
Algorithms for Biproportional
Apportionment

Sebastian Maier
Institut für Mathematik, Universität Augsburg

Abstract For the biproportional apportionment problem two algorithms are discussed, that
are implemented in the Augsburg BAZI program, the alternating scaling algo-
rithm and the tie-and-transfer algorithm of Balinski and Demange (1989b). The
goal is to determine an integer-valued apportionment matrix that is “proportional
to” a matrix of input weights (e.g. vote counts) and that at the same time achieves
prespecified row and column marginals. The alternating scaling algorithm finds
the solution of most of the practical problems very efficiently. However, it is
possible to create examples for which the procedure fails. The tie-and-transfer
algorithm converges always, though convergence may be slow. In order to make
use of the benefits of both algorithms, a hybrid version is proposed.

Keywords: Biproportional divisor method; biproportional rounding algorithm; discrete al-
ternating scaling; tie-and-transfer algorithm; BAZI.

1. Introduction

The Zurich Canton parliament is composed of seats that represent elec-
toral districts as well as political parties (Pukelsheim, 2004b; Balinski and
Pukelsheim, 2006; Pukelsheim, 2006). Each district i = 1, . . . , k is repre-
sented by a number of seats ri proportional to its population, and each political
party j = 1 . . . l gets cj seats proportional to its total number of votes. The
vote count in district i of party j is denoted by vij . Altogether the vote counts
are assembled into a vote matrix V ∈ N

k×l (see Box on page 106).

106 Sebastian Maier

Box: Biproportional divisor method with standard rounding (Neues Zürcher Zuteilungsver-

fahren).

The seats per district are apportioned in the middle of the legislature period on the basis of

the population counts. Party seats are allocated on election day on the basis of the total party

ballots in the whole electoral region. As the Zurich electoral law provides each voter with as

many ballots as the district has seats, we need to compute the support for a party in a district.

This is done by dividing the raw data that are returned by the polling stations by the district

magnitude, and by rounding the resulting quotient to the closest integer. For each party, these

district support sizes are summed over all districts leading to the overall support size for a

party. The support size may be interpreted as number of people supporting a party. It is used

to compute the superapportionment, this is, the allocation of the seats to the parties across

the whole electoral region.

The final step is the subapportionment, the allocation of the seats to the parties within the

districts. It provides a two-way proportionality, achieving the prespecified district magni-

tudes and the party seats. To compute the apportionment we need two sets of divisors, the

district divisors and the party divisor. Each vote count of a party in a district is divided by

its corresponding district divisor and party divisor; this quotient is rounded in the usual way

to obtain the seat-number. A more detailed description of the Zurich apportionment method

can be found in Balinski and Pukelsheim (2006) and Pukelsheim (2006).

Zurich City Parliament election of 12 February 2006, Superapportionment:

SP SVP FDP Greens CVP EVP AL SD City divisor
Support size 23180 12633 10300 7501 5418 3088 2517 1692 530
Seats 125 44 24 19 14 10 6 5 3

Zurich City Parliament election of 12 February 2006, Subapportionment:

SP SVP FDP Greens CVP EVP AL SD District-
125 44 24 19 14 10 6 5 3 divisor

"1+2" 12 28518-4 15305-2 21833-3 12401-2 7318-1 2829-0 2413-0 1651-0 7000
"3" 16 45541-7 22060-3 10450-1 17319-3 8661-1 2816-0 7418-1 3173-0 6900
"4+5" 13 26673-5 8174-2 4536-1 10221-2 4099-1 1029-0 9086-2 1406-0 5000
"6" 10 24092-4 9676-1 10919-2 8420-1 4399-1 3422-1 2304-0 1106-0 6600
"7+8" 17 61738-5 27906-2 51252-5 25486-2 14223-1 10508-1 5483-1 2454-0 11200
"9" 16 42044-6 31559-4 12060-2 9154-1 11333-1 9841-1 2465-0 5333-1 7580
"10" 12 35259-4 19557-3 15267-2 9689-1 8347-1 4690-1 2539-0 1490-0 7800
"11" 19 56547-6 40144-4 19744-2 12559-1 14762-2 11998-2 3623-1 6226-1 9000
"12" 10 13215-3 10248-3 3066-1 2187-1 4941-1 0-0 429-0 2078-1 4000
Partydivisor 1.006 1.002 1.01 0.97 11333-1 0.88 0.8 1

Table entries are of the form v-a, where v is the number of party votes in the district and

a is the number of seats apportioned to that party’s list in the district. The party ballot v is

divided by the associated district and party divisors, and then rounded in the standard way to

obtain a. In district "1+2" the Greens had 12401 ballots and were awarded by 2 seats, since

12401/(7000 × 0.97) = 1.83 ↗ 2.

Algorithms for Biproportional Apportionment 107

This leads to the following proportional matrix problem (cf. Balinski and
Demange 1989a,b; Pukelsheim, 2004; Balinski and Pukelsheim, 2006; Pukels-
heim, 2006). Find a matrix apportionment A ∈ N

k×l and row divisors ρi, i =
1 . . . k and column divisors γj, j = 1 . . . l which satisfy the following condi-
tions:

aij =

[
vij

ρi · γj

]
s

(1)

ai+ =
∑
j≤l

aij = ri, i = 1, . . . , k (2)

a+j =
∑
i≤k

aij = cj , j = 1, . . . , l. (3)

The rounding [x]s of a positive number x ∈ [n, n + 1], n ∈ N depends on a
dividing point s(n) ∈ [n, n + 1]. We have [x]s = n + 1, if x > s(n), and
[x]s = n, if x < s(n). In the case x hits the signpost s(n), x can be either
rounded down or up. Thus the commonly known divisor methods for vector
apportionments are extended to the matrix case. Matrix apportionments which
are computed using divisor methods share nice properties, e.g. uniformity and
homogeneity, and are unique up to ties (Balinski and Demange 1989a,b).

Since the matrix problem cannot be solved in one step, we need iterative
procedures. In Section 2 we review two algorithms for computing the matrix
apportionment. In Section 3 we investigate the runtime and the error func-
tional. This leads us to suggest merging the advantages of both algorithms to a
hybrid algorithm in Section 4.

2. Algorithms

The two algorithms to be reviewed are the alternating scaling algorithm,
a discrete version of the commonly known iterative proportional fitting algo-
rithms from statistics, and the tie-and-transfer algorithm proposed in (Balinski
and Demange, 1989b).

For both algorithms, a measure for the improvement is the error count in
step t which corresponds to an interim apportionment A(t):

f(t) :=
1

2

∑
i≤k

|ai+(t) − ri| + 1

2

∑
j≤l

|a+j(t) − cj |

This is the number of seat transfers necessary to achieve the solution, that
is, the number of "wrong" allocations within the apportionment matrix. The
procedure stops as soon as the error count is zero.

Before starting the computation, existence of a solution can be checked by
using a max-flow min-cut algorithm (Joas, 2005). For the continuous case,

108 Sebastian Maier

existence is investigated for example in Bacharach (1970) or Pretzel (1980). In
the sequel, we assume existence. Also we do not pay attention to multiplicities
that are possible when the scaled weights hit a signpost.

2.1 Alternating Scaling Algorithm (AS)

The continuous alternating scaling algorithm was proposed by Deming and
Stephan (1940) and has many applications in statistics, such as fitting contin-
gency tables or fitting loglinear models (Fienberg and Meyer, 1983). This pro-
cedure, also known as the RAS algorithm, is extensively studied in literature
(Ireland and Kullback, 1968; Marshall and Olkin, 1968; Bacharach, 1970). A
more extensive and detailed overview on the literature can be found in Balinski
and Pukelsheim (2006). The discrete version of the alternating scaling proce-
dure and its properties is described in Pukelsheim (2004). The idea is to solve
the vector problem for rows in odd steps and for columns in even steps. Hence,
either rows or columns are fitted. If the rows are fitted, errors may be left in the
columns, and if the columns are fitted, errors may be left in the rows. Thus the
matrix problem is reduced to many vector problems, either by solving a set of
row problems, or by solving a set of column problems. To solve such a vector
problem, the algorithm described in Dorfleitner and Klein (1999) is used in up-
dating the divisors in each step. The algorithm succeeds in presenting row and
column divisors fulfilling (1) – (3). A Java implementation of the following
algorithm can be downloaded from www.uni-augsburg.de/bazi.

Algorithm (Discrete Alternating Scaling)

(0) Initialize start divisors Pi(0) = 1, i = 1 . . . , k and Γj(1) = 1, j =
1, . . . , l. At every step t, the scaled weights will be of the form vij(t) =

vij

Pi(t)·Γj (t) .

(i) For odd steps, find row divisors ρi(t) such that, with updated divisors
Pi(t) = ρi(1)ρi(3) . . . ρi(t), the apportionment aij(t) = [vij(t)]s satis-
fies (2).

(ii) For even steps, find column divisors γj(t) such that, with updated divi-
sors Γj(t) = γj(2)γj(4) . . . γj(t), the apportionment aij(t) = [vij(t)]s
satisfies (3).

The algorithm terminates successfully after finitely many steps, T say, when
(1) – (3) are satisfied with divisors ρi = Pi(T) and γj = Γj(T).

Algorithms for Biproportional Apportionment 109

Note that row divisors are updated only in odd steps, and column divisors in
even steps. Therefore the updated divisors are of the form

Pi(t) = ρi(1)ρi(3) · · · ρi

(
2� t

2
� − 1

)
, Γj(t) = γj(2)γj(4) · · · γj

(
2� t

2
�
)

.

2.2 Tie-and-Transfer (TT)

The tie-and-transfer algorithm was first described in Balinski and Demange
(1989b), in a more general form dealing with inequality constraints for rows
and columns. The case of equality constraints can be found in Balinski and
Rachev (1997). The main idea is to transform the biproportional problem into
a bipartite graph. This graph is used to find a feasible flow corresponding to
a biproportional apportionment (Balinski and Demange, 1989b; Balinski and
Rachev, 1997; Zachariasen, 2006).

Algorithm (Tie-and-Transfer)

(0) Start with an initial apportionment exhausting the housesize. This initial
apportionment is obtained by fitting all columns as proposed in Balinski
and Rachev (1997). Then the following labelling procedure is estab-
lished.

(i) Either determine subsets of rows and columns to modify the row and
column divisors. The modification is done in such a way that at least
one more of the rescaled weights is either scaled down to the previous
signpost, or scaled up to the next signpost. This means that the rescaled
weight can be rounded either down or up without affecting the divisors.

(ii) Else determine a path from an underrepresented row to an overrepre-
sented row in the graph. The path is along an interim apportionment on
rescaled weights hitting a signpost alternating being rounded down and
rounded up. Along this path the direction of rounding is changed, that
is, rescaled weights which were rounded down will now be rounded up,
and rescaled weights which were rounded up will now be rounded down.
This procedure increases the number of seats in the underrepresented
row and decreases the number of seats in the overrepresented row. The
net effect of the transfer is a decrease of the error function by exactly
one unit. The transfer does not affect any other row or column sums.

The algorithm will terminate after finitely many steps.

Note that the apportionment is only modified on arcs that correspond to
rescaled weights on signposts. This ensures at every step an apportionment
which can be obtained by the current divisors. The error count decrease is

110 Sebastian Maier

Table 1. Runtimes, iterations and starting errors: AS seems to perform better than
TT, except for examples MOC3T and MOD3T.

Tie-and-Transfer Alternating Scaling
time start error time iterations
(sec.) (count) (sec.) (count)

KRW1995 2 30 1 11
KRW1999 2 29 2 75
KRW2003 2 29 1 18
MOB3T 6 499 2 177
MOC3T 6 500 25 2294
MOD3T 6 500 34 3472
MOB3M 7674 499092 5 395
MOC3M 7756 499902 92 6535
MOD3M 7043 499999 112 9468

o(lkf(0)) (Balinski and Demange, 1989b). In contrary to the alternating scal-
ing algorithm, the tie-and-transfer-algorithm in every step either modifies the
divisors, or changes the apportionment.

3. Properties and Data

The BAZI-program (www.-augsburg.de/bazi) includes not only various
apportionment methods, but also an extensive data-base. This data-base in-
cludes examples for vector problems and for matrix problems, empirical ex-
amples, and academic ones. To study the performance of the algorithms on
empirical data, we choose the last three elections for the Zurich Canton parlia-
ment, KRW1995, KRW1999, KRW2003. There are 18 districts, and 13 or 14
participating parties. The housesize is 180, the district magnitudes vary from
4 to 16, the parties get 1 to 55 seats.

We also study 3 × 3 weight matrices that are motivated by the literature
on the continuous iterative proportional fitting algorithm (Marshall and Olkin,
1968). These matrices have large "housesizes" of 3000 (MOB3T, MOC3T,
MOD3T), or 3000000 (MOB3M, MOC3M, MOD3M).

Table 1 summarizes the observed runtimes of the computation. Since the
error count function is linearly decreasing for the tie-and-transfer algorithm,
only the starting error count is given. For the alternating scaling algorithm the
number of iterations is shown. Both algorithms are quite fast for the Zurich
Canton Parliament Election data, taking about 1 to 2 seconds. For MOB3T
both algorithms are very fast, but for MOC3T and MOD3T alternating scaling
takes about four to six times longer than tie-and-transfer. The three examples

Algorithms for Biproportional Apportionment 111

Fig. 1. Error count for MOD3T: For TT, the decrease is constant. For AS, the
decrease is fast at the beginning and slow towards the end. It reaches 0 after 3472
iterations.

with housesizes 3000000 exhibit an extreme behavior: tie-and-transfer takes
hours, while the alternating scaling algorithm ends within seconds or minutes.
To explain this behavior, we take a closer look at the development of the error
counts.

Figure 1 shows the error count function for MOD3T for the tie-and-transfer
algorithm on the left hand side, and for the alternating scaling algorithm on
the right hand side. The running times are 6.5 seconds for tie-and-transfer, and
34.4 seconds for alternating scaling. For the alternating scaling algorithm, the
decrease is very fast in the beginning, but very slow towards the end. It takes
225 steps for a decrease from three to two, 511 steps from two to one, and
another 2200 steps to end at zero. It is known from Fienberg and Meyer (1983)
that the convergence of the continuous iterative scaling procedure may be very
slow. The tie-and-transfer algorithm shows the predicted linear behavior, by
reducing the error count one by one. Starting with an error of 500, it is faster
than alternating scaling which looses a lot of time towards the end.

Figure 2 conveys the same information. A constant decrease for the tie-and-
transfer algorithm, but it has to start with an error count of 499092, and it takes
rather long (about 2 hours) to work this down to zero. Alternating scaling is
fast, but again the last steps take excessively long. It takes 491 steps for the
decrease from three to two, 46 steps from two to one, and another 1577 steps
from one to zero.

112 Sebastian Maier

Fig. 2. Error count for MOC3M: The decrease is constant for TT with starting
error 499902. For AS, the decrease is fast at the beginning and slow towards the end,
reaching 0 after 653 iterations.

4. Hybrid Algorithm

On the basis of these examples we may summarize the runtime properties of
the two algorithms: the alternating scaling algorithm is very fast in the begin-
ning, but may take very long towards the end. The tie-and-transfer algorithm
processes the error count one by one, even if there is a big error count left.

To combine the advantages of both algorithms, we suggest a hybrid ver-
sion, starting with the alternating scaling algorithm and finishing with the tie-
and-transfer algorithm. The challenge is to implement an appropriate time to
switch.

At the end of the column adjustment there is a check for a switch of the
method. We have experimented with two switching rules.

1 Fast switch: The error count stays the same for two iterations.

2 Adaptive switch: The error count stays the same as many iterations as it
has digits, e.g. six iterations for an error count of 499902.

Figure 3 shows the error count decrease of the hybrid algorithm with adap-
tive switch for MOD3T and MOC3M. The decrease is fast in the beginning on
the left hand side of the vertical line that marks the switching point. After the
switch on the right hand side the error count function is linear like the error
count function of the tie-and-transfer algorithm. To compare the decrease of
the hybrid algorithm, the decrease of the alternating scaling algorithm is also
plotted. The error count function of the hybrid algorithm decreases faster than
that for the alternating scaling algorithm.

Algorithms for Biproportional Apportionment 113

Fig. 3. Error count for MOD3T and MOC3M using the hybrid algorithm with
adaptive switch: On the left hand side of the vertical line the decrease of AS can be
seen. After the switching point the error count decreases linearly using the hybrid
algorithm.

Table 2. Runtimes, iterations and error counts for the the tie-and-transfer algorithm,
the alternating scaling algorithm, and the hybrid algorithm: The hybrid algorithm
performs always better than the other proposed algorithms.

Tie-and-Transfer Alternating Scaling Fast Sw. Hybrid Adapt. Sw. Hybrid
time start error time iter. time iter.+err. c. time iter.+err. c.
(sec.) (count) (sec.) (count) (sec.) (count) (sec.) (count)

KRW1995 2 30 1 11 1 6 + 2 1 6 + 2
KRW1999 2 29 2 75 2 6 + 1 2 6 + 1
KRW2003 2 29 1 18 2 6 + 2 2 6 + 2
MOB3T 6 499 2 177 1 52 + 20 1 52 + 20
MOC3T 6 500 25 2294 0 24 + 4 0 24 + 4
MOD3T 6 500 34 3472 1 52 + 25 1 52 + 25
MOB3M 7674 499092 5 395 4 270 + 24 4 282 + 17
MOC3M 7756 499902 92 6535 24 832 + 709 26 1380 + 317
MOD3M 7043 499999 112 9468 51 922 + 1806 40 1934 + 571

114 Sebastian Maier

Table 2 summarizes the runtime improvements of the hybrid algorithm. In
each line there is a runtime decrease. For empirical examples both switch-
ing rules have the same effect, because of the small number of error counts.
For larger housesizes there is a runtime decrease from about two hours for the
tie-and-transfer algorithm down to one minute. The improvement for the alter-
nating scaling algorithm is also substantial, though not quite so spectacular.

Another way to speed up the calculation is to start with continuous iterative
proportional fitting (IPF) and switch according to some rule to one of the dis-
crete algorithms. This approach is proposed in Balinski and Demange (1989b)
for finding a good starting point for the tie-and-transfer algorithm.

Table 3 summarizes running times and remaining error counts for the tie-
and-transfer algorithm and required iterations for the alternating scaling pro-
cedure for a switching barrier of one. Table 4 applies for a switching barrier of
ten. For the Canton Zurich data the combination of continuous and discrete al-
ternating scaling is approximately as fast as the discrete algorithm. If there is a
higher error count left, e.g. for MOC3T, MOC3M, MOD3T, and MOD3M with
barrier ten, the disadvantage of slow convergence towards the end becomes vis-
ible. Using barrier one, the combination of continuous iterative proportional
fitting and alternating scaling is quite fast. Using iterative proportional fitting
together with tie-and-transfer together is a little slower than the other combina-
tion (IPF – AS) for the empirical examples. For the artificial examples, it has a
very good performance. After the initial fitting of columns, there is no or only
a small error count left for barrier one. Especially for MOC3M and MOD3M
there are 369 and 445 alternating scaling steps necessary to reduce the error
count to zero, but this is processed very fast by the tie and transfer algorithm.

In conclusion we find that the hybrid algorithm performs better than one
of the proposed methods alone The choice of the switching rule has practi-
cally no influence, hence we decided to implement the fast switching rule in
BAZI. The use of the continuous iterative proportional fitting procedure at the
beginning would be another option. Another proposol to improve upon the tie-
and-transfer algorithm, and a detailed investigation of the runtime properties
of the algorithms can be found in Zachariasen (2006).

Acknowledgments

The author is grateful for the support of the Deutsche Forschungsgemein-
schaft. I thank Michel Balinski, Bruno Simeone and an anonymous referee for
all their helpful comments. A special thank to Friedrich Pukelsheim for his
valuable advice and continuous support.

Algorithms for Biproportional Apportionment 115

Table 3. Runtimes, iterations and error counts for continuous hybrid algorithm using
a switching barrier of one: Starting with IPF speeds up the computation. For larger
housesizes switching to TT performs better.

TT AS IPF–TT (1) IPF–AS (1)
time time time err. c. time iter.
(sec.) (sec.) (sec.) (count) (sec.) (count)

KRW1995 2 1 1.3 6 0.9 16
KRW1999 2 2 2.1 8 1.3 39
KRW2003 2 1 1.6 6 0.7 11
MOB3T 6 2 0.2 1 0.2 9
MOC3T 6 25 0.8 0 0.8 2
MOD3T 6 34 1.4 0 1.3 1
MOB3M 7674 5 0.2 0 0.2 2
MOC3M 7756 92 2.1 1 5.8 369
MOD3M 7043 112 3.2 1 7.5 445

Table 4. Runtimes, iterations and error counts for continuous hybrid algorithm using
a switching barrier of ten: Starting with IPF speeds up the computation. Switching to
AS the disadvantage of slow convergence towards the end becomes visible again.

TT AS IPF–TT (10) IPF–AS (10)
time time time err. c. time iter.
(sec.) (sec.) (sec.) (count) (sec.) (count)

KRW1995 2 1 1.3 6 0.7 16
KRW1999 2 2 2 8 1.15 32
KRW2003 2 1 1.8 6 0.76 9
MOB3T 6 2 0.2 5 1 82
MOC3T 6 25 0.2 5 24.76 2286
MOD3T 6 34 0.4 5 30.26 3105
MOB3M 7674 5 0.3 5 0.92 74
MOC3M 7756 92 1.6 5 27.95 2257
MOD3M 7043 112 2.4 5 30.8 2806

116 Sebastian Maier

References
Bacharach, Michael (1970): Biproportional Matrices & Input-Output Change. Cambridge UK.
Balinski, Michel L. and Demange, Gabrielle (1989a): An axiomatic approach to proportionality

between matrices. Mathematics of Operations Research, 14:700–719.
Balinski, Michel L. and Demange, Gabrielle (1989b): Algorithms for proportional matrices in

reals and integers. Mathematical Programming, 45:193–210.
Balinski, Michel L. and Pukelsheim, Friedrich (2006): Matrices and politics. In E. Liski, S. Pun-

tanen J. Isotalo, and G. P. H. Styan, editors, Festschrift for Tarmo Pukkila on His 60th Birth-
day. Department of Mathematics, Statistics, and Philosophy: Tampere.

Balinski, Michel L. and Rachev, Svetlozar T. (1997). Rouding proportions: Methods of round-
ing. Mathematical Scientist, 22:1–26.

Deming, W. Edwards and Stephan, Frederick F. (1940). On a least squares adjustment of a sam-
ple frequency table when the expected marginal totals are known. Annals of Mathematical
Statistics, 11:427–440.

Dorfleitner, Gregor and Klein, Thomas (1999). Rounding with multiplier methods: An efficient
algorithm and applications in statistics. Statistical Papers, 20:143–157.

Fienberg, Stephan S. and Meyer, Michael M. (1983): Iterative proportional fitting. In Encyclo-
pedia of Statistical Sciences, volume 4, pages 275–279. John Wiley & Sons.

Ireland, C. T. and Kullback, S. (1968): Contingency tables with given marginals. Biometrika,
55(1):179–188.

Joas, Bianca (2005): A graph theoretic solvability check for biproportional multiplier methods.
Diploma Thesis, Institute of Mathematics, University of Augsburg.

Marshall, Albert W. and Olkin, Ingram (1968) Scaling of matrices to achieve specified row and
column sums. Numerische Mathematik, 12:83–90.

Pretzel, Oliver (1980): Convergence of the interative scaling procedure for non-negative matri-
ces. Journal of the London Mathematical Society, 21:379–384.

Pukelsheim, Friedrich (2004): BAZI - a java programm for proportional representation. In Ober-
wolfach Reports, volume 1, pages 735–737.

Pukelsheim, Friedrich (2006): Current issues of apportionment methods. In Bruno Simeone
and Friedrich Pukelsheim, editors, Mathematics and Democracy. Recent Advances in Voting
Systems and Collective Choice. New York, 2006.

Pukelsheim, Friedrich and Schuhmacher, Christian (2004): Das neue Zürcher Zuteilungsver-
fahren bei Parlamentswahlen. Aktuelle Juristische Praxis - Pratique Juridique Actuelle, 13:
505–522.

Zachariasen, Martin (2006): Alorithmic aspects of divisor-based biproportional rounding. Type-
script, April 2006.

