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Abstract This paper characterizes divisor methods for vector and matrix apportion prob-
lems with very simple properties. For the vector problem—a vector gives the
votes of parties or the populations of states, a single number the size of the
house—they are shown to be the only methods that are coherent with the defi-
nition of the corresponding divisor method when applied to only two states or
parties. For the matrix problem—rows correspond to districts, columns to par-
ties, entries to votes for party-lists, and the number of seats due to each row (or
district) and each column (or party) is known—one extra property is necessary.
The method must be proportional: it must give identical answers to a problem
obtained by re-scaling any rows and/or any columns of the matrix of votes.
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1. Introduction

“Bi-dimensional” (or “matrix”) apportionment is now a recognized system
for designating winners in an election system. It is the law of the land in the
Swiss canton and the city of Zürich (Pukelsheim and Schuhmacher, 2004), and
it may well become so in the Faroe Islands (Zachariassen and Zachariassen,
2005). Developed, justified, explained and applied in a series of papers and a
book (Balinski and Demange, 1989a,b; Balinski and Rachev, 1997; Balinski
and Ramírez, 1997,1999a; Balinski, 2002, 2004) it may also be viewed as a
simple and direct extension of the more familiar “uni-dimensional” (or “vec-
tor”) apportionment problem. That is what this paper aims to do.

2. Vector Apportionment: a Primer

A vector (or uni-dimensional) apportionment problem is a pair (v, h), where
v = (vi) > 0 for i = 1, . . . ,m are the populations of m regions (or the votes of
m parties) and h is the number of seats in an assembly to be distributed “pro-
portionally” among them. An apportionment is a vector a = (a1, . . . , am),
where ai ≥ 0 is integer valued and

∑
i ai = h. Vector apportionment is the
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classical problem of allocating seats to regions or states when v is the vector of
their populations, or of allocating seats to political parties when v is the vector
of their votes: by what method should a solution be chosen from among the
many possible apportionments?

In general, a (vector) method of apportionment Φ selects a nonempty subset
of apportionments Φ(v, h) for any problem (v, h).

A divisor criterion is any real valued function d on the nonnegative integers
k ≥ 0 that satisfies k ≤ d(k) ≤ k + 1 and for which there are no two integers
p > 0 and q ≥ 0 where d(p) = p and d(q) = q+1. In effect, a divisor criterion
is simply a point on each closed interval [k, k + 1] for k ≥ 0 and integer, with
the stipulation that if in some interval the point is at the lower (the upper) end
then in no other interval can it be at the upper (the lower) end. Suppose that a
real number x is in the interval [a, a + 1], a an integer. Then a d-rounding [x]d
of x > 0 is a if x < d(a) and a + 1 if x > d(a); if x = d(a) then [x]d is either
a or a + 1 (so in fact [x]d is a set that is usually single valued). A d-rounding
of 0 is always 0: [0]d = 0. The d(a) are thresholds in the intervals [a, a + 1]:
below the threshold x is rounded-down to a, above it is rounded-up to a + 1,
at the threshold it is either rounded-up or -down.

A divisor method based on d is the set of apportionments

Φd(v, h) =

{
a = (ai) : ai = [λvi]d for λ chosen so that

∑
i

ai = h

}
. (1)

If, contrary to the definition, d(p) = p, d(q) = q + 1 for some integers p >
0, q ≥ 0, then (p−1, q+1) ∈ Φd

(
(p, q), p+q

)
, showing that although a perfect

apportionment exists it may not be chosen, and explaining the exclusion. Note
also that d(0) = 0 implies [λvi]d ≥ 1 for every λ > 0 and vi > 0.

If a ∈ Φd then d(ai − 1) ≤ λvi ≤ d(ai) for all i, implying

Φd(v, h) =

{
a = (ai) : min

ai>0

vi

d(ai − 1)
≥ max

aj≥0

vj

d(aj)
,
∑

i

ai = h

}
, (2)

where vj/0 = ∞ and d(−1) = 0. Consequently, a divisor method may also
be described recursively as follows. Φd(v, 0) = 0 and suppose a ∈ Φd(v, h).
Then

ā ∈ Φd(v, h + 1) where ā = a, except āl = al + 1 for
vl

d(al)
= max

i

vi

d(ai)
.

(3)
This description implies that a ∈ Φd(v, h) if a solves

max
a

min
i

vi

d(ai − 1)
when

∑
i

ai = h and ai ≥ 0 integer. (4)
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From the recursive definition it also follows that an apportionment a of the
divisor method Φd is a solution to

max
a

∑
i

ai−1∑
k=0

vi

d(k)
when

∑
i

ai = h and ai ≥ 0 integer, (5)

(assuming h ≥ m if d(0) = 0). This is easy to see because the solution
is “greedy”: at each allocation of an “extra” seat give to the integer variable
k the value that maximizes vi/d(k) over i in conformity with the recursive
procedure. Precisely the same argument shows that an apportionment a of the
divisor method Φd is also a solution to

max
a

∏
i

ai−1∏
k=0

vi

d(k)
when

∑
i

ai = h and ai ≥ 0 integer. (6)

There are many other “objective functions” that are optimized by the appor-
tionments of one or another of the divisor methods.

The parametric (divisor) method Φδ based on δ, for 0 ≤ δ ≤ 1, is the divisor
method Φd based on d where d(k) = k + δ for all integer k ≥ 0. Adams’s
method is the parametric method based on δ = 0; Condorcet’s method is the
parametric method based on δ = 2

5 ; Webster’s or Sainte-Laguë’s is based on
δ = 1

2 ; and Jefferson’s or D’Hondt’s is based on δ = 1.
Letting v̄ =

∑
vi, an apportionment a of the parametric method Φδ is a

solution to (see Balinski and Ramírez (1999b)):

min
a

∑
i

vi

(
ai + δ − 1

2

vi
− h

v̄

)2

when
∑

i

ai = h and ai ≥ 0 integer. (7)

Notice that solutions to the optimization problems (4), (5) and (6) do not
change when v is replaced by λv for any λ > 0.

There are an infinite number of divisor methods for vector problems, and
they can yield very different apportionments. They have been characterized
by a set of properties so desirable in the context of apportionment that it is
fair to say they are the only acceptable methods (Balinski and Young, 1982).
The most important of these properties—coherence—stems from a very simple
idea.

Suppose that the h seats have been apportioned among the several regions
in a manner that is “fair”. Any subset of the regions could reasonably ask
the question: Do our shares represent a “fair” division among us considered
as a separate group? Suppose that they believed that a different division of
their pooled shares would be more fair. In that case it would be possible to
substitute this different division for their initial apportionment to obtain a new
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apportionment among all that is “fairer” for the regions of the subset, and the
same for all others. How could one then affirm that the initial division was fair
to all? A rule that did this would surely be judged to be “incoherent”! The idea
is captured in the slogan: “Any part of a fair division must be fair.”

To be precise, consider an apportionment chosen by a method—a “global”
apportionment—sum the seats it assigns to any subset of the regions, and con-
sider the apportionment(s) obtained by applying the same method to redis-
tribute this sum among the members of the subgroup (each of the latter set is
a local apportionment). The method is coherent when two properties hold: (i)
the shares assigned to each of the regions of the subset by the original (global)
apportionment is a local apportionment and (ii) if there is another local ap-
portionment among the regions of the subgroup, then another (global) appor-
tionment of the method to all the regions is found as follows: substitute the
shares in the local apportionment for what those regions have in the original
apportionment.

For example, imagine an apportionment of the seats in the U.S. House of
Representatives: if the method that is used yields an apportionment that gives
29 of the country’s congressional seats to New York and 53 to California (as it
did in accordance with the 2000 census), then surely the same method should
divide the sum of 82 seats between New York and California in the same way.
If the method also gives rise to a local apportionment that assigned 28 seats
to New York and 54 to California, then replacing their shares in the initial
apportionment with these should yield a second apportionment that belongs to
the method. There would then be two possible apportionments of the House (a
theoretical possibility unlikely to occur in practice). The concept of a coherent
method1 is quite general and is germane to many problems of fair division
(Balinski, 2005), but it first arose in the context of the apportionment problem
(Balinski and Young, 1982) where it is particularly important.

3. From Divisions Between Two to Divisions Among All in
Uni-Dimensional Apportionment

Given any apportionment problem (v, h), consider an apportionment ob-
tained by a coherent rule. By definition, every pair of regions must share the
seats they receive together h′ in accordance with the rule applied to those re-
gions when they are to be allocated h′ seats. This immediately implies that
knowing how to divide any number of seats between any two regions (mean-
ing two regions having any number of inhabitants) suffices to completely deter-
mine a coherent rule. Deciding how to divide seats between only two regions is
obviously an easier task than deciding how to divide seats among an arbitrary

1Coherence was earlier called “uniformity” and also “consistency.”
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number: this idea is pursued here to show how simple it is to extend vector
apportionment to matrix apportionment.

Let Φ2 be a method for dividing any number of seats between two regions
(or parties), and Φ2

d be the divisor method based on d for dividing any number
of seats between two regions (or parties). The methods Φ2

d enjoy two evident
properties that will shortly be used. First, they are “monotone”: if (a1, a2) ∈
Φ2

d

(
(v1, v2), h

)
and (a′1, a

′
2) ∈ Φ2

d

(
(v1, v2), h

′) for h′ > h then a′1 ≥ a1 and
a′2 ≥ a2. Second, if {(a1, a2), (a

′
1, a

′
2)} ⊆ Φ2

d

(
(v1, v2), h

)
then |a1 − a′1| ≤ 1

and |a2 − a′2| ≤ 1: two apportionments for a same h can differ by at most 1.
Given any two apportionments a, b of a problem (v, h), consider a− b. It is

a vector of integers summing to 0: so a may be obtained from b in a sequence
of changes each of which transfers one seat from one party (or region) i where
bi > ai to another j where aj < bj : “local” change always involves just two
parties (or regions).

A single property suffices to determine a divisor method.

Property 3 A method Φ for vector problems is said to be coherent with Φ2

if for every pair i, j

a ∈ Φ(v, h) implies (ai, aj) ∈ Φ2
(
(vi, vj), ai + aj

)
. Moreover,

(bi, bj) ∈ Φ2
(
(vi, vj), ai + aj

)
implies a′ ∈ Φ(v, h),

where a′ = a except a′i = bi, a
′
j = bj.

The really essential—and at first blush surprising—point about coherence is
that Φ treats every pair i, j exactly as does Φ2. In addition, if a change could
be made that agrees with Φ2 then it would yield another apportionment of Φ.

Theorem 1 The unique method Φ for vector problems that is coherent with
Φ2

d is the divisor method Φd.

Proof. The condition is necessary, since Φd is obviously coherent with Φ2
d.

To see that the condition is sufficient, suppose Φ is any method that is co-
herent with Φ2

d and that a ∈ Φ(v, h). It is shown that a ∈ Φd(v, h). Choose
λ > 0 such that

∑
i[λvi]d = h, and let bi = [λvi]d, so b ∈ Φd(v, h), implying,

in particular, that (bi, bj) ∈ Φ2
d

(
(vi, vj), bi + bj

)
for every pair i, j. The coher-

ence of Φ with Φ2
d implies that (ai, aj) ∈ Φ2

d

(
(vi, vj), ai + aj

)
for every pair

i, j. Suppose b �= a. Then there exists a pair i, j for which ai > bi and aj < bj .
But this is impossible unless ai + aj = bi + bj so ai = bi + 1, aj = bj − 1
and {(ai, aj), (bi, bj)} ⊆ Φ2

d

(
(v1, v2), ai + aj

)
. The coherence of Φd with Φ2

d
implies that substituting (ai, aj) for (bi, bj) in b yields an apportionment that
belongs to Φd(v, h) which agrees with more components of a than did b. Re-
peating the same argument until a is obtained shows that a ∈ Φd(v, h), and so
completes the proof.
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So, if one wishes to verify that a ∈ Φd(v, h) it suffices to check that
(ai, aj) ∈ Φ2

d

(
(vi, vj), ai + aj

)
for every pair i, j: “local” conditions deter-

mine the solution, just as in well-behaved optimization problems no possible
local “improvement” implies the solution in hand is an optimum. The analogy
with optimization carries further: the λ found in (1) may be viewed as a kind
of “dual” variable which, once known, makes it possible to solve the problem
by assigning the obvious value to each ai independently, namely, by taking it
to be a d-rounding of λvi.

The parametric methods Φδ, 0 ≤ δ ≤ 1, each have a particularly simple
closed-form formula for calculating how two regions divide any number of
seats between them. The simplest—and most natural—of all is Webster’s or
Sainte-Lagu«’e’s: the proportional share of each is rounded to the closest inte-
ger. For a positive real number x, suppose x = n+r, n integer and 0 ≤ r < 1.
Define [x]δ = n if r ≤ δ, and [x]δ = n + 1 if r ≥ δ (so [n + δ]δ = n or n + 1).
It is a simple exercise to show:

Lemma 2 Given a two-region problem
(
(v1, v2), h

)
, let v̄k = vk/(v1 + v2),

k = 1, 2. Then ak =
[
v̄k(h + 2δ − 1)

]
δ
, k = 1, 2 (and if v̄k(h + 2δ − 1)

has a remainder of exactly δ then one of the a’s is rounded-up, the other is
rounded-down).

4. Matrix Apportionment: a Primer

A matrix (or two-dimensional) apportionment problem is a triple (v, r, c),
where v = (vij) ≥ 0 for i = 1, . . . ,m and j = 1, . . . , n is a nonnegative
matrix with no row or column of 0’s, and r = (r1, . . . , rm) > 0 and c =
(c1, . . . , cn) > 0 are vectors of integers whose sums are equal,

∑
ri =

∑
cj =

h. An apportionment is a matrix a = (aij), where aij ≥ 0 is integer valued,∑
j aij = ri for all i and

∑
i aij = cj for all j. Matrix apportionment is a

more recent problem where vij is the vote of party i’s list in region j, ri is
the number of seats deserved by each party i (on the basis of the total vote of
all of its lists

∑
j vij , for example) and cj is the number of seats assigned to

each region j (typically on the basis of its population): which one of the many
possible apportionments a should be chosen?

In general, a (matrix) method of apportionment Φ selects a nonempty subset
of apportionments Φ(v, r, c) for any problem (v, r, c).

When vij = 0 (or, more generally, when vij is less than some preset positive
threshold) imposes that aij = 0, it may be that no apportionment exists. But
this is rather unlikely. The example of figure 1 is typical of the only situations
when none exists. The subset of regions (or columns) J that consists of the
4th through the 7th regions are to receive together a total of 8 seats (in general,
c(J) =

∑
J cj seats). The subset of parties (or rows) IJ each of which received

some votes (or more than the threshold of votes) from at least one of the regions
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1st 2nd 3rd 4th 5th 6th 7th seats
Party 1 + + + + + + + 2
Party 2 + + + + + + + 5
Party 3 + + + 0 0 0 0 4
Party 4 + + + 0 0 0 0 6
Seats 4 2 3 1 1 2 4

Fig. 1. Example of votes that allows no feasible apportionment. (+ means any
number of votes, 0 means no votes or too few to permit a seat.)

of J , namely, the parties 1 and 2, deserve a total of 7 seats (in general, IJ =
{i : vij = + for some j ∈ J} having a total of r(IJ) =

∑
IK

ri seats). Thus
the regions J are to have 8 seats but they can only fill them from candidates
of the parties IJ who deserve 7 seats: clearly, there can be no apportionment
in this case. If regions assigned 8 seats give all of their votes to parties that in
total only deserve 7 seats, the total turnout in those regions must be abnormally
low. There is a symmetric explanation. The set I consisting of parties 3 and
4 deserve r(I) = 10 seats; the set JI consisting of those regions who gave
some votes (or more than the threshold) to at least one of the lists of parties
I , namely, regions 1, 2, and 3, are to receive c(JI) = 9 seats. This is again
clearly impossible since it asks that parties deserving 10 seats get them all from
regions having only 9 seats, but also unlikely for in this case the turnout in the
regions JI must be abnormally high. Yet, as the following theorem shows, this
is the only situation that can deny the existence of apportionments (its proof is
easily deduced from duality in linear programming or from the min-cut, max-
flow theorem of network flows).

Theorem 3 There exist apportionments if and only if c(K) ≤ r(IK) for
every subset of the regions (or columns) K.

A problem that has apportionments will be said to be feasible.
A (matrix) divisor method based on d is, for any feasible problem, the set of

apportionments:
Φd(v, r, c) = (8)

{a = (aij) : aij = [λivijµj ]d for λ, µ such that
X

j

aij = ri and
X

i

aij = cj}.

Note, again, that d(0) = 0 implies [λivijµj]d ≥ 1 for every λivijµj > 0. This
means that Φd(v, r, c) may be empty when d(0) = 0 despite the fact that the
problem is feasible. In order for Φd(v, r, c) to be nonempty when d(0) = 0
there must exist an apportionment a that satisfies the row- and column- equa-
tions and also aij ≥ 1 when vij > 0 and aij = 0 when vij = 0: call such
problems super-feasible.
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Properties of matrix methods of apportionment similar to those appealed to
for vector methods of apportionment characterize the matrix divisor methods
(Balinski and Demange, 1989a).

Theorem 4 (Balinski and Demange, 1989b). For any feasible matrix prob-
lem (v, r, c) there exist multipliers λ, µ and an a ∈ Φd(v, r, c) with aij =
[λivijµj]d when d(0) > 0; and when d(0) = 0 the same is true if the problem
is super-feasible. The multipliers are not unique, and there may be several ap-
portionments in Φd; however, if there is more than one apportionment in Φd,
all of them are obtained with a same set of multipliers.

5. From Divisions Between Two to Divisions Among All in
Bi-Dimensional Apportionment

One property sufficed to determine a divisor method for uni-dimensional
problems. For bi-dimensional problems two properties suffice.

Given an m by n matrix v, an m-vector λ = (λ1, . . . , λm) and an n-vector
µ = (µ1, . . . , µn), let λ ◦ v ◦ µ = (λivijµj); that is, the matrix obtained from
v by multiplying its ith row by λi and its jth column by µj , for all i, j.

An essential property in vector apportionment is that a method (any method)
should yield the same solutions to (v, h) and to (λv, h) for any scalar λ >
0: that is, how votes are scaled should make no difference. It came for free
in the uni-dimensional case, but must be called upon in the bi-dimensional
case. Since a party i (or row) deserves a fixed number of seats ri, rescaling
by multiplying its votes by λi > 0 should (as in the vector problem) change
nothing; symmetrically, since a region j is assigned a fixed number of seats cj ,
rescaling its votes by µj > 0 should (as in the vector problem) change nothing
as well.

Property 4 A method Φ for matrix problems is said to be proportional if

Φ(v, r, c) = Φ(λ ◦ v ◦ µ, r, c) for every real λ, µ > 0.

Given any two apportionments a, b of a problem (v, r, c), consider a − b. It
is a matrix of integers each of whose rows and columns sums to 0: so a may be
obtained from b in a sequence of changes each of which transfers 1 seat from
one to another entry of the matrix within a simple cycle C

i(1)j(1) i(2)j(2) . . . i(k − 1)j(k − 1) i(k)j(k) i(1)j(1)
↓ ↗ ↓ ↗ ↗ ↓ ↗ ↓ ↗

i(1)j(2) i(2)j(3) . . . i(k − 1)j(k) i(k)j(1)
(9)

for which bi(s)j(s) > ai(s)j(s) and bi(s)j(s+1) < ai(s)j(s+1) for s = 1, . . . , k,
where k + 1 is taken as 1, the indices i(s) are different and so are the in-
dices j(s). The change decreases the bi(s)j(s) by 1 and increases the bi(s)j(s+1)



Apportionment: Uni- and Bi-Dimensional 51

by 1 in the cycle: “local” change always involves party-regions (i, j) that
form a cycle. To simplify the description below, rename the “even” entries
(i(s), j(s)) = (s, s) and the “odd” entries (i(s), j(s + 1)) = (s, s + 1) and
(i(k), j(1)) = (k, 1).

Property 5 A method Φ for matrix problems is said to be coherent with Φ2

if for any problem (v, r, c) there exists an equivalent problem (v′, r, c), v′ =
λ ◦ v ◦ µ, for which

a ∈ Φ implies (akl, ast) ∈ Φ2
(
(v′kl, v

′
st), akl + ast

)
,

for every pair of indices (k, l), (s, t). Moreover, suppose that for some simple
cycle C as in (9) there is a b for which

(bss, bss+1) ∈ Φ2
(
(v′ss, v

′
ss+1), ass + ass+1

)
for all s(mod k), and

(bs−1s, bss) ∈ Φ2
(
(v′s−1s, v

′
ss), as−1s + ass

)
for all s(mod k).

Then

a′ ∈ Φ(v′, r, c), where a′ = a except a′ij = bij for (i, j) ∈ C.

Again, the really essential—and at first blush surprising—point about co-
herence is that Φ treats every pair (k, l), (s, t) exactly as does Φ2 relative to
the equivalent problem (v′, r, c). In addition, if a change could be made that
agrees with Φ2 with respect to the equivalent problem, then that would yield
another apportionment of Φ. But a change in a matrix apportionment implies
at least a change in a simple cycle C .

Theorem 5 The unique proportional method for matrix problems Φ that is
coherent with Φ2

d is the divisor method Φd.

Proof. The conditions are necessary since Φd is obviously proportional and
coherent with Φ2

d.
To see that the conditions are sufficient, suppose Φ is any proportional

method that is coherent with Φ2
d and that a ∈ Φ(v, r, c). It will be shown

that a ∈ Φd(v, r, c).
There exist λb > 0, µb > 0 so that b = (bij) ∈ Φd(v, r, c), where bij ∈

[λb
ivijµ

b
j]d.

a ∈ Φ(v, r, c) and Φ coherent with Φ2
d implies there exist λa > 0, µa > 0

so that aij ∈ [λa
i vijµ

a
j ]d.

Suppose a �= b. Then for some (i, j), aij < bij , and (i, j) belongs to a
simple cycle C as in (8). Simplifying the notation again, let {(1, 1), (2, 2), . . . ,
(s, s)} be the even entries and {(1, 2), . . . , (s−1, s), (s, 1)} be the odd entries,
so that aii < bii, aii+1 > bii+1 for i = 1, . . . , s(mod s). Multiplying λa by
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λb
1/λ

a
1 and dividing µa by the same amount changes nothing, so it may be

assumed that λa
1 = λb

1. Now notice that in general, if x, y are reals, a ∈ [x]d
and b ∈ [y]d, then a > b implies x ≥ y and a > b + 1 implies x > y.

Begin the cycle C at (1, 1) and follow it with the indices increasing. λa
1 =

λb
1 and a11 < b11 implies µa

1 ≤ µb
1 (with strict inequality if a11 + 1 < b11).

Also, λa
1 = λb

1 and a12 > b12 implies µa
2 ≥ µb

2 (with strict inequality if
a12 > b12 + 1). But µa

2 ≥ µb
2 and a22 < b22 implies λa

2 ≤ λb
2 (with strict

inequality if either a22 + 1 < b22 or µa
2 > µb

2). Continuing around the cycle,
µa

s ≥ µb
s and ass < bss implies λa

s ≤ λb
s (with strict inequality if either

ass + 1 < bss or µa
s > µb

s). But this means that λa
s ≤ λb

s, µa
1 ≤ µb

1 and
as1 > bs1, a contradiction unless the following holds: λa

i = λb
i , µa

i = µb
i for

i = 1, . . . , s and the differences between the values of the a’s and b’s in the
cycle C are all exactly 1. But in this case there is a massive “tie”. Defining
b′ = b, except that every b-entry in the cycle C is replaced by the corresponding
value of a, another apportionment b′ ∈ Φd(v, r, c) is obtained. Repeating the
same argument until a is obtained shows that a ∈ Φd(v, r, c), and so completes
the proof.

The analogy with optimization may be carried further here as well: the vec-
tors λ, µ found in (7) may be thought of as “dual” variables which, once known,
make it possible to solve the problem by assigning the obvious (or “greedy”)
value independently to each aij , namely, by taking it to be a d-rounding of
λivijµj .

There can be no multipliers λ, µ that yield different solutions, showing that
uni- and bi-proportional apportionments are, in essence, the same problem, and
that a matrix apportionment treats every pair (i, j), (k, l) fairly.
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