i.e. in our case 
the level of damage of each building. If m ordinal variables are observed on 
each unit with ordered categories Cj = {cji : / = 1, 2,... /cj}, let Gj be the 
indicator matrix nxkj for variable j . The goal is here to get the value of Xi for 
i = 1,..., n as linear combination of monotonically transformed categories: 

(1) 
with a{Gfj{i)cj) G 9̂  and Oi{cji) > Oi{cjq) if Cji > Cjq 

where notation Gj{i)cj indicates the category of variable j observed on 
unit i. Coefficient A represents the loading assigned to variables and non linear 
transformation a represents proper quantification of variable categories. To 
this purpose the choice consists of a particular exploratory analysis: Nonlin­
ear Principal Component Analysis. It allows to synthesize variables in one or 
more dimensions and simultaneously preserves measurement levels of qualita­
tive ordinal data. The technique optimally computes category quantifications 
and variable loadings. In particular Nonlinear PCA finds p orthogonal axes 
that optimally fit the data where each column of the data matrix (each vari­
able) is monotonically transformed in such a way that the axes optimally fit 
transformed data (Gifi (1990)). As we are interested in the first and major 
dimension, in the following p = 1. The starting point for the derivation of 
one dimensional Nonlinear PCA is the following loss function a: 

^ m 

c^(x,qi ,qm) = — ^ t r ( x - G ^ / 3 ^ q ^ ) ' ( x - G ^ / 3 ^ q ^ ) (2) 
777/ . 

J = l 

Vector X, of dimension nxl, contains the object scores; q^ is the vec­
tor of order kj that contains optimal category quantifications for variable j 
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and f3j is the loading of variable j . Nonlinear PC A computes the minimum 
of loss function cr(x,qi ,qm) under various normalization conditions and 
also under a particular restriction termed 'rank-1 restriction', that allows the 
analysis to take into account the measurement level of the variables (Michai-
lidis et al. (1998)). This way of computing variable transformations is called 
optimal scaling because the transformations are chosen so as to minimize the 
loss function. In our case the one dimension Nonlinear PCA solution for ob­
ject scores represents building vulnerability. To evaluate the validity of the 
latent dimension hypothesis, a scree plot for a high dimensional solution is 
built. From the very steep trend of the curve it emerges that the first eigen­
value is effectively much larger than the others. Furthermore all loadings in 
the first dimension are of the same sign. These facts together indicate that 
the hypothesis of one-dimensional data is reasonable and object scores can 
be considered as vulnerability indexes. Each building can then be reordered 
and compared with each other according to the assigned score x^, while (3j 
and GjCij are respectively loadings Xj and quantified categories a{GjCj) as 
indicated in (1). If data-set is non affected by missing data, loadings (3j are 
correlations between object scores and quantified variables, hence, they can 
be nicely interpreted as "ordinary" loadings in standard PCA. 

3 Missing Data: Standard Nonlinear PCA Options 
Comparison 

Data-set under examination is characterized by several missing data which 
are due to the physical absence of a particular structural component of the 
building (for example a vertical structure). For this reason buildings that lack 
one or more components do present missing data for all the variables that de­
scribe the decay status of that component. Since the final goal is quantitative 
comparison among buildings, it is here necessary to make buildings directly 
comparable. In other words all scores are to be computed on the basis of the 
same set of variables and therefore a proper imputation of missing values has 
to be set. 

When missing data are present, loss function a includes an incomplete 
indicator matrix Gj and a binary matrix M^: 

^ m 

c^(x,qi ,qm) = — ^ t r ( x - G ^ / 3 ^ q ^ ) ' M ^ ( x - G ^ / 3 ^ q ^ ) (3) 
777/ . 

J = l 

where M^, of order nxn, has the role of binary indicator of missing obser­
vations for variable j . Normalization restrictions on object scores are (Michai-
lidis et al. (1998)): 

X'M*X = 771-71 M * = V " l . M . 
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with u^ vector of ones with dimension n, and object scores are: 

m 

x = M , - i ^ / 3 , G , q , (5) 

Many methods are available for the treating of missing data and they all 
depend on researchers' assumption about the process that underlies miss-
ingness. In nonlinear data analysis one can distinguish among the following 
three options (Gifi (1990)): (i) the indicator matrix is left incomplete or (ii) 
it is completed adding single or (iii) multiple columns for each variable with 
missing data. First option {missing data passive) implies that the row of Gj 
is a zero row if the corresponding object has a missing observation for variable 
j . Option (ii) is called missing data single category and option (Hi) is called 
missing data multiple category. They both imply a complete indicator matrix, 
so that missing data are treated as if they are a category themselves. In the 
single mode one extra column is added to Gj with entry ' 1 ' for each object 
with missing data on the j - th variable. The multiple category mode adds to 
Gj as many extra columns as there are objects with missing data on the j - th 
variable. The first option discards missing observations from the computation, 
whilst the others require strong assumptions regarding the pattern of missing 
data. In addition, when ordinal or numerical data are under examinations, 
further complications are added to the algorithm used to solve Nonlinear 
PGA, which has to take into account the measurement levels of variables. If 
missing data are few and sparse, no substantial impact is expected to affect 
results. On the contrary, if missing data show a specific pattern, results can 
be sensibly infiuenced by the specific option which is adopted to treat missing 
data. 

To show impacts of options (i) and (ii), implemented in the SPSS-CATPCA 
module, on Nonlinear PGA results we set up a simple artificial case. It in­
cludes eight ordinal variables and twenty objects. Variables are defined to 
have different number of categories, from two to four categories. A single 
one-dimensional Nonlinear PGA solution is firstly computed for the com­
plete data-set without missing data (reference case). Afterward, four values 
on three units are eliminated to artificially simulate missing data. Two Non­
linear PGA solutions are computed for the 'missing case' where missing data 
are treated using option (i) and option (ii) respectively. The third option is 
non considered here because it is certainly the most impacting one. Loadings 
for the three cases (no missing data, missing data treatment (i) and missing 
data treatment (ii)) are computed and relative differences of loadings for op­
tion (i) and option (ii) with respect to the reference case are shown in Figure 
1. It must be noted that the two different options act in different ways: even 
if loadings f3j are always positive for all the three models, relative differences 
are not always of the same sign. This means that option (i) could assign to 
certain variables more weight than the non-missing solution whilst option 
(ii) the other way down (see for example VAR2). This behavior could obvi-
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Fig. 1. Comparison among loadings pj from Nonlinear PC A standard missing data 
treatment. 

ously induce misleading results. Category quantifications are compared only 
for some representative variables and the two options act in a similar way, 
they both overestimate or underestimate quantifications. The overall effect 
of the two different options on object scores can be seen in Figure 2. Since 
the effect of different missing da ta t reatments on loadings (3j is not of the 
same sign, it follows tha t where option (i) underestimates a score it often 
occurs tha t option (ii) overestimates the same score. Furthermore, the effect 
of t reatment (ii) is reasonably stronger than the one of t reatment (i), with 
most of the longest bars in the picture belonging to the second option. This 
example highlights tha t , even with a simple artificial case, s tandard missing 
da ta t reatments in Nonlinear P C A could have serious impacts on results. In 
addition, when missing da ta are present and apart from specific missing da ta 
t reatments , loadings f3j are no more interpret able as correlation coefficients, 
thus loosing their useful role. 

4 Missing Data: Proposed Method 

In our case s tandard missing da ta options are not suitable and we need to 
seek an alternative t reatment of missing observations. 

Data affected by missing da ta are generally classified as MCAR, MAR or 
NMAR according to the missing-data mechanism. If Y defines the complete 
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Fig. 2. Comparison among object scores by Nonlinear PC A standard missing data 
treatment. 

data and M the missing-data indicator matrix, missing-data mechanism is 
characterized by the conditional distribution of M given Y. If missingness 
does not depend on the values of Y, neither missing nor observed, data are 
called missing completely at random (MCAR). If missingness depends only 
on the observed part of Y and not on the part that is missing, missing-data 
mechanism is called missing at random (MAR). Finally the mechanism is 
called not missing at random (NMAR) if the distribution of M depends on 
the missing values in Y (Little & Rubin (2002)). It is important to note that 
the assumption MCAR does not necessarily mean that missing-data pattern 
itself is random, but rather that missingness does not depend on the data 
values. In particular, also a monotone pattern can be missing at random as 
this is our case. In fact our missing data show a specific pattern, which is 
close to be monotone, but the probability that a variable is missing for a 
building does not depend on neither observed nor unobserved variables, but 
it depends only on the physical lack of a structural component for that build­
ing, not on its latent level of damage. We are then empowered to treat our 
data as MCAR and choose among various method available for monotone 
missing data treatment (Srivastava (2002)). Classical methods are neverthe­
less generally based on the assumption of multivariate normality of the data. 
For the case under examination, as for most problems that handle a great 
amount of data, it is very difficult to assume an underling distribution and. 
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in any case, our framework is descriptive and not probabilistic. It is then nec­
essary to find valid alternatives. The solution is here an imputation method 
which enables to assess a damage indicator which is consistent for all the 
buildings in the data-set, with correct handling of missing observations. To 
this aim two steps are performed in succession. Firstly, the original data-set is 
divided into two strata according to the presence of at least one missing struc­
tural component for the building. The first stratum contains only buildings 
for which all the variables are observed {reference subset) and it is reduced 
to 363 units; the second stratum contains only buildings that lack one ore 
more structural components {imputation subset), and it contains 458 units. 
In spite of the reduction, reference subset preserves representative properties 
of the original data-set. Nonlinear PC A is then applied to the homogeneous 
reference subset, obtaining category quantifications and loadings for all the 
variables involved. In the imputation subset observed variables are assigned 
quantified categories and loadings obtained by Nonlinear PCA applied to the 
reference subset. Missing quantifications for unobserved variables in the im­
putation subset are instead imputed starting from the most similar building 
in the reference subset. Similarity between building Ui in the reference subset 
and building u^ in the imputation subset is defined by a weighted Minkowski 
distance: 

d{u„ul) = (5^/?^|G,(i)q,- - G,(fc)q,r)^ r > 1 (6) 
J 

where index j runs among all the variables actually observed on unit 
u^. Our choice is r = 1, hence the adopted distance is Manhattan dis­
tance weighted by variable loadings computed by Nonlinear PCA on the 
reference subset. The distance choice is Manhattan since Euclidean distance 
overweights high differences (Little & Rubin (2002)) thus leading to a unde­
sirable alteration of effective loadings of structural components. Unobserved 
variables are then assigned quantifications of the corresponding variables ob­
served on the nearest building in the reference subset. 

The overall damage indicator for unit u^ in the imputation subset can 
now be computed as: 

m 

with some imputed and some observed Gj{k)q^j. Ordination of units fol­
lows straightforward by using object scores just computed for the whole set 
of buildings. 

Figures 1 and 2 show relative differences respectively for loadings and 
object scores of proposed method with respect to the reference case. Com­
parison with standard options (i) and (ii) highlights the overall advantages 
of the proposal. In the proposed procedure, if two buildings obtain similar 
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scores on common observed structures they are expected to be, and they ac-
tuahy are, classified with similar total scores. This is not always guaranteed 
by Nonlinear PCA with s tandard options, in the presence of missing da ta 
pat terns of the type under examination. Furthermore, since loadings (3j are 
computed on the basis of the reference subset, which is not affected by miss­
ing data, they recover their useful meaning of correlation coefficients between 
object scores and optimally quantified variables. It is then possible to assess 
variable importance in defining the latent dimension. 

It is important to note tha t in this case the use of a reduced data-set 
(the reference subset) does not lead to any loss of information since buildings 
in the reference subset are highly representative of the overall data-set. It is 
nevertheless our intention to extend, in near future, the proposed approach in 
order to include more general situations, such for example those cases where 
the reference subset does not satisfy required representative conditions. 

5 Conclusions 

Proposed method provides a measurement instrument for latent factors which 
are described by categorical variables. To this aim it computes category quan­
tifications tha t preserve original order and it solves the problem of missing 
data . The proposal is consistent with the geometric and descriptive approach 
typical of Nonlinear PCA. In particular it t reats missing da ta according to 
the relevance of the variables with missing da ta and, at the same time, it pre­
serves all the characteristics of Nonlinear PCA without missing data, such as 
the classical meaning of variable loadings {(3j). When applied to the vulnera­
bility problem it provides scores generally lower than the ones from standard 
Nonlinear PCA, thus having a smoothing effect on vulnerability indicator 
(Ferrari et al. (2005)). 
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Abs t r ac t . Among linear dimensional reduction techniques. Principal Component 
Analysis (PCA) presents many optimal properties. Unfortunately, in many applica­
tive case PCA doesn't produce full interpretable results. For this reason, several 
authors proposed methods able to produce sub optimal components but easier to 
interpret like Simple Component Analysis (Rousson and Gasser, (2004)). Following 
Rousson and Gasser, in this paper we propose to modify the algorithm used for the 
Simple Component Analysis by introducing the RV coefficients (SCA-RV) in order 
to improve the interpretation of the results. 

1 Introduction 

When the number of observed variables is very large, it may be advantageous 
to find linear combination of the variables having the property to account for 
most of the total variance. Unfortunately, in many applicative cases, like in 
case of patient satisfaction data , variables are all positive (or negative) cor­
related and consequently the first PCA principal component may correspond 
to overall size. In this case, PCA doesn't produce full interpretable results. 
To resolve this kind of problem, several authors proposed methods which 
are able to produce sub optimal components, compared to the classical PCA 
ones, but easier interpretable. 

In the li terature three different algorithms have been proposed. The first 
one is based on replacement of some elements of the correlation matr ix with 
others such tha t to have simpler and generally more interpretable results 
(Hausman (1982); Vines (2000); Rousson and Gasser (2004); Zous et al. 
(2004)). Other techniques are based on a rotation method of the loading 
matr ix (Jolliffe (2003)). Another proposal is developed according to the cen-
troid method (Choulakian et al. (2005)). 
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2 Simple Component Analysis - RV 

Simplicity does not assure more interpretable components but it allows to 
analyze the case when several variables measure different aspects of a same 
theme with all correlation matrix elements are positive (negative). A cor­
relation matrix with this structure gives more interpretability problems in 
PCA. In order to get more simple and generally more interpretable compo­
nents sometimes a suboptimal solution is preferred to the optimal solution of 
PCA. Unfortunately, there is a trade-off between simplicity and optimality. 
When simplicity is searched by rotated principal components (called "block-
components"), the optimality is worsen because the block-components could 
be correlated and less variability is extracted from the original variables. 

Analogously to SCA, in our approach we shall distinguish between two 
kinds of components or constraints: block-components (components whose 
non zero loadings have all the same sign) and difference-components (compo­
nents which have some strictly positive and some strictly negative loadings). 
Each difference-component involves only original variables of the same block 
which is a contrast of the original variables. 

Moreover, SCA-RV gives the possibility to choose the number of block-
components and difference-components. So the correlation between them is 
cut off whereas correlations between variables in the same block are system­
atically larger than those between variables of different blocks. 

Let y be a matrix with p standardized random variables ( l i , . . . , l ^ ) , 
such that C = Y'Y is the correlation matrix with rank q {q <p). Moreover, 
let pj (with j = 1 , . . . ,g') be the column ofdipxq projection matrix P. 
PCA points out a solution P with the following major properties: (a) the 
columns of P are orthogonal; (b) the projected data YP are uncorrelated; 
(c) the vector pi is chosen to maximize the variance of Ypi and pj is chosen 
to maximize the variance of Ypj with p'jPj' = 0 and p'jPj' = l(for j ^ j ' and 
j = 1 , . . . , g' and j^ = 2 , . . . , g'). All these properties are desirable and in this 
sense PCA is a reduction technique with optimal features. When all variables 
measure several aspects of a theme and there is a direct link between them 
then all elements of C can be strictly positive. In this case all the elements 
of Pj are of same sign (Perron Frobenius theorem). This structure of the 
correlation matrix gives more problems of interpretability of PCA results. In 
order to get more simple and often more interpretable components sometimes 
a suboptimal solution could be preferred to the optimal solution of PCA. 

Let Cj = C - CPj{P^CPj)-^P^C the f^ residual matrix where Pj is 
the matrix containing the first j columns of P. Rousson and Gasser (2004) 
proposed a procedure that maximizes PiCpi-\-Y^^-2 p'jC(^j_i^pj divided by the 
sum of variances of original variables. This criterion called corrected sum of 
variance {CSV) assures equivalent results to PCA only in case of uncorrelated 
components, while it is a penalized version of PCA criterion for correlated 
components. 
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For systems which might be neither orthonormal nor uncorrelated, a 
better criterion cahed Best Linear Predictor (BLP) maximizes p'lC^pi + 
Yl^j=2Pj^fi-i)Pj cilways divided by the sum of variances of original vari­
ables. It does not penalize correlation between components because it mea­
sures the optimality of linear combinations of components. For this reason 
BLP criteria should be used only when the simple components are supposed 
to be combined together. Seeking a system of q simple components with b 
blocks maximizing the first criterion of optimality, the two stages SCA al­
gorithm provides an approximation to the optimal system of simple compo­
nents. First stage of SCA classifies p variables into b disjoint blocks. With 
fixed values of b and q, P has the b block-components into the first b columns 
and the difference-components in the last {q — b) columns. The approximate 
block-structure in the correlation matrix leads to a maximal within block 
correlations and in the meantime to a minimal between blocks correlations. 
Rousson and Gasser (2004) solved this problem with an agglomerative hier­
archical procedure based on a dissimilarity measure between clusters called 
median linkage alternative to the possible single or complete linkages. Our 
proposal modifies this first stage criterion. Instead of using an agglomerative 
hierarchical procedure based on simple correlation coefficient, which can lead 
to very different solution with a choice of a possible different link criterion, we 
propose to use the RV vectorial correlation coefficient (Robert and Escoufier 
(1976)). This coefficient gives a measure of similarity of the two configura­
tions, taking into account the possibly distinct metrics to be used on them 
to measure the distances between points (Amenta, 1993). 

Let WvD = VQiV'D and WzD = ZQ2Z'D be the scalar products 
matrices associated to matrices V and Z, respectively, with Qi and Q2 met­
ric matrices and D weight diagonal matrix. The measure is computed as 
RV{V,Z) = tr{WvDWzD)/^tr{WvD)Hr{WzDY. This measure respects 
all the four conditions for a vectorial correlation coefficient proposed by Renyi 
(1959). RV can be viewed as a special case of a more general correlation coeffi­
cient framework (Ramsay et al. (1984)) based on the singular value decompo­
sitions of two matrices. Several correlation coefficients belonging to Ramsay's 
framework, result to be independent to the spectrum effect as well as oth­
ers are not constrained to the direction effects induced by the correlation 
matrices. The first stage of SCA-RV can be synthesized in three steps: 

1. Start with p blocks 5 i , . . . , 5^ where each block contains one of the original 
variables; 

2. Select two blocks Bi and Bj for which a measure of RV is maximum and 
aggregate them into a new block B^^jy, 

3. If 6 blocks remain then stop the loop, otherwise go back to step 2. 

Similarly to SCA, the agglomeration process could continue until the cor­
relation between block components is larger than a prefixed value. 

Second stage of SCA-RV algorithm is developed according SCA. 



96 Gallo et al. 

We remark that when the loss of extracted variabihty is smah and the 
correlation between the components are low then it is advantageous to use 
SCA-RV for practical use. 

3 The Pat ient Satisfaction Evaluation by SCA-RV 

Often in patient satisfaction analysis the first component of PGA corresponds 
to overall size, so it can be considered as a sum or an average of the original 
variables. To show how the SCA-RV analysis produces easier interpretable 
results with respect to PCA and Varimax we use a dataset relative to the 
1022 patient satisfaction evaluations at a Neapolitan Hospital. These data 
obtained by a Servqual questionnaire are based on 15 items measuring five 
latent dimensions (Babakus and Mangold (1992)). Items VI - V3 give "tan­
gible" dimension, items V4 - V6 form the "reliability" dimension while items 
V7 - V9 give "responsiveness" dimension. Items VIO - V13 form the "assur­
ance" dimension and items V14 - V15 give "empathy" dimension, respectively. 
Before to analyze it, data was quantified by the "Rating Scale Models" pro­
cedures (Wright and Masters, 1982). 

^3) ^ , (b) ^ . (c) 2 , (d) 

Fig. 1. Relative importance of principal components (a). Loadings of the first (b), 
second (c) and third (d) component of PCA, respectively. 

First three PCA components explain the 74.7% of the original variance 
(Figure l.a). This is a very good result but it is not full interpretable due the 
overall satisfaction meaning of the first principal component (54.5%) (Figure 
l.b). Second component (12.9%) highlights a contrast between the set formed 
by the V2, V3, V8 and V9 variables versus the empathy dimension (Figure 
l.c). This component is not easy to interpret because this contrast is not 
confirmed by Babakus' model. Finally, third component (7.3%) highlights a 
contrast between tangibles, reliability and empathy versus responsiveness and 
assurance (Figure l.d). 

More interpretable results are given by Varimax where the assurance di­
mension is given on the second component (Figure 2.b). Tangibles dimension 
is given on the third components (Figure 2.c). Responsiveness dimension is 
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Fig. 2. Loadings relative to first (a), second (b), third (c) and fourth (d) component 
of Varimax, respectively. 

given on the fourth component (Figure 2.d). More complicate is the inter­
pretation of the first component (Figure 2.a) where empathy and realibility 
dimensions are not full determinate because are hidden from the items VI 
and V2. 

Differently full interpretable results are given from SCA-RV (Figure 3). 
Block 1 contains three items relative to the tangibles, three items relative to 
reliability and two items relative to the empathy and it represents the 32.6% 
of original variability (Figure 3.a). Block 2 contains all four items relative to 
the assurance and it represents the 20.6% of original variability (Figure 3.b). 
Block 3 contains all three items relative to the responsiveness and represents 
the 14.6% of original variability (Figure 3.c). Finally, by the first contrast is 
possible to observe tha t on first block the items relative to tangibles set again 
the item relative to empathy (Figure 3.d). 

(a) (b) (c) (d) 

Fig. 3. Loadings of the first (a), second (b) and third (c) component of SCA-RV, 
respectively. Loadings of the first difference-component of SCA-RV (d). 

Of course SCA-RV components are correlated and it does not extracts a 
maximum of the variability of the original variables. In these cases, it is possi­
ble give up to these two remarks since the more variability obtained by PCA 
and Varimax give irrelevant information and SCA-RV results are full coherent 
with the conceptual model used in the study of customer satisfaction. 
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4 SCA Versus SCA-RV: a Comparison 

The choice of the number of block-components to retain is a tricky problem in 
SCA algorithm. There are three agglomerative hierarchical procedures "sin­
gle", "median" and "complete" linkage, respectively. "Single" linkage leads to 
form small blocks and generally it assures a good optimal solution. On the 
contrary, "complete" linkage forms block-components of equal size but with 
a worst optimal solution. How many component we have to retain is a com­
mon problem for PCA and SCA. The SCA and SCA-RV goal of searching for 
several interpretable components is an advantage for the choice of the num­
ber of components. SCA and SCA-RV use all the interpretable components 
checking the optimality results. 

Figure 4 shows the optimality observed for the three different linkage 
procedures of SCA and SCA-RV according to CSV and BLP criteria. By 
using the BLP criteria, only for three block SCA-RV gives a result for single 
and median linkages while for all other cases it assures always best results. 
With (751^ criteria, single linkage generally gives better results while for two 
and three blocks better results are given by median linkage. 

(b) 
o 

CL 

m 1 -

0 

SCARV 

Median 

Single 

Complete 

0 

\ \ \^/ 1 
° \ " / / 

\ / / 
V 

0 / 

\̂  0 

> o 
(f) o 

p̂  
- -
— 
^ 

s^^ 

- SCARV 

IVledian 

- Single 

" Complete 

^ 

/̂/̂  

/ ' 

/ i 

/' 
a 

1 

8 10 

Fig. 4. Optimality values versus number of blocks by BLP (a) and CSV (h) criteria. 

Another thorny problem is that the agglomerative hierarchical procedures 
provide very different matrices of loadings. A comparision of loadings matrices 
with 5 to 2 blocks is given in Table 1. For the single linkage it is possible to 
see how the original variables tend to join in single block. On the contrary, 
SCA-RV and complete linkage of SCA are inclined to obtain blocks with the 
same number. SCA-RV has always better or equal optimal results respect to 
SCA with complete linkage for both CSV and BLP criteria. Moreover SCA­
RV provides always better coherent results than SCA with with respect of 
patient satisfaction studies. 
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SCA-RV 

SCA-Median 

SCA-Single 

SCA-Complete 

VI 
V2 
V3 
V4 
V5 
V6 
V7 
V8 
V9 

VIO 
V l l 
V12 
V13 
V14 
V15 
VI 
V2 
V3 
V4 
V5 
V6 
V7 
V8 
V9 

VIO 
V l l 
V12 
V13 
V14 
V15 
VI 
V2 
V3 
V4 
V5 
V6 
V7 
V8 
V9 

VIO 
V l l 
V12 
V13 
V14 
V15 
VI 
V2 
V3 
V4 
V5 
V6 
V7 
V8 
V9 

VIO 
V l l 
V12 
V13 
V14 
V15 

B l B2 B3 B4 B5 
0 1 0 0 0 
0 0 0 0 1 
0 0 0 0 1 
0 1 0 0 0 
0 1 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 1 0 0 
0 0 1 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 0 0 1 0 
0 0 0 1 0 
1 0 0 0 0 
0 0 1 0 0 
0 0 1 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 0 0 0 1 
0 0 0 1 0 
0 0 0 1 0 
0 1 0 0 0 
0 1 0 0 0 
0 1 0 0 0 
0 1 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 0 1 0 0 
0 0 1 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 0 0 0 1 
0 0 0 1 0 
0 0 0 1 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 1 0 0 0 
0 1 0 0 0 
0 1 0 0 0 
0 0 0 0 1 
0 0 0 0 1 
0 1 0 0 0 
0 1 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 1 0 0 
0 0 1 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 0 0 1 0 
0 0 0 1 0 

B l B2 B3 B4 
1 0 0 0 
0 0 0 1 
0 0 0 1 
1 0 0 0 
1 0 0 0 
1 0 0 0 
0 0 1 0 
0 0 1 0 
0 0 1 0 
0 1 0 0 
0 1 0 0 
0 1 0 0 
0 1 0 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 
0 0 0 1 
0 0 0 1 
1 0 0 0 
1 0 0 0 
1 0 0 0 
0 0 1 0 
0 0 1 0 
0 0 1 0 
0 1 0 0 
0 1 0 0 
0 1 0 0 
0 1 0 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 
0 0 0 1 
0 0 1 0 
0 0 1 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 
0 1 0 0 
0 1 0 0 
0 1 0 0 
0 0 0 1 
0 0 0 1 
0 1 0 0 
0 1 0 0 
0 1 0 0 
0 0 1 0 
0 0 1 0 
0 0 1 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 

B l B2 B3 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
0 0 1 
0 0 1 
0 0 1 
0 1 0 
0 1 0 
0 1 0 
0 1 0 
1 0 0 
1 0 0 
1 0 0 
0 0 1 
0 0 1 
1 0 0 
1 0 0 
1 0 0 
0 1 0 
0 1 0 
0 1 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
0 0 1 
0 1 0 
0 1 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
0 0 1 
0 0 1 
0 0 1 
0 1 0 
0 1 0 
0 1 0 
0 1 0 
0 1 0 
0 1 0 

BT 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 

B2 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Table 1. Matrices of loadings of 5, 4, 3 and 2 blocks obtained by SCA-RV with 
single^ median and complete linkage. 
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5 Conclusions and Perspectives 

PGA is a useful tool to use when the number of observed variables is large. If 
there is a direct link between all these variables then all elements of correlation 
matr ix can have the same sign and PGA doesn't produce full interpretable 
results. In order to overcome this problem, SGA focuses on simplicity and 
seeks optimal simple components. We propose to modify the SGA algorithm 
by introducing the RV coefficients. The example as well as several simulation 
studies lead to highlight tha t SGA-RV has always bet ter or equal optimal 
results with respect to SGA with complete linkage for CSV diud BLP criteria. 
In the meantime, it provides bet ter coherent results with respect to patient 
satisfaction studies. 

RV can be viewed as a special case of a more general correlation coefficient 
framework (Ramsay et al. (1984)) based on the singular value decompositions 
of two matrices. A comparative study of the performance effects of several 
correlation matrices within SGA is under investigation. 

Another interesting direction is the application of this technique to meth­
ods other than PGA (e.g.: PLS, canonical correlation analysis, etc.). 

Acknowledgement 

Authors thank the anonymous referees for their comments. 

References 

AMENTA, P. (1993): II coefficiente di correlazione lineare tra matrici di dati nel 
contesto multivariato. XVII Convegno A.M.A.S.E.S., Ischia. 

BABAKUS, E. and MANGOLD, G. (1992): Adapting the servqual scale to hospital 
services: an empirical investigation. Health Services Research^ 26, 6, 767-786. 

GHOULAKIAN, H.A., D'AMBRA, L. and SIMONETTI, B. (2005): Hausman prin­
cipal component Analysis. In: 29th Annual International Gonference of the 
German Glassification Society (GfKl 2005), Magdeburg (Germany). 

HAUSMAN, R.E. (1982): Gonstrained multivariate analysis, in: S.H Zanckis. and 
J.S. Rustagi, (Eds.): Optimisation in Statistics. North Holland. Amsterdam. 

JOLLIFFE, I.T. (2002): Principal Component Analysis, New York, Springer 
JOLLIFFE, I.T. and UDDIN, M. (2003): A modified principal component technique 

based on the Lasso. Journal of Computation and Graphical Statistics, 12, 531 
- 547. 

RAMSAY, J., TEN BERGE, J. and STYAN, G. (1984): Matrix correlation. Psy-
chometrika, 49, 403-423. 

RENYI, A. (1959): On measures of dependence. Technical Report 10, Acta Mathe-
matica of the Academy of Science of Hungary. 

ROBERT, P. and ESGOUFIER, Y. (1976): A unifying tool for linear multivariate 
statistical methods: the rv-coefficient. Applied Statistics, 25, 257-265. 

ROUSSON, V. and GASSER, T. (2004), Simple Gomponent Analysis. Applied 
Statistics, 53, pp. 539-555 



SCA-RV 101 

VINES, S.K. (2000): Simple principal components. Applied Statistics, 49, 441 - 451. 
WRIGHT, B.D. and MASTERS, G.N. (1982): Rating scale analysis. Rasch Mea­

surement, MESA. 
ZOUS, H., HASTIE, T. and TIBSHIRANI, R. (2004): Sparse principal component 

analysis. Manuscript on littp://www-stat.Stanford.edu/^ hastie/pub.htm. 



Baum-Eagon Inequality in Probabilistic 
Labeling Problems 

Crescenzio Gallo^ and Giancarlo de Stasio^ 

Dipartimento di Scienze Economiche, Matematiche e Statistiche, 
Universita di Foggia, Italy 
c.gallo@unifg.it 
Ufficio Statistico, 
Universita di Foggia, Italy 
g.destasio@unifg.it 

Abs t r ac t . This work illustrates an approach to the study of labeling, aka "object 
classification". This kind of parallel computing problem well suites to AI applica­
tions (pattern recognition, edge detection, etc.) Our target consists in simplifying 
an overly computationally costly algorithm proposed by Faugeras and Berthod; us­
ing Baum-Eagon theorem, we obtained a reduced algorithm which produces results 
comparable with other more complex approaches. 

1 Introduction 

Our work aims to study the possible applications of Baum-Eagon inequality 
(Baum and Eagon (1967)) to the "labeling" problems, which consist in assign­
ing classes (labels) to objects. For example, let us consider an image whose 
included objects' contours we want to outline {edge detection). In this case, 
the objects are pixels of which the image is made of, and the labels (classes) 
assignable to every pixel can be "contour pixel", "not-contour pixel". 

Many authors have faced this problem; in particular, an approach from 
Faugeras and Berthod (1981) require every object to be related with one 
or more neighbor ones. This situation can be represented by a graph, in 
which nodes are objects and edges represent existing relations between ob­
jects (Hummel and Zucker (1983)). Such concept can be exemplified consider­
ing a phrase containing an ambiguous word: to get its meaning, it may suffice 
to understand the meaning of neighbor words (context). The fact tha t a word 
in the phrase allows to go back to the ambiguous word's meaning shows a 
certain relation between them. Generally, in a phrase the words nearest to 
the ambiguous one are those useful for its meaning's discovery. 

More recently, some authors have faced this problem adopting different 
approaches. Divino, Frigessi and Green (2000) propose a non parametric 
method to estimate the potential interactions in a Markov Random Field; 
such method can be applied to some parts of a "biased" image taken from 
sensors subject to noise (e.g. from satellite). Kleinberg and Tardos (2002) deal 
with the so-called "metric labeling problem"; it consists in the control of a cost 
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function c{p,a), which represents the cost deriving from the assignment of a 
label a to an object p. The evaluation of such a cost comes from a likelihood 
estimate (of having the label a assigned to the object p) starting from an 
initial observation. To c(p, a) is added the cost bound to a weight measuring, 
in some way, the "influence" brought to the object p by other objects related 
to it (in the case of an image, the influence of neighbor pixels). 

The assignment of a label to an object depends on the labels currently 
assigned to the related objects: in other words, the context of the object under 
examination is taken into account. To formalize all this, let us consider, at the 
beginning, N objects ai, a 2 , . . . , aAr and L labels Ai, A2,. . . , AL- It is necessary 
to suppose to be able to deflne a set of initial probabilities, which represent 
the probability of assigning each label to an object. Elements of such a set 
are indicated by Pi{Xk), for i = 1 , . . . , Â  and k = 1 , . . . , L, and represent the 
probability to assign the label Xk to the i-th object. 

Contextual Faugeras and Berthod's information is represented by a con­
ditional probability set pij{Xk\Xi), where i^j = 1 , . . . , Â  and k^l = 1,. . . ,L, 
representing the probability of assigning label Xk to the object a ,̂ currently 
having neighbor object GJ assigned label A/. The object GJ must belong to 
the set Vi{Xk)j which is the set of objects related to a ,̂ the object currently 
having label Xk assigned to it. In many applications, objects related to a 
speciflc one do not depend on the label currently assigned to it; in such a 
case, the set Vi{Xk) will be simply denoted by Vi (aka "homogeneous case"). 
In practical problems, the initial probabilities suffer from two lacks, i.e.: 

1. Inconsistency. In practice, they do not verify the relationship 

L 

P^{>'k) = Yl J2P'^i^k\Xl)pj{Xi) (1) 
jeV^iXk) 1=1 

In other words, initial probabilities are not compatible with conditional 
probabilities. 

2. Ambiguity. The initial probabilities are ambiguous if, for at least one 
i = 1 , . . . , A ,̂ there exists at least one / = 1 , . . . , L such as vector p^ = 
[pi{Xi),... ,p^(A/),... ,P^(AL)] 7̂  [0 , . . . , 1 , . . . , 0] (i.e., there is an ambigu­
ity for an object when it tends to fall in more than one class). 

2 Consistency and Ambiguity Functions 

Faugeras and Berthod deflne two functions Ci and C2 measuring, respec­
tively, consistency and ambiguity. Consistency is measured through the for-

1 ^ _ - 2 
mula: Ci = ^ Yl \\Pi ~ QiW 5 where q^ is a vector having, for each i, the form 

[Qi{Xi)^ qi{X2)^... ,^^(AL)] . Fixed i and /c, the values qi{Xk) are given by the 
L 

following formula: qi{Xk) = Qi{Xk)/Yl Qi{M)^ where Qi{Xk) is given by: 
1=1 
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L 

Qii^k) = |y.A,)i Yl J2Pij{^k\M)Pj{M)- The values qi{Xk) represent an 

estimate of the probability Pi{Xk) on the basis of the set of conditional prob­
abilities Pij{Xk\Xi) (Faugeras and Berthod (1981)); Faugeras and Berthod's 
consistency is guaranteed by the equivalence Pi{Xk) = Qi{Xky. From this, 
there is the need to minimize the function Ci (which just represents the 
Euclidean distance between p^ and q^). The factor 2^ is for bounding Ci 
between 0 and 1. 

Ambiguity is measured through the following function: 

Co 
L-1 

1 ^ 

N 

where p^ is the probability vector [p^(Ai),p^(A2),... ,P^(AL)]. Let us observe 
that in C2 the factor in square brackets represents the entropy function; 
the factor j ^ also here serves to bound C2 between 0 and 1. Entropy 
function has its minimum when vector p^ = [p^(Ai),p^(A2),... ,P^(AL)] = 
[0 , . . . , 1 , . . . , 0], i.e. it is totally unambiguous. In this case, too, the aim is to 
find (72's minimum because it guarantees a non-ambiguous labeling. From Ci 
and C2 derives the function named Global Criterion C = aCi + (1 — a)C2, 
where 0 < ce < 1. The value ce is a constant which represents the relative 
weight we want to assign to Ci and C2; an higher value of a favours Ci (i.e. 
consistency), vice versa C2 (ambiguity). 

The search for C s minimum represents the "weak point" of Faugeras and 
Berthod's algorithm, because this is implemented with the gradient projec­
tion method and requires quite complex operations (Rosen (I960)), as well 
as a relatively high computational cost. More precisely, the algorithm passes 
from a labeling Xn to the next x^+i according to the formula: 

where Un is the negative of C s gradient in x^, and pn is a positive number 
calculated in such a way to minimize C{xn-\-i)- In this case the problem 
consists in the fact that the searched minimum is linearly bounded by 

E P , ( A , ) = 1 (i=l,...,N) 
k=i y^^) 

,P^{Xk)>0 

This involves the computation, at every iteration, of a projection operator 
Pn. The computation of Pn becomes necessary because the negative of Un 
gradient may point out of (2) hyperplane. 

^ Tipically, in image processing problems holds the "homogeneous" case, and then 
V^{Xk) = ŷ  
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The complexity of Faugeras and Berthod's algorithm leads to a difficult 
implementation, even with the use of parallel computing architectures; in fact, 
the work done by every single processor remains heavy. Its complexity be­
comes high especially in the non-homogeneous case (though this last is rarely 
applied) in which the same authors do not define the number of computations 
necessary to obtain p^. So, we aim to simplify the algorithm's complexity, 
exploiting Baum-Eagon's theorem. It applies to homogeneous polynomials of 
degree d; another theorem (Baum and Sell (1968)) removes this limitation. 

Baum-Eagon^s Theorem (Baum and Eagon (1967)): Let P{x) = P{{xij}) 
an homogeneous polynomial with nonnegative coefficients in variables {xij} 
verifying 

L 

x̂ o > 0, y^x^o = l , i = l,...,N. 

j = i 

Let 

F{x,j) 

Then P{F{x)) > P{x) until F{x) = x. 

Faugeras and Berthod's C function is a quasi-homogeneous polynomial^ 
of degree two, if we consider the homogeneous case (see section 1). In prac­
tice, because C polynomial does not generally have nonnegative coefficients 
(as required by the previous theorem), it is necessary to transform C in such 
a manner tha t the theorem be applied to another polynomial C with non-
negative coefficients. 

Formally, polynomial C has the form: C = J2J2^ijkiXikXjij where kijki 
i,j k,l 

are the (not all nonnegative) coefficients of the polynomial, XikXji {i^j = 
1 , . . . , A ;̂ /c, / = 1 , . . . , L) are the unknown factors of the polynomial. Baum-
Eagon's theorem leads to an increasing transformation, so it searches relative 
maximum points. The case of C is different, because we must minimize in­
stead of maximize. So, instead of minimizing C, we equivalently maximize 
-C. Then, let: 

C^~^ = -C = -^^kjjkiXjkXji. 
i,j k,l 

C^~^ is still a polynomial with not all nonnegative coefficients. It is possible 
to make (7^~^'s coefficients nonnegative increasing each coefficient kijki by 
the quantity 

m = min <̂  min {kijki} , 0 I (3) 

^ Except for a constant, which disappears after the application of the partial deriva­
tives S^(x) 
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so (7^~^ becomes: 

^(T) = - ^ ^ {kijki + m)xikXji 

i,j k,l 

= - ^ ^ {hjkiXikXji + mXikXji) 
i,j k,l 

= ~ / ^ / ^ f^ijkl^ikXjl — HI y ^ / ^ XikXji 
i,j k,l i,j k,l 

= C^-^ - mN^ 

L 
where it is to be considered tha t holds the relation: Yl ^ik = 1, for each 

k=l 
i = l , . . . , i V . 

Applying Baum-Eagon's theorem to C^^\ we have: 

from which: 

\c^-\x) - mN^] < \C^-\F{X)) - mN^ 

C^-\x) <C^-\F{X)), 

C{x) > C{F{x)). 

The above steps then show tha t , shifting polynomial coefficients by a 
constant quantity and applying the theorem, we obtain the growing of both 
C^^^ and C^~\ which coincides with the decreasing of the Faugeras and 
Berthod's C function. 

3 Experimental Results 

Baum-Eagon's theorem application requires, from a practical point of view, 
the writing of the function C in polynomial form. The development of the 
function 

C = aCi^{l- a)C2 

leads to the following (quasi-homogeneous) polynomial form: 

Â  L 
3aL — a — 2L ^-^ ^-^ 

i=l k=l 
^ 2N{L-1) ^ ^ ^ ^ ^ 

N L L 

i=i k=i jeVi 1=1 
N L L L 

i=i k=i jeVi 1=1 uj^Vi v=i 

M 
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where: 

• L is the number of labels, 
• Â  is the number of objects, 
• Vi is the set of objects related to the object i^. 

From the above we note the quasi-homogeneity of C (in the variables Xik) 
apart of constant M , tha t does not influence the computation of the partial 
derivatives, used for the implementation of the algorithm. 

The algorithm which implements the above mentioned method must ini­
tially flnd a constant value such as it makes all polynomial coeflicients non-
negative, so obtaining a new polynomial to which is possible to apply Baum-
Eagon theorem. Such a constant value is obtained by increasing every coef-
flcient by a quantity equal to the minimum m as in (3). 

Labeling through Baum-Eagon theorem has been tested on the threshold­
ing problem. This one consists in the transformation of an image, made of a 
matr ix of different grey level tones pixels, into another image made only of 
black and white pixels, as shown in Figure 1. Formalizing the problem, the 

Fig. 1. Sample image - initial and final labeling. 

image is made of n x m objects and L = 2 labels, corresponding to ''light 
pixeF and " dark pixeF. The initial probability set is computed according to 
a method suggested by Rosenfeld and Smith (1981): let d and / be, respec­
tively, the toward ''dark^^ and toward ''lighf^ grey levels; let Zi be the grey 
level of the i-th pixel. Then, for tha t pixel we'll have the following initial 
probabilities: Pi^ark = (̂  - Zi)/{1 - d) and Pi^ught = {zi - d)/{l - d). 

As to the conditional probabilities set, Peleg and Rosenfeld (1978) suggest 
a method based on statistical computation. Initially, there is an estimate of 
the probability tha t every pixel has a certain label A; this is realized through 
the formula: 

We assume the "homogeneous" case, so Vi{\k) = Vi 
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where N is the number of pixels, and pairs (x, y) are the coordinates of 
every pixel. Then, it is computed the joint probability of every pair (x, y) 
and {x -\- i, y -\- j) of neighbor points have assigned, respectively, labels (A, A') 
according to the formula: 

P̂ _̂ -(A,A') = -77 2 ^ P(^x,y)WPix+i,y+j){^') 
ix,y) 

From the two above derives the conditional probabilities formula: 

Pij{X\X') 
P(AO 

which has been used in our experimental tests to set the initial probabilities. 

4 Conclusions 

The goodness of Baum-Eagon approach has been hypothesized in various 
environments, especially in probabilistic labeling problems, well suited to 
AI with parallel computing architecture. Starting with Faugeras and Berth-
ods overly computationally complex algorithm, we developed a simplified 
version using Baum-Eagon inequality, and reached positive experimental re­
sults, which encourage us to refine and carry on trying more complex test 
sets. In Appendix A is reported the detailed development of the Baum-Eagon 
C function in a quasi-homogeneous polynomial form of degree two. 

A Development of the Baum-Eagon C Function 

In order to obtain the final form of C 

Ci 1 
2N 

N L 

EE 
i=lk=l 

Pi{>^k) 

aCi -\- {1 — a)C2 we first consider 
n 2 

In order to obtain a 
jev^ 1=1 

form of Ci more suited to the partial derivatives needed for the development 
of our algorithm, let us consider the case of image processing (which we are 
treating in our work). In this situation, from the Euclidean distance it is 
obvious to derive a sort of "reciprocity" in the sequence of indexes involved 
in the formula, in the sense that if a pixel i is at distance d from a pixel j , 
obviously the same holds for j respect to i. 

So we may write Ci in its final form: Ci — ^j^ 

J!J2f=iJ2t=iP^i^k)J2jev. Ef=iW('^/c|A/)p^(A/) + 

W E ^ = l E / c = l E j G y . T.l=lPij{^k\>^l)Pj{^l) T^ujeV^ T.v= 
Let us consider the development of C2. We obtain: 

2N Z^i=l l^k=l'Pi\^k) 

Puji 

Co 
L 

L-1 1 TV ^ 
L 

L-1 

N L 

1 - ^ E E M^k? 
i=lk=l 

. Multiplying Ci 
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and C2 respectively by a and (1 —ce) we obtain the polynomial form of "Global 
Criterion" C function. Developing in detail we have: 

C = aCi + (1 - a)C^ = ^ E t i \\P^ - 5.f + 

(1 - ^)x^ [1 - ^ Ef=i mf] = '-^riuE^ Ef=i ELIP. (A.)^ -

m E^^i E L I EjGV. Ef=iP^j(A/c|A/)p^(A/) Y.ujev^ E^=iPĉ (̂A ;̂|A/c)p (̂A/,) + 

L - 1 • 
From the above formula it is simple to get the partial derivatives: 

a ^ = ^l^(lSf P̂ (̂ )̂ - f E EP..(A.|AOP,(AO + 

L L 

# E EP^J(A/C|A/)P^-(A/) J2 EPC^^(A^;|A/C). 
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Abs t r ac t . We investigate the spectral decomposition of the covariance matrices 
of a multivariate normal mixture distribution in order to construct constrained EM 
algorithms which guarantee the monotonicity property. Furthermore we propose 
different set of constraints which can be simply implemented. These procedures 
have been tested on the ground of many numerical experiments. 

1 Introduction 

Let /(x;-?/?) be the density of a mixture of k multinomial distribution 
/ ( x ; tl^) = ceip(x; /x^, Ui) -\ hce/cp(x; /X;., Uk) where the aj are the mixing 
weights and p(x; /x , Uj) is the density function of a g'—multivariate normal 
distribution with mean vector /x^ and covariance matr ix Uj. Finally, we set 
t/^ = {(cej, /x -̂, X'j), j = 1 , . . . , /c} G iP", where ^ is the parameter space. It is 
well known tha t the log-likelihood function jC{tl^) coming from a sample of 
N i.i.d. observations with law / ( x ; t/^) is unbounded and presents many local 
spurious maxima, see McLachlan and Peel (2000); however under suitable 
hypotheses in Hathaway (1985) a constrained (global) maximum-likelihood 
formulation has been proposed which presents no singularities and a smaller 
number of spurious maxima by imposing the following constraint satisfied by 
the t rue set of parameters 

min A „ , i n ( ^ / , ^ - ' ) > c, ce (0,1] (1) 
l<h^j<k -^ 

where Aniin(A) is the smallest eigenvalue of A . Such constraints are difficult 
to apply in algorithms like the EM, where the estimates of the covariance 
matrices are iteratively updated; for this aim they have been reformulated as 

a<K{Uj)<b i = l , . . . , ^ , j = l , . . . , / c (2) 

where A^(A) is the i^^ eigenvalue of A, in non increasing order, and a and b 
are positive numbers such tha t a/b = c, see Ingrassia (2004). In this way a 
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set of stronger constraints are obtained; in fact, the inequalities 

A„i„(i; , i :-i)>^m^^>^ = c, i<Mj<fc (3) 

show that (2) imphes (1). 

In this paper we analyze the eigenvalue and eigenvector structure of the 
covariance matrices Uj in order to construct constrained EM algorithms 
which guarantee the monotonicity property of the unconstrained version. We 
also propose a new set of simple constraints which are weaker than (2). 

2 An Algebraic Analysis of the Covariance Matrices 

The EM algorithm generates a sequence of estimates {'0^"^^}^, where t/^^^^ 
denotes the initial guess and tl^^^^ e^ for m G N, so that the corresponding 
sequence {£('0^"^^)}^, is not decreasing. The theory of the EM algorithm 
assures that £('0^"'+^^) > £('0^"'^). The E-step, on the (m + 1) iteration 
computes the quantities 

(m+l) _ af"^p{Xn;fJ^f'\^f'^) 
^^^ ^k Am) ( (m) y(m). n = l , . . . ,Ar, j = l , . . . , / c . 

The M-step on the (m + l) iteration requires the global maximization of the 
complete log-likelihood 

k N k 

j = l n = l j = l 

with respect to t/^ over the parameter space ^ to give the update esti­
mate i{^^^~^^\ To achieve this global maximization, let us first study the 
three separate maximizations with respect to a = [cei,..., ce/̂ Ĵ  /x̂  and Uj 
(j = l ,2, . . . , fe) . 

1) Maximization with respect to a. It can be easily shown that the 
complete log-likelihood (4) obtains a maximum with respect to a by setting 

1 ^ ^ ^ ST^ (m+l) . 1 7 _ (m+l) _ 

n=l 

2) Maximization with respect to /x-. In this case, the maximization 
of (4) can be split into k independent maximizations of the terms QjifJ^j^ ^j) 
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(j = 1 , . . . , /c). Thus, let us write 

1 ^ 

= 1 

>From (5) easily follows tha t (4) obtains a maximum with respect to /x̂ -
when 

1 ^ 
_ -*- V ^ (m+l) . _ . 7 

^J ~ (m+l) Z ^ ^ n j ^n J - ! , . . . , / € ; 
^ . j n = l 

3) M a x i m i z a t i o n w i t h re spec t t o Uj which is the most relevant for 
our scope. Again the maximization of Q('0) can be split into k independent 
maximizations of the terms QjifJ^j^ X'^) (j = 1 , . . . , /c). By noting tha t 

(Xn - Mj) ^j (Xn - Mj) = t r ( (Xn - Mj) ^j (Xn - Mj)) 

= tr(X'"^(Xn - Mj)(Xn - Mj)0. 

the function (5) can be also writ ten as 

I E ^ S ^ ' ^ [-^1^(2^) - 1^ l ^ . l - t r ( ^ - ^ ( x . - /x,)(xn - M,)0 
2 . = i 

After some algebras we get 

where for simplicity we set 

• ln(2^)^.(7+^\ S, = - ^ f^ ^ S ^ ' ^ ( x n - M,)(xn - f^,y . 7 j = 
u\ ^=1 

The relation (6) shows tha t the maximization of QjifJ^j^ ^j) with respect to 

Uj amounts to the minimization of In \^j\ + tr (X '~^Sj) . 

Let Uj = FjAjF'j be the spectral decomposition of Uj^ where Aj = 
d i a g ( A i j , . . . , \qj) is the diagonal matr ix of the eigenvalues of Uj in non de­
creasing order, and Fj is an orthogonal matr ix whose columns are the stan­
dardized eigenvectors of Uj. It is well known tha t (see for example: Theobald, 
1975) 

tr (^-^S,) > tr (A-^L,) = J2 XT^k, (7) 
i=l 
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where hj = diag( / i j , . . . , Iqj) is the diagonal matrix of the eigenvalues, in non 
decreasing order, of Sj. In particular, the equality in (7) holds if and only if 
Uj and Sj have the same eigenvectors which are ordered with respect both 
A i j , . . . , Xqj and / i ^ , . . . , Iqj. This implies that the minimum can be reached 
if and only if Uj has the same eigenvectors of Sj. Under this condition, since 
In \Uj\ = J2i l^'^^j' the minimization of In \Uj\ + tr (^Uj^Sj) with respect to 
Uj amounts to the minimization of 

q q q 

Y, In Ay + ^ X^^hj = Y, (In ̂ iJ + Kj'hj) (8) 
i=l i=l i=l 

with respect to A i j , . . . , Xqj, which is equivalent to q independent minimiza­
tions of In Â j + A~- lij with respect to A i j , . . . , Xqj, which give Xij = lij. In 
conclusion, the optimal Uj is obtained first by setting its eigenvectors equal 
to the ones of Sj and then doing the same with the eigenvalues. This can be 
simply done by setting Uj = Sj . 

On the basis of the previous results, it should be noted that only the 
maximization with respect to Uj depends on the current values of the other 
parameters. It follows that the M-step can be done by maximizing: 

1. Q{oL,^i\ ...,/x^"^ , U^^\ ..., U^^^) with respect to OL to get 

(m+l) _ J_ (m) 

2. Q(a(^+i) , /xi,..., 11^, U^r\"'^ ^^r^) with respect to /x^ (j = 1 , . . . , /c) to 
get 

(m+l) _ -*- V ^ (m+l) 
^3 ~ (m+l) Z^^nj ^n ] 

'^.j n = l 

3. Q(a(^+i) , /x i^+ ' \ ..., /x^^+'\ ^ 1 , . . . , Uk) with respect to Uj (j = 1 , . . . , /c) 
to get 

y.(m+l) _ ^(m+1) _ ^ _ ^ V ^ , / r n + l ) . , , ( " ^ + 1 ) ^ ^ , , ( ^ + l ) V 

^.j n=l 

The third step can be regarded as obtained according to the following 
three substeps: 

i) set r^^ ^ equal to the orthonormal matrix whose columns are standard­

ized eigenvectors of Ŝ "̂  

n) s e t A f + ^ ^ ^ d i a g ( 4 7 + ^ \ . . . , / ^ 7 + ^ ^ ) ; 
in) c o m p u t e U^^^^^^ ̂  p ( m + l ) ^ ( m + l ) ^ ( m + l ) ' ^ 

This split into three substeps is not convenient in the ordinary EM algorithm. 
However, in the next section it will be shown how this help to formulate 
monotone algorithms for the constrained case. 
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3 Constrained Monotone EM Algorithms 

The reformulation of the update of the covariance matrices Uj {j = 1 , . . . , /c) 
presented in the previous section suggests some ideas for the the construc­
tion of EM algorithms such that the constraints (1) are satisfied while the 
monotonicity is preserved. 

Approach A. The simplest approach is the following: 

i) if A„,i„(S;.'"+^VAmax(Sf+'^) > c then set S^;^^'^ ^ s f + ^ ) otherwise 

set !;('"+') ^ S;.'"\ 

Approach B. A more refined strategy is: 

i) set r^^ equal to the orthogonal matrix whose columns are standard­

ized eigenvectors of Ŝ "̂  ; 

n) if A„, in(sf+'VAmax(sf+'^) > c then 

set ^5^+'^ ^ d iag(47+ ' \ . . . , /J7+'^) otherwise set ^5^+'^ ^ AJ^^ 

iii) compute the covariance matrix by U^J^ ^ ^- Fj ^ Aj ^ Tj ^ . 

Approach C. Another approach consists in imposing the constraints to the 
eigenvalues, that is to find an update of Uj which maximizes (4) under the 
constraints (3), see Ingrassia (2004). According to the results given in the 
previous section, the optimal update is a symmetric matrix having the same 
eigenvectors as Ŝ "̂  , and eigenvalues minimizing (8) under (2). It is easy 
to show that this can be achieved by setting 

\j — { 

if4^+^^<a 

h if /^r+'^ > h. 

We can summarize this strategy as follows: 

i) set r^^ equal to the orthogonal matrix whose columns are standard­

ized eigenvectors of Ŝ "̂  ;̂ 
ii) afterward set 

^(m+l) m i n ( 6 , m a x ( a , 4 " ^ ' ^ ) ) • (9) 

iii) update the covariance matrix as U^^ ^ ^- Fj ^ Aj ^ py^ ^ ^ 

In this way the monotonicity is guaranteed once the initial guess Uj ^ satis­
fies the constraints. 

Approach D. A different kind of constraints on eigenvalues is here proposed 
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by introducing a suitable parameterization for the covariance matrices of the 
mixture components. Let us rewrite Uj = T/'^HJ {j = l , . . . , /c) , where the 
matrices f2j are such that 

Xi{f2j)<-, and minA^(r2,) = 1 (10) 
C ij 

for i = 1 , . . . , g' and j = 1 , . . . , /c. They are weaker than (2), indeed if con­
straints (2) are satisfied and we set r/̂  = min^^ Xi{Uj) and f2j = ^j/rf then, 
by noting that Xi{Uj) = \i{f2j)rf^ we get (10) since 

XAUi) <b^ Xi(f^i) < ^ < - = - and minA^(r2,) = 1. 
-^ 7]^ a c ij 

However they are stronger than (1), indeed if the constraints (10) hold then 

\ / V V - l \ -^ ^ m i n ( ^ / i ) Aniin(j*/i) ^ 1 i ^ z , / . - ^ / ^ 

•^ Xma^{2Jj) Amax(j^j) 1/c 

In order to implement in the EM algorithm the new set of constraints, only 
the last step must be changed. The update of 77̂  and Hj must maximize the 
complete log-likelihood, i.e., they have to maximize the function 

k 

It can be shown that the maximum with respect to r/̂  is achieved by setting 

^'= i;X-T''[^H^J%)] ^ (11) 

while, on the basis of the results shown in this section and in the previous 
one, it can be easily shown that the maximum with respect to Hj is obtained 
by setting its eigenvectors equal to the eigenvectors of Sj and the eigenvalues 

KiHj) = min Q , max (l, ^^^ . (12) 

We can summarize this fourth strategy as follows: 

i) set Fj ^ equal to the orthogonal matrix whose columns are standard­

ized eigenvectors of Ŝ "̂  ;̂ 

ii) update 77̂  as 

(m)>^-l^(m+l) 
j 
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iii) set 

X^^'^ ^ (r/(-+i))2min i ,max 1 
.(m+l) 

' (^(m+l))2 

iv) update the covariance matrix as Uj ^ ^- Fj ^ Aj ^ py^ ^ ^ 

It is important to note that in (12) the maximizer depends on the current 
value of 77̂ , while in (11) the maximizer depends on the current values of 
f2j (j = 1 , . . . , /c). It follows that the sequential implementation of the above 
four steps leads to an increment of the complete log-likelihood but does not 
necessarily maximize it with respect to 77̂  and Hj {j = 1 , . . . , /c). This implies 
that the resulting algorithm is of the class ECM (Expectation Conditional 
Maximization) (see e.g. McLachlan & Krishnan, 1997) rather than EM. It is 
also important to note that the proposed algorithm does not necessarily gives 
a solution satisfying the constraint min^^ Xi(f2j) = 1 in (10); in this case, a 
correct solution can be obtained by setting 

^^(^j)' . ^ ' ^ w o A ^^d r /2^ r /2minA, ( r2 , ) (13) 

and thus a new solution is obtained that satisfy the complete set of constraints 
by giving the same value of the log-likelihood. Also in this case the mono-
tonicity is guaranteed once the initial guess Uj ^ satisfies the constraints. 
Finally, it should be noted that strategies A and B do not necessarily maxi­
mize the complete log-likelihood at each iteration. 

4 Numerical Results and Concluding Remarks 

In this section we present some numerical results in order to evaluate the 
performance of approaches Cand D, corresponding to the constraints (2) and 
(10). Further experiments have been carried out and they are presented in 
Ingrassia and Rocci (2006). We considered samples of size N = 200 generated 
from a mixture of three bi-variate normal distributions (/c = 3 and q = 2) 
having the parameters -i/? = {OL^ JJLI^ iJi2^ jJi^^^i^ ^ 2 , ^3) where 

a = (0.3,0.4,0.3)' /Xi = (0, 3)' /x^ = (1, ^)' M3 = ( - 3 , 8)' 

^' = (0 2) ^ 2 ^ ( - 1 2 ) ^ ^ = (1 2 

and the eigenvalues of the covariance matrices X'i,X'2 and X'3 are respec­
tively: Ai = (l ,2)^ A2 = (0.382,2.618)' and A3 = (1,3)'. We generated 200 
samples from this mixture. For each sample, we run the constrained EM algo­
rithms following approaches C and D^ starting from a set of points randomly 
chosen; the computation stopped when the difference between two consec­
utive log-likelihood values resulted less than 0.0001. The results, displayed 
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in table 1, have been summarized by considering the mean of the sum of 
squared differences between the t rue parameters and the corresponding esti­
mates (SSE), and the average number of iterations ( # iter). On the same 

Table 1. Mean values of the sum of squared errors of estimation and mean values 
for the number of iterations for constrained EM algorithms C and D 

Strategy C Strategy D 
a, h SSE # iter c SSE # iter 

0.38, 3 
0.20, 4 
0.10, 8 
0.01,80 
1.14, 9 

1.50 
2.02 
3.67 
6.11 
3.89 

75 
79 
95 
99 
161 

0.38/3 
0.20/4 
0.10/8 
0.01/80 

2.08 
4.42 
6.05 
6.11 

111 
129 
103 
100 

datasets we run also the unconstrained algorithm obtaining an average num­
ber of iterations equal to 99 and an average SSE equal to 6.11. 
We can not draw general conclusions from this limited simulation study. How­
ever, we note tha t the two constrained algorithms outperforms always the un­
constrained one. They are equivalent only when (a, h) = (0.01, 80) because in 
this case the constraints are not active. We note also tha t the performances of 
the algorithms decreases when the constraints are less tight. The same consid­
eration applies if we compare the two constrained algorithms when a/h = c: 
approach C is always bet ter than D because it is the most constrained. Only 
in the last setting, D is bet ter than C (note tha t 1.14/9 = 0.38/3). This is due 
to the fact tha t the constraints are wrong for C. In conclusion, it seems tha t 
the choice between the two approaches depends on the information available 
on the eigenvalues: use C if the location is known, use D if only the ratio 
between the highest and the lowest is known. 
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Abs t r ac t . Several techniques (like MDS and PC A) exist for summarizing data by 
means of a graphical configuration of points in a low-dimensional space. Usually, 
such analyses are applied to data for a sample drawn from a population. To as­
sess how accurate the sample based plot is as a representation for the population, 
confidence intervals or ellipsoids can be constructed around each plotted point, us­
ing the bootstrap procedure. However, such a procedure ignores the dependence 
of variation of different points across bootstrap samples. To display how the vari­
ations of different points depend on each other, we propose to visualize bootstrap 
configurations in a bootstrap movie. 

1 Assessing Sampling Inaccuracy for Spatial 
Configurations 

Several techniques exist for summarizing da ta by means of a graphical config­
uration of points in a low-dimensional space. The most common examples are 
multidimensional scaling (MDS) and principal component analysis (PCA). 
Usually, such analyses are applied to da ta for a sample drawn from a pop­
ulation, while the researcher hopes tha t the configuration (at least roughly) 
holds for the full population. For instance, when PCA on da ta from a sample 
is used to display the relations between the variables in a plot, it is hoped tha t 
this plot also holds (roughly) for the whole population. Likewise, it is hoped 
tha t the stimulus configuration obtained by an MDS on a sample proximity 
da ta set for a set of stimuli, gives a good approximation for the optimal stim­
ulus configuration representing the population of proximity data . To assess 
how accurate the sample based plot is as a representation for the population, 
one can t ry to set up confidence intervals for each parameter defining the 
configuration. Thus, one would get confidence intervals for all coordinates 
separately. Clearly, however, it is not very insightful to give confidence in­
tervals for each x- and y-coordinate of each point representing a variable (in 
PCA) or stimulus (in MDS) separately, as if these are independent. Rather, 
one would like to see the region tha t with a certain probability will cover the 
"population position" of the variable or stimulus at hand. An example of such 
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Fig. 1. Example of an MDS plot with 95% confidence regions. 

a plot for an MDS analysis on the average (over 30 judges) proximity of 15 
American TV shows (kindly made available by R.A. Harshman; see Lundy, 
Harshman and Kruskal, 1989) is given in Fig. 1. In this Figure, the labels indi­
cate the positions of the stimuli in the MDS solution, and the ellipses around 
these positions indicate 95% confidence regions. These confidence regions are 
obtained by first applying the bootstrap procedure (Efron and Tibshirani, 
1993) to the 30 similarity matrices we had available here (where each boot­
strap sample consisted of the data for a random sample (with replacement) 
of 30 proximity matrices from the 30 proximity matrices given by the 30 dif­
ferent judges, while next on each bootstrap sample, an MDS was applied to 
the average across the proximity matrices); next all bootstrap solutions were 
optimally rotated towards the full sample solution by orthogonal Procrustes 
rotation (Cliff, 1966), and finally ellipses were computed that optimally cover 
95% of the bootstrap solutions for each point at hand (using the procedure 
by Meulman and Reiser, 1983). Similar bootstrap procedures including Pro­
crustes rotations have been proposed by Markus (1994) for correspondence 
analysis, Groenen, Commandeur and Meulman (1998) and Commandeur, 
Groenen and Meulman (1999) for special kinds of MDS called distance-based 
PGA, Linting, Groenen and Meulman (submitted for publication) for Gat-
PGA, Kiers (2004) for three-way component analysis, Timmerman, Kiers and 
Smilde (2005) for principal components analysis. 
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2 Dependence of Points Across Bootstraps 

Above it has been illustrated that the bootstrap procedure can be used to ob­
tain confidence regions (or hypervolumes) for individual stimuli (or, in case 
of PC A, variables). By dealing with positions rather than coordinates, we 
implicitly have taken into account the mutual dependence among the differ­
ent coordinates across the various bootstrap solutions. Indeed, this can be 
seen in Figure 1, where, for instance, the ellipse for Saturday Night live (left 
under) is fairly elongated. This indicates that, if one coordinate increases 
across bootstrap solutions, then, generally the other will decrease, etc., thus 
indicating a dependence among the x- and y-coordinates of this TV-show. 
This is important, because, if we would only use the confidence intervals, we 
would conclude that both the x- and the y-coordinate vary roughly from -300 
to -100, and hence that the point could be anywhere in the block set out by 
these X and y values, whereas in reality it is restricted to a much smaller area. 
By using confidence regions, some dependence across bootstrap solutions can 
be taken into account, but the majority of dependences, namely those among 
different stimuli, has, to our knowledge always, been ignored. This is remark­
able, since the configurations define mutual positions, and hence points in 
configurations are intrinsically dependent. It is important to study such de­
pendences, because it gives information on the joint position of points (e.g., 
that it is likely that certain points in the population are close to each other 
(even if confidence ellipses do not overlap), or that they are relatively far 
from each other (even if the associated confidence ellipses touch). The reason 
for the ignorance of dependence may be that the dependence of locations 
of points across bootstraps alluded to in the present paper, is very hard to 
grasp. To indicate what is meant here, first consider how the dependence of 
two coordinates is visualized by means of a two-dimensional ellipse; would 
we have had a point in a three-dimensional space, the dependence could be 
visualized by a confidence ellipsoid, which is still imaginable. However, in the 
simple example of 15 TV-shows displayed in 2 dimensions being studied here, 
the mutual dependence of these points can only be fully visualized by means 
of confidence hyperellipsoids in 30-dimensional space. 

3 Boots t rap Movies 

Rather than trying to cover all the information in the many dimensions in 
one go, it is here proposed to use human memory and perception on the one 
hand, and human interaction on the other hand to allow for good insight 
into the dependence of points across bootstraps solutions. We propose here 
that the researcher inspects all bootstrap solutions, projected quickly after 
each other. However, simply projecting the configurations after each other 
does not give much insight, because it requires a memory of the previous 
positions of the points. Therefore, a procedure has been built in that shows 
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Fig. 2. Example of a Shot in a Bootstrap Movie for the MDS data. 

the trail of the points linking the last two positions of the points. To smooth 
the transition between two points, we subdivide the line connecting the boot­
strap points into four parts so that the trail moves in four steps to the next 
bootstrap point. In this way, at each moment we get an impression of the pre­
vious positions, and thereby of the direction of the latest movements. Thus, 
the subsequent plots actually give the impression of a movie. For this rea­
son, we call this way of presenting the bootstrap results a bootstrap movie. 
Fig. 2 displays a "still" of the bootstrap movie for the same MDS data as 
were displayed in Fig. 1. The sample points are indicated with labels, and 
here also with black dots. Furthermore, in light grey dots the complete set 
of bootstrap solutions is given (as vague, overlapping nebula), and in heavy 
grey dots the current configuration in the movie is given. Furthermore, for 
each TV-show, a line connecting the current bootstrap point and the sample 
point is given, as well as a light line connecting it with the previous bootstrap 
points, thus giving the trailing effect, emphasizing the illusion of movement 
of points, as mentioned above. This is an important tool in order to recog­
nize dependencies. In the graph right below the main window, we see the 
distances between subsequent configurations (as assessed by the square root 
of the sum of squared differences between the corresponding coordinates of 
all points in these configurations), so when the line is rather fiat, movement 
is smooth, and when it is low, there is little movement. In this way, not 
only a bootstrap movie, but also insight into its smoothness is given. The 
movement displayed in a bootstrap movie, crucially depends on the order in 
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Fig. 3. Distances between randomly ordered bootstrap configurations. 

which the bootstrap configurations are displayed. To give an impression of 
movement, we should see differences between the configurations, but, as in 
ordinary movements, these differences should not be too big, because too big 
differences would only give an impression of a chaotic sequence of images, 
and no smooth movie. Therefore, we search orders of configurations in which 
subsequent configurations differ relatively little. In fact, then, we search a 
path to "walk" through all bootstrap configurations in such a way that dif­
ferences between subsequent configurations are minimal. Since configurations 
themselves are high-dimensional objects (in our example, each configuration 
is a 30-dimensional vector), it is no trivial task to find such a path. In the 
next section, we describe two suggestions for choosing such orders. 

4 Ordering Bootstrap Configurations for Bootstrap 
Movies 

To order bootstrap configurations in such a way that subsequent configura­
tions are relatively similar, we here discuss two such suggestions. To assess 
the success of these procedures, we inspected the distances between all pairs 
of configurations. We started with a random order. For this randomly or­
dered set of configurations, we obtained the distances as displayed in Fig. 3 
(where configurations are labelled by sequence number, and mutual distances 
by grey levels, according to the indicated grey level scale scale, with all dis­
tances larger than 300 displayed as white). It can be seen in Fig. 3 that 
there is no pattern in these distances, and that distances between subsequent 
configurations are not really smaller than those between arbitrary other con­
figurations. The mean distance between subsequent configurations was 235.7, 
while the mean distance between configurations was 234.5. A first attempt 
to order the configurations in such a way that subsequent configurations are 
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Fig. 4. Distances between bootstrap configurations ordered along first principal 
component of covariances between configurations. 

relatively close to each other, consisted of first doing a Principal Component 
Analysis on the matrix of covariances between all 1000 configurations (where 
a covariance is computed simply as the covariance between all coordinates in 
one configuration with all corresponding coordinates in the other configura­
tion) , and next ordering the configurations on the basis of the loadings of the 
1000 configurations on the first principal component. The rationale for this 
was that, in this way, we efficiently get a one dimensional MDS (seriation) 
representation of the 1000 configurations, which will roughly order configura­
tions on the basis of their mutual distances. It turned out that now the mean 
distance between subsequent configurations had decreased considerably, to 
190.6. In Fig. 4 we can clearly see that distance between configurations be­
comes larger as one moves away from the diagonal. A second attempt to order 
the configurations consisted of performing a hierarchical cluster analysis on 
all 1000 vectorized configurations, using Ward's linkage criterion, using its im­
plementation in Matlab. With the dendrogram option in Matlab, we obtained 
a dendrogram of the 1000 configurations, and an ordering resulting from this 
dendrogram. The latter ordering is used here as an alternative ordering of 
the configurations. It turned out that for this ordering the mean distance be­
tween subsequent configurations was much smaller than those based on the 
first principal component: 129.9. Fig. 5 displays all mutual distances between 
configurations, and clearly reveals the clustering structure by dark blocks 
along the main diagonal, indicating groups with mutually small distances. It 
can also be said that, between such blocks, relatively big distances are found. 
For the movie this implies that within blocks movements are smooth, and 
between blocks sudden jumps will occur. 
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Fig. 5. Distances between bootstrap configurations ordered according to results of 
(Ward) hierarchical clustering of bootstrap configurations. 

5 Two-Panel Movies 

In the present paper, we have described the construction of a bootstrap movie 
for MDS solutions. A similar procedure can be used for other analysis results 
given in the form of spatial representations, like results of a Principal Compo­
nents Analysis or Correspondence Analysis. Also three-way generalizations of 
PC A yield solutions that can be displayed by means of spatial representations, 
and procedures for computing bootstrap confidence intervals and regions have 
been proposed (see Kiers, 2004). When three-way principal component anal­
ysis is applied to, for instance, subjects, by variables, by situations data, then 
it will be interesting to study a display of the variables, and a display of the 
situations, and confidence regions for all points in those displays. However, 
these confidence regions do not only correlate with other confidence regions 
in the same configuration, but also with those for the other configuration. 
Therefore, to adequately display all joint variation, two movies should be 
played simultaneously, in a two-panel movie. Such a movie has indeed been 
developed, a shot of which is displayed in Fig. 6. 

6 Discussion 

The movies described here are a tool for visualizing joint variation across 
bootstrap configurations. They help the analyst in getting an impression of 
possible strong dependencies among certain points. Often, the analyst may 
want to focus specifically on such dependencies. Then, this could be done by 
means of a simple three-dimensional display featuring only such points, or 
by means of a dependence measure, which, then, however, still needs to be 
developed for such purposes. The bootstrap movies developed here could help 
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Fig. 6. Example of a shot in a two-panel bootstrap movie for three-way data. 

in choosing and developing such measures. The Matlab programs for these 
movies are available from the authors upon request. 
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Abs t r ac t . In a previous paper (Pastore, 2004), a method for selecting the discount 
parameter in a gaussian state-space model was introduced. The method is based 
on a sequential optimization of a Bayes factor and is intended for on-line modelling 
purposes. In this paper, these results are extended to state-space models where the 
distribution of the observable variable belongs to the exponential family. 

1 Introduction 

In the dynamic linear model, the system equation represents a suitable law 
of evolution of the parameters vector, which is introduced to allow the model 
to be more flexible. In many parametric cases (essentially the class of gener­
alized dynamic linear models), Bayesian inference and prediction is possible 
in close form (exactly or approximately) only conditioning on the variance 
of the system error (for instance: West and Harrison, 1997; Vidoni, 1999). 
This hyperparameter, unlike the system matr ix and the measurement error 
variance, can be estimated only using some non-sequential methods, like max­
imum likelihood or MCMC techniques (Harvey and Fernandes, 1989; Lopez 
et al., 1999, among others). The discounting approach (Harrison and Stevens, 
1976; Ameen and Harrison, 1985; West and Harrison, 1997) allows to solve the 
problem essentially by setting the variance of the system error such tha t the 
prior distribution of the state vector at t ime t has same location but greater 
variance than the posterior distribution at t ime t — 1. The discount factor is 
the parameter which represents the ratio between these two variances. The 
discount factor is flxed, considering some suggested reference values. Bayesian 
inference and prediction is then possible conditioning on the discount factor. 

In a previous paper (Pastore, 2004), for gaussian dynamic models, a 
method was proposed in order to select the discount factor. The method 
is based on a sequential optimization of a Bayes factor (see Kass and Raferty, 
1995, for a review) and allows sequential flltering and prediction for the 
model. In this paper, the results are extended to models where the distri­
bution of the observations belongs to the exponental family. Examples for 
Poisson and Binomial distributions, and an application to a binomial t ime 
series (Smith, 1980) are considered. 
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2 Automat ic Discount Selection 

The state-space form of a dynamic model can be represented through the 
fohowing system of conditional distributions: 

p{yt\vt) (1) 

p{r]t\r]t-i) (2) 

where, for t = 1, 2 , . . . , i/t is an univariate observable random variable (r.v.) 
and r]t is the state parameter, with r]t ^ Hf ^ R^. These two conditional 
probability distributions can depend also by other parameters. Denote with 
y^ the observed value of yt and set: Y^^ = (^t-i^^?) ^^^^ ^o = ^- Inference 
for this model is made obtaining sequentially at each time t the posterior 
distribution of r]tj given F^ ,̂ p(r/t|^t^) combining the posterior distribution 
p(r/t-i |^t-i) of Vt-i cit time t — 1, and the observation y^. Two steps are 
required. First, the prior distribution of r]t is obtained using the conditional 
distribution (2): 

P{Vt\Yl,) = [ p{r]t\r]t_,)-p{r]t_,\Yl,) dr]t_,. (3) 

Then, given y^, the posterior distribution p{r]t\Y-l^) is obtained following the 
Bayes theorem, where the (one-step-ahead) predictive distribution p{yt\Y^_-^) 
is implicitly considered. 

If the prior distribution p(r/t|^t-i) î  conjugate with p{yt\vt) înd if this 
property holds also for the posterior distribution p{r]t-i\Y^_-^), then the in­
ference is essentially a set of updating equations for the parameters of the 
involved distributions. 

Usually, the conditional distribution p{r]t\r]t-i) is defined such that the ex­
pectation of the prior is a known function of the expectation of the posterior, 
that is: 

E[nt\Yl,]=hE{E[vt-i\Yl,]), (4) 

where /i£;(-) is a known non-random function, and 

var [vt\Yt'_,] = K (var [r?t-i|y,°_i]) • j - (5) 
(Jt 

where St is the discount factor (Harrison and Stevens, 1976; Ameen and 
Harrison, 1985; West and Harrison, 1997), with 0 < 6t < I, and hy{') is 
a known non-random function such that, if M is a variance matrix, hy{M) 
is also a variance matrix. Usually it is assumed that 8t is known and is a 
constant with respect to t. In this case, for some model, it can be proved that 
the limit of var{rit\Y^)^ for t -^ +(X), depends on the discount factor. 

The proposed solution allows to obtain p(r/t|^t-i) fi"omp(r/t-i|^t-i) ^^^ î  
based on the Bayes Factor which compares models with and without discount. 
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Denote with ps^{Tit\Tit-i) the system conditional distribution which depends 
on 6t in the way described by conditions (4) and (5). Moreover, denote with 
PSt{Vt\yt^-i) the prior distribution which is obtained by means of equation 
(3) with the conditional distribution ps^{r]t\Vt-i) înd with ps^{yt\Y^^_-^) the 
related predictive distribution. When St = Ij the system conditional distribu­
tion has not a random effect. In this case, the system conditional distribution 
will be denoted with po{r]t\r]t-i)^ the prior distribution with pol^ t l^- i ) , cind 
the predictive distribution with po{yt\Y^_i). 

The automatic discount selection need the following steps to be per­
formed: 

a. obtain the predictive distribution po(l/t|^t-i) ^^^ ^^^ one-step ahead pre­
diction 

b . given the observed value y^ of ytj define the Bayes Factor: 

poiy^lYl,) BFm = ^-^^Bk^ (6) 

c. solve: 6t = argmax^^ BFt{6t) , with 0 < t̂ < 1 and BFt{6t) > 1 
d. if 6t exists then set: p{r]t\Y^_-^) = p^ {r]t\Y^_-^); otherwise set: p{r]t\Y^_-^) = 

Po{Vt\Yl,) 

3 Bayes Factor for Exponential Family State Space 
Models 

Consider a model where the conditional distribution of the observation can 
be represented through the distribution: 

p{yt\Vt^ (t>) = exp {(f) [ytVt - a{r]t)]} • b{yt, (j)) (7) 

where 77̂  is the natural parameters, (j) is the scale parameter, a(-) and 6(-, •) 
are suitable functions. In this case (Gelman et al., 1995) the conjugate prior 
for Tjt can be represented in the canonical form: 

P{Vt\Yt_i) = c{rt,st) ' exp{rtr/t - Sta{rit)} (8) 

where, under some mild regularity conditions, rt/St is the location parameter 
and 1/St is a scale parameter. Moreover, the predictive distribution is: 

p{yt\yli) = . A T ' ! ^ ^ . , • Kyu<t>) (9) 

c{rt ^(pyt.st^cp) 

If the posterior distribution for 77^-1, p{r]t-i\Y^_i) is also conjugate: 
p{r]t-i\Yt^-i) =c{rt-i,st-i) • exp {rt_ir/t-i - St-ia{r]t-i)} (10) 
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a discounted prior distribution p5^{r]t\Y^_-^) can be obtained using the power 
discount (Smith, 1979), setting: 

where St is the discount factor at t ime t. The power discounting of the pos­

terior density (10) gives the conjugate prior distribution: 

P5t(^t|>^t-i) = c{Strt-i,StSt-i) ' exp {Stn-iVt - StSt-ia{r]t)} ( H ) 

with the same value of the location parameter and a scale parameter dis­
counted by Sf. 

The predictive distribution, obtained with the prior (11) will be: 

/ 1x̂ 0 N c{Strt-i,StSt-i) . . . . 
PStiVtyt-i) = -77- . , ^ r —-T'b{yu(t)t) (12) 

c{otrt-i + (ptyt, OtSt-i + (pt) 

and the Bayes factor (6), as a function of the discount factor 6t will be: 

Dz^/rx c{6trt-i,StSt-i) c{rt-i + ( ^ t l / ^ g t - i + ^t) . ,o^ 
n r [Ot) = ; ^— • —-Z •. pj—; - ^ ( l o ) 

c[rt-i,st-i) c[dtrt-i + (ptyt^ OtSt-i + (pt) 
Then steps c and d of the procedure for the optimal discount selection 

can be performed from the Bayes Factor (13). The optimal discount St is then 
obtained via the maximization of the Bayes Factor (13) by means of s tandard 
numerical algorithms. 

3.1 E x a m p l e : P o i s s o n M o d e l 

The Poisson distribution: 

P{yt\0t) = {ytiy'or • e-<'^ 

can be expressed as the distribution (7) with: 

0 = 1, b{yt,4>) = {yt\)-\ r]t=log{et), a{rit) = e^K 

The conjugate posterior for 6t-i is a Gamma distribution: 

P{Ot-i\Yl,) 
r ( a ,_ i ) ' ' * - i 

i " t - i . ^-Pt-iBt-

with parameters at-i, Pt-i, tha t can be written in the canonical form (10) 
with: rt-i = a t - i , St-i = Pt-i and: 

The Bayes factor (13) will be: 

BF{St) 
r{6trt-i) 41Y r (n_ i + 2/0) {Stst-i + ly^^^-^+y? 
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3.2 Example: Binomial Model 

The Binomial distribution 

p{yt\et) = (^y^ or {i-etr-y^ (i4) 

can be represented through the expression (7) with: 

(̂  = 1, b{yt,(t)) = [^], r]t = \og{-—^), 
\ytj 1 - Ot 

and a{6t) = —rit log(l — 6t) = rit log(l + exp(6>t))- The conjugate posterior for 
6t-i is a Beta distribution: 

p{9t-AYl^) = [B(a,_i,A-i)]"' - C r " ' • {I - 9t-^f^---^ 

where B(ce,/3) denotes the Beta function. This distribution can be written in 
the canonical form (10) with r^-i = cet-i, St-i = (cet-i + A- i ) / ' ^ t - i cind: 
c( r t - i ,5 t - i ) = [ B ( r t - i , 5 t - i - n t - i - r t - i ) ] " \ The Bayes factor (13), as a 
function of the parameters cet-i e [3t-i is: 

^ ^ / ^ X ^ B((5tat-i + 1/^ hPt-i + nt - i/[̂ ) B ( a t - i , A - i ) 
^ '^ B((5,ce,_i,(5,A_i) 'B (ce ,_ i+ i /O^A_i+n , - i / 0 ) 

4 An Application 

A simple illustration is proposed on a dataset of a binomial time series from 
Smith (1980). Here the problem is to identify change points in the series as 
modelled by changes in rjf The conclusion of Smith, obtained with a non­
sequential procedure, is that evidence suggests two consecutive changes at 
t = 5 and t = 6. The results obtained with the automatic discount selection 
procedure is compared with ones obtained with the Bayesian model monitor­
ing proposed by West (1986). This is a sequential procedure where a standard 
model (a model without discount) is compared with an alternative model (a 
model with a fixed discount) using the Bayes Factor. The Bayesian model 
monitoring requires to set a value for the discount factor and a threshold 
value for the Bayes Factor and requires also a manual intervention. For this 
reason, when dealing with high frequency data, the approach is ineffective. 
The results are summarized in Table 4, where ^^|^_i(a) and ^^|^_i(w) denote 
one-step-ahead predictions respectively by automatic discount and Bayesian 
model monitoring (West, 1986). The prior distribution of 6>t at t = 1 has 
been set accordingly to West (1986), in order to compare the results. Figure 
1 displays the same results. In the first two panels the one-step-ahead pre­
dictions and the related errors are respectively compared. It is worth to note 
that prediction error of the automatic discount selection are less or equal 
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than the ones of the Bayesian model monitoring for most of the observa­
tions. The third and the fourth panels of Figure 1 show also the values of the 
Bayes Factor and of the optimal discount factor obtained with the automatic 
discount selection procedure. Particularly, Notice how the change-points at 
t = 5 and t = 6 are correctly identified by the values of BF{St)j Even if 
the main purpose of the automatic discount selecion is not the change point 
detection, but the system error definition via the discount parameter. The 
results of the automatic discount are quite good, considering that it is a full 
automatic procedure, while the Bayesian model monitoring requires manual 
intervention and depends on some control parameters. 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 
nt 21 36 44 30 52 45 48 57 48 22 20 21 20 
yt 12 26 31 24 28 34 38 46 41 19 17 17 16 

yt\t-i{^) 10.5 20.3 30.0 20.8 38.8 25.3 35.0 43.3 37.3 17.9 16.5 17.4 16.5 
yt\t-iM 10.5 20.2 29.0 21.0 36.9 29.7 32.6 39.9 34.6 16.3 14.8 15.7 15.0 

6t 1.00 0.53 1.00 0.34 0.11 0.12 1.00 1.00 0.28 1.00 1.00 1.00 1.00 
BF{St) 1.00 1.06 1.00 1.04 3.50 2.51 1.00 1.00 1.06 1.00 1.00 1.00 1.00 

Table 1. Results for a binomial time series (West, 1986) 

5 A Simulation Experiment 

We wanted to test the performance of the automatic discount selection with 
a more extensive simulation experiment. To this purpose, a Binomial time 
series model was choosen with a change point situation similar to the one of 
the previously considered data set. A binomial time series ytjt = 1^... ^T was 
then considered with probability function p{yt\nt,Ot) defined as in equation 
(14) with Of = X-\-cj ' I{t > k) where /(•) denotes the indicator function and 
/c G { 1 , . . . ,T} . Here k denotes the time where the probability parameter of 
the binomial distribution change from a value A to a value X -\- uu. For the 
experiment, series of length T = 20 were simulated, and the change point was 
set /c = 5. The probability A was set equal to 0.20, while four different values 
of cj were considered: ou = 0.10, 0.20, 0.30, 0.40 For each value of cj, 5000 series 
were generated. The automatic discount has been applied with an uniform 
prior distribution for Oi. For each value of cj, we considered the percentages 
for classes of values of the optimal Bayes factor BF{St) for t = k. The classes 
have been defined following the guidelines specified by Kass and Raferty 
(1995). These results are reported in Table 5. The delay of detection of the 
change point has also been considered, from t = k (no delay) to t = k -\- 3. 
These results are reported in Table 5 

The algorithm gave satisfactory results. The performance is better when 
the values of the perturbation uu are higher. In order to evaluate these results. 
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Fig. 1. One-step-ahead predictions errors for the automatic discount selection 
(dashed lines) and Bayesian model monitoring (dotted lines); prediction errors er­
rors for the automatic discount selection (dashed lines) and Bayesian model moni­
toring (dotted lines); values of the Bayes Factor and values of the optimal discount 
for the automatic discount selection 

we have to consider tha t if the perturbat ion is small, the algorithm tends to 
identificate more subsequent small discount factor rather than an high one. 
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Abstract. The polychoric correlation coefficient is a measure of association be­
tween two ordinal variables. It is based on the assumption that two latent bivariate 
normally distributed random variables generate couples of ordinal scores. Categories 
of the two ordinal variables correspond to intervals of the corresponding continuous 
variables. Thus, measuring the association between ordinal variables means esti­
mating the product moment correlation between the underlying normal variables 
(Olsonn, 1979). When the hypothesis of latent bivariate normality is empirically 
or theoretically implausible, other distributional assumptions can be made. In this 
paper a new and more flexible polychoric correlation coefficient is proposed assum­
ing that the underlying variables are skew-normally distributed (Roscino, 2005). 
The skew normal (Azzalini and Dalla Valle, 1996) is a family of distributions which 
includes the normal distribution as a special case, but with an extra parameter 
to regulate the skewness. As for the original polychoric correlation coefficient, the 
new coefficient was estimated by the maximization of the log-likelihood function 
with respect to the thresholds of the continuous variables, the skewness and the 
correlation parameters. The new coefficient was then tested on samples from simu­
lated populations differing in the number of ordinal categories and the distribution 
of the underlying variables. The results were compared with those of the original 
polychoric correlation coefficient. 

1 Introduction 

Data in the social and medical sciences are often based on ordinal measure­
ments and represented in contingency tables. A first approach to the analysis 
of this kind of variables is to measure their association in order to know if 
some relationship exists and to quantify its strength. To achieve this purpose, 
it is possible either to estimate the concordance between the scores of each 
ordinal variable or to assume tha t those variables derive from the categoriza­
tion of some continuous variables. 
The first type of measure includes Kendall 's r , Somers' e, Goodman and 
Kruskal's 7 and many others more (Agresti, 2004). They estimate the asso­
ciation between ordinal variables comparing the frequencies of each category 
without any distributional assumption. The polychoric correlation coefficient, 
instead, is based on the assumption tha t the ordinal variables derive from 
partit ioning the range of some continuous normally distributed variables into 
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categories. Consequently, it does not compare two sets of scores, but rather 
estimates the correlation between two unobserved continuous variables un­
derlying the two ordinal variables assuming a bivariate normal distribution 
with means zero and variances one. 
Some studies have been carried out in order to compare the most important 
measures of association. Joreskog and Sorbon (1988) performed an experi­
ment based on a bivariate normal distribution for the underlying variables 
and showed that, under this condition, the polychoric correlation coefficient 
is always closer to the real correlation than all measures evaluated in the 
same study. Moreover, the matrix of the polychoric correlation coefficients is 
largely used to replace the covariance matrix in order to estimate the param­
eters of structural equation models when the observed variables are ordinal. 
On the other hand, experience with empirical data (Aish and Joreskog, 1990) 
shows that the assumption of underlying bivariate normality seldom holds. It 
is also believed that this assumption is too strong for most ordinal variables 
used in the social sciences (Quiroga, 1991). Therefore, there is a need to find 
a shape of the underlying variables more plausibly compatible with the real 
data. 
Many studies performed in order to analyse the distributions of underlying 
variables showed that asymmetric distributions are very frequent. Muthen 
(1984) proved that the distributions of underlying variables can be highly 
skewed, causing lack of convergence and/or negative standard errors when 
estimating structural equation model parameters. Moreover, Muthen and Ka­
plan (1985) noticed that the presence of asymmetric latent distributions can 
bias the results of chi square tests used to assess the goodness of fit of struc­
tural equation models. The former studies suggest a need to find a distribution 
that takes into account the potential asymmetry of the underlying variables. 
In this paper a new polychoric correlation coefficient is proposed, based on 
the hypothesis that underlying variables have a bivariate skew normal distri­
bution (Roscino, 2005). The bivariate skew normal distribution (Azzalini and 
Dalla Valle, 1996) belongs to a family of distributions which includes the nor­
mal distribution as a special case, but with two extra parameters to regulate 
the skewness. As for the polychoric correlation coefficient, maximum likeli­
hood was used in order to estimate the new polychoric correlation coefficient 
under the assumption of underlying skew normally distributed variables. A 
simulation study was then carried out in order to compare the performance of 
the new coefficient with that of the original polychoric correlation coefficient. 
In the first section of this paper, the generalised polychoric correlation coef­
ficient is defined and estimated. In the second section the simulation study 
is presented and in the third section the results of the simulation study are 
shown and the efficacy of the new polychoric correlation coefficient is dis­
cussed. 
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2 An Extension of the Polychoric Correlation 
Coefficient 

The polychoric correlation coefficient (Olsonn, 1979) is based on the assump­
tion that underlying a pair of ordinal variables there is a couple of continuous 
latent variables which have a bivariate normal distribution. Ordinal variables 
X and F , with / and J categories each, are thus assumed to be related to 
underlying continuous variables Zi and Z2 by 

( X = i if ai-i < Zi < a ,̂ i = 1 ,2 , . . . , / . . 
\Y = j if 6 , - i < Z 2 < 6 „ j = l , 2 , . . . , J ^ > 

where Zi and Z2 have a bivariate normal distribution with correlation coeffi­
cient p and Gi and bj are referred to as thresholds. Measuring the polychoric 
correlation means estimating the product moment correlation p between un­
derlying normal variables. This correlation is estimated by the maximum 
likelihood method, assuming a multinomial distribution of the cell frequen­
cies in the contingency table. If n^j is the number of observations in cell (i, j ) , 
and K is a constant, the likelihood of the sample is given by 

where 

Pij = ^ 2 ^ , bj) - ^2{ai-i,bj) - ^ 2 ^ , ^ j - i ) + ^ 2 ^ - 1 , ^ j - i ) (3) 

and ^2 is the bivariate normal distribution function with unknown correlation 
coefficient p. The estimator of the polychoric correlation coefficient between 
variables X and Y corresponds to the value of p which maximizes equation 2, 
where the choice of the number of categories / and J has a crucial influence 
on the dimensionality of the likelihood function. 
A problem with the polychoric correlation coefficient concerns the robust­
ness of the method to departures from symmetric distributional assumptions. 
Quiroga (1991) carried out a Monte Carlo study in order to analyze the effects 
of the departure from the normal assumption on the estimation of the poly­
choric correlation coefficient. The author simulated samples from underlying 
distributions affected by asymmetry and showed that the polychoric corre­
lation underestimates the association between ordinal variables, particularly 
when the sample size is large and the categories are few. Such results reveal 
that there could be an advantage in considering a latent distribution more 
compatible with real data. As discussed in the Introduction, the underlying 
variables are often asymmetric (Muthen, 1984), therefore the bivariate skew 
normal distribution was chosen. 
A random variable Z = (^1,^2) is said to be distributed according to a 
bivariate skew normal SN{ai^a2^oo) if its density function is given by 

9{zi,Z2) = 2(j){zi,Z2; u;)^{aizi + ^2^2), (4) 
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where (/){'] co) is the bivariate normal distribution with nuh mean, unit vari­
ance and correlation co and <P{') is the univariate standard normal distribution 
function. Skewness ai and a2 can vary in (—cxo, cxo) and imply bivariate nor­
mality when they are both null. The correlation coefficient associated to the 
bivariate skew normal distribution is given by: 

cj - 27r~Mi(52 . . 
^^"^ ~ {(1 - 2n-^6l){l - 2^-i(52)}i/2 ' ^̂ ^ 

where Si and S2 are linked to ai a2 and co by expressions: 

61 — 62OJ 
ai {(1 - cj2)(l -cj^-6f-6^^ 26i62Cj)y^ 2 

_ h - Siuj 
""' " { (1 - CJ2)(1 - CJ2 - ^2 _ ^2 ^ 26i620j)y/^ ' ^ ^ 

with Si and S2 in [—1,1]. 
Under the new assumption, the joint distribution of the underlying variables 
Zi and Z2 is bivariate skew normal, as given in (4). Thus the product moment 
correlation of Zi and Z2, psN estimates the polychoric correlation coefficient 
between X and Y. 
As for the original polychoric correlation coefficient, the new coefficient is 
estimated by maximization of the log-likelihood function L (see 2) with re­
spect to the thresholds, the skewness and the correlation parameters, where 
the new expression of the probability Pij in the likelihood of the sample is 
equal to: 

Pij = P[X = iAY =j]=2 / (l){zi,Z2, Q)^{aiZi^a2Z2)dzidz2. (7) 

In order to work with standardized parameters, a different parametrization 
of the skew normal distribution was considered (Azzalini and Dalla Valle, 
1996). The correlation parameter uo was replaced by V̂ , where 

^ = {uj-5i52)[{l-5i){l-52)]-^^^ (8) 

and the skewness parameters ceiand a2 were replaced by 5i and 82 (see 6). 
The function sn.polychor (Roscino, 2005) was written in R to perform the 
maximization of the log-likelihood function using a numerical optimization 
method, according to Nelder and Mead (1965). This method works reasonably 
well for non-differentiable functions as it uses only function values and does 
not require to evaluate the gradient of the log-likelihood. 
The function sn.polychor ffist computes the maximum likelihood estimates 
of V̂ , 5i and 82 and their standard errors. Then, after replacing V̂ , 5i and 82 
with their estimated values in 8, it calculates uo and ^SN (see 5). 
The function sn. polychor is available on request by emailing the first author. 
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3 The Simulation Study 

The new polychoric correlation coefficient ^SN was calculated for 360 samples 
from simulated bivariate populations differing in the number of ordinal cat­
egories, correlation and skewness parameters of the underlying distributions, 
as shown in Table 1. One sample was considered for each combination of the 
parameters i/j, Si, S2, I, J and n. The sampling distribution of ^SN and p was 
analysed only for the combination {i/j = 0.5, Si = 0.7, S2 = —0.7, / = 3, J = 
3, n = 400) where 100 samples were extracted and means and standard errors 
of As AT, p, ^1, S2 were computed. The analysis of the sampling distributions 
associated with the remaining combinations of parameters is currently being 
undertaken and the results will be presented in the near future. 
The R library MASS was used to produce samples from bivariate normal dis­
tributions, while a new function called sn.simul (Roscino, 2005) was imple­
mented in order to generate samples from bivariate skew normal distributions. 
The generated samples of the underlying variables (Zi, Z2) were grouped ac­
cording to intervals and each interval was associated with a category of the 
corresponding ordinal variable. The values of i/j, Si and S2 were chosen to 

^ 
n 

(/, J) 
\{SuS2)\ 

["03 0 5 0 8 
250 400 600 800 
(2,2) (2,3) (3,3) (3,5) (5,5) 
(0,0) (0,0.7) (0.7,0.7) (0.7,-0.7) (0.4,0.4) (0.4,-0.4) 

Table 1. Parameters of the simulated distributions 

include as many different shapes of the distributions of underlying variables 
as possible. In particular, when Si and S2 are equal to zero, the underlying 
variables have bivariate normal distribution with correlation coefficient equal 
to i/j. For all the other cases, the simulated distributions are bivariate skew 
normals and the associated values of the polychoric correlation coefficient can 
be found in Table 2. 
The R functions sn.polychor and polychor (Johnson, 2004) were used to 

compute ^SN and p respectively. While the output of polychor consists of 
the estimators of psNj cti, bj (for i = 1, . . . , / and j = 1,..., J) with their 
standard errors, the function sn.polychor estimates the additional param­
eters V̂ , Si and S2 and their standard errors, together with psNj cti, bj (for 
i = 1,..., / and j = 1,..., J) and their standard errors. 
The values of ^SN and p were compared with the true value of the polychoric 
correlation coefficient for each of the simulated samples. The performance of 
both estimators with respect to the value of the polychoric correlation coeffi­
cient in the underlying population (as the absolute value of the difference) was 
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(^1,^2) 

(0,0) 
(0, 0.7) 
(0.7, 0.7) 
(0.7, -0.7) 
(0.4, 0.4) 
(0.4, -0.4) 

1 ^ 1 
0.3 0.5 0.8 
0.3 0.5 0.8 

0.2582 0.4304 0.6887 
0.4811 0.6293 0.8517 
-0.0364 0.1118 0.3341 
0.3453 0.5323 0.8129 
0.2158 0.4028 0.6834 

Table 2. Values of psN 

evaluated only for the combination {i/j 
3,n = 400). 

0.5, (5i =0.7,(^2 = -0 .7 ,7 = 3, J 

4 Some Results 

In this section some results of the simulations are summarized. It is clear 
that a complete evaluation of the performance of the estimator would need 
a more extensive simulation study which is currently being undertaken. 
The simulations involved one sample for each combination of parameters and 
showed that ^SN is always closer to the real correlation than p when: 

1. The number of categories of ordinal variables is small, ie. less than or 
equal to 3 (See Figure la, where the solid line represents the real poly-
choric correlation coefficient while the dashed and the dotted lines are 
respectively p and ^SN) or 

2. The sample size is large - 400 units or above, or 
3. The skewness parameters are discordant, that is when they have opposite 

signs (See Figure lb). 

Furthermore, under these conditions the estimators of the skewness parame­
ters are always very close to their values in the population. 
These results are confirmed by the analysis of the sampling distribution of 
^SN for the combination of parameters {i/j = 0.5, (5i = 0.7,(^2 = —0.7,/ = 
3, J = 3,n = 400). The mean and standard deviation of 'psN were equal to 
0.1173 and 0.0072 respectively while the mean and standard deviation of p 
were 0.1003 and 0.0651. The mean of 'psN is closer to p than the mean of p 
(see Table 2) and the standard deviation is lower than the standard deviation 
of p by a factor of almost ten. 
On the other side, the polychoric correlation coefficient is closer to the real 
correlation when: 

1. The sample size is small, or 
2. The number of categories is large. 
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Table 2X2 with n=250,Delta1=0 and Delta2=0.7 Table 3X3 with n=250,Delta1=0.7 and Delta2=-0.7 

Fig. 1. Value of the estimated correlation coefficients for each value of ip. 

For (/, J) = (5,5), the results showed a high degree of variability and were 
therefore of limited use. This case is currently being studied to improve the 
quality of the results. 
When the sample size is small, the poor results of the generalised polychoric 
correlation coefficient could be determined by an irregularity in the likelihood 
function of the bivariate skew normal distribution. Azzalini and Capitanio 
(1999) showed that for small sample sizes, the maximum likelihood estimators 
of the parameters of a skew normal distribution can overestimate their real 
values. This is due to the analytical expression of the likelihood function and 
cannot be modified using a different parametrisation. 
The conclusions of the paper of Joreskog and Sorbon (1988) hold when the 
number of categories of the ordinal variables is large. The authors compared 
six measures of ordinal association and found that the polychoric correlation 
coefficient is more robust to departures from normality in the presence of 
ordinal variables with a large number of categories. 

5 Conclusions 

In this paper we propose a new polychoric correlation coefficient based on 
the assumption that the underlying continuous variables are skew normally 
distributed. By definition, psN is equal to p when the underlying variables 
are normally distributed, but it is more fiexible than p as it takes into account 
the potential skewness of the underlying variables. 
An R function was written in order to compute ^SN and and 360 samples 
were generated with the aim of comparing ^SN and p. 
The examples presented in the simulation study indicates that ^SN is more 
appropriate than p when the sample size is large or the number of categories 
of ordinal variables is small or the skewness parameters have opposite signs. 
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On the other hand, the simulation study has shown tha t some further de­
velopments are needed in particular when the sample sizes are small or the 
number of ordinal categories is large. 
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Abs t r ac t . An in-depth investigation on maximum likelihood estimators for vari­
ance components is proposed, where the reference is a multilevel model with mis-
specifications on random effect distribution. The multivariate distributions here 
introduced for the random effects belong to the family of the Multivariate Exponen­
tial Power (MEP) distributions. Our primary interest is devoted to the variability 
of such estimators, since the MEPs have a noteworthy influence upon it. 

1 Introduction 

Multilevel models represent a comprehensive approach for the analysis of 
da ta organized in a nesting (or hierarchical) structure: they are defined by a 
set of multiple regression equations by which the variation present at differ­
ent levels, namely within-groups and between-groups variability, is explicitly 
modelled (Goldstein (1995), Snijders and Bosker (1999)). 

As usual, the maximum likelihood approach for estimating parameters 
(basically, fixed effects and variance components) relies on the assumption 
of normality of the error terms (level-1 errors and higher level errors called 
"random effects") included in the equations at each level. Empirical practice 
indicates however tha t the assumption of normally distributed random ef­
fects, even approximatively, is not always satisfied. For instance, this might 
happen when the dependent variable is not a directly measured variable, but 
rather a latent dimension extract from a set of qualitative variables through 
application of techniques such as multidimensional scaling or multiple corre­
spondence analysis (Gori and Vittadini (1999)). The question arising, there­
fore, relates to what extent maximum likelihood estimation procedures may 
be considered robust against departures from normality. 

To examine the performance of maximum likelihood estimators under 
misspecifications of random effects, in a recent study dealing with a two-level 
model (Solaro and Ferrari (2004)) we introduced a specific class of multi­
variate distributions. It consisted of the family of Multivariate Exponential 
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Power distributions (MEP) (Gomez et al. (1998)), which belongs to the class 
of symmetric and elliptical multivariate, Kotz type distributions (Fang et al. 
(1990)). Since it also includes the multivariate normal as a special case, a 
family of this kind reveals that it is fairly appealing, especially in studies 
relating to robustness. 

To examine the consequences of MEP distributed random effects on the 
estimator performance, both REML and ML type estimates were obtained as 
if the "traditional" normal assumptions on both random effects and level-1 
model residuals would be satisfied. The complexity of the problem urged us 
to undertake the study by applying Monte Carlo (MC) simulation procedures 
under specific experimental conditions, defined by different combinations of 
number of groups, group size, variance-covariance structure of random effects. 
Results achieved are described in detail in Solaro and Ferrari (2004). 

Here it is worth briefly remarking that MEP distributed random effects 
appeared to have no significant influence on the bias of all estimators. The 
same may be said apropos of the variability of estimators for, respectively, 
fixed effects and level-1 variance. On the other hand, a significant MEP effect 
was observed on the variability of level-2 variance components. 

Taking stock of these results, in this work we specifically focus on the 
level-2 variance component estimation problem. In particular, the role of 
MEP distributed random effects on the variability of such estimators will be 
deeper investigated. In fact, depending on the type of MEP, these estimators 
appear to be systematically more or less variable than those obtained under 
the normal distribution. Another point at issue involves the performance of 
model-based standard errors, namely standard errors estimated through the 
inverse of Fisher's information matrix. In fact, what they reveal is that they 
are very inaccurate estimates of the true variability of the estimators. It would 
seem that this situation cannot be solved by increasing sample size. 

This paper is set out as follows: Section 2 contains brief remarks on the 
standard Gaussian multilevel model as well as on the main estimation meth­
ods. A multilevel model with MEP distributed random effects is further in­
troduced. In Section 3 the method used for investigation is described. In Sec­
tion 4 the main results are presented and briefly discussed. Finally, Section 5 
is giving over to some concluding remarks. 

Our work is part of the context of studies related to robustness issues in 
multilevel models. For instance, studies on robustness in presence of misspec-
ifications of random effect distribution can be found in Verbeke and Lesaffre 
(1997) and Maas and Hox (2004). 

2 Two Multilevel Model Definitions 

Throughout this work a two-level hierarchical, balanced data structure is 
assumed, with J groups (level-2 units) and n units within group (level-1 
units or elementary units) (j = 1 , . . . , J ) . The linear multilevel model may 
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be defined through Laird and Ware's matrix formulation (Laird and Ware 
(1982)): 

Y, = Z,7 + X , U , + s „ (1) 

being Y^ a r.v. (random vector) of quantitative Yij variables {i = 1 , . . . , n); 
Zj and Xj the so called design matrices; 7 a vector of p fixed effects; \Jj a 
r.v. of q level-2 residuals, also said random effects; finally, Sj a r.v. of level-1 
residuals, {j = 1 , . . . , J ) . 

Fixed effects along with variance components, that is the variances and 
the covariances of the random part of the model, are the unknown param­
eters to be estimated. The main methods are represented by the maximum 
likelihood approach (full -ML- and restricted maximum likelihood -REML-; 
see e.g. Pinheiro and Bates (2000)) or by suitable extensions of generalized 
least squares (iGLS and RIGLS; see Goldstein (1995)). In particular, REML and 
RIGLS methods are conceived as modifications of, respectively, ML and iGLS 
methods to allow for the correction of bias of variance component estimators. 
In all these methods the estimates cannot be obtained in a closed form, but 
rather through iterative numerical procedures. Whenever the maximum like­
lihood approach is involved, a so called Gaussian multilevel model is usually 
required. In this work, in addition to this we propose another definition which 
assumes MEP distributions on random effects. 

1) Gaussian multilevel model. In standard theory the multilevel model 
is specified by introducing normality assumption on errors at each level. For­
mally: \Jj r^ A^g(0,T), £j r^ A^^(0,cr^I(^)), \Jj and £j independent (j = 
1 , . . . , J ) , where the elements Thm of T (/i, TTI = 0 , 1 , . . . , g' — 1) and a'^ are, 
respectively, level-2 and level-1 variance components. 

Likewise the standard result in multiple linear regression, under normality 
of all error terms IGLS/RIGLS estimates coincide with ML/REML ones, so that 
IGLS/RIGLS methods may be viewed as the algorithm by which computing 
ML/REML estimates (Goldstein (1995)). Moreover, under the Gaussian mul­
tilevel model maximum likelihood estimators for, respectively, fixed effects 
and variance components are asymptotically uncorrelated and asymptoti­
cally normally distributed, with the variance-covariance matrix represented 
by the inverse of Fisher's information matrix (see e.g. Pinheiro and Bates 
(2000)). 

2) Multilevel model with MEP distributed random effects. As previously 
mentioned, we assume, however, MEP distributed random effects Uj for all j , 
along with normally distributed residuals £j. Formally, an n-dimensional r.v. 
S is MEP distributed with parameters /x, E and K. (shortly, S ^ MEP^(/x, E, /c)), 
if its p.d.f. may be expressed in this form: 

_ n r ( n / 2 ) e x p { - i [ ( s - / i ) ^ S - i ( s - / . ) ] * } 

/ ( s ; n, S, K) = ^„/2_r(^i + s ) 2 i + ? | S | i / 2 ' (^) 

where ju € R", K > 0 is called the non-normality parameter and S ("charac­
teristic matrix") is positive-definite; mean vector is: E{S) = ju and variance-
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covariance matrix is: V(iS') = C(/T:, n)5], being c{n^n) = 2^/^r((n + 2)//^)/ 
{nr{n/H)). Depending on the value of ti^ either a leptokurtic {ti < 2) or a 
platikurtic {ti > 2) distribution may be obtained; the multivariate normal 
{K. = 2) is also included. 

Our assumption on Uj in model (1) is so specified: Uj ^ MEPg(0, $ , K,). 
In such a case: V(U^) = T = * • 2^/^r {^) / ( ^ r ( f ) ) . As pointed out 
elsewhere (Solaro and Ferrari (2004)), in this case the likelihood function is 
defined by a somewhat complex formulation, that suggests we should rule 
out any analytical treatment in exact form, but for /c = 2. This matter would 
require a more in-depth examination. 

3 Method 

In our simulation settings a specific definition of model (1) was considered, 
which includes one explanatory variable at both levels (i.e. level-1 X and 
level-2 W), p = 4 fixed effects and q = 2 random effects. Substantially, 
this is a random intercept and slope model, which also includes a cross-level 
interaction term XW. Datasets were artificially constructed under different 
experimental conditions, shown in Table 3 together with target values and 
the other quantities set up for the study. 

Pseudo-observations y^ were obtained through random variate generation 
from MEP distributed random effects U^ (with E ([[/QJ, f/ij]^) = 0 and 
V {[Uoj^Uij]^) = T, T fixed) and normal distributed residuals Sj, with a'^ 
fixed, for all j . As for MEPs, both leptokurtic {K. = 1; 1.5) and platikurtic 
{K. = 8; 14) distributions were considered; the normal case {K. = 2) was also 
included in the study as the reference distribution. 

The generated data were then employed in order to estimate the four fixed 
effects: 700 (general intercept), 710 (coeff. of X), 701 (coeff. of W), 711 (coeff. 
of XW), and the four variance components: Thh = Var([//ij), {h = 0,1), 
Toi = Cov([/oj, Uij) and a'^. In order to examine if the maximum likelihood 
method is resistant against MEP-type misspecifications, we computed ML 
and REML estimates as if the Gaussian multilevel model were valid. 

Subsequently, we dealt with the main features of the distribution of the 
"simulated" estimators, such as bias and variability. Particular attention was 
given to the level-2 variance component estimators and to their variability. 
Approximate confidence intervals were also calculated through application of 
asymptotic results, which involve the inverse of Fisher's information matrix, 
and ultimately the so called model-based standard errors. To assess the sig­
nificance of the MEP effect, in addition to the other factors involved, upon 
the main estimator features, Friedman's and Page's nonparametric tests were 
performed (see e.g. Hollander and Wolfe (1973)). Let "dg denote the effect of 
the ^-th experimental condition or the ^-th value for n {g = 1,... ,G). Then 
by these two tests the null hypothesis: HQ : '̂ 1 = . . . = '̂ G may be evaluated 
against the general alternative that not all the i '̂s are equal (Friedman's test) 
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Experimental conditions 
Number of groups (NG) 
Group size (GS) 

Non-normality parameter 

J = 5; 10; 20; 50 
n = 5; 10; 15; 20; 25; 30 

K= 1; 1.5; 2; 8; 14 

Target values 
Fixed effects 700 = 20; 710 = 1; 701 = —0.5; 711 = 8 
Level-2 variance components Too = 2; m = 10; roi = 0.8944; poi = 0.2* 
Level-1 variance cr̂  = 10 

Explanatory variables 
Level-2 variable J values from: W ^ A^(0.45, 9) 
Level-1 variable Jn values from: X ^ A^(3,16) 

Number of simulation runs K = 1, 000 

""Note, poi is the correlation coefficient of UQJ and Uij, for all j . 

Table 1. Experimental conditions and other quantities fixed for the study 

or against an ordered alternative (Page's test) . Specifically, in order to eval­
uate the M E P efiFect upon the estimator variability the ordered alternative 
of Page's test is: Hi : "^^=14 < '̂ «:=8 < '̂ «:=2 < '^«:=i.5 < '^«:=i, where at least 
one of those inequalities is strict. Similarly, in order to test the group size 
efiFect and the group number efiFect the ordered alternatives are, respectively: 
Hi : ^n=30 < . . . < ^n=5 and Hi : i^j=5o < . . . < ^ j = 5 . 

With comparative purposes in mind we examined whether the discrepancy 
between the model-based s tandard errors of, respectively, the REML and the 
ML estimators, which is well known for /c = 2, might be observed also for 
K, ^ 2. Therefore, we compared the estimated densities of these s tandard 
errors under each experimental condition and for each n. Density estimation 
was performed through the kernel approach and by using the normal kernel 
function (Bowman and Azzalini (1997)). The procedure applied in order to 
compare the density estimates was the permutat ion test described in Bowman 
and Azzalini (1997, pp. 107-112), by means of which the hypothesis: HQ : 
(j)(^x) = '0(x) for all X is tested against: Hi : (^(x) 7̂  '0(x) for some x, where x 
represents a model-based s tandard error. According to the authors ' remarks, 
when yielding the density estimates for each estimation method a common 
smoothing parameter was used, which is given by the geometric mean of the 
correspondent normal optimal smoothing parameters (Bowman and Azzalini 
(1997), pp.31-37). 

All point and interval estimates were determined by means of the S-plus 
library nlmeS by Pinheiro and Bates (2000). As regards variance component 
estimation, this library deals with an unconstrained parameterization which 
is termed "matrix logarithm", the main purposes being to avoid the "negative-
variance" problem and to speed up numerical routines (Pinheiro and Bates 
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(1996)). However, when building approximate confidence intervals on level-2 
variance components another type of parameterization, so called "natural", is 
used. It simply uses \og{y^Thh) for variances Thh cind the generalized logit of 
the correlations of random effects, tha t is log[(l + Phm)/{^ — Phm)]- In this 
manner it is possible to transform the confidence intervals computed for the 
natural parameters back to the original ones (Pinheiro and Bates (2000)). 
Finally, both estimating and comparing the s tandard error densities of the 
REML and ML estimators were carried out through the S-plus library sm, 
version 2, by Bowman and Azzalini (1997). 

4 Results and Discussion 

Here the main syntheses concerning simulation results on level-2 variance 
component estimators are presented. Both REML and ML estimates will be 
considered. 

The first remark concerns the variability of the empirical distributions of 
the estimators, which is synthetized by the Monte Carlo (MC) s tandard er­
ror. Wha t may be perceived is tha t both REML and ML estimators for level-2 
variance components tend to have greater MC standard errors under lep-
tokurtic M E P s than those obtained under normality, while they have smaller 
MC standard errors under platikurtic M E P s than under normality. This fea­
ture finds strong empirical evidence from Page's test results. The first part 
of Table 4 displays the results achieved for the M E P effect in the REML case, 
which are very similar to those ones obtained in the ML case (here omitted). 

Effect 

MEP 
- net of GS -
(Page) 

GS 
- net of MEP -
(Fried.) 

param. 

Too 

TOI 

T i l 

Too 

TOI 

T i l 

Number of groups 
J = 5 

322** 
324** 
326** 

19.29* 
17.91* 
5.11 

J = 10 

322** 
323** 
329** 

24.54** 
23.17** 
11.97+ 

J = 20 

326** 
329** 
329** 

24.54** 
23.63** 

6.26 

J = 50 

326** 
327** 
328** 

23.63** 
24.08** 

8.54 

Note. **: p < 0.001; *: p < 0.01; +: p < 0.05. 

Table 2. Page's (L statistic) and Friedman's (large sample approx. x^) test results 
on MC standard errors of level-2 variance component REML estimators. 

The role of the group size seems to be less clear than MEPs : in the case 
of the REML and ML estimators for TQO and TQI the group size effect turns 
out to be significant in both Friedman's and Page's tests. Specifically, the 
latter indicates tha t , for each J and net of the type of M E P , the estimator 
variability tends to diminish when group size increases. On the other hand, as 
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Fig. 1. REML and ML estimators for variance m (natural param.): boxplots of the 
standard errors, for J = 20, K, = 1,1.5,2,8,14, n = 5 (1st column of panels) and 
n = 30 (2nd column). MC standard error is depicted as • . 

for the REML estimator for r n there are no significant results, but for J = 10 
{p < 0.05) (second part of Table 4). This is also a common feature in Page's 
test results. In addition, as far as the ML estimator for r n is concerned, 
the role of the group size turns out to be unclear. In Friedman's test its 
effect results significant for each J considered, but in Page's test the ordered 
alternative finds no empirical support. 

As concerns the group number effect. Page's test, performed for each n 
and net of the group size, provides strong empirical evidence in this direction 
upon all REML and ML estimators. In other words, under the same conditions, 
MC standard errors tend to become smaller as the number of groups increases. 
These results are here omitted. 

A second remark concerns the model-based standard errors of the "nat­
ural" variance component estimators. In this case, a systematic under- or 
over-estimation of the true estimator variability is observed depending on 
the type of MEP. Specifically, in the case of leptokurtic MEPs there is a ten­
dency to systematically underestimate the true variability, while platikurtic 
MEPs are involved with its systematic overestimation. 

For a clearer understanding, it is worth taking account of a specific case. 
As regards the REML estimator for the "natural" variance log(Y/rn), the two 
panels in the first row of Figure 1 display boxplots of the model-based stan­
dard errors, for J = 20 and, respectively, n = 5 and n = 30, when ran­
dom effects are distributed according to leptokurtic MEPs {K, = 1,1.5), to 
platikurtic MEPs {K. = 8,14) and to the normal {K. = 2). To allow for sim­
ple comparisons, MC standard errors, computed with respect to the natural 
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parameterization, are also depicted. Both the above mentioned features ap­
pear evident. As it may be clearly seen, in both panels MC standard errors 
are underestimated in the presence of leptokurtic MEPs ; viceversa, they are 
overestimated in the presence of platikurtic MEPs . And this occurs for each 
sample size (J^n) here considered. In a similar fashion, the two panels on 
the bot tom of Figure 1 display model-based and MC standard errors of the 
ML estimator for log(Y/rn). Once again, the features just described may be 
clearly noticed. 

The performance of the model-based s tandard errors has an immediate 
effect on the inference regarding level-2 variance components, which is tradi­
tionally based on the asymptotical normality of the estimator distributions 
(Pinheiro and Bates (2000)). In particular, as for confidence intervals, under 
our experimental conditions the nominal coverage is not generally guaranteed 
when random effects are M E P distributed: empirical levels tend to approach 
the nominal one for both n nearing 2 and J enlarging. More precisely, empiri­
cal coverages smaller than those under normality are observed in the presence 
of underestimated s tandard errors (leptokurtic MEPs) , while greater empir­
ical coverages are obtained in the presence of overestimated s tandard errors 
(platikurtic MEPs) . 

M E P 
K 

1 
1.5 
2 
8 
14 

K 

n 

Number of groups 

n = 15 

0.859 
0.909 
0.928 
0.961 
0.973 

P: L = 
F : X 5 = 

J = 
n = 20 

0.836 
0.890 
0.918 
0.964 
0.976 

327.5, 
= 3.56, 

= 10 
n = 25 

0.856 
0.911 
0.932 
0.964 
0.964 

appr. p 
appr. p -

n = 30 

0.865 
0.913 
0.923 
0.969 
0.964 

= 0 
= 0.615 

n = 15 

0.861 
0.919 
0.953 
0.991 
0.990 

P: L = 
F : X 5 = 

J = 
n = 20 

0.851 
0.918 
0.944 
0.979 
0.983 

--50 
n = 2b 

0.849 
0.919 
0.940 
0.992 
0.991 

328, appr. p = 
- 6.31, appr. p 

n = 30 

0.865 
0.905 
0.942 
0.982 
0.985 

0 
= 0.227 

"^Note. The two tests are performed on the complete two-way layout tables, 
which include also coverages for the group sizes n = 5 and n = 10. 

Table 3. REML estimator for A/TIT: coverages (nominal confidence level: 0.95). 
Page's (P) and Friedman's (F) significance tests*. 

For instance. Table 4 displays coverages relating to confidence intervals on 
y / r n obtained by the 0.95-nominal level and w.r.t. 10 and 50 groups. A few 
facts may be focused on: 1) for /c = 2 and for each n the empirical coverages 
tend to approach the nominal level with J passing from 10 to 50; 2) for /c > 2 
and for each n the observed over-coverages clearly tend to widen further when 
J enlarges; 3) for J and n fixed, the coverages become wider as n increases. 
Further, what may be noted is tha t the group size effect is actually negligible. 

The significance of the effects of the factors involved upon the coverages 
has been as well assessed. In particular, from Page's test the M E P effect 
results significant for each J , whereas from Friedman's test group size effect 
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is not significant at all (Table 4). On the other hand, the group number effect 
finds support in the 0.05-level significant results of Page's test yielded for 
each group size. In other terms, net of M E P s and with the group size kept 
fixed, the coverages tend to widen as J increases. 

As an example of the comparison between REML and ML, Figure 2 displays 
the empirical coverages achieved for the REML and ML estimator of y / r n for 
each ti and n, with J = 10 and J = 50. The M E P effect is clearly noticeable 
in both cases. 

! • n=fi • n= in -̂  n=15 x n=2n o n=25 v n=3n I 

0.75 0.80 0.85 0.90 0.95 1.00 

J=1041EML 

J=10-M L 

J=50^EML 

J=50-M L 

k=14 

k=8 

k=2 

k=1.5 

k=1 

k=14 

k=8 

k=2 

k=1.5 

k=1 

Fig. 2. REML and ML estimators for A/TIT: dotplots of the coverages for each n and 
n, with J = 10 (1st column of panels) and J = 50 (2nd column). The dash-line 
represents the 0.95-nominal level. 

Finally, the application of the permutat ion test reveals tha t the discrep­
ancy between the model-based s tandard errors of, respectively, the REML and 
the ML estimators holds also for /c > 2 and /c < 2. In the pairwise comparison 
the estimated densities for the REML and the ML estimators differ signifi­
cantly. In addition, from the analysis of the p-values it would seem tha t such 
a difference does not strengthen or weaken as n varies. 

5 Concluding Remarks 

Our work has shown tha t MEP- type misspecifications on random effect dis­
tr ibution have a noticeable influence upon the variability of level-2 variance 
component (REML and ML estimators). Further, model-based s tandard errors 
are far from being accurate estimates of the t rue variability of these esti­
mators . Hence corrections of the estimated s tandard errors are absolutely 
necessary. In fact, neither by increasing the number of groups nor by increas­
ing the group size would seem to resolve this situation. 
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In li terature a type of correction often recommended is represented by the 
so-called "sandwich estimator", in the Ruber-White sense (see, e.g., Goldstein 
(1995), Verbeke and Lesaffre (1997)). Sandwich-type corrections are imple­
mented in most of the softwares for multilevel model analysis (e.g., the soft­
ware MLwiN by the Multilevel Project (Rasbash et al. (2000)), but they are 
not yet in S-Plus. This is one of the objectives of our future endeavours in 
this area. 
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Abs t r ac t . The literature on multivariate calibration shows an increasing interest 
in non-parametric or semiparametric methods. Using Empirical Likelihood (EL), 
we present a semiparametric approach to find multivariate calibration confidence 
regions and we show how a unique optimum calibration point may be found weight­
ing the EL profile function. In addition, a freeware VBA for Excel® program has 
been implemented to solve the many relevant computational problems. An example 
taken from a process of a semiconductor industry is presented. 

1 Introduction 

Statistical calibration deals with the inference on the unknown values of ex­
planatory variables given a vector of response variables. It results particularly 
useful when it is much simpler (or much more economically convenient) to 
measure (or to fix) the responses of an experiment and then to find the levels 
of the explanatory variables tha t may have produced them. Examples may 
be found in chemistry, biometrics, where the interest is on the causes of the 
experiments, or in engineering where targets must be suitably chosen to let 
the process work. 
In Section 2 we briefly describe the multivariate calibration problem, stress­
ing some of the difficulties in the construction of confidence regions in a 
parametric context, and some recent non parametric proposals. In Section 
3, using a semi-parametric approach, a new methodology for calibration is 
proposed, based on empirical likelihood. Then in Section 4 an application of 
the proposal to a semiconductor process is presented. 

2 Multivariate Calibration: Object, Problems, Recent 
Proposals 

A brief introduction to multivariate calibration is deemed necessary for the 
remainder of the paper. Many references can be found e.g. in Brown (1993), 
Naes et al. (2002) and Zappa, Salini (2005). According to most of the litera­
ture on this topic, we consider two steps. 

1) The calibration step. An experiment is run. n observations on q re­
sponse variables Yi = {Fi, F2, •••, ^g} and p explanatory variables X = 
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{Xi, X2,..., Xp}, are collected in the matrices Yi and X. A vector g(-) (Ixq) 
of transfer functions is used to link the two sets of variables, g(-) is usually 
supposed to be composed of linear models. Let Ei be a (1 x q) vector of 
random variables (r.v.). This vector will represent measurement errors and 
we will suppose, for the sake of simplicity, that it is additive with respect 
to g(-). Let S he di {p X q) matrix of unknown parameters. The calibration 
model is defined as: 

Fi = g ( 0 , X) + E, (1) 

2) The prediction step. Analogously to the previous step, suppose that a 
Y2 {m X q) set of response data is available, where m represents the repli­
cations of the experiment in unknown homogeneous conditions. Then the 
prediction model is 

Y2 = g ( 0 , l - e ) + E 2 (2) 

where 0 has been estimated at step 1, E2 is a (m x g') matrix of measurement 
errors, 1 is a (TTI x 1) vector of ones and we are interested in the unknown 
(1 X p) levels ^ of the X variables. Independently from the properties of g(-), 
some problems may occur when q > p. Using maximum likelihood based on 
multinormal distributional assumptions, it can be shown that the confidence 
region for ^ depends on a quantity usually called R, which is a measure of 
the unreliability of the Y2 sample set to calibrate ^. The main problem, 
among others, is that the confidence region has an anomalous behavior with 
respect to R: it increases as R decreases and decreases as R increases. When 
q < p the problem may have no solution (see Brown (1993) for details), 
mainly because the space spanned by ^ is greater than the one spanned by 
Yi. Thus no uniqueness in the solution arises. Different additional problems, 
mostly related to the maximum likelihood procedure, are due to the nature 
of X: if it is supposed to be fixed we will talk of controlled calibration; if it 
is random, calibration will be said to be uncontrolled. 

Zappa and Salini (2005) present a semiparametric solution to some of the 
above problems using a data depth procedure. This proposal requires no dis­
tributional assumptions, nor the choice of a linear transfer function, as well 
as the application of no multivariate technique in order to reduce the com­
plexity of the problem. Furthermore, a non-empty, non-infinity confidence 
region is found for any combination of q and p. This proposal has two major 
properties: 1) all the information included in the set of variables is used, and 
2) a preliminary (non-parametric) test is run to verify if the hypothesis of 
linear relationship between the set of variables may be accepted. The coun­
terpart of this approach (like most of the statistics that use a depth function) 
is the relevant computational effort needed. At present no sufficiently power­
ful (fast and reliable) software has been prepared and most of the available 
algorithms (as the one specifically implemented by the authors) have been 
programmed for research reasons. Additionally, it may be used only for un­
controlled calibration experiments and it does not apply when the dataset is 
small. 
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All these considerations will support the following new proposal. 

3 Nonparametr ic Calibration Regions Based on 
Empirical Likelihood 

Many are the references on Empirical Likelihood (EL). The most relevant is 
certainly Owen (2001), where historical background, main results, applica­
tions in very different fields and computational details may be found. 

Briefiy on EL: let Fz be the distribution function of a continuous r.v. Z 
and Zn be an iid sample from Z. Supposing that Wi is the weight that Fz 
places on observation z ,̂ define the EL for the whole sample as ]\wi] the 
maximum is achieved for Wi = 1/n \/i and the empirical likelihood ratio will 
be R{Fz) = n^'^^- Starting from these preliminaries, we may define the 
profile likelihood ratio of a vector of parameters 0 and its corresponding EL 
confidence region. Supposing that T{Fz) = J^'^i'^i^n) is an estimator of 0, 
where h(-) is a vector of functions that may itself be dependent on Fz, then, 
on the domain of 0, the empirical profile likelihood will be defined as 

R{0) =max(Y[nw,\T{Fz) = 0,w, > O.'^w, = l) (3) 

and the corresponding EL confidence region will be 

{0\R{0) > ro} = ^T{Fz)\l[nw, > r^,w, > 0 , ^ ^ , = l ) (4) 

where ro must be chosen such that the coverage probability equals a cho­
sen (1 — a) probability level. Theorem 3.6 in Owen (2001) shows that, in 
distribution, 

- 2 log R{^) -^xl as n ^ oo (5) 

which is a result analogous to the Wilk's theorem. Then ro will be, at least 
asymptotically, the {1 — a) percentile of x^- More generally the constrains in 
(3) may be substituted by what Owen calls "estimating equations" that is a 
vector of functions, ni(-), such that ^^Wimj{7^i,0j) = 0. 

To solve (3) some routines are actually freely available e.g. in R, Gauss 
softwares and very probably in other program language. One of the contri­
bution of this work is a routine freely available from the Author to solve (3) 
in VBA-Excel®. Details of the algorithm are in Zappa (2005). 

The application of EL to calibration problems may present some difficul­
ties and at least two problems. 

The difficulties concern the implementation of the constrains. In the pre­
diction step stacking equations (1) and (2) and assuming to keep the estimate 
of 0 fixed, the unknown ^ must be found subject to the constraints needed 
to find the solution to the unknowns in (1). As it is customary, supposing 
that a standard least squares method is used in (1) and supposing that g(-) 
is at least twice differentiable, we should include in (3) at least the following 
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set of {qp X q) constraints (the estimating equations) corresponding to the 
matrix of gradients equated to zero: 

(dg (@, 

ae 
X 

) 
)] 

T 

{( 
"Y2" 
Yi_ g 0 , u 

X 
© w 

{m-\-n) xq 
0 

{q-p)Xq 

V / 0 = 0 
(6) 

where the first argument is a {q • p)x[m ^ n) matrix, 1 is a (TTI x 1) vector 
of ones and 0 is the Hadamard product. More generahy if equations (1) and 
(2) were a set of generahzed hnear models with random structure belonging 
to the exponential family, then with some little additional complications we 
should have constrains like (6) (for the application of EL to GLM see Kolaczyk 
(1994)). Note also that the matrix W may be thought of either q different 
columns [wi^ W2,... Wq] of vectors of weights or W =w • 1^, where 1^ is 
(1 X q). In the former case we assume that the q models in (1) should be 
estimated independently, that is q different experiments have to be run. Then 
the maximum in (3) becomes fllLi^ n?= i (^ + ^) '^^j - ^^ ^^^ latter case, as it 
is much more frequent, we assume that only one experiment is run and then 
the q models are jointly studied and estimated. Now, supposing that (1) and 
(2) are models linear in the parameters, with obvious notation we may write 

(7) 
Yi=a + XB + El 
Y2 = l a + 1 ^ B + E2 

(a) 
(b) 

Using (6) we have the following q{p -

T 

1) X g' constraints 

1 1^ 
1 X 

(nx l ) 
(9x1 

Y2 
Yi 1 a-

(m+n)x l 

1? 
X 

B 0 W 
{m-\-n) xq 

0 

(8) 

where (g) stands for the Kronecker product. If q=l and W = w • 1^ then (8) 
corresponds to: 

m n 

ei = {yii - a - Yl PsCis) 
m n s = l 

and yi,y2 are, respectively, the data coming from the calibration and the 
prediction step, and w^j is the weight of e^j. 

Computationally, the problem of finding the maximum of the log of (3) 
with the constrains in (9) can be more efficiently solved by implementing its 
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dual problem. (9) may be written in a compact form as X^ • w = 0, where 
Xg represents the matrix of residuals. Let A* = {a~^}. Using the hints of 
Owen (2001) pag. 60, the peculiar solution for the calibration problem, is 
w = ^^4^x|^ where x^^ = 1 + Xg • A and A is a (p x 1) Lagrange multiplier 
that satisfies the p-\-1 equations 

^ ^ [ ( X e 0 ( x J 1 ) f . 1 ] = 0 
n ^ m ^ ^ I x p ' ( n + m ) x l 

By substituting w in (3) we have \ogR{^x) = — [logx^^] • 1, which must 
be minimized over A subject to the constraint that the argument of log is 
positive and J2'^i = ^^ 

Additional constraints, e.g. on the deviance of the residuals, may be added 
(see Zappa (2005) for details). Without loss of generality, in the rest of this 
paragraph we will make use only of the constrains in (9). 

The first problem is that, given y2 , not unique solution to (7b) may exists 
and then all the ^ that belong to the calibration model and that satisfy the 
constrains in (9) will yield R{^) = 1. Notwithstanding this, we may show that 
the calibration region is closed at least in probability measure. In fact, suppose 
for simplicity and without loss of generality that q = m = 1. Suppose that 
the variables have been centred (this is often the case especially in controlled 
calibration): then a = 0. Let d = ||(f — X||2 be the distance of ^ from the 
observed set X. As X is fixed, it is sufficient that, e.g., the j-th element 
of ^ diverges, so that d ^ cxo. It follows that \im\^.\^^^je^j = cxo : that 
is, if the whole vector ^ does not simultaneously change as ^j increases, the 
contribution to the estimating equations in (9) goes to infinity. In order to 
fulfil the constraints to zero in (9) the weight w^ ^ 0 and then R{^) -^ 0. 
But even for small fixed e^, that is even if we choose the whole vector ^ 
systematically close to the model, the previous limit will be cxo and then 
R{0 ~^ 0- These considerations support the conjecture that ^8 too far from X 
are not good calibrating solutions and this will be exploited in the following. 
Then as d ^ oo we may have only R{^) = 0 or R{^) = 1 respectively, if ^ 
does or does not belong to the model (that is for a subset of measure zero). 
In the latter situation the contribution to the estimating equations in (9) is 
zero, as it is shown in the next equation 

lim ^,(y2i - r O = , lim [-Pj/{y2j - P^OT' = 0 (10) 

and then Wi = l / (n + 1) \/i. Obviously for small or moderate d the contribu­
tion to the equations in (9) is at least moderate and the weights will not be 
necessarily all zeros. Once the problem of the closure of the confidence region 
at least in probability has been solved, we may apply (5) to find operatively 
the confidence region. 

The second problem is that, if e.g. p > q, then the estimates satisfying 
R{^) = 1 may be infinite and the choice of a unique calibration point ap-
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pears indeterminate. We propose the introduction of a penalty function that 
win downweight those ^ which wih increase the overah entropy to the sets 
(X, Yi) cohected in the cahbration step. Consider that this step is usuahy 
run in a very accurate and precise conditions. Then it seems reasonable that 
any solution "far" from the set (X, Yi) may be considered not a good calibrat­
ing solution. This proposal introduces a measure coherent with the previous 
considerations based on d and similar to the inconsistency measure in the 
classical approach: the greater is the entropy the less is the prediction ability 
of the Y2 set with respect to Yi . 

\U Y2I 
Let (X^,Y)= 

X Yi 
To measure entropy, we have chosen the global 

variability of the second order 

n+?7i 

Zi2(Xj,Y) ' ^ 

_ 0.5 
\ 2 ] 

( X 5 , y ) . - ( x j , y ) J WiWj\ (11) 

where (x^,y)^ , for i{j) = 1,2, ...,m + n, is the ith (jth) row of the matrix 
(X^, Y), because it does not need the estimate of any additional parameter 
and it is based on Euclidean distances. Note that the distance between the 
ith and the j th row is weighted by the estimated w. Then it balances the 
increase in d and the relative importance of the new ^ with respect to the 
set X. Moreover a property of (11) is that, for any ^ such that w^ = 0, 
Z\2(X^,Y) = const that is any solution far from the calibration set is to 
be considered indifferent for A2. This proposal may be applied also to the 
Maximum likelihood (ML) approach, but in this case no weights will be used 
in (11). 

4 An Example: The Critical Dimension (CD) Process 

In microelectronics, (I wish to thank Gabriella Garatti of STMicroelectron-
ics in Agrate -Italy- for having proposed me the CD problem, provided the 
dataset and helped me in giving a simple technical explanation of the prob­
lem) calibration is one of the key methodology to guarantee the highest preci­
sion and, where possible, a reduction of costs. Many are the steps requested to 
produce what is elementarily called a chipset. Among these very many steps 
the so called Critical Dimension (CD) process is considered (as its name sug­
gests) very critical. This is also due to the progressive shrinking of CD. In 
very few words, CD concerns the control of a lithography process whose aim 
is to "print" on a wafer surface the map of geometric structures and to control 
that the distance or the shape of structures, such as channels, boxes, holes 
etc., has a particular profile. 

To control this process key factors are: image contrast, image focus and 
exposure dose. Visual test based methods have played significant roles in 
both production and development environments. For example, the use of 
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checking completely developed and cleared photoresist patterns from a dose-
focus matrix is very common in semiconductor industry. While visual tests 
are easy to implement, they are not easy to automate. Scanning electron 
microscopes (SEM) can measure patterned features. However they are very 
expensive, and can be either time-consuming or destructive, and thus not 
suitable for run-to-run monitoring. Moreover, electrical measurements can 
provide information on final CD linewidths, but cannot provide reliable resist 
profile information. Besides the airborne base contamination of chemically 
amplified photoresist is a yield-limiting factor in deep UV lithography and 
will remain so as device features continue to shrink. 

Because of all the above reasons, the availability of a reliable calibration 
algorithm is needed in order to find the best treatment for pre-chosen CDs. 

The variables and the data used to calibrate the experiment are in Zappa 
(2005). In particular, the parameters n^p^q^m result to be 9,2,1,1 respec­
tively. Note that n is very small and that p > q, that is the two problems 
described in § 3 are present. According to the standard literature for this pro­
cess, a linear combination of variables has been preferred. We have chosen for 
F , the CD response variable, the target value of 0. The output of the VBA 
program is in Fig. 1. Looking at R{^) it turns out that exists, as expected, a 
locus of maximum corresponding to the estimated model, plus an unexpected 
local suboptimum area a bit far from the estimated linear model and in the 
neighbor of {0,0}. Such a region is absolutely absent in the ML profile. The 
A2 surface in EL is evidently diflFerent from the analogous one in ML where 
no weights are attributed to the data. From the contour plot of R{^)/A2 
we have found that the optimum calibration point is (—1.58, —1.63) for EL 
and (-1.51,-1.52) using ML. From the profile surfaces in Fig.l, it appears 
intuitive that applying (5) the resulting confidence region will be closed at 
least asymptotically using R{^) but in no way this will happen using the ML 
approach. 

5 Conclusions 

Empirical likelihood seems to be very promising for a variety of problems. 
Its main property is the possibility to exploit some standard results of the 
parametric likelihood theory in a non parametric context. Certainly the main 
limit to a wide application of EL is the availability of a computational tool. 
To solve this limit we hope the freeware spreadsheet and the connected VBA 
program we have implemented will be a useful tool in making EL wider 
known, especially, as it has been in our experience, in those communities 
where small dataset, very high experimental costs and the difficulty to test 
parametric assumptions are very frequent in the daily labour. At present it 
has been specifically prepared for the calibration problem but it can be easily 
adjustable to many other contexts. 
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Fig. 1. Profile EL and ML, A2, contour plot of R(()/A2 and optimum ^1,^2 
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Abs t r ac t . During a forward search the plot of minimum Mahalanobis distances 
of observations not in the subset provides a test for outliers. However, if clusters 
are present in the data, their simple identification requires that there are searches 
that initially include a preponderance of observations from each of the unknown 
clusters. We use random starts to provide such searches, combined with simulation 
envelopes for precise inference about clustering. 

1 Introduction 

The forward search is a powerful general method for detecting unidentified 
subsets and multiple masked outliers and for determining their efiFect on mod­
els fitted to the data . The search for multivariate da ta is given book length 
t reatment by Atkinson et al. (2004). To detect clusters they use forward 
searches start ing from subsets of observations in tentatively identified clus­
ters. The purpose of this paper is to demonstrate the use of randomly selected 
start ing subsets for cluster detection tha t avoid any preliminary da ta analy­
sis. The goal is a more automatic method of cluster identification. 

2 Mahalanobis Distances and the Forward Search 

The main tools tha t we use are plots of various Mahalanobis distances. The 
squared distances for the sample are defined as 

d1 = {yi-ii}^E-^{yi-fi}, (1) 

where jl and E are estimates of the mean and covariance matr ix of the n 
observations. 

In the forward search the parameters /i and E are estimated by maximum 
likelihood applied to a subset of m observations, yielding estimates jl{m) and 
E{m). From this subset we obtain n squared Mahalanobis distances 

dK"^) = {Vi - K^)}^^~^{^){yi - K^)}^ i = 1,. . . , n. (2) 
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We start with a subset of TTIQ observations which grows in size during the 
search. When a subset S{m) of m observations is used in fitting, we order 
the squared distances and take the observations corresponding to the m -\-1 
smahest as the new subset S{m-\-l). Usuahy this process augments the subset 
by one observation, but sometimes two or more observations enter as one or 
more leave. 

In our examples we look at forward plots of quantities derived from the 
distances di{m). These distances tend to decrease as n increases. If interest 
is in the latter part of the search we may use sca led distances 

d f (m) = di{m) X {\E{m)\/\E{n)\) , (3) 

where v is the dimension of the observations y and i^(n) is the estimate of 
U at the end of the search. 

To detect outliers we examine the minimum Mahalanobis distance amongst 
observations not in the subset 

^ m i n ( ^ ) = mind^(m) i ^ 5'(m), (4) 

or its scaled version ^n i in (^) ^ ^ ( ^ ) - ^^ either case let this be observation 
^min- If observation ^niin ^̂  ^^ outlier relative to the other m observations, the 
distance (4) will be large compared to the maximum Mahalanobis distance 
of the m observations in the subset. 

3 Minimum and Ordered Mahalanobis Distances 

Now consider the ordered Mahalanobis distances with d^j^j (m) the kth largest 
distance when estimation is based on the subset S{m). In many, but not 
necessarily all, steps of the search 

d[m+i]{m) = ^ n i i n M - (5) 

Instead of using ^niin(^^) ^^ ^^ outlier test, we could use the value of d[^+i] (m). 
In this section we describe when the difference in the two distances can arise 
and what the lack of equality tells us about the presence of outliers or clusters 
in the data . We then use simulation to compare the null distribution of tests 
in the forward search based on the two distances. 

Lack of equality in (5) can arise because the observations in S{m) come 
from ordering the n distances di{m — l) based on S{m — 1) not on S{m). The 
effect is most easily understood by considering the case when the observation 
added in going from S{m — 1) to S{m) is the first in a cluster of outliers. 
In tha t case the parameter estimates ll{m) and IJ{m) may be sufficiently 
different from fi{m — 1) and IJ{m — 1) tha t the other observations in the 
cluster will seem less remote. Indeed, some may have smaller distances than 
some of those in the subset. More formally, we will have 

^ m i n ( ^ ) < d[k] (m) k < m, (6) 
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for one or more values of k. Then the difference 

gi{m) = ^ m i n M - ^ M ( ^ ) (7) 

will be negative, whereas when (5) holds, which it typically does in the ab­
sence of outliers. 

g2{m) = ^ [ , n + i ] M - d[m]{m) = ^ m i n M - ^ M M (8) 

is positive. The forward plot of ^1(771) and g2{m) is called a gap plot, appre­
ciable differences between the two curves indicating the entry of a group of 
outliers or of a new cluster of observations into the subset. At such moments 
interchanges may occur when one or more of the observations in S{m) leave 
the subset as two or more enter to form S{m + 1). A more detailed discus­
sion of the ordering of observations within and without S{m) is on pp. 68-9 
of Atkinson et al. (2004). The gap plot for the Swiss banknote data, which 
contains two clusters, is on p. 118. 

Fig. 1. Envelopes from 10,000 simulations of forward searches with multivariate 
normal data when n = 200 and v = 6. Left-hand panel - elliptical starts: continuous 
lines, the order statistic (i[^+i](m); dotted lines, (ij^jj^(m), the minimum distance 
amongst observations not in the subset. Right-hand panel - plots of djj^^-^{m): dotted 
lines, elliptical starts as in the left-hand panel; continuous lines, random starts. 1, 
2.5, 5, 50, 95, 97.5 and 99 % envelopes 

The above argument suggests tha t , for a single multivariate population 
with no outliers, (5) will hold in most steps of the search and tha t use of 
d[^+i](m) or of ^n i in (^ ) ^^ ^^ outlier test will give identical results. To 
demonstrate this we show in the left-hand panel of Figure 3 forward plots 
of simulated percentage points of the empirical distribution of the unsealed 
versions of the two quantities from 10,000 simulations of 200 observations 
from a six-dimensional normal distribution. The continuous curves are for 
d[^+i](7n), whereas ^niin(^^) ^̂  represented by dotted lines. There is no dis­
cernible difference over the whole search in the median and upper percentage 
points of the distribution. There is some difference in the lower percentage 
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points where the average values of ^niin(^^) ^^^ shghtly lower. This is ex­
plained because, in the earlier stages of the search there are a few samples in 
which the observations are not well ordered and the subset is unstable, so that 
condition (6) holds. That the difference between the two distributions is only 
in the lowest tails shows that such behaviour is comparatively rare. Since we 
use the upper tails of the distribution for detection of outliers, the figure con­
firms that the test is indifferent to the use of d^rn-\-i] {^ oi" of ^min(^^)- ^^ ^^^ 
remainder of this paper we only consider the minimum distances ^niin(^^)-

4 Elliptical and Random Starts 

When the observations come from a single multivariate normal population 
with some outliers, these outlying observations enter at the end of the search. 
To start the search under these conditions Atkinson et al. (2004) use the ro­
bust bivariate boxplots of Zani et al. (1998) to pick a starting set 5'*(mo) 
that excludes any two-dimensional outliers. The boxplots have elliptical con­
tours, so we refer to this method as the elliptical start. However, if there are 
clusters in the data, the elliptical start may lead to a search in which obser­
vations from several clusters enter the subset in sequence in such a way that 
the clusters are not revealed. Searches from more than one starting point are 
in fact needed to reveal the clustering structure. Typically it is necessary to 
start with an initial subset of observations from each cluster in turn, when 
the other clusters are revealed as outliers. An example using the data on 
Swiss banknotes is in Chapter 1 of Atkinson et al. (2004). In this example 
finding initial subsets in only one of the two clusters requires a preliminary 
analysis of the data. Such a procedure is not suitable for automatic cluster 
detection. We therefore instead run many forward searches from randomly 
selected starting points, monitoring the evolution of the values of ^niin(^^) 
as the searches progress. 

In order to interpret the results of such plots we again need simulation 
envelopes. The right-hand panel of Figure 3 repeats, in the form of dotted 
lines, the envelopes for ^niin(^) from the left-hand panel, that is with ellip­
tical starts. The continuous lines in the figure are for the values of ^niin(^) 
from random starts. At the start of the search the random start produces 
some very large distances. But, almost immediately, the distances for the 
random start are smaller, over the whole distribution, than those from the 
elliptical start. This is because the elliptical start leads to the early establish­
ment of subsets S{m) from the centre of the distribution. But, on the other 
hand, the subsets Sn (m) from the random start may contain some observa­
tions not from the centre of the distribution. As a consequence, the estimate 
of variance will be larger than that from the elliptical start and the distances 
to all units will be smaller. As the search progresses, this effect decreases as 
the Sn (m) for individual searches converge to the S{m) from the elliptical 
start. As the figure shows, from just below m = 100 there is no difference 
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between the envelopes from the two searches. Further, for appreciably smaller 
values of m inferences about outliers from either envelope will be similar. 

The results of this section lead to two important simplifications in the 
use of envelopes in the analysis of multivariate normal data . One is tha t 
procedures based on either d[^+i](m) or on ^n i in (^ ) ^^^ practically indistin­
guishable. The other is tha t the same envelopes can be used, except in the 
very early stages of the search, whether we use random or elliptical s tar ts . If 
we are looking for a few outliers, we will be looking at the end of the search. 
If we are detecting clusters, their confirmation involves searches of only the 
cluster members so tha t , as we see in §6, we are again looking only at the 
end of the search. 

5 Swiss Banknotes and Swiss Heads 

Fig. 2. Forward plots of c?niin(^) ^̂ ^ ^^^ searches with random starting points. 
Left-hand panel, Swiss banknote data showing two groups and outliers; the searches 
shown in grey always contain units from both groups. Right-hand panel, Swiss heads 
data, a homogeneous sample. An arbitrarily selected search is shown in black. 1, 
2.5, 5, 50, 95, 97.5 and 99 % envelopes from 10,000 simulations 

There are two hundred observations in the Swiss banknote data . The 
notes have been withdrawn from circulation and contain 100 notes believed 
to be genuine and 100 probable forgeries, on each of which six measurements 
were made. The left-hand panel of Figure 5 contains the results of 500 for­
ward searches from randomly selected start ing subsets with mo = 10. For 
each search we have plotted the outlier test d^[^{m), the minimum unsealed 
Mahalanobis distance amongst observations not in the subset. Also included 
in the plot are 1, 2.5, 5, 50, 95, 97.5 and 99 % simulation envelopes for 
djj^[j^{m) when the observations come from a single six-dimensional normal 
distribution. 

The first feature of the plot is tha t , from m around 150, all searches 
follow the same trajectory, regardless of start ing point. This is empirical 
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justification of the assertion of Atkinson et al. (2004) that the starting point 
is not of consequence in the latter part of the search. The end of the search 
shows a group of 20 outliers, most of which, in fact, come from Group 2, the 
forgeries (there seem to have been two forgers at work). The peak around m 
= 98 is for searches containing only units from Group 1. At these values of m 
the outliers from Group 1 and observations from Group 2 are all remote and 
have large distances. Because of the larger number of outliers from Group 2, 
the peak for this cluster comes earlier, around TTI = 85. The searches that 
do not give rise to either peak always contain units from both clusters and 
are non-informative about cluster structure. They are shown in grey in the 
figure. 

This plot shows the clear information that can be obtained by looking at 
the data from more than one viewpoint. It also shows how quickly the search 
settles down: the first peak contains 70 searches and the second 62. Fewer 
searches than this will have started purely in one cluster; because of the way 
in which units are included and excluded from the subset, the searches tend 
to produce subsets located in one or other of the clusters. 

The left-hand panel of the figure can indeed be interpreted as revealing the 
clusters. But we also need to demonstrate that we are not finding structure 
where none exists. The right-hand panel of the figure is again a forward plot 
of the minimum distance of observations not in the subset, but this time for 
the 200 observations of six-dimensional data on the size of Swiss heads also 
analysed by Atkinson et al. (2004). This plot shows none of the structure of 
clustering that we have found in the banknote data. It however does show 
again how the search settles down in the last one third, regardless of starting 
point. 

The plot in the left-hand panel of Figure 5 leads to the division of the 
data into two clusters, the units in the subsets just before the two peaks. 
Once the data have been dissected in this way, the procedures described in 
Atkinson et al. (2004) can be used to explore and confirm the structure. For 
example, their Figure 3.30 is a forward plot of all 200 Mahalanobis distances 
when the search starts with 20 observations on genuine notes; in Figure 3.35 
the search starts with 20 forgeries. In both these plots, which are far from 
identical, the structure of two groups and some outliers is evident. However, 
in their Figure 3.28, in which the search starts with a subset of units from 
both groups, there is no suggestion of the group structure. 

6 Bridge Data 

In their §7.5 Atkinson et al. (2004) introduce the "bridge" data; 170 two-
dimensional observations that consist of a dispersed cluster of 80 observations, 
a separate tight cluster of 60 observations and an intermediate bridge joining 
the two groups consisting of 30 observations. The data are plotted in their 
Figure 7.18. An important feature of these data without the bridge is that the 
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Subset size m 

Fig. 3. "Bridge" data: c?niin(^) ^̂ ^ ^^^ searches with random starting points. The 
peak at m = 61 comes from searches that contain only units in the compact group. 
The other main trajectory is for searches based on the dispersed group 

cluster structure is not detected by very robust statistical methods which fit 
to a subsample coming from both clusters and so fail to reveal the clustered 
nature of the data . We first use these da ta as a second example of the power 
of random starts to indicate clustering. We then show how the repeated 
use of envelopes for varying sample sizes n can lead to the virtually exact 
determination of cluster membership. 

Figure 5 shows plots of ^n i in (^) ^^^ ^00 searches with random start ing 
points. The general structure is tha t , from around m = 50, there are two 
trajectories. The upper one, which at this point contains units from the com­
pact group of 60 observations, has a peak at m = 61. The lower trajectory 
initially contains units from the dispersed group of 80 observations and then, 
for larger m, neighbouring units from the bridge are included. There follows 
a large interchange of units when most of those from the dispersed group are 
removed from the subset and, from TTI = 95, both trajectories are the same; 
the subset subsequently grows by inclusion of units from the dispersed group. 

We now consider a careful analysis of the trajectory of ^niin(^^) using 
subsets of the da ta of increasing sizes identified from Figure 5 as giving the 
upper trajectory, tha t is seemingly coming from the compact group. To dis­
cuss individual observations we use the ordering imposed by the forward 
search, notated as observation [i]. The top-left panel of Figure 6 is for 500 
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searches with random starts using the first 60 units to enter the subset, so 
the envelopes, which stop at TTI = 59 are found by simulations with n = 60. 
The trajectory lies within the simulated envelopes; there is no evidence of 
any outlier. In fact the trajectory is a little too fiat at the end, as though a 
large, but not outlying, observation or two has been incorrectly excluded. 

20 30 40 

Subset size m 

20 30 40 

Subset size m 

20 30 40 

Subset size m 

20 30 40 

Subset size m 

Fig. 4. "Bridge" data: c?niin(^) ^̂ ^ ^^^ searches with random starting points for n 
= 60, 61, 62 and 63 observations giving the upper trajectory in Figure 5. The first 
60 observations are shown to belong to a homogenous group. 1, 5, 50, 95, and 99 
% envelopes 

In fact, the first 60 observations in the search consist of 59 from Group 
1 and one from the bridge. Of course, because the da ta are simulated with 
random error, group membership can be overlapping. The upper-right panel 
in the figure is for n = 61, with new simulation envelopes from this value 
of n. It is important in the exact detection of outliers tha t the upwards 
curve towards the end of the search is sensitive to sample size. Addition 
of observation [61] (observation 118 in Table A. 15 of Atkinson et al., 2004) 
causes an upwards jump in the trajectory, although not a sufficiently large 
jump to take the trajectory outside the envelopes. 

Observation [61] is the last from Group 1. Addition of observation [62] 
(161), shown in the lower-left panel of the figure, takes observation [61] par­
tially outside the envelopes, although observation [62] remains inside. Finally, 
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the plot for the first 63 observations shows observation [61] well outside all 
envelopes, with the trajectory returning inside the envelope. 

The behaviour of the trajectory in the lower plots is typical of the effect 
of adding a cluster of different observations from those in the subset earlier 
in the search, which was discussed in §3. Wha t these plots do show is tha t 
observation [61] is indeed an outlier and tha t the first 60 units form a ho­
mogeneous group. The next stage in the analysis would be to remove these 
sixty observations and to run further series of searches with random starts to 
identify any remaining structure. 

7 The Importance of Envelopes 

The analysis in this paper has depended crucially on the use of simulation 
envelopes in the forward search, a feature missing from our books Atkinson 
and Riani (2000) and Atkinson et al. (2004). The envelopes used here are 
similar to those described by Riani and Atkinson (2006) for testing for outliers 
in multivariate normal data . Since they are looking for outliers from a single 
population, they only use elliptical s tarts , rather than the random starts we 
use here to detect clusters. For large samples in high dimensions, the repeated 
simulation of envelopes for increasing sample sizes, as in §6, can be excessively 
time consuming. Riani and Atkinson (2006) describe methods for numerical 
approximation to the envelopes, particularly for the scaled distances (3). 
They also give theoretical results, based on order statistics from scaled F 
distributions, tha t give excellent approximations to the envelopes, even for 
moderate n and v. 
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Abs t r ac t . The aim of this work is to detect the best transformation parameters 
to normaUty when data are proportions. To this purpose we extend the forward 
search algorithm introduced by Atkinson and Riani (2000), and Atkinson et al. 
(2004) to the transformation proposed by Aranda-Ordaz (1981). The procedure, 
implemented by authors with R package, is applied to the analysis of a particular 
characteristic of Tuscany industries. The data used derive from the Italian industrial 
census conducted in the year 2001 by the Italian National Statistical Institute 
(ISTAT). 

1 Introduction 

Most applications carried out with multivariate methods yield results tha t as­
sume normality assumptions. At present few methods are available to assess 
the stability of the results. Often the assumption of multivariate normality is 
approximately t rue only after an appropriate transformation of the data . The 
most widely used methods of transformation have been proposed by Box and 
Cox in 1964, and by Aranda-Ordaz in 1981 when da ta are respectively contin­
uous and proportions. Unfortunately, when we manage multivariate da ta it 
is very difficult to find out, test and validate a particular transformation due 
to the well known masking and swamping problems (Atkinson, 1985; Velilla, 
1995). The lack of a proper choice of the most appropriate transformation 
may lead to overestimate (or underestimate) the importance of particular 
variables (Riani and Atkinson, 2001), and to a wrong interpretation of the 
results from the methods used. The difficulties and intricacies of the choice 
of the best multivariate transformation usually lead the analyst to apply 
statistical methods to untransformed data . 

The forward search (FS) is a powerful general method for detecting mul­
tiple masked outliers and for determining their effect on models fitted to 
data . Atkinson and Riani (2000) and Atkinson et al. (2004) describe its use 
in generalized linear models, and in multivariate methods. 

The aim of this work is to show how the FS algorithm can be extended to 
multivariate normality transformations where da ta are proportions, with the 
aim to find the best transformation parameters . The implementation of this 
new approach to the transformation of proportions is carried out in a library 
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of R package which is available on request by authors. To show how our 
proposal works, we perform an example using a data set concerning char­
acteristics of the Italian industries obtained from the census of industries 
conducted in the year 2001 by the Italian National Statistical Institute. In 
particular, we consider a subset of three different variables concerning the 
economic sectors Commerce, Transport and Communication, and Finance, 
observed on 287 municipalities of the Tuscany region. In particular, the vari­
ables yj are the percentage of firms with small-medium size (with < 250 
employees) to the total number of firms in each sector. 

2 The Use of Forward Search in Multivariate Analyses 

In the FS procedure subsamples of outlier free observations are found by 
starting from small subsets and incrementing them with observations which 
have small Mahalanobis distances, and so are unlikely to be outliers. More 
precisely, the FS is made up of three steps (Riani and Bini, 2002; Atkinson 
et al.^ 2004): choice of the initial subset, adding observations during the FS 
and monitoring the search. 

• Step 1: Choice of the initial subset 
We find an initial subset of moderate size by robust analysis of the matrix 
of bivariate scatter plots. If the data are composed by v variables, the 
initial subset of r observations (with r >v) consists of those observations 
which are not outlying on any scatter plot, found as the intersection of 
all points lying within a robust contour (a fitted B-spline) containing a 
specified portion of the data (Riani et al.^ 1988). Since the evidence for 
transformations is provided by the extreme observations, such a robust 
subset will provide a good start to the search for many values of the 
transformation parameter. 

• Step 2: Adding observations during the FS 
In every step of the forward search, given a subset S^ of size m {m = 
r , . . . , n — 1), we move to a subset of size (m + 1) by selecting the (m + 1) 
units with the smallest Mahalanobis distances: 

where jl^im) is the centroid of Si^^ and IJ^(m) is the Si^^ sub-sample 
covariance matrix. The procedure ends when all the n observation enter 
the analysis. 
In moving from Si'^ to Si' ^, usually just one new unit joins the subset. 
It may also happen that two or more units join SlT^ as one or more 
leave. However, our experience is that such an event is quite unusual, only 
occurring when the search includes one unit which belongs to a cluster of 
outliers. At the next step the remaining outliers in the cluster seem less 
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outlying and so several may be included at once. Of course, several other 
units then have to leave the subset. 
Step 3: Monitoring the search 
In multivariate analysis we first try to find a set of transformation pa­
rameters to reach approximate normality. In each step of the search as 
m goes from r to n we initially monitor the evolution of the Mahalanobis 
distances, of the maximum likelihood estimates (MLE) and of the like­
lihood ratio test for transformations, using the procedure described in 
the section below. The changes which occur, will be associated with the 
introduction of particular observations into the subset m used for fitting. 
We plot all n Mahalanobis distances d^ ^(m) for each value of m. The 
trajectories of this plot are informative about the behavior of each unit 
throughout the search. 

3 The Aranda-Ordaz Transformation and Tests for 
Transformation in Multivariate Analysis 

Let y be a sample data matrix of dimension nxv where tjij is the ith observa­
tion on variable j with j = 1,..., 'y, and let pij = yij/{l — yij) the correspond­
ing odds. In the extension of the Aranda-Ordaz (1981) family to multivariate 
responses the normalized transformation of UAO = 2(p^ — 1)/A(p^ + 1) is 

\ l o g { y / ( l - y ) } G { y ( l - y ) } , ( A = 0) 

where G is the geometric mean function and GAO (A) = G i ^/ ^+it^ ) • 

Note that the first expression of ^AO(A) yields the second one with A ^ 0. 
Figure 1 shows the values of the proportions obtained under transfor­

mation, using some common values of A (0,0.5,1,1.5,2,2.5,3). The figure 
includes two panels which show the ZAO{^) shapes respectively for the trans­
formation and normalized transformation of yij. Similarly to Box-Cox trans­
formation, these shapes highlight the effects of restriction and expansion of 
the proportions values respectively when A > 1 and A < 1 (Zani, 2000). More­
over, the effect of the A values on the transformation is even more higher as 
yij values leave from 0.5. Since in the present application we manage data 
having very small values (almost all Yij are less than 0.30) it is significant 
the choice of the best transformation parameter. To do this we make use of 
FS procedure. 

We recall the main features of the forward search analysis for the Aranda-
Ordaz transformation to normality: 

Step 1. Run a forward search through the untransformed data, ordering 
the observations at each m step by Mahalanobis distances calculated for the 
whole data set. After that we derive the MLE of A at each step; the collection 
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1. Aranda-Ordaz transformation functions (ZAO(A)) for some common values 

of A^ is analyzed in order to check for the presence of anomalous observations 
and to select a set of transformation parameters tha t are not affected by their 
presence. 

S t e p 2. Rerun the forward search using distances calculated with the 
parameters selected in the previous step, again estimating A for each m. If 
some change is suggested in A^, repeat this step until a reasonable set of 
transformations has been found. Let this be XR. 

S t e p 3. Test the suggested transformation. In general, the likelihood 
ratio test to validate the hypothesis A = AQ, can be expressed as the ratio 
of the determinants of two covariance matrices (Atkinson, 2002): TLR = 

^l^S"^ E ( ' ^ o ) / XK'^) f where A is the vector of v parameter estimates 
found by numerical search maximizing the transformed normal log likelihood, 
Y^ (Ao) and ^{X) are the covariance matrices calculated respectively when 
A = Ao and A = A. The value of TLR must be compared with the distribution 
X^ on V degrees of freedom. In this particular case, for each variable we 
expand each transformation parameter in turn around some values of the 
found estimate, using the values of XR for transforming the other variables. 
In this way, we turn a multivariate problem into a series of univariate ones. 
In each search we can test the transformation by comparing the likelihood 
ratio test x^ with on 1 degree of freedom. But we prefer to use the signed 
square root of the likelihood ratio in order to learn whether lower or higher 
values of A are indicated. 

In order to find the most appropriate transformation we use both the 
MLE and the values of the test statistic. However, it is bet ter to look at the 
value of the test rather than parameter estimates, because if the likelihood is 
fiat, the estimates can vary widely without conveying any useful information 
about the transformation. 
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4 Forward Transformation of Industries Census Data 

We performed, according to the Aranda-Ordaz proposal, the forward search 
and tested for normahzed transformation to normahty on the industry census 
data . We decided to use the normahzed transformation of observations since 
it ahows to use a simpler form of the likelihood than in the other case. We 
started with a default value of 1 (i.e. HQ : Xj = 1, j = 1,..., 'u). First, we found 
the initial subset as the intersection of robust bivariate contours superimposed 
in each bivariate scatter diagram as is showed in Figure 2. The boxplots show 
the skewed distributions of the three sectors yj (with j = 1, 2, 3), Commerce, 
Transport and Communication, and Finance (also labelled Sector 7, Sector 
9 and Sector 10). 

; WJ 
i 

^ 

(S) 
1 i 
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1 

Fig. 2. Bivariate scatterplot matrix of the three variables observed on 287 munic­
ipalities with two superimposed robust contours containing respectively 50% and 
95% of the data. 

The start ing forward search concerns the monitoring of the 3 maximum 
likelihood estimates A. The resulting forward plots are shown in Figure 3. 

The left panel of this figure shows the graphical output of monitoring of 
maximum likelihood estimates, while the right panel shows the monitoring of 
the likelihood ratio test statistic, for the null hypothesis of no transformation, 

tha t is TLR(m) = ^ l o g { E( '^o) / E W } . m = r,...,n. 

Given tha t the values of the likelihood ratio test must be compared with 
a Xs it is clear tha t the da ta must be transformed. In fact, the right panel of 
Figure 3 shows tha t the values of test increase steadily throughout the search. 



178 Bini and Bertaccini 

Subset Size Subset Size 

Fig. 3. Monitoring of maximum likelihood estimates (left panel) and likelihood 
ratio test (right panel) of A, during the forward search. 

and are very far from the horizontal lines associated with the 95% and 99% 
points of x i - The monitoring of maximum likelihood estimates leads to select 
the tentative combination AQ (0.9, 0, 0.5)-^. In fact, the first trajectory remains 
stable around 0.9 value while the other ones trend down during all the search 
long, until to reach 0 and 0.5 values at the last steps. Then, we repeated the 
analysis using the values of from step 1. Figure 4 describes the forward plot 
of the monitoring of the likelihood ratio test statistic, for the null hypothesis 
of Ao (0.9,0,0.5)^. 

1 8 0 2 2 0 

S u b s e t S i z e 

1 8 0 2 2 0 

S u b s e t S i z e 

Fig. 4. Monitoring of maximum likelihood estimates (left panel) and likelihood 
ratio test (right panel) for Ho : Ao (0.9,0,0.5)^, during the forward search. 

This figure shows tha t the values of the test lie inside the confidence bands. 
From step m = 260 until step m = 280 it is possible to notice an upward jump. 
This is certainly due to the presence of some outliers which affect the single 
variable 1/3, as it is clearly shown for the same steps interval, in the left panel 
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of the same figure. This means that using the FS, it is possible to detect the 
effect of each unit on the results of the statistic. Again, the trajectories of the 
estimates in the left panel show a stable behavior which confirms the choice 
of the three values of AQ . An additional step of the analysis (not given here for 
lack of space) could be to investigate the characteristics of the units which are 
responsible of this sudden upward jump. Some more interesting forward plots 
can be done to have an idea of the best transformation of the parameters. 
Figure 5, for example, shows the profile likelihoods with asymptotic 95% 
confidence intervals for the three parameters. In all the these panels the 
shape of profiles, since it is not fiat, confirm the values (corresponding to 
their maximum) obtained throughout the search. In particular, the likelihood 
surface of the third variable is sharply peaked. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0 -̂  -I " I S 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Fig. 5. Profile likelihoods for the three transformation parameters when m = 287. 

Similar information as above, can be derived from the fan plots of the 
three variables, showed in Figure 6. In these plots we monitor all the possible 
values of the transformation parameters. Usually they are used to monitor 
some possible parameter values closer to that one which seems to be the 
best transformation, in order to confirm it. Any transformation value would 
be acceptable if it lies within the 99% interval for the asymptotic normal 
distribution throughout the searches. Here, the panels of this figure display 
and confirm the choice of 0.9, among possible values (0.5, 0.7, 0.9, 1.1, 1.3) 
for Sector 7, the choice of 0 among (0, 0.1, 0.2, 0.3, 0.5) for Sector 9 and 
the choice 0.5 among (0.1, 0.3, 0.5, 0.7, 1) for Sector 10. For example, from 
the right panel we can see how the presence of outliers affect the choice of 
A3: in fact, for A3 = 0.1; 0.3 the MLE estimates show an upward jump, while 
for A3 taking values around 0.5 the trajectory is stable. Instead, traces for 
A3 = 0.7; 1 decline from the first steps of the search, confirming A3 = 0.5 as 
the best choice of the transformation parameter. 

5 Concluding Remarks 

The FS procedure has been proposed as a powerful tool to detect and in­
vestigate single or groups of units which differ from the bulk of data and 
which can affect on model fitted to data. In this work we demonstrated that 
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Fig. 6. Fan plots for individual transformations of A. 

its use can be extended to find the best transformation to normal distribu­
tion, also when da ta are proportions, and still preserving the capability to 
detect atypical units which could affect the choice of the best transformation 
parameter . 
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Abstract. In geodesy, one of the most frequent problems to solve is the coordinate 
transformation. This means that it is necessary to estimate the coefficients of the 
equations that transform the planimetric coordinates, defined in a reference system, 
to the corresponding ones in a second reference system. This operation, performed 
in a 2D-space is called planar transformation. The main problem is that if outliers 
are included in the data, adopting non-robust methods of adjustment to calculate 
the coefficients cause an arbitrary large change in the estimate. Traditional methods 
require a closer analysis, by the operator, of the computation progress and of the 
statistic indicator provided in order to identify possible outliers. 
In this paper the application of the Forward Search in geodesy is discussed and the 
results are compared with those computed with traditional adjustment methods. 

1 Introduction 

Angular measures, distances and coordinates, are only some of the basic ob­
servations tha t can be found in a geodetic problem. The t reatment of these 
observations can become complex, if not supported by the appropriate means. 
In geodesy, statistics is indispensable, in particular inference and other statis­
tical operations are applied in order to gain the most realistic solution. Some 
statistical methods were initially developed to cope with geodetic issues. 
Characteristical for most of geodetic problems, are low redundancy and pre­
cision differences within the observations due to the use of various instru­
mentations (GPS, theodolite, etc). The low redundancy of the da ta (in many 
cases the number of the observations available is at most twice the number 
of the unknown parameters) and the presence of possible outliers, request an 
intensive use of statistics. In fact, it is an imperative to discard the minor 
number of observations, identifying just the effectively wrong ones, in order 
to avoid singularity. Especially in those cases in which the precision and the 
accuracy are important factors (positioning of high precision, monitoring of 
deformations, etc.), it is necessary to pay particular at tention to the problem 
of the outliers. 

With the traditional methods used for geodetic adjustment, like the Least 
Squares, the identification of the error source is difficult, because these meth­
ods are based on the assumption of absence of errors in the t reated data . 
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Robust statistics, on the other hand, are based on the opposite principle and 
offer a vahd alternative for the solution of such type of problems. 

2 Planar Transformations of Reference Systems 

One of the issues studied in geodesy involves the reference systems and their 
transformations. A system of coordinates is defined through a tern of func­
tions of points Xi{P), with i = 1, 2, 3 that guarantee the univocal position of 
the point P. A coordinate system, defined by the opportune choice of a series 
of control points, measures and other compatible choices is called system of 
reference or datum. 
In applied geodesy, it is often preferred to work with local systems of refer­
ence, instead of the global reference system. As already mentioned, a local 
system is defined by a cartesian tern with origin in a selected, well-known 
point. The local systems have validity in inverse proportion to the distance 
from the origin. In fact, above a certain distance from the origin, the pre­
cision of the position is out of tolerance and therefore can not be accepted. 
In this case it is necessary to define a new local system of reference, with 
its own origin. For this reason, considering a vast area, the various defined 
local systems of reference, must be interconnected, in order to provide the 
coordinates of the points relative to the global system of reference. 
Mathematically, a planar transformation defines a univocal bidirectional re­
lation between two sets of planimetric points (coordinates). The most fre­
quently used transformation in geodesy is by far the similarity transforma­
tion. Essentially, this is defined by a rotation and two translations of the 
origin and an isotropic scale factor (independent from the orientation). The 
equations which describe the transformation from a local system of coordi­
nates ( O ^ X ' , y ) to global one (0 ,X, F) are the following: 

Xp = Tx-\-fJ^iXp cos a-\-Ypsma) . . 
>p = Ty + / i ( - X ^ since+ r/ , cosce) ^ ^ 

The common problem of every planar transformation is the determination of 
the unknown parameters; in our case these are: jj., a, Tx, Ty. 
The equations can be solved by including a sufficient number of points, of 
which coordinates are known in both reference systems in the computation. 
For every known point in both reference systems, it is possible to compile 
the equations (1). To determine univocally the four unknown parameters, at 
least four equations are necessary; that means two points (Pi e P2) known 
in both reference systems: 

Xp^ = Tx -\- l^{Xp cos a -\- Yp sin a) 
Yp^ = TY -\- fi{—Xp^ sin a -\- Yp^ cos a 

Xp^ = Tx -\- l^{Xp cos a -\- Yp sin a) 
Yp^ =TY ^ K-X'p^ sin a + Fp^ cos a) 

Yp^ = Ty + /j.{-Xp^ sin a + Yp^ cos a) . . 
Xp^ = Tx + KXp^ cos a + Fp^ sin a) ^ ^ 
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The system of equations obtained can be easily hnearised setting a = fi cos a 
and h = /isince. 
Once the unknown parameters are estimated, we can apply the relationship 
(1) to all the points known in one reference system and transform these into 
the other. It is usual to determine the unknown parameters using a greater 
number of known points than the minimally required to solve the equation 
system. In this case the solution of the system of equations is obtained ap­
plying the Least Squares method. The matrixes (A, x, L) used to solve the 
equations with the Least Squares method are the following: 

A 

C l l Ci2 Ci3 Ci4 

^nl ^n2 ^n3 ^n4: 

a 
b 

Tx 
TY 

L 

Y.. 

(3) 

where QJ are the coefficients of the independent variables a, 6, Tx, Ty in 
every equation of the system. Solving the problem with the Least Squares 
method provides x as estimation for the parameters x and the estimated 
residuals v of the observations. 
Based on these considerations, we tried to analyze if the Forward Search 
method [Atkinson et al. 2000] could be a valid approach to solve the problems 
related to the transformations of reference system in a precise and robust 
manner. In the following chapters the application of this method to planar 
transformations is described, including the tests performed and the results 
achieved. 

3 Common Methods for Geodetic Data Adjustment 

In geodesy most parameters are determined by statistical procedures. The 
Least Squares method (LS) is the most commonly used. This estimator is 
optimal for normal distributed observations, since it provides the best esti­
mations for the unknown parameters (in a linear model). In matricial form 
it can be written as following: 

V^Q^V mm (4) 

The LS method enables to consider various precisions for the observations 
by means of the weights matrix and allows joining different types of mea­
sure (angles, distances, etc.), thanks to the linearisation of the problem. The 
shortcoming of LS method resides in its strong sensibility to the presence 
of outliers or in general to observations which do not conform to the nor­
mal distribution. In geodesy, like in many other fields where the statistical 
estimation of unknown parameters is demanded, often the presence of out­
liers in the data set can not be avoided. In these cases two pathways leading 
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to the solution can be followed: applying the described method purging the 
data set iteratively to obtain a correct solution, or using algorithms which 
are not sensitive to a significant deviation from the normal distribution pro­
vided that these errors do not exceed a given fraction of the entire data 
set. In this category we find for example the M-estimates (derived from the 
Maximum-Likelihood method). One of them is the Ruber estimate, which is 
quite suitable for geodetic problems, due to its affinity to the LS method. 
The function to be minimized in this case is: 

P(^^) = yc\v]\-lc' f o r K | > c (^) 

In the interval [—c, c] the function is identical to that one of the LS method, 
while outside it is linear. The constant c is to be set, based on the precision 
of the observations (e.g. c = 3a). An improvement of this method considers 
a variable definition of c depending on the redundancy of the observations 
(proposed by Mallows and Schweppe). 
An effective method developed for geodetic problems is the BIBER estimate 
(bounded inffuence by standardized residuals) [Wicki 1999] which is classified 
as M-estimate. The characteristic of this method is to reduce the infiuence of 
the outliers on the estimated parameters, analyzing the standardized residu­
als. The function to be minimized in this case is the following sum of function 
p of all the residuals: 

r « M - / ^ ^ » ' for 1^1 <c 
^WJ~\t-\^^\-^2'^ for 1^1 >C (6^ 

In the category of the estimates with a high breakdown point (BP = 0,5) we 
find the Least Median of Squares method (LMS). This method assumes the 
combination of values for which the median squared residual is the smallest 
as optimal estimation of the unknown parameters. Therefore the condition 
to be satisfied is the following: 

med{v1) -^ min (7) 

This means, the estimator must yield the smallest value for the median of 
squared residuals computed for the entire data set. Since the possible esti­
mates generated from the data can be very large, only a limited number of 
subsets of data can be analyzed using approximation methods. For the char­
acteristics pointed out, the robust estimates are a valid instrument for the 
analysis of data affected by outliers. 

4 The Forward Search Applied to Problems of Planar 
Transformations 

The method of the Forward Search (FS) provides a gradual crossover from 
the LMS to the LS method, starting from a small robustly chosen subset of 
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data, incrementing it with observations that have small residuals and so are 
unlikely to be outliers. 
The concept on which this technique is based, is to select from the data set 
with the LMS method an initial subset of size m free of outliers. Usually 
the algorithm starts with the selection of a subset of p units (number of un­
known parameters), leaving n-p observations to be tested. The parameters 
estimated this way are applied to all the observations in order to compute 
the residuals. The values of the squared residuals are then ordered, selecting 
the m+1 observations with the smallest squared residual for the next step. 
From this subset new parameters are estimated with LS. The loop continues 
unit by unit, adding one observation at the time until m = n, that is when 
the end of the process is reached delivering a common LS solution [Atkinson 
and Riani 2000]. 
The innovation of the method consists, beyond its variability given by the 
gradual crossover from LMS to LS, in providing a continuous monitoring 
at every step of some diagnostic quantities (residuals. Cook's distance, esti­
mates of the coefficients, t-statistic, etc). Controlling the variation of these 
indicators during the n-p steps we can identify which of the considered obser­
vations causes an abrupt alteration of them, allowing therefore to distinguish 
eventual "classes" inside the data. For our purpose, using this method the 
data can be classified in "clean" and therefore usable for the estimation of the 
unknown parameters, and "outliers". Supposed there are some outliers in the 
data, the FS will include these toward the end of the procedure. The parame­
ters estimates and the statistic indicators will remain sensibly constant until 
the first outlier is included in the subset used for fitting. The final solution 
corresponds to the estimation of the unknown parameters obtained at the 
step preceding the significant variation of the indicators. 
The following fiowchart (Fig. 1) shows the application of the FS to geodetic 
adjustment: 

Obsen/ations (rt) 

Select a subset of m 
units with LIVIS Loop repeated 

from 
y= 0 to / = (n-m) 

Parameters 
estimation witli LS 

Select (m+0 units 
with the smallest 
squared residuals 

/"= i+1 

Apply estimated 
parameters to the mathx of 

known constants 

Order the obtained 
squared residuals 

Fig. 1. Flowchart of the Forward Search 
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Summarising, the FS method is made up of three steps: 
- Choice of the initial subset 
- Forward search adding an observation at every step 
- Monitoring of the statistics during the process 
We apphed the FS method to the problem concerning the transformations 
of reference system {datum) as described by equation (1). In the fohowing 
paragraphs a case study is discussed. 

4.1 Case Study 

We consider a common geodetic problem of planar transformation between 
two different reference systems A and B (Fig. 2). For a given set of points 
the coordinates are known in both datum. It is hereby supposed that these 
points are not affected by any kind of systematic effects. The unknown pa-

Fig. 2. Planar transformation problem 

rameters are, according to the linearisation of equation (1), a, 6, Tx, Ty. We 
calculated them based on a set of 10 points, which coordinates were known in 
both reference systems. In order to perform a comparison, we estimated the 
unknown parameters by means of the LS method, which result is comparable 
to that of the last step of the FS method. The comparison verifies the correct 
compilation of the equations and the proper progress of the FS algorithm. 
Due to the absence of outliers at this step we consider the so obtained pa­
rameters as the "true" solution of the problem. 
The first test consists of inserting an outlier into the observations (vector L) 
and to analyze the trend of the residuals. We noted that the outlier is clearly 
detected, due to its large scaled residual. In this case, for the calculation of 
the correct solution, all the available observations can be considered, except 
the one which is affected by the outlier. The same procedure has been fol­
lowed inserting 3, 5 and 8 outliers, in the observations. Also in these cases the 
method provided the correct solution classifying the observations in "clean" 
and "outliers". The following figure (Fig. 3) shows the trend of the scaled 
residuals for the case with 3 outliers (observation nr. 3, 6 and 9). Remarkable 
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is how the scaled residual of the "clean" observations remain stable on a min­
imum, diverging only in the last three steps, when the outliers are included 
in the calculation. 

"^i=.: 

5 10 15 20 

Subset Size 

Fig. 3. Graph of scaled residuals 

For each case using the estimated transformation parameters , the coordinates 
and the corresponding residuals of the every point were computed. In the fol­
lowing table (Table 1) the residuals of all observations are listed for the case 
with 5 outliers. 

LS 
Vy [mm] 

2138.9 
-5460.4 
2583.7 
1293.5 

-9362.2 
74.8 

-240.7 
5964.0 
2361.9 

656.6 

Vx [mm] 
227.0 

-1543.7 
9201.7 

-2932.8 
-2181.4 
-1087.2 
4856.0 
-626.1 

-3521.0 
-1938.4 

FS (m 
Vy [m,m] 

1.0 
-7999.3 

0.1 
-3.5 

-10003.8 
-0.6 
1.5 

7002.7 
3.2 

-1.8 

= 15) 
Vx [mm] 

1.8 
-3.2 

12000.0 
0.7 
2.6 
1.2 

4997.5 
-1.2 
2.4 

-4.4 

Table 1. Comparison of the results 

The left column shows the values obtained with LS, the right one those with 
FS. The possibility to detect the outliers in the way the FS method does, 
is a great advantage, because we can decide at which step the estimation of 
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the unknown parameters has to be stopped. The FS method considers the 
observations (X^, Y^) as single independent information and not as couples 
of observations associated to a point. This phenomenon causes, in the con­
sidered case, the discard of only the erroneous Y component of the point, but 
not its X component. When working with coordinates, a certain link between 
X^ and Y^ components is assumed: both belong to the same point. Therefore, 
identifying one component as erroneous discards the point itself. This means 
tha t none of the components can be used. 

5 Conclusion 

The FS method is, according to our case study, a valid method to locate 
outliers and possible systematic effects in planar transformations problems. 
Considering the structure and the procedure characterizing the FS approach, 
which allows a crossover from the LMS method to the LS method, this tech­
nique is particularly efficient when classifying the da ta in two main groups: 
"clean data" and "outliers". So, this method can serve the computation as 
well as the da ta filtering. This method considers every observation as a single 
and independent input. Therefore, as in our case, the correlation between X^ 
and Y^ can not be taken into account during the computation. This short­
coming could be solved using a particular version of the FS, which allows 
the input to be groups (blocks) and not single observations. In our case a 
block is composed by the two coordinates (X, Y) defining a point. The future 
development could foresee the computation of the Cxx matr ix of variance-
covariance. Also, the estimation of the variance of the weight unit for each 
epoch could be implemented. 
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Abs t r ac t . We describe the R package Rfwdmv (R package for the forward multi­
variate analysis) which implements the forward search for the analysis of multivari­
ate data. The package provides functions useful for detecting atypical observations 
and/or subsets in the data and for testing in a robust way whether the data should 
be transformed. Additionally, the package contains functions for performing robust 
principal component analyses and robust discriminant analyses as well as a range 
of graphical tools for interactively assessing fitted forward searches on multivariate 
data. 

1 Introduction 

The forward search is a powerful general method for detecting unidentified 
subsets of the da ta and for determining their effect on fitted models. These 
subsets may be clusters of distinct observations or there may be one or more 
outliers. Alternatively, all the da ta may agree with the fitted model. The plots 
produced by the forward search make it possible to distinguish between these 
situations and to identify any infiuential observations. The Rfwdmv package 
implements the forward search for several methods arising in the analysis of 
multivariate data . This paper will show by example how the forward search 
can be used to test transformations of variables in multivariate da ta and for 
multivariate clustering. 

2 The Forward Search in Multivariate Data 

The forward search in multivariate da ta assumes tha t the da ta can be di­
vided into two parts . There is a larger dean par t tha t is well described by 
the proposed model and there may be outliers which are assumed to follow 
an arbitrary distribution. The goal is to estimate the parameters for the pro­
posed model generating the dean data . The forward search in multivariate 
analysis begins by using a robust or resistant method to identify an outlier 
free subset of m observations where m <^n. This subset is used to estimate 
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a location vector and covariance matr ix which are in turn used to compute 
the Mahalanobis distance for each observation in the data . A new subset of 
size 771 + 1 is then chosen by taking the observations with the m-\-l smahest 
Mahalanobis distances. This process is repeated until m = n. The Maha­
lanobis distances and other diagnostic statistics are computed and stored for 
each subset encountered during the forward search. The forward plots are 
obtained by plotting these diagnostic statistics against the subset size. 

3 Obtaining the Rfwdmv Package 

The Rfwdmv package is available from CRAN and can be installed straight 
from the R Console using the i n s t a l l . p a c k a g e s function. Alternatively the 
package can be downloaded from the following web site. 

h t t p : / / w w w . r i a n i . i t / a r c / s o f t w a r e . h t m l 

4 Example 1: Multivariate Clustering Using the 
Forward Search 

The use of the forward search for multivariate clustering will be demonstrated 
by analyzing the financial da ta given in Zani et al. (1998). These da ta were 
taken from the Italian financial journal // Sole - 24 Ore for May 7^^, 1999 and 
are comprised of measurements on 103 investment funds operating in Italy 
since April 1996. The variables are yi: short term performance (12 months), 
y2'. medium term performance (36 months), and ys: medium term volatility 
(36 months) . These da ta are included in the Rfwdmv package in the da ta 
frame f o n d i . d a t . 

4.1 P r e l i m i n a r y A n a l y s i s 

We begin the analysis by looking at a pairs plot of the data . The Rfwdmv 
package contains the function f wdmvPrePlot which produces a pairs-like plot 
with univariate box plots along the main diagonal. The optional argument 
panel = pane l .bb draws overlaid bivariate box plots on each of the off-
diagonal panels. 

> fwdmvPrePlot ( fondi .dat , panel = pane l .bb) 

The plot produced is shown in figure 4.1. The right column suggests tha t 
there are two clusters in the data . We proceed by using the function f wdmv 
to fit an initial forward search to the financial data . 

> fondi.init <- fwdmv(fondi.dat) 

> plot(fondi.init) 
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The plot command prompts the user to select a plot from a menu of 11 
diagnostic forward plots. Selecting D i s tance P l o t generates the forward plot 
of Mahalanobis distances seen in figure 4.2. The majority of trajectories in 
the plot fall into two bands suggesting tha t there are two clusters in the 
data . Users are encouraged to read the documentation for p l o t . f wdmv and 
to experiment with all of the diagnostic forward plots provided in the Rfwdmv 
package. 

• I I I I 

0.6 0.8 1.0 1.2 1.4 

Fig. 1. The pairs plot of the financial data with overlaid bivariate boxplots pro­
duced by the function f wdmvPrePlot in the Rfwdmv package 

4.2 Interact ive C lus ter ing 

The Rfwdmv package includes the function p a r t i t i o n to facilitate interactive 
clustering of multivariate data . The R object f o n d i . i n i t contains a fitted 
initial forward search on the financial data . The parti t ion function uses the 
distances in this object to allow the user to assign groups. The command 

> pi <- partition(fondi.init) 

produces the forward plot of the Mahalanobis distances in figure 4.2. The user 
is then prompted to select a band of trajectories by drawing a line segment 
on the plot. All of the trajectories crossing this line segment are assigned to a 
tentative group. The returned object (in this example p i ) is a fitted forward 
search similar to the input object except tha t its group element has been 
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updated to include the newly assigned tentative group. The process can be 
repeated by calling the p a r t i t i o n function on the object p i and selecting 
the band of trajectories lying along the bot tom of the plot. 

> p2 <- p a r t i t i o n ( p i ) 

Figure 4.2 shows a forward plot of the Mahalanobis distances after two ten­
tative groups have been assigned. 

^ ^ n 

50 60 70 

Subset Size 

80 90 40 50 60 70 80 90 100 

Fig. 2. A forward plot of the Mahalanobis distances computed during the initial 
forward search. The upward-sloping line segment represents the interactive selection 
of a group of trajectories 

The next step is to fit a final forward search to the financial da ta using 
the user selected tentative groups. A final forward search fits a separate mul­
tivariate model to each of the tentative groups then assigns the unassigned 
units to the closest group. The function f wdmv will update an initial forward 
search to a final forward search if the forward search object has tentative 
groups assigned. The syntax is simply 

> f o n d i . f i n a l <- fwdmv(p2) 

Again, users are encouraged to use the various plot methods to assess the fit 
of the final forward search. Finally, the function fwdmvConf i r m P l o t should 
be used to examine to which group each unassigned unit should be allocated. 
The following command produces a so-called confirmatory plot for the last 
40 steps of the forward search. 
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Group 1 (46 units) 
Group 2 (46 units) 

40 50 60 70 80 90 100 

Subset Size 

Fig. 3. A forward plot of the Mahalanobis distances with two tentative groups 
assigned. Each group contains 46 units leaving 12 units unassigned 

> f w d m v C o n f i r m P l o t ( f o n d i . f i n a l , n . s t e p s = 40) 

The plot is shown in figure 4.2. Units 54, 59, and 89 are closest to group 1 
during the last 40 steps of the forward search. The rest are closest to group 
2 except for unit 21 which switches between groups several times during the 
last 40 steps of the search and is thus difficult to assign. 

5 Example 2: Testing Multivariate Transformations 
Using the Forward Search 

With ungrouped da ta the routine to perform the forward search and test for 
transformation to normality is given by 

> l . m l e <- l ambda . fwdmv(musse l s . da t , l a m b d a = c ( l , 1 , 1 , 1 , 1 ) ) 
> p l o t ( l . m l e ) 

where m u s s e l s . d a t is the multivariate da ta set chosen for this example. 
Default options of lambda.fwdmv lead to find the initial subset as the inter­
section of robust bivariate contours superimposed in each bivariate scatter 
diagram. Vector lambda contains the set of transformation parameters to 
test. The default value is 1 (i.e. HQ : Xj = 1, j = 1 , . . . ,p) so in this case 
it could have been omitted. The ordering of Mahalanobis distances at each 
step of the forward search uses variables transformed as specified in lambda. 
The function lambda.fwdmv computes the p maximum likelihood estimates 
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89 " 

59 -

54 ~ 

52 -

44 " 

39 -

37 -

35 -

21 ~ 

20 -

14 -

++++++++++++++++++++++++++++++++++++++++ 

++++++++++++++++++++++++++++++++++++++++ 

++++++++++++++++++++++++++++++++++++++++ 

Unassigned Units 

+ Group 1 • Group 2 

70 80 90 100 

Subset Size 

Fig. 4. A confirmatory plot of the final forward search. Notice that unit 21 switches 
groups several times during the last 40 steps of the forward search 

\j in each step of the forward procedure. The left panel of Figure 5 shows 
the graphical output when the p l o t command is invoked, while the right 
panel shows the monitoring of the likelihood ratio test statistic, for the null 
hypothesis of no transformation. This plot can be obtained by 

> l . r a t <- l ik . ra t io . fwdmv(l .mle) 
> p l o t ( l . r a t ) 

Fig. 5. Monitoring of maximum likelihood estimates (left panel) and likelihood 
ratio test (right panel) during the forward search of dataset "mussels" 

Given tha t the values of the likelihood ratio test must be compared 
with a x i it is clear tha t the da ta must be transformed. The monitoring 
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of maximum likelihood estimates quickly leads to select the combination 
Ao = [ 0 . 5 , 0 , - 0 . 5 , 0 , 0 ] ^ (for further details see Atkinson et a/.(2004)). In 
order to confirm this combination of values of lambda we can construct a fan 
plot (see Atkinson and Riani (2000)) using the command: 

> f an <- l a m b d a . t e s t . f w d m v ( m u s s e l s . d a t , c ( 0 . 5 , 0 , 0 . 5 , 0 , 0 ) ) 

Basically, each transformation is first-order expanded around the most 
five common values of A (that is - 1 , -0.5, 0, 0.5, 1). This is a way for t rans­
forming a multivariate problem into a series of p univariate ones. In each 
search we can test the transformation by comparing the signed square root 
likelihood ratio test with a s tandard normal distribution. By plotting f an we 
have a version of the fan plot for multivariate data, where it is also possible 
to have the confirmatory fan plots for each variable as panels in a single page, 

> p lo t ( fan) 
Make a plot selection (or 0 to exit): 

l:plot: width 

2:plot: height 

3:plot: length 

4:plot: shell 

5:plot: mass 

The names of the variables are plotted as labels of the y axis in each 
panel. For instance, in Figure 5 we show expansion for variables w id th and 
l e n g t h . 

Fig. 6. Multivariate fan plot around the vector Ao = [0.5,0,0.5,0,0]^ for width 
and length in mussels data. The horizontal lines are the 0.5 and 99.5 percentiles of 
the standard normal distribution 

Figure 5 shows tha t the best value of the transformation parameter for 
the first variable (width) is 0.5. Log transformation is also acceptable while 
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the hypothesis of no transformation is at the boundary of rejection region in 
the last 10 steps of the search. 

It is also possible to build profile likelihood plots which monitor, for a 
given step of the forward search, the profile likelihood of a parameter Aj, 
assuming fixed at their maximum likelihood estimates all parameters Xk, 

For our example da ta we have chosen the last step of the forward search, i.e. 

= 82 .—,. 

Fig. 7. Profile likelihood for a l l variables in the mussels data example. Step of the 
forward search m = N = 82 

> prof.mle <- lambda.profile.fwdmv(l.mle) 
> plot(prof.mle) 

Make a plot selection (or 0 to exit): 

l:plot: width 

2:plot: height 

3:plot: length 

4:plot: shell 

5:plot: mass 

6:plot: all 

The output for all variables is given in Figure 5. The dot just above the 
X axis corresponds to the value of maximum likelihood while the two vertical 
lines represent asymptotic 95% confidence intervals for each value of A, based 
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on xi distribution of twice the loglikelihood ratio. This plot clearly shows 
what are the variables with a sharply peaked profile log-likelihood (in this 
example "shell" and "mass") . 
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Abs t r ac t . One drawback of Procrustes Analysis is the lack of robustness. To over­
come this limitation a procedure that applies the Generalised Procrustes methods, 
by way of a progressive sequence inspired to the "forward search", was developed. 
Starting from an initial centroid, defined by the partial point configuration satisfy­
ing the LMS principle, this is extended by joining, at every step, a restricted subset 
of the remaining points. At every insertion, the updated centroid, redetermined by 
the new considered points, is compared with the previous by way of the common 
elements. If significant variations of the similarity transformation parameters oc­
cur, they reveal the presence of outliers or non stationary points among the new 
elements just inserted. 

1 Introduction 

Procrustes Analysis is a well known multivariate technique to provide L.S. 
matching of two or more da ta matrices, or for the multidimensional rotation 
and scaling of different matr ix configurations. The matching is carried out 
by the direct solution of similarity transformation problems between pairs 
or multiple da ta matrices configurations. Employed at first in factor analysis 
(e.g. Schoenemann, 1966) today is a popular method in shape analysis (e.g. 
Goodall, 1991; Dryden and Mardia, 1998), in biology (e.g. Gelfand et al., 
1996), in geodesy and photogrammetry (e.g. Crosilla and Beinat, 2002), in 
logistics (e.g. Kong and Ceglarek, 2003), in image analysis (e.g. Anderson, 
1997) and in other fields. Ordinary Procrustes Analysis (OPA) directly esti­
mates the similarity transformation parameters {c, R , t } , from X i (origin) to 
X2 (target) da ta sets, which satisfy the minimum condition of the following 
Least Squares function: 

tr ( c X i R + I t ^ - X s ) ^ Wi? ( c X i R + I t ^ - X2) = min (1) 

under the orthogonality condition R ^ R = I. In Formula (1) X i and X2 are 
two n X k dataset matrices, containing the /c-dim coordinates of the same 
set of n points related to two different reference frames; WR is one optional 
n X n diagonal matr ix containing the global weight assigned to every point; 
1 is the n X 1 auxiliary unitary vector; t , R and c are the unknowns, i.e. 
the k X 1 translation vector, the k x k rotation matr ix and the isotropic 
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scale factor, respectively. When WR = Q^Q (Cholesky decomposition), after 
substituting Xi^y = QX^ ,̂ ^2W = QX2 and Iw = Q l , and computing once, 
and for all, the centering operator B = I — Iw'^w/ i^w'^w) with B ^ = B, 
BB = B, performing the Singular Value Decomposition of the matrix product 
X|y^BX2H^ = VD^-W^, we directly obtain the rotation matrix R = V W ^ , 
the global scale factor c = tr {R^X|y^BX2H^}/tr {X^y^BXivi/} and the 

translation vector t = (X2H^ — cXivi/R) Iw/ {^w^w)-
Generalised Procrustes Analysis (GPA) concerns instead with the multi­

ple and simultaneous transformations of m > 2 data sets of n corresponding 
k-dim points, whose coordinates are referred to TTI > 2 different reference 
frames, and are characterised by measurement noise. We look for the solu­
tion that satisfies the following least squares objective function: 

m 

tr ̂  { (QX,R, + Itf) - (c,X,R, + It J) f-
i<j (2) 

• {(QX,R, + Itf) - (ĉ X R̂̂ - + ItJ)} = min 

where X i . . . X ^ are m >2 data matrices of size n x k, each one containing 
the coordinates of the same set of n corresponding points defined in m dif­
ferent Rk reference frames. The solution of Equation (2) represents the GPA 
problem described by Kristof and Wingersky (1971), Gower (1975), ten Berge 
(1977) and Goodall (1991). The GPA problem has an alternative formulation. 
Said X^ = Ci^iHi + I t f , the following measures: 

m m 
|2 ^ ||X? - X^f = ^ t r (Xf - Xp^ (Xf - X̂ )̂ (3) 

i<j i<j 
m m 

. ^ | | X f - K f = m ^ t r ( X f - K f ( X f - K ) (4) 

are perfectly equivalent {e.g. Borg and Groenen, 1997), where K is the 
unknown geometrical centroid. Therefore Eq. (4), instead of Eq. (3), can 
be minimised so to determine the unknowns {c, R, t}^ {i = 1.. .m) that 
make it possible to iteratively compute the final X^ {i = l . . . m ) . Matrix 

m 

K = ^ E ^ r represents the LS estimate of K. Note that K + E^ = X[, 

where vec (E^) : N {O, E = cr̂  (Q^ 0 Q/c)}, and E has a factored structure. 

2 Procrustes Statistics 

In order to propose a test to verify the significance of the transformation 
parameters, we introduce the so called Procrustes statistics. We consider, at 
first, the case of two configurations, one of which contains random errors. 
Let X^ be therefore a n x /c matrix containing the k coordinates of n points 
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defined into an arbitrary reference frame, and X^ = X^ + sZ, where Z is a 
random error matrix Z : A^{0,1}, and s is a scale factor. The residual distance 
G{Xi,Xj) between X^ and X̂ - (Sibson, 1979): 

G (X„ X^) = tr (X, - X^)^ (X, - X^) = shi (Z^Z) (5) 

follows a s'^x^ distribution with n x k degrees of freedom. The Procrustes 
statistics is the residual distance G/(X^,Xj) after a Procrustes transforma­
tion / has been performed on X^. We can define: 

G, (X„X^) : = i n f { G ( X „ X ^ + l t ^ ) } :~ s^xlnfe-fe} (6) 

Gtn (X,, X,.) := inf {G (X,, X . R + I t ^ ) } :~ s^xf („fe-i)/2fe(fe+i)} (7) 

G,«e(X„X^) : = i n f { G ( X „ c X ^ R + l t ^ ) } :~ s'x|(„fe-i)/2fe(fe+i)-i} («) 

Quite similar is the case of errors in both configurations. Let X^ and X^ 
be two n X k matrices obtained from the same X, to which two random 
error matrices Z^ : A^{0,1} and Zj : A^{0,1} are summed up, respectively: 
X^ = X + sZi, and X^ = X + SZJ; S is the same scale factor. The residual 
distance G(X^,Xj) between X^ and X^ (Langron and Collins, 1985) is: 

G (X„ X,) = shi (Z, - Zjf (Z, - Zj) = shi {W,jf {W,j) (9) 

Since Z^ and Zj are independent, and Wij : A^{0,2}, G(X^,Xj) follows a 
2s'^X^ distribution with n x k degrees of freedom. The Procrustes statistics 
Gf{Xi^ Xj) retain the same expressions as above, except that they follow now 
a 2s'^x^ distribution with the same degrees of freedom of the preceding case. 

3 ANOVA of Procrustes Statistics 

The previous results depend on an unknown parameter s. We can get over 
this problem studying the statistical distribution assumed by the numerical 
values obtained by the ratio: 

Specific Procrustes statistics component 
Residual distance after a complete S - transformation 

To investigate the significance of each geometrical transformation, i.e. trans­
lation, translation + rotation, translation + rotation + dilation, involved in 
the Procrustes problem we perform an analysis of variance (ANOVA) for the 
different Procrustes distances. In the case of two configurations X^ and X^, 
the Procrustes statistics after a centering translation is: 

Gt (X„X,) = tr {(X, - X , ) ^ (X, - X , ) } - n (x, - x , )^ (x, - x,) (10) 

where x^ and x^ are the positional vectors of the gravity centers of datasets 
X^ and Xj . The effect due to the centering translation T(X^,Xj) is: 

T (X„X,) = G (X„X,) - Gt (X„X,) (11) 
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Gt can be partitioned into the effect due to rotation i?(X^,Xj) plus the 
residual distance after translation and rotation Gtn^ that is: 

R (X„ X,) = Gt (X„ X,) - GtR (X„ X,) (12) 

Finally GtR can be further partitioned into the effects due to global scaling 
/S(X^,Xj) plus the residual distance after translation, rotation and dilation 
GtRc'-

S (X^,Xj) = GtR (X^,Xj) — GtRc O^i, Xj) (13) 

The ratios S/GtRc, R/GtRc, and T/GtRc are well approximated by the Fisher 
distribution (x^/x^) if the null hypothesis HQ is satisfied. Assuming a first 
kind error value a and the proper degrees of freedom, the rejection of the null 
hypothesis HQ shows the existence of a significant value for the transformation 
parameters. For instance, for the translation case: 

T 
H{) = —— < F , , 1,,, , ^ No significant translation occurs 

GtRc ~ l-a,k,nk--^k{k^l)-l ^ 
T 

Hi = —— > F , , 1,,, , ^ Significant translation exists 
GtRc l-a,k,nk--^k{k^l)-l ^ 

When m configurations are involved, the Procrustes statistics become (Lan-
gron and Collins, 1985): 

m 

Gt (Xi... X^) := J2 î f {G (K, X, + ItJ)} (14) 

m 

GtR (Xi... X^) := J2 î f {G (K, X,R, + ItJ)} (15) 

m 

GtRc ( X i . . . X ^ ) := J2 inf {^ (K, c.X^.R^. + i t j ) } (16) 

where K is the unknown mean transformed configuration (centroid). Again, 
m 

K = ^ ^ ( Q X ^ R ^ + I t f ) represents the LS estimate of K. 

Table 1 summarises the degrees of freedom dfi and df2 for the specific F 
tests: m is the number of datasets, n are the points in each dataset, and k 
the point dimensions. 

4 Robust Procrustes Analysis 

The Robust solution of the Procrustes problem has always attracted many 
efforts. We mention, for instance, the methods by Siegel and Benson (1982), 
and by Rohlf and Slice (1992), based on repeated median. Recently, the use 
of iterative and weighted majorisation algorithms has been proposed for the 
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Transformation dfl df2 
Translation (m - l)k (m - 1) {nk - l/2k (A: + 1) - 1} 

Rotation l/2k (m - 1) (A: - 1) (m - 1) {nk - l/2k (A: + 1) - 1} 
Dilation m - 1 (m - 1) {nk - l/2k (A; + 1) - 1} 

Table 1. Degrees of freedom for the specific F tests 

solution of the partial rotation problem (Kiers, 2002; Groenen et al., 2005 
respectively). This paper describes a new algorithm, derived from the Ro­
bust Regression Analysis based on the Iterative Forward Search approach 
proposed by Atkinson and Riani (2000). In the current implementation, the 
procedure starts from a partial point configuration not containing outliers nor 
non stationary data. At each iteration, it enlarges the initial dataset by one 
or more observations (points), till a significant variation of the Procrustes 
statistics occur. At this point, if a pairwise configuration matching is exe­
cuted, the process ends. Otherwise, if a generalised problem is carried out, 
the proposed method is able to identify the configuration containing outliers 
or non stationary data. In order to define the initial configuration subset 
not containing any outlier, it is necessary to compute the LS estimate K^ 
of the corresponding centroid K \ and consequently determine the similarity 
transformation parameters for all the j = 1 . . . m data sub-matrices X^: 

^ m 

K* = ;;^E(-^xjR5 + i t f ) (17) 

This procedure is repeated for every i = 1 . . . (^) possible point subset, where 
s is the number of points forming the generic subset. Now, the global pseudo-
centroid is computed by applying the transformation parameters relative to 
the i-t\i data sub matrix X^, to the full corresponding X^, obtaining X^ ^̂ ,̂ 
and averaging their values: 

K ' 
^ m ^ m 

To define the initial point subset not containing outliers, the least median of 
squares (LMS) principle has been applied (Rousseeuw, 1984). As it is well 
known, this regression method can reach a breakdown point as high as 50%, 
although very recent publications (Xu, 2005) have put in evidence the fact 
that, under particular conditions, the method can breakdown also in the 
presence of one single outlier. Much attention will be devoted to this aspect 
in a next paper, but, as evidenced by Cerioli and Riani (2003), the forward 
search procedure operates properly also in the presence of outliers in the 
starting subset, being able to remove them at subsequent steps of the search. 
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Among all the possible configuration subsets, the one satisfying the following 
LMS condition is chosen as the initial one: 

med diag ^ ( x f '̂̂  - K^) ( x f '̂̂  - K^) = min (19) 

This initial subset is then enlarged joining up the point for which: 

diag Y, (Xf '̂̂  - K^) (Xf ^̂^ - K^) = min (20) 
j = i 

selected from the remaining {n — s) points of the configuration, not belonging 
to the initial subset. The LS estimate K^̂ +^̂  of the enlarged partial centroid 
K^^+^\ and the S-transformation parameters for the m sub-matrices X̂ - \ 
are computed again as: 

jyi Z^\ J 3 3 3 J jyi Z^ 3 ^ ^ 

Now, to proceed to the ANOVA Procrustes statistics, it is necessary to verify 
whether a significant variation of the S-transformation parameters occurs by 
enlarging the original selected data subset. To this aim, the total distance be­
tween the partial centroid K^ and its matching elements in the m sub-matrices 
X^' ^̂ ^ ^ , obtained by applying to the original X^ the S-transformation pa­
rameters relating to the ^(+1) dataset, is computed: 

m rp 

^ = E ^̂  ( X f ^̂ (+̂ )> - K̂ J ( x f ^̂ (+̂ )> - K̂ J (22) 

The following Procrustes distances are also computed: 

Gt = ^ tr (x;.'̂ ^ (̂+ )̂> + IdtJ - K'Y (x;.'̂ ^ (̂+ )̂> + IdtJ - K )̂ (23) 
i = i 

GtR = E ^ r (x;.'^^^(+^)>dR, + IdtJ - K'Y (x;.'^^^(+^)>dR, + IdtJ - K^) (24) 
i = i 

GtRa = X^ t r (^dcj^S^i'^^^^+^^^dllj + IdtJ - K^y (^dcj^S^i'^^^^+^^^dllj + IdtJ - K^)(25) 
i = i 

after having taken care of the fact that the translation components relating 
to the ^(+1) subset must be previously reduced by the difference between 
the gravity centers of K^^+^\ and K \ Assuming a proper first kind error 
a, and the proper degrees of freedom df^ and df2, the rejection of the null 
hypothesis for the following tests: 

(G — Gt Gt — GtR GtR — GtRc \ ^ J:, /or̂ \ 
i —p;—; —-p; ; —-p; ( > ^i-a,dfi4f2 i^oj 
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indicates a significant variation of some or of all the transformation parame­
ters {dtj, d R j , dcj} at this step, due to the possible entering into the X -̂ ^ 
datasets of outliers or non stationary data . If instead the null hypothesis is 
accepted for all the tests, the iterative process continues with the insertion 
of a further new point (X^- ^), satisfying the Equation (20) within the re­
maining ones of the dataset . If the outlier presence has been detected by 
the proposed tests, it is necessary to identify the point configuration affected 
by its presence. A Procrustes statistics analysis is then applied to each pair 
^^,p{^(+l)}^ ^^,P{,(+i)} (J _ 1 /. _ 1- /. _ J ^ 1 _ ^ ) of ĵ̂ e transformed 

da ta sub-matrices. The Procrustes statistics then become: 

p{i(+i)} ••,p{i(+i)} + Idt (27) inf | G ( x j ' 

inf {G (X; . ' ^^^ (+^)> , X;'^^^(+^)>dR + Idt^) } (28) 

n} 

i n f{G(x- P{i(+i)} dcX. ; ,^{i(+i)} dH + Idt ^)}(29) 

and the ratios of Equation (26) tested as usual. From these results it is 
possible to state tha t the most reliable configurations are those satisfying the 
null hypothesis. 

5 One Numerical Example 

A simple numerical example is provided to better comprehend the steps 
involved in the procedure. The computations have been performed by a 
M a t l a b ^ ^ program, specifically implemented, based on the GPA solution 
described by ten Berge (1977), tha t solves the canonical form of the GPA 
problem expressed by Equation (2) in iterative way. Starting from a given 
configuration of n = 5 points, TTI = 3 different datasets X i , X2 and X3 have 
been generated, by summing up a random error component (A^{0; 1}) to the 
original template coordinates. In order to generate an outlier, a lOcr error 
component has been introduced in the coordinates of point 2 in dataset X3 
(outlined in italic). 

X i : 

49.3146 100.7678 
98.8917 69.7942 
80.1955 1.5008 
18.3983 -1.0386 
0.0484 68.9035 

X2 

49.6739 99.4620 
98.9904 69.1479 
80.8130 2.3155 
20.9951 -0.5222 
-0.2012 67.6479 

X3 

50.9386 100.9085 
109.9664 80.7631 

79.2434 0.0795 
19.4101 0.8358 

-0.0365 71.7294 

The first step required by the method is the definition of the best initial par­
tial centroid, satisfying Eq. (19). Assumed s = 3 the size of the initial subset, 
the search is carried out testing all the 5!/3!(5-3)! possible point combina­
tions, and determining each t ime the correspondent GPA solution (Eq. (17)). 
Here, from Eq. (19), subset {1,3,5} resulted the "best" initial partial con­
figuration. Therefore the correspondent LS estimates of the centered partial 
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centroid K^ (Eq. (17)), and of the global pseudo-centroid K^ (Eq. (18)) be­
come respectively: 

K ' 
6.4878 43.3746 

36.9723 -55.6060 
-43.4600 12.2314 

K' 

6.4874 43.3722 
59.0831 16.4598 
36.9702 -55.6029 

-23.5311 -57.3594 
-43.4576 12.2307 

The next candidate to be included in the subset is chosen by Eq. (20), look­
ing for the minimum vector component corresponding to the points not yet 
included in the subset, that are {2,4}. The minimum, excluding {1,3,5}, is 
found for point {4}: 

min [0.6310 162.7315 0.1980 5.5548 0.6100] 

Following this, the new subset becomes {1,3,4,5}, to which corresponds a new 
LS estimate of the centered partial centroid K^̂ +^̂  (Eq. (21)), 

K^(+i) 

12.2861 57.7303 
42.9105 -41.2030 

-17.5828 -43.0473 
-37.6139 26.5199 

,^{^(+1)} .The and a new set of transformation parameters {c, R, t} for each X '' 
test is performed computing G = 2.86 (Eq. (22)), and the proper Procrustes 
distances Gt = 2.28, GtR = 1.82, GtRc = 1.44 (Eq. (23,24,25)). Assuming a 
first kind error a = 5%, and the proper degrees of freedom, the Fisher tests 
(Eq. (26)) furnish: 

Translation: 
Rotation: 
Dilation: 

dfi 
dfi 
dfi 

= 4; 
= 2; 
= 2; 

# 2 

# 2 

# 2 

= 4 
= 4 
= 4 

Fisher: 
Fisher: 
Fisher: 

0.40 
0.32 
0.27 

Passed 
Passed 
Passed 

The procedure is repeated again, by extending the subset with the next can­
didate not yet included, that is {2}. The new LS estimate of the centered 
partial centroid K^(+2) (Eq. (21)), is: 

K^(+2) 

-0.6524 51.6346 
51.9923 24.5358 
29.9067 -47.3867 

-30.6408 -49.2093 
-50.6058 20.4256 

Computing the proper G = 42.93, Gt = 30.42, GtR = 25.22, and GtRc = 4.54 
the Fisher tests in this case result in: 
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Translation: 
Rotation: 
Dilation: 

dfi 
dfi 
dfi 

= 4; 
= 2; 
= 2; 

df2--
df2--
df2--

= 8 
= 8 
= 8 

Fisher: 
Fisher: 
Fisher: 

2.76 
1.15 
4.55 

Passed 
Passed 
Failed 

revealing the existence of an outlier in point {2} of one of the configurations. 

6 Conclusions 

The paper proposes a forward search method to perform the Robust Gen­
eralised Procrustes Analysis for multidimensional da ta sets. The robustness 
is based on the definition of an initial outlier and stationary da ta free sub­
set, iteratively enlarged by the remaining points till the null hypothesis of 
the Procrustes statistics is rejected. The method seems suitable for many 
practical applications, like shape analysis, multi factorial analysis, geodetic 
sciences and so on. Next works will deal with an extension of the method to 
the cases in which outliers are present in the initial da ta subset, and have to 
be removed along the forward search. 
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Abstract. A projection method for robust estimation of shape and location in 
multivariate data and cluster analysis is presented. The key idea of the procedure 
is to search for heterogeneity in univariate projections on directions that are ob­
tained both randomly, using a modification of the Stahel-Donoho procedure, and 
by maximizing and minimizing the kurtosis coefficient of the projected data, as 
proposed by Peha and Prieto (2005). We show in a Monte Carlo study that the 
resulting procedure works well for robust estimation. Also, it preserves the good 
theoretical properties of the Stahel-Donoho method. 

1 Introduction 

As a few outliers in multivariate da ta may distort arbitrarily the sample mean 
and the sample covariance matrix, the robust estimation of location and shape 
is a crucial problem in multivariate statistics. See for instance Atkinson et 
al. (2004) and the references therein. For high-dimensional large da ta sets a 
useful way to avoid the curse of dimensionality in da ta mining applications 
is to search for outliers in univariate projections of the data . Two procedures 
tha t use this approach are the Stahel-Donoho procedure (see Donoho, 1982), 
tha t searches for univariate outliers in projections on random directions, and 
the method proposed by Pena and Prieto (2001, b), tha t searches for outliers 
in projections obtained by maximizing and minimizing the kurtosis coefficient 
of the projected data . The first procedure has good theoretical properties, 
but fails for concentrated contamination and requires prohibitive computer 
times for large dimension problems. The second procedure works very well 
for concentrated contamination and it can be applied in large dimension 
problems, but its theoretical properties are unknown. As both procedures 
are based on projections, it seems sensible to explore if a combination of 
both could avoid their particular limitations and this has been proposed by 
Pena and Prieto (2005). They show tha t the combination of random and 
specific directions leads to a affine equivariant procedure which inherits the 
good theoretical properties of the Stahel-Donoho method and it is fast to 
compute so tha t it can be applied for large da ta sets. 
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The procedure can also be applied for cluster analysis by generalizing 
the approach presented in Peha and Prieto (2001,a). Then, instead of just 
searching for directions which are extremes of the kurtosis coefficient, we add 
random directions to obtain a better exploration of the space of the data. 

This article summarizes the method proposed by Peha and Prieto (2005) 
and includes two contributions: we present new results on the relative per­
formance of the procedure with several groups of outliers, and we discuss the 
application of the procedure for cluster analysis. The article is organized as 
follows. Section 2 summarizes the main ideas of the procedure for generating 
directions and presents the algorithm combining random and specific direc­
tions. Section 3 discusses the extensions of these ideas for clustering . Section 
4 illustrates the performance of the proposed method as an outlier detection 
tool for robust estimation. 

2 Finding Interesting Directions 

Suppose we have a sample (x i , . . . ,Xn) of a p-dimensional vector random 
variable X. We are interested in searching for heterogeneity by projecting 
the data onto a set of directions dj, j = 1 , . . . , J. The key step of the method 
is obtaining the directions dj. The Stahel-Donoho procedure is based on gen­
erating these directions randomly: a random sample of size p is chosen, a 
hyperplane is fitted to this sample and the direction dj orthogonal to this 
hyperplane is chosen. Note that if we have a set of outliers and the data is 
standardized to have variance equal to one, the direction orthogonal to the 
fitted plane is, a priori, a good one to search for outliers. 

A procedure for obtaining specific directions that can reveal the presence 
of heterogeneity was proposed by Peha and Prieto (2001b). They showed that 
the projection of the data on the direction of the outliers will lead to (1) a 
distribution with large univariate kurtosis coefficient if the level of contami­
nation is small and (2) a distribution with small univariate kurtosis coefficient 
if the level of contamination is large. In fact, if the data come from a mixture 
of two distributions (1 — a)fi{X) + ce/2(X), with .5 < ce < 0 and /^, i = 1, 2, 
is an elliptical distribution with mean fii and covariance matrix Vi^ the direc­
tions that maximize or minimize the kurtosis coefficient of the projected data 
are of the form of the admissible linear classification rules. In particular, if 
the distributions were normal with the same covariance matrix and the pro­
portion of contamination is not large, 0 < ce < 0.21, the direction obtained by 
maximizing the kurtosis coefficient is the Fisher linear discriminant function 
whereas when the proportion of contamination is large, 0.21 < ce < .5, the 
direction which minimizes the kurtosis coefficient is again the Fisher linear 
discriminant function. Thus, the extreme directions of the kurtosis coefficient 
seem to provide a powerful tool for searching for groups of masked outliers. 
Peha and Prieto (2001b) proposed an iterative procedure based on the projec­
tion on a set of 2p orthogonal directions obtained as extremes for the kurtosis 
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of the projected data. Note that the first set of p directions are closely re­
lated to the independent components of the data, which are defined as a set 
of p variables obtained by linear transformations of the original data such 
that the new variables are as independent as possible. It can be shown that 
the independent components can be obtained by maximizing the absolute 
value or the square of the kurtosis coefficient and, as this coefficient cannot 
be smaller than one, these directions will be the same as the one obtained 
by maximizing the kurtosis coefficient. The performance of these directions 
for outlier detection was found to be very good for concentrated contamina­
tion but, as it can be expected from the previous results, it was not so good 
when the proportion of contamination is close to .3 and the contaminating 
distribution has the same variance as the original distribution. This behavior 
of the algorithm is explained because then the values of the kurtosis for the 
projected data are not expected to be either very large or very small. 

Thus it seems that we may have a very powerful procedure by combining 
the specific directions obtained as extremes of the kurtosis with some random 
directions. However, as we are interested in a procedure that works in large 
data sets and it is well known (and it will be discussed in the next section) 
that the Stahel-Donoho procedure requires a huge number of directions to 
work as the sample size increases, the random directions are not generated by 
random sampling, but by using some stratified sampling scheme that is found 
to be more useful in large dimensions. The univariate projections onto these 
directions are then analyzed as previously described in a similar manner to 
the Stahel-Donoho algorithm. See Peha and Prieto (2005) for the justification 
of the method. 

The algorithm that we propose is called RASP (Random And Specific 
Projetions) and works as follows. We assume that first the original data are 
scaled and centered. Let x denote the mean and S the covariance matrix of 
the original data, the points are transformed using yi = S~^^'^{xi — x), i = 
l , . . . , n . 

Stage I: Analysis based on directions computed from finding extreme values 
of the kurtosis coefficient. Compute ni orthogonal directions and projections 
maximizing the kurtosis coefficient (1 < ni < p) and 712 directions minimizing 
this coefficient (1 < n2 < p). 

1. Set yl ^ = yi and the iteration index j = 1. 

2. The direction that maximizes the coefficient of kurtosis is obtained as the 
solution of the problem 

1 ^ / • \ 4 
dj = argmax^ - ^ [d'yl^^J 

n — V / (1) 

s.t. d'd=l. 
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3. The sample points are projected onto a lower dimension subspace, or­
thogonal to the direction dj. Define 

^j ^ 1 7 ^ j 

I otherwise, 

where ei denotes the first unit vector. The resulting matrix Qj is orthog­
onal, and we compute the new values 

«?^^f ^+i)j=Q,2/?\ i = l,...,n, 

where zl^^ is the first component oful^\ which satisfies zl^^ = dji/l^^ (the 

univariate projection values), and yl"^ corresponds to the remaining 

p — j components of u/ . 

We set j = j + 1, and if j < ni we go back to step 1(b). Otherwise, we 
let z^""^ = yl''\ 

4. The same process is applied to the computation of the directions dj (and 
projections z^"^ ) , for j ' = n i + l , . . . , n i + n 2 , minimizing the kurtosis 
coefficient. 

5. For finding outliers, as in the Stahel-Donoho approach the normalized 
univariate distances rj are computed as 

, ^ 1 |zp)-median,(4^')) | 

' Pp MAD,(z|^)) ' ^ ' 

for each direction j = 1 , . . . , ni + n2, where (3p is a predefined reference 
value. 

Stage II: Analysis based on directions obtained from a stratified sampling 
procedure as follows: 

1. In iteration /, two observations are chosen randomly from the sample 
and the direction di defined by these two observations is computed. The 
observations are then projected onto this direction, to obtain the values 
zl = dfyi. Then the sample is partitioned into K groups of size n/K, 
where K is a prespecified number, based on the ordered values of the 
projections z[, so that group /c, 1 < /c < K, contains those observations i 
satisfying 

^(L(/c-l)n/Kj+l) ^ ^i ^ ^([kn/K])' 

2. From each group /c, 1 < /c < K, a subsample of p observations is chosen 
without replacement. The direction orthogonal to these observations, dkij 
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is computed, as well as the corresponding projections z^^ = a^iHi for all 
observations i. These projections are used to obtain the corresponding 

1 I z^^ — median^ (z^^) 
(3) 

where j = 2p-\- [{k — l)n/K\ + /, and (3p is a prespecified reference value. 
3. This procedure is repeated a number of times L, until I = L. 

Stage I I I : For each observation i its corresponding normalized outlyingness 
measure r̂  is obtained from the univariate distances rj defined in (2) and 
(3), as 

ri = max ri. 
l<j<2p+lLn/K\ 

Those observations having values r̂  > 1 are labeled as outliers and re­
moved from the sample, if their number is smaller than n — [(n -\-p-\- l ) / 2 j . 
Otherwise, only those n — [(n -\- p -\- l ) /2j observations having the largest 
values of r̂  are labeled as outliers. 

The values of the parameters needed in the procedure are explained in 
Peha and Prieto (2005). We have found that ni = n2 = 1 works very well 
and we call then the algorithm RASP(l). An alternative would be to use p 
directions, that is ni = n2 = p, and the we cal the algorithm RASP(p). They 
will be compared in the next section. 

3 Application to Clustering 

The directions obtained in the previous section can be used for finding clus­
ters by identifying holes in the distribution of the projected data; we use the 
sample spacings or first-order gaps between the ordered statistics of the pro­
jections. If the univariate observations come from a unimodal distribution, 
there will be large gaps near the extremes of the distribution and small gaps 
near the center. However, this pattern will change if there are clusters in the 
data. For example, with two clusters of similar size we expect a large gap 
separating the clusters, lying towards the center of the observations. Thus, 
once the univariate projections are computed for each one of the ni -\- 712 
projection directions, the problem is reduced to finding clusters in unidimen-
sional samples, where these clusters are defined by regions of high probability 
density. We consider that a set of observations can be split into two clusters 
when we find a sufficiently large first-order gap in the sample. Let Zki = x'^dk 
for /c = 1 , . . . , ni + n2, and let z/j.(̂ ) be the order statistics of this univariate 
sample. The first-order gaps or spacings of the sample, Wkij are defined as 
the successive differences between two consecutive order statistics 

Wki = Zk(i^i) - Zk{i), i = l , . . . , n - 1 



214 Pena and Prieto 

As the expected value of the gap Wi is the difference between the expected 
values of two consecutive order statistics, it will be in general a function of 
i and the distribution of the observations. For a unimodal symmetric distri­
bution Peha and Prieto (2001a) showed that, under reasonable assumptions, 
the largest gaps in the sample are expected to appear at the extremes, wi and 
Wn-ij while the smallest ones should be those corresponding to the center of 
the distribution. Therefore, if the projection of the data onto dk produces a 
unimodal distribution we would expect the plot of Wki with respect to k to 
decrease until a minimum is reached (at the mode of the distribution) and 
then to increase again. The presence of a bimodal distribution in the projec­
tion would be shown by a new decreasing of the gaps after some point. A 
sufficiently large value in these gaps would provide indication of the presence 
of groups in the data. The cut-off for the gaps can be determined by Monte 
Carlo. In summary, the algorithm will be as follows: 

1. For each one of the directions dk compute the univariate projections of 
the original observations Uki = x[dk. 

2. Standardize these observations, Zki = {uki—mk)/skj where ruk = J2i ^ki/^ 
and Sk = J2ii^ki - mkY/{n - 1). 

3. Sort the projections Zki for each value of /c, to obtain the order statis­
tics z/j.(̂ ) and transform then using the inverse of the standard normal 
distribution function Zki = ^~^(z/c(^)) 

4. Compute the gaps between consecutive values, Wki = /̂c,̂ +i — Zki-
5. Search for the presence of significant gaps in Wki- These large gaps will 

be indications of the presence of more than one cluster. In particular, we 
introduce a threshold n = z/(c), where z/(c) = 1 — (1 — cY^^ denotes the 
c-th percentile of the distribution of the spacings, define i^k = 0 cind 

r inf{n > j > iok - Wkj > f^}. 
3 

If r < oo, the presence of several possible clusters has been detected. 
Otherwise, go to the next projection direction. 

6. Label all observations / with Zki < Zkr as belonging to clusters different 
to those having Zki > Zkr- Let iok = ^ cind repeat the procedure. 

4 Simulation Results 

We present in Table 4 the percentage of successes in a simulation experiment 
where we have compared: (1) An efficient algorithm for the implementation 
of the Minimum Covariance Determinant (MCD) procedure, the FASTMCD 
algorithm as proposed by Rousseeuw and van Driessen (1999). (2) An im­
plementation of the Stahel-Donoho algorithm, as described in Maronna and 
Yohai (1995). (3) A computationally efficient algorithm recently proposed by 
Maronna and Zamar (2002), based on the analysis of the principal compo­
nents of an adjusted covariance matrix computed from information on pairs 
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of observations. Two iterations of the algorithm have been carried out, as sug­
gested by the authors. (4) An algorithm based on the directions computed 
from the minimization and maximization of the kurtosis coefficient, as de­
scribed in Peha and Prieto (2001b). (5) A stratified Stahel-Donoho sampling 
procedure, corresponding to the second part of the RASP algorithm described 
in Section 2. (6) An implementation of the RASP( l ) algorithm described in 
Section 2. (7) An implementation of RASP(p), tha t is, the same algorithm as 
before but using now the full 2p directions maximizing and minimizing the 
kurtosis coefficient. The da ta for the experiment in Table 4 was generated 
from a s tandard normal multivariate distribution in dimensions 5, 10 and 20, 
contaminated with a proportion of outliers in a single cluster (from 10% to 
40%), obtained from a second normal distribution with different covariance 
matrices. A total of 100 replications were carried out for each case and each 
algorithm. 

FASTMCD SD MZ kurtosis mod-SD RASP(l) RASP(p) 
74.9 90.1 70.2 88.0 94.9 97.5 98.0 

Table 1. Overall success rates for the detection of outliers forming one cluster 

In a second computational experiment, we have generated samples com­
posed of one main cluster obtained from a s tandard normal distribution and 
two or four additional clusters. The success rates for algorithms FASTMCD, 
SD, MZ and RASP(p) are presented in Table 4. The number of directions 
generated in algorithm SD was chosen to have comparable running times for 
both SD and RASP(p) . Note again the improvement obtained when using 
RASP(p) over the alternative algorithms. 

FASTMCD SD MZ RASP(p) 
88.5 97.5 86.2 100.0 

Table 2. Overall success rates for the detection of clusters 

FASTMCD SD MZ RASP(p) 
233.8 7.0 17.8 7.9 

Table 3. Average running times for the algorithms 

Finally, to illustrate the computational efficiency of the different algo­
ri thms. Table 4 presents the average running times for the analysis of sets of 
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100 replications corresponding to the preceding algorithms, given in seconds 
on a Pentium M 1.6 GHz. Those for both SD and RASP(p) are significantly 
lower than for the other algorithms. 
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Abs t r ac t . Multivariate calibration uses an estimated relationship between a mul­
tivariate response Y and an explanatory vector X to predict unknown X in future 
from further observed responses. Up to now very little has been written about ro­
bust calibration. An approach can be based on the outliers deletion methods. An 
alternative is to employ robust procedures. The purpose of this paper is to present 
multivariate calibration methods which are able to detect and investigate those 
observations which differ from the bulk of the data or to identify subgroups of 
observations. Particular attention will be paid to the forward search approach. 

1 Introduction 

Multivariate calibration uses an estimated relationship between a multivari­
ate response Y (of dimension q) and an explanatory vector X (of dimension 
p) to predict unknown X in future from further observed responses. The pur­
pose of this paper is to present multivariate calibration methods which are 
able to detect and investigate those observations which differ from the bulk 
of the da ta or, more generally, to identify subgroups of observations. We are 
concerned not only with the identification of atypical observations, but also 
with the effect tha t they have on parameter estimates, on inferences about 
models, and on their suitability. In this paper particular at tention will be 
paid to the forward search approach (Atkinson, Riani and Cerioli, 2004). In 
this method we start with a fit to very few outlier-free observations and then 
successively fit larger subsets. We thus order the observations by closeness to 
the fitted model. As a result, not only are outliers and distinct subsets of the 
da ta discovered, but the influential effect of these observations is made clear. 
Section 2 gives more details about multivariate calibration. Section 3 presents 
some possible approach on robust calibration. In section 4 the forward search 
procedure is applied to real da ta set, and some comments and remarks are 
given. 

2 Multivariate Calibraton 

Statistical calibration, potentially useful in several practical applications, 
deals with the inference on unknown values of explanatory variables, given a 
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vector of response variables. Suppose for example that two different instru­
ments for the measurement of the same phenomenon are considered. The first 
one X {standard method) is more difficult, accurate and expensive than the 
second one Y {test method). A sample of n units, in which both measures x 
and y are available, is considered. The set of values {xi^yi) i=l,...,n is the 
calibration experiment. The statistical calibration problem arises when only 
the yi obtained by the test method are known and the unknown Xi have to 
be estimated. The solution of this problem, prediction experiment^ depends 
on the probabilistic model supposed to have generated the calibration exper­
iment. In particular, it is assumed that the values yi are realizations of a 
random variable (r.v) Y with known density function. 

The assumptions on the values Xi may be of two types: i) the Xi are 
realizations of a r.v. and therefore {xi^yi) are realizations of a multivariate 
r.v. {random calibration); ii) the Xi are chosen by the experimenter {controlled 
calibration). 

In the classical parametric approach a linear multivariate model for both 
experiments is considered. Suppose that the calibration experiment is made 
of n observations, q response variables Yi^Y2, ..., Yq and p explanatory 
variables Xi, X2; . . . ; Xp with q > p, and suppose that Yi = Ice^+XB+Ei , 
where Y i ( n x q), X(nxp) , l ( n x 1) are known matrices; E i ( n x q) is a matrix 
of random errors, whose i-th row is E n ^ N (0 , r ) ; B(p x q) and a{n x 1) 
are unknown parameters. The model for the prediction experiment is given 
by: Y2 = la^ + l<f^B + E2 , where Y2(m x g'), E2(m x q) whose j - th row is 
E2J ^ N (0, r ) and C{Q ^ 1) is the unknown vector of calibration measures. 

When q = p the multivariate classical estimator for ^ is 

ic = fBS"'BT) " ' B S " ' (ya - a) (1) 

where B and a are least-squares estimators, y2 is the mean of the obser­
vations in the predicted experiment and S is the pooled covariance matrix. 
(1) is also the maximum likelihood (ML) estimator of ^. 

When q > PJ the ML estimator is a function of ^c and a quantity that de­
pends on an inconsistency diagnostic statistic R, a measure of the consistency 
of y2 to estimate (more details in Zappa and Salini, 2004). 

3 Prediction Diagnostics 

Detecting outliers is an important aspect in the process of statistical model­
ing. Outliers, with respect to statistical models, are those observations that 
are inconsistent with the chosen model. Once a multivariate calibration model 
is built, it is used to predict a characteristic (e.g. standard measure) of new 
samples. Developing robust calibration procedures is important because stan­
dard regression procedures are very sensitive to the presence of atypical ob­
servations; furthermore, very little is known about robust calibration. 



Robust Multivariate Calibration 219 

There are two basic approaches to robust calibration: use robust regression 
methods or perform classic estimators on data after rejecting outliers. 

Robust estimates work well even if the data are contaminated. Several 
robust regression estimation methods have been proposed (Rousseeuw and 
Leroy, 1987): the M-estimator is the most popular; the i?-estimator is based 
on the ranks of the residuals, the L-estimator is based on linear combination 
of order statistics; the Least Median of Squares (LMS) estimator minimizes 
the median of the squares of the residuals; the .S-estimator is based on the 
minimization of a robust M-estimate of the residual scale; the Generalized 
M-estimator (GM) attempts to down-weigh the high influence points as well 
as large residual points; the MM-estimator is a multistage estimator which 
combines high breakdown with high asymptotic efliciency. In the calibration 
literature, generalized M-estimation techniques have been applied to the con­
trolled calibration problem and orthogonal regression on the measurement-
error model to the random calibration problem. These techniques give robust 
calibration estimators (Cheng and Van Ness, 1997) but extensions of these 
methods when p > 1 and q > 1 lead to difliculties. In addition, although 
robust estimators can sometimes reveal the structure of the data, they do 
so at the cost of down-weighting or discarding some observations. Finally, if 
the calibration experiment is made up of different subsets, the use of robust 
estimators will tend to produce a centroid which lies in between different 
groups. In this last case prediction will be strongly determined by the size of 
the subsets which make up the calibration experiment. 

A second approach on robust multivariate calibration consists in perform­
ing a classical multivariate estimator on data after rejecting outliers. There 
are many methods to detect outliers. A single outlier can easily be detected 
by the methods of deletion diagnostics in which one observation at a time is 
deleted, followed by the calculation of new parameter estimates and residu­
als. With two outliers, pairs of observations can be deleted and the process 
can be extended to the deletion of several observations at a time. This is the 
basic idea of multiple deletion diagnostics. A difficulty both for computation 
and interpretation is the explosion of the number of combinations to be con­
sidered. A similar approach is based on the repeated application of single 
deletion methods (backward methods). However, such backwards procedures 
can fail due to masking. 

The forward search appears to be more effective than the other approaches 
especially in the presence of multiple outliers (Atkinson and Riani, 2000). Also 
in the calibration context, the problem can be formulated as searching for the 
outlier-free data subset, the basic idea of forward search method (see next 
section). Genetic algorithms are proposed as a reasonable tool to select the 
optimum subset (Walczak, 1995). The results obtained with this genetic ap­
proach are compared with classical robust regression method of least median 
of squares (LMS). 
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Another approach, a third one, for the prediction of diagnostics in multi­
variate cahbration problem, could be based on the inconsistency diagnostic 
i?, mentioned in the previous section; the statistic R is central to diagnostic 
checking, whether or not it influences confldence intervals and point estima­
tors (Brown and Sundberg, 1989). 

4 Forward Search in Multivariate Calibration: An 
Example 

The forward search is a general technique for robust estimation. The approach 
in calibration fleld considers the direct regression model and is based on the 
idea of forming a clean subset of the data, and then testing the outlyingness 
of the remaining points relative to the chosen clean subset. The algorithm 
combines robust estimation, diagnostics and computer graphics. The flrst step 
of the algorithm is based on the idea of elemental sets. The forward search 
starts by selecting an outlier free subset of p observations, where p is the 
number of parameters to be estimated in the model. To select this subset, a 
large number of subsets are examined, and the one with the smallest median 
residual is chosen - this is known as least median of squares (LMS) estimation. 
Having chosen this initial subset, the search moves from step p to step p + 1 
selecting (p+ 1) units with the smallest least squares residuals. The model is 
re-fltted in this way until all units are included in the subset. Throughout the 
search, certain statistics such as the residuals, are monitored. Diagnostic plots 
are then constructed with the X-axis representing the subset size and the Y-
axis representing the statistic of interest. In the case of calibration problem 
with q > p, q direct regression models are considered and the initial subset 
of dimension r, S^^\ used to initialize the forward search, is found using the 
intersection of units, that have the smallest LMS residuals considering each 
response independently. In symbols for each response j , S^Vj satisfles 

^[med].s<':>, = ™ " K m e d ] . s S ] ' ^̂ ^ 

where e^ (p) is the k th ordered squared residual among e^ (p), in the regres-

sion which considers the j-th variable as response, i = 1 , . . . , n, c is a collec­
tion of p units (the number of c collections is (J^)) and med is the integer part 
of (n+p+l) /2 . The initial subset is associated with the k units whose residuals 
at maximum have the r-th position (r < n/2) among e^ (p) , . . . , e^ (p) , 

j = 1, 2 , . . . , g'. The search progresses from subset size m to m + 1 by select­
ing the smallest (m + 1) Mahalanobis distances (MD) (Atkinson, Riani and 
Cerioli, 2004, p. 66) from multivariate regression d*^ = (e^Z'e^y^e^^)^/^ 
are scaled by the square root of the estimated covariance matrix, where 
Eu ={E^E)/{m-p). 
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Fig. 1. Forward plot of scaled Mahalanobis distances based on residuals of calibra­
tion experiment. 

This algorithm proceeds up to when all units are included in the subset 
(m = /c, /c + 1 , . . . ,n). 

In order to illustrate how the method works we can use a dataset refer-
eed to the noise of the traffic(^). Calibration experiment has to determine 
the hourly equivalent level of the noise of traffic. Time sampling techniques 
differ for the size of the sample: surveying every second (87000 observations), 
surveying every minute (1450 observations), surveying every 10 minute (145 
observations), surveying every hour (24 observations). As standard measure 
X is considered the hourly mean obtained by surveying every second, as test 
measure Y is considered the hourly mean of surveying every minute and the 
hourly mean of surveying every 10 minute. Therefore q = 2 and p = 1 and 
n = 145. without loss of generality only 1000 subsets are considered to se­
lect the initial subset. Fig. 1 shows the typical output of forward search, it 
monitors the calibration residuals at each steps of the forward search, every 
trajectory refers to one unit. The plot evidences the potential presence of 
groups, corresponding to different time slots. In particular forward plot in 
Fig. 2 and Fig. 3 show that unit 43 and unit 115 have a different trajectory 
than the others. The units correspond to time 7 AM and 6.50 AM, critical 
time for the city traffic. 

In the final part of this section we compare the forward approach with 
other robust estimators. It is important to notice that extensions of robust 
method (Cheng and Van Ness, 1997) when p > 1 and q> 1 using robust re­
gression approach lead to difficult because the necessary robust multivariate 
regression theory has not been developed. In our case case q = 2, then two 
robust model are estimated. Some robust regression estimators (Ruber 1981, 

^ I am grateful to G. Brambilla (Institute of Acoustic "O.M. Corbino" C.N.R. 
Roma) for providing the data. 
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Fig. 2. Forward plot of scaled Mahalanobis distances at the step 60 of the search. 
Unit 43, evidenced in bold, has different trajectory than the others. The units 
correspond to time 7 AM, a critical time for the city traffic. 

Fig. 3. Forward plot of scaled Mahalanobis distances at the step 60 of the search. 
Unit 115, evidenced in bold, has different trajectory than the others. The units 
correspond to time 6.50 PM, a critical time for the city traffic. 

Hampel et al. 1986) are implemented. A combining method (Johnson and 
Krishnamoorthy, 1996) is applied to combine the univariate robust estima­
tors, in fact the response variable is determined by two different measuring 
methods. The following equation shows the combining formula: 

i=l 

(3) 
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where Wi = {$i /Sf) / {J2 (3f /Sf) in which (3f is a robust estimator and 

n 
Sf = Yl iVij ~ VijY/{"^ ~ Q)- The estimator in (3) is a GLM estimator that 

Q 

minimizes J^iVi ~ ^i ~ Pi^Y/^f with respect to x. Table 1 shows the clas-

sical combined estimator and the robust ones in both cases of contaminated 
and non contaminated data. 

Models 
Classical 
Huber 
Tukey 

Data 1 
6.514 
6.575 
6.687 

Data 2 
20.031 
16.402 
15.106 

Table 1. Standard Deviation of residuals for classical estimator and robust esti­
mators for both not contaminated (Data 1) and contaminated (Data 2) data. 

In the first case there are not outliers but only groups, as evidenced in 
forward plot in Fig. 1, robust and classical estimators perform in the same 
way. In presence of outliers robust estimators fit better than the classical 
one. Fig. 4 represents the true value of x versus the classical estimator, the 
Hubert and the Tukey estimator. As we expected robust estimators fit better 
than the classical one that it is very sensitive to the presence of atypical 
observations. 

5 Conclusion 

The problem of robust multivariate calibration is approached by the forward 
search method and by the classical robust regression procedures. In presence 
of groups the forward search performs better than classical robust proce­
dures that are useful in presence of single outliers. It is important to notice 
that the combining method proposed in section 4 does not consider the ro­
bust multivariate regression theory (Rousseeuw et al., 2004) but refers to the 
cases in which the multivariate response variable is measured by different 
instruments or determined by various methods. Further, robust multivariate 
regression procedures can be applied on calibration problems. We want to 
study this extension and plan to report it elsewhere. We are currently inves­
tigating the behavior of the inconsistency diagnostic R mentioned in section 
3 with forward search plots. We are interesting to create the envelopes for the 
R statistic, in this way we could be able to accept or reject the hypothesis 
that a new observation is inconsistent with the data. 
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Classical estimator Hubert estimator Tukey estimator 

Fig. 4. True value versus classical and M-estimators in contaminated data 
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Abs t r ac t . This paper aims at exploring the capability of the so called Latent 
Semantic Analysis applied to a multilingual context. In particular we are interested 
in weighing how it could be useful in solving linguistic problems, moving from a 
statistical point of view. Here we focus on the possibility of evaluating the goodness 
of a translation by comparing the latent structures of the original text and its version 
in another natural language. Procrustes rotations are introduced in a statistical 
framework as a tool for reaching this goal. An application on one year of Le Monde 
Diplomatique and the corresponding Italian edition will show the effectiveness of 
our proposal. 

1 Introduction 

Internet has deeply modified our approach to information sources compared 
with traditional media. In fact it is possible to consider both a wider infor­
mation diffusion (from a sociodemografic, cultural and geographic viewpoint) 
and a wider differentiation of information contents, with respect to the sub­
jective knowledge requirements of the users. 

The increasing availability of "e-documents" makes necessary the develop­
ment of tools for automatically extracting and analyzing the most informative 
data, in the frame of a KDD (Knwoledge Discovery in Databases) strategies. 

In Text Mining procedures, and mainly in Text Retrieval, Latent Seman­
tic Indexing (LSI, Deerwester et al. (1990)) has become a s tandard technique 
in order to reduce the high dimensionality proper of textual databases. Nowa­
days there is a wide literature consisting of proposals based on the primary 
idea of using Singular Value Decomposition (SVD) for analyzing a large set 
of documents. On the Web it is possible to find easely nice software and 
consulting for making one's own Latent Semantic Analysis (Landauer et al. 
(1998), e.g. h t t p : / / l s a . c o l o r a d o . e d u ) . 

From a statistical viewpoint LSI arises interesting questions (Balbi and 
Di Meglio (2004)), mainly derived from the use of (generalised) Singular 
Value Decomposition in a multivariate da ta analysis frame. One of the most 
at tractive features of LSI is its producing mathematical representations of 
documents tha t does not depend directly on single terms. The main con­
sequence is tha t a query can identify documents of interest, by identifying 
a context and not a (perfect) correspondence query/document in terms of 
keywords. 



228 Balbi and Misuraca 

Frequently it is possible to obtain documents translated into different 
languages, known as multilingual corpora. In particular it is possible to con­
sider parallel corpora, when the translation mate is an exact translation (e.g. 
United Nations or EU multilingual corpora), and comparable corpora, when 
the translation mate is an approximate translation (e.g. e-documents pub­
lished on the Web). Parallel corpora are objects of interest at present because 
of the opportunity offered to "align" original and translation and gain insights 
into the nature of translation. 

In this direction, a promising research path concerns the so-called Cross 
Language - LSI {Ch-hSi, Littman et al. (1998)), developed for retrieving doc­
uments written in different languages. Procrustes CL-LSI has been envisaged 
as a further development. 

The comparison of different languages by (generalised) Procrustes rota­
tions was proposed by Balbi and Esposito (1998) in a classic Textual Data 
Analysis frame, dealing with Italian advertisement campaigns of the same 
product in three different periods, for exploring the language evolution. 

In this paper we aim at reviewing the problem of applying Procrustes 
rotations in the frame of Textual Data Analysis, when we deal with different 
terms as in the case of different languages. The substantive problem we deal 
with is the comparison between two corpora in different languages, when one 
is the translation of the other. The effectiveness of the proposal will be tested, 
by comparing one year of Le Monde Diplomatique and its Italian translation. 

2 Methodological Background 

The analysis of multilingual corpora has been discussed both in Textual 
Statistics and in Text Mining with different goals: 

• in Textual Data Analysis dealing with the open-ended questions in multi­
national surveys, by visualizing in a same referential space the different 
association structures (Akuto and Lebart (1992), Lebart (1998)); 

• in Information Retrieval for developing language-indipendent representa­
tions of terms, in the frame of natural language and machine translation 
applications (Grefenstette (1998)). 

In order to visualize the relationships between document and between 
terms a factorial approach is commonly performed. A p x n "lexical table", 
cross-tabulating terms and documents, is built by juxtaposing the n docu­
ment/vectors obtained after encoding the corpus through the Bag-of-Words 
scheme: 

^j = ( '^I j^ '^2j^ ...,Wij,..., Wpj) (1) 

where Dj is the j-th document of the corpus (/c = 1 , . . . , n) and Wij is the 
importance of the i-th term in the document {i = 1 , . . . ,p). 
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The axes of factorial representations are calculated by applying to the 
obtained matr ix the SVD, used in several Text Retrieval techniques like LSI 
as well as in Data Analysis techniques like Correspondence Analysis (CA). 

2 .1 T h e U s e of S V D 

Let A be a matr ix with p rows and n columns, where p > n. For sake of 
simplicity we consider tha t rank{A) = n. 

By SVD A can be decomposed in the product: 

A = U A V 

with the constraints (2) 

U U = V V = I 

where A is a n x n diagonal matr ix of Xa positive numbers (ce = 1 , . . . , n) , 
called singular values and arranged in decreasing order, while U and V are 
ortho-normalized matrices having in columns the left and right singular vec­
tors, respectively. 

The left singular vectors define an ortho-normal basis for the columns of 
A in a p-dimensional space. In a similar fashion the right singular vectors 
define an ortho-normal basis for the rows of A in a n-dimensional space. 
Multiplying only the first q « p components of U , A and V , SVD allows 
the best (least squares) lower rank approximation of A. 

2.2 Latent S e m a n t i c I n d e x i n g vs C o r r e s p o n d e n c e A n a l y s i s 

In a LSI framework we compute the SVD of the term by document matr ix F , 
where the general element fij is the frequency of the i-th term (i = 1 , . . . ,p) 
in the j - t h document {j = 1 , . . . , n) , according to the Bag-of-Words encoding. 

Frequencies are often normalized in a tf/idf (term frequency/inverse doc­
ument frequency) scheme: 

•̂  max jj Hi 

where max fj is the higher frequency in the j - t h document and n^ is the 
number of documents in which term i appears (Salton and Buckley (1988)). 

Balbi and Misuraca (2005) have shown how normalization can be embed­
ded in a generalised SVD frame, by considering different ortho-normalized 
constraints to singular vectors. 

LSI success is due to its capability of finding similarities between docu­
ments even if they have no terms in common. A consequent step has been 
the proposal of its application to cross-language text retrieval. CL-LSI auto­
matically finds a language-independent representation for documents. 
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CA aims at analyzing the association between qualitative variables, by 
identifying a latent structure. The core analysis consists of factorial displays 
in a peculiar Euclidean distance, based on x^, with some nice properties as 
the distributional equivalence. 

From an algebraic viewpoint CA is a generalised SVD (Greenacre (1984)), 
where the ortho-normalized constraints state the x^-metric. Correspondence 
Analysis on lexical tables is nowadays a standard technique, mainly applied 
for analyzing open-ended questions in social surveys. 

In studying some linguistic phenomena it seems more suitable to consider 
a non symmetric scheme, in a antecedence/consequence framework, by in­
troducing a different metric in the two spaces in which the terms and the 
documents are spanned (Balbi (1995)). 

In both cases, in a LSI and in a CA scheme, one of the most powerful fea­
tures is given by the graphical representation of the terms and the documents: 
LSI is useful in searching a specific knowledge in a textual database, CA is 
more indicated to search a general knowledge, according with the exploratory 
nature of the multidimensional techniques. 

3 Procrustes Analysis 

In statistical literature, when the aim is to investigate the agreement between 
totally or partially paired tables, different versions of Procrustes Analysis are 
carried out (Gower (1975)). Procrustes Analysis has been often utilised in the 
geometric frame of multidimensional data analysis, for comparing factorial 
configuration obtained analysing different data sets. Specifically, aim of this 
technique is to compare two sets of coordinates by optimising a goodness-of-
fit criterion, i.e. by translating, rotating (and in case refiecting), and dilating 
one configuration, in order to minimize its distance from the other one. 

Given two configurations of n points Y i and Y2 in a p-dimensional space, 
shifted to the origin, the best rotation (in a least square sense) of Y2 to Y i 
is obtained by considering the Polar Decomposition of Z = Y2 'Yi : 

z = ur V 
with the constraints (4) 

U U = V V = I 

in which U and V are square matrices of order p, having in columns the 
left and right singular vectors of Z, respectively, normalized to 1. 

From the (4) it is possible to derive the so called rotation factor R = UV^ 
It is proved that: 

R = UV ' = Z(Z'Z)-i/2 (5) 

A dilation factor is sometimes necessary to "re-scale" the coordinates of 
Y2, by considering: 
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^ trace(r) 

trace(Y2'Y2) ^ ̂  

By applying the rotation and the dilation factor to Y2 it is possible to 
obtain the new coordinates Y2* = (5Y2R. 

4 A Textual Statistics Approach: CL - CA 

The CL-LSI main aim is to reduce high-dimensional configurations of multi­
lingual textual data and it is very suitable in finding document similarities, 
even if they have no terms in common. In a similar fashion CA aims to 
represent the meaningful information in reduced spaces, but it considers a 
weighted Euclidean metric based on x^, cind so preserves the importance of 
infrequent terms. 

In comparing the association structures of a corpus and its translation in 
another languages CL-LSI seems to be not suitable, as term frequencies are 
deeply infiuenced by grammatical and linguistic features. Here we propose a 
Cross Language - CA (CL-CA), aiming at comparing the latent structure of a 
monolingual corpus and its translation in a different language. The motivation 
is connected with the peculiar metric adopted by CA, and the basic idea 
that each textual problem should be faced by a careful choice of the way of 
measuring distances between elements. 

4.1 The Stra tegy in Pract ice 

Let us consider a collection of documents and its translation in another lan­
guage. A classic CA is performed on each corpus for calculating the principal 
coordinates and so obtaining X and Y, coordinate matrices of each language. 

The coordinates matrices are standardized for ensuring that the centroids 
of the two configuration coincide and lie on the origin of the coordinates. 
In particular, we use the standard deviation of X and Y for normalizing 
each matrix, respectively, thus we consider a symmetrical role for the two 
languages (Mardia et al. (1995)), and a re-scaling factor is not necessary. 

Assuming that X contains the C A coordinates of the "original" documents 
and Y the CA coordinates of their translation, we want to evaluate the Y 
goodness of fit on X, by performing a Polar Decomposition of Z = Y'X. 

The goodness-of-fit measure A^ between the two configuration, projected 
on the same space, is given by: 

ZA2(X, Y R ) = trace(X'X) + trace(Y'Y) - 2trace(Z'Z)^/2 (7) 

The A^ assumes null value if X = Y*, therefore the smaller is the distance 
the more similar are the two configurations. In this way we can evaluate how 
the Y* plot fits the X plot, and consequently how good is the translation of 
the documents. 
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5 A Worldwide Review: Le Monde Diplomatique 

Le Monde Diplomatique (LMD) is a monthly review edited in France since 
1954, characterized by a critical viewpoint dealing with worldwide econom­
ical, political, social and cultural issues. At present, LMD is published in 
20 different languages and distributed in about 30 countries, on paper or 
electronic support . 

Regarding the Italian edition, some book reviews are drawn up by the 
Italian editorial staff, together with the translation from the French edition. 

The language is quite homogeneous because the revue is t ranslated from 
French by the same few persons. Since 1998, an electronic edition is available 
on the website h t t p : / / w w w . i l m a n i f e s t o . i t / M o n d e D i p l o / , together with a 
paper edition sold as monthly supplement of the newspaper // Manifesto. 

The two corpora we deal with are a sub-set of 240 articles published in 2003 
on the French edition and the corresponding articles in the Italian edition. 
The whole collection has been downloaded from the newspaper website and 
it has been automatically converted in text format with a script written in 
Java language. For each article, only the body has been considered (i.e. titles 
and subheadings have been ignored). 

The articles have been normalised in order to reduce the possibility of 
da ta splitting, for example by converting all the capital letters to the lower 
case or conforming the transliteration of words coming from other alphabets, 
mainly proper nouns, or using the same notations for acronyms or dates. 
After the pre-treatment step two vocabularies of about 2400 terms for each 
language have been obtained. 

The two separate Correspondence Analysis, performed on the French and 
Italian lexical tables, show very similar structures in terms of explained inertia 
(Figure 1). As usual in LSI we retain only the first 100 dimensions. 

explained inertia 
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n rTALlAN LMD 
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i i 

Fig. 1. Explained inertia distribution in the French and Italian LMD. 
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The explained inertia of the first k factors can be expressed in percentage 
by the ratio Tk'. 

k 

E /A: 
Tk 

E%/^ 
(8) 

in which AQ, is the ce-th singular value obtained by the SVD. The first 100 
factors explain about 2 /3 of total inertia, both for French and Italian. 

After performing the Procrustes rotation it is possible to jointly represent 
the French and Italian documents on the same space. Even if the original 
distances between the articles represented in each monolingual document 
space are different, we can approximately assume a same common metric in 
the joint plot, because of the similar lexical and grammatical structure of the 
two languages. 
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Fig. 2. Joint documents space after Procrustes Analysis. 

In Figure 2 it can be seen tha t the original French articles are very close 
to the corresponding Italian ones, gathering a good quality of the translation, 
with a goodness-of-fit Z\^ = 40.20. 

6 Final Remarks 

In this paper we faced the problem of comparing two corpora when one is 
the translation of the other. The Procrustes Analysis on the results of CA 
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seems to be more suitable for evaluating the goodness of the translation with 
respect to the LSI. 

The use of ad-hoc metrics for taking into account the differences in the 
language structures would be a substantive improvement, specially when dif­
ferent linguistic groups are compared. Furthermore, the analysis can be im­
proved by introducing external information, in terms of meta-data collectable 
on the documents {extra-textual information) or in terms of weights based on 
the da ta belonging to the analyzed corpora {intra-textual information). 
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Abs t r ac t . In this contribution we describe a new way of building a recommender 
service based on OPAC web-usage histories. The service is based on a cluster­
ing approach with restricted random walks. This algorithm has some properties 
of single linkage clustering and suffers from the same deficiency, namely bridg­
ing. By introducing the idea of a walk context (see Franke and Thede (2005) and 
Franke and Geyer-Schulz (2004)) the bridging effect can be considerably reduced 
and small clusters suitable as recommendations are produced. The resulting cluster­
ing algorithm scales well for the large data sets in library networks. It complements 
behavior-based recommender services by supporting the exploration of the revealed 
semantic net of a library network's documents and it offers the user the choice of 
the trade-off between precision and recall. The architecture of the behavior-based 
system is described in Geyer-Schulz et al. (2003). 

1 Introduction 

Recommender services for which amazon.com's "Customers who bought this 
book also bought . . . " is a prominent example ideally create a win-win situ­
ation for all involved parties. The customer is assisted in navigating through 
a huge range of books offered by the shop, the bookseller automatically gets 
the benefit of cross-selling by complementary recommendations to its cus­
tomers (Schafer et al. (2001)). 

In this article we present an innovative recommender system based on a 
fast clustering algorithm for large object sets (Franke and Thede (2005)) tha t 
is based on product co-occurrences in purchase histories. These histories stem 
from the users of the Online Public Access Catalog (OPAC) of the university's 
library at Karlsruhe. A purchase is defined as viewing a document 's detail 
page in the W W W interface of the OPAC. The co-occurrence between two 
documents is defined as viewing their detail pages together in one user session. 

In behavior-based recommender systems, we tacitly assume tha t a higher 
than random number of co-occurrences implies complementary documents 
and tha t the number of co-occurrences is a kind of similarity measure in the 
context of behavior-based recommender systems. The recommender service 
described in this article itself is a complementary service: it supports the 
exploration of the revealed semantic net of documents and it gives the user 
control of choosing his own trade-off between precision and recall. 
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The outline of the paper is as fohows. We survey existing approaches in 
section 2. In section 3 we introduce restricted random walk clustering before 
addressing the generation of recommendations from clusters in section 4. A 
few preliminary results on cluster quality will be discussed in section 5 and, 
finally, we summarize our findings and give an outlook in section 6. 

2 Recommender Systems and Cluster Algorithms for 
Library OPACs 

Recommender systems and web personalization are still active research ar­
eas with an increasing potential in applications, for a survey of recent ac­
tivities, see Uchyigit (2005). According to the classification of Resnick and 
Varian (1997) we concentrate on implicit recommender systems based on 
user-behavior without user cooperation (e.g. purchase histories at the (on­
line) store, Usenet postings or bookmarks). The reason for this is that this 
class of recommender systems has considerably fewer incentive-related prob­
lems (e.g. bias, lies, free riding) than explicit or mixed recommender systems 
(see e.g. Geyer-Schulz et al. (2001) or Nichols (1997)). 

Query, content, and metadata analysis based on relevance feedback, on­
tology and semantic web analysis, natural language processing, and linguistic 
analysis for instance by Semeraro et al. (2001), Yang (1999) and others suffer 
in the context of hybrid library systems as e.g. the library of the Universitat 
Karlsruhe (TH) from two major disadvantages. Less than one percent of the 
content is in digital form and less than thirty per cent of the corpus have meta­
data like thesaurus categories or keywords. Therefore, recommender systems 
of this type currently cannot be applied successfully in libraries. 

Today, two behavior-based recommender systems for books are in the 
field: the famous system of amazon.com and the one used e.g. by the univer­
sity library of Karlsruhe (Geyer-Schulz et al. (2003)). 

Amazon.com's approach is to recommend the books that have been bought 
(or viewed) most often together with the book the customer is currently con­
sidering. Details of the method, e.g. how the number of books to recommend 
is determined or whether product management may change the ranking re­
main undisclosed. The implementation challenge is to achieve scalability for 
huge data sets, even if the co-occurrence matrix is quite sparse. 

The method implemented at the university library of Karlsruhe is statis­
tically more sophisticated, it is based on Ehrenberg's repeat buying theory 
(Ehrenberg (1988); Geyer-Schulz et al. (2003)). Its advantage lies in a notice­
ably better quality of the recommendations, because the underlying assump­
tion of independent Poisson processes with /^-distributed means leads to a 
logarithmic series distribution (LSD) which allows to efficiently distinguish 
between random and meaningful co-occurrences in a more robust way. 

However, both of these recommender systems exploit only local neighbor­
hoods in the similarity graph derived from the purchase histories. Extensions 
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that aim at a more global picture of the similarity graph must include the 
neighbors of the neighbors. For example, cluster-based recommender systems 
give a more global view of the similarity graph. Cluster recommendations 
do not only contain directly related documents, but also indirect relations. 
Unfortunately, algorithms for such recommendations quickly become compu­
tationally intractable. 

For a survey of clustering and classification algorithms, we refer the reader 
to Duda et al. (2001) or Bock (1974) and to the books shown in figure 3. Ex­
amples for recommender systems or collaborative filtering algorithms based 
on cluster algorithms can be found e.g. in Sarwar et al. (2002) and Kohrs and 
Merialdo (1999). 

In the context of libraries Viegener (1997) extensively studied the use of 
cluster algorithms for the construction of thesauri. Viegener's results are en­
couraging, because he found semantically meaningful patterns in library data. 
But all standard cluster algorithms proved to be computationally expensive 
- Viegener's results were computed on a supercomputer at the Universitat 
Karlsruhe (TH) which is unavailable for the library's day to day operations. 
In addition, the quality of the clusters generated by the algorithms tested 
may not be sufficient for recommendations. Single linkage clustering for ex­
ample tends to bridging, i.e. to connecting independent clusters via an object 
located between clusters, a bridge element. 

A new idea for a fast clustering algorithm based on sampling of the sim­
ilarity graph is restricted random walk clustering as proposed by Scholl and 
Scholl-Paschinger (2003). We selected this algorithm for two reasons. Its abil­
ity to cope with large data sets that will be discussed in section 3.4 and the 
quality of its clusters with respect to library purchase histories. 

The bridging effect is much weaker with restricted random walk clustering 
as shown in Scholl and Scholl-Paschinger (2003) and it is even smaller with 
the modifications proposed in Franke and Thede (2005). In addition, the clus­
ter size can be adapted for generating recommendations with an appropriate 
trade-off between precision and recall as shown in section 3.3. A comprehen­
sive comparison of the performance of restricted random walk clustering with 
other cluster algorithms can be found in the appendix of Scholl (2002). 

3 Restricted Random Walks 

Clustering with restricted random walks on a similarity graph as described 
by Scholl and Paschinger (2002) is a two step process: Start at a randomly 
chosen node, and advance through the graph by iteratively selecting a neigh­
bor of the current node at random as successor. When walking over the docu­
ment set, the neighborhood (as defined by the similarity measure) is shrinking 
in each step, since the similarity must be higher than the edge taken in the 
last step. This is repeated until the neighborhood is empty. Then another 
walk is started. The second phase is the cluster construction from the walk 
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histories. The basic assumption is tha t the nearer the position of an edge in 
a walk is to the end of the walk, the higher is the probability tha t the two 
documents connected by the edge are in the same cluster. 

3.1 Input D a t a : P u r c h a s e His tor ie s 

Input da ta are the purchase histories generated by users of the OPAC of the 
library of the Universitat Karlsruhe (TH). Users browsing through the cata­
logues contribute to constructing raw baskets: Each session with the OPAC 
contains a number of documents whose detail pages the user has inspected. 
This da ta is aggregated and stored in raw baskets such tha t the raw basket 
of a document contains a list of all other documents tha t occurred in one 
or more sessions together with it. Furthermore, the co-occurrence frequency 
of the two documents, i.e. the number of sessions tha t contain both docu­
ments, is included in the raw basket. Revealed preference theory suggests 
tha t choice da ta of this kind reveals the preferences of users and allows a 
complete reconstruction of the users' utility function. 

Co-occurrence frequencies measure the similarity of two documents and 
a similarity graph G = {V^E^uo) may be constructed as follows: The set of 
vertices V denotes the set of documents in the OPAC with a purchase history. 
If two documents have been viewed together in a session, E C VxV contains 
an edge between these documents, the weight uoij on the edge between docu­
ments i and j is the number of co-occurrences of i and j . uou is set to zero in 
order to prevent the walk from visiting the same document in two consecutive 
steps. The neighborhood of a document consists of all documents tha t share 
an edge with it. 

3.2 R e s t r i c t e d R a n d o m Walks 

Formally, a restricted random walk is a finite series of nodes R = (io, • • •, v ) ^ 
V^ of length r. i^ denotes the start node. 

is the set of all possible successor edges whose weight is higher than ( im- i , ^m) 
and thus can be chosen in the m + 1st step. 

For the start of the walk, one of the start node's neighbors is selected as 
ii with equal probability. The set of possible successor edges is the set of all 
incident edges of ii with a higher weight than cj^^^^: Ti^i-^ = {{iij)\oOi^j > 
LOi^i^}. From this set, 2̂ is picked at random using a uniform distribution and 
Ti^i2 is constructed accordingly. This is repeated until Ti^_^i^ is empty. For 
an example of such a walk, consider Fig. 1. 

Suppose a walk start ing from node A, the first successor is either B or C 
with equal probability. If C is chosen, the only successor edge is CB and then 
BA. As we see in figure 1, at this point no edge with a higher weight than 8 
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Fig. 1. An similarity graph 

exists and the walk ends here. Other walks are e.g. BC, CDE, DCAB, and 
ED. 

A sufficient covering of the complete document set requires start ing several 
walks from each node. In this article five walks per node are used. More 
sophisticated methods are being developed using random graph theory (Erdos 
and Renyi (1957)). 

The formulation of the walk as a stochastic process on the edges of the 
graph and the introduction of an "empty" transition state shown in Franke 
and Thede (2005) lead to an irreducible and infinite Markov chain. Restricted 
random walks are based solely on local information, namely the neighborhood 
of the current node. This greatly facilitates the implementation and reduces 
the time and space requirements of the algorithm, when compared with other 
cluster algorithms. 

3.3 T h e C o n s t r u c t i o n of C lus ters 

For cluster construction, two main variants have been suggested in the litera­
ture: The approach by Scholl and Paschinger or the walk context introduced 
in Franke and Thede (2005). 

It is important to note tha t clustering with restricted random walks gen­
erates a hierarchy of clusters. This implies to choose a threshold (level) /, i.e. 
a height at which a cut is made through the treelike structure (dendrogram) 
in order to determine the cluster for a given node. Cluster hierarchies al­
low the user to interactively explore clusters by adapting the threshold. This 
property is exploited in in the user interface for zooming recommendations 
in section 4. Sorting cluster members by the minimum level at which they 
become members of the cluster allows the construction of recommendation 
lists as the m top members. 

The original idea by Scholl and Paschinger is to generate, for a given node, 
component clusters as follows. A series of graphs Gk = (V^ Ek) is constructed 
from the da ta generated by all walks. V is the set of objects visited by at 
least one walk. An edge {i^j) is present in Ek if the transition {i^j) has been 
made in the /c-th step of any walk. 

Then, the union 

Hi = yJf=iGk (2) 
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is constructed for each level I. Scholl and Paschinger define a cluster at level / 
as a component (connected subgraph) of Hi. Consequently, if a pa th between 
two nodes exists in Hi, they are in the same cluster. 

In the example given above with the walks ACBA, BC, CDE, DCAB, 
and ED this means tha t Gs = (V, {BA}) (the edges are undirected, thus 
there is no distinction between BA and AB) and G2 = {V, {CB, DE, CA}). 
As a consequence, the only cluster at level 4 is {A, 5 } , at level 3 we get the 
clusters {A^B^C} and {D,E}, refiecting nicely the structure of the original 
graph. 

The main drawback of this clustering approach is tha t very large clusters 
were generated with purchase histories from the library's OPAC, sometimes 
containing several hundred documents even at the highest step level available. 
We conjecture tha t the reason is a bridging effect to documents covering 
more than one subject or documents read in connection with documents 
from different domains or random search behavior in a single session. 

Furthermore, the step number as level measure has two major disadvan­
tages. First, it mixes final steps from short walks tha t have a relatively high 
significance with steps from the middle of long walks where the random fac­
tor is still strong. This is evident for the clusters at / = 3. Although C and 
D have a high similarity, they do not appear in the top-level cluster because 
the walks containing them are too short. Second, the maximum step level is 
dependent on the course of the walks as well as the underlying da ta set and 
cannot be fixed a priori. 

Walk context clusters solve the problem of large clusters. Instead of in­
cluding all documents indirectly connected to the one in question, we only 
consider those nodes tha t have been visited in the same walk as the node 
whose cluster is to be generated (the central node), respecting the condition 
tha t both nodes have a higher step level than the given threshold in the cor­
responding walk. This has the advantage of reducing the cluster size on the 
one hand and the bridging effect on the other since it is less probable tha t 
some bridge between different clusters has been crossed in the course of one 
of the walks containing the document in question. Even if a bridge element 
is included in the walk, the number of documents from another cluster tha t 
are falsely included in the currently constructed cluster is limited since only 
members of the walk are considered tha t are located relatively near the bridge 
element. Obviously, walk context clusters are non-disjunctive. 

For a discussion of different measures for the cluster level for walk context 
clusters we refer the reader to Franke and Thede (2005) and Franke and 
Geyer-Schulz (2005). For the results in section 5 the following measure which 
defines the level as a relative position of the step in a walk was used: 

,1 step number , . 
/+ = 7 (3) 

total steps in this walk + 1 
The adjusted level /+ converges asymptotically to one for the last step in 

a walk. 
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In our example, the clusters at / = 1 are as follows: {A^B}, {B^A^C}, 
{C, B}, {D^ E}, {E^ D} where the first node is the central node for the respec­
tive cluster. As can be seen, a cluster-based recommendation for B includes 
both A and C whereas C s recommendation does not contain B. 

3.4 Complexity 

n denotes the number of documents or, more generally, nodes. According 
to Scholl and Paschinger (2002) the time complexity per walk is 0(log n) 
with the base of the logarithm undefined; log2 seems to be a good estimate 
on our data. Executing c walks per document the total complexity of the walk 
phase is 0{cn log n) = 0{n log n). Several experiments indicate that setting 
c = 5 is sufficient and that increasing c does not improve cluster quality. 

For the usage data of the last two years, an analysis of the data showed 
that in practice the size of the neighborhood - and thus the degree of the 
nodes - is bounded by a constant and independent of n. Although the number 
of documents has grown over this period, the important factor for the com­
plexity, namely the maximum size of the neighborhood of a node, remained 
constant. Since in practice the walk complexity is thus decoupled from the to­
tal size of the graph, even a linear complexity is possible if further theoretical 
developments can confirm this conjecture (Franke and Thede (2005)). 

For the cluster construction phase the data structures for storing the walk 
data determine the complexity of this phase. This implies that an efficient 
implementation of this data structure is required. With an ideal hash table 
(with 0(1)), the construction of a cluster for a given document is 0 ( number 
of walks visiting the document *1). A constant neighborhood size implies a 
constant walk length with growing n and that the number of walks that have 
visited a certain document is also constant. Otherwise, it is 0(log n). Assum­
ing that the number of walks visiting a node more than once is negligible, a 
total of 0{n log n) nodes is visited during n walks of length 0(log n), leading 
to an average of 0(log n) walks visiting a node (Franke and Geyer-Schulz 
(2005)). 

Per 31/10/2005 the input data consists of 1,087,427 library purchase his­
tories for documents in the university library of the Universitat Karlsruhe 
(TH). 614,943 of these histories contain sufficient data for clustering. The 
documents are connected by 44,708,674 edges, the average degree of a node 
is about 82. On an Intel dual Xeon machine with 2.4 GHz, the computation 
of 5 walks per document, that is more than 3 million walks in total, takes 
about 1 day. 

4 Zooming Recommendat ions 

The basis for zooming recommendations are clusters generated by restricted 
random walks. Figures 2 and 3 show the prototype of the user interface for 
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Fig. 2. Recommendations for Duran and Odell, Cluster Analysis - A Survey (High 
Precision) 

recommendations with zoom. By positioning his pointing device (mouse) on 
the scale ranging from few, precise hits to many, hut less precise hits, the user 
may perform zooming operations on the current cluster. Zooming means that 
by choosing an appropriate threshold level the cluster size is adapted. Since a 
cluster exactly corresponds to the basin of attraction of a random walk on the 
similarity graph, a reduction in the threshold increases the size of the cluster 
(and thus recall) and it reduces precision because of the random noise in the 
walks near the start of the walks. This effect is not yet visible in figure 3. 
However, for the example shown, precision drops when moving the slider all 
the way to the right hand side. 

Clusters resulting from the walk context method are not disjunctive (al­
lowing overlapping clusters) and generate a hierarchy of clusters which is 
exploited for the zoom effect. If documents A and B are both in the cluster 
for document C, A need not be in the cluster generated for B and vice versa. 
For book recommendations this is desirable because of the resulting clusters 
for bridge documents (documents belonging to more than one cluster). Rec­
ommendations for bridge documents (e.g. document C) should contain books 
from all domains that are concerned (e.g. A and 5 ) , while document A nor­
mally is not connected with B and thus should not be in the recommendation 
for B, if A and B are not in the same domain. 

5 Evaluation 

Since the zooming recommender service is still in a prototype stage, we have 
performed three evaluations, namely a very small user evaluation, and two 
keyword based evaluations of the cluster quality. 
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Fig. 3. Recommendations for Duran and Odell, Cluster Analysis - A Survey 
(Medium Precision) 

Good Recommendations 
Number of lists 
Percent 

5 of 5 
17 

56.6 

4 of 5 
5 

16.6 

3 of 5 
3 

10.0 

2 of 5 
1 

3.3 

1 of 5 
2 

6.6 

Oof 5 
2 

6.6 

Table 1. Top five evaluation 30 recommendations lists 

The user evaluation is based on a random sample of 30 recommendation 
lists from the field of business administration and economics. The top five 
recommendations of each list have been judged by the authors as "good rec­
ommendations" or as "should not have been recommended". Precision has 
1 H fi d ' ' — J^uJ^her of correctly recommended documents 

^ ~ total number of recommended documents 
Overall precision on the top five recommendations was 78.66 %. More than 

90% of the recommendation list contain at least one useful recommendation 
in the top five. The distribution is shown in table 1. 
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Fig. 4. Precision versus number of generated keywords 

The keyword based evaluations serve as an additional approximation of 
the cluster quality. The first evaluation is based on a sample of 212 docu­
ments selected randomly from 9 fields whose key word lists from the SWD 
Sachgruppen (Kunz et al. (2003)) schema introduced by Die Deutsche Bib-
liothek have been controlled by the 9 reference librarians of these fields at 
the university's library at Karlsruhe. 

Figure 4 plots the precision versus the number of generated keywords for 
a number of cut-off levels of the cluster. The trade-off between the number 
of generated keywords and the precision as well as the reduction of precision 
with growing cluster size (decreasing level) clearly shows in figure 4. 

A second key-word based evaluation can be found in Franke and Geyer-
Schulz (2005). For each document in the training sample of 40,000 documents, 
we counted the documents in the cluster that share at least one category in 
the manual classification. This is the number of correctly recommended doc­
uments. Furthermore, the manual classification only covers about 55% of the 
documents in the university's catalog so that the number of documents that 
"should" be recommended could not be determined without a considerable 
error. Due to this fact, the precision as described tends to be a rather conser­
vative lower bound, especially if we consider the fact that the quality of the 
manual classification system at Karlsruhe differs strongly between topics. 

The maximum precision that was reached by using /+ was 0.95 at level 
0.95, but then, keyword recommendations could only be generated for 11 
documents out of nearly 40,000. On the other hand, in order to have keyword 
recommendations for more than 50% (26,067 in this case) of the documents, 
a precision of 67% is feasible. 
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Note, tha t while the keyword-based evaluations give a lower bound, the 
user evaluation performed by the authors indicates an upper bound of the 
quality of the recommender system. Nevertheless, a more complete follow-up 
study of the user evaluation by independent experts is planned. 

6 Summary 

In this article we have presented a new method for generating recommen­
dations based on restricted random walks on large da ta sets in an efficient 
way. The precision and performance we were able to achieve are promising. 
However, open questions for further research are: 

In order to increase the operational efficiency of the system intelligent 
updat ing of clusters when new usages histories arrive is currently under in­
vestigation. The idea is to reuse as much as possible from the existing walks. 
Furthermore, coverage of the graph should be improved by more intelligent 
decisions on the number of walks tha t are started from a node and a bet ter 
understanding of the asymptotic behavior of the algorithm as the number of 
walks approaches infinity. In addition, filtering the random co-occurrences of 
documents from the similarity graph with stochastic process models Geyer-
Schulz et al. (2003) should be investigated. 
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Abstract. The spread of Internet and the growing demand of services from the 
web users have changed and are still changing the way to organize the work or the 
study. Nowadays, the main part of information and many services are on the web 
and the software is going toward the same direction: in fact, the use of software 
implemented via web is ever-increasing, with a client-server logic that enables the 
"centralized" use of software installed on a server. In this paper we describe the 
structure and the running of R-php, an environment for statistical analysis, freely 
accessible and attainable through the World Wide Web, based on the statistical 
environment R. R-php is based on two modules: a base module and a point-and-click 
module. By using the point-and-click module, the so far implemented statistical 
analyses include also ANOVA, linear regression and some data analysis methods 
such as cluster analysis and PC A (Principal Component Analysis). 

1 Introduction 

R-php is a project developed into the Department of Statistical and Math­
ematical Sciences of Palermo and has the aim to realise a statistical web-
oriented software, i.e. a software tha t a user reaches through Internet and 
uses by means of a browser. R-php is an open-source project; the code is 
released by the authors and could be freely installed. The internet site where 
can be found information on this project and where is possible to download 
the source code is hUp://dssm.unipa.it/R-php/. 

The idea to design a statistical software tha t can be used through Inter­
net comes out from the following considerations: it is a fact tha t the growing 
propagation of Internet and the demand of new services from its users have 
changed and still are thoroughly changing the way to access the structures of 
daily use on work, on study and so on; nowadays, the most of information and 
services goes through the web and in the same direction the software philoso­
phy is moving: let's think, for example, about the PhpMyAdmin tool, tha t is a 
graphical interface via web of the well known database management system 
MySQL; in the business field, another example is given by the development of 
home-banking systems on the web. 

A basic feature of R-php is tha t all the statistical computations are done 
by exploiting as "engine" the open-source statistical programming environ­
ment R (R Development Core Team, 2005), tha t is used more and more 
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from Universities, but also from consulting firms (Scwartz, 2004), for exam­
ple. Then R-php is classifiable as a web project based on R. Besides this 
project, there are others, such as Rweb, R_PHP_ONLINE and so on (see the web 
page http://franklinAmgen.hem.tmc.edu/R.weh.servers/). Shortly, the main 
difference between R-php and the other similar projects is tha t R-php has an 
interactive module (R-php p o i n t - a n d - c l i c k ) tha t allows to make some of 
the main statistical analyses without the user has necessarily to know R. 

The potential users of R-php are several: for example, let's think about 
the use from students either inside didactic facilities, such as informatics 
laboratories, or from home by means of a simple connection to Internet, 
or from an user tha t not knowing and wanting not to know a programming 
environment, such as R, wants to do simple statistical analyses without having 
to use expensive statistical software. 

In this paper we shall describe the needed software to implement a R-php 
server with its two modules: R-php b a s e and R-php p o i n t - a n d - c l i c k . Then, 
we shall present some other projects related to the installation of web server 
using R by pointing out the main differences with R-php. At the end, we shall 
show an example of use of R-php. 

2 Needed Software to Install R-php 

The needed software to implement a R-php server is the following: R, PHP, 
MySQL, Apache, ImageMagick and h tmldoc . All this software is open-source. 
A short description of each software follows. 

• R : R is a well known language and environment for statistical computing 
and graphics; R can be considered as a "dialect" of S. The term "environ­
ment" is intended to characterize a fully planned and coherent system, 
rather than a system with an incremental accretion of very specific and 
infiexible tools, as it is frequently the case with other statistical software. 
R provides a wide variety of statistical and graphical techniques and is 
highly extensible. R compiles and runs on a wide variety of UNIX plat­
forms and similar systems (including FreeBSD and Linux), Windows and 
MacOS. 

• P H P : PHP, recursive acronym for P H P Hypertext Preprocessor, is a 
server-side scripting language to create web pages with a dynamic con­
tent. It is widely used to develop software via web and it is usually in­
tegrated with dedicated languages, such as HTML and J a v a S c r i p t . More­
over, it gives a set of functions to interact with many relational database 
management systems, such as MySQL, PostgreeSQL, Orac l e , and so on. 

• M y S Q L : MySQL, acronym for My Standard Query Language, is a multi­
user client/server database. MySQL is, maybe, the most popular open 
source database management system. One of the more appreciated fea­
tures of MySQL is the speed to access data: this is the reason why it is the 
more used database system for web-oriented software. 
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• Apache: Apache is a powerful web server for the h t t p protocol; it is flexi­
ble and highly conflgurable to meet any requirements. At September 2005, 
about 70% of the internet web servers uses it (source: Netcraft Web Server 
Survey, http://news, net craft. com/archives/weh_ server_ survey.html). 

• ImageMagick: ImageMagick is a good software to manipulate images; 
it has been created to run on UNIX alike platforms, but nowadays is dis­
tributed also for Windows and MacOS systems. It gives a set of commands 
that can be used also in batch mode and that allows, among other things, 
to convert images in many formats, to modify the image size, to cut some 
parts of an image, to manage colors and transparency, to realize thumb­
nails and editing of images. A great feature of this software is exactly the 
opportunity to use it by prompt. 

• htmldoc: htmldoc is a package to create .pdf flies from .html flies. 

3 Description of R-php 

In this paragraph we shortly show the way R-php works. 

3.1 R-php Base 

When a user goes to the home page of this module, automatically a temporary 
directory is created; the name of this directory is generated in the following 
way: flrst, it is generated a pseudo-random alpha-numeric character string, 
which is associated to the UNIX time stamp. Inside this temporary directory 
there are all the flies of the current session, generated by the connected user; 
this fact guarantees the multi use, i.e. the contemporary connection of several 
users with no confusion among the flies generated in these different concurrent 
sessions. This feature of R-php does not seem implemented in other similar 
systems. The maximum number of contemporary users does not depend on 
R-php, but from the setting of the Apache server that contains it. Besides, the 
UNIX time stamp is useful to delete automatically the temporary directories 
from the server after six hours from the beginning of the working session: 
this fact avoids to have an excessive number of directories on the server and 
then allows to have a "clean" server. 

This R-php module allows to introduce R code in a text area; this code 
is reported in a text flle. As it is known, R has commands that allow the 
interaction with the operating system of the used computer; this could be 
dangerous in an environment like this one, because an user could input (vol­
untarily or not) harmful commands. To avoid this drawback, we have decided 
to implement a control structure that does not allow the use of a set of com­
mands that we think are dangerous for the server safety. These commands 
are contained in a MySQL database, that has also a short description what 
the banned command does of. It is clear that a user interested to install 
a R-php server can modify this list of commands in every moment. For a 



250 Mineo and Pontillo 

greater safety, this control is made, first, dient side in JavaScript and then 
(only if the first control is evaded) also server side in PHP. About the data 
input, besides the possibility to input data by using R commands, there is 
the possibility to read data from an ASCII file of the user's computer. The 
R commands, contained on the previously created text file, are processed by 
R that in the meanwhile has been invocated in batch mode by PHP. Then R 
gives the output in two formats; a textual one with the requested analysis 
and a .ps format that contains possible graphs. At this point, the two files 
are treated in two different ways: 

• the text file is simply formatted by using style sheet to have a more 
readable web page; 

• the .ps file is divided to obtain a file for each image; then each image is 
converted by ImageMagick in a more suitable format (.png format) for 
the web visualization. 

At this point, the output with possible graphs is visualized in a new window. 
In this window there is the chance to save the output in .pdf format: this 
operation is made by using the htmldoc software; the user can also decide to 
save the graphs one by one. 

3.2 R-php Point-and-Click 

The R-php module that we describe in this paragraph is not a simple R web 
interface, but has in every way the features of a Graphical User Interface 
(GUI); this fact makes R-php different from the other web-projects based on 
R. In this module, the organization of the concurrent sessions is the same 
as that one described for R-php base. The data input is made by loading 
an ASCII file from the user's computer: this operation is made by means of 
JavaScript . Afterwards, the file contents are visualized in a new page as a 
spreadsheet; this data set is managed by MySQL: this allows to make some 
interactive operations directly on the data; for example, it is possible to 
modify the variable names or the value of every single cell of the spreadsheet. 
After we have loaded the data set, it is possible to choose what kind of 
analysis we have to do among those proposed. Each of these analyses can be 
made by means of a GUI, where the user can choose the options he wants to 
use; such options are translated in R code and processed. With more details, 
this phase provides the following steps: 

1. the code is transcribed in an ASCII file that will be the R input; 
2. the database containing the data is exported to an ASCII file; 
3. R, called in batch mode, processes the code contained in the previously 

created text file; 
4. R gives the output in two files; the first one is an ASCII file that presents 

the results in a text mode, the second one is a .ps file that contains the 
possible graphs; 
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5. the ASCII file is formatted to be compatible with the web standards of 
visualization; 

6. the .ps file is divided in more files containing each one a graph and then 
each graph is converted in . png format (this operation is the same of that 
one of the R-php base module); 

At this point, it is generated a web page that has the text and the graphs 
of the analysis. Moreover, the generated page containing the output allows 
other interesting operations, such as the output saving, with the graphs too, 
in . pdf format and the saving of the single graphs by means of a simple click. 

We do not go longer on the description of each GUI for the several analyses 
that we can make with R-php po in t -and-c l ick , because the design of the 
GUI's is formally the same for each analysis. The GUI implemented so far 
are the following: 

• descriptive statistics; 
• linear regression; 
• analysis of variance; 
• cluster analysis; 
• principal component analysis; 
• metric multidimensional scaling; 
• factor analysis. 

4 Some Web Server Projects Using R 

In this section we describe some interesting web server projects using R and 
we shortly show the main differences of these projects in respect of R-php. 

• RWeb: RWeb (Banfield, 1999) is probably the oldest project of this kind 
and it has been the start up of many web-oriented applications using 
R as "engine". RWeb is composed by two parts that require a different 
knowledge of the R environment. The first part is a simple R interface 
that works properly on many browsers, such as In te rne t Explorer, 
Mozilla Firefox, Opera, and so on. The use of this module requires the 
knowledge of the R environment. The main page has a text area where 
the user inputs R code and by clicking on the submit button the soft­
ware gives the output page, included possible graphs. The second part, 
called RWeb modules, is designed as a point-and-click interface and the 
user could not know the R programming language. To use this module it 
is required to choose the data set, the type of analysis and the options 
for that analysis. The currently implemented analyses include regression, 
summary statistics and graphs, ANOVA, two-way tables and a proba­
bility calculator. Among the considered projects, RWeb, seems for some 
aspects the most similar to R-php. The aspects that distinguish R-php 
from Rweb are, for example, the following: R-php gives more analyses that 
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a user can perform by means of the point-and-click module and presents 
more tools to manage the output, such as the possibility to save it in a 
.pdf format. 

• CGIwithR: CGIwithR (Firth, 2003) is a package which allows R to be 
used as a CGI scripting language (CGI stands for Common Gateway 
Interface). In substance, it gives a set of R functions that allows any R 
output to be formatted and then used with a web browser. Although 
CGIwithR is oriented to the realization of web pages containing R output, 
this project is different from R-php that, on the contrary, is a R front end 
exploiting its features by calling it in batch mode by means of a GUI. 

• Rpad: Rpad (Short and Grosjean, 2005) is a web-based application al­
lowing the R code insert and the output visualization by means of a web 
browser. Rpad installs as an R package and can be run locally or can be 
used remotely as a web server. If an user wants to use Rpad as a service, 
he has to open R and then he needs to load the Rpad package and to run 
the RpadO function that activates a mini web server; moreover, a new 
web session is started up by using the default browser and by showing 
the Rpad interactive pages. In brief, Rpad allows the use of R by means of 
a browser (both locally and remotely), but anyway requires the knowl­
edge of the R language; in this way, it can be compared only with the 
R-php base module. 

• R _ P H P _ O N L I N E : R_PHP_ONLINE is a PHP web interface to run R 
code on line, including graphic output. In brief, it allows to insert code 
and to visualize the output by means of a web browser. It also allows the 
graph visualization, but this operation is not so easy; on the project web 
site {http://steve-chen.net/R_PHP/) the author suggests different ways 
to do this; surely, the most instinctive method seems to be this one: add 
the functions bitmap() and dev.of f () before and after the real function 
call which generate graphics; in this way, only one graph at once can be 
generated. R_PHP_ONLINE does not have a point-and-click module and 
then can be compared only with the R-php base module. The latter is 
anyway more "user friendly" when a user has to produce some graphs; 
indeed, in R-php it is possible to use directly the R graph functions even 
when there are several graphs to produce. 

Anyway, there are other similar projects worthy of mention, both regarding 
GUI and web server; for more details the reader can visit the web page: 
http://frankUn.imgen.bcm.tmc.edu/R.web.servers/. In this page the reader 
can find information on the projects cited on this paper, too. 

5 An Example of Use of R-php 

In this section, we show a simple example of use of R-php po in t -and-c l ick , 
by using the cluster analysis GUI. When the user chooses this GUI, he can 
choose either a hierarchical method or the k-means algorithm. Let's consider 
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Cluster Dendrogram 

Fig. 1. Dendrogram obtained by using the module point-and-click of R-php. 

the da ta set USArres t s contained in R. This da ta set contains statistics, in ar­
rests per 100.000 residents for assault, murder, and rape in each of the 50 US 
states in 1973 (McNeil, 1977). By loading this da ta set to R-php and by click­
ing on the cluster analysis GUI and on H i e r a r c h i c a l , R-php shows a win­
dows where the user can choose the type of distance matr ix (the options are: 
e u c l i d i a n , maximum, manha t t an , Canberra , b i n a r y and minkowski) , the 
agglomeration method (the options are: ward, s i n g l e , comple te , a v e r a g e , 
m c q u i t t y , median and c e n t r o i d ) , the numbers of groups and the height of 
the dendrogram (the user can not choose both these two options, of course). It 
is possible to say if we want to visualize the distance matr ix or not. By clicking 
on the send but ton we have the output containing: the names of the involved 
variables, the distance matrix, the indication of the number of cluster whom 
the unit belongs to, the number of units for each cluster, the dendrogram 
and a graph showing the number of groups according to the height of the 
dendrogram. In Figure 1 it is shown the resulting dendrogram. If in the input 
window we have chosen a value for the field h e i g h t of dendrogram, in the 
output there is the dendrogram with a horizontal red line in correspondence 
of the input height value. 

6 Conclusion 

In this paper we have shortly described the open-source web oriented statis­
tical software R-php. In our opinion, the main feature of this software is the 
possibility to use a statistical software via web with a well developed GUI, i.e. 
the possibility for a user to make statistical analysis having only a connection 
via Internet and no statistical software installed on his own computer. It is 
intention of the authors to develop further this tool by correcting eventual 
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bugs and by developing new GUI for other statistical analyses. Moreover, 
new functionalities will be implemented, such as the possibility to see and to 
save the R code used by the software to perform the requested analysis, or to 
use case names in the spreadsheet containing the da ta set tha t the user has 
to analyse. 
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Abs t r ac t . Optimization Problems represent a topic whose importance is getting 
higher and higher for many statistical methodologies. This is particularly true for 
Data Mining. It is a fact that, for a particular class of problems, it is not feasible 
to exhaustively examine all possible solutions. This has led researchers' attention 
towards a particular class of algorithms called Heuristics. Some of these Heuristics 
(in particular Genetic Algorithms and Ant Colony Optimization Algorithms), which 
are inspired to natural phenomena, have captured the attention of the scientific 
community in many fields. In this paper Evolutionary Algorithms are presented, 
in order to face two well-known problems that affect Classification and Regression 
Trees. 

1 Introduction 

It is often needed, in order to apply many statistical techniques, to make use 
of a discrete optimization algorithm in order to find solutions to a problem 
whose solution space cannot be completely explored. Binary Segmentation^ 
techniques allow to recursively parti t ion a da ta set on the basis of some cri­
teria in order to get more homogeneous subsets in the sense of a particular 
variable called response variable. The output of the analysis can be easily 
represented in a graphical tree structure. The way in which the da ta set is 
progressively partit ioned is based on a (splitting) rule tha t divides the units 
in two offspring groups. Splitting rules are generated on the basis of the ex­
planatory variables, also called predictors. In CART methodology, in order to 
choose the best split, all possible dichotomizations for each predictor must be 
evaluated at each step. This may lead to a combinatorial problem because, 
when examining an unordered nominal predictor, it comes tha t the number 
of all possible splits^ is 2^~^ — 1. It follows tha t evaluating all possible splits 
for a predictor whose number of modalities is high is computationally infea-
sible. This is the reason why many statistical packages don't allow to process 

^ Classification and Regression Trees, Breiman et al. (1984); C4.5, Quinlan (1993); 
Two-Stage Binary Segmentation, Mola and Siciliano (1992). 

^ Being k the number of modalities of the predictor. 
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nominal unordered predictors whose number of modalities is higher than a 
certain threshold. Even if we consider the FAST (Mola and Siciliano (1997)) 
algorithm (that provides a smaller computational effort to grow the binary 
tree), the combinatorial problem is still relevant, especially when complex 
data sets have to be analyzed. Another problem lies in the fact that the 
choice of any split, for each node of the tree, conditions the choice of all 
the splits below that one, thus reducing the solutions space that is being 
examined. This happens because, due to another combinatorial optimization 
problem, it is not possible to evaluate all possible trees that could be built 
from a data set. Many segmentation algorithms (CART, C4.5, etc.) are forced 
to make use of "greedy" procedures that allow to get results in a reasonable 
time by renouncing to the global optimality of the obtained solution. This pa­
per proposes two algorithms that can deal with the forementioned problems. 
The following sections (2 and 3 respectively) focus on Genetic Algorithms 
and Ant Colony Optimization techniques, that are two heuristics that are 
particularly useful for "attacking" combinatorial optimization problems. In 
section 4 these heuristics are used to look for the best split from a high level 
nominal predictor and for extracting exploratory trees. 

2 Genetic Algorithms 

Genetic Algorithms (GA, Holland (1975)) are powerful and broadly appli­
cable stochastic search and optimization techniques based on principles of 
evolution theory. GAs allow to start from an initial set of potential solutions 
to a problem and progressively improve them on the basis of an objective 
function, which is called fitness function. The solutions' quality is improved 
by recombining the "genetic code" of the best ones by making use of some 
genetic operators until some stopping criterion is met. A GA starts with an 
initial population^ in which each individual is called chromosome, and repre­
sents a solution to the problem at hand. A chromosome is a string of (usually) 
binary symbols. Such a population of chromosomes evolves through succes­
sive iterations, called generations. During each generation the chromosomes 
are evaluated, using some measure of fitness (the objective function). In order 
to create a new generation the new chromosomes are formed by either merg­
ing two chromosomes' genetic code from current generation using a crossover 
operator, or by modifying some chromosomes using a mutation operator. 
A new generation is formed by selecting (using the fitness values) some of 
the parents and offspring and, therefore, rejecting the others. Chromosomes 
whose fitness value is greater have higher probability of being selected. After 
several generations the algorithms converge to the best chromosome which, 
hopefully, represents the optimal solution to the problem. The computational 
advantage that is obtained by using a GA is due to the fact that the search is 
oriented by the fitness function. This orientation is not based on the structure 

^ Usually chosen randomly. 
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of the whole chromosome, but just on some parts of it (called building blocks) 
which are highly correlated with high values of the fitness function. It has 
been demonstrated (Holland (1975)) that a GA evaluates, at each iteration, 
a number of building blocks whose order is the cube of the number of indi­
viduals of the population. If we let P{t) and C{t) be parents and offspring in 
current generation t, a genetic algorithm can be described as follows: 

• t = 0; 
• initialize and evaluate P(t); 
• while (not termination condition) do 

- recombine P(t) to yield C{t) and evaluate C(t); 
- select P(t + 1) from F{t) and C(t); 
- t = t + 1; 

• end while 

3 Ant Colony Optimization 

An artificial Ant Colony System (ACS) is an agent-based system which simu­
lates the natural behavior of ants, which develop mechanisms of cooperation 
and learning. ACS was proposed by Dorigo et al. (1991a) as a new heuris­
tic to solve combinatorial optimization problems. This heuristic, called Ant 
Colony Optimization (ACO), has been shown to be both robust and versatile 
in the sense that it can be applied to a wide range of combinatorial optimiza­
tion problems. One of the most important advantages of ACO is that it is 
a population-based heuristic. This allows the system to use a mechanism of 
positive feedback between agents as a search mechanism. ACS makes use of 
artificial ants which are agents characterized by their imitation of the behav­
ior of real ants with some exceptions (see Dorigo et al. (1996)). First they 
have, while searching for the path to follow, probabilistic preference for paths 
with a larger amount of pheromone. Artificial ants also tend to use an in­
direct communication system based on the amount of pheromone deposited 
in each path. The whole ant colony will tend to leave more pheromone on 
shorter paths. Those characteristics, from one side, allow real ants to find the 
shortest path between food and the nest and, on the other side, make artifi­
cial ants particularly useful for finding solutions to the Travelling Salesman 
Problem (TSP), which was the first application for these systems. An ACO 
algorithm can be applied if some conditions are verified^ but one of the most 
problematic is that the solution space must be modeled as a graph. In order 
to give an idea about the behavior of an ACO algorithm we consider, as an 
example, the TSP for which we describe the corresponding ACO algorithm: 

• Put ants on the different nodes of the graphs and initialize pheromone 
trails. 

see Dorigo et al. (1996) for details. 
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• while (not termination condition) 
- Make all ants move from a node to another one. The direction is 

stochastically chosen on the basis of a greedy rule (based on a visibil­
ity parameter r/, which is an inverse measure of the distance) and the 
amount of pheromone (usually called r) left on any possible direction. 

- Update pheromone trails. 
- Keep in memory the shortest path ever found. 

• end while 

4 A Genetic Algori thm for High Level Unordered 
Nominal Predictors 

A Segmentation procedure has to find, for each node, the best split between 
all possible ones. The CART methodology reaches this target by making 
use of a brute-force procedure in which all possible splits from all possible 
variables are generated evaluated. This procedure can lead to computational 
problems, because the number of possible splits that can be generated by a 
nominal unordered predictor grows exponentially with its number of modali­
ties. In order to design a Genetic Algorithm to solve this combinatorial prob­
lem it is necessary to identify: 

• a meaningful representation (coding) for the candidate solutions (possible 
splits) 

• a way to generate the initial population 
• a fitness function to evaluate any candidate solution 
• a set of useful genetic operators that can efficiently recombine and mutate 

the candidate solutions 
• values for the parameters used by the GA (population size, genetic oper­

ators parameters values, selective pressure, etc.) 
• a stopping rule for the algorithm. 

These points have been tackled as follows. For the coding it has been chosen 
the following representation: a solution is coded in a string of bits (chro­
mosome) called X where each bit (gene) is associated to a modality of the 
predictor as follows: 

0 if the i-th modality goes to left 
1 if the i-th modality goes to right 

The choice of the fitness function is straightforward: the split evaluation func­
tion of the segmentation procedure will be used (i.e. the impurity decrease 
proposed by Breiman et al. (1984)). Since the canonical (binary) coding has 
been chosen, it has also been decided to use the corresponding two parents 
single-point crossover and mutation operators. As stopping rule, a maximum 
number of iterations has been chosen on the basis of empirical studies. The 



Evolutionary Algorithms for Classification and Regression Trees 259 

rest of the GA specifications are the classic ones: elitism is used (at each 
iteration the best solution is kept in memory) and the initial population is 
chosen randomly. The algorithm can be summarized as follows: 

• t = 0; 
• Generate initial population P(t) by randomly assigning the bits; 
• Evaluate population P(t) by calculating the impurity reduction; 
• ElitistSol = the best generated solution; 
• while not (max number of iterations) do 

- t = t + 1; 
- Select P(t) from P(t-l) by using the roulette wheel; 
- Do crossover and mutation on P(t); 
- Evaluate population P(t) by calculating the impurity reduction; 
- If (fitness of ElitistSol) > (fitness of best solution in the population) 

then put ElitistSol in the population. 
• end while 
• return to best solution 

The proposed algorithm has been initially applied to many simulated and 
real datasets with a reasonably high number of modalities (i.e. 16) in order 
to extract, by exhaustive enumeration and evaluation of the solutions, the 
globally optimal solution. In all experiments the GA was able to find the 
optimum in a small number of generations (between 10 and 30). When the 
complexity of the problem grows, many iterations seem to be required. The 
GA has been tested also on the adult dataset from the UCI Machine Learning 
website. This dataset has 32561^ units and some nominal unordered predic­
tors with many modalities. In particular the "native-country" predictor has 
42 modalities. The GA has been run to try to find a good split by making 
use of this predictor that R and SPSS, for instance, refused to process. As 
said before, 30 iterations seemed to be not enough because, in many runs of 
the algorithm, the "probably best" solution appeared after iteration 80. 

5 Ant Colony-Based Tree Growing 

The phase of Tree construction, in order to evaluate all possible trees gen-
erable from a given data set, would require an unavailable amount of com­
putation. This is the reason why many Classification and Regression Trees 
algorithms use a local (greedy) search strategy that leads to finding local 
optima. In this section an Ant Colony based tree growing procedure is pro­
posed. In order to attack a problem with ACO the following design task must 
be performed: 

1. Represent the problem in the form of a weighted graph, on which ants 
build solutions. 

Just the training set has been used. 
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2. Define the heuristic reference (r/) for each decision an ant has to take 
while constructing a solution. 

3. Choose a specific AGO algorithm. 
4. Tune the parameters of the AGO algorithm. 

One of the most complex task is probably the first one, in which a way to 
represent the problem in the form of a weighted graph must be found. The 
representation used in this case is based on the following idea: let us imagine 
to have two nominal predictors Pi = {ai ,6i ,ci} and P2 = {a2,^2} having 
two and three modalities, respectively^. In this case the set of all possible 
splits, at root node, is the following: 

Si = [ai] - [bi.ci] 
52 = [ai.bi] - [ci] 
53 = [ai ,ci] - [bi] 

54 = [a2] - [b2] 

Any time a split is chosen it generates two child nodes. For these nodes the 
set of possible splits is, in the worst case^, the same as the parent node 
except the one that was chosen for splitting. This consideration leads to the 
representation shown in Figure 1 in which, for simplicity, only the first two 
levels of the possible trees are considered. The figure also gives an idea of the 
problem complexity when dealing with predictors that generate hundreds or 
even thousands of splits (which is a common case). In this way the space of 
all possible trees is represented by a connected graph where moving from a 
level to another one means splitting a variable. The arcs of this graph have 
the same meaning of the arcs of the TSP graph (transition from a state to 
another one or, better, adding a component to a partial solution), so it is 
correct to deposit pheromone on them. The pheromone trails meaning, in 
this case, would be the desirability to choose the corresponding split from a 
certain node. As for the heuristic information r/, it can be used the impurity 
decrease obtained by adding the corresponding split to the tree. This measure 
has a meaning which is similar, in some way, to the one that visibility has in 
the TSP. An arc is much more desirable as higher the impurity decrease is. 
In order to make analogy with the TSP, the impurity decrease can be seen 
as an inverse measure of the distance between two nodes. Once the graph 
has been constructed, pheromone trails meaning and heuristic function have 
been defined it is possible to attack the problem using an AGO algorithm. 
The proposed algorithm is shown as follows: 

• Put all ants on the root node of all generable (and not fully explorable) 
trees; 

^ Such simple predictors are being considered, just to explain the idea, because of 
the combinatorial explosion of the phenomenon. 

^ When a node is split in two child nodes, it may happen that one or more of the 
modalities of a predictor are not present at all in the corresponding child subset. 
This would make the number of possible splits in the child node to decrease. 
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Fig. 1. The problem graph representation for building a tree 

• f = 0; 
• while (not termination condition) 

- let the f-th ant move from the actual node by stochastically choosing 
the direction (split) on the basis of the Two-stage splitting criterion 
(greedy rule) and on the amount of pheromone found on any possible 
direction. When the ant moves it generates two nodes, so another ant 
is necessary. 

- Repeat recursively the previous step until the ants reach some stop­
ping condition (es. minimum number of units in a node); 

- update Pheromone trail generated by the ants; 
- f = f + l ; 

• end while; 
• Extract the best tree from all the explored solutions; 

The AGO algorithm which has been chosen is the Elitist Ant System (see 
Dorigo et al. (1991b)) and has been tested on simulated datasets. Table 1 
shows the obtained results by applying the algorithm on a generated dataset 
of 500 observations with 11 nominal unordered predictors (with a number of 
modalities that ranges between 2 and 9) and 2 continuous predictors. It can 
be seen that, when the required tree depth increases, the differences between 
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|Tree Depth 
4 
5 
6 
7 
8 

CART 
0.158119 
0.147435 
0.100427 
0.079059 
0.044871 

lAnt Systeml 
0.153846 
0.121794 
0.085477 
0.059829 
0.029911 

Table 1. Global impurity of the Trees extracted by the proposed algorithm 

the global impurity of the tree obtained by the CART greedy heuristic and 
the one obtained by the Ant System tend to increase. 

6 Final Remarks 

In this paper evolutionary algorithms have been presented to solve some of 
the well known combinatorial problems related to Classification and Regres­
sion Trees application. The Genetic Algorithm has also been shown to be 
robust and scalable, mainly because of the fact tha t it is not affected at all 
by the number of modalities of the used predictor. An Ant Colony Optimiza­
tion based algorithm has also been presented to extract bet ter exploratory 
Classification and Regression Trees. Future work will focus on extending the 
AGO algorithm to the case of ternary and multiple segmentation and to the 
pruning phase. An integration with the Genetic Algorithm could also bring 
benefits. 
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Abs t r ac t . One of the main topic in the development of predictive models is the 
identification of variables which are predictors of a given outcome. Automated 
model selection methods, such as backward or forward stepwise regression, are 
classical solutions to this problem, but are generally based on strong assumptions 
about the functional form of the model or the distribution of residuals. In this pa­
per an alternative selection method, based on the technique of Random Forests, is 
proposed in the context of classification, with an application to a real dataset. 

1 Introduction 

In many empirical analyses a crucial problem is the presence in the da ta 
of a set of variables not significatively contributing to explain the analyzed 
phenomenon, but capable to create a random noise which prevents from dis­
tinguishing the main effects and the relevant predictors. In this context proper 
methods are necessary in order to identify variables tha t are predictors of a 
given outcome. Many automatic variable selection techniques have been pro­
posed in the literature, for example the backward or forward stepwise regres­
sion (see Miller (1984) and Hocking (1976)) or the recent stepwise boots t rap 
method of Austin and Tu (2004). These methods are for the most part based 
on assumptions about the functional form of the models or on the distribution 
of residuals. These hypothesis can be dangerously strong in presence of one 
or more of the following situations: (i) a large number of observed variables is 
available, (n) collinearity is present, {in) the da ta generating process is com­
plex, (iv) the sample size is small with reference to all these conditions. Data 
analysis can be basically approached by two points of view: da ta modeling 
and algorithmic modeling (Breiman (2001b)). The former assumes tha t da ta 
are generated by a given stochastic model, while the latter t reats da ta mech­
anism as unknown, a Mack box whose insides are complex and often partly 
unknowable. The aim of the present paper is to propose a variable selection 
method based on the algorithmic approach and to examine its performance 
on a particular dataset . In the mid-1980s two powerful new algorithms for 
fitting da ta were developed: neural nets and decision trees, and were applied 
in a wide range of fields, from physics, to medicine, to economics, even if in 
some applications (see e.g. Ennis et al. (1998)) their performance was poorer 
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than that of simpler models like linear logistic regression. The main short­
comings of these two methods were overfitting and instability, the latter with 
particular reference to decision trees. 

While overfitting has been long discussed and many techniques are avail­
able to overcome the problem (stopping rules, cross-validation, pruning, ...), 
few has been made to handle instability, a problem occurring when there are 
many different models with similar predictive accuracy and a slight pertur­
bation in the data or in the model construction can cause a skip from one 
model to another, close in terms of error, but distant in terms of the meaning 
(Breiman (1996a)). The proposal of Random Forests (Breiman (2001a)), a 
method for classification or regression based on the repeated growing of trees 
through the introduction of a random perturbation, tries to manage these 
situations averaging the outcome of a great number of models fitted to the 
same dataset. As a subproduct of this technique, the identification of vari­
ables which are important in a great number of models provides suggestions in 
terms of variable selection. The proposal of this paper is to use the technique 
of Random Forests (RF) as a tool for variable selection, and a procedure is 
introduced and evaluated on a real dataset. The paper is organized as follows: 
in section 2 the technique of RF is briefiy recalled, confining the attention 
to the case of classification, in section 3 a variable selection method based 
on RF is proposed, the application to a real dataset is reported in section 4, 
conclusive remarks follow in section 5. 

2 Random Forests 

A population is partitioned into two or more groups, according to some qual­
itative feature. It follows that each individual in the population belongs to 
(only) one group. The information about the group is contained in the cate­
gorical variable Y, while relevant further information is collected in a set of 
exogenous variables X, always known, which is assumed to somewhat affect 
Y. Given a random sample S = {(i/i,xi); • • • ;(i/^,x^)}, several statistical 
techniques are available in order to determine an operative rule /i(x) called 
classifier, used to assign to one group an individual of the population, not 
contained in the sample, for which only the exogenous variables x^+i are 
known. A random classifier /i(x, 0) is a classifier whose prediction about y 
depends, besides on the input vector x, on a random vector 0 from a known 
distribution 0. Given a i.i.d. sequence {Ok} = {^i, ^2, • • • , ^/c, • • • } of i"^n-
dom vectors from a known distribution 6>, a Random Forest RF(x, { /̂c}) 
is itself a random classifier, consisting of a sequence of random classifiers 
{/i(x, ^1), /i(x, ^2), • • • 7 h{x, Ok)r ''} each predicting a value for y at input 
X. The RF prediction for y is expressed in terms of probability of Y assum­
ing the value y, Pr{Y = y}. By definition a RF is composed by an infinite 
number of classifiers, but from an operational point of view the term is used 
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to indicate a finite set of classifiers {/i(x, ^ i ) , /i(x, ^2), • • • , /^(x, Ok)}- The k-
set's prediction for y corresponds to the prediction whose frequency exceeds 
a given threshold^. Asymptotic results have been derived in order to know 
the behavior of the set as the number of classifiers increases. Limiting laws 
and statistical features of R F have been developed by Breiman (2001a) and 
a detailed explanation can be found in Sandri and Zuccolotto (2004). The 
theory of R F is quite general and can be applied to several kinds of classifiers 
and randomizations: examples are already present in literature, for instance 
the bagging technique of Breiman (1996b) or the random split selection of Di-
etterich (2000). Moreover other well-known techniques, like boots t rap itself, 
although introduced in different contexts, can be led back to the R F frame­
work. Nevertheless by now the methodology called Random Forests is used 
uniquely with reference to its original formulation, due to Breiman (2001a), 
which uses CART-structured (Classification And Regression Trees, Breiman 
et al. (19984)) classifiers. R F with randomly selected inputs are sequences of 
trees grown by selecting at random at each node a small group of F input 
variables to split on. This procedure is often used in tandem with bagging 
(Breiman (1996b)), tha t is with a random selection of a subsample of the 
original training set at each tree. The trees obtained in this way are a RF , 
tha t is a k-set of random classifiers {/i(x, ^1), /i(x, ̂ 2), • • • , /^(x, Ok)} where 
the vectors Oi denote the randomization injected by the subsample drawing 
and by the selection of the F variables at each node. 

2.1 Variable I m p o r t a n c e M e a s u r e s 

The main drawback of using a set of random classifiers lies in its explanatory 
power: predictions are the outcome of a black box where it is impossible to 
distinguish the contribution of the single predictors. With R F this problem 
is even more crucial, because the method performs very well especially in 
presence of a small number of informative predictors hidden among a great 
number of noise variables. To overcome this weakness the following four mea­
sures of variable importance are available in order to identify the informative 
predictors and exclude the others (Breiman (2002)): 

• M e a s u r e 1: at each tree of the R F all the values of the h-th variable 
are randomly permuted and new classifications are obtained with this 
new dataset , over only those individuals who have not contributed to the 
growing of the tree. At the end a new misclassification error rate Ch is 

1 In the standard case, the /c-set's prediction for y corresponds to the most voted 
prediction, but a generalization is needed, as sometimes real datasets are char­
acterized by extremely unbalanced class frequencies, so that the prediction rule 
of the RF has to be changed to other than majority votes. The optimal cutoff 
value can be determined for example with the usual method based on the joint 
maximization of sensitivity and specificity. 
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then computed and compared with e. The Ml measure for h-th variable 
is given by 

Mlh = max {0; e/̂  — e} . 

• 

• 

• 

Measure 2: for an individual (^,x) the margin function mg{y,x.) is 
defined as a measure of the extent to which the proportion of correct 
classifications exceeds the proportion of the most voted incorrect classi­
fications. If at each tree all the values of the h-th variable are randomly 
permuted, new margins mgh{y, x) can be calculated over only those trees 
which have not been grown with that subject. The M2 measure of im­
portance is given by the average lowering of the margin across all cases: 

M2h = m^x{0; avs[mg{y,x) - m^/,(i/,x)]} . 

Measure 3: in the framework just described for M2, the M3 measure is 
given by the difference between the number of lowered and raised margins: 

M3h = max {0; #[mg{y, x) < mgh{y, x)] - #[mg{y, x) > mgh{y, x)]} . 

Measure 4: at each node z in every tree only a small number of variables 
is randomly chosen to split on, relying on some splitting criterion given 
by a heterogeneity index such as the Gini index or the Shannon entropy. 
Let d(/i, z) be the decrease in the heterogeneity index allowed by variable 
X/i at node z, then X/̂  is used to split at node z if d(/i, z) > d{w^ z) for all 
variables X,^ randomly chosen at node z. The M4 measure is calculated 
as the sum of all decreases in the RF due to /i-th variable, divided by the 
number of trees: 

M4;, = ^ ^ [ d ( / i , z ) / ( / i , z ) ] 
z 

where /(/i, z) is the indicator function that is equal to 1 if /i-th variable 
is used to split at node z and 0 otherwise. 

3 Variable Selection Using Random Forests 

In this paper the possible use of RF as a method for variable selection is 
emphasized, relying on the above mentioned four importance measures. A 
selection procedure can be defined, observing that the exogenous variables de­
scribed by the four measures can be considered as points in a four-dimensional 
space, with the following steps: (1) calculate a four-dimensional centroid with 
coordinates given by an average (or a median) of the four measures; (2) cal­
culate the distance of each point-variable from the centroid and arrange the 
calculated distances in non-increasing order; (3) select the variable whose dis­
tance from the centroid exceeds a given threshold, for example the average 
distance. This simple method is often quite effective, because the noise vari­
ables represented in the four-dimensional space tend to cluster together in 
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a unique group and the predictors appear like outliers. A refinement of this 
proposal, which provides a useful graphical representation, can be proposed 
observing that the four measures are often correlated and this allows a dimen­
sional reduction of the space where the variables are defined. With a simple 
Principal Component Analysis (PCA) the first two factors can be selected 
and a scatterplot of the variables can be represented in the two-dimensional 
factorial space, where the cluster of noise variables and the "outliers" can 
be recognized. The above described procedure based on the calculation of 
the distances from an average centroid can be applied also in this context 
and helps deciding which points have to be effectively considered outliers^. 
Simulation studies show that these methods very favorably compare with 
a forward stepwise logistic regression, even when the real data generating 
mechanism is a logistic one. Their major advantage lies in a sensibly smaller 
number of wrongly identified predictors. The main problem of these methods 
consists in the definition of the threshold between predictive and not predic­
tive variables. To help deciding if this threshold exists and where it could 
be placed, a useful graphical representation could be a sort of scree-plot of 
the distances from the centroid, where the actual existence of two groups of 
variables, and the positioning of the threshold between them, can be easily 
recognized. 

4 Case Study 

A prospective study was conducted from January 1995 to December 1998 
by the First Department of General Surgery (Ospedale Maggiore di Borgo 
Trento, Verona, Italy) in patients affected by acute peptic ulcer who under­
went endoscopic examination and were treated with a particular injection 
therapy. The aims of the study were to identify risk factors for recurrence of 
hemorrhage, as early prediction and treatment of rebleeding would improve 
the overall outcome of the therapy. The dataset consists of 499 cases, observed 
according to 32 exogenous variables related to patient history (gender, age, 
bleeding at home or during hospitalization, previous peptic ulcer disease, pre­
vious gastrointestinal hemorrhage, intake of nonsteoridal anti-infiammatory 
drugs, intake of anticoagulant drugs, associated diseases, recent - within 30 
days - or past - more than 30 days - surgical operations), to the magni­
tude of bleeding (symptoms: haematemesis, coffee-ground vomit, melena, 
anemia; systolic blood pressure, heart rate, hypovolemic shock, hematocrit 

^ In this case the distance function can take into consideration the importance 
of the two factors and a weight can be introduced given, for example, by the 
fraction of total variance accounted for by each factor or by the correspondent 
eigenvalue. Actually this procedure could be redundant, as the space rotation 
implied by the PCA, already involves a overdispersion of points along the more 
informative dimensions. 
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and hemoglobin level, units of blood transfused), to endoscopic state (num­
ber, size, location of peptic ulcers, Forrest classification, presence of gastritis 
or duodenitis). The values of all the variables are classified into categories 
according to medical suggestions. We think tha t the use of the raw da ta 
could allow a more detailed analysis. The results were presented in a paper 
(Guglielmi et al. (2002)) where a logistic regression with variables selected 
relying both on statistical evidences and on medical experience was able to 
provide a (in-sample) 24% misclassification error with sensitivity and speci­
ficity equal to 76%^. In this paper two logistic regressions are fitted to the 
same data, with variables selected respectively by a AIC stepwise procedure^ 
(Model A) and by our RF-based method (Model B). 

The AIC stepwise variable selection method identifies nine relevant pre­
dictors^, while using the R F procedure, eight predictors are selected^. In both 
cases the resulting predictors has been judged reasonable on the basis of med­
ical experience. In the left part of Figure 1 the scree plot of variable distances 
from the centroid are represented for three approaches (the basic method in 
the four-dimensional space, the refinement based on the PCA of the four 
measures with Euclidean distance or weighted Euclidean distance), while the 
right part of Figure 1 shows the two-dimensional scatterplot of the variables 
in the first two principal components space, with a virtual line separating the 
outlier variables selected as predictors. 

In order to evaluate the performance of the two models, a cross-validation 
study has been carried out with validation sets of size 125 (25% of the sample) 
and r = 1000 repeated da ta splittings. The estimated probabilities of the 
two models are used to classify a patient being or not at risk of rebleeding, 
according to a cutoff point determined by minimizing the absolute difference 
between sensitivity and specificity in each validation set. Results are reported 
in Table 4, where also the corresponding in-sample statistics are shown. 

The two models exhibit a substantially equal goodness-of-fit and also have 
a high agreement rate (in the in-sample analysis 91.58% of the individuals is 
classified in the same class by the two models). However it has to be noticed 
tha t Model B, built with the R F variable selection, has a reduced number of 

The predictors included in the model were: associated diseases/liver cirrho­
sis ( l i vc i r ) , recent surgical operations (recsurg), systolic blood pressure 
(sbp), symptoms/haematemesis (hematem), ulcer size (size), ulcer location 
( locat ion(2)) , Forrest class (Forrest) . 
Coherently with our previous simulative studies, a forward selection is used. 
Anyway, the backward option was experimented: it leads to a less parsimonious 
model with substantially the same predictive performance. 
Forrest class, systolic blood pressure, ulcer size, recent surgical operations, ulcer 
location, units of blood transfused (uobt), age (age), symptoms/haematemesis, 
intake of anticoagulant drugs (anticoag). 
Systolic blood pressure, Forrest class, hypovolemic shock (shock), recent surgical 
operations, age, ulcer size, symptoms/haematemesis and-or melena (symptoms), 
ulcer location. 
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Fig. 1. Left: Scree plots of variable distances from centroid (thresholds: average 
distances); Right: Scatterplot of the variables in the first two principal components 
space. 

Model A 
Model B 

25th percentile 
Median 

75th percentile 

25th percentile 
Median 

75th percentile 

Misclassification error Cohen k Sensitivity Specificity Cutoff 
Model A / M o d e l B - In-sample analysis 

23.05% 0.3482 77.03% 76.94% 
22.65% 0.3556 77.03% 77.41% 

0.1783 
0.1642 

Model A - Out-of-sample analysis 
21.60% 0.2224 55.55% 73.15% 
24.00% 0.2751 63.63% 76.19% 
26.40% 0.3320 70.65% 79.25% 

0.1629 
0.1742 
0.1841 

Model B - Out-of-sample analysis 
22.40% 0.2138 55.55% 71.96% 
24.80% 0.2686 63.63% 75.23% 
27.20% 0.3196 72.22% 78.57% 

0.1558 
0.1658 
0.1771 

Table 1. Misclassification error, Cohen /c, sensitivity, specificity, cutoff value of the 
two logistic models (In- and out-of-sample analyses) 

predictors, coherently with the simulation results assessing a good capability 
of the method in the false variables selection rate. 

5 Concluding Remarks 

In this paper a variable selection method based on Breiman's Random Forests 
is proposed and applied to a real dataset of patients affected by acute pep­
tic ulcers, in order to identify risk factors for recurrence of hemorrhage. The 
main advantage of selecting relevant variables through an algorithmic model­
ing technique is the independence from any assumptions on the relationships 
among variables and on the distribution of errors. After having selected the 
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predictors, a model could be developed with some given hypothesis, and this 
outlines Random Forests as a technique for preliminary analysis and vari­
able selection and not only for classification or regression, which are its main 
purposes. The results on real da ta confirm what expected on the basis of sim­
ulation studies: the RF-based variable selection identifies a smaller number of 
relevant predictors and allows the construction of a more parsimonious model 
but with predictive performance similar to the logistic model selected by the 
AIC stepwise procedure. Further research is currently exploring the advan­
tages deriving from the combination of measures coming from model-based 
prediction methods and algorithmic modeling techniques. Moreover simula­
tion studies have highlighted the presence of a bias effect in a commonly used 
algorithmic variable importance measure. An adjustment strategy is under 
development (Sandri and Zuccolotto (2006)). 
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Abs t r ac t . Tree-based procedures have been recently considered as non parametric 
tools for missing data imputation when dealing with large data structures and no 
probability assumption. A previous work used an incremental algorithm based on 
cross-validated decision trees and a lexicographic ordering of the single data to be 
imputed. This paper considers an ensemble method where tree-based model is used 
as learner. Furthermore, the incremental imputation concerns missing data of each 
variable at turn. As a result, the proposed method allows more accurate imputa­
tions through a more efficient algorithm. A simulation case study shows the overall 
good performance of the proposed method against some competitors. A MatLab 
implementation enriches Tree Harvest Software for non-standard classification and 
regression trees. 

1 Introduction 

In the framework of missing da ta imputation, it is worthwhile to distinguish 
between missing da ta completely at random and missing da ta at random. 
More precisely, when we say tha t da ta are missing completely at random 
(MCAR) we mean tha t the probability an observation is missing is unrelated 
to the value of the variable or to the value of any other variables. Instead, 
da ta can be considered as missing at random (MAR) if the da ta meet the 
requirement tha t missingness does not depend on the value of the variable 
after controlling for another variable. Last condition requires a model-based 
imputat ion for tha t the missing value can be understood as the sum of the 
model function and the error term. Classical approaches are linear regres­
sion (Little, 1992), logistic regression (Vach, 1994), generalized linear models 
(Ibrahim et al., 1999), whereas more recent approaches are nonparametric 
regression (Chu and Cheng, 1995) and tree-based models (Siciliano and Con-
versano, 2002). 

Parametr ic and semi-parametric approaches can be unsatisfactory for 
nonlinear da ta yielding to biased estimates if model misspecification occurs. 
As an alternative, tree-based models do not require the specification of a 
model structure, deal with numerical and categorical inputs, consider condi­
tional interactions among variables so tha t they can be used to derive simple 
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imputation rules. Automatic tree-based procedures have been already con­
sidered for data validation (Petrakos et al., 2004) as well as for data impu­
tation (Siciliano and Conversano, 2002). In this paper, we provide a general 
tree-based methodology for missing data imputation as well as specific al­
gorithms to obtain the final estimates. The proposed algorithms have been 
implemented in the software Tree Harvest (TH) (Aria and Siciliano, 2004, 
Siciliano et al., 2004) characterized by an integrated graphical user interface 
for exploring data and results interactively. Special issue of TH is to provide 
nonstandard methods suited for analyzing specific structures of data (i.e., 
multi-responses, multi-block predictors, missing data, etc.). 

2 Key Concepts 

Previous work (Siciliano and Conversano, 2002) shows that Incremental Non 
Parametric Imputation (INPI) using trees is preferred to a single tree-based 
model imputation. Main idea of INPI is to rearrange columns and rows of the 
data matrix according to a lexicographic ordering of the data (with respect 
to both rows and columns), that matches the order by value, corresponding 
to the number of missing data occurring in each record. Any missing input is 
handled using the tree-based model fitted to the current data which is itera-
tively updated by the imputed data. The imputation is incremental because, 
as it goes on, more and more information is added to the data matrix. As a 
result, cross-validated trees are used to impute data and the algorithm per­
forms an incremental imputation of each single data at time. 
The above-mentioned approach is revised in this paper by considering two 
new concepts: first, the use of ensemble methods (in place of cross-validation) 
should provide more robust estimates; second, the incremental imputation of 
each variable at time (instead of each single data at time) allows for a more 
efficient algorithm, thus reducing the computational cost of the overall pro­
cedure. 

3 The Methodology 

For a n X /c data matrix Y we define a lexicographic ordering of the variables 
as the /c-dimensional vector I = [l{i)^ • • •, ^(j), • • •, l^k)] such that /Q) points 
the column of the variable that is at the j - th position in the increasing order 
of all variables in terms of the number of missing values. It is assumed that at 
least the first ordered variable presents no missing values. Main issue of the 
incremental approach is that following the positions defined by I each column 
presenting missing values at turn plays the role of dependent variable to be 
imputed by the complete set of variables with no missing values and once 
that this variable is imputed it concurs to form the complete set of predic­
tors used for the subsequent imputation. For the imputation algorithm we 
can consider cross-validated trees providing an Incremental Non Parametric 
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Imputation of variable (INPIyar) rather than of single data {INPI). Alter­
natively, we can consider an imputation algorithm by an ensemble of trees, 
using stump (i.e., a tree with only one split) for imputation of a qualitative 
variable and fast trees (Mola and Siciliano, 1997) for the other cases. Ensem­
ble methods such as Boosting (i.e., an ensemble method to define an accurate 
learner) (Freund and Schapire, 1997) and Bagging (Breiman, 1996) allows to 
define a robust imputation procedure. Whereas bagging is convenient when 
the learner is unstable in terms of accuracy variation, boosting is convenient 
when the learner has an high bias (Freund and Schapire, 1997). Since the 
Stump can be noveled as an accurate but biased learner (Hastie et al., 2002), 
boosting has been preferred to bagging in the proposed algorithm when the 
imputation procedure use stump as weak learner. The proposed Boosted In­
cremental Non Parametric Imputation is named BIN PI when trees are used 
and BINPIstump when stump is considered. 

4 The Algorithm 

Figure (1) describes an example of the main steps of the basic imputation 
algorithm. It is worth noting that numbers associated to the columns cor­
respond to the values of the lexicographic order vector L Main steps of the 
algorithm can be outlined as follows. Let Y d, N x K matrix bearing missing 
data where yk is the /c—th variable of Y. 

0. Set r = 1. 
1. Find yjj^J as the variable (the column) with the smallest number of missing 

data, where k* : ^misk* < miskj for /c = 1,2, ...,K and ^misk > 0; 
2. Sort columns such that the first p variables are complete and the p + 1-th 

(r) 

3. Sort rows such that the first / rows are complete and the remaining N — I 
are missing in the p -\- 1-th column; 

4. Use Stump or classical tree as weak learner for v-fold AdaBoost iterations 
(r) 

to impute the N — I missing data in variable y^J on the basis of the 
learning sample C'^'^'' = {i/̂ Y*' ̂ ^ = (^ni, • • •, Xnp) } for n = 1 , . . . , L 

5. Set r = r + 1. Go to step 1 until all missing data are imputed. 

5 Simulation Study 

The proposed algorithms, namely Boosted Incremental Non Parametric Im­
putation using either trees {BINPI) or stump {BINPIstump), have been 
evaluated with respect to standard methods such as Unconditional Mean 
Imputation {UMI) and Parametric Imputation {PI). A further compari­
son takes account of Incremental Non Parametric Imputation of single data 
{INPI) as well as of single variable {INPIyar)- A simulation study has been 
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Fig. 1. Boosted Incremental Non Parametric Imputation Algorithm 

designed. The basic assumption is tha t missing da ta are generated according 
to a missing at random schema so tha t a dependence relationship structure 
among variables is defined. The simulation setting consists of varying both 
the number of missing values in the uncompleted variables and the type of 
relationships between the uncompleted variables and the complete ones. In 
each setting, covariates are uniformly distributed in [0,10] and values are 
missing with conditional probability: 

^ =[1 + exp(ce + /3)] . 

We distinguish the case of missing values generation in nominal covariates 
(i.e., nominal response case) from the case of missing values generation in 
numerical covariates (i.e., numerical missing case). 

5.1 B i n a r y M i s s i n g Case 

In each simulation setting, we consider two different cases, linear as well as 
non-linear relationships. We generated five da ta structures for the nominal 
response case. The variables under imputat ion are simulated according to 
the binomial distribution. In the simulation i , simulation 2 and simulation 
3 the parameters characterizing the distribution of the missing values are 
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expressed as a linear combination of some of the covariates. 

Simulation 1: 

Yi - Bin (n, 2+0-35(x,+x.)^| ̂  ^ ^ _ | i ^ ^^^ [_3 ^ Q.S (Xi + X2)]}"' ; 

Y2 - 5 m (n, 4+o.35(x.-X3)^, m2 = {1 + exp [-3 + 0.5 (X2 - X3)]}" ' . 

Simulation 2 (to simulation 1 the following variable is added up): 

Ys ~ Bin (n, S I M S I M ^ ) j ^ ^ ^ ^ | i ^ ^^^ [.3 ^ 0 5 (j^^ ^ X 4 ) ] } - \ 

Simulation 3 (with respect to simulation 1 the second variable is replaced by): 

Y2 - Bin (n , 5+o.35(X2-X3)\ ^ ^ 3 = | i + ^^^ [_3 + Q.S (X3 + X 4 ) ] } " ' . 

In the simulation 4 and simulation 5 the parameters characterizing the dis­
tribution of the missing values depend on some covariates in a non linear way. 

Simulation 4: 

Yi - Bin (n, |sin (0.3Xi + 0.9X2)!) 
mi = {1 + exp [1.5 + 0.5 (Xi + X2)]}"^ 
Y2 - Bin (n, |sin (O.9X2 + 0.3X3)!) 

m2 = {1 + exp [1.5 + 5 (O.3X2 + 0.9X3)]}"\ 

Simulation 5 (To simulation 4 the following variable is added up): 

Y^ - Bin (n, !sin (O.5X3 + O.5X4)!) 
m3 = {1 + exp [1.5 + 0.5 (O.5X3 + 0.5X4)]}"\ 

Performance of BIN PI is compared with IN PI as well as with the trivial 
approach UMI. Figure (2) shows the results of the five simulations concern­
ing the case of missing data presented in dummy variables. Each simula­
tion was performed with two goals: estimating the expected value parameter 
of each binomial distribution (to be compared with the true value) as well 
as calculating the number of uncorrect imputations in each variables. It is 
worth noting that an estimation of the probability of success near to the true 
value does not imply necessarily a correct imputation. The empirical evidence 
demonstrates the overall good performance of BIN PI over IN PI in terms 
of accuracy. This can be justified with two properties of BIN PI: first, by 
definition a larger sample is used to build up the classifier; second, a more 
accurate learner is considered. Finally, BIN PI provides a variable imputa­
tion (instead of a single data imputation) yielding to a computationally more 
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efficient procedure tha t can be recommended in the analysis of large da ta 
sets such as in statistical offices surveys. 
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Fig. 2. Main results of simulations: binary missing case 

5.2 N u m e r i c a l M i s s i n g Case 

We generated two differents da ta structures for the numerical response 
case. The variables under imputat ion are obtained according to the normal 
distribution. Simulation 1 presented missing values in two variables, whereas 
in simulation 2 missing da ta occur in three covariates. 

Simulation 6: 

Yir^N (Xi - X | , exp (0.3X1 + 0.1X2)) 

m i = {1 + exp [-1 + 0.5 (Xi + X 2 ) ] } " \ 

Y2^N (X3 - X | , exp ( - 1 + 0.5 (O.3X3 + O.IX4))) 

m2 = {1 + exp [-1 + 0.5 (X3 + X^)]}'^. 

Simulation 7 (to simulation 6 the following variable is added up): 

Fa - iV (X5 - X | , exp ( - 1 + 0.5 (O.2X5 + O.lXg))) 

m3 = {1 + exp [-1 + 0.5 (X5 + X 6 ) ] } " \ 
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Figure (3) shows that BINPI algorithm works better than BINPIgtump 
and INPIyar- Stump, even if it performs better than UMI and PI, is not 
suitable for numerical case. Use of boosting improve imputation performance. 

Sim 6 

True 
UMI 
PI 

INPI var 
BINPI 

BINPI Stump 

1-4 
-28.5621 
-37,3740 
-241569 
-30,6277 
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-28.6836 
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Sim 7 
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29,3984 

Fig. 3. Main results of simulations: numerical missing values 

6 Concluding Remarks 

Incremental Non Parametric Imputation provides a more accurate imputation 
compared to other standard methods. Main results of the simulation study 
can be outlined as follows: 

Imputation of a variable at turn is preferred to the imputation of a single 
data at turn {INPIyar is preferred to INPI); 
Boosting algorithm allows for a more accurate imputation {BINPI is 
preferred to INPI and INPIyar); 
Stump is ideal for a two-class problem in terms of computation efficiency 
{BINPIstump is preferred to BINPI for missing data in two-class vari­
ables); 
Fast tree is preferred to Stump for imputation of numerical missing values 
in terms of accuracy {BINPI is preferred to BINPIstump for missing 
data in numerical variables). 
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Abs t r ac t . Collaborative Filtering (CF), the most commonly-used technique for 
recommender systems, does not make use of object attributes. Several hybrid rec-
ommender systems have been proposed, that aim at improving the recommendation 
quality by incorporating attributes in a CF model. 

In this paper, we conduct an empirical study of the sensitivity of attributes for 
several existing hybrid techniques using a movie dataset with an augmented movie 
attribute set. In addition, we propose two attribute selection measures to select 
informative attributes for attribute-aware CF filtering algorithms. 

1 Introduction 

For recommender systems, nearest-neighbor methods, called CF (Goldberg 
et al. (1992)), is the prevalent method in practice. On the other hand, meth­
ods tha t regard only at t r ibutes and disregard the rating information of other 
users, are commonly called the Content-Based Filtering (CBF). They have 
shown to perform very poorly. Yet, a t t r ibutes usually contain valuable infor­
mation tha t could improve the performance of recommender systems; hence 
it makes it desirable to include a t t r ibute information in CF models - so called 
hybrid collaborative/content-based filtering methods. 

Although there are several hybrid methods tha t consider a t t r ibute infor­
mation in CF for predicting ratings — how much a given user will like a 
particular item; to our best knowledge there is no prior approach for pre­
dicting items — which N items a user will be interested in. Please note tha t 
predicting good items, i.e. items tha t have been rated with 4 or 5 on a scale 
from 1 to 5, by its nature is a rat ing prediction problem (on a more coarse 
scale bad /good) . 

In addition, the behavior of hybrid algorithms is to be investigated as the 
number of informative at t r ibutes increases. Thus, quantitative measures for 
a t t r ibute selection are needed to eliminate irrelevant ones. 

In this paper, we will make the following contributions: (i) propose two 
methods for a t t r ibute selection and (ii) evaluate the impact of at t r ibutes on 
existing hybrid algorithms tha t predict items and CF methods tha t do not 
consider at t r ibutes. 
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2 Related Work 

Before we discuss the related works, we introduce notations being used in 
this paper. Let 

• ^ be a set of users, 
• / be a set of items, 
• B he di set of (binary) item attributes, 
• Di^b ̂  {0^ 1} specify whether item i e I has attribute b e B, 
• Ou,i G {Oj 1} specify whether item i e I occurred with user u e U 

There are many proposals on how to integrate attributes in collaborative 
filtering for ratings. They can be roughly categorized into four groups: 
(i) Methods that add a pseudo-item î  for each item attribute b e B that for 
each user u e U gets a pseudo-rating 

Ru,z, := /({(^, Ru,z) e 11 Ou,^ = 1 and A,6 = 1}) 

where / is some function on the user's ratings of items having attribute 
b. Ziegler et al. (2004) presented a more complex function that considers a 
taxonomic relation between original items. 
(ii) Methods that add a pseudo-user u^ (often called agent) for each item 
attribute b e B with a pseudo-rating for each item i e I 

e.g.. Good et al. (1999). These methods perform standard user- or item-based 
CF on top of the rating matrix enriched by pseudo-items or -users. 
(iii)a) Methods that combine linearly the predictions of a pure CBF model 
and a pure CF model (Claypool et al. (1999), Pazzani (1999), Good et al. 
(1999), Li and Kim (2003)) 

^combined _ ^ ^ c b f ^ (^ _ ^ ) ^ c f 

where the weight coefficient A G [0,1] is learned either by regression, simple 
iterative update schemes or grid search. Some other existing methods also 
use a user-specific A. 
b) Apply the nearest neighbor models to both models and combining the 
attribute-depended with the rating-depended similarity and use CF with the 
combined similarity (Delgado et al. (1998)). 
(iv) Methods that apply a CBF and a CF model sequentially, i.e. predict 
ratings by means of CBF and then re-estimate them from the completed 
rating matrix by means of CF (Melville et al. (2002)). 

There are also further proposals on how to integrate attributes when the 
problem is viewed as a classification problem (Basilico and Hofmann (2004), 
Basu et al. (1998)). As we lose the simplicity of CF, we do not consider those 
more complex methods here. 
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Many methods appear to mix simple ideas with more complex components 
as clustering, rule-based learners etc., often without investigating whether 
the additional effort pays off in the quality at the end. Therefore, we have 
selected three basic methods that try to keep the simplicity of CF, but still 
should improve prediction results: a sequential CBF-CF method (iv), a linear-
combination CBF-CF method (iii a) and a combination of similarities meth­
ods (iii b). The first approach is an adapted form of Content-Boosted CF by 
Melville et al. (2002) which was originally designed for predicting the ratings. 
The last two methods achieve the best results on our reference data set. 

3 Common and Hybrid Attribute-Aware CF Methods 

3.1 Common CF Methods 

In user-based CF (Sarwar et al. (2000)), recommendations are generated by 
considering solely the ratings of users on items, by computing the pairwise 
similarities between users, e.g., by means of vector similarity 

ratings/ \ \^u,.i ^v,./ 

™ '("'^)^=||i?„,.|b||i?„,.|b 

where u^v e U are two users and Ru,. and R^^, the vectors of their ratings. 
For each user, the k most-similar users are selected (neighborhood - Nu) 
and for predicting items for a target user ix, items are ranked by decreasing 
frequency of occurrence in the ratings of his/her neighbors 

„cf,^ _,,._\{veNiu)\0,,i = l}\ 
p'\Ou,i = 1) := 

\Nu\ 

A dualistic form of user-based CF is item-based CF (Deshpande and 
Karypis (2004)), where similarities are computed between each pair of items 

ratings/- ^\ \-^.,i^-^.j) 
isim^^^^^g^(i,j) := 

\ T?f II W T?f II 

In content-based filtering, a naive Bayesian classifier is trained for the 
binary target variable Ou,. depending on the binary predictors Î .̂ 5 for all 
beB: 

p^^O,, . = 1 I A,6, beB):= P{Ou,.) • n P(D,^, I Ou,.) (1) 
beB 

3.2 Hybrid Attribute-aware CF Methods 

The three existing hybrid methods in Tso and Schmidt-Thieme (2005) incor-
perate attributes into user-based and item-based CF. 
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Sequential CBF and CF is the adapted version of an existing hybrid ap­
proach, Content-Boosted CF, originahy proposed by Melvihe et al. (2002) 
for predicting ratings. This method has been conformed to the predicting 
items problem here. It first uses CBF to predict ratings for unrated items 
and then filters out ratings with lower scores (i.e. keeping ratings above 4 on 
a 5-point scale) and applies CF to recommend topN items. 

Joint Weighting of CF and CBF, first applies CBF on attribute-dependent 
data to infer the fondness of users for attributes. In parallel, user-based CF 
is used to predict topN items with ratings-dependent data. Both predictions 
are joint by computing their geometric mean. This mean combination is then 
used for performing the prediction: 

P{0u^^ = 1) :=p'''{Ou,^ = l)^•p'\Ou,^ = l)''^ w i t h A G [0 ,1] . (2) 

Attribute-Aw are Item-Based CF extends item-based CF (Deshpande and 
Karypis (2004)). It exploits the content/attribute information by comput­
ing the similarities between items using attributes thereupon combining it 
with the similarities between items using ratings-dependent data. 

.g.^attributes(.^^.) . _ {D^,..DJ^,) 

,,A,.||2||i^,,.||2 

isim^ "̂̂ ^^^^^ := (1 - A) isim^̂ ^̂ ĝ̂  +A isim *̂*̂ ^̂ *̂̂ ^ with A G [0,1] 

The last two methods use A as weighting factor to vary the significance 
of CF or CBF. 

3.3 Attribute selection 

To our best knowledge, no similar analysis has been documented in literature 
affiliated with the sensitivity of attributes in RSs. As the number of attributes 
increases, quantitative measure for attribute selection are needed to filter 
the irrelevant ones. Thus, we define two quantitative measures (i) the total 
number of attribute occurrences (attribute frequency) and (ii) the x^ measure 
between item occurrences and attributes. The attribute frequency is simply 
the total number of occurrences of each item having a particular attribute. 
The more frequent an attribute is, the better it is judged. 

This approach appears to be simple and clearly favors ubiquitous but 
attributes could eventually became non-informative. Thus, we also consider 
the x^ measure between item occurrences and attributes. It bases on the 2 x 2 
table of all possible ratings U x I according to actual occurrence in the data 
{Ou,i) and having the attribute in question (I^ ,̂6) 
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where 

• '^1,1 

• '^1,2 

• '^2,1 

• '^2,2 

o 
o.,. 

= 1 
= 0 

A,6 = 1 
'^1,1 

'^2,1 

A,6 = 0 
'^1,2 

'^2,2 

\{{u,i)eUxI\Ou,i = l and A,6 = l } | , 
\{{u,i) e C / x / | 0 „ , = 1 and Afc = 0}|, 
| f / | - | { i G / | A , 6 = l } | - t ; i , i , 
| f / | - | { i G / | A , 6 = 0 } | - f i , 2 

computed by 

E 
=0,l,j=0,l 

{Vi,: •Vi, 1? 
^^,J 

(3) 

j/v,^, represents the expected frequencies. where Vi^j := Vi^, 
The stronger the dependency between item occurrence and an attribute, 

i.e. the higher the x^ value is, the better the attribute is judged. 

4 Evaluation and Experimental Results 

We have evaluated the three attribute-aware CF algorithms and have com­
pared their performances with their corresponding non-hybrid base models, 
which do not integrate attributes. 

Data set We evaluated the algorithms with the MovieLens datasets {ml; 
MovieLens (2003)), which contains approximately 1 million movie ratings 
of 6,040 users on 3,592 movies. The ratings are expressed on a 5-point rat­
ing scale. We looked at two different sets of movie attributes: (i) 18 genres 
that comes with the data set and (ii) Amazon taxonomy of 1074 different 
genres/classes provided by Ziegler et al. (2004). We will reference these two 
attributes sets as "18 genres" and "Amazon genres", respectively. 

We took ten random subsets of the ml dataset with 1000 users and 1500 
items each. Each dataset is split into 80% training set and 20% test set at 
random. The quality of the models are measured by comparing their top 10 
recommendations computed from the training data against the actual items 
in the test set. We report the averages and standard deviations of the F l 
values of the ten trials. 

Metrics Our paper focuses on the item prediction problem, which is to pre­
dict a fixed number of top recommendations and not the ratings. Suitable 
evaluation metrics for item prediction problem are Precision, Recall and Fl . 
Similar to Sarwar et al. (2000), our evaluations consider any item in the 
recommendation set that matches any item in the test set as a "hit". 
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Parameters We select optimal neighborhood sizes, by means of a grid search. 
Neighborhood size for user-based and joint weighting CF-CBF is 90, and 100 
for item-based CF and attribute-aware item-based CF. Furthermore, A pa­
rameters are set to 0.15 and 0.05 for joint weighting CF-CBF and attribute-
aware item-based CF respectively. They are chosen from previous experi­
ments (Tso and Schmidt-Thieme (2005)), which found to give reasonable 
results for the augmented attributes as well. 

Experimental Results The results of our previous experiments (Tso and Schmidt-
Thieme (2005)) on the 18 genres attribute set is summarized in Fig. 1. The 
attribute-aware methods enhance their respective base-models significantly, 
especially the joint weighting CF-CBF. Although Melville et al. (2002) re­
ported that CBCF performed better than user-Based and CBF for ratings, it 
fails to provide quality topN recommendations for items in our experiments. 

Usiny only 1S attributes (10 Trails) 

Fig. 1. Fl with 18 attributes 

Using all attributes of Taxonomy (10 Trails) 

0,07 n 

0,06-

0,05 

0,04 

0,03 

0,02 

0,01 • 

T 

~ -
-+1 

1-

-

Attributes^ Item-Based Joint Pure User- Content-
Aware Item- Weighting CF- Based Based 

Based CBF 

-
H 
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Fig. 2. Fl with all taxo attributes 

We anticipate that the prediction quality could be improved by including 
more attributes, i.e. using the Amazon attribute set instead of the 18 genres. 
The results of the average of ten random trials using all attributes from the 
Amazon taxonomy are presented in Fig. 2. 

Although attribute-aware item-based CF using all Amazon attributes still 
achieves the highest F l value, the difference w.r.t. its base method is insignif­
icant. It also can be observed that all attribute-aware methods perform worse 
for the 1074 Amazon attributes than for just the 18 genres. This indicates 
that the quality of attributes plays an important role in hybrid methods and 
that attribute selection should be performed. Since the results of Sequen­
tial CBF-CF scores way below the classical models, we therefore focus our 
discussion on the other two algorithms from now on. 

Sensitivity of Attributes To analyze the impact of attributes on attribute-
aware CF algorithms, we further partition the ten trials into subsets by vary­
ing the number of useful attributes by attribute frequency and x^ foi" ^^ch 
trial. The average sensitivity of attributes from the taxonomy of ten trials 
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Fig. 3. Vary # of Most Freq. attributes Fig. 4. Vary # of best x^ attributes 

for each subset are presented in Fig. 3 and Fig. 4. 

As shown in both figures, the selection of attributes does affect the quahty 
of topN recommendation. In joint weighting CF-CBF, the quahty increases 
graduahy, reaches its peak and decreases dramaticahy as more irrelevant 
attributes are appended. In the case of attribute frequency measure, the al­
gorithm reaches its peak at around 40 attributes, whereas in x^, the peak is 
reached in the range of 70-100 attributes. Taking the peaks of both attribute 
frequency and x^ measures, there is an increase of 10.4% and 6.7% respec­
tively compared to its base models. On the other hand, in attribute-aware 
item-based CF, the quality of attributes has almost no effect on the qual­
ity of the recommendations. For attribute frequency, the F l value quickly 
meets its peak and maintains rather constant as more irrelevant attributes 
are added to the algorithms, whereas for the x^ measure, the quality reaches 
the peak when most noise is presented. One of the reasons for these strange 
results could be due to the value of lambda being set too low as it controls 
the contribution of attributes to those algorithms. 

5 Conclusions and Future Works 

Our empirical analysis on state-of-the-art hybrid algorithms shows that the 
effectiveness of these methods depends on the selection of useful attributes. 
We have proposed two measures: attribute frequency and chi square. Joint 
weighting CF-CBF proves to be more effective and provides up to 10.4% gain 
in F l than pure CF for movie taxonomy datasets. 

As the quality of recommendations varies with the informativeness of the 
attributes, further studies on other attribute selection measures such as the 
information gain or the combination of various measures could be the future 
works. 
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Abs t r ac t . Several methods have been proposed in literature for the service quality 
evaluation. These models measure the gap between customer's expectations for 
excellence and their perceptions of actual service offered. In this paper we propose 
an extension of a techniques which allows to analyze jointly the expectations and 
perceptions data. 

1 Introduction 

In li terature there is a wide convergence on the evaluation models of the 
service performances regarding the typology of indicators which can be con­
structed with the aim to estimate the components in which the service is 
developed. Such classification previews three classes of indicators: structure, 
result and process. The Customer Satisfaction is a result indicator and its 
a t ta inment is of great interest for the management. 

In li terature several methods have been proposed for the service qual­
ity evaluation. A lot of these models (Servqual, Servperf, Normed Quality, 
Qualitometro etc.) are based on the Gap Theory of Service Quality. These 
models measure the gap between customer's expectations for excellence and 
their perceptions of actual service offered, so service providers can under­
stand both customer expectations and their perceptions of specific services. 
Several techniques have been proposed in li terature for the description and 
the exploratory study of these data . Aims of these proposals are to estimate 
the multidimensional aspects of the investigated system and the introduction 
of criteria of judgment (Hogan et al. (1984), Cronin and Taylor (1992), Lauro 
et al. (1997), Vedaldi (1997), D 'Ambra et al. (1999), D 'Ambra and Amenta 
(2000), Amenta and Sarnacchiaro (2004)). 

In this paper, start ing from the statistical methods used to analyze da ta 
coming from evaluation service survey, we propose an approach based on the 
simultaneous diagonalization which allow to analyze jointly the da ta of ex-
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pectations and perceptions of the customers respect to the quahty evaluation 
of a service. 

2 An Approach Based on Simultaneous Diagonalization 

In order to evaluate the customer satisfaction, we consider a questionnaire 
taken on n statistical units at the beginning (expectation) and at the end 
(perception) of a given service. Data are represented in terms of matrices X 
(pre-service) and Y (post-service) of order {nx p). Let Q be positive defined 
symmetrical matrix (metric) of dimensions (pxp) and D^ = diag{di,... ,dn), 
(Xir=i ^̂  ^ -^)' weight matrix of statistical units. We obtain a couple of sta­
tistical triplets: (X^Q^Dn) and (Y^Q^D). Following Lafosse (1989), every 
triplet can be defined fully matched because they describe the same statis­
tical units (n rows) by means the same variables {p columns). We suppose 
matrices X and Y centered as respective column means and, without lose of 
generality, we consider Q = Ip with Ip identity matrix of order p. Moreover, 
let A = X'X, B = Y'Y and C = A^B. 

By using the classical tools of the multidimensional data analysis, in or­
der to evaluate the quality service, several statistical approaches concentrate 
their attention on independent analyses of the perceived (Y) and expected 
(X) judgments of the quality service as well as they analyse their "gap" 
{X — Y). Let IXJY and ID the inertia matrices associated to Y, X and 
X — Y, respectively. In this context, other approaches study the symmetri­
cal and non symmetrical relationships between the two blocks of variables 
by using techniques based on covariance criteria like, for example, Co-inertia 
Analysis (Tucker, 1958) and Partial Least Squares (Wold, 1966) and their 
generalizations. The co-inertia axes play a primary role in the customer eval­
uation framework and the independent analyses of the perceived and ex­
pected judgments as well as of the gap are included in the Co-Inertia of Fully 
Matched Tables (Co-Structure Analysis) by Torre and Chessel (1995). 

Aim of our approach is to find common dimensions in the different sets 
of variables by means the simultaneous diagonalization (SD) of the A and B 
matrices. Joint diagonalization of square matrices is an important problem 
of numeric computation. Extensive literature exists on this topics topics (e.g. 
Noble and Daniel (1977), Van Der Vorst and Golub (1997)). The objective 
is to find a projection v that maximizes the generalized Rayleigh quotient 
J{v) = m.di-x[{v^Av)/{v^Bv)]. The solution can be obtained analytically by 

V 

solving a generalized eigenvalue problem: Av = XBv. Since the matrix B~^A 
is unnecessarily symmetric, the common vectors v are usually dependent. 

It can be easily proved that the solutions maximizes also the quotient 

J{v) = max [{v'Av)/{v'Cv)] . (1) 
V 

wth the same maximum value. Let vi the first axe obtained by the previous 
maximization problem. In order to obtain C-uncorrelated common vectors. 
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we can reconsider the problem in a form that has been analyzed by Rao 
(1973) under the name of the restricted eigenvalue problem {i > 1): 

ms.x[{vlAv,)/{vlCv,)] (2) 

subject to v[Cvi = 1 and GiVi = 0^_i where Gi = ViC and Vi = ['̂ i, '̂ 2, •••, '^^-i] 
where the last constraint is dropped when i = 1. 

By applying the Lagrange method directly to problem (2) we obtain 
C-^ (/ - Pi) Av, = X,v, where P, = CV/{V,CV/)-^V, is such that (/ - P,) G[ = 
0 and (/ — P) Cvi = Cvi {i = 1, ...,p). We obtain the constrained solutions 
(the eigenvector Vi corresponding to the largest eigenvalue Â ) iteratively by 
diagonalizing, at each step, the following quantity 

[C-\I - Pi)Y^^ A[C-\I - Pi)f\i = XiUi 

with Vi = [C~-^{I — Pi)] Ui. We call this approach "C-algorithm". 
By the Co-structure Analysis, we know that single analysis of matrices 

F , X and X — F , respectively, and Co-Inertia Analysis are linked by the 
following relationships 

X'X + Y'Y = (X - Y)\X - r ) + {X'Y + Y'X) (3) 

and Ix ^ W = ID ^ 2tr{X^DnYQ). For the previous results, we have that 
J{v) = m.di-x[{v^Av)/{v^Cv)] results to be also equal to 

V 

J[v) - max ^, j ^ ^ _ ^^^^^ _ ^^ ^ ^^^^ ^ Y^X)]v' 

This implies that a single set of common vectors V simultaneously diago-
nalizes the following matrices X 'X , Y'Y, X'X + Y'Y and [(X - Yy{X -
Y) + {X'Y + ^^X)] linked, respectively, to the single inertia analyses of 
expectations, perceptions, their sum (equivalent to the Principal Compo­
nents Analysis of the row linked matrix [X^l^]') and co-structure with gap. 
The common vectors V are such that V'X'XV = A A, V'Y'YV = AB, 

V {X'X + Y'Y) V = 1 and V [(X - Y)'{X - F) + {X'Y + Y'X)] V = I. 
We remark that by using this single set of common vectors V for all 

the components of identity (3), the previous Co-structure Analysis inertia 
decomposition I^p ^I^^ = I^^^ + 2tr{X'DnYQ) still holds. 

We highlight that this approach leads to an optimal choice for the axes 
V in order to evaluate the expected (X) judgments by taking into account 
all the components of (3). On the contrary, Co-Structure Analysis obtains 
different system solutions for each component of identity (3). 

Following the same approach, we can analyze the single other components 
of (3): perceptions, gap and co-structure by taking always into account all 
the others (see Table 1). 
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Component 
Expectations 

Perceptions 

Gap 

Co-structure 

Generalized Rayleigh quotient J(v) 

max 
v'X'Xv ^~IZZ v'X'Xv 

v'X'Xv+v'Y'Yv 
v'Y'Yv 

v'Y'Yv+v'X'Xv 

V 

V 

' [ (X-

' [ (X-

-YYiX-
V 

-YYiX-

-Y) + (X'Y + Y' 
'Y'Yv 
-Y) + {X'Y + Y' 

X)]v 

X)]v 
v'{X-Y)'{X-Y)v _ v'{X-Y)'{X-Y)v 

v'{X-Yy{X-Y)v+v'{X'Y + Y'X)v ~ "^^^ v'{X'X + Y'Y)v 
V'(^X'Y + Y'X)V ^ V'(^X'Y + Y'X)V 

v'{X'Y + Y'X)v+v'{X-Yy{X-Y)v ~ "^^^ v'{X'X + Y'Y)v 

Table 1. Generalized Rayleigh quotient 

In the same way, in order to obtain B and C-uncorrelated common vec­
tors, we write iadi'K[{v[Avi)/{v[Bvi)] subject to v[Bvi = 1 and GiVi = 0^_i 

Vi 

where Gi = ViC and Vi = ['Ui,'U2, . . . , ' ^^ - i ] . The last constraint is dropped 
when i = 1. As before, by applying the Lagrange method we obtain B~^{I — 
Pi)Av, = \,v, where P, = CV/{V^CB-^CV/)-^V^CB-^ with ( / - P,)G'^ = 0 
and ( / — P)Bvi = Bvi. We obtain the constrained solutions iteratively by 
diagonalizing, at each step, the following quantity 

[B-\I - P,)f^ A[B-\I - P,)f\, = X,u, 

with Vi = [B~-^{I — Pi)] Ui. We call this approach "5(7-algorithm". 
In this case, for the analysis of expectations, common vectors V are such 

tha t V'X'XV = AA, V'Y'YV = / , V {X'X ^Y'Y)V = {I ^ AA) and 

v'[{x - Yy{x - r) + {x'Y + Y'X)]V = (/ + AA). 
Finally, we remark tha t it is possible to obtain the common axes V without 

computing the inverse of the matr ix B and with the same "C-algorithm" 
results, by using the following sequential algorithm ("^i^en-algorithm") : 

1. LA = diag [eigenvalues (A)] 
2. UA = eigenvectors (A) 

3. H = UAL-^^^ 

4. Lc = diag [eigenvalues (H'CH)] 
5. Uc = eigenvectors (H'CH) 

6. V = HUc {I ^ Lc)'^^^ 

3 Patient Satisfaction Data 

We consider a day surgery patient satisfaction study in a Neapolitan Hospital 
for a sample of 511 patients. A questionnaire, developed according to the 
Servqual model (Parasuraman et al., 1985), with 15 items on 5 dimensions 
(Tangibility, Reliability, Responsiveness, Assurance, Empathy) (Table 2) and 
a five levels answer scale, has been given during a week at the beginning of 
the service (Expectations) and at the patient discharge (Perceptions). Due to 
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Dimension 
Tangibility 

Reliability 

Responsiveness 

Assurance 

Empathy 

I t e m 
The hospital has modern and efficient equipments 
The hospital structure is in a good and clean state 
The Hospital Personnel (HP) has a good appearance 
The HP supplies the promised service 
If there is a problem, the HP gives an understanding 
and reassuring attitude 
Doctors provide me with precise information 
about the disease 
The HP informs with precision when the 
service is given 
The HP supplies services promptly 
The HP is ready to give help to me 
The HP's behavior trusts me 
The HP has a good knowledge to answer 
to my questions 
The HP is kind to me 
The HP has the backing of management about the job 
The HP pays an individual attention to me 
The HPl takes my principal interests at heart 

Label 
Varl 
Var2 
Var3 
Var4 
Var5 

Var6 

Var7 

Var8 
Var9 
VarlO 
Varll 

Varl2 
Varia 
Varl4 
Varl5 

Table 2. Structure of the questionnaire. 

the ordinal nature of data, we proceed to a transformation of them by using 
the "Rating Scale Models" (Wright and Masters, 1982). 

We developed the Simultaneous Diagonalization and the Co-Inertia of 
Fully Matched Tables on the transformed data in order to highlight the main 
differences on the perception, on the expectations as well as on the gap eval­
uations. 

Figure l.a and figure l.b display the coordinates of expectations variables 
on the first factorial plane given by SD and PCA, respectively. Typical aspect 
of the patient satisfaction studies, first PCA axe (figure l.b) does not offer a 
remarkable information, by representing an overall information about the ex­
pectations for all variables considered in the questionnaire. First factorial axe 
obtained by SD method (figure l.a) is a synthesis of the variables included 
in tangibility (Appearance of physical facilities, equipment, and communi­
cation material) and assurance areas (Competence, knowledge and courtesy 
of employees and their ability to convey trust and confidence). This leads 
to synthesize all the information relative to the evaluation of the physical 
structure of the hospital. In the specific context of the analyzed Hospital, the 
obsolete structure represents an infiuent negative factor in the overall patient 
satisfaction evaluation. Second PCA factorial axe seems to be not easily in-
terpretable while the second one obtained by SD gives a better representation 
of the variables related to responsiveness (Willingness to help customers and 
provide prompt service) and to reliability (Ability to perform the promised 
service dependably and accurately). Related to psychological evaluation of 
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the patients, it provides important information about the expectations con­
nected to the human factor which is an essential component in a dehcate 
sector hke the health service. 

More interesting information are given by the representation of the per­
ceptions. Like the expectations variables, PCA does not provide consistent 
information for the first factorial plane (Figure 2.b). 
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Fig. 1. Graphical representation of the perception variables on the first factorial 
plane computed by SD (a) and PCA (b). 
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Fig. 2. Graphical representation of the expectation variables on the first factorial 
plane computed by SD (a) and PCA (b). 

As before, first SD factorial axe gives an overview of the variables of the 
Hospital structure quality while the second one (figure 2.a) synthesizes all the 
variables linked to the evaluation of the hospital human aspect. We remark 
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tha t there is a perfect interpretive correspondence between the first facto­
rial planes generate for the expectations and the perceptions. We are able 
to summarize all information concerning the patients evaluation on Hospital 
physical structure and management (doctors and nurses) by the first facto­
rial plane. Contextual factors like staff friendliness, t reatment explanations 
and appearance of surroundings, are often used by patients to perform sat­
isfaction. These two aspects represent useful underlining information for the 
hospital management in order to improve the service. 

A gap score is the difference between a patient 's level of satisfaction and 
level of importance on a specific service feature. To identify gaps between 
what is important to patients and their perception of the quality of received 
service, is a powerful activity in order to assist in targeting service improve­
ment efforts and resource allocation. For this reason is of great interest the 
gap analysis generated by the difference between the perceptions and expec­
tations matrices (Figure 3). Classical P C A (Figure 3.b) does not give, as in 
previous analysis, additional information about the hospital evaluation. First 
SD plane remarks the results obtained by perceptions analysis, by offering on 
the first axe a synthesis of the general difference between perceptions and ex­
pectations related to the hospital structure and the quality of management. A 
new element is the presence of the variables related to Empathy area (Caring, 
individualized, and professional at tention the firm provides its customers) on 
the first SD factorial axe. Second SD axe highlights the quality relationships 
between the management (doctors and nurses) and the patients. 

(a) (b) 

Gap 5 

GapVIS 

Gap 1 3 ^ ^ 

Gap 6 m / / 

G a p 2 « < i 

Gap 10 
iGapS 

Gap 7 
Gap 9 11 

Gap12^|iJ^\ 
Gap 11 »^::3^^xJ^^ 

Gap 4 ^yyV 

Gap 6 i r 3 y ^ 
Gap 2 m 

Gap 3 

Fig. 3. Graphical Representation of Gap variables on the First factorial plane com­
puted by SD (a) and PCA (b) 
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4 Conclusions 

This paper introduces a new method to analyze jointly da ta structured in 
couple of matrices, which are related by logical relationship. Specifically in 
service quality evaluation the researcher is interested to investigate about the 
relationships between the expectations and perceptions in order to improve 
the offered service keeping in account the wishes of the customers. Other field 
of applications can be found in ecological as well as in chemometric frame­
works. The proposed method is based on the simultaneous diagonalization 
theory. According to the results presented here, the method allows to enrich 
the interpretation of the factorial axes by supplying complementary or sup­
plementary information to the classical dimensions reduction methods like 
the Co-Inertia of Fully Matched Tables. 

Acknowledgement 

This research has been supported with a PRIN 2004 grant (P. Amenta) . 
Authors wish to thank the anonymous referees for their comments. 

References 

AMENTA, P. and SARNACCHIARO, P. (2004): Tensorial Co-Structure Analysis 
for the Full Multi-Modules Customer Satisfaction Evaluation. In: H. Bock, 
M. Chiodi and A. Mineo (Eds.): Advances in Multivariate Analysis, Springer, 
Berlin, 159-169. 

CRONIN, J.J. and TAYLOR, SA. (1992): Measuring Service Quality: a Reexami­
nation and Extension. Journal of Marketing, 56, 55-68. 

D'AMBRA, L. and AMENTA, P. (2000): Multidimensional Statistical Methods 
Based on Co-Inertia for the 'Multi-Modules' Customer Satisfaction Evaluation. 
In: Atti del Convegno CIMASr2000 EHTP, Casablanca, Marocco. 

D'AMBRA, L., AMENTA, P., RUBINACCI, R., GALLO, M. and SARNAC­
CHIARO, P. (1999): Multidimensional Statistical Methods Based on Co-Inertia 
for the Customer Satisfaction Evaluation. In: Book of International Quality 
Conference IQC'99, Thailandia. 

HOGAN, J., HOGAN, R. and BUSH, C. M. (1984): How to Measure Service Ori­
entation. Journal of Applied Psychology, 69, 167-173. 

LAFOSSE, R.(1989): Ressemblance et difference entre deux tableaux totalement 
apparies, Statistique et analyse des donnees, 14, 1-24-

LAURO, N., BALBI, S. and SCEPI, G. (1997): L'Analisi Multidimensionale dei 
Dati per la Misurazione della Customer Satisfaction. In: Atti del Convegno SIS 
"La Statistica per le Imprese", Torino. 

NOBLE, B. and DANIEL, W. (1977): Applied Matrix Algebra, Prentice Hal, Inc., 
Englewood Cliffs, NJ. 

PARASURAMAN, A., ZEITHAM, l.V. and BERRY, L. (1985): A Conceptual 
Model of Service Quality and its Implication for Future Research, Journal 
of Marketing, 49, 41-50. 



Simultaneous Diagonalization for the Customer Satisfaction Evaluation 297 

RAO, C. (1973): Linear Statistical Inference and Its Application^ New York, Wiley. 
TORRE, F. and CHESSEL, D. (1995): Co-structure de deux tableaux totalement 

apparies. Revue de Statistique Appliquee, XLIII, 1, 109-121. 
TUCKER, L. (1958): An Inter-Battery Method of Factor Analysis, Psycometrika, 

23, 2, 111-136. 
VAN DER VORST, A. and GOLUB, G. (1997): 150 Years Old and Still Alive: 

Eigenproblems. In: The state of the art in Numerical Analysis^ Oxford Univer­
sity Press,63, 93-120. 

VEDALDI, R. (1997): ModeUi Interpretativi per la Valutazione della Customer 
Satisfaction: I'impiego degli Strumenti Statistici, in: Atti del Convegno SIS 
"La Statistica per le Imprese'\ Torino. 

WOLD, H. (1966): Estimation of Principal Components and Related Models by 
Iterative Least Squares. In: Multivariate Analysis^ Krishnaiah, New York. 

WRIGHT, B.D. and MASTERS, G.N. (1982): Rating Scale Analysis. MESA press, 
Chicago. 



Analyzing Evaluation Data : 
Modelling and Testing for Homogeneity 

Angela D'Elia and Domenico Piccolo 

Dipartimento di Scienze Statistiche, 
Universita di Napoli Federico II, Italy 
{angela.delia,domenico.piccolo}@unina.it 

Abs t r ac t . In the evaluation process of a given service, different issues are worth 
of analysis. In first instance, it is interesting to assess how the evaluation responses 
changes over the time and whether there is an effect of the raters' features. Secondly, 
when the service is made up by different items, it is important to verify if the 
satisfaction feelings of the users/consumers are the same with respect to all the 
dimensions. At this scope, the paper proposes a modelling approach for analyzing 
and testing ordinal/rating data. Some evidence from University services evaluation 
shows the usefulness of this procedure in a real case-study. 

1 Introduction 

In evaluation contexts, raters are often required to express their judgements 
about a set of different items, which are assumed to contribute to the whole 
performance of a specific service (Parasurman, et a/., 1988; Pena, 1997). Be­
sides, in most of cases, the raters have to give also an overall rating expressing 
their global satisfaction towards the service. 

As a consequence, for a given service made up by k different items and 
evaluated by n raters, usually we observe a (n x /c + 1) matr ix of rank da ta 
{'^ij}j (̂  = l , 2 , . . . , n ; j = l,2,. . . , /c,/c + l ) expressing the satisfaction feelings 
of the service's users towards the k items and, in the last column, towards 
the service as a whole. Given this setting, it is relevant to assess 

• how the global satisfaction changes over the time and /o r over different 
group of raters; 

• if the raters ' feelings towards the k different dimensions of the service are 
substantially the same. 

These tasks can be addressed by means of a mixture model for ordi­
na l / ra t ing da ta originally proposed by D'Elia (2003), Piccolo (2003), and 
D'Elia and Piccolo (2005a): in particular, this paper highlights how the pe­
culiar model's parametrization may be usefully exploited for dealing with 
both the issues. In section 2, we motivate why the model is sensible for eval­
uation da ta and we briefly recall some related results; then, in section 3, first 
results from a real evaluation case study are shown. In section 4, likelihood 
ratio tests among nested models are developed and, finally, further evidence 
from the evaluation da ta set is discussed. 
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2 The Model 

The degree of satisfaction r (= l,2,. . . ,m) assigned to a given item may be 
analyzed as a realization of a discrete ordinal random variable R. In fact, the 
judgement process is intrinsically continuous and, since the basic feeling (for 
instance, liking or disliking) depends on several causes, it could be thought 
to follow a Gaussian distribution. 

Indeed, the underlying variable approach for the analysis of ordinal data 
often assumes that the observations are generated by an unobserved contin­
uous variable (say R*) normally distributed (Joreskog and Moustaki, 2001), 
so that {r = a) <^ {ra-i < r* < r^), where TQ = —cxo, r ^ = +(X), and 
Ta, a = 1,2, ...,771 — 1, are the ordered threshold parameters to be estimated. 
This kind of analysis is widely discussed by Cagnone et al. (2004), Moustaki 
(2000) and Moustaki et al (2004). 

Following this idea, but maintaining the discrete nature of the observa­
tions, a suitable model for achieving the mapping of the unobserved con­
tinuous variable R* into a discrete random variable defined on the values 
r = 1, 2,..., m, may be the shifted Binomial distribution. 

However, it seems sensible to assume that each evaluation process is also 
characterized by an uncertainty component, that adds up to the expression 
of the basic feeling: this component can be adequately described by means 
of the discrete Uniform distribution, since this random variable is known to 
maximize the entropy on a finite support. 

As a consequence, we assume that the level of satisfaction r is the real­
ization of a Mixture of a Uniform and a shifted Binomial distribution. Thus, 
we define R - MUB(m, TT, ^) if: 

Pr{R = r)=^h~]\{l-0^-'r-''^{l-^)-. r = l ,2, . . . ,m; 
r - 1 m 

where TT G [0,1] and <f G [0,1]. 
The TT parameter is inversely related to the uncertainty component of 

the probabilistic model: thus, the estimate of (1 — TT) is a measure of the 
uncertainty in the ratings. On the other hand, both TT and (f are related to 
the liking feeling towards the item, since 

^( i ? )=7r (m- l )Q-e )+^ . 

The exact meaning of (f changes with the setting of the analysis and, being the 
MUB model reversible, it depends on how the ratings have been codified (the 
greater the rating the greater the satisfaction, or viceversa). In the case study 
considered in this paper, higher ratings are associated to higher satisfaction: 
thus, the estimate of (1 — (f) can be thought of as a measure of liking. Finally, 
the ratio 7r/(l — TT) measures the relative weights of the basic feeling and of 
the uncertainty components, respectively, in the evaluation of a given service. 



Analyzing Evaluation Data: Modelling and Testing for Homogeneity 301 

Given the observed frequencies vector (ni, n 2 , . . . , nmY, where n^ is the 
frequency of {R = r), and letting p^(7r, ^) = Pr{R = r \ TT, (f), r = 1, 2 , . . . , TTI, 
the log-likelihood function for the MUB model is: 

m 

logL(7r, ^) = ^n^log{p^(7r, ^)}. (1) 
r = l 

As it is common for mixture models (McLachlan and Peel, 2000), the 
maximum likelihood estimates of the parameters TT and ^ can be obtained 
by means of an E-M algorithm. Computational details for the estimation 
algorithm and for obtaining the asymptotic variance and covariance matrix 
of the maximum likelihood estimates are given by D'Elia and Piccolo (2005a). 

The MUB model is an extremely flexible tool for fltting several real 
data sets and for explaining different judgement choices (ratings, preferences, 
agreement, perceptions, etc.) also when the raters' covariates are considered, 
as discussed in D'Eha (2004) and D'Eha and Piccolo (2005b). However, in 
this paper we limit our attention to an evaluation data context. 

3 The Evaluation of Orientation Activities in the 
University 

The 13 Faculties of the University of Naples Federico H, during the years 
2002-2004, have provided an Orientation program to their students. At the 
end of each year a survey was carried out, in order to check for the students' 
satisfaction towards this service: it involved n = 2179, 2536, 3183 students 
for the years 2002, 2003 and 2004, respectively. 

The survey was based on a 5-items questionnaire: each student was asked 
to give a score in [1, 7] expressing his/her overall satisfaction towards the 
Orientation service, where 1 means "completely unsatisfled" and 7 means 
"completely satisfled". Besides, four dimensions of the service were investi­
gated: willingness and competence of the Orientation staff, clearness of the 
information, adequateness of timetable. 

In flrst instance, we fltted a MUB model to the rating data expressing 
the global assessment of the overall satisfaction in the 13 Faculties, through 
the time. By means of the estimated (TT, ^) we got a display of the estimated 
parameters in the parameter space (Figure 1). 

Thus, looking at the ^ axis, it emerges that almost all the Faculties exhibit 
high values of (1 — (̂ ), that means high ratings for their Orientation service, 
and this behavior has became more homogeneous during the years. On the 
other hand, if we consider the TT axis, we can notice that all the Faculties get 
a very low estimate of (1 — TT), meaning that there is a very low weight of the 
uncertainty component in the assessment of the global satisfaction. Moreover, 
this behavior becomes more evident in the last year (2004): indeed, through 
the years, there is a shift towards higher values of TT (that is, lower weight of 
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uncertainty). Such a pat tern may depend on an increasing skill -for both the 
students and the interviewers- in filling in the evaluation questionnaire. 
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Fig. 1. Estimated parameter space for the overall satisfaction 

Of course, in the analysis of evaluation/rat ing da ta it is also important to 
detect if and how the un/satisfaction changes with different group of raters 
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(e.g. students). In the following Figure 2 we display the estimated parame­
ter space (through the years), when we considered the students clustered on 
the basis of the high school (CL="classico", SC="scientifico", TE="tecnico", 
PR="professionale", LI="linguistico", AL="other") they have at tended be­
fore start ing their University career. 

Fig. 2. Estimated parameter space for different high schools 

In fact, we cannot detect a sharp distinction among the different group of 
students as far as it concerns both the ^ and the TT estimated values, meaning 
tha t the kind of high school the students at tended has not influenced their 
evaluation of the Orientation service. But, if we look at the behavior of each 
group (type of high school) through the 3 years, we are able to notice tha t 
the estimated ^8 in most cases exhibit the following pat tern: with respect to 
the year 2002 (beginning of the Orientation service), the ^s increase in 2003 
and they decrease in 2004. This means tha t for most of the students there has 
been first an enthusiastic judgement of the service, followed by a more critical 
assessment and finally by a new increase in the liking. The only exception 
are the students from "LI" and "AL" -accounting for 14% of the sample- for 
whom there has been a decreasing satisfaction during the years^. 

^ A more analytic approach is also possible, by including explicitly the raters' 
covariates in the specification of the MUB model, as discussed in D'Elia (2004) 
and D'Elia and Piccolo (2005b). 
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4 Testing Among Models 

From the previous analysis, we noticed a decreasing role of the uncertainty 
component in the assessment of the satisfaction, but an alternating behavior 
of the parameter ^: then, since the overall satisfaction for the service is the 
result of the feelings towards its different dimensions, it seems interesting to 
study the pat tern of the ratings for the component items. 

More in general, let us suppose tha t we have a multi-items service, made 
up of k different specific dimensions. 

Then, for each of them we get: Rj ^ MUB{m^^j^Cj)^ J = 1̂  2, . . . , k. 
In order to assess if the raters ' feelings towards the k different dimensions 

of the service are the same, the following hypotheses can be specified: 

Ho : Hi = ii2 = ... = TT/c; ^1= ^2 = ... = ^k] 

Hi : iTi = 712 = ... = TT/c; 3^j ^ <f/,, j ^ h] 

H2 '^^j 1^ TTh, j ^h] 6 = 6 = ••• = 6 ; 

H^ :^iTj^ TTh, j ^h] 3 6 7̂  6 , j + h. 

These hypotheses yield a hierarchical sequence of MUB models, since HQ 
is nested with respect to both Hi and H2, tha t are nested into Hs-

Then, in the more general hypothesis (i^a), assuming tha t the k judge­
ments towards k different dimensions of a service are made independently, 
the log-likelihood function turns out to be: 

l-TTj log Lin,, c,) = j2J2iogL (;".:'i)er''"(i-e,r-^ 
7=1 i=i I \ ^^ / m 
J = l t = l V X . 

k m 

= ^ ^ n ( ^ ) l o g K ( 7 r „ e , ) } , 

where we let rir = 4^{'^ij = '^7^ = 172,..., n } , j = 1, 2, . . . , /c; r = 1, 2, . . . , m. 

In the previous expression, under the hypotheses Hi and H2j we let TTJ = 
TT, V j , and 6 = 6 ^ i ? respectively; under the hypothesis HQ, equation (1) 
holds, as specified in Section 2. 

Thus, given the nested structure of the above hypotheses, the testing 
procedure can be based upon the likelihood-ratio test: 

A = 2[logL(^M) - logL(^Mr)] ^ xl-,. 

where 0 = (TT, ^ ) ' are the parameters to be estimated under the different 
hypotheses, and logL(^M) and logL(^Mr) represent, respectively, the log-
likelihood functions for a given model M (with p unconstrained parameters) , 
and a restricted model Mr (with q < p unconstrained parameters) . 
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5 Testing for Homogeneity in the Evaluation of 
Orientation Activities 

In addition to the overall satisfaction towards the Orientation service, the 
survey investigated also the feelings of the students towards 4 specific di­
mensions of the service which concern, respectively, the willingness and the 
competence of the Orientation staff, the clearness of the information, and the 
adequateness of timetable. 

Thus, it seems interesting to verify whether the satisfactions expressed 
by the students are the same with respect to the 4 items of the analyzed 
service. In particular, we can check the homogeneity among the /c = 4 different 
evaluations by means of the hypotheses on the MUB model's parameters, with 
the following meaning: 

• Ho : uncertainty and satisfaction are equal for all the items; 
• Hi : satisfaction changes with the specific j - th item; 
• H2 : uncertainty changes with the specific j-th item; 
• Hs : both the satisfaction and the uncertainty change with the item. 

Then, the likelihood ratio test among nested MUB models was performed, 
yielding the results in Table 5 where, for each year of the survey and for 
each Faculty, the hypothesis that increases the likelihood more significantly 
is displayed. 

Faculty 
Agraria 
Architettura 
Economia 
Farmacia 
Giurisprudenza 
Ingegneria 
Lettere e Filosofia 

2002 2003 2004 
Hi Hi Hi 
H2 H2 H2 
Hs Hi Hi 
Hi Hi Hi 
Hi Hi Hs 
Hi Hs Hi 
Hs Hi Hi 

Faculty 
Medicina e Chirurgia 
Medicina Veterinaria 
Scienze Biotecnologiche 
Scienze MM. FF. NN. 
Scienze Politiche 
Sociologia 

2002 2003 2004 
Hi Hi Hi 
Hi Hs Hs 
Hi Hi Hi 
Hi Hs Hs 
Hi Hi Hi 
Hi Hi Hi 

Table 1. Likelihood ratio test results for homogeneity 

Thus, it emerges that most of the evaluations are homogeneous with re­
spect to the uncertainty, but the satisfaction level changes with the dimen­
sions of the service (hypothesis Hi). This behavior is constant through the 
years for 6 Faculties, while it alternates with the hypothesis Hs (both satis­
faction and uncertainty changing) in other 6 cases. 

The only "anomalous" behavior has been found for the Faculty of Ar­
chitettura, where it appears to be an inhomogeneous uncertainty, but an 
homogeneous satisfaction {H2); in fact, the related data deserve some suspi­
cion (that could be noticed also by the inspection of the previous Figure 1, 
where the Faculty of Archittettura appears always isolated with respect to 
the others). 
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6 Concluding Remarks 

Two points arise from the previous analysis. Firstly, the assumption of in­
dependent judgements in the evaluation of different items in some circum­
stances could be untrue; however, subtracting from each evaluation da ta a 
global measure of the satisfaction for the whole service, we found tha t the 
net differences were almost uncorrelated: thus, it seems tha t possible depen­
dencies do not arise from real interrelationships among the items themselves, 
but they are the results of a global feeling towards the Orientation services. 

Secondly, it emerges a quite different role of the TT and ^ parameters , 
and then of the component they represent, in the satisfaction assessment. 
Indeed, the uncertainty appears homogeneous with respect to the items and 
decreasing in the years; on the other hand, the liking is heterogeneous towards 
the dimensions and it exhibits an alternating pat tern in the years; at this 
regard, the inclusion of ra ters / i tems covariates in the model might supply a 
deeper insight for explaining such a behavior. 
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Abs t r ac t . In this work, adopting an exploratory and graphical approach, we sug­
gest to consider archetypal analysis as a basis for a data driven benchmarking 
procedure. The procedure is aimed at defining some reference performers, at un­
derstanding their features, and at comparing observed performances with them. 
Being archetypes some extreme points, we propose to consider them as reference 
performers. Then, we offer a set of graphical tools in order to describe these archety­
pal benchmarks, and to evaluate the observed performances with respect to them. 

1 Introduction 

Managing and running complex organizations requires the measurement and 
the analysis of their performances. Monitoring the ongoing processes, and 
comparing results of different activities lead organizations to continuously 
improve their jobs. With this goal, hence, organizations collect and analyze 
a large number of performance indicators measured on large sets of per­
formers. Such da ta sets are exploited for performance analysis, tha t mainly 
aims at benchmarking and studying relationships among indicators (Camp, 
1989). Through benchmarking organizations evaluate various aspects of their 
processes with respect to some standards, and many statistical methods, ei­
ther confirmatory or exploratory, numerical or graphical, can be profitably 
exploited with this aim. 

In this work, adopting an exploratory and graphical approach, we address 
some statistical issues related to the s tandards definition, their interpretation, 
and their use for comparison. We propose to consider archetypal analysis 
(Cutler and Breiman, 1994) as a method for selecting some points as best 
or worst performers, detecting any outlying performances, comparing and 
clustering performances. 

Archetypes represent a sort of "pure individual types", tha t synthesize 
multivariate da ta through few points lying on the boundary of the da ta scat­
ter. In our opinion, this feature fits well with the benchmarking aims. Being 
archetypes extreme pure performers, we propose first to use them to define 
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some "pure benchmark" points. Exploiting geometric properties of archetypes, 
we design exploratory tools to visually analyze them, and to understand 
benchmark characteristics through the inspection of archetypes composition. 
Finally, we propose to use parallel coordinates to compare observed perfor­
mances among them and with respect to the benchmarks. 

The paper is organized as follows. We present basic archetypal analy­
sis, introducing a computational geometry point of view in Section 2. Then 
we discuss our interpretation of archetypes as benchmarks, and we offer a 
benchmarking procedure organized in three different steps (Section 3). An 
illustrative example on 209 computer CPU performances will be used along 
the whole paper. Some concluding remarks follow. 

2 Archetypal Analysis 

Archetypal analysis is a statistical method aiming at synthesizing a set of 
multivariate observations through few points not necessarily observed. These 
points, the archetypes, can be considered a sort of "pure" types as all the 
data points must be a mixture of them. In addition, to ensure that these 
"pure" points are the nearest to the observed data, archetypes must be also 
a convex combination of the data points. 

Archetypal analysis has found applications in spatio-temporal dynam­
ics and cellular flames (Stone and Cutler, 1996; Stone, 2002), in astronomy 
(Chan et al, 2003), and in market researches (Anderson and Weiner, 2004). 
In performance analysis archetypes have been used for ordering multivariate 
performances (D'Esposito and Ragozini, 2004; 2006). 

Formally, the archetypes {sij}j=i,...,m should be those points in the p-
dimensional Euclidean space such that: 

x^ = a^A (1) 

with 
aij>0 yij ce-1 = 1 Vi, (2) 

where {x^}^=i .̂..̂ ^ are the observed data, A is the archetype matrix with â  
its j-th row, and cê  is the vector of the convex combination coefficients with 
elements {ce^j}j=i,...,m-

At the same time, all the archetypes should be also a mixture of the 
observed data: 

a; = /3;X (3) 

with 
Pji>0 yj,i /3;i = l Vj, (4) 

where X is the observed data matrix, and the convex combination coefficient 
f3ji^8 are the n elements of the (3^ vectors. 

By definition of convex hull, the eqn.s (1) and (2) imply that all the data 
belong to the convex hull of the archetypes, that is the archetypes could be 
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the vertices of any convex p-polytope including the data scatter. On the other 
hand, eqn.s (3) and (4) imply that archetypes belong to the convex hull of 
the data. Consequently, archetypes are the vertices of the data convex hull. 

However, in practice, the number of the data convex hull vertices is gen­
erally too large to synthesize data through few pure types. For this reason, 
looking for a smaller number of pure types, and wishing to preserve their 
closeness to the data (eqn.s 3 and 4), Cutler and Breiman (1994) defined 
the archetypes as those m points that fulfill as much as possible eqn. (1), 
satisfying at the same time eqn.s (2), (3) and (4). 

More precisely, let us rewrite eqn. (1) as x^ — cê  A = 0. For the discussion 
above, if the number of archetypes is less than the number of the data convex 
hull vertices, then the eqn (1) does not hold. In particular, for the points i* 
lying outside the convex hull of the archetypes, we have that ||x^^ — ce^^A|| > 
0, where ||-|| is the L2 norm of a vector. The archetypes, given m, have been 
then defined as the points ( a i , . . . , a^) minimizing 

El • « ; A | | , (5) 

holding equations (2),(3) and (4). 
The solution to this minimization problem depends on m, and solutions 

are not nested as m varies. That is, denoting with a^(m) the j - th archetype 
for a given m, a^(m) 7̂  3ij{l), with m ^l. 

As for the choice of m. Cutler and Breiman (1994) suggest to look at the 
quantity: 

n 

RSS{m) = Y,\\^\-S^,{m)\\ (6) 
i=l 

where x^(m) = a[{m) • A(m) is the best approximation of x^ through the 
m archetypes. The residual sum of squares RSS{m) is then the sum of the 
euclidean distances of the observed data from their best approximation, and 
therefore it measures to what extent the m archetypes synthesize the data. 

3 Benchmarking Through Archetypes 

Given the geometrical and statistical properties discussed above, we propose 
to use archetypes for a three step data driven benchmarking procedure. The 
procedure is aimed at defining some reference performers, to understand their 
features, and to compare observed performances with them. 

Usually, reference performers (or benchmarks) are defined on the basis 
of some expert knowledge or some field agreement. For example, financial 
dealers agree that the stock index Nasdaq may be used as a benchmark 
against which a performance of a technology stock is compared. Depending 
on the application context, the benchmark has two main different meanings. 
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It can be intended as some average performance, e.g. the Nasdaq index, or as 
some "best" performer, such as a sector leader. In the simplest case of a single 
performance indicator, the benchmark can be respectively some weighted 
averages or the maximum observed value. 

If many performance indicators are measured, it is somehow harder to 
identify the benchmark. Looking for an average standard, in our opinion 
some multivariate centrality measures can be adopted, say the simple mean 
or some more appropriate location depth measures (Liu et a/., 1999; Mizera 
and Miiller, 2004). Searching for the best standard, two different issues have 
to be addressed. As such benchmark is a multivariate extreme value, first it is 
necessary to define it. Secondly, as a data scatter presents many multivariate 
extremes, it is necessary to identify the "best practice" among them. 

In the following, we present details on our procedure, and with an illustra­
tive purpose we introduce a real data example. The data we use come from a 
study on the performance of central processing units (CPU), and consist of 
a set of 209 CPU's to be compared considering some performance indicators 
(Ein-Dor and Feldmesser, 1987). The six indicators we consider are: Cycle 
time (ns). Minimum memory (kb). Maximum memory (kb). Cache size (kb). 
Minimum channels, and Maximum channels of the CPU's. The goal is first to 
identify some benchmarks for the CPU's, and then to evaluate these latters 
with respect to the identified benchmarks. 

3.1 Looking for Extremes Through Archetypes 

Geometrically, the multivariate extremes of a data scatter are the points 
lying on its boundary. Using a center-outward ordering based on some depth 
notion, the extremes are the points with empirical depth equal to zero, and 
they lie on the furthest empirical center-outward quantile contour. Following 
Liu et al (1999), these extreme points are the convex hull boundary. 

Extreme observed points correspond then to the vertices of the data scat­
ter convex hull. However, there is a non-trivial problem of defining one or 
few benchmarks, as the convex hull vertices cardinality could be extremely 
large. As known, the number of vertices tends quickly to the number of ob­
served data as the number of variables increases. In our case, the data set 
on the CPU performance indicators present 104 convex hull vertices, not an 
adequate number for a benchmarking purpose. 

For this reason, given an observed performance data set, we suggest to use 
their archetypes to select a reduced number of extremes to be used as bench­
marks. As for their number, we suggest to select it looking at the graphical 
devices we are going to illustrate in an exploratory and iterative approach. 
As a matter of fact, the sole analysis of the RSS behaviour (as suggested 
by Cutler and Breiman, 1994) does not provide enough information to de­
cide the number of archetypes to be used as benchmarks. With respect to 
our example, the RSS{m) function suggest to select five archetypes, being 
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RSS{b) = 0. However, after some analysis tha t we discuss shortly, we decided 
to select three benchmark-archetypes (m = 3). 

3.2 D e s c r i b i n g A r c h e t y p e s t o Identi fy B e n c h m a r k s 

By their nature, multivariate extremes cannot be expressed in terms of "max­
ima" or "minima". In other words, having selected few extreme values through 
the archetypes, the second issue to be addressed is to evaluate which of them 
can be considered as the "best" and which as the "worst" pure performances. 
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Figure 1. Describing archetypes: (a) percentile profile plot, and (b) parallel coor­
dinate plot for the CPU's data when three archetypes are chosen {m = 3). 
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With this goal, we propose to visuahy analyze them in their own space, 
using iconic plots, such as the percentile profiles or stars (Hartigan, 1975), or 
a parallel coordinate plot (Inselberg, 1985; Wegman, 1990; Milioli and Zani, 
1996). We note that these graphical representations are adequate for this aim 
because of the reduced number of points to be visualized. 

With respect to the CPU's data set, we decided to select three archetypes, 
and in Figure la and lb we respectively present their percentile profile and 
parallel coordinate plots. Visual inspection of Figure la highlights that the 
first archetype a.[ (3) is the "worst type" as it performs badly on the Cycle time 
(being the highest percentile) and has substantially poor performances on the 
other variables (being generally among the lower percentiles). The second 
selected archetype a2(3) represent a pure type slightly under the median 
performer, whilst the third archetype a3(3) is clearly the pure positive CPU 
benchmark. The parallel coordinate plot (Figure lb) shows that the third type 
is further from the others, while a'^(3) and a2(3) show a similar behaviour 
except for the Cycle time. This confirms that a3(3) is the best performer and 
suggests that the worst is not so far from the median, highlighting a skewed 
data scatter. 

We performed this kind of analysis selecting two, three, four, five, and 
six archetypes. In our opinion, three archetypes fulfill the interesting pure 
benchmarks against which the observed CPU's can be compared. However, 
for the sake of illustration, we discuss also the case of five archetypes (m = 5). 
Figure 2a and 2b respectively present their percentile profile and parallel co­
ordinate plots. We note that three archetypes (a'^(5), a2(5) and a3(5)) closely 
resemble the benchmarks described above. On the other hand, the two addi­
tional archetypes a4(5) and a5(5) have not an easy immediate interpretation. 
Hence, even if RSS{b) = 0, selecting five archetypes does not seem useful for 
a benchmarking purpose. 

3.3 Comparing Performances with Benchmarks 

The third step in our benchmarking procedure consists of evaluating the close­
ness of the observed performances to the benchmark-archetypes, achieving a 
comparison among performances and benchmarks. In our CPU's example, 
the goal is to understand which of the observed CPU's is close to the "best" 
CPU type, which to the "worst", and which to the "median". 

With this aim, we propose to use two graphical displays, both based on 
parallel coordinates. The first is the parallel coordinate plot of the original 
data set in its own space with the archetypes superimposed and highlighted. 
Through this plot, users can compare performances with the benchmark-
archetypes, looking for structure in the data, finding anomalous performances, 
identifying which variable mostly determine the results obtained by the per­
formers. A dynamic parallel coordinate plot (Wegman and Qiang, 1997), 
incorporating selection, deletion and colouring, could allow users to better 
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Figure 2. Describing archetypes: (̂ â  percentile profile plot, and (b) parallel coor­
dinate plot for the CPU's data when five archetypes are chosen {m = 5). 

understand benchmarks, and to classify performers considering their close­
ness to the archetypes. 

Figure 3 represents the suggested plot for the CPU data set along with 
the three selected archetypes. Many data points belong to a narrow band, 
close to both a'^(3) and a2(3). The best pure performer a3(3), that lies in the 
data tails, clearly synthesizes CPU's widely scattered around it. It appears 
that these latters perform better on some variables and worse on some others 
with respect to the pure benchmark a3(3). Dynamic selection of the curves 
could make easier to identify such performers. 

The second display we suggest is the parallel coordinate plot of the con­
vex combination coefficient ce^(m)'s. In such a case, we represent the n data 
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Figure 3. Comparing performances with benchmarks: parallel coordinate plot of 
the CPU data set along with the three selected archetypes. 

points on the m aj variables, having the i-th data point coordinates aij{m), 
j = 1 , . . . , m. This plot carries direct information on the closeness of the ob­
served data to the archetypes. Recalling that x^(7n) = o^i{m) • A{m), we have 
that if aij is close to one (and hence aik, k ^ j/is close to zero), then the i-th 
(reconstructed) observation x^(m) is close to the j - th archetype. In addition, 
the j - th archetype can be represented in this plot by the curve having coor­
dinates aj = 1 and ak = 0 for k y^ j . To highlight the archetypes, we super­
impose then dots in correspondence of the coordinates cej = 1, j = 1 , . . . , TTI. 

Cutler and Breiman (1994) alternatively suggest to display the same in­
formation through a triangular plot based on the ce^(7n)'s. However, unlike 
our proposed graph, the triangular plot is unfeasible for TTI > 3. Furthermore, 
we note that the plot we suggest represents "reconstructed" performances. 
Hence, whenever ||x^ — x^(m)|| > 0, some points can be badly represented. 
For this reason, we recommend to use this plot jointly with the previous 
parallel coordinate plot, possibly exploiting some dynamic linking tools. 

In our CPU's example this coefficient plot (Figure 4) suggests that a 
relatively small group of performers tends to resemble the worst benchmark 
behaviour a'^(3), a large majority resembles the median a2(3), while few are 
somehow similar to the best pure type a3(3). We note that this plot on the 
reconstructed data avoids to display some noise present in the original data 
set (i.e. the data scattered around a3(3) in Figure 3). It seems that this 
feature makes easier to associate performers to benchmarks. 
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Figure 4. Comparing performances with benchmarks: parallel coordinate plot 
of the convex combination coefficient a^(m)'s for the CPU's data when three 
archetypes are chosen {m = 3). 

4 Some Concluding Remarks 

Archetypal analysis is a powerful tool to select few extreme points belonging 
to the boundary of the da ta convex hull. This feature allowed us to design 
a da ta driven benchmarking procedure tha t we believe may benefit users in 
many application fields. 

As further work, we aim at measuring to what extent the benchmark-
archetypes synthesize the data , and to evaluate the goodness of the recon­
struction for each performer. In addition, we plan to provide users with an 
R function tha t perform the benchmarking procedure we suggested. 
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Abstract. In this work we present the main results of a research program on 
dropping out in secondary school, carried out for the Labor Bureau of Campania 
Region in Italy. We exploited structural equation modeling to identify determinants 
of the phenomenon under study. We adopt a social system perspective, considering 
data coming from official statistics related to the 103 Italian Provinces. We provide 
some details for the model specification and the estimated parameters. Some rele­
vant issues related to the estimation process due to the small sample size and the 
non-normality of the variables are also discussed. 

1 Introduction 

Recently, Western countries' policy makers have devoted much interest to the 
quality of teaching and to education system performances. As higher quali­
fications are now considered the essential baselines for successful entry into 
the labor market and as dropouts number in secondary school is increas­
ing in European countries, a lot of researches have focused the attention on 
these phenomena. Besides the straight measurement of dropping out rates, 
the analysis of their characteristics and factors affecting them is a crucial 
point for designing education and employment policies. 

In Italy, recent reports documented tha t the dropping out rate in sec­
ondary school is still 4.62%, up to 11.30% for the first year in some technical 
curriculum (Miur, 2002). This phenomenon represents a social and economic 
problem, as dropouts, tha t do not achieve higher levels of educational at tain­
ments, are more unlikely to participate in the labor market. However, most of 
the studies have been concerned only with the primary school where, instead, 
the dropping out rate has been decreasing to "physiological" levels. 

In this work, we present the main results of a study on dropping out in 
secondary school tha t has been carried out for the Labor Bureau of Campa­
nia Region in Italy (A.R.Lav.), and was oriented to regional welfare policy 
planning. The research program aimed at understanding the main social and 
economic features affecting the education system and dropping out in sec­
ondary school. In particular, we introduce the structural equation modeling 
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approach to explain the dropping out phenomenon in terms of social and 
economic context, education system, family environments, and student per­
formances in primary school. We adopt a different perspective with respect 
to usual researches that focus the attention on individual characteristics of 
dropouts, relying on questionnaires or interview data. In our case, instead, we 
consider the national social system as a whole, and the 103 Italian Provinces 
as statistical units. Hence, our data sources are the available official statistics 
of Italian National Statistical Institute (Istat) and Department of Education 
(Miur). 

In this paper, we provide the theoretical model specification based on 
dropping out literature (Section 2), and we discuss some issues related to 
data sources and to the use of exploratory data analysis tools for the vari­
able selection (Section 3). In Section 4 the estimation problems due to non-
normality are addressed and the final model estimates are presented. Some 
concluding remarks are in Section 5. 

2 Theoretical Hypotheses and Structural Model 
Specification 

To understand secondary dropping out causes, to define the dimensions affect­
ing it, and to specify the theoretical model we first consider the sociological 
literature (Benvenuto et al, 2000; Jimerson et al, 2000). Both foreign and 
domestic surveys usually highlighted as relevant features the individual traits 
and psychological measures, such as behavior problems, poor peer relation­
ship (Farmer et a/., 2003). Some demographic status variables and family 
factors like parental school involvement, quality of parent child interactions, 
family lifestyles and values are also pointed out (Liverta Sempio et al, 1999; 
Clarizia and Spano, 2005). Other few studies consider the impact of welfare 
policies, like activities for family support or parental employment opportuni­
ties, on dropping out rates (Orthner and Randolph, 1999; Prevatt and Kelly, 
2003). 

Following the literature and paying more attention to features at coun­
try system level instead of the individual one, we define four main factors: 
the social, economic and demographic contexts, the education system, the 
family structures, and student personal traits. In particular, considering the 
research perspective, we intend the last factor related to the primary school 
careers and student performances. While it is clear that all the previous fac­
tors affect directly dropping out, other causal relationships among them can 
be also hypothesized. Indeed, the first three dimensions can yield effects on 
students careers in primary school. At same time the social and economic 
context could exert some infiuence on all the other factors. To describe such 
a complex phenomenon and its causal patterns, we introduce structural equa­
tion modeling for the relationships among the defined factors, each of them 
measured by one or more observed indicators. 
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Structural Equation Models (SEM's), developed by Joreskog in 1970, have 
increasingly been applied in psychological and social studies, as well as in 
marketing researches during the last decade. They have been applied also in 
education to explain individual dropping out behavior (Kaplan et al., 1995). 
To briefly recall, SEM's combine the path analysis among observed variables 
and latent factors, and their measurement models. Formally, given a set of 
observed exogenous variables x and endogenous variables y, let us denote 
with ^ and r] the latent exogenous and endogenous factors. The measurement 
parts of SEM's can be described by the following two equations: 

X = A^^ + 6, 

y = AyT] + e, 

where Â ^ and A^ are the coeflicient matrices relating the observed variables 
to the latent factors, while S and e are the associated residual errors. The 
model includes also a third equation describing the structural part 

7/ = Br/ + re + c, 

where F and B are the regression coeflicient matrices among the latent factors 
and (̂  is the related error vector. 

One of the crucial phase in the SEM construction consists in the specifl-
cation of latent factors and their relationship pattern, as well as in the choice 
of observed variables to measure the factors. With regard to the former step, 
we deflne a model to describe causal relationships among the four exogenous 
latent constructs and the endogenous one, the dropping out. Although the 
four factors could be all considered exogenous, the primary school careers 
actually depends also on the context, the education system, and on family 
structures, as well as the school system is affected by the social, economic 
and demographic contexts. For these reasons, the specifled model consists of 
two completely exogenous factors and three endogenous factors, two of them 
mediators. Figure 1 reports the corresponding theoretical path diagram. 

3 Data Sources and Measurement Models ' 
Specification 

Once the theoretical structural model have been deflned, the observed indica­
tors for the measurements parts should be selected to completely specify the 
model. Due to the complexity of the phenomena and to the lack of informa­
tion in some areas, the speciflcation of measurement models required more 
attention than usual. As an example, consider that in the case of secondary 
school it is quite diflicult to flnd detailed measures of dropping out in the 
oflicial statistics (the Miur research of 2004 on this phenomenon reports data 
only for compulsory education). 
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Fig. 1. Theoretical path diagram for dropping out in secondary school 

Taking into account only Italian official statistics available to provincial 
level, given the 103 geographical units (i.e. the Italian Provinces), we selected 
62 variables from the Social Indicator System and the 11th Italian Census 
from Istat, the Miur database and the Quality of Life Indicator System of 
Sole24ore. Hence, many indicators were available to define the latent factors. 

However, given the relative small number of units, exploratory analyses 
were carried out to select a smaller variable set (for details see Ragozini and 
Vitale, 2005). In a first step, the bunch of indicators was split in coherent 
groups and principal component analyses were performed on the subsets in 
order to look at the global correlation structure and to select a reduced 
number of variables. In this phase, some expert knowledge about sociological 
theories on dropping out was also exploited. 

In a second phase, we looked at correlation and scatter plot matrices to 
go deeper in the relationship structures among the phenomena under study. 
Following the results of the exploratory analyses, and aiming to select very 
few variables to gain parsimony, we defined seven factors for the final mod­
els. The measurement models' specification process took into account the 
structural model identification constrains. 

For the social and economic context (^i) we introduced two economic 
indicators of province wealth and one for the presence of high cultural level 
population. Moreover, to better describe the social context we consider also 
the crime rate as a factor (^2)- The family structures (^3) are measured 
through indicators related to separations and divorces. The education system 
is described by two mediator factors related to the teaching characteristics 
(?7i) and to the student enrollment in different curricula (772)- We considered 
also one endogenous factor for dropping out in primary schools (773) measured 
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by students tha t failed some years. Finally, concerning the target endogenous 
factor ?74, we used three indicators to describe it: the rate of students with 
one failure, the rate of students with more than one failure during all the 
course of study, and the rate of students tha t did not enroll to second grade. 

The observed indicators selected for the final measurement models, along 
with their labels, are reported in Table 1. 

1 I n d i c a t o r s for l a t e n t c o n s t r u c t s 

Soc ia l a n d E c o n o m i c C o n t e x t s 
\ Percentage of graduates 
\Per Capita Added Value 
lEmployment rate 

1 C r i m e R a t e 
Crime Rate 

F a m i l y s t r u c t u r e s 
\ Separation rate 
IRate of new families after a divorce 

\Percentage of female single-parent families 

E d u c a t i o n S y s t e m 
\Rate of teachers with tenureship less then 5 yrs in pr. sch. 
\Rate of teachers with tenureship less then 5 yrs in s. sch. 
\Ratio of teachers with and without tenureship 

S c h o o l C u r r i c u l a 
\Rate of enrollment of students in technical schools 

P r i m a r y s c h o o l career 
\Rate of students with more than 1 failure in primary school 

D r o p p i n g o u t in s e c o n d a r y s c h o o l 
Rate of students with 1 failure 
Rate of students with more than 1 failure 

\Rate of students that did not enroll to second grade 

L a b e l s 

C o n t e x t 
C o n t l 
Cont2 
Cont3 

C r i m e 
Crime 

F a m i l y 
Family 1 
Family2 
Family3 

E d u S y s t e 
E d u l 
Edu2 
E d u 3 

T S c h o o l 
TSchool 

P S C a r e e r 
Pr imary 

D r o p o u t 
D r o p l 
Drop2 
Drop3 

M o d e l | 

Ci 1 

Xs 

C2 1 
X4 \ 

is 1 
Xs 
Xe 
Xr \ 

Yi 

Y2 
Ys 

V2 

1̂ 1 
V3 

n 1 
^ 4 

Ye 
Ye 
Y, 

Table 1. Measurements models: observed indicators {italic) for exogenous and 
endogenous factor (bold) along with their labels and role in the model. 

Given the selected indicators and the hypotheses discussed in the previ­
ous section, skipping the measurement equations, the structural model rep­
resented in Figure 1 can be expressed through the following four equations: 

Vi = 7 i i 6 + Ci 

V2 = 7 2 i 6 + /52i^i + C2 

Vs = 7316 + 7326 + 7336 + /53i^i + Cs 

m = 7416 + 7426 + 7436 + f^^lVl + /542^2 - /543^3 + C4 
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4 The Estimated Structural Equation Models 

Before estimating the specified model, univariate and multivariate normality 
of variables should be verified, as SEM's methodology assumes the x and 
y variables to be normal. We assessed distributional assumptions through 
Jacque-Berra tests, and almost all the variables turned out to be not normal, 
with severe skewness and kurtosis, with some extreme values. 

Under non-normal conditions, as in our case, asymptotically distribution 
free (ADF) estimators should be used, since they perform relatively better 
than maximum likelihood (ML) and generalized least squares (GLS) esti­
mators (Browne, 1984; Satorra, 1990). However, the ADF method is not 
adequate to deal with small sample size. For this reason, we decided to adopt 
an alternative approach: first we used power transformations to obtain ap­
proximate univariate normality for all the variables, and then applied ML 
estimators on the transformed indicators. 

It has to be noted that, even if after transformations univariate normality 
holds, multivariate normality is still not verified. Hence, to asses the esti­
mated model goodness of fit, we looked at Normed Fit Index (NFI), Non-
Normed Fit Index (NNFI) and Comparative Fit Index (CFI), because they 
perform better with respect to other indices for small sample size and under 
non-normality conditions (Lei and Lomax, 2005). Moreover, being chi-square 
statistics the least robust fit index with respect to deviation from normality, 
it was used only to compare different models, and to evaluate the effect of 
model parameter modifications (Bollen, 1989). 

Finally, the structural equation model was estimated starting from the 
correlation matrix of the transformed measured variables through the LIS-
REL 8.54 software. In Table 2, the estimated B and F coefficients are re­
ported, while to compare the relative infiuence of factors, the standardized 
coefficients for dropping out phenomenon are shown on the path diagram in 
Figure 2. 

TSchool 
EduSyste 
PSCareer 
Dropout 

r coefficients 
Context Crime Family 

n.s - -
.26 {3.89) 

-.50 {-3.16) .23 {2.30) .45 {2.87) 
-.46 {-3.45) .30 {3.81) .22 {1.75) 

B coefficients 
TSchool EduSyste PSCareer 

.62 {3.22) 
- - -

.61 {3.10) 
.18 {2.76) .42 {2.67) .26 {3.53) 

Table 2. F and B unstandardize estimated coefficients (direct effects) for the 
specified model and related t-values {italic). 

The analysis of the t-values of the estimated parameters reveals that all 
the A^ and Â ^ coefficients among the measurement variables and the latent 
constructs, and almost all the hypothesized regression coefficients between 
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latent constructs F and B are statistically significant at least at 0.01 level. 
The 721 coefficient of economic context on rate of enrollment in technical 
curriculum was removed from the model, turning out completely not signif­
icant {t — value = —0.05). On the other hand, the 743 coefficient, even if 
not significant {t — value = 1.75), have been retained in the model for two 
reasons: first, the t — value is quite close to the significance threshold, and 
second, it contributes to the significance of total effects we consider shortly. 
Then, the structural equations with the standardized estimated parameters 
are: 

EduSyste -

TSchool -

PSCareer -

Dropout -

A7 Context 

.35 EduSyste 

- A9 Context-

— .59 Context-

.23 Crime + .AbFamily + .3AEduSyste 

.39 Crime + .2SFamily + .24 TSchool + 

-.30EduSyste^ .33PSCareer 

Furthermore, to enrich the interpretation we consider the total effects 
that represent the sum of the direct effects of the simple path and the indi­
rect effects of the compound paths (Table 3). They are all significant at least 
at 0.05 level. In particular, the factors related to the social and economic 
context (-.41) and the education system (.69) exert the stronger infiuence 
on dropping out . The crime rate (.36) and the family structure (.34) are 
also determinant, while the performances in primary school (.26) and the 
enrollment in technical schools (.18) present lower effects. The total effects 
on the other endogenous factors are also of interest: the economic context 
heavily determines the education system (.26) and the dropping out in pri­
mary school (-.34), while it has some inffuence on the choice of technical 
curriculum (0.16). High rates of legal separations and divorces, the education 
system, and the crime rate affect the primary school dropping out (with total 
effects respectively equal to .45, .62 and .23). 

TSchool 
EduSyste 
PSCareer 
Dropout 

r coefficients 
Context Crime Family 

.16(2.91) 

.26 (3.89) 
-.34 (-2.24) .23(2.30) .45(2.87) 
-.41 (-3.09) .36 (4.25) .34 (2.54) 

B coefficients 
TSchool EduSyste PSCareer 

.62 (3.22) 
- - -

.61 (3.10) 
.18 (2.76) .69 (3.81) .26 (3.53) 

Table 3. F and B unstandardize total effects for the specified model and related 
t-values (italic). 

Summarizing then, the negative coefficients of the context indicates that 
in rich and developed areas the risk of pushing out students from secondary 
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0.58-^ 

0.08* 

Contl 

Cont2 

J Edlll Up. 69?^ 

0.56 

2-J Cont3 

*0.96^Contextl-0.47MEcluSy3te)^1.00-H ^^^^ |^u.00 

/ -̂- -<\ V y \ x 
0.94 \ \ \ \ \0.46 ^ 

/ \ \ \ \ 0̂:35 V 

\ v \ \ \ \ 
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\ 
'\ 
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Family1 0.45̂ n 
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Family2 

\ \ 0-33 I 
\ \ \ ' J Dropl 

^Xjo.iL^ 0."" 
k l . O O ^ F a n i l y L ^^Dropout')(0.74H DEop2 

— 1 « . ^ ,^ I 

0.70 

0.30-H Faniiy3 / M Drops 

Fig. 2. Standardized coefficients of final structural model predicting dropping out 
in secondary school. Paths significant at least the .01 level, x^ = 144.47 (77 df); 
RMSEA = 0.094; CFI = .93; NFI = .88; NNFI = .91. 

schools is reduced. The other relationships of the model were all positive indi­
cating tha t an education system poor in terms of high occupational mobility 
of teachers, an high presence of students enrolled in technical schools, an high 
crime rate, a family with internal relational problems, and, finally, high rate 
of failures in primary school increase the dropping out in secondary school. 

5 Further Developments and Concluding Remarks 

Although the proposed model do not exhaust the possible causal relation­
ships, its results offered useful interpretations to the policy makers involved 
in the research program. 

By a statistical point of view, besides the issues related to small sample 
size and non-normal distributions, we want to stress the role of preliminary 
exploratory da ta analyses. In our case, they allowed us the variable selection 
and showed the presence of subregional differences. As an example, consider­
ing only Southern Italy Provinces, the scatterplot matrices highlighted tha t 
the average family size and the incidence of large families present stronger 
relationships with dropping out with respect to the factors included in the 
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national model. It would have been interesting to develop a model including 
regional submodels. However, since there are only 36 Southern Provinces, any 
structural submodel could be carried out. Probably, in such a case pa th anal­
ysis or PLS path modeling (Tenenhaus et al., 2005) could be more feasible 
and effective. 

Furthermore, even if the parameters in our structural model are identi­
fiable and the solutions are coherent with the sociological hypothesis, the 
problem of indeterminacy of the factor scores of the latent variables still re­
mains. This issue have been investigated by several authors start ing from 
Gut tman (1955) and different methods are described in li terature to obtain 
unique solutions (among the others Schonemann and Steiger, 1976; Nooan 
and Wold, 1982 ; Vittadini and Haagen, 1991). 

On the other hand, the following three sufficient conditions for the unique­
ness under factor rotation are investigated in Bollen and Joreskog (1985): i) 
^ , the covariance matr ix of ^ is a symmetric positive definite matr ix with 
d i a g ( ^ ) = I ; ii) A has at least k — 1 fixed zeros in each column, with k is the 
number of latent variables; in) Ag has rank /c — 1, where Ag, 5 = 1 , . . . , /c is 
the submatrix of A consisting of the rows of A which have fixed zero elements 
in the s column. In our model, the first two condition are satisfied for both 
the X and y measurement models, while the third are not realized. 

In order to fulfill also the condition Hi), modifications of the final model 
introducing new A coefficients are under study, as well as the possibility of 
measuring the indeterminacy of the proposed model through some appropri­
ate index (see e.g. Vittadini, 1989). 
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Abs t r ac t . Recent Relative Effectiveness studies of the Health Sector have strongly 
criticized hierarchical ranking in hospitals. As an alternative, they propose a multi-
faceted approach which evaluates the quality and characteristics of Hospital ser­
vices. In this direction, the use of administrative data has proven highly useful. 
This data is less precise than clinical data but performs more effectively in describ­
ing general situations. The numerosity of the population renders all the parameters 
significant in linear model tests. We must therefore utilize resampling schemes in 
order to verify the hypotheses concerning the significance of the parameters in 
opportunely drawn subsamples. 

1 Hospital Effectiveness with Administrative Data 

Several recent statistical papers deal with risk-adjusted comparisons on the 
basis of mortality or morbidity outcomes corrected by means of Multilevel 
models in order to take into account different case-mix of patients (Goldstein, 
H. and Spiegelhalter (1996)). These papers, accurate from the methodologi­
cal point of view, are all based on small samples of patients with particu­
lar pathologies. Other medical papers propose risk-adjusted comparisons as 
a method for evaluating effectiveness of health structures (lezzoni (1997)). 
Moreover, in some countries private or public External Health Agencies gather, 
ad-hoc, larger da ta sets and use linear and logistic models in order to validate 
quality indicators (AHRQ (2003), JCAHO(2004)) . In other cases, they bench­
mark health structures by means of risk-adjusted comparisons (CIHI(2003), 
NHS(2004)). Recently, this use of risk adjusted comparisons for benchmark­
ing health structures has been strongly criticized (Lilford et al. (1994)). In 
particular, it has been stated tha t : "The sensitivity of an institution's posi­
tion in league tables to the method of risk adjustment used suggests tha t 
comparisons of outcomes are unlikely to tell us about the quality of care". 
Therefore it has been suggested tha t "The agencies should facilitate the de­
velopment and dissemination of a database for best practice and improve­
ment based on the results for primary and secondary research."(Lilford et al. 
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(1994)). In this direction, the use of administrative data, used by payors to 
pay bihs and manage operations, can be very useful. In fact: "These data are 
typicahy computerized, making it easy to cohect and use large quantities of 
information Administrative data have been used to examine geographic vari­
ation in utilization of surgical and medical procedures, monitor the use of 
health services, assess the effects of a policy change on health expenditures, 
evaluate the relationships between hospital death rates and hospital charac-
teristics"(Damberg et al.(1998)). Which problems do linear models and, in 
particular, multilevel models involve when they are used with administra­
tive data? Besides problems connected with the accuracy of data (i.e. coding 
accuracy, timing of diagnoses uncertainty etc.) (Damberg (1998)), there is 
a relevant methodological problem. It is known that when there are large 
data sets the significance tests associated with linear models refuse the null 
hypothesis in all cases. In fact the sample size infiuences the results, and 
beyond a certain threshold, it is the only determining factor of the test. Ev­
ery explicative variable seems to be significant for explaining the outcomes, 
and this result is particularly misleading for the topics mentioned above. 
Therefore we need appropriate testing procedures able to verify hypotheses 
regarding the significance of explicative variables in samples drawn from the 
population associated with administrate data. In general terms, we must de­
vise inference methods in heterogeneous samples collected from large data 
sets (Duncan(1998)). The conclusion obtained for tests connected with the 
Multilevel Model used for the evaluation of healthcare institutions, can be 
generalized for Linear models. 

2 The Model 

Let us consider a number of outcomes obtained from hospital discharge forms. 
These outcomes are binary variables and due to the hierarchical structure of 
n observations in a Logistic Multilevel Model. Therefore given the variable 
Yij = Bin (n, TT^J), we fit the following model 

= Too + TioX^j + 701 Zij (1) 

^y = l + e x p ( - / ( X , Z ) ) ^̂ ^ 

Before the estimation of the model, we applied a process aimed at optimising 
the univariate relationship between the outcomes and the predictors. Such 
a process consisted of a discretization based on the automatic identification 
of the linear intervals in each relationship, assigning an indicator variable 
to each interval. In this way, non-linearities were captured and modelled, 
thereby enhancing the expressive power of the independent variables. The 
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model building initiates with a model including only the dummies; in this 
phase we facilitated a chunk elimination; the second step consisted in adding 
all the remaining predictors. A backward elimination completed the model 
building process. A positive side effect of the transformation process was the 
weakening of the evidence calling for the inclusion of interactions. A possible 
explanation of this fact is that most of the variability is retained by the 
main effects after transformation, and that non linearity and second-order 
interaction compete for the same information. 

3 Problems Involved in Tests with Large Data Sets 

Because of the high number of degrees of freedom, all first level effects turned 
out to be significant, whereas this is not true in the case of the hospital level 
effects. This result is inherent in the classical estimation procedure, designed 
for small to medium samples (at most some thousands), and it is due to the in­
definite narrowing of the standard errors as sample increases. The imbalance 
between the first and second level analysis has been overcome by utilizing an 
empirical testing procedure looking first at the size of effects, then at their 
relative variability (gauged by confidence intervals) and finally the statisti­
cal significance of the effects. This procedure adheres to the following logic: 
first evaluate the practical importance, then the extent of statistical variabili­
ty associated with the effect (uncertainty), then the significance is used as a 
standard measure of the deviation to a null effect. The next step in the present 
work tries to go beyond what is described above. Statistical inference based 
on very large sample (> 100.000), containing many heterogeneous groups, 
leads to irrelevance of statistical testing because of the exceeding power. We 
think that the real interest is to disentangle the complex data structure. In 
summary "failing to reject the null hypothesis" is not the same as "accepting 
the null hypothesis" or as "rejecting the alternative hypothesis" because of 
the large size of the sample, the null hypothesis is rejected but this does not 
mean that the alternative hypothesis of significance is accepted. 

4 The New Proposal 

We propose a scheme of analysis in which we first attempt to discover and 
represent the heterogeneity, then we model the detailed data incorporating 
the structure which has emerged, performing the inference using a number 
of competing approaches: conducting the analysis within each sub sample, 
patching together the results using and comparing a standard approach, a 
Bayesian approach, resampling-based approaches. The standard approach has 
many drawbacks: in this paper it is used to provide a reference point. The 
Bayesian approach, by modelling the probabilities directly, seems to be im­
mune to the problems discussed above (Albert and Chib(1951)). However, 
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apart from being computationally very expensive, it is not clear how this ap­
proach performs in the presence of large samples. The structured resampling-
based approach is an attempt to overcome the problems described by combin­
ing resampling-based techniques (for example, various versions of Bootstrap 
or Boosting) and a representation of the heterogeneity in the sample which 
can be obtained either by a data-driven approach (useful for achieving a 
statistically representative analysis of the heterogeneity) or by a knowledge-
driven approach (useful to test hypotheses or to explore specific well-identified 
sub-samples)(Di Ciccio and Efron (1996), Efron (1996)). Multilevel mod­
els represent the statistical relationships existing between a given dependent 
variable or response function and a set of predictors, taking into account the 
objects of different size to which such predictors are associated and the rela­
tionships (most of the time hierarchical) between these objects. This allows 
taking into account the different sources of variability in the data correctly. 
However the multilevel paradigm is not able to capture all of the variability 
and heterogeneity in the data. For example, it is not able to explain the hete­
rogeneous behaviour of a given agent (hospital) considered from the response 
function conditional to the set of predictor, relative to other similar agents. 
Being alike after modelling out the variability associated to the multi-level 
model amount, they are probably alike from a managerial point of view. Given 
this, we considered a more complementary approach in which no predefined 
structure was super-imposed on the observations. This methodology has been 
called cluster-weighted modelling or soft-clustering. The idea is to combine 
the results in order to highlight cases that behave in a well-characterized 
way (belonging to a single domain of infiuence or cluster) and cases whose 
response has characteristics partially shared by more than one cluster. In the 
final part of this section, we define soft-clustering methodology in further 
detail. The clusters do not interact or describe the data locally with respect 
to the maximum of the joint probability. There is no prior information (an 
arbitrary cost function E^ ,̂ is used to express the energy associated to ẑ  in 
the cluster Cjwith centre / i | ) ; an iterative process with many clusters utilized 
to achieve a satisfactory partitioning of the data space through a sequential 
fusion of the clusters. The probability that point Xi G Cj belongs to cluster 
Cj is expressed by p^^.. The total average cost is therefore: 

M N 

Equation (3) acts as a boundary condition to the data distribution. To find 
a stable distribution we follow the maximum entropy principle during each 
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step of the iterative process. The pij which maximizes entropy is: 

1 
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M N 

3=1 i=l 

the Boltzmann distributions are: 

exp [ - /3 Eij] 
P. 13 

Zj 

N 

E Pi3 
N M 

E E Pij^ij =< ^ >= ^OSt 

N 

(4) 

(5) 

where the distribution function /3 is a Lagrange multiplier. Using a thermo­
dynamic analogy, if (3 oc 1/T, where T is the a "temperature" of the system, 
with increasing /3, the system tends to be frozen and only the closer points 
influence each other. With decreasing (3 we have a more disordered system 
(observations have a higher degree of interaction). The assumption of inde­
pendence between the clusters and the pij of different clusters allows us to 
deflne the free energy F^ for the cluster C^: 

- log Zj - i 
P a/if 

0 Vj 

Considering the squared euclidean distance: 

|2 
E,, ^ i \ Wi /^r i '+ 1 .̂ 

we obtain: 

Zi exp 

2-^ N 

i=l 

•P (; M : 

•P (̂  M : 

(6) 

(7) 

(8) 

Equation (8) cannot be solved analytically. A solution can be obtained through 
flxed-point iteration of the following formula: 

Â  

Mi(n+i) = Y: 
Zi exp •/3 ( z ^ - / i | ( n ) ) ^ 

1 5 ] exp -f3 {z, - fiUn)y 
(9) 

which is typically iterated until a stable /i | is obtained. The process con­
verges to a local minimum with respect to specifled initial conditions and 
(3, which reflects the number of clusters used to represent the data . This 
topic, currently under investigation, is the application of the cluster-weighted 
modelling of all data, taking into account the patient as well as the hospi­
tal level, constructing a multi-level cluster weighted framework of analysis. 
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able to answer some very interesting questions without the necessity of us­
ing ad-hoc procedures. Below, we give a brief account of the theory. Let us 
consider the data vectors as {y^,x^,z^}, where y is the response function, x 
the level-1 variables and z the level-2 variables. We then infer p(y,x,z) as the 
joint probability density. This density is expanded over a sum of cluster C/c, 
each cluster containing an input distribution, a local model, and an output 
distribution. The input distribution is: 

K K 

P(y,X,z) = Y. P(y,X,Z,C/e) = E P(y,X,z|c/e)p(c/e) = 
k=l k=l (IQ) 

= E p(y|z,X,C/e)p(x|z,C/e)p(z|c/e)p(c/e) 
k=l 

with the normalization condition i7^p(c/c) = l. In the presence of both discrete 
and continuous predictors we must further partition them accordingly. The 
next point is to associate a specific density to each of the terms in the for­
mula. Normally, the conditional distributions p(x|z,c/c) and p(z|c/c) are taken 
to be Gaussian distributions with appropriate covariance matrices (for exam­
ple, diagonal or structured). The output distribution p(y|x,z,c/c) depends on 
whether y is continuous-valued or discrete, and on the type of local model 
connecting x,z and y: f(x,z,b/c). In most cases a linear function is enough, 
given the composition of many local functions (as many as required by the 
data distribution), to represent complex nonlinear functions. 

5 An Application 

The study is based on the administrative data provided by the Lombardy 
Regional Health Care Directorate regarding 1.152.266 admissions to 160 hos­
pitals. The data consists of: regional population anagraphical records. Admi­
nistrative Hospital Discharge records and hospitals' structural characteristics. 
Response variables are: in-hospital and post-discharge mortality, patient's 
discharges against medical advice, transfers to other hospitals, unscheduled 
hospital re-admissions, unscheduled returns to operating room. Patients' case 
mix and hospitals' characteristics are also collected from the same sources. 
We use a logistic Multilevel model to investigate best and worse practices 
of hospitals connected with their characteristics (i.e.: size, private vs public 
status, general vs specialized, etc.). The test procedures mentioned above are 
used in order to evaluate the significance of parameters related to explicative 
variables in the context of large populations. Multilevel models produce a va­
riety of useful results, and in the Health Care Effectiveness Evaluation context 
level-2 residuals are particularly important. In the present case, we have 160 
residuals, one for each hospital, with a considerable level of heterogeneity, 
indicating either a possible difference in managerial effectiveness, or some 
other source of variability. Is there further information, perhaps at a higher 
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level, not-well defined at the sampling design stage, that can reasonably ac­
count for a significant portion of the level-2 residual variation? Is it possible 
to individualize combinations of conditions associated with specific portions 
of the level-2 residual distribution? In order to answer to these questions, a 
simple but effective strategy identifies a set of variables able to determine the 
aforementioned patterns. Then, we apply a multiple comparison Bonferroni 
adjusted procedure to identify their statistical significance. Three criteria are 
used: the effect size, the adjusted p-value and the standard errors (confi­
dence intervals) of the effect. In the analysis we also include second-order 
interaction effects. At this point we pursue an integrated approach in com­
bining the Multilevel and Cluster weighted models. Therefore we present an 
outline of a practical application of the association between Multilevel mo­
delling and cluster-weighted clustering, namely, to apply the soft-clustering 
to level-2 residuals to obtain automatically the main patterns of variation in 
the joint distribution of residuals. As a further interesting result, we obtain 
the probability of each hospital to belong to each cluster. This allows us to 
discern well-characterized hospitals from other less-clearly defined ones. The 
case study concerns the soft-clustering analysis for mortality rate within 30 
days after discharge outcome. The procedure detected 4 clusters. All the ob­
servations were well-characterized by a single cluster with one exception, as 
already mentioned. The tables below show an analysis of variance on these 
clusters and their composition. 

Cluster 

clusterO 

c l u s t e r l 

c lus te r2 

c l u s t e r s 

N Obs 

55 

24 

49 

32 

Variable 

PRIV 
IRCCS 
DEAS 
PRS 
RR 
PRIV 
IRCCS 
DEAS 
PRS 
RR 
PRIV 
IRCCS 
DEAS 
PRS 
RR 
PRIV 
IRCCS 
DEAS 
PRS 
RR 

Mean 

1.00 
0.00 
0.16 
0.15 
1.00 
0.00 
0.25 
0.00 
0.00 
1.21 
0.02 
0.08 
1.00 
0.00 
1.16 
0.03 
0.03 
0.00 
1.00 
1.25 

Minimum 

1.00 
0.00 
0.00 
0.00 
0.24 
0.00 
0.00 
0.00 
0.00 
0.24 
0.00 
0.00 
1.00 
0.00 
0.27 
0.00 
0.00 
0.00 
1.00 
0.39 

Maximum 

1.00 
0.00 
1.00 
1.00 
3.05 
0.00 
1.00 
0.00 
0.00 
0.175 
1.00 
1.00 
1.00 
0.00 
2.17 
1.00 
1.00 
0.00 
1.00 
2.56 

Std Dev 

0.00 
0.00 
0.37 
0.36 
0.59 
0.00 
0.44 
0.00 
0.00 
0.05 
0.14 
0.28 
0.00 
0.00 
0.41 
0.18 
0.18 
0.00 
0.00 
0.55 

Median 

1.00 
0.00 
0.00 
0.00 
0.06 
0.00 
0.00 
0.00 
0.00 
1.10 
0.00 
0.00 
1.00 
0.00 
1.11 
0.00 
0.00 
0.00 
1.00 
1.23 
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Parameter 

Intercept 
Cluster 
Cluster 
Cluster 
Cluster 
DEAS 
PRS 
IRCCS 
UNI 
PRIV 

clusterO 
clusterl 
cluster2 
clusters 

Estimate 

-.3277484344 
0.0340194876 
0.5136519229 
-.1232972155 
0.0000000000 
0.6099373653 
0.4559875042 
-.4917529255 
-.1586361703 
-.0270973074 

Standard Error 

0.20144526 
0.37985182 
0.22580980 
0.25478708 

0.17460280 
0.18319776 
0.16183465 
0.14348553 
0.34221433 

t Value 

-1.63 
0.09 
2.27 
-0.48 

3.49 
2.49 
-3.04 
-1.11 
-0.08 

Pr > |t| 

0.7347222 
6.45 
0.16875 
4.36875 

0.0006 
0.0965278 
0.0028 
1.8798611 
6.5069444 

The risk within clusters presents a significant heterogeneity. The presence 
of DEAS and emergency units remain significant in explaining the hetero­
geneity. Another interesting result is tha t most of the hospitals with a given 
profile have similar pat terns of residual variation (hospital-specific effective­
ness), whereas some are deviate from this norm. This is a significant finding, 
allowing the proposal of innovations for the improvement in Quality for spe­
cific health care facilities. 
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Abs t r ac t . Over last few years the need for an objective way of evaluating student 
performance has rapidly increased due to the growing call for the evaluation of 
tests administered at the end of a teaching process and during the guidance phases. 
Performance evaluation can be achieved busing the Item Response Theory (IRT) 
approach. In this work we compare the performance of an IRT model defined first 
on a multidimensional ability space and then on a unidimensional one. The aim 
of the comparison is to assess the results obtained in the two situations through a 
simulation study in terms of student classification based on ability estimates. The 
comparison is made using the two-parameter model defined within the more general 
framework of the Generalized Linear Latent Variable Models (GLLVM) since it 
allows the inclusion of more than one ability (latent variables). The simulation 
highlights that the importance of the dimensionality of the ability space increases 
when the number of items referring to more than one ability increases. 

1 Introduction 

In the Italian educational system, the raised level of formative requirement 
needs a particular consideration in the assessment and evaluation field. Over 
the last few decades, the assessment issue has acquired new facets such as the 
self-evaluation, the measurement of the level of a skill and the effectiveness 
of a teaching process. The need for statistical tools for developing large-scale 
testing had greatly increased. 

If one is interested in evaluating the abilities acquired by a student in a 
given phase of a learning process it may be opportune to focus attention on 
the problem of assessing individual performance. Tha t is, one has to conceive 
it as the manifest expression of a set of latent t rai ts underlying the cognitive 
process. Several disciplines are involved here: psychology, investigation topics, 
statistics, computer science, and so on. Each expert contributes to fine-tuning 
the evaluation tool, which cannot be efficient if certain aspects are neglected. 
The evaluation of s tudents ' learning and competence can be typically carried 
out by administering a questionnaire containing a set of items relating to 
the analyzed skills. The responses to the items can be used to estimate the 
student 's ability tha t is assumed to be a latent trai t , namely, a facet tha t is 
not directly observable. To this aim, a model tha t expresses the latent t rai ts 
in function of the answers to the items can be determined (Mignani et a/.. 
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2005; Cagnone et al, 2005). What requires investigation is the question of 
whether each item involves only one or more abilities. In literature, the latent 
space is referred to as complete if all latent traits influencing the student's 
performance have been specifled. In real situations there are always several 
cognitive factors affecting test results. These factors might include different 
levels of motivation, anxiety, readings skills, and so on. However, under the 
assumption of unidimensionality, one factor is taken as dominant and is re­
ferred to as the ability evaluated by the test. Items are often related to a 
set of abilities and their evaluation in a unidimensional skill space can limit 
questionnaire validity. This aspect has to be carefully analyzed in order to 
assess whether the loss of information following a reduction in the ability 
space dimension is not excessively large. A unidimensional latent space is 
often assumed as it enhances the interpret ability of a set of test scores. 

The aim of this work is to compare a multidimensional model with a 
unidimensional one. The former is deflned on a multidimensional ability space 
and allows us to take into account the complexity of the learning process. 
Nevertheless, the latter is more feasible in practical terms, although it depicts 
the phenomenon analyzed in less detail. The concordance and discordance of 
the two models are discussed in terms of student classiflcation. 

2 Measuring Students Abilities 

The methodology used to evaluate the individual ability in this paper is 
the Item Response Theory (IRT) (Lord and Novick, 1968), which was intro­
duced into the educational test fleld in order to deal with the case in which 
student ability is measured using a questionnaire. The main feature of IRT 
is that it simultaneously permits evaluation the characteristics of the item 
(difficulty, discrimination power and guessing) and student performance. As 
ability is not directly observable and measurable, it is referred to as a latent 
trait. An important feature of the IRT models is the possibility of using es­
timates obtained to compare students that have not necessarily answered to 
same items. The only important theoretical requirement is that the exami­
nees receive questionnaires that measure the same ability (Van der Linden 
and Hambleton, 1997). 

Unidimensional IRT models are usually useful when tests are designed 
to measure only one trait. However, cognitive processes are typically more 
complex and therefore it may be appropriate to introduce IRT defined in the 
multidimensional ability space. Indeed, students demonstrate that they have 
a wide variety of cognitive skills. Furthermore, some test tasks are sensitive 
to different kind of skills. 

In principle, it is possible to introduce several mathematical models that 
are used to describe the relationship between an examinee's psychological 
trait and his or her responses. As reported in the literature, when a multi­
dimensional phenomenon is analyzed using a unidimensional model, incor-
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rect inferences regarding a student's proficiency in a given subject may arise 
(Reckase, 1997). The effects of multidimensionality are even more important 
when the student classification is obtained by referring to ability estimates. 
The classification criteria have to be connected to the aim of evaluation in 
different steps of the formative process: guidance, entrance, and the end of a 
course. In this work, the impact of the multidimensionality on a classification 
criterion is explored through a simulation study. The IRT model considered 
is located within the GLLVM (Bartholomew and Knott, 1999), a general 
framework that makes it possible to simultaneously treat more abilities. 

3 The Model 

The GLLVM represents a general framework within which different statistical 
methods are conveyed. In particular, if the observed variables are categori­
cal, as in the case of the items of a questionnaire, it is restricted to the IRT 
approach. However, a substantial feature of the GLLVM that makes it more 
appealing than the IRT, is that the latent trait is treated as a multidimen­
sional random normal variable so that more abilities underlying the learning 
process can be investigated (Cagnone and Ricci, 2005). 

This different way of considering the latent abilities leads also to a different 
way of estimating the model. More details are given in (Bartholomew and 
Knott, 1999; Moustaki and Knott, 2000). 

In order to describe the GLLVM for binary data, consider y = {yi^... ^y^) 
as the vector of p observed binary variables (binary items) and ^ = (6>i,..., 6>g) 
as the vector of q independent latent traits. We define P{yi = 1|^) = 
7ri{0), for i = 1 , . . . ,p and yr = (0,1,1, 0 , . . . , 1) the r-th completep-dimensional 
response pattern, that is the set of the possible responses given to the p items. 

The probability of yr can be expressed as follows 

/

+ 00 Z' + OO 

. . . / g{y\e)fie)de, (i) 
-oo J — oo 

where f{0) is assumed to be standard multivariate normal distributed and 
g{y I 0) is assumed to be Bernoulli distributed 

5(y I 0) = flg{y. I e) = flMor[i-MO)]'-''\ (2) 
i=l i=l 

The second equality in (2) is obtained by assuming the conditional indepen­
dence of the observed variables given the latent traits. 

The relation between the observed variables and the latent traits is ex­
pressed through a logit link function so that: 

q 

logit (TT̂ ) = cê o + ^ ^ij^j' (3) 
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Fig. 1. The two dimensional model 

where the parameter cê o can be interpreted as difficult parameters, repre­
senting the trait level necessary to respond above 0.50 probability, aij is the 
discrimination parameter since the bigger a^j the easier it will be to discrim­
inate between a pair of individuals a given distance apart on the latent scale. 
Figure 1 represents a two dimensional model, for cê o and a^j fixed. 

The model thus defined can be viewed as a generalized linear model with 
latent variables, g{y\0) being a member of the exponential family and the 
link function being the logit of the probability associated to a correct answer. 

Model parameters are estimated using the maximum likelihood estima­
tion by an E-M algorithm. At step M of the algorithm, a Newton-Raphson 
iterative scheme is used to solve the non-linear maximum likelihood equation. 

To score the individuals on the latent dimension we can refer to the mean 
of the posterior distribution of 0 defined as: 

eh = E{e\yh) = j ef{e\yh)Ae (4) 

where h = 1 , . . . , n and n is the sample size. 

4 Unidimensional Versus Bidimensional Psychometric 
Models 

The choice of either a unidimensional or a multidimensional scheme depends 
on the aims of the evaluation. From a psychometric point of view, situations 
representing different learning scheme can occur. 

In this paper we consider three conditions of a bidimensional structure 
that, although not exhaustive, can be viewed as a starting point of a more 
complex and more complete analysis than in the unidimensional case. More 
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specifically, a structure referring to three possible alternatives has been con­
sidered: 

1. each items is causally related to both the abilities (bidimensional items) 
2. some items are related to one ability, some items are related to both the 

abilities (bidimensional and unidimensional items) 
3. each item is related to one and only one ability (unidimensional items, 

the so called 'simple structure') 

The three theoretical schemes listed above correspond to three different 
models that, from a methodological point of view, are differently specified 
and, from an empirical point of view, refer to different testing situations. 

The three models are represented in Figure 2. 

UftP 1 

uftp : 

\m :• 

UiP 4 

iriff 5 

yftp 6 

•m 7 

im i 

y?J' 3 

mi' 10 

UiiJP 1 1 

v}i i : 

UAP i : 

UAP li 

IW 15 

Utf 16 

.•7/ 

Fig. 2. Path diagrams representing tlie dimensionality of the items: model A, B, C 
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The first path diagram (model A) shows the case in which almost all the 
items are bidimensional (one of the parameters aij has been fixed to avoid 
identification problems). In the second case (model B) only eight items are 
bidimensional whereas the remanent 8 are unidimensional. In the last path 
diagram (model C) all the items are unidimensional. 

The aim of this work is to analyze the effect of fitting a unidimensional 
model when the bidimensional models described above are assumed in the 
population by performing a simulation study. More specifically, we propose 
a classification criterion, based on the ability estimates, used to evaluate the 
loss of information that occurs when a unidimensional model is fitted. 

The classification criterion refers to a level of ability that makes it pos­
sible to discriminate between smart student performance from poor student 
performance. This level of ability is determined by the object of evaluation. 
Classification is more severe if the aim is measuring the ability of a student 
who wants to access to a formative iter, it is moderate if it provides a guideline 
in the choice of a formative iter (self-evaluation tests). 

5 The Simulation Study 

A simulation study was carried out in order to evaluate the performance of the 
student classification based on a unidimensional model when data are known 
to be multidimensional. In literature, few simulation studies concerning the 
effects of the multidimensionality have been proposed due to the complexity 
of the experimental design and the computational problems. Furthermore, 
empirical studies need to assess the applicability of a multidimensional model 
to diverse testing situations. 

The design of the simulation study is reported in Table 1. 

N. of factors 
N. of binary items 
Discrimination param^eters 
Difficulty parameters 
Sample size 
Num^ber of sam^ples 
Software 

2 
16 

ZY(1.4,1.8) 
A/'(0,1) 

500 
50 

Fortran 95 

Table 1. Design of study 

The data have been fitted through a two-factor and a one-factor model. 
As pointed out above, the analysis of the results is focused on ability esti­
mates. As for the bidimensional case, we assume a compensatory approach 
by which an individual is able to offset a low ability on one dimension with a 
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high ability on the second dimension. It makes it possible to obtain an ability 
measurement (Oav) by averaging Oi and O2. For both models student classifi­
cation is obtained by considering the criterion that a value of ability greater 
than 0 indicates an adequate level of knowledge. In Table 2 the percentages 
of classification agreement and disagreement of the two-factor model versus 
the one-factor model is reported. As for Model A, the percentage of the over-

\ Model A 
11 factor 

( 9 > 0 

( 9 < 0 

2 factors 

Oav > 0 

45.9 
2.5 

Oav < 0 

2.8 
48.8 

Model B\ 
1 factor 

( 9 > 0 

( 9 < 0 

2 factors | 

Oav > 0 

45.1 
5.7 

Oav < 0 

5.1 
44.1 

\ Model C 
1 factor 

( 9 > 0 

( 9 < 0 

2 factors 

\Oav > 0 
40.9 
12.9 

\Oav < 0 
11.1 
35.1 

Table 2. Results of the simulation study: model A, B, C 

all disagreement is 5.3. This means that the two classification criteria give 
coherent results. This holds for both positive and negative abilities. The per­
centage of disagreement doubles for Model B and it is the highest in Model 
C. In this latter case the two criteria give different classification results for a 
quarter of the students analyzed. 

In general, passing from two factors to one factor leads to substantial per­
centages of disagreement. This behavior becomes more evident as the number 
of unidimensional items increases. That is, the one-factor model seems to be 
not recommended when the structure of the items is simple. However, these 
results are strictly related to the choice of a compensatory approach. 

6 Concluding Remarks 

In recent years in educational testing multidimensional models have became 
increasingly popular due to the awareness that a variety of cognitive skills 
are required to solve the items correctly. This has generated the need to 
measure a multiple ability from a single exam. It is therefore important to 
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understand how best to interpret results of such tests in order to classify 
students accurately. 

In this paper we carried out a simulation study in order to evaluate the 
performance of a unidimensional IRT model and a bidimensional IRT model 
when da ta are generated from the latter. Three model structures, representing 
different test situations, were considered. Analysis was based on a classifica­
tion criterion according to which a student demonstrates an adequate level of 
knowledge if his estimated ability is higher or equal to zero. In the bidimen­
sional case, a compensatory approach was assumed. The results highlighted 
tha t the choice of the simpler one factor model leads to good results, i.e. 
little loss of information occurs and hence agreement in the classification for 
the one-factor and the two-factor models exists, if all the items are bidimen­
sional. The results become as worse as the number of unidimensional items 
increases. This means tha t if we refer to a simple structure only the bidi­
mensional model would appear preferable. However, particularly important 
is a more in depth understanding of how test composition affects the ability. 
Furthermore different classification criteria should be analyzed in order to 
evaluate whether results change. For example, different ways of combining 
abilities in the bidimensional case should be explored. Finally, since feasibly 
latent t rai ts are related, correlations among them should be included in the 
model. 
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Abs t r ac t . A vast literature has been recently concerned with the analysis of varia­
tion in overdispersed counts across geographical areas. In this paper, we extend the 
univariate semiparametric models introduced by Biggeri et al. (2003) to the anal­
ysis of multiple spatial counts. The proposed approach is applied to modeling the 
geographical distribution of employees by economic sectors of the manufacturing 
industry in Teramo province (Abruzzo) during 2001. 

1 Introduction 

During last decades a wide class of models has been introduced to analyze 
univariate counts observed over a set of adjacent regions with particular em­
phasis on mapping disease or mortality counts. Both parametric and semi-
parametric approaches have been proposed for the univariate case, while the 
multivariate one has only recently known an increasing interest, see among 
others Leyland et al. (2000) or Jin et al. (2005). A similar interest can be 
found in the econometrics literature; see, among others, Munkin and Trivedi 
(1999) and Chib and Winkelmann (2000). Alfo and Trovato (2004) give a re­
cent and detailed review of this topic. In this paper, we propose a method for 
mapping several dependent counts recorded over a set of contiguous areas; the 
multivariate model is defined through a set of conditionally independent uni­
variate models, which are linked through outcome- and area- specific latent 
effects. We show how model parameters and the distribution of the random 
effects can be straightforwardly estimated using a s tandard EM algorithm 
for ML in finite mixtures. The paper is structured as follows. Details of the 
theoretical framework for the univariate case is reported in section 2. Section 
3 entails the extension to the multivariate context. In section 4 we analyze 
the results obtained by mapping the geographical distribution of employees 
by economic sectors (clothing and leather goods) in the Teramo province. Fi­
nally, section 5 gives some concluding remarks and outlines potential future 
research agenda. 
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2 Univariate Modeling 

Let us suppose that the analyzed region is composed by n adjacent areas and 
that counts of employees Oi in a given economic sector have been recorded for 
each area. We denote with Â (̂ ) = {j : Cij ^ 0} the neighborhood of the i — th 
area, where Cij = 1 if areas i and j are adjacent, Cij = 0 otherwise. Observed 
counts Oi are considered as realizations of n conditionally independent Poisson 
random variables: 

0 , |A, -Poisson(^ ,A, ) (1) 

where Ei, i = 1 , . . . ,n represent the expected number of employees in the 
i — th area obtained by standardization. Therefore, Â  is a parameter measur­
ing the departure of the expected standardized ratio (in a mortality setting, 
SMRi = Oi jEi ) from 1 (the overall average value); it represents a propen­
sity parameter for the population of the i — th area to be employed in a given 
economic sector as compared to the whole area. Estimates based on crude 
ratios are often misleading since the corresponding variance is greater for less 
populated areas; simple homogeneous Poisson models are not adequate to 
give reliable estimates of model parameter. The goal is to filter the extra-
Poisson variation in order to give reliable estimates of the underlying relative 
risks (propensities). Once, point estimates are obtained, a related interest 
is in classifying areas or in mapping results, usually through thresholding 
techniques. The goal is to identify areas with extremely high (low) relative 
propensities to the event of interest. Therefore, statistical analyses generally 
focus on the parameter vector A = (Ai,..., A^) , which can be modeled using 
a canonical link as: 

log(A,)=/3o + ^^ + ^̂  (2) 

where /3o represent the overall intercept (i.e. /3o = log(Ao) is the average 
log-propensity in the entire region) while Ui and Vi are mean zero random 
components measuring, respectively, individual heterogeneity and spatial de­
pendence with respect to a specified neighborhood. This formulation is based 
on the conjecture that heterogeneity due to local features can be separated 
from spatial dependence. 

This formulation has been introduced by Besag et al. (1991) and is usually 
referred to as the convolution model, see Mollie (1996). Various parametric 
approaches are based on this model; for a recent review, see Alfo and Vitiello 
(2003). In this paper we follow the semiparametric approach described by Alfo 
and Postiglione (2002) for binary data and by Biggeri et al. (2003) for counted 
outcomes. They modeled the term Vi, i = i,... ,n using an autoregressive-
type component: 

PiV* = pilog\ y o j } ] Ej (3) 
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The term pi can be considered a smoothness parameter measuring the strength 
of spatial dependence. The pseudolikelihood function is obtained by integrat­
ing out the random vector d̂  = {ui^ piY as follows: 

L{)=\\{ f{oi\0^,j&N{i),d,)AG{d,)) (4) 

where V represents the support for (^(d^), the distribution function of d^. 
Even when normality is assumed, the above integral has not analytical so­
lution. Ordinary or Adaptive Gaussian Quadrature or other numerical tech­
niques give a possible solution but they can be computationally demanding 
and far from accurate; this problem is substantial when the random effects 
distribution is far from being symmetric and unimodal. Avoiding a parametric 
specification for the random term d̂  = {ui, pi), i = 1 , . . . , n we can proceed 
to estimation by nonparametric maximum likelihood through an EM-type 
algorithm. Laird (1978) and Lindsay (1983a, 1983b) showed that, under cer­
tain general conditions, the log-likelihood function is maximized by at least 
a discrete distribution on a finite number of mass-points, say K. Adopting 
this approach the pseudolikelihood function can then be rewritten as: 

^(•)=n I E/(^^ 1̂ '̂̂ ' ^ ^«'d,)^, I (5) 
i=i [k=i J 

The discrete nature of the solution helps detecting clusters of areas character­
ized by homogeneous values of local random effects Ui. Estimated locations 
ix/c, /c = 1 , . . . , K represent mean zero random deviations from /3o, / = 1,...,p, 
conditionally on the observed effect of the autoregressive component, mea­
sured by Vi = Pk^i • With respect to the k-th component, we may write: 

Â  = exp (/3o + ix/c + Vi) = exp(/3o) exp(ix^) exp{pkV*) (6) 

where exp(ix/c), /c = 1 , . . . , K, represent the relative propensity for the k—th 
component as compared to exp(/3o). Therefore, a positive value of Uk (i.e. 
exp{uk) > 1) indicates an increase in the relative propensity with respect to 
the whole region, while a negative value of this term (i.e. exp(ix/c) < 1) implies 
a decrease in the relative propensity. Locations dk and corresponding masses 
TTk represent unknown parameters that are estimated as follows. Denoting for 
compactness with S the parameter vector, we have: 

dlog[L{d)] di{d) ^ ^ dlogfik .„. 
— 9 6 — = ^ ^ = 2 . 2 . ^ ' ' ^ ^ ^ (7) 

i=l k=l 

where Wik is the posterior probability that the i — th area comes from the 
k — th component of the mixture. These score equations are weighted sums 
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of those for an ordinary spatial GLM with weights Wik • Solving score equa­
tions for fixed weights and updating the weights from current parameter esti­
mates is an EM algorithm. Using posterior probabilities Wik, i = 1 , . . . , n, /c = 
1 , . . . , K, we could cluster areas by employing a Maximum a Posteriori (MAP) 
approach. 

3 Extension to the Multivariate Case 

In the multivariate context, we observe counts ou of number of employees in 
L economic sectors. Let ô  = (o^i, 0^2, •.., O^L)^ denote the vector of observed 
counts for the i — th borough, with i = 1,..., n. As noted by Jin et al. (2005), 
when we have several measurements recorded at each spatial location (for 
example, information on p > 2 diseases from the same population groups or 
regions), we need to consider multivariate areal data models in order to han­
dle the dependence among the multivariate components as well as the spatial 
dependence between sites. Due also to efficiency reasons we propose to define 
a multivariate model for all the analyzed outcomes considered as jointly de­
termined. Since longitudinal data represent a particular case of multivariate 
data, a first choice for modeling dependence among counts could be that of 
using, as they are, random coefficient models developed for the longitudinal 
case; these are often referred to as uni-factor models, see e.g. Munkin and 
Trivedi (1999) or Chib and Winkellman (2000). The common latent struc­
ture represents the only form of association among responses recorded in the 
same subregion. But this approach lacks generality, since it implies unit cor­
relation between random terms in the L equations. We propose rather to 
use correlated random effects which are specific for area and outcome. Let 
^i = {uii, '"^UiL) denote the set of random effects; using for simplicity only 
canonical links, the corresponding propensity parameters can be modeled as: 

\og{\ii)=r]ii= pQi^Uii^Vii i = l , . . . , n / = 1,. . . ,L (8) 

where uu and vu have the same meaning as before, but refer only to the /—th 
outcome; they represent random terms measuring respectively local discon­
tinuities and spatial dependence. We leave G{-) as completely unspecified, 
and proceed as in the univariate case. Using the definition for the spatial 
component discussed above we have: 

log(A,0=/3o + ^ . / + P . / ^ ^ ^ ^ ^ ^ ^ ^ i = l , . . . , n / = ! , . . . , L (9) 

Using this assumption, the multivariate outcomes can be treated by us­
ing the Poisson regression model described above for the univariate case and 
parameter estimation can be carried out by slightly adapting the EM algo­
rithm of the univariate case. In fact, integrating out the random effects and 
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approximating the mixing distribution G{') with a discrete distribution, we 
obtain for the log-pseudolikelihood function the following expression: 

^(•) = E io§ 

K 

lk=l 

(10) 

where TVk = Pr(d/c), k = 1,...,K represent the joint probability of location 
Uk. Denoting with 6 the parameter vector, and proceeding as before, we have: 

i=l k=l i,k 1=1 

Equations (11) are weighted sums of likelihood equations for L GLMs with 
weights Wik, where: 

Wik 
^kfik _ ^k Ili=i filk 

Yl ^kfik Yl ^k Yll=i filk 
k=l k=l 

The EM algorithm is again defined by two steps: solving the score equa­
tions for fixed weights (M step), and updating the weights for fixed parameter 
estimates (E step). The standard EM algorithm for finite mixtures of uni­
variate distributions applies, with the crucial difference that Wik are now 
computed by considering jointly the counted responses, i.e. by considering 
the joint distribution of the random effects. The E- and M-steps are repeat­
edly alternated until the log pseudolikelihood relative difference changes by 
an arbitrarily small amount. Since ^(^+^) > (̂̂ ) r G IN, convergence is ob­
tained with a sequence of likelihood values which are bounded from above. 
A formal choice of the number of components may be based on penalized 
likelihood criteria (such as AIC, CAIC or BIG, see e.g. Keribin, 2000) or on 
bootstrapping the LRT (see Feng and McCulloch, 1996). Also in this case, 
subregions can be clustered by using a MAP approach, with groups defined 
by homogeneous values of a L—variate relative propensity parameter. 

4 Working Example 

The proposed approach is applied to mapping the geographical distribution 
of employees by economic sectors of the manufacturing industry in Teramo 
province during 2001. Analyzed data are drawn from the 8̂ ^ Census of Indus­
try and Services by Istat. It is worth recalling that, as they are defined, the 
industrial districts are agglomerations of firms, primarily small or medium 
sized, which operate in the same sector and are localized in a territorially 
delimited area. In the present context, our analysis refers to the district of 
Vibrata-Tordino-Vomano, which is specialized in the textile and clothing in­
dustry, but also contains a good number of firms in the leather making sector. 
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The territorial extension includes 20 boroughs for a total of 627,56 km^. We 
aim at defining clusters of administrative areas which are homogeneous with 
respect to the proportion of total labor forces employed in the analyzed eco­
nomic sectors. Our aim is to compare the industrial district, as defined from 
the administrative perspective, with the observed clusters of areas with a 
similar structure of labour market. 

For this purpose, we employed model (9) with respect to the sectors of 
clothing and leather goods. The number of components K = 3 has been 
chosen using the BIG criterion, as suggested by Keribin (2000). Due to the 
analysis of model fit changes, the spatial component coefficients have been 
kept fixed across area, i.e. pk = p, k = 1 , . . . ,K and dk = Uk- Parameter 
estimates are reported in Table 1. As can be observed, the overall intercept 
f3o is close to zero, indicating that the overall propensity to employment 
in both analyzed economic sectors is set to unit. The strength of spatial 
dependence as measured by the p parameter, is quite different in the two 
sectors; in particular, while it seems to be negligible for Clothing {p = 0.06), 
it seems to play a substantial role for Leather {p = 0.53). Moreover, also 
the strength of local discontinuities, as measured by the variance of local 
random effects, is different, but with a greater value for the first analyzed 
process (clothing sector, af = 0.77) rather than for the second one (leather 
sector, af = 0.47). These results suggest that local heterogenity has a stronger 
effect in the first sector than in the second one, while spatial dependence 
has a primary role in the latter. Therefore, uni-factor models would not be 
effective in mapping component membership, and the multivariate approach 
with correlated random effects is more appropriate. 

Parameter 
00 
P 
i 

corr (1/1,1/2) 

Clothing 

Estimate s.e. 
-0.18 0.13 
0.06 0.02 

-2191.67 
0.77 

0.75 

Leather 

Estimate s.e. 
-0.12 0.09 
0.53 0.02 

0.47 

Table 1. Spatial analysis of employees by two economic sectors in Teramo province, 
2001. Parameter estimates. 

As can be easily noticed, the correlation between the random effects in 
the two equations is high and positive, meaning that sources of heterogeneity 
due to local discontinuities are substantially related. However, care is needed 
when interpreting correlation coefficients since we are working on a finite 
distribution which is, in this sense, not as accurate as a continuous one. 
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Corresponding estimates of to the correlation coefficient are often higher than 
expected. Table 2 reports the mixing distribution estimates. 

G(-

( TT 0.25 0.43 0.32 \ 
wi -1.27 0.01 1.07 
W2 -1.19 0.42 0.34 

V / 

Table 2. Spatial analysis of employees by two economic sectors in Teramo province, 
2001. Mixing distribution estimates. 

The estimated components can be easily interpreted using the correspond­
ing locations estimates, and the posterior classification of boroughs (through 
a MAP approach), detailed in Figure 1. The first component (white coloured 
in Figure 1) is characterized by low propensities to both clothing and leather 
sectors; the second component (light grey coloured) shows an average propen­
sity to clothing sector and a significant propensity to the leather sector; while, 
at last, the third component (dark grey coloured) has a high propensity to 
clothing sector and a significant propensity to the leather sector. 

i..uAd.^i;v..A 

q 6 J^oO^X 

-̂ 4 i : ''•••••••• .;• ^ - i J ^ S : \ 2 9 V ,...'-

,241 -.J-—I' .;-
\'-^ry-^ 

Fig. 1. Actual district (left) and estimated class membership (right) 

As it is shown by Figure 1, all boroughs belonging to the industrial district 
of Vibrata-Tordino-Vomano are correctly identified by the model. They are 
all classified in the second or in the third class, which are the classes with 
higher propensities to the textile and leather sector. It is however interesting 
noticing tha t other areas belong to components 2 and 3, since they show a 
similar economic structure with respect to the sectors under investigation. 
As shown by Figure 1, the propose method identifies empirically a wider 
"industrial district", which is composed of 33 boroughs of Teramo province. 
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With respect to the administrative industrial district, it is wider and extends 
towards the south. In this perspective, our model can be used to evaluate 
the effective coherence of industrial districts (as defined by regional laws) to 
the economic structure of the analyzed region. These results can be therefore 
used to take policy actions regarding the economic integration of the analyzed 
regions. 

5 Discussion and Further Developments 

The suggested approach allows the mapping of L-variate counts in a simple 
and straightforward way, which represents a natural extension of s tandard 
methods for univariate mapping. It is simple to be interpreted and to be im­
plemented, and avoids inconsistent estimates due to tight assumptions upon 
the parametric mixing distribution. Nevertheless, the definition of the term 
representing spatial dependence is quite unsatisfactory and further research 
is needed in order to adopt a proper Gibbs prior distribution, following the 
proposal of Green and Richardson (2002). This method has been applied to 
a dataset concerning employees distribution by economic sector in Teramo 
Province (Abruzzo) during 2001. 
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Abs t r ac t . Regulation n. 577/1998 of the European Council gives the rules to be 
used by the Community countries to design and conduct the Labour Force Sur­
vey (LFS). In order to apply this regulation the Italian LFS has been completely 
revised regarding several aspects of the survey such as frequency, definitions, ques­
tionnaire, survey design, interviewers network. All these changes caused a break in 
the time series of the main labour force estimates. The aim of this work is to describe 
and evaluate these differences and their impact on the employed classification. 

1 Introduction 

In order to apply the Regulation of the European Council n. 577/1998 on the 
organisation of harmonised Labour Force Surveys (LFS) in the European 
Member States, the Italian LFS has been completely revised. First of all, the 
new labour force survey has to be a continuous survey (in the following we'll 
refer to it as CLFS): it means tha t the reference weeks are spread uniformly 
throughout the whole year (the previous survey had a quarterly frequency; 
we'll refer to it as QLFS). The following EU Regulations n. 1575/2000 and 
n. 1897/2000 introduce other innovations regarding the set of variables to 
collect and their definitions, explore in details the definitions of employed 
and unemployed persons and give further methodological guidelines for the 
formulation of the questions on the labour s tatus. 

In order to face up these three regulations and owing to the greater com­
plexity of the set of variables to collect, an electronic questionnaire has been 
developed. It allows to simplify the interview and to improve da ta quality. 
Moreover, a new da ta collection strategy has been adopted (a combination 
of different Computer Assisted Interviewing techniques) and a new profes­
sional interviewer network has been created by Istat . The new frequency of 
the survey, the new da ta collection strategy, the new definitions of employed 
and unemployed persons represent the core of the transformation of the Ital­
ian LFS and introduce breaks in the time series of the main labour force 
estimates. 

In the following paragraphs, the sample design, the weighting procedure 
and the survey design of the CLFS will be synthetically described; in para­
graph 5 the main changes from the QLFS to the CLFS - in particular those 
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related to the employed definition - will be described. In paragraph 6 we 
compare the estimates of employed persons produced by the QLFS and by 
the CLFS, taking into account the main changes among the two surveys, 
and evaluating their impact on the final estimates. These results refer to the 
first quarter 2004, when both the surveys were carried on simultaneously. 

2 Sample Design of the CLFS 

The new Italian labour force survey is a continuous survey (CLFS): it means 
that all the weeks of the year are reference weeks, so that the sample splits 
into 52 sub-groups with the same size. 

The main characteristics of the sample design, such as the frequency of 
the survey, the territorial representativeness, the allowed levels for sampling 
errors, the auxiliary information to be used to improve accuracy of the es­
timates, satisfy Eurostat Regulation n. 577/98. The sample has two stages 
of selection. Primary units are the Municipalities which are stratified into 
1,238 strata at the provincial level, taking into account their demographic 
size. One primary unit is selected from each stratum, according to inclusion 
probabilities proportional to the Municipality demographic size. Secondary 
units are the households and they are selected from the Municipalities' pop­
ulation registers; 76,900 households are interviewed each quarter (that is i.e. 
307,600 each year, with a yearly sampling rate approximately equal to 1.4%). 
The sample design follows a rotation scheme 2-2-2 of secondary units. Each 
household has to be interviewed four times during a 15 months period; house­
holds participate to the survey for 2 consecutive quarters, then they tempo­
rally exit for the following 2 quarters, and then come back in the sample 
for 2 quarters, after which they definitely exit. This sample scheme improves 
the efficiency of the estimates of quarterly and yearly differences of labour 
market indicators. 

The CLFS sample has been designed to guarantee reliable yearly esti­
mates of the main indicators of labour market at provincial level (NUTS III), 
quarterly estimates at the regional level (NUTS II) and monthly estimates 
at the national level^. 

3 Weighting Procedure of the CLFS 

The estimates of the labour force survey are obtained through a calibration 
estimator (Deville and Sarndal, 1992). Grossing weights for each sample unit 
are computed as follows: 

^ The QLFS sample design had similar characteristics to the new one: two selection 
stages, stratification of primary units, rotation scheme of secondary units, sample 
size, but only one reference week for each quarter. 
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Initial weights are obtained for all selected households as the inverse of 
the inclusion probability; 

The initial weights are adjusted by a correction factor for total non-
response in order to reduce the biasing effect. This factor is worked out 
as the inverse of the response ratio for sub-groups of households with 
similar characteristics identified by rotation group, region, household size, 
sex and age of the head of the household; 
Final weights are obtained by a further adjustment using post-stratification. 
They are obtained as solution of a minimisation problem under con­
straints, which requires the equalisation of the sampling estimates of 
certain auxiliary variables with their respective totals obtained from in­
dependent demographic sources based on population registers. The pro­
cedure uses the following constraints: 

1. distribution of population by sex and fourteen 5-year age groups at 
NUTS II region level (0-14, 15-19, ..., 70-74, 75 and more years); 

2. distribution by sex at NUTS II region level for each of the three 
months of the quarter; 

3. distribution by sex and five age groups at NUTS III province level 
(0-14, 15-29, 30-49, 50-64, 65 and more years); 

4. distribution by sex and five age groups for thirteen large municipal­
ities with more than 250.000 inhabitants (0-14, 15-29, 30-49, 50-64, 
65 and more years); 

5. number of households at NUTS II region level for each rotation group; 
6. non-national population at NUTS II region level classified in male, 

female, EU citizens of the 25 countries, NonEU citizens^. 

4 Survey Design of the CLFS 

The whole survey process is based on several complex operations which have 
different impacts on the final outcomes; for the CLFS a complex monitoring 
system has been set up in order to keep under control all the activities, and 
to guarantee good levels of quality. 

The electronic questionnaire simplifies the interview process reducing the 
duration and allowing for a significant improvement in the quality; this is 
mainly due to the use of automatic branching, help on-line, interactive cod­
ification of open items through search engines, root and coherence rules, 
confirmation items for re-interviews^. 

^ In the QLFS the weights were obtained by a similar procedure applying most 
of the constraints used for the CLFS (excluded 2 and 6); but these constraints 
were not applied simultaneously and different non-response correction factors 
were computed. 

^ The QLFS adopted a paper questionnaire; the data quality check was conducted 
only ex-post. 
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The first interview is carried out by CAPI technique, the three fohowing 
interviews are generahy carried out by CATI technique. This mixed technique 
ahows to make up for the advantages and the disadvantages of respectively 
face to face and by phone interviews, given the budget and organization 
constraints. To carry out CAPI interviews, a network of 311 professional 
interviewers operating on the national territory has been created, directly 
trained and managed by 1st at experts. 

5 Main Changes from QLFS to CLFS on the 
Employed Classification 

Regulations n. 1575/2000 and n. 1897/2000 give a detailed description of the 
definitions of employed and unemployed persons which have to be adopted by 
all the member states to produce comparable estimates on the labour market 
by means of a LFS. With the transition from the Italian QLFS to the CLFS 
some changes occurred to the definitions adopted, so that definitions used by 
the CLFS are exactly those established by the regulations. In the following 
we focus on the definition of employed persons. 

According to the QLFS had to be classified as Employed all those who 
are aged 15 years or more, perceiving themselves as employed or reporting to 
have been at work (at least one hour) during the reference week no matter 
for their perceived labour force status. 

On the contrary, the definition established by the community regulations 
which has been adopted by the CLFS is the following^: have to be classi­
fied as Employed all those who are aged 15 years or more, reporting to have 
been at work (at least one hour) during the reference week or they were not 
working but had a job or business from which they were absent during the 
reference week; precise conditions regarding the absence period are specified: 
self-employed persons must maintain their business while for employees the 
total absence period from work has to be no longer than three months or 
he/she continues to perceive at least 50% of the wage or salary from the em­
ployer. Permanently disabled people and conscripts on compulsory military 
service are excluded from the reference population by both surveys. 

Due to both the new survey technique and the new definition of employed 
persons, several changes were also made to the questionnaire even if the 
overall structure didn't change (a first section to collect social-demographic 
characteristics of all members of the household, and several individual sub­
sections that identify homogeneous thematic areas). Referring to the em­
ployed definition, the main difference among the QLFS and the CLFS ques­
tionnaires, is on the first question used to identify employed persons: that is 

^ For a more detailed description of the definitions see cited EU Regulations n. 
1575/2000 and n. 1897/2000 and the Eurostat document n. 05/2000 containing 
the definition of the variables specified in the 1575/2000. 
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the respondent's perception of his/her own labour status in the first and 
"having worked for pay or profit, at least one hour" in the last. 

6 Evaluation of the Impact on the Employed Estimates 

All the changes mentioned above have an impact on the labour status clas­
sification. In this paragraph a comparison among the estimates of employed 
persons produced by the QLFS (January 2004) and by the CLFS (first 
quarter 2004) will be carried on; the main aim is to evaluate the impact of 
the changes on the final estimates produced by the labour force survey. In 
the following we'll indicate: 

- QLFS: the official estimates produced by the QLFS (old definition, old 
weighting procedure, pre-census reference population); 

- QLFSnp '• the estimates produced by the QLFS data, applying the old 
definition, the old weighting procedure, the post-census reference popu­
lation that is used for the CLFS {np stays for new population^); 

- QLFSnw- the estimates produced by the QLFS data, applying the old 
definition, a new weighting procedure as similar as possible to the one 
adopted by the CLFS^, the post-census reference population that is used 
for the CLFS {nw stays for new weighting procedure with new popula­
tion); 

- CLFS: the official estimates produced by the CLFS (new definition, new 
weighting procedure, post-census reference population); 

- CLFSod- the estimates produced by the CLFS data, applying a defini­
tion of employed persons similar (as much as possible) to the old definition 
adopted by the QLFS {od stays for old definition), the new weighting 
procedure and the post-census reference population. 

We may write: 

CLFS - QLFSnp = 
= CLFS - CLFSod + CLFSod ~ QLFSnw + QLFSnw - QLFSnp 

and we may define the following figures: 

- CLFS - CLFSod is the definition impact; 
- CLFSod - QLFSnw is the survey process impact (impact of the new 

frequency of the survey, the new sample design, the new data collection 
strategy, the new professional interviewer network, the new questionnaire, 
etc.); 

5 Due to the availability of the 2001 Population Census results, all the population 
data previously released (referred to a date following October 2001) have been 
revised by 1st at. 
Excluding the new correction factor for total non-response and the constraints 2 
and 6. 
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- QLFSnw - QLFSnp is the weighting procedure impact. 

Their sum {CLFS - QLFSnp) is the overah variation. In Tables 1 and 2 
ah these results have been reported for the main employment characteristics, 
by geographical areas and gender (estimates and differences are expressed in 
thousands). 

7 Main Results and Concluding Remarks 

We may observe that the overall increase on the employed estimate from 
the QLFSnp to the CLFS (+294) is not uniformly distributed among the 
employment characteristics: the increase is larger for employees with tempo­
rary job, self-employed persons, and especially for part-time workers, while 
employees with permanent job and full-time workers decrease. This trend 
appears in the three geographical areas, both for men and women. 

Stronger differences appear in the Centre-South and for women, where to 
a considerable increase of part-time workers correspond a decrease of full-time 
workers. 

The more relevant impact is the survey process impact (+214); the defini­
tion impact is less relevant (+131) and the new weighting procedure impact 
goes on the opposite direction (-51); it is interesting to observe that the defini­
tion impact and the new weighting procedure impact have a rather uniform 
distribution among the employment characteristics, the geographical areas 
and the gender, while the survey process impact shows the same trend as the 
overall variation. 

The definition impact has always a positive sign, for all the employment 
typologies, in each geographical area, both for men and women, and it pro­
duces an overall increase of the employed estimate. 

We may synthetically conclude that the CLFS, due to the new definition 
of employed persons and especially due to the new survey process, produces 
higher estimates for employed people; the CLFS employment distribution is 
rather different from the one taken by the QLFS and this difference is mainly 
due to the survey process impact; we may say that the CLFS takes a more 
relevant part of the "marginal employment" (temporary jobs and part-time 
workers) 
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Employed 
Employee 

- with temporary job 
- with permanent job 

Self-employed 
Part-time 
Full-time 

North 
Employed 

Employee 
- with tem^porary job 
- with permanent job 

Self-employed 
Part-time 
Full-time 

Centre 
Employed 

Employee 
- with temporary job 
- with perm^anent job 

Self-employed 
Part-time 
Full-time 

South 
Employed 

Employee 
- with temporary job 
- with perm^anent job 

Self-employed 
Part-time 
Full-time 

Men 
Employed 

Employee 
- with tem^porary job 
- with permanent job 

Self-employed 
Part-time 
Full-time 

Women 
Employed 

Employee 
- with tem^porary job 
- with perm^anent job 

Self-employed 
Part-time 
Full-time 

QLFSnp QLFSnw CLFSod 

21771 
15802 
1427 

14375 
5968 
1850 

19921 

11244 
8171 
596 

7575 
3074 
1103 

10141 

4401 
3184 
297 

2886 
1217 
351 

4050 

6126 
4448 
534 

3914 
1678 
396 

5730 

13470 
9257 
693 

8564 
4213 

407 
13063 

8301 
6545 
734 

5811 
1756 
1442 
6858 

21720 
15754 
1434 

14320 
5966 
1844 

19876 

11214 
8143 
601 

7541 
3072 
1098 

10116 

4386 
3165 
299 

2866 
1221 
353 

4033 

6120 
4446 
533 

3913 
1674 
393 

5727 

13462 
9255 
704 

8552 
4207 

412 
13050 

8258 
6498 
730 

5768 
1760 
1432 
6826 

21934 
15784 
1696 

140 88 
6150 
2801 

19133 

11298 
8145 
704 

7441 
3153 
1492 
9807 

4389 
3133 
336 

2797 
1256 
606 

3783 

6247 
4505 
656 

3850 
1741 
704 

5543 

13331 
9116 
824 

8292 
4215 

625 
12706 

8603 
6668 
872 

5795 
1935 
2176 
6427 

CLFS 

22065 
15866 
1714 

14152 
6199 
2854 

19211 

11348 
8173 
709 

7463 
3175 
1519 
9829 

4421 
3155 
341 

2814 
1266 
618 

3802 

6297 
4539 
663 

3875 
1758 
717 

5580 

13390 
9149 
829 

8320 
4241 

640 
12750 

8675 
6717 
885 

5832 
1958 
2214 
6461 

Table 1. Comparison among QLFS and CLFS employment estimates 
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Employed 
- Employee 

- with temporary job 
- with permanent job 

- Self-employed 
- Pa r t - t ime 
- Full-t ime 

Nor th 
Employed 
- Employee 
- with temporary job 
- with perm^anent job 
- Self-employed 
- Pa r t - t ime 
- Full-t ime 

Centre 
Employed 
- Employee 
- with temporary job 
- with permanent job 
- Self-employed 
- Pa r t - t ime 
- Full-t ime 

South 
Employed 
- Employee 
- with temporary job 
- with perm^anent job 
- Self-employed 
- Pa r t - t ime 
- Full-t ime 

Men 
Employed 
- Employee 
- with temporary job 
- with perm^anent job 
- Self-employed 
- Pa r t - t ime 
- Full-t ime 

Women 
Employed 
- Employee 
- with temporary job 
- with perm^anent job 
- Self-employed 
- Pa r t - t ime 
- Full-t ime 

CLFS -
QLFSnp 

294 
64 

287 
-223 

231 
1004 
-710 

104 
2 

114 
-112 

102 
416 

-312 

20 
-29 

44 
-73 

49 
267 

-248 

171 
91 

129 
-38 

80 
321 

-150 

-80 
-109 
135 

-244 
28 

233 
-313 

375 
172 
151 
21 
202 
772 

-397 

** 

** 
* 
** 
** 
** 

** 

* 
** 
** 

** 

** 
** 

** 

** 

* 
** 
* 

** 
** 

** 
** 

** 
** 
** 

** 
** 
** 

c^L/r Dfiw ~ 

QLFSnp 

-51 
-49 

7 
-55 

-2 
-6 

-45 

-30 
-28 

6 

-34 
-2 
-5 

-25 

-15 
-18 
2 

-21 
4 
2 

-16 

-6 
-2 

-1 
-1 

-4 
-3 
-3 

-8 
-2 

11 
-13 

-6 
4 

-12 

-43 
-47 

-4 
-43 

4 
-10 
-33 

CLFSod -
LJL/r Dfiw 

214 
30 

263 
-232 

184 
958 

-744 

84 
3 

103 
-100 

81 
394 

-309 

3 
-32 
37 

-69 
35 

253 
-251 

127 
60 

123 
-63 

68 
311 

-184 

-131 
-139 
120 

-259 
8 

214 
-344 

345 
169 
142 
27 
175 
744 

-399 

** 
* 
** 
** 
** 

** 

** 
** 

* 

** 
** 

** 

** 
** 

** 
** 

** 
** 

** 
** 
** 

** 
** 
** 

CLFS -
CLFSod 

131 
82 

18 

64 
49 
53 
78 

49 
27 
5 

22 
22 
27 
22 

32 
21 
5 
17 
10 
13 
19 

50 
33 
8 

25 
16 
13 
37 

58 
32 
5 

28 
26 
15 
44 

72 
50 
13 
37 
23 
38 
35 

* identifies the estimates significant at 90% confidence level; 
*** identifies the estimates significant at 95% confidence level. 

Table 2. Impact of the changes from QLFS to CLFS on the employment estimates 
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Abs t r ac t . One of the most interesting research area in economics concerns the 
measurement of relative competiveness of different economic systems. Among the 
several proposed indicators, a particularly relevant one is the Product Market Reg­
ulation (PMR) proposed by the OECD, calculated on the basis of a rich database. 
This paper uses the same database to compute alternative indicators. The main 
difference with the OECD indicator is that we propose a less invasive statistical 
methodology (CATPCA), suitable for the treatment of qualitative data. In addition 
we remove several arbitrary manipulations of basic data. The calculation delivered 
a new ranking of the 21 countries analyzed and some new interesting evidence. 

1 Introduction 

In recent years a considerable amount of effort has gone into the task of com­
paring different countries' competitiveness through synthetic indices. Within 
those indices a significant at tention is devoted to the dimension of regula­
tory quality and burden on enterprises. In every existing ranking Italy per­
forms very badly both for the low quality of the regulatory environment 
and for the excessive role of the Public sector in the marketplace. The most 
frequently quoted, among those indices are the World Competitiveness In­
dex (WCI), compiled by the International Insti tute for Management Studies 
(Garelli (2005)), the Governance Indicators (GI) of the World Bank (Kauf-
mann et al. (2004, 2005)) and the Product Market Regulation index (PMR) 
of the OECD (Nicoletti et al. (1999); Conway et al. (2005)). 

Only the P M R is built on a da ta set particularly designed to catch a pic­
ture of the regulatory system. This database collects direct information about 
the regulatory and legal system obtained through a 1998 survey on member 
countries (updated at 2003) and roughly checked by the OECD team itself. 

The contents of this paper result from joint work of the authors. In particular. 
Sections 2 and 3 are due to Russo M. while Sections 4 and 5 are due to Coco C 
The autors would like to thank partecipants to the Cladag 2005 meeting and an 
anonymous referee for useful comments. 
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Some recent work confirms the relevance of the PMR in explaining diverging 
economic performance among OECD countries (Gonenc et al. (2001), Nico-
letti and Scarpetta (2003)). A reason for dissatisfaction with the PMR lies 
with the statistical method, that determines quantitative indices from quali­
tative original information through subjective quantification. Moreover, some 
of the quantified indices are then averaged with arbitrary weights in the sub­
sequent aggregation stage. We propose a different, less invasive, statistical 
methodology for the aggregation of data, tailored for the qualitative nature 
of most part of the dataset. Furthermore we remove the arbitrary weightings. 

2 Data and Aggregation Process Description 

We propose a new statistical indicator based on the same database down­
loadable at the OECD website (www.oecd.org). The information has been 
preliminarily grouped into a number of areas (variables) defined according 
to their economic infiuence. In particular, the 15 defined variables are: 1) 
Size of public enterprise system - SIZE; 2) Scope of public enterprise sys­
tem - SCOPE; 3) Special voting rights and control of public enterprise by 
legislative bodies - SVR-CPEL ;̂ 4) Use of command and control regulation 
- UCCR; 5) Price controls - PC; 6) License and permits system - LPS; 7) 
Communication and simplification of rule and procedures - CSRP; 8) Ad­
ministrative burdens for corporations and for sole proprietor firms - ABS ^; 
9) Sector specific administrative burdens - SSAB; 10) Legal barriers - LB; 11) 
Antitrust exemptions - AE; 12) Ownership barriers - OB; 13) Discriminatory 
provisions - DP; 14) Tariffs - T; 15) Regulatory barriers - RB. 

The 15 variables are measured on different scales, even if the most frequent 
are qualitative. For this reason we have chosen to measure on an ordinal scale 
the whole information in the following elaboration, thus not requiring the ar­
bitrary quantification of the qualitative modalities. In the OECD study each 
single variable defined above has been then univocally attributed to one of 
three broad regulatory domains: State control over business enterprises (SC), 
comprising the first 5 variables listed above, that groups the information gen­
erally referring to forms of direct intervention of the State in the economy 
through public ownership or through obligations to a certain particular be­
haviour (for example binding price regulation); Barriers to entrepreneurship 
(BE), including variables from 6 to 11, that groups the information concern­
ing the regulation that prevents competition from displaying its full effect; 
Barriers to international trade and investment (OUT), including the last 4 

^ The two variables SVR and CPEL were originally separated in the OECD index. 
We grouped them because of the common theme and because the CPEL was 
built on a single data information. 

^ Also the variable ABS results from the aggregation of two variables in the original 
elaboration by Nicoletti et al. (1999). 
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variables, summarizes the information describing the degree of openess of the 
regulatory system to foreign operators. This structure has been mutuated 
from the OECD work, with some significant differences (Coco and Russo 
(2004)). 

The main differences concern: quantification of qualitative information 
collected; statistical methods applied; weightings used. It is important to 
emphasize that the OECD team quantified qualitative information through a 
subjective trasformation of ordinal modalities and then aggregated the quan­
tified data through weighted average, using Principal Component Analysis 
(PCA). Furthermore, in some cases the average was further weighted with 
the score of another variable. In particular, the score of the variables SCOPE 
and ABS were used as weights for construction of the variables CPEL, AE, 
SSAB. This process led to an artificially increased overall weight in the final 
index of the variable used for weighting. We eliminated the weightings. 

3 Statistical Analysis 

In order to quantify the amount of regulation in each of the 21 OECD coun­
tries surveyed, we have performed twice the CATPCA - Categorical Principal 
Component Analysis (Gifi (1990)): on the whole (15) set of variables; on each 
of the three broad regulatory domains (as proposed by OECD team). The 
second choice, is justified by the well-established a-priori knowledge of the 
economic classification of the examined variables while the first procedure is 
the best solution in an exploring framework in which the broad regulatory 
domains follow from the statistical technique. The CATPCA has been per­
formed by the procedure used in SPSS version 11.0 (Meulman and Reiser 
(2001)). This procedure allows the estimate of the parameters of the model 
jointly with the optimal quantification (OS-Optimal Scaling) of the categor­
ical modalities. The variables in this work, all measured on an ordinal scale, 
have been rescaled on a superior order of measurement (numerical). The OS 
for each variable, aimed at estimating the principal components, has been 
obtained through an iterative ALS-Alternating Least Squares (Young et al. 
(1978)). The use of CATPCA, rather than PC A, is even more commendable 
when the number of elements (countries) of the statistical population to be 
examined increases (Candel (2001)). 

It may be important to establish preliminarly that: 

• the examined variables v{v = 1, 2,..., y ; y = 15), to be assigned to each 
domain d{d = 1,2,3;5'C = 1,BE = 2, OUT = 3) may be identified as 
follows: v^ = l ,2, . . . ,y^. In each of the domains we then have V^ = 
5, y2 = 6, y3 = 4 and V^ ^V^^V^ = V = 15; 

• Vjyd is the measured rank for the variable v^, belonging to the domain 
d in country j{j = 1,2,..., J; J = 21), while Zj^d identifies its optimal 
standardized quantification derived form CATPCA; 
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• a^yd corresponds to the v^^ coordinate of the i^^ estimated dimension 
{i = 1,2,. . . , /) for the domain d, while with Â^̂  we term the variance 
explained by the i^^ principal component in the d^^ domain. 

The CATPCA on the whole set of variables delivered (considering eigen­
values > 1) four principal components tha t explain 22,68 %, 15,94 %, 12,97 
% and 9,9 % of the variance. The three different CATPCA on each broad reg­
ulatory domain delivered two principal components for the first ( that explain 
42,49 % and 21,76 % of the variance) and the third domain (that explain 
42,15 % and 23,57 % of the variance) and three components for the second 
domain ^ (that explain 31,25 % , 24,61 % and 18,69 % of the variance). 
However, the variance explained with the first procedure (statistically less 
invasive) is not larger than the one explained with the OECD approach. 
Morover the economic interpretation of the 4 dimensions delivered by the 
procedure proves impossible. Taking this into account and considering the 
high correlation {p Spearman = 0,953) of the results obtained with the two 
approaches, the a-priori classification (logical-economic) of the 15 variables in 
the 3 macro-domains, as summarized in the Figure 1 (modified from Nicoletti 
et al. (1999) and Conway et al. (2005)), appears sensible. 

State Control 

1 
1 

PubUc 
ownership 

1 

1 

Involvement in 
Business oper. 

1 

Fig. 1. Structure of the indicator. 

The model for the measurement of the regulation index then consists of: 

^ The two sub-domains of SC are respectively: Public ownership and Control of 
business; the three sub-domains for BE are: Administrative transparency, Bur­
dens on start ups and Barriers to competition; the two sub-domains for OUT 
are: Barriers to trade and to investment; Other barriers. In the last level one can 
find all the original 15 variables. 
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1. quantification of the synthetic scoring for each country in each domain 
through a weighted average, 

Rn, 
2-^v' 

jd 
d — l /^jyd jya 

Kd 
(1) 

2. further processing of the three synthetic indicators Rji, Rj2 and Rjs, 
again through CATPCA. The new procedure delivered two principal com­
ponents ^. The general PMRj indicator for each country is then obtained 
in the same way as above: 

PMRj l^d=l ^Jd ' ^jRd 

K 
(2) 

It must be underlined tha t using the CATPCA on the whole set of vari­
ables, the general PMRj indicator could be directly obtained in one step. 

4 Results 

The statistical model with the a-priori classification of the variables produces 
the results reported ^ in Table 1. 

Countries 
United K. 
Ireland 
Australia 
United States 
Netherlands 
New Zealand 
Germany 
Sweden 
Denmark 
Austria 
Portugal 

SC 
-1,13 
-0,71 
-0,41 
-0,92 
-0,27 
-0,67 
-0,18 
-0,49 
0,25 
0,11 
0,55 

BE 
-0,85 
-0,55 
-0,58 
-0,13 
-0,16 
-0,40 
0,19 
0,19 
0,05 
0,25 

-0,49 

OUT 
-0,53 
-0,53 
-0,60 
-0,13 
-0,40 
0,11 

-0,40 
-0,02 
-0,40 
-0,40 
0,04 

PMR 
•0,81 
•0,59 
•0,54 
•0,37 
•0,29 
•0,28 
•0,16 
•0,10 
•0,07 
•0,05 
0,04 

Countries 

Japan 
Spain 
Canada 
Finland 
Switzerland 
Belgium 
France 
Italy 
Norway 
Greece 

SC 
-0,38 
0,50 

-0,52 
0,37 

-0,38 
0,56 
0,49 
1,08 
0,87 
1,28 

BE 
0,79 

-0,08 
-0,69 
0,22 
0,47 
0,61 
0,55 
0,74 

-0,35 
0,21 

OUT 
-0,03 
-0,03 
1,28 

-0,03 
0,56 

-0,03 
0,07 

-0,53 
1,23 
0,80 

PMR 
0,11 
0,12 
0,13 
0,17 
0,25 
0,34 
0,34 
0,35 
0,64 
0,77 

Table 1. Indicators of domain and general PMR. 

The results exhibit common pat terns with the OECD team study {p 
Spearman > 0,900 both for the three domains indicators and for the gen­
eral PMR) . Still some country's ranking changes considerably. Summing up, 
there emerges an Anglo-Saxon group of excellence (United Kingdom, Ireland, 
Australia) followed by some other English-speaking countries, with a more 

^ The two higher-order domains are: Inward oriented policies (including the do­
mains SC and BE); Outward oriented policies (including only OUT). 

^ In PMR increasing order. Negative (positive) values indicate lower (higher) mar­
ket regulation. 
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unequal performance across indicators (United States and New Zealand). It 
is also rather surprising the mediocre performance of the United States both 
in the BE indicator and in the OUT indicator, compensated by an excellent 
SC score. Northern European countries (Germany, Netherlands, Austria and 
most Nordic countries) follow in the ranking scoring average performance in 
most indicators. A fourth group is composed by a majority of the European 
Union countries, among which Italy, characterized by a rather heavy internal 
regulation. Italy's overall score is significantly different from the one obtained 
in the OECD study, where it was classified as the worse in the P M R and an 
outlier, in terms of bad (excessive) internal regulation. On the other side our 
ranking confirms some other anomalies (Canada, in terms of OUT; Greece 
and Norway, in terms of general PMR) ^. We have performed twice a hierar­
chical cluster analysis: on the whole (15) set of the qualitative variables using 
the complete linkage Method with city-block measure; on each of the three 
domain indicators using numerous techniques ^. The results are particularly 
steady in both of the procedures and confirm the discussion above. Due to 
space constraints, we report in Figure 2 only the dendogram obtained by 
Ward method applied on the three domain indicators ^. 

Rescaled Distance Cluster Combine 

0 5 10 15 20 
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France 

Italy 

Austria 

Denmark 

Finland 
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Portugal 

Greece 

Norway 

Canada 

Australia 

Ireland 

United King 

Japan 

Switzerland 

New Zealand 

United States-

Germany 

Netherkands 

Sweden 

T\ 

Ti 

Fig. 2. Dendogram. 

^ In general terms these results hold true also working with the 15 original variables, 
with the notable exception of Denmark and Finland. 

^ Ward, complete and average linkage (all with city-block or Euclidean distances). 
^ Alternative classifications with different models are available with the authors. 
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In particular, the United States and New Zealand (depending on the clas­
sification method adopted) can be associated to the excellence group or not. 
The analysis reveals, independently from the method used, a certain degree 
of similarity among a group of European Union countries (8 out of 14 consid­
ered) , among which Italy, that is characterized by a negative performance in 
internal policies (SC and BE), but also by high degree of openness (OUT). 
In this group Italy stands out as the most heavily regulated in the internal 
policy dimension but also the most open. 

5 Main Conclusion 

Evaluating comparatively the competitiveness of different countries is more 
and more important. There exists a wide consensus that the regulatory en­
vironment figures prominently among the main factors that contribute to 
the competitiveness of each country. A comparative evaluation of the quality 
of the regulatory environment however poses some difficulties. In particular, 
qualitative information should be treated with the appropriate technique. 

Our indicator, while using the same basic structure as the one in Nico-
letti et al. (1999) is preferable to that one. The statistical methodology used 
here, the CATPCA, is the only one suitable to treat qualitative information. 
The use of PCA in OECD indicators compels the researchers to performe a 
subjective quantification of original data, thereby distorting the whole eval­
uation exercise. Moreover some arbitrary weightings used to calculate the 
original indicator have been removed. These changes obviously did not de­
liver a radically different ranking among countries, given the database, but 
some interesting differences emerge nonetheless. 

In particular Italy ranks in any case as one of the worst countries for 
internal politicies, i.e. taking account jointly of SC and BE, but it is not any 
more an outlier, independently from the statistical models used. The cluster 
analysis confirms that, while belonging to the group of worse perfoming coun­
tries, it does not represent an absolute anomaly, particularly when compared 
with a subset of countries within the group (notably France and Belgium). 

In the light of these results the policies aimed at reducing regulatory bur­
dens remain a priority for any present and future Italian government. However 
this evaluation does not confirm the existence of a uniquely negative situa­
tion (Nicoletti (2002)), in line with additional subsequent analysis limited to 
a subset of the data (Coco and Ferrara (2003)). Over-regulation is more likely 
to be one among many structural weaknesses of our country (as suggested by 
Blanchard (2002)). Too little attention on the other side has been devoted 
in our opinion to the particular structure of Italy's indicators. Italy figures 
as a case of excellence in the OUT indicator, while performing very badly 
in both internal policy dimensions. An interesting topic for further research 
may be the investigation of the effects of particular patterns of regulation on 
economic performance. 
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Abs t r ac t . In this work, a robust methodology is developed for the classification of 
a sample of small and medium firms on the basis of their default probability. The 
importance of this classification procedure is emphasized by the New Basel Capital 
Accord (Basel II) for the capital adequacy of internationally active banks. The 
Basel accord introduces the possibility to adopt models of internal rating for the 
estimation of the default probability of customers' banks. The reference framework 
of this paper is the class of generalized linear models which allows to classify units 
avoiding strict assumptions such those required by the linear discriminant analysis. 
Another advantage of generalized linear models is the possibility to explore different 
links between the expected value of the dependent variable and the linear predictor. 
Parameters are estimated using balance ratios and data coming from Centrale dei 
Rischi for a set of firms which are customers of a medium sized bank of Northern 
Italy. Finally, we perform a robust analysis of the model estimates through the 
forward search in order to monitor the influence of outliers on the final classification. 

1 Introduction 

A financial institution deciding whether to supply credit assesses if the po­
tential borrower will be able to redeem the credit. According to this goal, 
financial institutions are engaged in developing rating systems which gradu­
ate customers on the basis of their future ability to refund the money supplied 
and may be applied to classify potential new customers. The main issue of 
a credit rating system is to identify criteria which separate "good" creditors 
from "bad" creditors. This issue, apart from its theoretical attractiveness, is 
gaining importance in financial institutions considering the role of rating sys­
tems, not only in day by day lending activity, but also in determining the 
adequacy of regulatory capital under the Basel Capital Accord (Bank of In­
ternational Settlements, 2004). Using financial and non-financial risk factors 
of a sample of more than 600 firms extracted from a financial institution 
database merged with "Centrale dei Rischi" database, we adopt generalized 
linear models in order to classify healthy and potentially insolvent firms in 
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classes according with their default probability. One of the most relevant in­
novation of this paper is the introduction of a robust analysis for distress 
prediction methods using the forward search methodology (Atkinson and Ri-
ani, 2000). The main contribution of the forward search in the framework of 
rating system is the possibility to improve the classification rule avoiding the 
infiuence of outlying firms. 

2 Brief Description of the Method: Generalized Linear 
Models and the Forward Search 

In the literature about insolvency prediction, linear discriminant analysis 
models and multiple logistic regression models have been widely used to dis­
criminate between failed and non-failed firms on the basis of financial ratios. 
Altmans popular Z-Score and Ohlsons 0-Score are, for example, respectively 
based on linear discriminant analysis and on logistic regression. Neural net­
work models are powerful and have become a popular alternative with the 
ability to incorporate a very large number of features in an adaptive non­
linear model. For a survey of business failure classification models see, for 
example. Hand and Henley (1997) and, more recently, Giudici (2003). In the 
present paper, we adopt generalized linear models (GLM) which are a family 
of models including logistic regression as a special case. The choice of GLM 
can be justified in various ways: the first relevant reason is that it is a good 
compromise between linear discriminant analysis which can be applied only 
under strict conditions (such as equality of covariance matrices) and non­
linear methods (such as neural networks and genetic algorithms) which are 
nonparametric models and generally show good forecasting performances, but 
are black-boxes hard to interpret. Another reason to prefer GLM with respect 
to discriminant analysis is that GLM methodology allows to use categorical 
variables. With respect to previous paper based on logistic regression two 
aspects of the present paper are original: 1) the application of a robust anal­
ysis based on the forward search, 2) the introduction of links different from 
logit which could lead, for some data sets, to better forecasting performances. 
When handling insolvency data it is natural to label one of the categories as 
success (healthy) and the other as failure (default) and to assign these the 
values 0 and 1 respectively. Generally speaking, let Y be the binary response 
variable which can assume two values according to a particular event which 
can happen (success) or not (unsuccess) defined as follows: 

_ J 0 unsuccess . . 
^' ~ 11 success ^ ^ 

Let E{Yi) = jj^i and /i^ = x^/3, where Xi is a vector containing the values 
of the explanatory variables for the i — th unit and f3 the corresponding 
parameter vector, the linear predictor r]i and the mean fii are related by the 
link function 
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g{^i) =n,= x'ip. (2) 

Binary data, such as defaulting and healthy firms, require a link such that 
the mean lies between zero and one. The most widely used links for binary 
data that satisfy this properties are logit, log-log and complementary log-log 
(cloglog from now on) which are reported as follows: 

g{fi,) = log ^j^j , logit 

g{fii) = log(log(/iO), log-log 
g{fii) = log(- log(l - / i^) , clog-log 

As GLM estimates are strongly infiuenced by outliers, we apply a for­
ward search analysis. The forward search is a general method which has been 
introduced originally in linear regression models and subsequently extended 
to other fields of statistics such as multivariate techniques (Atkinson et al. 
(2004)), structural time series models (Riani, (2004)) and financial time series 
models (Grossi and Laurini (2004)). The main steps of this procedure are: 

1. identification of a basic subset free from outliers. In the case of linear 
regression models least median of squares estimators are used in order to 
select the units belonging to the basic subset; 

2. ordering of observations according to their degree of accordance to the 
underlying model using, in the case of linear regression, squared residuals 
computed on a subset of m observations. The subset size is increased from 
m to m + 1 by selecting the least outlying observations from the previous 
graduation. 

3. monitoring of statistics, such as parameter estimates, t-values, and so on 
along each step of the search. 

The output is a complete monitoring of estimates which do not suffer from 
masking and smearing effects typical of classical backward methods for outlier 
detection. The forward search for generalized linear models is similar to that 
for linear regression except that we replace squared least squares residuals 
with squared deviance residuals. Another point which deserves to be stressed 
with respect to linear regression models is that, as we are analyzing binary 
data, we have to avoid including during the search only observations of one 
kind. This can be done through a balanced search in order to maintain a bal­
ance of both kinds of firms (bad and good), that is the ratio of bad and good 
in the various subsets of the procedure is maintained as close as possible to 
the ratios in the complete set of n observations (Riani and Atkinson (2001)). 
For a detailed explanation of the steps of the forward search in generalized 
linear models, see Atkinson and Riani (2000). 
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3 Data, Model Application and Main Results 

3.1 Brief Description of the Data 

The sample is composed of 653 firms from a database of a medium sized 
financial institution. Sample units have been selected randomly stratifying 
by industry and by size and excluding both small (turnover under 1 million) 
and large companies (turnover over 10 million). The remaining firms repre­
sent the 10 most important business areas defined by the Bank of Italy. The 
sample represents roughly 40% of the universe of firms with the former re­
quirements. Because the model we use is based on maximum likelihood and 
does not work with missing values, we omit from the analysis units which 
contain a missing value in at least one of the explanatory variables. The 
number of firms on which we conduct the analysis becomes 523. We merge 
the December 2004 release of the financial institution database with the De­
cember 2004 release of "Centrale dei Rischi" database. The first database 
contains qualitative variables such as juridical form, economic sector, etc. 
joined with information on balance sheet for years 2001, 2002, 2003. Into the 
second we find the monthly history of firms financial exposure with respect 
to the whole financial system over the period January 2004-November 2004. 
The total sample of firms has been divided into two groups: healthy and in­
solvent firms. The first one, excluding firms with missing values, is formed 
by 456 firms and the second by 67. We define insolvent the firms both de­
faulted (bankrupted or not) and likely to become defaulting in the near future 
according with the financial institution qualitative credit rating. Because of 
the large number of variables found to be sensible indicators of corporate 
economic capabilities, we decide to use some popular indicators concerning 
liquidity, profitability, leverage and solvency obtained from balance sheet. We 
concentrate on year 2003 data. To introduce a dynamic view of the economic 
performance we calculate the variation of balance ratios in year 2003 with re­
spect to the previous year 2002. In addition, we use some Centrale dei Rischi 
indicators in order to give evidence of the relationship between the amount of 
credit the overall banking system offers to the firm (Accorded), the amount 
of credit used by firms (Usage), the credit usage over the limit fixed by the 
bank (OverUsage) and warranties supplied (Warranties). In particular, we 
resume the monthly variables computing the arithmetic mean in the period 
January 2004-November 2004 and focus the analysis on the following ratios: 
Usage/Accorded, OverUsage/Accorded, Warranties/Accorded. The final de­
sign matrix is formed by 38 variables: juridical form, economic sector, 15 
balance ratios, 15 variations of balance ratios, 6 ratios derived from Centrale 
dei Rischi database. The complete list of variables is not reported for lack of 
space, but it is available by the authors. 
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3.2 Construction of Explanatory Variables 

Considering the high number of variables, a first challenge of our analysis is 
to verify whether some variables are more powerful in discriminating healthy 
from insolvent firms. This selection has been made by means of a forward vari­
able selection method based on the likelihood ratio under the hypothesis of 
the logit link. That procedure leads to the choice of five variables: i) spread in 
2003; ii) banking debts over turnover in 2003; iii) average credit delay in 2003; 
iv) variation of the duration of monetary cycle in 2003 with respect to 2002; v) 
usage/accorded with respect to the whole banking system in 2004. Spread in 
2003 is a profitability indicator that is obtained deducting from ROA (oper­
ational income/total assets) the cost of debt (financial interests/debts). This 
ratio stresses that firms with higher operational profitability, cleaned from 
financial interest costs, are usually more likely to be solvent than less prof­
itable firms. The relationship between banking debts at the end of the year 
2003 and year turnover gives evidence of firm's financial structure. From an 
economical point of view, traditionally, firms with a weak financial structure 
are usually more likely to become insolvent than those with stronger finan­
cial structure. The delay accorded to customers to pay their debt is usually 
expression of the trading power of the firm into the market. When the firm 
has some marketing difficulties the average delay accorded usually increases. 
The monetary cycle duration is obtained by difference between the delay in 
paying suppliers (in days) and the sum of: a) delay accorded to customers (in 
days); b) stock period (in days). Our analysis emphasizes the role played by 
the evolution of the duration of monetary cycle from year 2002 till year 2003. 
The growth of monetary cycle duration shows financial difficulties that will 
probably lead to insolvency. The ratio usage/accorded stresses the relation­
ship between credit accorded by the whole banking system to the firm and its 
use of the credit. When a firm reaches high level of credit usage (compared 
to accorded credit), it is likely that its financial capabilities are not really 
strong and it will probably fall into insolvency. 

3.3 Application of the Forward Search to GLM 

Using the selected indicators we estimate three generalized linear models for 
binary data applying the links cited in section 2. 

Figure 1 reports the goodness of link test during the last 60 steps of the 
forward search. According to the forward search approach, the first values 
of the lines represented on the figure are computed on the basis of the first 
464 observations included in the subset ordered considering the degree of 
accordance to the model omitting the remaining observations. At each step 
of the search further observations are included in the subset by respecting 
the rule of minimising the squared deviance residuals. In the last step, which 
in the figure corresponds to the extreme right values of the lines, the test 
is computed using all observations. Horizontal lines indicate 5% asymptotic 



382 Grossi and Bellini 

logit 
clog log 
loglog 

470 480 490 500 510 

steps of the forward search 

Fig. 1. Goodness of link test along the forward search: logit, cloglog and loglog 
links 

confidence region. As can be noted, the cloglog link (dotted lines) always lies 
inside the region during the search, the logit link lies across the upper limit, 
whereas the loglog link lies outside the region in the majority of the steps 
and must be surely rejected. Thus, the best link looks to be the cloglog even 
if the logit is very close to the acceptance region. It is worth stressing tha t 
the difference of the three links is not so clear observing the values based on 
the entire sample (last value of the lines). 

LOGIT 
Predicted 

Good Sufference Total 
Observed Good 0.97 0.03 1 

Sufference 0.33 0.67 1 
Total 0.89 0.11 1 

CLOGLOG 
Predicted 

Good Sufference Total 
Observed Good 0.98 0.02 1 

Sufference 0.43 0.57 1 
Total 0.91 0.09 1 

Table 
search 

1. Classification error of logit and cloglog links at the end of the forward 
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Logit and cloglog models have been both estimated and lead to very sim­
ilar results (see Table 1): the total classification error is about 7% with both 
models when all units are included in the estimation procedure. Neverthe­
less, the logit link returns a classification error of insolvent firms (insolvent 
firms classified as healthy) substantially lower than that given by the cloglog 
link: 33% vs 43% given all observations. Thus, the cloglog better classifies 
healthy firms (classification error of healthy firms: 1.7% vs 3.1%) and worse 
the insolvent. From the financial institution point of view, it is more serious 
to misclassify an insolvent firm as healthy than the opposite and the logit 
link should be preferred. The analysis of classification errors given till now 
does not consider the presence of outliers. To this purpose the robust analysis 
of the forward search could be very useful. 

Logit link 

Total Error 

Missclassified insolvent firms 

-̂ -̂ ^̂^ 

Total Error 

Missclassified insolvent firms 

^ 

490 500 

Steps of the forward search 

Cloglog link 

510 520 

470 480 4S 0 500 

of the forward search 

510 520 

Fig. 2. Classification errors during the forward search: logit (upper panel) and 
cloglog (lower panel) link 

Figure 2 shows trajectories of classification errors during the forward 
search for logit and cloglog links. It is very interesting to note that adding 
observations to the initial subset causes a slow decrease of total classification 
error and error in classifying healthy firms (lower lines). On the opposite the 
proportion of misclassified insolvent firms increases very quickly: in the case 
of the logit link this error goes from about 10% when the subset is composed 
by 460 observations to 33% corresponding to estimates on the whole sam­
ple. This particular behavior can be explained considering that observations 
which are included in the last steps are healthy firms which are financially 
similar to insolvent firms and wrongly infiuence the classification rule. For ex­
ample, the last observation included by the forward search is a healthy firm 
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with debts to banks three times greater than total sales: this ratio is clearly 
greater than the maximum values among insolvent firms. Finally, observing 
Figure 2, we gain that the cloglog link is more infiuenced by outliers with 
respect to logit: the trajectory of misclassified insolvent firms presents a neat 
jump around step 515 and, around step 500, classification error of insolvent 
firms with the two links is equivalent. 

3.4 The Forward Search on Rating System 

The Basel Agreement states that banks can use internal rating systems to de­
termine the regulatory capital according to the ability of customers to refund 
their debts (see for example Altman and Saunders (2001)). In this section we 
evaluate the ability of the model estimated in the previous section to forecast 
the right rating class of borrowers. This goal can be reached comparing the 
average probability of default (PD) observed in each category of customer 
according to the internal qualitative rating system with the posterior prob­
ability of default predicted by the model. The qualitative classification of 
customers given by the bank identifies four classes of customers called A, B, 
C and DEF, going from the best to the worst customers, the last class being 
composed by defaulted firms. The rating class for each firm has been predicted 
by the model according to the empirical PD observed in each class, that is: 
{PD < 0.0023): class A, (0.0023 < PD < 0.02): class B, (0.02 < PD < 0.28): 
class C, {PD > 0.28): DEF. 

Figure 3 reports the forward trajectories of the total error obtained fore­
casting the qualitative rating system of the banks through the logit (upper 
panel) and the cloglog link (lower panel). As can be noted, the trajectories 
remain roughly stable until step 500 and begin to increase sharply after that 
step, that is when the most outlying observations are included in the subset. 
Thus, the best forecasting performance of the model is reached estimating 
the parameters on a subset of 500 observation out of the total sample size. 
Note that the forecasting error of the model is computed at each step of the 
procedure by excluding the observations less in accordance with the underly­
ing model, which can be considered as out of sample. Therefore, the forward 
search gives in-sample forecasts for observations included in the main subset 
and out-of-sample forecasts for the remaining units. 

4 Final Remarks and Extensions for Further Research 

Starting from the statements of the Basel Agreement, we have analyzed a 
method to classify bank customers according to their future ability to refund 
money. In the literature about rating system the problem of infiuential obser­
vations has not been deeply analyzed. Notwithstanding outliers can strongly 
bias model estimates and the forecasting performance of the procedure. In 
this paper a robust analysis of generalized linear models for the classifica­
tion of firms has been presented. The robustification of the models has been 
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Logit link 

steps of the forward search 

Cloglog link 

steps of the forward search 

Fig. 3. Total classification errors using the categories of the internal rating system 
along the last 60 steps the forward search: logit (upper panel) and cloglog (lower 
panel) link 

made through the forward search which is an iterative procedure which al­
lows to monitor the influence of single o group of observations on the model 
estimates. Among all possible link functions which can be used in the GLM 
framework, the application of a goodness of link test suggested by Atkinson 
and Riani (2000) has restricted the attention to logit and cloglog links. The 
forward search analysis has shown tha t the presence of outlying flrms can 
dramatically influence the classiflcation errors, particularly tha t which leads 
to misclassify insolvent flrms. In this paper flve variables have been selected 
on the basis of the likelihood ratio under the hypothesis of a logit link and 
without considering the influence of outliers. Greater at tention deserve in 
the next future the selection of variables which should be integrated in the 
forward search. Another point which should be deepened in future research 
regards the development of calibratory tools to evaluate how signiflcant is 
the influence of observations on parameters . This will be done by means of 
simulated envelopes. 
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Abstract. Properties of a panel of financial time series are explored, aiming at 
classifying market shares according to their extremal returns behaviour. Existing 
methods for optimal portfolio selection involve estimation of correlation coefficient, 
whose properties for measuring dependence in financial time series are questionable. 
Alternatively, for stationary processes of financial returns, the mean size of cluster 
of thresholds exceedances leads to define a measure of extremal dependence more 
accurate than correlation. Further functionals that might help to optimal portfolio 
selection, are, for instance, the total loss occurred to a stock during an extreme event 
or the time-length duration of a loss in a stress period. Combining functionals of 
financial returns it is possible to clustering shares properly and setting up a tool 
for portfolio selection. The performance of this method is assessed, through an 
application to real financial time series, by means of standard Markowitz theory of 
optimal selection of shares. 

1 Introduction and Motivation 

Financial institutions face problems of optimal portfolio selection, its opti­
mization and its hedging over t ime. Classification methods based on cluster 
analysis might be useful in portfolio selection as they provide a set of addi­
tional tools, yet somehow qualitative, for exploring common features among 
market shares. 

For stock prices Pf, t = 1^... ^T and the return process Xf = log(Pt) — 
log(P t - i ) a panel of portfolio selection is usually carried adopting an opti­
mization algorithm which involves estimation of mean, variance and covari-
ance over time of Xt (typically stat ionary). According to optimal portfolio 
selection, share allocation is chosen in order to minimize risk and maximize 
profits. In practice, shares belong to a portfolio according to their average 
historical behaviour, and future profits and losses are estimated with sam­
ple mean (expected return) and sample variance/covariance (riskiness). The 
pairwise analysis of correlations between returns gives suggestions for optimal 
selection (or asset allocation) and hedging of a portfolio, by suitably choosing 
proportions of shares having (somehow) opposite behaviour. 

An empirical finding typical of financial t ime series returns is tha t ex­
tremes tend to occur in small clusters, which commonly arise independently 
each other. These clusters convey peculiar information about the extremal 
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pattern of a share, that cannot be consistently estimated by any moments 
of the marginal distribution of Xf. Thus, as long as extreme behaviours of 
portfolio shares are observed, there is evidence suggesting to switch atten­
tion from "average" to "extreme" features of financial returns. Therefore, there 
may be interest in classifying financial data by grouping series having similar 
extreme pattern. 

In order to classify returns according to their extreme behaviour, we only 
consider those returns that are observed during an extreme event (stress 
period). An extreme event is of kind {Xt > u} where ix is a suitably high 
threshold, typically a high quantile of the marginal distribution of Xf. Every 
share faces several stress periods over time and such periods may be very 
different from share to share. However, for a given share, stress periods are 
assumed to arise independently each other, and the target is to quantify 
properly what happens during all the stress periods of a return process. Shares 
with similar stress periods will belong to same group. 

Formally, for a stationary time series, like financial returns, a relevant 
quantity that summarizes short-term extremal behaviour during a stress pe­
riod is the extremal index Ox ^ (0,1] (Leadbetter et al., 1983). Loosely, for a 
given stationary time series, 0^^ represents the average cluster size of extreme 
values. 

However, the extremal index Ox of a series is just a cluster functional, 
but coarser information is available by exploring further properties of clus­
ters of threshold exceedances. Therefore, the approach followed here is to 
analyze functionals of clusters of threshold exceedances. For instance, 0^^ is 
the functional that takes independent clusters and averages their size. For a 
series of financial returns, functionals of practical interest are the average size 
and average duration of losses during a stress period. For each time series we 
provide estimates of these functionals of threshold exceedances. 

In practice, the estimate of the extremal index Ox of a stationary process 
Xt, t G Z, requires clusters of exceedances of a suitable high threshold u 
to be identified. Traditional methods, asymptotically equivalent (Smith and 
Weissman, 1994), seem to suffer from very high bias at levels of u adopted 
in practice, like 95-th or 99-th quantile of the marginal distribution of X^. A 
generalization of such methods, which accounts for the volatility process of 
returns, is proposed by Laurini and Tawn (2003) where bias is considerably 
reduced. 

Other approaches to classify clusters of thresholds exceedances can be 
used, since results from Hsing et al. (1988) allow to approximate the process 
of threshold exceedances with clustered non-homogeneous Poisson processes, 
where the intensity of the process depends on the value of the extremal index 
Ox- Here, we do not focus on such point process approach. 

The paper is organized as follows. Section 2 describes how clusters of 
exceedances can be identified in financial returns and their functionals eval­
uated. Section 3 shows the application of the proposed method for a panel of 
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shares and includes some subsections where performances are explored using 
standard tools of portfolio selection. Finally, a last section closes with some 
comments and final remarks. 

2 Clusters Identification and Functional Evaluation 

We recall that for a given financial series of stock prices Pt, t = 1 , . . . ,T 
we can define returns as Xf = logPt — log-Pt-i- It is widely recognized that 
returns are stationary, uncorrelated but dependent. Discrete-time models for 
the volatility process at take multiplicative form Xt = cr̂ et, where ct is iid 
with finite mean and variance; for fixed t, at and ct are assumed to be inde­
pendent. 

Extremes in returns series tend to occur in clusters and we identify clusters 
according to the algorithm of Laurini and Tawn (2003). Let Fx{x) = Pr{X < 
x} and F^ its inverse. Consider two thresholds u and c, and define ix* := 
F^{u) and c* := F^(c ) , with u^ > c* and define for i < j 

L^j = min(cr^,... ^aj) and M^^ = max(X^,.. . ,X^) 

with the interpretation that for j < i the variables are not defined. Indepen­
dent clusters C^, ^ = 1 , . . . , G, are identified by sets satisfying the constraints 

m 

{{M2̂ „ < u} U l U V̂ .,c.«}} n i ^ i > "} 
i=2 

where the set 

Vi^cu = {c < ^2,^-1^ ^2^^ <u,ai<c} for i = 2 , . . . , m, 

corresponds to the process remaining below u for variables X 2 , . . . , X^_i but 
dropping below c for the first time for ai. Thus clusters terminate either if 
there are m — 1 consecutive value of Xj < ix or if the conditional variance of 
the process becomes small enough between two exceedances. At this stage at 
is assumed to follow a stationary GARCH(1,1) process, i.e., for some positive 
parameters a, 61, 62 the volatility process has form a^ = a-\- biX^_i -\- 62^1-1-

For each identified cluster Cg of length Ng, cluster functionals we are 
interested in can be written as follows. 

Cluster size S := E ^ = i ( E j = i kxj>u))/G 

Cluster loss L := E^iE^M^j ' u)I^x,>u))/G 

Xj>u) /G Cluster duration D := V^ . ( max jlfx-^u) — niin jL 

where I(x->u) is the indicator function for a threshold exceedance within a 
cluster. Examples of such cluster functionals are given in Figure 1, where on 
top left we sketch two independent clusters of exceedances and, clockwise, we 
show cluster size, cluster loss and cluster duration respectively. 
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Fig. 1. Example: given two identified clusters (top left), consider the cluster func-
tionals "cluster size" (big dots in top right panel), "cluster loss" (shaded area in 
bottom right panel) and "cluster duration" (dotted are in bottom left panel) 

3 Application to Panel of Financial Returns 

We use da ta from the MIB30 Italian stock index with daily observations from 
Jan 2000 to Dec 2002, and we link this analysis to tha t of Cerioli et al. (2005). 
Rather than the original 30 series analyzed by Cerioli et al. (2005) we focus on 
the 24 series tha t do not have missing values. For the analysis we are carrying 
in this work missing values rise numerical (and methodological) problems tha t 
we decided to avoid. Moreover, instead of considering separately FINECO 
and BIPOP, we decided to merge those shares, which nowadays are called 
FINECOGROUP. 

3.1 A n a l y s i s of Average Features 

In this section we explore the analysis tha t can be carried with s tandard 
Markowitz approach of portfolio selection (see Markowitz, 1952). Markowitz 
portfolio selection assumes to choose shares tha t have minimum risk among 
those with highest expected return. Minimum risk has to be intended as small­
est sample variance. This approach, which is not suited to hedging portfolios, 
has the drawback of using the variance as a measure of risk, and recent re­
search in financial econometrics has highlighted tha t small (historical) sample 
variance does not imply low riskiness. An introduction of Markowitz theory 
and Capital Asset Price Model (CAPM) can be found in Amenc and Le Sourd 
(2003). 
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^ r^ TTV^ 

Fig. 2. Dendrogram with classification of average features. This dendrogram is 
obtained by choosing the Euclidean distance for sample mean and sample variance 
(standardized) and average method of aggregation 

The motivation of our approach to classify shares differently than what 
suggested by Markowitz and CAPM theory is linked to s tandard analysis tha t 
can be performed on portfolio by (among others) the R package f P o r t f o l i o 
(R Development Core Team, 2005), which compute a /c-means and hierarchi­
cal clustering on the portfolio of shares. 

With our da ta the best allocation achieved with /c-means method is when 
the number of clusters is Â ^ = 3, according to Kalinski index. Results of the 
hierarchical method of clustering are broadly consistent and we discuss this 
issue as follow. In order to obtain the dendrogram we consider each share 
as a single unit, recording sample mean and sample variance and setting 
up a distance based on such sample measures (suitably standardized). The 
hierarchical clustering, is derived by choosing the Euclidean distance and by 
adopting the "average method" for aggregation. 

Figure 2 shows the dendrogram obtained by hierarchical clustering, and 
it is broadly consistent with results obtained by the R package f P o r t f o l i o . 
Therefore, by using either hierarchical or non-hierarchical methods with av­
erage features we cannot conclude whether we have a group of "risky" share 
and a group of "non-risky" assets. 
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Fig. 3. Dendrogram with classification of extreme features. The dendrogram is 
obtained by choosing the EucUdean distance for sample extremes functionals intro­
duced in Section 2, suitably standardized, and the average method of aggregation. 
Choice of thresholds are u = Fx(0.95), c = Fa{0.5) and runs length is m = 25 

3.2 A n a l y s i s of E x t r e m e Features 

In financial econometrics li terature it is widely recognized tha t sample vari­
ance is not suited to measure risk, and many researchers assume the variance 
is not constant over time. Therefore, the Markowitz and CAPM methods 
can dramatically fail at providing an optimal solution for portfolio selection. 
We propose to investigate properties of portfolio of shares by studying local 
extreme values for each financial t ime series as follows. 

For each observed series of returns, we identify clusters of extremes ob­
servations and evaluate cluster functionals according to what introduced in 
Section 2. The choice of parameters for cluster identification is u = Fx(0 .95) , 
c = Fo-(0.5) and m = 25, but results are robust to other parameters ' choice. 
For each returns series we recall tha t the volatility series at is obtained by 
fitting a GARCH(1,1) model. 

Figure 3 shows the dendrogram which is obtained after standardization 
of cluster functionals, following exactly the same approach of dendrogram in 
Figure 2. 

From both figures it seems tha t homogenous groups can be identified. 
It is less obvious whether we have two or three groups (but we assume to 



Classification of Financial Returns 393 

have identified the three groups GR.A.l: B.ROMA-SAN PAOLO; GR.A.2: 
MEDIOBANCA-ENI; GR.A.3: FINECOGROUP & SEAT) in Figure 2. 

There is evidence for identification of two different groups, from dendro­
gram of Figure 3, which is obtained using thresholds exceedances and their 
functional evaluation. From dendrogram in Figure 3 we observe a low-risk 
group including RAS-FINECOGROUP (GR.E.l) and a much more risky 
group SEAT-SAN PAOLO (GR.E.2). The main difference from the two meth­
ods, which come by comparing Figure 2 and Figure 3, is related to the split 
of FINECOGROUP & SEAT, and the inclusion of several risky shares in 
GR.E.2 when extreme features are considered. 

3.3 Comparing Market Efficiency 

Differences among the two methods studied so far ("average" and "extreme") 
can be assessed by comparing the market efficiency of each identified group 
through the equilibrium estimate of Markowitz theory. Such equilibrium can 
be assessed by the tangency of the Capital Market Line with curve of efficient 
frontier. We have explored the market equilibrium considering: 

• all data of portfolio composed by the 24 time series (where an equilibrium 
exists); 

• 3 groups identified by estimation of average features (equilibrium is found 
in one group only); 

• 2 groups identified by functionals of thresholds exceedances (equilibrium 
is found in one group). 

Results are compared in Figure 4 and Figure 5, which are the stan­
dard outputs routinely analyzed using in the R package fPor t fo l io . In all 
plots, the X-axis an y-axis are, respectively, the expected return and expected 
(marginal) variability. The point of equilibrium (when exists) is denoted with 
the symbol 0 . For each panel we report the scatter of all shares, labeled with 
numbers, and the line of the efficient frontier (gray dotted line). The point 
of equilibrium is reached by the best allocation of shares, that might involve 
a weight set equal to zero for some shares. We also report the point of equal 
weights portfolio with the symbol • . 

By exploring Figure 4 we can draw some interesting conclusions. To start 
with, equilibrium is not always obtainable, suggesting that CAPM theory 
can fail in finding an optimal set of weights. However, when the equilibrium 
is found (all shares, GR.A.2 and GR.E.l) differences of performance seem 
negligible. Notice that in some cases (GR.A.3) the equilibrium does not exist, 
but we can plot the efficient frontier and assess the performance when we 
consider the equal weights portfolio. 

It seems that by identifying shares according to thresholds exceedances 
we can provide an alternative method to CAPM. When CAPM perform well, 
the approach that we have introduced performs equally well. Therefore, yet 
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Fig. 4. Efficient frontier for portfolio. Top panel refers to the set of all shares. 
Bottom panel refers to the combination of shares belonging to group GR.A.3, where 
equilibrium cannot be found 

not mathematically justified, the method analyzed here has the advantage of 
measuring risks suitably, by exploring local changes in the volatility process. 
Setting up the mathematical background for a proper optimization tool seems 
a promising avenue for future research. In principle this can be achieved by 
the maximization of expected returns under restriction tha t a functional of 
threshold exceedance is fixed at some suitable level (e.g. the extremal index 
Ox = max or cluster loss L = min). 
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Fig. 5. Efficient frontier for portfolio with combination of shares belonging to group 
GR.A.2 (top panel), and efficient frontier for portfolio with shares belonging to 
group GR.E.l (bottom panel) 

4 Some Final Remarks 

A point raised by comparing performances of two methods of classifying 
financial returns, is tha t a portfolio selected according to average features 
suffers from high uncertainty to market conditions, but further insights can 
be provided by exploring within-group properties and by simulating scenarios 
using Monte Carlo. However, the suggestion we make to reduce risks, is to 
select shares in a portfolio within the group GR.E . l . 
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Methods for optimal share ahocation and portfoho selection might be 
strongly influenced by business cycles in stock markets (e.g. "bull" or "bear" 
periods). Markowitz theory is not influenced by business cycles, since in­
vestors might perform short selling and hedge the portfolio with risk-free 
securities, which include short-term zero coupon bonds. By deflnition, risk-
free securities have no volatility and the method suggested here to classify 
shares according to their degree of risk, measured by threshold exceedances, 
would eventually fail and new techniques must be approached. 

Classiflcation of flnancial returns can be obtained with methods where the 
number of groups can be estimated by data . For instance, in a hierarchical 
approach, deflne J cluster functionals i ^ i , . . . , ' ^ j ; we can assume tha t each 
cluster feature belongs to a mixture of K densities // (the number of groups), 
i.e. "di r^ J2i=i fi{f^i)Pij where Pi is the weight of each group. A full Bayesian 
setting is provided by specifying a prior distribution for /i^. 
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Abs t r ac t . In this paper we propose a clustering technique, based on the maximiza­
tion of the likelihood function defined from the generalization of a model for seismic 
activity (ETAS model, (Ogata (1988))), iteratively changing the partitioning of the 
events. In this context it is useful to apply models requiring the distinction between 
independent events (i.e. the background seismicity) and strongly correlated ones. 
This technique develops nonparametric estimation methods of the point process 
intensity function. To evaluate the goodness of fit of the model, from which the 
clustering method is implemented, residuals process analysis is used. 

1 Introduction 

Clustering methods, largely used in many applicative fields, are also a statis­
tical tool useful to analyze the complexity of the seismic process, which can be 
considered as the superposition of two different components: the background 
seismicity, and the space-time clustered one, induced by main earthquakes. 
A cluster of earthquakes is formed by the main event of the sequence, fore-
shocks and aftershocks, tha t could, respectively, occur before and after the 
mainshock. On the other hand isolated events are spontaneous earthquakes 
tha t don't trigger a sequence of aftershocks. Space-time characteristics of 
principal earthquakes are close to those of a Poisson process tha t is station­
ary in time, since the probability of occurrence of future events is constant 
in time irrespectively of the past activity, even if nonhomogeneous in space. 

Because of the different seismogenic features controlling the kind of seis­
mic release of clustered and background seismicity (Adelfio et al. (2005)) 
several mathematical models, describing correlated and uncorrelated compo­
nent of seismicity, are defined. 

For example, to describe the magnitude frequency of principal events for 
the given time and space area, the Gutenberg-Richter law is mainly used 
(Console (2001)): 

logio ^(M) = a- h{M - Mo) (1) 

where N{M) is the number of earthquakes with magnitude equal or larger 
than M in a given time interval, a is a measure of the level of seismicity, and 
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b, typically close to 1, describes the relative number of small events in a given 
interval of time, and MQ is a threshold value for the magnitude. 

On the other hand the time aftershock activity is well described by the 
modified Omori formula (Utsu (1961)), for which the occurrence rate of af­
tershocks at time t following the earthquake of time r is described by: 

K 
9(t) = -^ ^ , with t>r (2) 

with K constant, c and p characteristic parameters of seismic activity of 
region. Like the parameter b in (1), p is useful for characterizing the pattern 
of seismicity, indicating the decay rate of aftershocks in time. 

For the short-term (or real-term) prediction of seismicity and to estimate 
parameters of phenomenological laws we need a good definition of the earth­
quake clusters, that are superimposed to the background seismicity and shade 
its principal characteristics. 

For these purposes, in this paper, after a brief description of the pecu­
liarities of seismic data and the definition of aftershock seismicity model, 
a clustering technique is proposed. Considering the seismic activity as the 
realization of a particular point process, it iteratively finds out a partition­
ing of the events, for which the contributions to the likelihood function are 
maximized. Finally, to check the validity of the assumptions, a sketch of the 
residual analysis is reported. 

2 Sources of Data and Peculiarities 

To study the seismic history of an area seismic catalogs are used; they contain 
information about each earthquakes for which instrumental registrations are 
available, reporting the main variables identifying recorded events: the size 
of an earthquake in units of magnitude, a logarithmic measure of earthquake 
strength; the origin time, that is the date and time when earthquake occurs; 
the hypocenter of the earthquake that is the position on the surface of the 
earth (latitude and longitude) and a depth below this point (focal depth), 
which however is seldom used because of the uncertainty of its measure. 

Because of uncertainty about the values of these quantities, especially 
for the space coordinates, catalogs often report also information about the 
quality of the location of events, useful for evaluating the reliability of an 
earthquake location. To improve the catalog estimates of locations sophisti­
cated seismological methods of relocation are often used. 

Depending on the magnitude of the earthquake, additional information is 
sometimes available, as waveforms or focal mechanisms. No catalog however 
can be retained complete, in the sense that some events of low magnitude 
may not appear. In fact events of low magnitude far from the seismological 
network are less likely to be detected. So any catalog should have a threshold 
of completeness (MQ), which is the value of magnitude for which all events 
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with magnitude greater than MQ, occurred in the study space-time region, 
are observed. 

3 Definition of ETAS Model 

Models for space-time earthquakes occurrences can be distinguished in two 
widely class (Schoenberg and Bolt (2000)): probability models describing 
earthquakes catalogs as a realization of a branching or epidemic-type point 
process and models belonging to the wider class of Markov point processes 
(Ripley and Kelly (1977)), that assume previous events have an inhibiting 
effect to the following ones. The first type models could be identified with self-
exciting point processes, while the second are represented by self-correcting 
processes as the strain-release model. 

ETAS (epidemic type aftershocks-sequences) model (Ogata (1988), is a 
self-exciting point process, representing the activity of earthquakes in a region 
during a period of time, following a branching structure. In particular it could 
be considered as an extension of the Hawkes model (Hawkes (1971), which is a 
generalized Poisson cluster process associating to cluster centers a branching 
process of descendants. ETAS model hypotheses can be outlined as follows: 

1. the background events are the immigrants in the branching process and 
each ancestor produces offspring independently, depending on its magni­
tude (triggering ability); 

2. the time and space probability distribution for an offspring are function 
respectively of the time and space lag from its ancestor; 

3. magnitude distribution of clustered events is independent from that of 
background seismicity. 

To provide a quantitative evaluation of future seismic activity the conditional 
intensity function is crucial. It is p. In general, the conditional intensity func­
tion of a space-time point process, proportional to the probability that an 
event with magnitude M will take place at time t, in a point in space of 
coordinates (x,i/), can be defined as: 

X{t,x,y\Ht) = hm , / , •—- (3) 
^ ' '^ ' ^ At,Ax,Ay^o AtAxAy ^^ 

where Ht is the space-time occurrence history of the process up to time t; 
Z\t, Z\x, Ay are time and space infinitesimal increments; PrAtAxAy{t, x^y\Ht) 
represents the history-dependent probability that an events occurs in the 
volume {[t, t + At) x [x, x + Ax) x [y,y ^ ^v)}-

On the basis of ETAS model assumptions, the intensity function of this 
non-stationary Poisson Process, conditioned to the history Ht is: 

Xit,x,y\H,) = fi.,y)+ ^ / ( . - x.,, - , . ) ^^7 [" (^^ " ^"^^. (4) 
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It describes seismic activity as the sum of the activity rate f{x,y) of back­
ground activity, constant in time, and the triggering density, referred to the 
clustered component, fohowing a branching structure. In (4) the triggered 
density represents the conditional distribution of events within the clusters, 
describing the occurrence of offspring shocks following the main event. It is 
obtained as the product of space, time and size functions: time aftershock 
activity is represented by a non stationary Poisson process according to the 
modified Omori formula, such that the occurrence rate of aftershocks is cor­
related with the mainshock's magnitude. 

4 Clustering of Seismic Events 

In literature several methods are proposed to decluster a catalog. Gardner 
and Knopoff (1974) identify and remove aftershocks (with the purpose of 
analyzing the features of the background seismicity) defining a rectangu­
lar time-space window around each mainshock. The size of the windows de­
pends on the mainshocks magnitude. Reasenberg (1985) identifies aftershocks 
by modelling an interaction zone about each earthquake assuming that any 
earthquake that occurs within the interaction zone of a prior earthquake is 
an aftershock and should be considered statistically dependent on it 

Zhuang et al. (2002), propose a stochastic method associating to each 
event a probability to be either a background event or an offspring generated 
by other events, based on the ETAS model for clustering patterns described 
in the previous section; a random assignment of events generates a thinned 
catalog, where events with a bigger probability of being mainshock are more 
likely included and a nonhomogeneous Poisson process is used to model their 
spatial intensity. This procedure identify two complementary subprocess of 
seismic process: the background subprocess and the cluster subprocess or the 
offspring process. 

5 The Proposed Clustering Technique 

The method of clustering here introduced is based on the local maximization 
of the likelihood function of ETAS model describing clustering phenomena 
in seismic activity. Differently by ETAS model, in our approach the shape of 
intensity function components in time and space doesn't depend on any para­
metric assumption. Since for a spatial-temporal point process the likelihood 
function is: 

logL = V[logA(x^,i/^,t^|i:ft)] - / / / X{x,y,t\Ht 
^^1 Jx JY JO 

)dxdydt 

our iterative procedure clusters seismic events assigning each induced event 
of coordinates (x^, yi^ti^Mi) to that mainshock of coordinates {xk^yk^tk^ Mk) 
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that maximizes the product 

f{xi - Xk.Vi - yk)g{U - tk)k{Mk) (5) 

without making any parametric assumption about the shape of the intensity 
function /(•) and g{-). Even if inside each cluster the space and time com­
ponent are separable, in the overall intensity function relative to the whole 
space and time domain there is not such separability, since the point process 
is assumed to be clustered on the space-time location of k mainshocks. 

We estimate functions /(•) and g{-) inside the j - th cluster by a bivariate 
and univariate kernel estimator respectively: 

{x - XiY {y - Vi) 21 

m 2hi 
where nij is the number of points of the j-th cluster and the summation 

is extended to the points belonging to that cluster. 
The windows width hx^hy are found using a formula (Silverman, 1986, 

pag.45) which approximately minimizes the mean integrated squared error: 
hx = AGxn~^^^^ hy = A(7^n~^/^, where GX and dy are the estimated dis­
persions for each coordinate in each cluster, and A is a constant depending 
on the type of kernel (1.06 for normal kernel). We used a simple bivariate 
normal kernel with independent components, since the kind of smoothing 
allows however the estimation of complex geographical patterns, not only of 
ellyptical shape. 

For the time density estimation, the univariate version of the above kernel 
estimator is used, and for the window width a multiple of the Silverman' s 
value is used, in order to obtain smoother estimates, since the decaying time 
should theoretically be smooth inside each cluster, starting from the time of 
the mainshock event. 

For the ti{M) triggering function, that describes the expected number 
of dependent shocks generated by a main event with size M/̂ , the functional 
form n{Mk) = exp{/3(M/c —Mo)} is used; [3 measures the magnitude efficiency 
of an earthquake in generating its offsprings and is estimated from data, and 
Mo is the completeness threshold of the whole catalog. 

5.1 Steps of the Algorithm 

The algorithm has been implemented trough software R (R Development Core 
Team (2005)); it is an iterative procedure which consists of the following steps: 

1. consider a starting classification of the events in the catalog; Na =^ 
number of events which in the starting classification have been identified 
as aftershocks; Ng => number of events which in the starting classification 
have been identified as mainshocks and isolated events; 
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2. Estimate the space and time densities ( f{xi — Xk,yi — yk) cind g{ti — tk), 
with i = 1 , . . . , Na] k = 1 , . . . , A ŝ) and the magnitude function n{Mk) 
for each i^^ event, considering ah Ns events of the background seismicity, 
ordered in time; write their product in the (i, k) ceh of a Â a x ^ s matrix, 
identified from the i^^ secondary event that we want to assign and from 
the k^^ principal event; 

3. Locate the mainshock ki that maximizes the product (5) for each i; 
4. At the end of each iteration isolated events could be assigned to found 

clusters if their contribution to the likelihood function is greater than 
a fixed threshold h. Similarly, events assigned to clusters could become 
isolated events if their contribution to the likelihood function is lower than 
a given threshold h- h and I2 are chosen on the basis of the empirical 
distribution of the internal likelihood of each cluster and on the basis of 
the percentiles of a x^ distribution, the approximate distristribution of 
log-likelihood quantities. 

5. At the end of each iteration this procedure returns the events classified in 
mainshocks (here identified with the maximum magnitude events in the 
clusters), aftershocks or foreshocks (corresponding to each mainshock) 
and isolated events. 
The iterative procedure stops when the current classification does not 
change after a whole loop of reassignment. 

6 Analysis of the Results and the Residuals Process 

This clustering technique is applied to a catalog containing 1756 seismic 
events occurred in the Southern Tyrrhenian Sea between January 1988 and 
October 2002. The seismicity of this zone consist mainly of aftershock se­
quences and more seldom of isolated events. 

We did not compare our method with the result of the Zhuang's stocas-
tic declustering based on the ETAS model, since parameters have different 
meanings and also because Zhuang's technique is more properly used on single 
aftershocks sequences, while the aim of our method is to deal with catalogues 
with multiple aftershocks sequences. 

The starting classification found out 185 clusters. The iterative procedure 
stops at the 9^̂  iteration, finding out 150 clusters, of which 7 have more than 
10 earthquakes (Fig. 1). We observe that clusters with few events tend to be 
disaggregated and their events moved to the nearest clusters or to the set of 
isolated events. 

Starting from this result, residuals analysis techniques are used to justify 
the model as the basis of the clustering algorithm and to test the goodness 
of fit of the model to the specific space and time patterns of data. 

In a time point process, residuals, obtained by an integral transformation 
of times occurrence, consist of an homogeneous Poisson process with unit in­
tensity (Cox and Isham (1980)). Since the transformed inter-arrival times are 
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i.i.d. exponential random variables with unit mean, to assess the assumption 
of time independence of the principal events, the inter-times distribution of 
observed residuals is analyzed. 

For spatial point process X in a bounded region W C 9^̂ , d>2, the lack 
of ordering in two dimensional space does not allow to generalize conditional 
intensity of a spatial-temporal or simply temporal process given the past of 
process up to time t. In this case other techniques, based on Papangelou 
conditional intensity X{u,x), but not shown here for the sake of brevity, are 
used. 

On the basis of statistical and graphical results (see Fig. 2) we could 
conclude that principal events found out through our algorithm likely come 
from a Poisson process that is homogeneous in time even if nonhomogeneous 
in space. 

7 Conclusive Remarks 

The clustering technique here presented has been defined in a specific con­
text: to solve the problem of clustering of a seismic catalog, starting from the 
likelihood function of a model chosen to describe the underlying clustering 
process. Although some aspects are not definitively solved, it is an advanta­
geous method of classification. It finds out the classification of seismic events 
that maximizes the likelihood function of the point process modelling the 
seismic phenomena. It returns clusters of earthquake that have a good seis­
mic interpretation and the estimation of the intensity function of the point 
process which has generated seismic events in space, time and magnitude 
domains. 

A ^ 

-^11 12 13 14 15 16 

Fig. 1. Space-time distribution of more numerous clusters 
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t ransformed inter—arrival t imes 

Fig. 2. Inter-times of temporal residuals: empirical and theoretical distribution 
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Abs t r ac t . In this paper we report some results of the application of a new stochas­
tic model applied to rainfall daily data. The Poisson models, characterized only by 
the expected rate of events (impulse occurrences, that is the mean number of im­
pulses per unit time) and the assigned probability distribution of the phenomenon 
magnitude, do not take into consideration the datum regarding the duration of the 
occurrences, that is fundamental from a hydrological point of view. In order to de­
scribe the phenomenon in a way more adherent to its physical nature, we propose 
a new model simple and manageable. This model takes into account another ran­
dom variable, representing the duration of the rainfall due to the same occurrence. 
Estimated parameters of both models and related confidence regions are obtained. 

1 Introduction 

One of the most popular stochastic model describing rainfall is the Neyman-
Scott 's model (Calenda and Napolitano, 1999). If a t ime correlation induced 
by the transaction matr ix exists (transaction from rainy to non-rainy days 
and vice-versa), this model tries to eliminate such correlation, opportunely 
increasing the sampling time interval. In fact, as such interval increases, the 
correlation coefficients usually decay. This model seems more appropriate in 
regions with high rainfall and for da ta collected with a high sampling rate 
(say 10 minutes). In such cases it is possible to have interesting information 
about the modality characterizing the phenomenon, such as driving rain. 
Unfortunately, for the da ta object of our analysis — rainfall daily da ta from 
January 1, 1960 to December 31, 1998 recorded at a Sicilian hydrological 
site — such procedure has demonstrated inadequate. In fact, the transaction 
matrices remained non-homogeneous for all tried time interval (2 days, 3 
days, ... , 7 days). This fact has leaded to believe tha t the Neymann-Scott 's 
model is unfit for the da ta under study. In order to overcome this drawback, 
in this paper a new model is introduced; it is based on interpreting the rainfall 
phenomenon by properly filtering a Poisson white noise. 
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2 The Poisson Stochastic Process 

In many cases of engineering interest, the random nature of particular loads 
— as wind, earthquake, rainfall — requires a stochastic representation model, 
consequently the response of the system needs to be adequately described in 
probabilistic sense by evaluating the response statistics (Stratonovich, 1963). 

It is well known that, in several practical problems, the white noise could 
highly simulate such loads, in particular the process can be considered normal 
or non-normal. 

The normal white noise is fully characterized by statistics up to the sec­
ond order, while the non-normal process requires higher order statistics to 
be defined. The simple structure of normal white noise, by a mathematical 
point of view, explains the high popularity in using this process and some­
times the goodness of global statistic response encourages this use further 
on. Although the aforementioned considerations, the normal white noise is 
not proper in modelling point rainfall occurrences, because it does not repro­
duce fundamental physical characteristics of this event. Normal white noise 
is continuous and then it does not take in due consideration the intermittent 
characteristic of rainfall, in consequence of the alternate dry-wet structure of 
the rainfall itself. On the contrary, the Poisson white noise process, denoted 
as Wp{t), is defined in the form 

Nit) 
Wp{t) = ^ r , ( 5 ( t - T , ) (1) 

k=i 

and consists of a train of Dirac's delta impulses 6{t — Tk) occurring at Poisson 
distributed random times Tk. N{t) is the number of impulses in the time in­
terval [0, t) with initial condition A (̂0) = 0 with probability one. The random 
variable Yk, that constitutes the spike amplitude at the corresponding time 
Tk, are assumed to be mutually independent and independent of the ran­
dom instants Tj^. This process is completely characterized by the expected 
rate X{t) of events (impulse occurrences), that is the mean number of im­
pulses per unit time, and the assigned probability distribution of Y. The 
number of impulses N{dt) in the time interval t ^t -\- dt in mean is given by 
E [N (dt)] = A (t) dt. The entire probabilistic description of the process Wp{t) 
is given by its cumulants 

K^^( t i , t 2 , . . . , t , ) = \{t)E[Y']5{h-t2) ... 5{h-ts) (2) 

This model is simple and can be used for simulating rainfall events, assum­
ing Tk as their initial point and Yk as their magnitude, in order to estimate 
the statistics of hydrological response variables. However it does not con­
tain the fundamental datum regarding duration and behaviour during the 
occurrence of the phenomenon. In fact, by an hydrological point of view, it 
is different if a same amount of rainfall occurs only in one day or in several 
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consecutive days. We assume tha t the rainfall distribution within the day is 
negligible in any case. 

In order to describe the phenomenon in a more exhaustive way, we propose 
a new model tha t is simple and manageable. This model takes into account 
another random variable i?, representing the duration of the rainfall due to 
the same occurrence. Let us assume tha t the daily rainfall follows a law having 
a start ing point (the first day of a cluster of rainy days) and an endpoint. A 
cluster is so constituted by at least one rainy day. The proposed model is a 
linear stochastic differential equation driven by a non-homogeneous Poisson 
Process with stochastic parameters 

H{t) = A {t) H{t)^B {t) Wp {t) (3) 

with A{t) and B{t) random variables ruling the decaying rate of the rainfall, 
i.e. the number of the days in the cluster and the cumulated amount of rainfall 
in tha t cluster, respectively. 

Contrarily to model (1), this model: 

i) allows to model intermittent rainfall processes with random duration of 
each cluster; 

ii) admits tha t , if today it is rainy, tomorrow the probability to have a rainy 
day is higher; 

iii) allows to use typical tools of the stochastic differential calculus for fore­
cast models. 

The differential equation can be studied shifting the time until to identify 
Tk with the origin, without taking into account of the previous clusters. Tha t 
is, assuming the stationary condition, the response can be written as: 

Hk{t)=AkHk{t)+BkYkd{t) (4) 

with Ak and Bk related to the fc*'' cluster, Hk{t) the relative volume of rainfall 
and H{t) its first derivative. The solution is known in closed form: 

(Hk{t) = BkYke^''* ; yt>0 
\Hk{t)=0 ; V t < 0 ^^^ 

The random parameters must guarantee tha t the whole rainfall in the 
cluster is Yk and the duration of the k^^ cluster is Rk- For the first constrain 
we impose: 

Hk (t) dt = Yk = BkYk / e^^'dt (6) 

0 0 

and, integrating, it results Ak = —5/c, so obtaining the following differential 
equation: 
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Hkit) = AkHkit)-AkYkSit) (7) 

For the second constrain it is sufficient to impose tha t the slope of Hk {t) 
intersects the temporal axis in Rk. It follows tha t Ak = —l/Rk- Therefore it 
is possible to write: 

(8) 

and than the whole process is given by the stochastic differential equation: 

N{t) 

Hit) i f f w + ^ E f̂c-̂  (̂  - f̂c) = --̂ ^ w + ^^p w R 
k=l 

R R 
(9) 

where R is the length of clusters, tha t is a random variable with assigned 
distribution. This equation represents a differential equation excited by an 
external Poisson Process. 
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Fig. 1. A sampling of rainfall process modeled by (9) 

For this equation the statistics of any order can be calculated (see Cad-
demi and Di Paola (1995), Di Paola and Falsone (1993 a, b), Di Paola and 
Vasta (1997), Di Paola (1997), P i r ro t ta (1998)). The moment of order j for 
each realization of the random variable i?, say Rg^ is given by: 

E [W] 
R 
' E[W]^XY^ j\E[Y^ 

^^qlRHj-q) 
•E W (10) 

The previous formula describes a system of linear differential equations 
which solution is immediate for any j . The characteristic function and the 
density function are also easily obtainable. By looking at (10) it is apparent 
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that any order of statistics depends on the expected rate X{t) of events (im­
pulse occurrences), on pviy^t) and PR{r,t) (probability density function of 
whole rainfall in the cluster and the cluster duration, respectively). 

The moments of R are obtainable by integrating the realization of the 
random variable R by its domain r and by integrating the differential equation 
(10), multiplied by the probability density function of R. 

The proposed model is robust in the sense that is auto-adaptive, i.e. the 
further records of rainfall will improve the estimation of the model parameters 
making it more realistic. 

3 Modelling Daily Rainfall Data in Sicily 

When modelling rainfall in Sicily, the following considerations have to be 
taken into account: 

• the arrivals of storm origin constitute a random variable with distribution 
according to a Poisson process, with expected rate of arrivals different 
month by month, peculiarity of a non-homogeneous Poisson process; 

• the magnitudes of daily rainfall are characterized by a distribution that 
is independent of the arrival random variable; 

• when a storm arrives it follows that, if today it is rainy, it will be very 
probable that tomorrow it will rain. 

3.1 The Non-Homogeneous Poisson Model 

The first model we tried to use, see (1), describes the arrivals by a non-
homogenous Poisson model with rate varying month by month (Grunwald 
and Richard, 2000, Sitaraman, 1991). In order to estimate such rates, it is 
necessary to state the long period stationary condition, assuming that data 
belonging to the same day in different years are replicates of the same random 
variable. However, from some analyses it derives that the non-homogeneous 
Poisson model, even within each month, cannot be fit, because some condi­
tions do not hold: 

i) the occurrence must be a without memory process, i.e. the rainfall proba­
bility must be equal for both cases in which the day before was rainy or 
not; it implicates that: 

ii) the waiting time for the next occurrence must follow the negative expo­
nential distribution. 

These conditions do not hold in the data under study, even within each 
month. 

Looking for a way for overcoming this lack, we have split the data in 
two groups: days preceded by a rainy day {1} and days preceded by a non-
rainy day {0}, and have carried out again the previous analysis, obtaining 
the results in Figure 3.1. 
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Fig. 2. Behaviour of the estimated probabiUty of having a rainy day, and related 
confidence interval (95% confidence level), for different months, interpolated by a 
periodical function (with 2 harmonics), for days preceded by a non-rainy day (lower 
curve) and days preceded by a rainy day (upper curve) 

In such way the model reverts to a non-homogeneous double stochastic 
(or semi-Markovian) model, because the rainfall probability depends, month 
by month, only on the condition of the previous state: the probability that 
tomorrow we will have a rainy day depends not only on the month, but also 
on the fact that today it is rainy or not. Now the tests we carried out (no 
memory model) have leaded to accept this model as admissible. 

At this point it is necessary to model the rainfall quantity distribution 
for rainy days. Among the several distributions we tried (Gamma, Gumbel, 
Normal, Lognormal, Weibull), the one that constantly fit better has resulted 
the Weibull distribution, that, as it is well known, is characterized by two 
parameters and has distribution and density function 

F(x) = l - e x p { - ( x / c e ) ^ } and /(x) = - ( - ) ^ \xp{-{x/af} (11) 

respectively. It is possible to calculate the likelihood function and its log 
transformation in order to obtain the maximum likelihood estimates a and b 
of the parameters a and /3, respectively. Anyway it is necessary to verify if it 
is opportune to estimate the pairs of parameters not only month by month, as 
it seems obvious, but also splitting the two groups of data {0} and {1} before 
mentioned. At this aim it is not sufficient simply to watch the "distance" of 
several pairs of parameters, but it is necessary to base oneself on inferential 
considerations, remembering that we handle estimated parameters. 

A graphical procedure results straightforward. Instead of constructing ex­
plicit tests, it is possible to depict a conjoint confidence region of a pair of 
parameters and superimpose the pairs of regions one upon another. If two 
regions have overlapping areas — and larger these areas are — higher is the 
likelihood that two populations, which two samples come from, have same 
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parameters; on the contrary, if two regions have no overlapping areas, then 
it is reasonable to reject the hypothesis that two populations have same pa­
rameters, safe a I-type error risk that can be approximately fixed. As the pa­
rameters are estimated by the maximum likelihood method, their asymptotic 
sampling distribution can be assumed as normal. However, as the estimates 
of the two parameters are not independent, their conjoint distribution has to 
be calculated. The point estimation of such parameters is available in many 
statistical softwares (we used Minitab); on the contrary, for constructing and 
graphically representing the confidence regions with assigned confidence level, 
it is necessary to refer to the likelihood function of parameter vector 6>, given 
the estimate vector t and its covariance matrix E: 

exp\-UO-tf IJ-^{0-t)] 
L{0\t) = ^ J. ^ (12) 

The confidence region can be obtained as that region on which the hyper-
volume equals the required confidence level and such as all inner points have 
likelihood higher than outer points. This constraint, thanks to the unimodal-
ity of the distribution, leads to focus the attention on the isolevel curves, as 
depicted by common contour plots for which L{0\t) = cost. Fortunately this 
multivariate problem can be reduced to an univariate one, by remembering 
that the argument of the Gaussian exponential is distributed as a x^ random 
variable. Therefore the problem simplify to calculate the curve that assures 
that: 

{e-tfE-\e-t) = xl.a,n) (13) 
where Xn_a n) ^̂  ^^^ 100(1 — a) percentile of the x^ distribution, 1 — a 
is the required confidence level and the degrees of freedom n are equal to 
the parameters object of inference. In this case 0 = {ce,/3}, t = {a, 6} and 
n = 2. The problem of computing the covariance matrix remains. Here again 
the asymptotic properties of maximum likelihood estimators come to help, 
assuring that the inverse of such matrix U~^ equals the opposite of the ex­
pectation of the Hessian H, i.e. the matrix of the second derivative of the 
log likelihood I {0\ t) in respect of the pair of the parameters. Remembering 
that the matrix E is positive definite, the previous second order function is 
an ellipse, with positive or negative orientation, depending on the sign of the 
mixed derivative (covariance). The explicit form of such function is: 

tf E [H] {0-t) = 

1 -ai,f32 -b2)^ E 

dadp 

dadp 

a/32 

( a i - a i , / ? 2 - & 2 ) 

(14) 
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where: 

^ (/3 + i)E(^./«)^ 

U = -W-^ {^ilo^)^W{xi/a) (15) 

dadfl 
It It 

The expectations of the second derivatives can be estimated through the 
samphng data, substi tuting them by the samphng means: the very large sam­
ple sizes allow to state tha t such estimates are surely very accurate. 

At this point it is possible to draw a line representing an area where an 
estimated rate of the likelihood volume is contained, say the 90%. Comparing 
the regions related to two groups (rainy days preceded by a non-rainy day 
and rainy days preceded by a rainy day, the graphs are here not reported for 
saving space) the hypothesis tha t the parameters a and [3 month by month 
are equal for both groups is acceptable, with the exception of April. (This 
case can be reasonably regarded as an admissible I type error). Therefore we 
can conjointly estimate the pair of parameters of the Weibull distribution per 
each month. The confidence regions for pairs of parameters are reported in 
Figure 3.1. 

Fig. 3. Confidence region (90% confidence level) for the pairs of monthly parameters 
of the Weibull distribution representing rainfall 

We can see the presence of perhaps four typical behaviour: the first one 
(autumn-winter) , characterizing the months from October to February, with 
a within 6 and 8; the second one (spring) involving the month of March and 
April, with a within 5 and 6 and (3 within 0.7 and 0.8; the third one (late 
summer and early autumn) for months of August and September, with a 
again within 5 and 6, but [3 lower than before, within 0.6 and 0.7; last one is 
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the typical southern high summer from May to July, with a within 3 and 4 
and /3 within 0.6 and 0.7. 

3.2 T h e N e w P r o p o s e d M o d e l 

Let we pass to the differential model proposed (9). It is based on the dis­
tr ibution of two quantity: duration and global magnitude of the recorded 
phenomenon at each occurrence (cluster). Therefore it is necessary to record, 
per each cluster of consecutive rainy days, the number of such days and the 
cumulated rain fallen in those days. Because the analysis must be carried 
out month by month, when a cluster extends on two consecutive months, the 
da tum will be assigned to the first month, by convention. At this point, to 
simplify the analysis one can sum all the rainfall of consecutive rainy days 
and assign this quantity as the first day rainfall. This means to consider a 
Poisson process with variable expected rate of rain origin arrivals. This rate 
varies (approximately) according to a sinusoidal function (see Figure 3.2). 
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Fig. 4. Monthly behaviour of the expected number of clusters of rainy days, and 
relative confidence interval (95% confidence level), interpolated by a periodical func­
tion (with 2 harmonics) 

For characterizing the distribution of the duration some difficulties have 
been encountered. At the beginning, it seemed natural to turn the attention 
towards discrete random variables, in particular to those coming from the 
Bernoullian scheme: Binomial, Poisson and Negative Binomial, characterized 
by the fact tha t expectation is greater than, equal to, or lesser than variance, 
respectively. Unfortunately the comparison of the first two sampling moments 
does not showed a constant relation, month by month: for some months was 
greater the mean, for others the variance, with deviates not a t t r ibutable only 
to random effects. At this point we turned out at tention towards continuous 
distribution. In particular it seemed tha t the Lognormal distribution assures 
a good fitting of the data . In Figure 3.2 the confidence intervals of the pairs 
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of parameters , obtained month by month, of the Lognormal distributions are 
reported. In this case we can neglect the covariance between the parameter 
pairs, because they are the samphng mean and the s tandard deviation, tha t 
are independent in normal case. As it can be seen from this figure, here it 
is again possible to hypothesize periodical functions, describing the trend of 
these two parameters . 

AGO SEP OCT NOV DEC I JAN FEB MAR APR MAY JUN JUL AGO SEP OCT NOV DEC 

Fig. 5. Confidence intervals (95% confidence level) for the pairs of monthly param­
eters of the Lognormal distribution, interpolated by a periodical function with 1 
harmonic, representing rainfall cumulated duration 

Less problematic has resulted the characterization of the cumulated mag­
nitude. Here the chosen distribution was again the Weibull. As it can be seen 
from the confidence regions of the pairs of parameters , obtained month by 
month (see Figure 3.2), here we have the possibility to put together some 
pairs of parameters too. We can single out three models: the first one related 
to autumn-winter (from October to March) with form parameter from 0.7 to 
0.9 and scale parameter from 15 and 25; a spring-autumn model (April-May 
and August-September) with the first parameter slight lower (from 0,6 and 
0,8) and scale parameter very lower (nearly 10); and finally a summer model 
(June-July) with still lower parameters (the first one 0.65 to 0.75 and the 
second nearly 5). 

4 Conclusions 

In Sicilian region, on the base of the examined rainfall data, it has been 
possible to observe tha t : 

• The probability of having a rainy day depends on the fact tha t the pre­
vious day has been a rainy or non-rainy day. This behaviour is easily un­
derstandable by considering the mechanism generating rainfall, related 
to atmospheric disturbances passing on the region territory and the ex­
tension of the cloud masses. 
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Fig. 6. Confidence region (90% confidence level) for the pairs of monthly parameters 
of the Weibull distribution representing rainfall cumulated magnitude 

The occurrence of a rainy day can be modeled as a Poisson random 
phenomenon, with rate varying month by month and depending on the 
previous day status (rainy, non-rainy). 
In order to represent the phenomenon in a way that is more adherent to 
its physical characteristics, a new model has been proposed, that takes 
into account not only the rainfall magnitude, but also the duration of 
each cluster of rainy days. 
The two models cannot be numerically compared, because in the first 
one the magnitude represents the rainfall of one rainy day, in the second 
one the rainfall of a cluster of rainy days. Anyway, for these data in both 
models it has been possible to represent this quantity by the same random 
variable. 
The main advantage of the second model lies in its probabilistic repre­
sentation, that makes it more useful for hydrological aims, rather then 
short term forecasting. In fact it can be used for generating "simulated 
rains", or its estimated parameters can be introduced directly in more 
complex hydrological models. 
Moreover the new proposed model can be extended to data coming from 
other hydrological sites, in order to develop a model valid for a larger 
area (say, region). At the moment we do not know if changing site or time 
period the representation of amplitude and duration will keep constant. 
However, the model seems quite flexible to fit well intermittent data, as 
those dealt with in this paper. 
Because this study is in a prototypal phase, until now the computational 
procedure is not optimized, in fact data handling and calculations have 
been implemented by means of different softwares; but it can be easily 
improved. 
Eventually, the proposed model can be made closer to reality by adding 
another parameter describing the average behaviour of rainfall in a single 
cluster; this leads to solve another differential equation that models the 
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height of rainfah distribution within the cluster. To aim at this, how­
ever, it is necessary to have a larger number of da ta within each cluster, 
therefore it could be conceivable having hourly data . 
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Abs t r ac t . A comparison of techniques for analysing trauma injury data collected 
over ten years at a hospital trauma unit in the U.K. is reported. The analysis in­
cludes a comparison of four data mining techniques to determine factors associated 
with death following injury. The techniques include a classification and regression 
tree algorithm, a classification algorithm, a neural network and logistic regression. 
As well as techniques within the data mining framework, conventional logistic re­
gression modelling is also included for comparison. Results are compared in terms 
of sensitivity, specificity, positive predictive value and negative predictive value. 

1 Introduction 

Trauma is the most common cause of loss of life to those under forty (Trauma 
Audit and Research Network (TARN), 2004), and many of these deaths are 
preventable. In 1991, in response to a report from the Royal College of Sur­
geons of England, the government supported a pilot t r auma system at the 
North Staffordshire Hospital in Stoke-on-Trent in the U.K. (Oakley et al., 
2004). The Trauma Audit and Research Network (TARN, 2004) records in­
jury details such as the patient 's sex and age, the mechanism of injury, var­
ious measures of the severity of the injury, initial management and subse­
quent management interventions, and the outcome of the t reatment , includ­
ing whether the patient lived or died. The system is intended to develop 
effective care for injured patients through process and outcome analysis and 
dissemination of results. TARN da ta are collected throughout England al­
though the current study concerns only tha t da ta collected in the University 
Hospital of North Staffordshire. The University Hospital of North Stafford­
shire is the major t r auma centre in the area, and receives referrals from 
surrounding hospitals. 

The aim of this research is to determine factors associated with death for 
all levels of injury severity for patients admit ted between 1992 and 2003. The 
results of the da ta mining techniques and a conventional logistic regression 
approach are reported, and evaluated according to their predictive ability. 
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2 Methods 

The data were de-identified by the data owner prior to analysis for reasons of 
confidentiahty and privacy, and the data were held securely. The data were 
collapsed into a fiat file (single table), as many data mining techniques require 
the data to be in this format (Breault, 2002). Two different approaches to 
the statistical analysis of these data were considered; data mining techniques 
and a conventional logistic regression modelling approach. The data mining 
techniques considered include a classification algorithm (C5.0) a classification 
and regression tree (CART), logistic regression (LR), and a neural network 
(NN). The analysis was carried out using the statistical packages SPSS 11.0.1 
and Clementine 7.0. 

Factors considered for inclusion in the models are summarised in Table 1 
and include patient's age and sex, year of admission to hospital, primary re­
ceiving hospital, and whether the patient was referred from another hospital, 
mechanism of injury and type of trauma. Various injury severity scores were 
also considered including Injury Severity Score (ISS) (Baker et al., 1974), Ab­
breviated Injury Scores (AIS) (Baker et al., 1990), a new injury severity score 
(NISS) (Osier et al., 1997), and the Glasgow Coma Score (GCS) (Teasdale 
and Jennet, 1974). 

Decision tree algorithms such as C5.0 and CART are classifiers that create 
a set of rules to arrive at a result. C5.0 has been successfully used previously 
in medical data mining (see for example: Aguilar-Ruiz et al., 2004; Jensen, 
2001). A decision tree has attributes (or to use the data mining terminology, 
"factors") from the dataset as its nodes. Each branch off its nodes are the 
values that each factor can take. For example, the node for the factor, "patient 
referred from another hospital" would have two branches, "yes" and "no". 
To construct the tree, the factors in the dataset must be split according to 
how much information they contribute to the classification task. The more 
information they contribute, the higher up they are in the tree. In this fashion, 
the tree is organised with as few nodes as possible between the top of the 
tree and the final branch where classification is made. One important point 
to note is that in a decision tree, the rules are not meant to be stand alone 
and the order of the rules is vital. 

Neural networks on the other hand, attempt to model human intelligence 
using the neurons in a human brain as an analogy. Input is fed through the 
neurons in the network which transform them to output a probability, in this 
case, the probability that a patient will die. An exhaustive prune was used to 
create the ANN. In the ANN, all the neurons are fully connected and each is a 
feed-forward multi layer perceptron which uses the sigmoid transfer function 
(Watkins, 1997). The learning technique used was back propagation. This 
means that, starting with the given topology, the network was trained, then 
a sensitivity analysis is performed on the hidden units and the weakest were 
removed. This training/removing was repeated for a set length of time. 
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Age in years Abbreviated injury scores (AIS): 
Sex (Male or Female) Head Face Lower limb 
Age group (years): 0-15; 16-25; 26-35; Neck Chest External 
36-50; 51-70; over 70 Abdomen Cervical-spine 
Year of admission (1992-2003) Upper limb Thoracic-spine 
Primary receiving hospital Lumbar-spine 
Referred from another hospital (yes or no) 

Glasgow coma score (GCS) group: 
Mechanism of injury group: Mild brain injury, total GCS: 13-15 
Motor vehicle crash; Fall greater than 2m; Moderate brain injury, total GCS: 9-12 

Fall less than 2m; Assault; Other Severe brain injury, total GCS: 3-8 

Type of trauma (blunt or penetrating) Glasgow coma scores (GCS): 
Injury Severity Score (ISS) Eye response; Motor response; 
New Injury Severity Score (NISS) Verbal response 

Table 1. Factors considered in the analyses 

As well as within the data mining framework, conventional LR modelling 
was included for comparison. In medical applications it is usual practice to 
develop a logistic regression model using the complete data set, and the model 
is then tested on the same set of data used to build the model. However, to 
allow comparison with the data mining methods presented in this paper, the 
conventional LR model has been developed using the same training data set as 
that used for the data mining methods, and tested on the validation data set. 
The main difference between the conventional LR model and the LR method 
within the data mining framework, is that the conventional LR method was 
developed in SPSS with user intervention to determine a parsimonious model 
with good predictive ability, yet as simple a model as possible. Hence the 
conventional approach is more subjective than the data mining approach 
which includes the main effects for all variables in the model, however little 
they add to the predictive ability of the model. 

For training and testing the data mining methods, the data were randomly 
split into a training data set and a validation data set. A two thirds/one third 
split was used, keeping the same proportions of live/die outcomes in each. 
There are 7787 records in the training data set and 3896 in the validation 
data set. The data are however, very imbalanced as more patients lived (94%) 
than died (6%), therefore boosting, which is available within the Clementine 
software, was used in an effort to improve the modelling for the C5.0 method. 

In many data mining efforts the evaluation criterion is the accuracy i.e. 
the percentage of correct classifications made by an algorithm, however, in 
medical data mining consideration must also be given to the percentage of 
false positives and false negatives made. The evaluation criteria included for 
testing the classification algorithms are sensitivity, specificity, positive predic­
tive value (PPV) and negative predictive value (NPV). A receiver operator 



420 Penny and Chesney 

curve (ROC) analysis is used to compare the areas under the curve for the 
two logistic regression models. 

Factor 
Mechanism of injury 

Age in years: 

O R (95% CI) 
: Motor vehicle crash 1.00 

Fall < 2 metres 
Fall > 2m 
Assault 
Other 
0 - 15 
16-25 
26 - 35 
36 - 50 
51 - 70 
70 or over 

Referred from another hospital 
New Injury Severity 
GCS group: 

Year of admission: 

Table 2 

Score (NISS) 
Mild 
Moderate 
Severe 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 
2000 
2001 
2002 
2003 

0.73 (0.51, 1.04) 
0.52 (0.33, 0.82) 
0.58 (0.25, 1.35) 
1.42 (0.95, 2.12) 
1.00 
0.94 (0.52, 1.71) 
1.47 (0.79, 2.73) 
1.41 (0.77, 2.57) 
3.89 (2.16, 7.02) 
24.21 (13.34, 43.97) 
0.39 (0.27, 0.57) 
1.09 (1.08, 1.10) 
1.00 
1.96 (1.14, 3.37) 
12.57 (8.66, 18.23) 
1.00 
1.18 (0.62, 2.23) 
0.83 (0.42, 1.65) 
0.59 (0.30, 1.15) 
0.43 (0.22, 0.84) 
0.97 (0.51, 1.84) 
0.63 (0.33, 1.20) 
0.79 (0.41, 1.53) 
0.66 (0.29, 1.51) 
1.32 (0.65, 2.69) 
0.88 (0.44, 1.79) 
2.56 (1.27, 5.15) 

. Conventional Logistic Regression Mode] 

p-value 
<0.001 

0.078 
0.005 
0.203 
0.090 

<0.001 
0.850 
0.222 
0.270 

<0.001 
<0.001 
<0.001 
<0.001 
<0.001 

0.015 
<0.001 
<0.001 

0.616 
0.592 
0.123 
0.013 
0.916 
0.160 
0.490 
0.325 
0.440 
0.728 
0.008 

I 

3 Results 

The results of the conventional LR model show that patients with severe 
injuries according to the NISS and GCS, involvement in motor vehicle acci­
dents, older age and not being referred from another hospital, are all asso­
ciated with increased odds of death (see Table 2). Correcting for the other 
factors included in the model, the odds of death vary according to year of ad­
mission and appear to be decreasing over the years until 2003. The variables 
which are significant in the LR model within the data mining framework in­
clude most of the injury severity scores, type of trauma, mechanism of injury, 
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age group and year of admission. However, this model is much more complex 
and includes many more variables, many of which are not statistically signifi­
cant in the model. The LR model produced within the da ta mining framework 
is more accurate than the conventional LR model, as confirmed by the re­
ceiver operator curve (ROC) analysis which gave areas under the curve of 
0.93 for the conventional LR and 0.96 for the LR validation da ta within the 
da ta mining context. 

The NN model output gives details of the relative importance of the 
variables, which are: age group, 12 AIS scores, NISS, year of admission, GCS 
and mechanism of injury (see Table 3). Both the C5.0 and CART models 
produce a set of rules comprising combinations of injury severity measures 
and age of patients. 

Relative importance of most prominent factors: 

Age group 0.38 
11 Abbreviated injury scores between 0.23-0.41 
New Injury Severity Score (NISS) 0.31 
Year of admission 0.26 
GCS - eye response 0.25 
Mechanism of injury 0.23 
GCS - motor response 0.21 
GCS - verbal response 0.20 

Table 3. Neural Network Results 

The evaluation of the da ta mining methods with the validation da ta is 
shown in Table 4, alongside the evaluation of the conventional LR model. 
Results are compared in terms of sensitivity, specificity, P P V and NPV in 
correctly determining patient death following injury. A cut-off value of 0.5 
has been used in the LR evaluations. The NN model has a high sensitivity 
of 96.0% as almost all of the t rue deaths have been correctly predicted. The 
sensitivity is comparatively poor for the C5.0 and conventional LR models 
(65.2% and 54.3% respectively). However, the P P V is highest for these two 
models, showing tha t a higher proportion of patients, who are predicted to 
die, did actually die. 

4 Conclusions 

The da ta mining methods considered here predict death with good accuracy, 
in particular the NN method. Neural networks are known to produce good 
results across a number of applications; however, a major disadvantage is 
tha t the results cannot be explained easily. Although the relative importance 
of the explanatory variables is given, the effect of each explanatory variable 
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Data Mining Methods 

Evaluation 
Criteria 
Sensit ivi ty 
Specificity 
P P V 
N P V 

C5.0 
65.2% 
94.3% 
0.422 
0.977 

C A R T 
78.0% 
88.0% 
0.293 
0.984 

Neura l 
Ne twork 
96.0% 
87.7% 
0.333 
0.959 

Logistic 
Regress ion 
91.5% 
86.9% 
0.407 
0.994 

Convent ional 
Logistic 
Regress ion 
54.3% 
97.9% 
0.623 
0.971 

Table 4. Predictive Evaluations of Methods 

on the outcome variable is unknown. Hence neural networks are less useful if 
the aim is to explain which factors are likely to lead to death or survival. 

The other three data mining methods provide rules (C5.0 and CART) or 
odds ratios (LR), which give an insight into the characteristics associated with 
death. The conventional LR model appears to provide less accurate results; 
this is due to the fact that only six independent variables were included in 
the conventional LR model, whereas the LR model within the data mining 
approach includes all variables available for consideration. The LR model 
from the conventional approach is less complex and easier to interpret than 
the LR model derived by data mining. Therefore, using the conventional 
model, the odds of death could be calculated quite quickly for a trauma 
patient if the values of the variables included in the model were available. 

Data mining can be thought of as an in-depth search to find informa­
tion that previously went unnoticed in the mass of data collected (Giudici, 
2003), and has been used in medical applications in recent years (Cios and 
Moore, 2002; Breault et al., 2002). Lavrac (1999) summarises and discusses 
some techniques specifically for medical data mining and finds that deci­
sion trees often give an appropriate explanation of decisions although they 
are not favoured by physicians. Physicians may feel that, after pruning, too 
few parameters are taken into account. Bratko (1986) found medical experts 
preferred trees that had redundant rules, which had been removed during 
pruning then re-inserted, despite the fact that this led to a reduction in ac­
curacy. 

As well as providing reassurance that the trauma injury measures in cur­
rent use are valid and reliable measures, data mining a medical database such 
as this one has the potential to discover factors or combinations of factors 
which can predict death. Although the models are very complex, they can be 
pruned to simpler models, but at a loss of accuracy. If the model is to be used 
in the field i.e. to calculate a patient's risk of death following injury, then a 
simpler, but less accurate, model would be needed. However, if the aim is to 
explore a database for previously unknown risk factors, then it is reasonable 
to consider a more accurate but complex model. 

Survival analysis of these data was also considered. However, the dataset 
contains 33% of missing values for date of death or discharge, of which, 70% 
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are missing for patients who died. Hence the results may be biased due to 
the high proportion of missing da ta for this variable. 
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