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Abstract Gerrymandering - the artful and partisan manipulation of electoral districts - is
a well known pathology of electoral systems, especially majoritarian ones. In
this paper, we try to give theoretical and experimental answers to the following
questions: 1) How much biased can the assignment of seats be under the effect
of gerrymandering? 2) How effective is compactness as a remedy against gerry-
mandering? Accordingly, the paper is divided into two parts. In the first one, a
highly stylized combinatorial model of gerrymandering is studied; in the second
one, a more realistic multiobjective graph-partitioning model is adopted and lo-
cal search techniques are exploited in order to find satisfactory district designs.
In a nutshell, our results for the theoretical model mean that gerrymandering is
as bad as one can think of and that compactness is as good as one can think of.
These conclusions are confirmed to a large extent by the experimental results
obtained with the latter model on some medium-large real-life test problems.
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1. Introduction

Gerrymandering - the partisan manipulation of electoral district boundaries
- has plagued modern democracies since their early times. Far from being
defeated, it keeps displaying its perverse effects even at present (Balinski,
2004). It was only with the rise of the electronic computer that researchers
started thinking about neutral and rational procedures for political districting.
Its nature as a multicriteria decision problem was soon recognized. Suppose
that the territory is subdivided into elementary administrative units (counties,
townships, wards,..). The most commonly adopted districting criteria are the
following: integrity (no unit may be split between two or more districts); conti-
guity (the units within the same district should be geographically contiguous);
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population equality (the district populations should be equal or nearly equal,
especially in majoritarian systems); compactness (each district should be com-
pact, that is, “closely and neatly packed together” (Oxford Dictionary)); con-
formity to administrative boundaries (the electoral district boundaries should
not cross other administrative boundaries, such as those of regions, provinces,
local or minority communities). Among these criteria, compactness stands as a
powerful weapon against gerrymandering, since it bans indented or elongated
districts: a sunfish-shaped district is deemed to be compact, while an octopus-
shaped or an eel-shaped one is not.

The present paper deals with the following two basic problems:

1) How bad can gerrymandering be?

2) How effective is compactness in preventing gerrymandering?

We shall give both theoretical and experimental answers to these two prob-
lems. Accordingly, our paper is divided into two parts. In the first one, an ide-
alized combinatorial model is investigated; in the second part, a more realistic
and flexible multicriteria graph-theoretic model is adopted, and computational
results are presented for some medium to large real-life test problems.

2. A Combinatorial Gerrymandering Model

As a motivation for the present section we mention a striking artificial ex-
ample of gerrymandering given by Dixon and Plischke (1950). Suppose that
only two parties P and C compete under a first-past-the-post system and that,
as in Figure 1, the territory is divided into elementary units having the same
population with an homogeneous electoral behavior, that is, the whole popula-
tion of an elementary unit votes for the same party. If the district map of Figure
1 (a) is adopted, party C wins in 8 districts out of 9; however, if the alternative
district map of Figure 1(b) is adopted, party C wins only in 2 districts out of 9,
so the outcome is drastically reversed.

A careful look at Figure 1 gives us a clue about an effective strategy for
maximizing the number of districts won by either party: the districts should be
designed so that every win should be close and every loss should be sweeping.

In this section we shall consider an idealized graph-theoretic formulation
that captures the essence of the artificial example by Dixon and Plischke. Given
a territory composed by territorial units, define the following integers:

n is the number of territorial units;

p is the number of districts;
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C C P P C C C P P C

C P P C C C P P C C 

P P C C P P P C C P

P P C C P P P C C P

C P C P C C P C P C

C C C P C   C C C P C

P C C P P P C C P P

P P C C P P P C C P

C C C P P C C C P P

  (a)     (b)

Fig. 1. Example by Dixon and Plischke: (a) Party P wins 1 seat and party C wins 8;
(b) Party P wins 7 seat and party C wins 2.

s is the common district size (number of territorial units in each district).

Clearly, the three parameters n, p, s must satisfy the relation n = ps.
We model the territory as an undirected graph G = (V,E) with |V | = n,

where the vertices represent territorial units and the edges represent adjacency
between territorial units.

A connected partition of G is a partition of its set of vertices V such that
each component induces a connected subgraph of G.

A district design is a connected partition of the graph into p components or
districts of the same size. Notice that this definition takes into account the crite-
ria of integrity, contiguity and population equality. If at least one such partition
exists, the graph is said to be p-equipartitionable. Checking such property is
not easy: in fact, Frieze and Dyer (1985) proved its NP-completeness even for
bipartite graphs. We assume that G is p-equipartitionable.

A vote outcome is a bicoloring of the vertices that assigns to each vertex
either the color blue or the color red: this means that all voters in the corre-
sponding unit vote for the same party, blue or red, respectively. A vote outcome
is balanced if the number of blue vertices is equal to the number of red ones.

A balanced vote outcome corresponds to a situation in which the electoral
population is perfectly split between two parties.
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From now on, except for the last section, we shall consider only balanced
vote outcomes. We shall also make the following assumptions on the integers
n, s, and p:

n is even: this is a necessary condition for the existence of balanced vote
outcomes;

s is odd and greater or equal to 3: this assumption forbids trivial cases
and ties between the two parties;

p is even: this follows from the relation n = ps.

If in a district D the number of blue vertices is greater than the number of
red ones, we will say that D is a blue district. In a similar way we can define a
red district. We will denote by Π the set of all district designs and by Ω the set
of all possible balanced vote outcomes.

We define an electoral competition to be a pair (ω, π) such that ω ∈ Ω and
π ∈ Π. The functions b(ω, π) and r(ω, π), compute the number of blue and
red districts, respectively, resulting from the electoral competition (ω, π). Let

B(G) = max
ω∈Ω,π∈Π

b(ω, π)

be the maximum number of blue districts for all the electoral competitions
(ω, π) ∈ Ω×Π. In a similar way we can define R(G) with respect to r(ω, π).

Property 1 Since, for any bicoloring, it is possible to switch the colors of
the vertices so that the red vertices become the blue vertices and viceversa,
any property related to the blue party that does not explicitly depend on any
given bicoloring must hold for the red party also. In particular we have that
B(G) = R(G).

By this property we can define the function

W (G) = B(G) = R(G).

Moreover the results that we will provide for the blue party hold also for the
red one.

Given an electoral competition (ω, π) ∈ Ω × Π, for any district k, k =
1, ..., p, let

bk = number of blue vertices in district k,

rk = number of red vertices in district k.
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Property 2 Given a p-equipartitionable graph G, for any (ω, π) ∈ Ω × Π
the following inequality holds:

b(ω, π) ≤ �n/(s + 1)�.
Proof. Given an electoral competition (ω, π) ∈ Ω × Π, for each district k

let bk and rk be defined as above. Since ω is balanced, we may assume:∑
k=1,...,p

(bk − rk) = 0.

Hence:

0 =
∑

k=1,...,p

(bk − rk) =
∑

k:bk>rk

(bk − rk) +
∑

k:bk<rk

(bk − rk)

≥ b(ω, π) − s(p − b(ω, π)) = (s + 1)b(ω, π) − sp

Since n = ps and b(ω, π) is a natural number we obtain:

b(ω, π) ≤ �n/(s + 1)�.

Corollary 1 If G is p-equipartitionable, then W (G) = �n/(s + 1)�.

Proof. Let π ∈ Π be any district design. It is possible to color the vertices of
the graph G in such a way that �n/(s+1)� districts have at least (s+1)/2 blue
vertices. In fact, in any balanced vote outcome, the number of blue vertices is
n/2 and:

s + 1

2

⌊
n

s + 1

⌋
≤ n

2
.

Since a district with (s + 1)/2 blue vertices is blue, we obtain a vote outcome
with at least �n/(s + 1)� blue districts. But, by Proposition 2, this is an upper
bound for the number of blue districts, hence W (G) = �n/(s + 1)�.

Corollary 2 If G is p-equipartitionable, and p = q(s + 1) + r with 1 ≤
r ≤ s + 1 then W (G) = qs + r − 1 1.

Proof. From Corollary 1 we have:

W (G) =

⌊
n

s + 1

⌋
= qs +

⌊
rs

s + 1

⌋
.

1Notice that q and r might not coincide with the quotient and the remainder, respectively, of the division of
p by s + 1.
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Since r ≤ s + 1, ⌊
rs

s + 1

⌋
=

⌊
r − r

s + 1

⌋
= r − 1,

hence
W (G) = qs + r − 1.

Given a bicoloring ω ∈ Ω and a partition π ∈ Π, we say that a district is
(blue) edgy if it contains (s + 1)/2 blue vertices and (s − 1)/2 red vertices,
while we will say that a district is (blue) sweeping if all its vertices are blue.
Moreover we say that a district design π is (blue) extremal if the number of
blue districts b(ω, π) is equal to its upper bound �n/(s+1)�. Similar concepts
can be introduced for the red party.

Remark 3 If p ≤ s+1, each blue extremal partition has p− 1 blue districts
and one red district.

We are especially interested in the following optimization problem:

GAP (G) = max
ω∈Ω

(max
π∈Π

b(ω, π) − min
π∈Π

b(ω, π)).

For a given graph G the function GAP (G) is a measure of the maximum
bias of an electoral outcome in terms of number of seats in single member
majority districts.

Proposition 4 GAP (G) ≤ 2W (G) − p = 2� n
s+1� − p.

Proof. Since b(ω, π) + r(ω, π) = p, we have

GAP (G) = max
ω∈Ω

(max
π∈Π

b(ω, π) + max
π∈Π

r(ω, π)) − p ≤ (1)

max
ω∈Ω

max
π∈Π

b(ω, π) + max
ω∈Ω

max
π∈Π

r(ω, π) − p = 2W (G) − p.

For a given p-equipartitionable graph G we are interested in finding, if it
exists, a bicoloring ω∗ ∈ Ω such that there are both a blue extremal partition
and a red extremal one, both w.r.t. ω∗. If such a bicoloring exists, we will say
that G is two-faced and there exist two partitions πb, πr ∈ Π such that:

b(ω∗, πb) = r(ω∗, πr) = W (G) = �n/(s + 1)�.
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Corollary 5 We have

GAP (G) = 2W (G) − p (2)

if and only if G is two-faced.

Proof. Follows from (1).
Two-faced graphs are those for which gerrymandering exhibits its worst

case bias. There is an absolute threshold for the largest number of seats that
a party can obtain when the vote outcome is balanced. In two-faced graphs,
for a suitable balanced vote, both parties can achieve this threshold by artful
gerrymandering.

3. Theoretical Results on Grid Graphs

The main result of this section is that, under the above assumptions on n, s,
and p, any grid graph with an even number of vertices is two-faced.

Let G be a grid graph with M rows and N columns, and n = MN . Since
we assume that n is even, at least one between M or N must be even. In the
following we assume, without loss of generality, that M is even.

Even grids feature one simple property which is crucial for the development
of the results to follow: they are hamiltonian (see Figure 2). On the one hand,
this property implies that even grids are p-equipartitionable, since obviously
a cycle of length n = ps can always be partitioned into p paths of length s
(remember that p-equipartitionability is NP-complete for general graphs). On
the other hand, in an even cycle there are only s partitions into subpaths of
the same size s. Each of them results from cutting p equidistant edges of the
cycle, and thus it can be easily obtained from the others by a suitable rotation
of the cuts along the cycle. If one can show that there exists one such partition
satisfying certain properties, then this is sufficient to establish the existence in
an even grid of a district map satisfying the same properties. This tool will be
often exploited in our constructions.

We start from the case p = s + 1, where a blue extremal partition has
exactly s edgy districts and one sweeping district. In fact, by Corollary 2
with q = 0 and r = s + 1, the upper bound on the number of blue districts
is s. These districts must be edgy since the number of blue vertices in G is
s(s + 1)/2. It follows that the remaining district is red sweeping. We will
show how to construct such an extremal partition on a hamiltonian cycle H of
G. We suppose that the vertices of H are consecutively numbered from 1 to n
along the cycle (traversed clockwise).

A boa is a path with (s + 1)(s − 1)/2 vertices that can be partitioned into
(s+1)/2 components having (s−1)/2 consecutive blue vertices and (s−1)/2
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Fig. 2. Hamiltonian cycle in a grid graph with an even number of rows.

s=5

s=7

Fig. 3. Examples of boas.

consecutive red vertices each. Boas have the following nice property: if one
cuts the s-th, the 2s-th, . . . , the ((s − 1)s/2)-th edge from left to right, one
obtains (s−1)/2 red edgy districts and the remaining (s−1)/2 nodes are blue;
a symmetrical property holds when one interchanges the two colors “red” and
“blue”, as well as “right” and “left”.

In Figure 3 the boas for s = 5 and s = 7 are shown. Here, as in all black
and white figures in the sequel, blue vertices are displayed in white and red
vertices in black.

In Figure 4 we consider the case s = 5 and we show how to use two boas
in order to find a bicoloring of H for which there are both a blue extremal
partition and a red extremal one. One obtains such bicoloring by splitting H
into four consecutive subpaths that are colored in the following way:

the first subpath P1 extends from vertex 1 to vertex (s + 1)/2 and all its
vertices are red;

the second subpath P2 is a boa starting from the red vertex (s+1)/2+1
and ending at the blue vertex s(s + 1)/2;

the third subpath P3 extends from vertex s(s + 1)/2 + 1 to vertex (s +
1)(s + 1)/2 and all its vertices are blue;
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P1

P2

P3

P4

n = 30, s = 5, p = 6

Fig. 4. Bicoloring for the case p = s + 1.

the fourth subpath P4 is a boa starting from the red vertex (s + 1)(s +
1)/2 + 1 and ending at the blue vertex s(s + 1).

It is easy to verify that the number of blue vertices is equal to the number
of red ones. Since H is a cycle, one can obtain an arbitrary partition into
p connected components by cutting p edges. In Figure 5 the two extremal
partitions are shown for the case s = 5. If the cut edges are (s, s+1), (2s, 2s+
1), ..., (s2, s2+1), ((s+1)s, 1) the district containing vertices from 1 to s is red
sweeping and all the other ones are blue edgy (Figure 5 (a)). Thus the partition
is blue extremal. By shifting each cut to its next edge (clockwise) (s + 1)/2
times, we obtain a blue sweeping district from vertex s(s + 1)/2 + 1 to vertex
s(s + 1)/2 + s and all the other districts are red edgy. So the partition is red
extremal (Figure 5 (b)).

(a) (b)

n = 30, s = 5, p = 6

Fig. 5. Partitions for the case p = s + 1.

Let us consider now the case p < s + 1. Since p is even and positive we can
suppose p = (s + 1)− 2k for some k such that 1 ≤ k ≤ (s− 1)/2. As shown
in Figure 6 for the case s = 5 and k = 1, starting from the bicoloring of the
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case p = s + 1 we delete from the subpath P2 the last ks vertices and from the
subpath P4 the first ks vertices. We obtain a cycle with s(s+1)−2ks vertices
where the number of blue vertices is equal to the number of red ones. If one
cuts the edges as above, starting from (s, s+1), the district containing vertices
from 1 to s is red sweeping and all the other ones are blue edgy except the one
containing the subpath P3, which is not edgy because it contains (s+1)/2+k
blue vertices and (s − 1)/2 − k red vertices. The obtained partition is blue
extremal. By shifting the cuts as for the case p = s + 1, the resulting partition
is red extremal. In fact, in the district containing the subpath P3, the blue party
wins since there are s − k blue vertices and k red vertices, while all the other
districts are red edgy.

(b)(a)

n = 20, s = 5, p = 4, k = 1

Fig. 6. Bicoloring and Partitions for the case p < s + 1.

Finally suppose that p > s + 1.

Proposition 6 Under the above assumptions on M , N , p and s, G can be
decomposed into p grid subgraphs having s vertices each.

Proof. Since MN = ps there exist four natural numbers M1, M2, N1 and N2

such that:

M = M1M2, N = N1N2, M1N1 = s, M2N2 = p.

As shown in Figure 7 (a), by partitioning the columns of G into N2 components
having N1 columns each and the rows of G into M2 components having M1

columns each, one can decompose G into p grid subgraphs having M1 rows
and N1 columns each. Notice that, since s is odd, also M1 and N1 are odd;
hence, since M is even, also M2 is even.

As in Corollary 2, we suppose that p = q(s + 1) + r, with q ≥ 1 and
1 ≤ r ≤ s + 1. Notice that, since s + 1 and p are even, also r must be even.

We represent the decomposition given in Proposition 6 by a grid graph G,
with M2 rows and N2 columns, whose vertices Vk, k = 1, ..., p, correspond
to the grid subgraphs and there is an edge connecting the vertices Vk and Vj if
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s = 9, p = 20, M =12, N = 15, M1 = 3, M2 = 4, N1 = 3, N2 = 5

M1

M1

M1

M1

N1 N1 N1 N1

M2

N2

N1

(a) (b)

G20

G17

G18

G19

G16

G15

G14

G9

G10

G11

G12

G8

G7

G6

G5

G1

G2

G3

G4 G13

Fig. 7. Decomposition of G into p grid subgraphs. The hamiltonian path is marked
bold.

some vertex of the grid corresponding to Vk is adjacent to some vertex of the
grid corresponding to Vj (see Figure 7 (b)). Let us consider the hamiltonian
path P = (V1, V2, ..., Vp) of G and partition it into q subpaths having s + 1
vertices each and one subpath having r vertices. Let Pj be the j-th subpath of
P .

Lemma 7 For each j = 1, ..., q + 1, and for each column c of G, the number
of vertices of Pj in column c is even.

Proof. The proof is based on the fact that the number of rows of G, M2, and
the number of vertices in each subpath Pj , s + 1 or r, are even. Let c1 be
the smallest numbered column whose intersection with some of the subpaths
Pj is odd. Then c1 must intersect in an odd number of nodes an even positive
number of subpaths Pj . But then the smallest numbered such subpath, by
the minimality assumption on c1, would contain an odd number of nodes, a
contradiction.

As shown in Figure 8, the subpaths Pj , j = 1, ..., q + 1, define in G a
decomposition into q + 1 connected subgraphs H1, ...,Hq+1.

Proposition 8 For each j = 1, ..., q + 1, Hj is hamiltonian.

Proof. As shown in Figure 8, each Hj can be decomposed into at most three
grid subgraphs which, by Lemma 7, have an even number of rows. Hence it is
possible to find a hamiltonian cycle of Hj as in the graph of Figure 9.
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s = 9, p = 48, M = 18, N = 24, M1 = 3, M2 = 6 N1 = 3, N2 = 8

Fig. 8. Decomposition of G into q + 1 hamiltonian subgraphs.

Fig. 9. Hamiltonian cycle in a Hj subgraph of G.

Since Hj , j = 1, ..., q + 1 is hamiltonian, then, as shown before, it is two-
faced and so it is possible to find a bicoloring such that there exist a blue
extremal partition and a red extremal one. By using the blue extremal partitions
of the subgraphs Hj , one can obtain a partition of G having qs + r − 1 blue
districts. In fact, by Corollary 2, in each of the q subgraphs having s(s + 1)
vertices, there are s blue districts and in the subgraph having rs vertices there
are r−1 blue districts. But, again by Corollary 2, qs+r−1 is an upper bound
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on W (G), hence the partition of G is blue extremal. The same arguments can
be used for obtaining a red extremal partition. Then G is two-faced.

By the constructions shown for the cases p = s + 1 and p < s + 1 and the
decomposition found for the case p > s + 1, the following theorem holds.

Theorem 9 Under the above assumptions on p and s, any grid graph with
ps vertices is two-faced.

Corollary 10 If G(s+1, s) is a grid graph with s+1 rows and s columns,
then

limodd s→∞
GAP (G(s + 1, s))

s + 1
= 1.

Proof. After Theorems 5 and 9, one has

GAP (G(s + 1, s))

s + 1
=

2W (G(s + 1, s)) − s − 1

s + 1
=

2s − s − 1

s + 1
=

s − 1

s + 1
.

When s odd → ∞, the thesis follows.

Corollary 10 is stunning: it means that, for certain infinite families of grids,
as the number and size of the districts grow, vicious gerrymandering can make
the percentages of blue districts and red ones both arbitrarily close to 1 even
under the assumptions that the vote outcome is the same and that the blue party
and the red one get the same total number of votes.

In conclusion, we have shown that for all even grids one can construct
Dixon-Plischke-like examples where gerrymandering can heavily reverse the
electoral result in terms of Parliament seats.

Our final result shows that for some highly symmetric colorings, on the one
hand, there are blue and red extremal district designs; on the other hand, the
most compact design, namely, the partition of the grid into square subgrids,
yields the same number of blue and red districts.

To address the question we introduce the notion of skew-symmetric coloring.
Let ϕ be the mapping of the grid onto itself that maps node (i, j) into (M +

1 − i,N + 1 − j). Notice that ϕ is the product of two reflections, the first one
around the y-axis, the second one around the x-axis. Since M is even, ϕ fixes
no point of G. A coloring ω ∈ Ω is skew-symmetric if (i, j) and ϕ(i, j) have
opposite colors.

If a grid is skew-symmetrically colored, then ϕ(G) is isomorphic to G, the
colors of its vertices being interchanged (in fact ϕ is an automorphism of the
grid). In other words, up to the labels of the vertices, the effect of ϕ on G
reduces to switching the colors of its vertices.



32 Nicola Apollonio et al.

Theorem 11 Let G be an M × N grid having ps vertices with p ≤ s + 1
and p even. One can always find a blue- and a red- extremal partition with
respect to some skew-symmetric bicoloring of G.

Proof. (Sketch). We can divide the grid into two equally sized parts, say L
and R, of ps

2 vertices each, in such a way that: (i) (i, j) ∈ L if and only if
ϕ(i, j) ∈ R; (ii) both L and R induce subgraphs containing hamiltonian paths.

(a)

(b) (d)

L R L R

(c)

Fig. 10. (a): The most compact and equitable partition of a 6 × 12 skew-
symmetrically colored grid. (b): The hamiltonian cycle from which the two extremal
partitions in (c) and (d) are generated. Starting from the framed blue (white) vertex,
and cutting the 9th, 18th, 27th and 36th edges of the cycle (clockwise) the right hand
side of the partition in (c) is generated (the left hand side of the partition in (d) can be
obtained by symmetry). Similarly, the right hand side of the partition in (d) (and, by
symmetry, the left hand side of the partition in (c)) is generated by starting from the
framed red (black) vertex. (c),(d): Red and blue extremal partitions.

Let us consider the subgraph GR induced by R. We can define a coloring of
GR and two connected partitions π′

R and π′′
R into p/2 components such that:

π′
R is a partition all whose districts are red edgy, π′′

R is a partition all whose
districts but one are blue edgy, the exceptional one being red (see Figure 10).
Using ϕ we extend the coloring of GR to the entire grid. By construction this
coloring is skew-symmetric. Moreover, if C is any component of either π′

R or
π′′

R, ϕ(C) is a connected component of GL (the graph induced by L), isomor-
phic to C but with colors interchanged. It follows that if π′

L and π′′
L are the
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partitions of GL corresponding via ϕ to π′
R and π′′

R, respectively, then π′
R ∪π′′

L
and π′′

R ∪ π′
L are extremal partitions of G.

However, skew-symmetric colorings give rise not only to maximally biased
designs, but also to minimally biased compact designs (see Figure 10).

Theorem 12 Let G be a skew-symmetrically colored M ×N grid. Suppose
that G can be divided into squares of sides of length

√
s and let π be the

partition formed by such squares. Then, in π, the number of red district equals
the number of blue districts .

Theorem 11 shows that even highly symmetrical vote outcomes can be ma-
nipulated in a partisan way. Nevertheless, in view of Theorem 12, compactness
can be considered (at least within the frame of our idealized model) as an ef-
fective remedy against gerrymandering.

4. Experimental Results on Real-Life Test Problems

In this section we provide a multiobjective graph partitioning model for po-
litical districting and we study gerrymandering from an experimental point of
view on real-life data. Starting from the graph-theoretic model described in
Section 2, here we relax some of the previous assumptions in order to adhere
to reality as much as possible. In both models the territory is represented by a
graph and one looks for a connected partition of the graph in order to enforce
the integrity and contiguity requirements. In the previous sections the underly-
ing graph was assumed to be a rectangular grid, while here it may be, more gen-
erally, an arbitrary planar graph. In the former model nodes were unweighted
and a vote outcome was but a node bicoloring; here nodes are weighted both
by their populations and their votes. Whereas the stylized previous model is
more amenable to theoretical investigation, the one we shall study in this sec-
tion is more flexible and offers a more accurate description of real-life political
districting. It is no coincidence that variants of it have been considered by
several Authors (Bussamra et al., 1996, Garfinkel and Nemhauser, 1970, Mer-
hotra et al., 1998, Nygreen, 1988, Ricca and Simeone, 2005). In spite of their
differences, both models lead, in different ways, to the same conclusions: ger-
rymandering can drastically reverse the final outcome of an election, and com-
pactness does provide an effective protection. Thus the experimental results of
the present section corroborate and validate the theoretical results obtained so
far.

Remember that our aim is to investigate both how bad gerrymandering can
be and, simultaneously, to determine if there exist effective weapons against
it, such as compactness or other districting criteria, which can be adopted in
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order to avoid this practice. Thus, in our experiments we undertake a multicri-
teria approach and develop an optimization model in which different objective
functions - measuring different criteria - are considered one at a time.

4.1 The Model and the Database

As before, n denotes the total number of territorial units in the territory, n =
|V |, and p, 1 ≤ p ≤ n, is a positive integer denoting the number of districts.
Let pi, ∀i ∈ V , be positive integral node-weights, representing territorial unit
populations and dij , ∀i, j ∈ V , be positive real distances defined for each unit
pair (i, j). For each territorial unit, the list of all those administrative areas
(regions, provinces,...) that contain the unit is known. Finally, with reference
to political elections in Italy, for each territorial unit we introduce two positive
integral node weights, voi and vpi, ∀i ∈ V , representing the number of votes
obtained in unit i by the Olive Tree and by the Pole of Liberties, respectively2.

The general graph partitioning problem can be formulated as follows:
Given a graph G, partition its set of nodes into p subsets (districts) such that
the subgraph induced by each subset is connected and a given function of the
partition is optimized.

In the sequel, we use the term “district design” as a synonym of “connected
partition into p components”. Actually, we are no longer imposing the further
restriction that the districts be equally sized since in real-life cases this require-
ment is too strict and we can only try to get close to the ideal case as much as
possible by optimizing a suitable objective function.

In our experiments we used data of three Italian Regions, namely, Piedmont,
Latium and Abruzzi, whose townships are taken to be the territorial units. The
weights pi associated to territorial units correspond to the Italian population
from 1991 Census, and we considered the real road distances between pairs
of territorial units. In this application we considered the Italian (majoritarian)
vote distribution of Political Elections of 1996.

4.2 Districting Criteria and Local Search Algorithm

In our real life model we considered several of the most commonly adopted
districting criteria discussed in Section 1. In particular, integrity and contiguity
are automatically guaranteed by the graph-theoretic model in which each ele-
mentary territorial unit is represented by a vertex of the graph. The remaining
criteria of population equality (PE), compactness (C) and conformity to admin-

2In this application we consider the Italian (majoritarian) vote distribution of Political Elections of 1996.
The Olive Tree and Pole of Liberties parties were the center-right and center-left coalitions, respectively,
which were in competition at that time.
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istrative boundaries (AC) are measured by proper indicators to be optimized.
To this purpose, we adopted some indicators already used in similar applica-
tions (Grilli di Cortona et al., 1999). Actually, they measure non-population
equality, non-compactness and non-administrative conformity, therefore they
must be minimized. Firstly, an ideal situation of perfect population equality,
perfect compactness and perfect administrative conformity is defined and a
proper index is chosen so that its value is equal to 0 when the ideal situation is
met, while in the other cases it provides a measure of the corresponding error.
These indexes are generally normalized in order to be independent of scaling
factors. Therefore, they can be read as percentages.

Let C1, C2, . . . , Cp ⊂ V be the subsets of nodes of the p districts of a given
district design. Let Pk =

∑
i∈Ck

pi, k = 1, 2, . . . , p, be the population of
district Ck. Then, the population equality index for the district design is given
by

PE =

∑
k |Pk − P̄ |

pP̄
(3)

where P̄ =
P

k Pk

p is the average district population. This is the average devi-

ation of the population of each district from P̄ , divided by the normalization
factor P̄ .

On the basis of the distances dij , for each pair of vertices i, j ∈ V , we
define a global compactness index given by the sum of compactness indices
computed over each district separately. For a given district C it can be briefly
described as follows. Let dij be the distance between unit i and unit j. For
each unit compute its eccentricity

d(i) = max
j∈C

dij

and set

δ = d(s) = min
i∈C

d(i)

By definition, s is the center of district C and the compactness in district C
is measured by:

C =

∑
i∈C pi∑
j∈D pj

(4)

where D = {j ∈ V : djs ≤ δ}.

The compactness index (4) is a measure of the deviation of the districts from
the ideal situation in which they all have a regular, “round” shape.
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The administrative conformity index adopted in this application is defined
on the basis of the discrepancies between the already existing administrative
district maps (of different type) and the electoral district design. For a given
district and a given type of administrative boundaries it is basically computed
as a measure of those units which produce discrepancies. The global index,
which varies between 0 and 1, is obtained by averaging over all types of admin-
istrative boundaries and over all the electoral districts. A detailed description
of the index is reported in (Grilli di Cortona et al., 1999).

We considered these three indexes as objective functions in our optimization
model, both separately and combined together into a single objective function
given by a convex combination of them.

Notice that the population equality index defined for the real-life application
can be considered as the counterpart of the principle of equal size districts
stated in the combinatorial model of Section 2. In our graph-theoretic model
a vertex corresponds to an elementary unit of the territory. In general - as in
our case - territorial units are given by townships and it is not guaranteed that
they have the same size. Thus, the requirement of Section 2 which forces each
district to have exactly the same number of units as each other here does not
work. Actually, the one-man-one-vote principle addressed by that assumption
here must be necessarily pursued through population equality, regarded not as
a hard constraint, but as a criterion to be fulfilled as much as possible.

On the other hand, the idea of compact districts sketched in Section 3 (see
Figure 10) perfectly matches the principle embedded in our compactness index
(4).

The additional administrative conformity index was considered in our ex-
periments since it is generally included among the commonly and widely ac-
cepted political districting criteria. The experimental results related to it add
some more information to our knowledge and can be useful for evaluating the
actual relevance of this criterion in a districting procedure.

Since we are interested in studying how far gerrymandering can be pushed,
we must also consider partisan criteria. Here we are obliged to adhere to re-
ality and, in our case, we refer to the real vote distribution of Italian political
elections of 1996. With respect to this vote, for any given district design, we
are able to compute how many seats are assigned to the Pole and to the Olive
party, respectively. The idea is that both Pole and Olive would like to win the
election. To this purpose, if they each had the opportunity of designing their
own political districts, they would try to find the district design that makes
them win as many seats as possible (gerrymandering). Actually, for a given
district design, the number of seats assigned to a party can be considered as a
measure of the utility of the district design for that party. For a given district,
let ρ be the ratio between the number of votes for the Pole and those for the
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Olive. Then, the utility of this single district for the Pole can be measured
through the following step function:

h(ρ) =

{
0, if ρ < 1
1, if ρ ≥ 1,

(5)

and the sum of such district utilities for the Pole over all the districts provides
a partisan index for the Pole. Similarly, we can compute a partisan index for
the Olive party. These two indexes can be adopted as objective functions in our
experimental analysis when we study how far the Pole and the Olive party can
manipulate the district design, respectively.

In our experiments we used the Old Bachelor Acceptance metaheuristic (Hu
et al., 1995) in order to find solutions that minimize the six different objectives.
This metaheuristic has shown to perform well when applied to territorial polit-
ical districting problems. For details, see (Ricca and Simeone, 2005).

We notice here that local search techniques are particularly suitable also
for the design of partisan districts. Actually, starting from an initial district
design, they work by performing small perturbations of the current solution.
At each step a node belonging to the boundary of a district migrates towards
an adjacent district. Thus, two consecutive district designs differ just for one
node in only two districts and it is hard to distinguish between them. Migration
by migration, it is possible to obtain a district design which favors a given
party (its utility is maximized) and such that the initial given district design is
modified as little as possible. However, when applying local search techniques,
(5) is not sufficiently sensitive to the migration of a vertex from one district to
another. This explains why we chose to replace the step function (5) by a
smoother objective function. For a given party, say the Pole, in each district
we compute the following district-utility logistic function for that party

g(ρ) =
c

1 + exp(b (1 − ρ))
,

where c and b are suitably chosen in order to get the desired shape of the utility
function. The idea is that the district-utility increases rapidly when ρ is near 1
(see Figure 11).

The aim of our experimental study is twofold. On the one hand, we want to
test if our four objective functions, given by PE, C and AC, and their convex
combination, are good weapons against gerrymandering. On the other hand,
starting from a given district design we try to manipulate it as much as possible
in order to maximize the objective function given by the utilities of the Pole
and the Olive party, respectively. The underlying idea is that gerrymandering
can be investigated experimentally in order to identify worst case configura-
tions and the corresponding upper bounds over the maximum number of seats
that a party can get. From our previous experimental works, we already know



38 Nicola Apollonio et al.

Fig. 11. District-utility logistic function for c = 100 and b = 11, 51.

the good performance of PE, C and AC as objective functions in non-partisan
districting problems. However, in this paper the results referring to the manip-
ulation of the districts are new. Moreover, as we will see in the next section, our
experimental results show that our neutral objectives can be used as an alarm
signal for gerrymandering, since they tend to deteriorate when gerrymandering
is practiced.

It is clear that our experimental results cannot be compared to the exact
bounds given in Section 2. However, we believe that these results are of inter-
est on their own because they represent the real-life counterpart of our theo-
retical results of the previous sections. Therefore, such results are not a mere
mathematical curiosity, but they capture the gist of the real threat posed by
gerrymandering. As we will see in Section 4.3, there are regions in which, for
suitable district designs, the Pole or the Olive party gets the total number of
seats.

4.3 Experimental Plan and Results

Table 1 shows the main characteristics of the graphs representing the terri-
tories of three Italian regions considered in our experimental plan.

As before, here PE means “Population Equality”, C means “Compactness”
and AC means “Administrative Conformity”, while MT refers to the “Mixed
Target” which is defined as the following convex combination of PE, C and
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Table 1. Graphs of the Italian Regions

Region N. of Nodes N. of Edges Density N. of Districts

Piedmont 1208 3527 2.92 28
Latium 374 1006 2.69 19
Abruzzi 305 847 2.78 11

AC:

0.5PE + 0.3C + 0.2AC.

For each region we performed six different runs of Old Bachelor Acceptance
metaheuristic with PE, C, AC, MT and the two utility functions as objectives,
respectively. Following (Ricca and Simeone, 2005), we implemented a ran-
domized version of this metaheuristic, that is, starting from an initial solution,
at each iteration Old Bachelor Acceptance chooses a random solution in the
neighborhood of the current one. Notice that randomization is a useful tool for
the diversification of the search: it is used to avoid cycling and explore a large
amount of different solutions. When the objectives are PE, C, or AC, the ini-
tial solution is generated randomly. After a spanning tree T of G is randomly
generated, p − 1 randomly chosen edges of T are cut in order to get p subtrees
whose node-sets correspond to the p initial districts. For the MT criterion we
preferred to start from the district map generated by the ADEN heuristic in
(Grilli di Cortona et al., 1999).

The optimal solutions found in the previous four runs were adopted as pos-
sible initial solutions for the case in which the objective is to maximize the
utility of a given party. The idea was that starting from an already optimized
set of districts could make it more difficult to manipulate the given district de-
sign in favor of one of the two parties. However, also the Institutional district
design of the Italian Political Elections of 1996 was considered as possible ini-
tial solution. Among the results obtained w.r.t. these 5 different initial district
designs, we selected the worst observed case.

Tables 2-4 show our experimental results on the three different graphs. The
last row of Tables 2-4 refers to the values of the six objectives computed for the
Institutional district design adopted in Italy for the Political Elections of 1996.
This row was included in order to favor the comparison between our - neutral
and partisan - district designs and the one that was actually adopted in 1996.

On the basis of our experiments, we can state the following conclusions:

1. Given a vote distribution, gerrymandering is able to dramatically reverse
the electoral outcome (see, the fifth and the sixth row of each table).
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Table 2. Piedmont

District Design PE C AC MT Pole seats Olive seats

Min PE 0.075 0.911 0.577 0.426 10 18
Min C 0.771 0.531 0.347 0.614 11 17
Min AC 0.940 0.643 0.113 0.686 12 16
Min MT 0.094 0.762 0.288 0.334 11 17
Max Pole 1.052 0.777 0.454 0.850 21 7
Max Olive 1.364 0.593 0.263 0.913 3 25
Institutional 0.105 0.859 0.143 0.339 11 17

Table 3. Latium

District Design PE C AC MT Pole seats Olive seats

Min PE 0.046 0.778 0.523 0.361 13 6
Min C 1.226 0.166 0.143 0.692 12 7
Min AC 1.072 0.620 0.050 0.732 13 6
Min MT 0.050 0.502 0.270 0.230 10 9
Max Pole 1.512 0.321 0.061 0.864 19 0
Max Olive 1.299 0.277 0.131 0.759 3 16
Institutional 0.060 0.683 0.202 0.275 10 9

Table 4. Abruzzi

District Design PE C AC MT Pole seats Olive seats

Min PE 0.040 0.744 0.508 0.345 4 7
Min C 0.668 0.390 0.288 0.508 4 7
Min AC 0.894 0.539 0.056 0.620 4 7
Min MT 0.113 0.442 0.263 0.242 4 7
Max Pole 1.217 0.425 0.320 0.800 10 1
Max Olive 1.129 0.473 0.328 0.772 1 10
Institutional 0.078 0.633 0.215 0.272 5 6

2. The districting bias produced by gerrymandering algorithms implies the
deterioration of the values of all the traditional PD criteria.
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3. It turns out that there is a substantial stability of the number of seats
attributed to the Pole and to the Olive when the criteria of Population
Equality, Compactness, Administrative Conformity and the Mixed one
are optimized.

4. Compactness is a good shield against the practice of gerrymandering.
On the other hand, in view of 3, and since gerrymandering deteriorates
all the districting criteria, satisfying the other criteria helps in preventing
gerrymandering. This is why the use of more than one traditional PD
criterion is generally recommended.
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