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Abstract This note presents an algorithm for computing the minimum total deviation ap-
portionment. Some properties of this apportionment are also explored. This
particular apportionment arises from the jurisprudential concern that total devia-
tion is the appropriate measure for the harm caused by malapportionment of the
United States House of Representatives.
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1. Introduction

The goal of this paper is to revive interest in evaluating methods of ap-
portionment based on the objective functions that they optimize rather than
their intrinsic axiomatic properties. The latter approach is certainly the domi-
nant one as evidenced by such texts as (Balinski and Young, 2001) and (Saari,
1994). Nevertheless there are circumstances for which this may not be the
best approach. I have argued elsewhere (Edelman, to appear) that the case
of the apportionment of the United States House of Representatives is exactly
such a circumstance. Subsequent to the “one person, one vote” rulings of the
mid-1960’s, the United States Supreme Court has adopted the measure of to-
tal deviation to quantify the harm resulting from unequal voting district sizes.
Once having established a measurement of the harm, the Court should require
that any apportionment do what it can to mitigate that harm. This implies that
any method of apportionment should look to minimize the total deviation.

As it happens there are two papers, both pre-dating “one person, one vote,”
investigating methods of apportionment that minimize total deviation. The
first, by Burt and Harris (1963), argued in favor of apportioning the House of
Representatives so as to minimize total deviation on equitable principles and
presented an algorithm using dynamic programming to find such an apportion-
ment. This paper has been cited a number of times in the literature.

A year later and in the same journal, Gilbert and Schatz (1964) published a
response to Burt and Harris. Their rebuttal made three arguments: First, the eq-
uitable arguments in favor of minimizing total deviation were not convincing;
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second, there may be many apportionments that minimize total deviation, and
last, that the algorithm provided by Burt and Harris to produce the minimiz-
ing apportionment was unduly complicated. They provided quite an elegant
algorithm, which I will present subsequently.

Oddly, Gilbert and Schatz’s article seems to have escaped notice. As far
as I know it has never been cited. Yet it contains some quite lovely ideas. A
secondary purpose of this paper is to present the ideas of Gilbert and Schatz in
a contemporary setting so they will get the attention that I think they deserve.

This paper is organized as follows: The next section presents the necessary
background from the theory of apportionment. It is necessarily brief, and I
will rely on the reader to have a basic familiarity with the techniques. Section
3 presents an algorithm to compute the minimum total deviation (mtd) appor-
tionments. The method presented is due to Gilbert and Schatz (1964) although
I have streamlined the presentation and proofs. The next three sections discuss
technical issues associated with mtd apportionments. Section 4 confronts the
problem of multiple mtd apportionments, Section 5 discusses bias and Section
6 examines the Alabama paradox. Section 7 is a brief conclusion.

2. Preliminaries

In this section I will introduce the necessary terminology. Since I am pri-
marily interested in the apportionment of the United States House of Repre-
sentatives, I will phrase the apportionment problem in terms of assigning seats
to states. Assume that there are s states and let p = (p1, p2, . . . , ps) be the
state populations. For h a positive integer we call a = (a1, a2, . . . , as) an h-
apportionment if

∑
ai = h. We will refer to ai as the number of seats that

state i receives. I will assume throughout that the state populations are generic
in the sense that

pi

j
�= pk

l

for 1 ≤ i, k ≤ s and for all positive integers 1 ≤ j, l ≤ s.
Given p and h-apportionment a let

1 Max(p,a) = maxi
pi

ai

2 Min(p,a) = mini
pi

ai
, and

3 TD(p,a) = maxi,j{pi

ai
− pj

aj
} = Max(p,a) − Min(p,a).

Thus, Max(p,a) is largest population/seat ratio among the states, Min(p,a)
is the smallest such value, and TD(p,a), the total deviation of the apportion-
ment, is the gap between these two values.
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Two methods of apportionment will be of particular importance in this pa-
per. The first is the Adams method, which can be described in the following
way (Balinski and Young, 2001, page 142): Given s states with populations
p, and a house of size h, h ≥ s, we let Adams(p, h) be the h-apportionment
given recursively by

1 Adams(p, s) = (1, 1, . . . , 1),

2 Let A = Adams(p, h − 1). If t is the state so that pt

at
= Max(p,A)

then define

Adams(p, h)i =

{
Ai + 1, if i = t;

Ai, otherwise.

Note that from the definition we have that Max(p, Adams(p, h)) is strictly
decreasing as a function of h.

Lemma 1 The Adams apportionment Adams(p, h) minimizes Max(p,a)
over all h-apportionments a.

Proof. This fact is noted in (Balinski and Young, 2001, page 104) without
proof. For the sake of completeness I include one here. Let Adams(p, h) = A

and suppose there is an h-apportionment a so that

pi

ai
= Max(p,a) < Max(p,A) =

pj

Aj
.

It follows that aj > Aj and, since both a and A are h-apportionments, there
must be some k so that ak < Ak. Since the Adams h-apportionment assigns
more seats to state k than a does, it follows that for some h′ < h we have
pk

ak
= Max(p, Adams(p, h′)). Since Max(p, Adams(p, h))is strictly de-

creasing as a function of h, pk

ak
>

pj

Aj
which contradicts the assumption that

pi

ai
= Max(p,a).
If h′ > h and a and a′ are h- and h′-apportionments, respectively, I will say

that a′ is an h′-extension of a if a′ ≥ a, i.e., a′k ≥ ak for all 1 ≤ k ≤ s. The
following lemma helps to illustrate this idea and will prove useful in the next
section.

Lemma 2 Let A = Adams(p, h). If a is an apportionment with

Max(p,a) = Max(p,A)

then a is an h′-extension of A for some h′ ≥ h.
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Proof. Let pk

Ak
= Max(p,A). Because the Adams method always gives

priority to the state with the largest ratio of population to seats, we know that
pl

Al−1 > pk

Ak
for all l �= k, since the Adams method gave state l its Ath

l seat

before k gets its Ath
k . Thus, Max(p,a) = Max(p,A) implies that al ≥ Al

for all l and thus a is an extension of A.
If a is an h-apportionment, the h′-Jefferson extension of a, JExt(a, h′) is

defined recursively by:

1 JExt(a, h) = a,

2 Let J = JExt(a, h′ − 1). If t is the state so that

pt

Jt + 1
= Maxi{ pi

Ji + 1
}

then define

JExt(p, h′)i =

{
Ji + 1, if i = t;

Ji, otherwise.

It is clear that Jeff(p, h) = JExt(0, h), where 0 = (0, . . . , 0), is just the
usual Jefferson h-apportionment (Balinski and Young, 2001, page 142).

Lemma 3 If a is an h-apportionment, and h′ ≥ h, then JExt(a, h′) maxi-
mizes Min(p,a′) over all h′-extensions of a.

Proof. An essentially equivalent fact is stated in (Balinski and Young, 2001,
page 104) without proof. For completeness I include one here.

Let J = JExt(a, h′). Suppose that a′ is another h′-extension of a for which

pi

a′i
= Min(p,a′) > Min(p,J) =

pk

Jk
.

It follows that a′k < Jk, and since both J and a′ are h′-extensions, there must
be some l so that a′l > Jl. We also know that ak < Jk and so state k received
at least one more seat in JExt than in a. From the definition of JExt, then,
we know that

pk

Jk
>

pl

Jl + 1
≥ pl

a′l
>

pi

a′i
which is a contradiction.

There is but one last piece of notation required. Suppose that a is an h-
apportionment and let k be a state. By a|k I mean the (h − ak)-apportionment
for the states with k removed.



Minimum Total Deviation Apportionments 59

3. Minimum Total Deviation Apportionment

In this section I will present the algorithm for finding an apportionment that
minimizes the total deviation function TD(p,a). This algorithm first appeared
in (Gilbert and Schatz, 1964) and I have done little to improve it other than to
update the terminology and streamline the proof. Their idea is quite clever and
deserves to be more widely known. The key to the construction is to begin
an apportionment using the Adams method, but extend it using the Jefferson
extension. Since the Adams method minimizes Max(p,a) and the Jefferson
extension maximizes Min(p,a) combining the two methods results in mini-
mizing the gap TD(p,a).

Let p be the set of state populations as before, and suppose we want to find
the h′-apportionment that minimizes the total deviation. For h, h′ ≥ h ≥ s, let
Ah = Adams(p, h). If k is the state so that

pk

Ah
k

= Max(p,Ah)

let Jh be the h′-apportionment obtained by taking JExt(Ah|k, h′ − Ah
k) and

then assigning Ah
k seats to state k . That is, Jh is obtained by assigning the

first h seats using Adams method, setting aside the state which maximizes the
population/seat ratio and then extending the rest of the apportionment using
Jefferson’s method. Thus, Jh is an h′-apportionment of p for every h, h′ ≥
h ≥ s.

Theorem 4 The minimum of TD(p,a) over all h′-apportionments is equal
to

min
{h | h′≥h≥s}

TD(p,Jh).

That is, the minimum of TD(p,a) over all h′-apportionments is achieved by
one of the h′-apportionments in the set {Jh}.

Proof. Suppose that a′ is an h′-apportionment that achieves the minimum
of TD(p,a). Let

pk

a′k
= Max(p,a′).

Since the Adams h′-apportionment minimizes Max(p,a) over all h′-appor-
tionments, it must be true that for some h ≤ h′ we have

pk

a′k
= Max(p, Adams(p, h)).

By Lemma 2 we know that a′ is an h′-extension of Adams(p, h). Thus
a′|k is an extension of Adams(p, h)|k and so, by Lemma 3, Min(p,a′) ≤
Min(p,Jh). Thus,

TD(p,a′) ≥ TD(p,Jh)
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and the theorem is proved.
This idea of starting an apportionment using one standard method and then

extending it using a different one is interesting and understudied. It is also
more subtle than it might seem at first glance. One might think that the above
construction done in the opposite order, i.e., start an apportionment using the
Jefferson method and then extend it using Adams, would result in the same
outcome, but it need not. For while no extension of an apportionment can in-
crease Max(p,a), most extensions will result in decreasing Min(p,a). Thus
following Jefferson with Adams will almost surely result in losing control of
Min(p,a) and no claim similar to Theorem 4 will be true.

4. A Multiplicity of Minima

An unfortunate aspect of total deviation is that minimizing apportionments
need not be unique. This was observed first by Gilbert and Schatz (1964) who
provided an example based on a modification of the 1960 US census data. The
existence of such examples was, for them, a reason to disqualify minimizing
total deviation as a means of choosing an apportionment. I have argued other-
wise, elsewhere (Edelman, to appear). Nevertheless, this is an unusual aspect
of total deviation which is worth considering further.

If the House of Representatives were apportioned using a total deviation
minimizing method, then two of the twenty-two apportionments would not
have been unique. In both 1810 and 1840 there were multiple apportionments
that had the same minimum total deviation. Table 1 lists the 14 different ap-
portionments for the House in 1810 which achieve the minimum.

Table 1. 1810 Minimum Total Deviation Apportionments

State Population 1 2 3 4 5 6 7 8 9 10 11 12 13 14

New York 953043 26 26 26 26 26 26 27 27 27 27 25 25 25 25
Virginia 817615 22 22 22 23 23 23 22 22 22 23 22 23 23 23
Pennsylvania 809773 22 23 23 22 22 23 22 22 23 22 23 22 23 23
Massachusetts 700745 20 19 20 19 20 19 19 20 19 19 20 20 19 20
North Carolina 487971 14 14 13 14 13 13 14 13 13 13 14 14 14 13
Kentucky 374287 10 10 10 10 10 10 10 10 10 10 10 10 10 10
South Carolina 336569 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Maryland 335946 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Connecticut 261818 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Tennessee 243913 7 7 7 7 7 7 7 7 7 7 7 7 7 7
New Jersey 241222 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Ohio 230760 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Vermont 217895 6 6 6 6 6 6 6 6 6 6 6 6 6 6
New Hampshire 214460 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Georgia 210346 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Rhode Island 76888 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Delaware 71004 2 2 2 2 2 2 2 2 2 2 2 2 2 2

It is interesting to note that the Hamilton, Webster, Dean, and Hill methods
all give the same apportionment in this case and that apportionment, number 4
in Table 1, is a mtd apportionment. The population data for the 1840 census,
which also has multiple mtd apportionments has a similar property; Hamilton,
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Webster, Dean and Hill all agree, although this time that apportionment is not
mtd. This suggests that one might be able to say more about population data
that produces multiple mtd apportionments. What can one say about situations
for which the mtd apportionment is unique? To begin, observe that the gener-
icity assumption that the population/seat ratios are all distinct does not exclude
that the differences of the ratios are distinct. This opens the door for two appor-
tionments to have the same total deviation by chance. For example, consider
three states, A,B and C, with populations 4704, 2076 and 539, respectively.
One can check that the minimum total deviation is achieved by two different
apportionments, (8, 3, 1) and (7, 4, 1). In the first apportionment state B has
the largest population/seat ratio of 692, C has the smallest at 539 for a total
deviation of 153. In the second apportionment, state A is largest (672) and B

is smallest (519) for the same total deviation.
I will call a set of populations hyper-generic if, not only are the popula-

tion/seat ratios distinct (for all house sizes suitably small), but the differences
of population/seat ratios are also distinct. For hyper-generic populations, two
apportionments can have the same total deviation only if the states achieving
the maximum and minimum population/seat ratios are the same in each appor-
tionment and the differences occur in the distribution of seats among the other
states. The data from the 1810 census illustrates this situation, where Ohio has
the largest population/seat ratio and New Jersey the smallest. The variation
in the apportionments comes from reallocating the seats among some of the
other states in such a way that their population/seat ratios stay within the range
established by Ohio and New Jersey. The question then becomes when such
an internal reallocation is possible. There are a few situations in which we can
say something concrete about whether a mtd apportionment is unique:

Lemma 5 If the state populations are hyper-generic, and the Adams appor-
tionment minimizes total deviation, then it is the unique apportionment that
minimizes total deviation.

Proof. In order for there to be another mtd apportionment, one must be able
to reallocate a seat from one state to another. But in the Adams apportionment
reducing the number of seats to any state will increase its population/seat ratio
above that of the current maximum and thus increase the total deviation.

In the following lemmas I will use the notation from Section 3. Recall that
Jh is the h′-apportionment obtained from Adams(p, h) by taking JExt(Ah|k,
h′−Ah

k), where k is the state with the largest population/seat ratio in Adams(p,
h), and then assigning Ah

k seats to state k.

Lemma 6 Suppose the state populations p are hyper-generic and Jh is a mtd
h′-apportionment. This is the unique mtd apportionment if

JExt(Ah|k, h′ − Ah
k) = Jeff(p|k, h′ − Ah

k).
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That is, if the Jefferson extension agrees with the actual Jefferson apportion-
ment, then the mtd apportionment will be unique.

Proof. It follows from Lemma 3 that any h′ − Ah
k-apportionment a for the

states pk will have

Min(pk,a) < Min(pk, Jeff(p|k, h′ − Ah
k) = JExt(Ah|k, h′ − Ah

k).

Thus Jh must be the unique mtd apportionment.

Lemma 7 Suppose that Jh is a mtd h′-apportionment, that it differs from
Adams(p, h) in at least 2 states, and JExt(Ah|k, h′−Ah

k) �= Jeff(p|k, h′−
Ah

k). Then the mtd h′-apportionment is not unique.

Proof. That

JExt(Ah|k, h′ − Ah
k) �= Jeff(p|k, h′ − Ah

k)

implies that there is some state j �= k, with seat allocation Jh
j , so that

pj

Jh
j + 1

> Min(p,Jh).

Moreover, since there are at least two states on which Jh differs from
Adams(p, h), there must be a state i different from both j and k so that

pi

Jh
i − 1

< Max(p,Jh)

and hence the transfer of a seat from state j to state i will result in an h′-
apportionment with the same total deviation as Jh.

These three lemmas leave just a little uncertainty about the nature of the mtd
apportionments that are not unique. The remaining case is if Jh, the mtd appor-
tionment, differs from Adams(p, h) in only one state. Such apportionments
may or may not be unique depending on the existence of a second state to
which a seat can be added without decreasing Min(p,Jh). Either possibility
can arise.

5. Bias

A traditional concern in apportionment is whether there is an inherent bias
in the method with respect to the size of the state. It is well-established (Balin-
ski and Young, 2001, Chapter 9) that among standard methods, Hamilton and
Webster are unbiased while Adams is biased toward small states and Jefferson
is biased toward large ones. What can one say about the bias inherent in the
mtd apportionment?
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As noted in the previous section, in 20 of the 22 apportionments of the
United States, the mtd apportionment was the same as the Adams apportion-
ment. Thus, one might conclude that the mtd apportionment has a bias to small
states. The difficulty with this line of reasoning is that, as shown previously,
there may be a multiplicity of mtd apportionments and in those situations, there
may be little or no bias. For example, as previously noted, among the mtd ap-
portionments for the 1810 census data is the apportionment that agrees with
the Hamilton, Webster, Hill and Dean methods.

So, to prove anything conclusively we would need more detailed informa-
tion on two aspects of mtd apportionments; first, how often are there multiple
mtd apportionments, and second, can we choose among multiple mtd appor-
tionments in such a way as to minimize the resulting bias overall. The results
in the previous section are but a small step in the first direction. The second is
totally unresearched.

6. Alabama Paradox

A method of apportionment is said to exhibit the Alabama paradox if an
increase in the size of the house may result in the decrease in the number of
seats allocated to a state. It is well-known that the divisor methods do not
exhibit the paradox, while the Hamilton method does. In what way does the
mtd apportionment behave?

Since mtd apportionments may not be unique one must be careful in how
this problem is phrased. There is no question that if the mtd apportionments
are chosen injudiciously the Alabama paradox may result. Consider the appor-
tionment problem (taken from Figure 1) that consists of states New York, Vir-
ginia, Pennsylvania, New Jersey, and Ohio, with populations 953043, 817615,
809773, 241222, and 230760, respectively. One mtd 83-apportionment is 26,
22, 22, 7, and 6 seats for each state, respectively. A mtd 84-apportionment is
25, 23, 23, 7, and 6. So this pair of apportionments exhibits the Alabama para-
dox. On the other hand, 25, 23, 22, 7, and 6 is also a mtd 83-apportionment,
which would show no Alabama paradox. It is also true that 26, 23, 22, 7, and
6 is a mtd 84-apportionment. So, by making an appropriate choice among the
mtd apportionments one need not have the Alabama paradox manifest itself in
this instance.

Can one always avoid the Alabama paradox in this way? I don’t know.
Balinski and Young (Balinski and Young, 2001, Proposition 3.9) assert that
apportionments can exhibit the Alabama paradox, but they give no specific ex-
ample. This leaves it unclear whether they were referring to the phenomenon
just discussed or a more robust example in which the Alabama paradox is un-
avoidable.
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7. Conclusion

What I have presented here is a method of apportionment designed to mini-
mize total deviation, a particular measure of harm in malapportionments. It is
the measure of harm that has been recognized by the United States Supreme
Court. While this method has less desirable behavior than standard methods
from an axiomatic point-of-view, that does not mean that it is inappropriate for
certain purposes. And it certainly does not mean that it is not an interesting
method worth studying further.
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