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Preface

Voting Systems and Collective Choice are subjects at the crossroad of so-
cial and exact sciences. Social sciences look at the development and evolution
of electoral systems and other rules of collective choice, in the context of the
changing needs and political patterns of society. Exact sciences are concerned
instead with the formal study of voting mechanisms and other preference ag-
gregation procedures, under axioms which are meant to reflect such universal
principles as equity, representation, stability, and consistency.

Mathematics and Democracy presents a collection of research papers fo-
cussing on quantitative aspects of electoral system theory, such as game-the-
oretic, decision-theoretic, statistical, probabilistic, combinatorial, geometric,
and optimization-based approaches. Electronic voting protocols and other se-
curity issues have also recently been devoted a great deal of attention. Quanti-
tative analyses provide a powerful tool to detect inconsistencies or poor perfor-
mance in actual systems. The topics covered are at the forefront of the research
in the field:

Proportional methods

Biproportional apportionment

Approval voting

Gerrymandering

Metric approaches to Social Choice

Impossibility theorems

Applications to concrete cases such as the procedures used to elect the EU
Parliament, the US Congress, and various national and regional assemblies are
discussed, as well as issues related to committee voting.

Mathematicians, economists, statisticians, computer scientists, engineers,
and quantitatively oriented political and social scientists will find this book not
only of the highest quality, but also eclectic, discussion-oriented, and mind-
provoking. Altogether, Mathematics and Democracy offers an appraisal from
leading specialists of “what’s new” in the emerging multidisciplinary science
of voting systems and social choice, with a broad view on real-life applications.



vi Preface

The present book grew out of the International Workshop on Mathematics
and Democracy: Voting Systems and Collective Choice, which took place 18–
23 September 2005 at the Ettore Majorana Centre in the charming medieval
town of Erice, Sicily, under our joint scientific directorship. The Workshop’s
aim was to bring together different viewpoints on the subject, and to stress the
role of mathematics towards a deeper understanding, a rational assessment, and
a sound design of voting procedures. The invited speakers, representing many
countries, are prominent scholars from their disciplines. Many of the papers
included here were first presented at the Workshop, while some were adjoined
later on. All papers were refereed; we would like to thank the referees for their
indispensible contributions.

The idea of the Workshop goes back as far as to the year 1999. As Bruno
Simeone recalls: “In the Spring 1999 I had the chance to organize a Mini-
symposium on Electoral Systems at DIMACS. There I met people like Steve
Brams and Don Saari, and the idea of having a workshop in Erice came up.
That Summer, I was enjoying my vacations in Santa Marinella, a seaside town
north of Rome, when I got a phone call from Professor Antonino Zichichi,
the well-known physicist who heads the Erice Majorana Centre: How about
giving a talk in Erice on Mathematics and Democracy in front of a few Nobel
Laureates? The title of the Workshop—and of this book—was born at that
very moment. Needless to say, my vacations dissolved and I gave that talk. In
Erice, I proposed to Professor Zichichi the idea of a Workshop on Voting Sys-
tems and he instantly endorsed it. He envisaged in the Workshop an excellent
opportunity to encourage a multi-disciplinary debate among the most qualified
international experts of electoral systems and to promote exchange between the
academic world and the wider society in order to disseminate scientific find-
ings which are of collective interest, according to the well-established tradition
of the Centre. However, due to the casual intertwining of many events, some
years elapsed before the project actually materialized. The turning point was
the Oberwolfach Workshop on electoral systems organized by Michel Balinski,
Steven Brams, and Friedrich Pukelsheim. There I had the opportunity to ask
many distinguished participants whether they would be interested in a second
Workshop to take place in Erice. Their massive favourable reaction convinced
me to go ahead and do it.”

Drawing up the conclusions of the Workshop and relying on input from sev-
eral invited speakers, Professor Michel Balinski wrote down a “Declaration”
for the proper choice of an electoral system. This document, now better known
as The Erice Decalogue and already translated in other languages, was unani-
mously undersigned by the participants. We are particularly pleased to include
in this volume (pages xi–xii) such an authoritative document providing sound
guidelines for electoral reform planning and advocating quantitative methods
for electoral system assessment.



Preface vii

Neither the Workshop nor the book would have been possible without the
intervention of many persons and institutions. We are most grateful to Pro-
fessor Antonino Zichichi, President of the Ettore Majorana Foundation and
Centre for Scientific Culture, for his enthusiastic support and encouragement.
We acknowledge the indispensable financial and logistic support of the Centre
and its staff, headed by Dr. Fiorella Ruggiu.
We are grateful to Professor Renato Guarini, Rector of La Sapienza Univer-

sity; Professor Gabriella Salinetti, Dean of the Faculty of Statistical Sciences;
and to Professor Paolo Dell’Olmo, Head of the Statistics Department, for their
patronage and financial help. Additional funding was made available by the
Italian Ministry of University and Research, and by the Sicily Region.
We are much indebted to Professor Maurice Salles and Dr. Martina Bihn of

Springer-Verlag, for their prompt endorsement of our proposal to publish this
book in the Springer series Studies in Choice and Welfare.
Our warmest thanks to the other two formidable members of the Organizing

Committee, Federica Ricca and Aline Pennisi, for their precious, ubiquitous,
and clever assistance in the Workshop organization and logistics. They were
efficiently backed by Isabella Lari and Andrea Scozzari, to whom we extend
our thanks. Sebastian Maier and Federica Ricca have done a fantastic and
supersonic job in editing the LATEX format of the articles for the book.

BRUNO SIMEONE AND FRIEDRICH PUKELSHEIM

Rome and Augsburg, July 2006
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The Erice Decalogue

The objective of the scientific research presented and discussed at the In-
ternational Workshop on Mathematics and Democracy: Voting Systems and
Collective Choice is the development and understanding of fair electoral sys-
tems. Pursued by scientists coming from different disciplines – mathematics,
political science, economics, the law, computer science, . . . – there is a com-
mon set of principles that the participants share.

We believe that a fair electoral system for electing a Parliament should:

1 Ensure transparency and simplicity. Voting systems whose properties are
simple to understand by the electorate should be preferred to complex
ones, and they should respect a nation’s historical and legal context.

2 Guarantee accuracy. The act of voting – with paper ballots, optical scan-
ners, electronic or other devices – should be able to assure to voters that
their votes were accurately counted.

3 Promote competitiveness and avoid partisan bias. The system should
favor no political group over another. In particular, it should render (al-
most) impossible the election of a majority in the Parliament with a mi-
nority of the voters.

4 Make every vote count. A system should never discourage a citizen from
voting; it must encourage participation.

5 Make the Parliament a “mirror” of the electorate representing the diver-
gent “popular wills,” yet capable of governing (through, for example, the
emergence of a majority).

6 Minimize the incentives to vote strategically. The system should encour-
age voters to express sincerely their true preferences.

7 Eliminate partisan political control by assigning the legal and adminis-
trative responsibility for elections to an independent commission.



xii The Erice Decalogue

A system using electoral districts should:

8 Encourage geographical compactness of the districts and respect natural
geographical features and barriers.

9 Respect existing political subdivisions and communities of interest, and
make every effort to avoid confusion among districts defined for differ-
ent elections (local, regional and national).

10 Guarantee redistricting on a regular basis to account for demographic
changes (but never in response to partisan appetites); at same time, it
should recognize the limited precision and transitory nature of census
data.

Theory is necessary to understand the properties and consequences of
choosing one or another electoral system. A “science” of electoral systems is
emerging and should be used in designing new systems or reforming old ones.
Regrettably, history demonstrates that elected officials have repeatedly manip-
ulated systems for partisan advantage . . . and have resisted the “intrusions”
of scientific approaches to the design of electoral systems. Few voters realize
the extent to which manipulation has profoundly effected electoral outcomes,
sometimes transforming the votes of a minority into a majority in Parliament.

All too often the players of a nation’s political game – its elected officials
– are, at one and the same time, the referees of the game, and they change
the rules to accommodate new situations. Imagine the public outcry were the
game to be football! This is why independent commissions are needed, to-
gether with professionals trained in the emerging multi-disciplinary science of
electoral systems, responsible for keeping abreast of all the new theoretical and
technological developments in voting.

Erice, 23 September 2005

Editors’ note: The present declaration, now known under the name of “The Erice Decalogue”,

has been unanimously signed by all the participants in the Erice Workshop. It has been written

by Professor Michel Balinski with contributions by several invited speakers and the editorial

assistance of Dr. Isabella Lari.



Power Indices Taking into Account
Agents’ Preferences

Fuad Aleskerov
State University ’Higher School of Economics’
and
Institute of Control Sciences, Russian Academy of Sciences

Abstract A set of new power indices is introduced extending Banzhaf power index and
taking into account agents’ preferences to coalesce. An axiomatic characteriza-
tion of intensity functions representing a desire of agents to coalesce is given. A
set of axioms for new power indices is presented and discussed. An example of
use of these indices for Russian parliament is given.

Keywords: Ordinal power index, Cardinal power index, intensity function, consistency of
factions.

1. Introduction

Power indices have become a very powerful instrument for study of elec-
toral bodies and an institutional balance of power in these bodies (Brams,
1975; Felsenthal and Machover, 1998; Grofman and Scarrow, 1979; Herne
and Nurmi, 1993; Laruelle and Valenciano, 2001; Leech, 2004). One of the
main shortcomings mentioned almost in all publications on power indices is
the fact that well-known indices do not take into account the preferences of
agents (Felsenthal and Machover, 1998; Steunenberg et al., 1999). Indeed,
in construction of those indices, e.g., Shapley-Shubik or Banzhaf power in-
dices (Banzhaf, 1965; Shapley and Shubik, 1954), all agents are assumed to
be able to coalesce. Moreover, none of those indices evaluates to which extent
the agents are free in their wishes to create a coalition, how intensive are the
connections inside one or another coalition1.

Until recently the only index taking into account preferences of voters was
that of Shapley – Owen (Shapley and Owen, 1989). However, the application

1First study on the coalition formation taking into account preferences of agents to coalesce was Dreze and
Greenberg (1980). However, the problem of power distribution among agents in that study had not been
considered.
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of it to real data reveals some serious problems. They have been discussed in
Barr and Passarelli (2004). That is why several attempts have been made to
construct power indices do take into account preferences of voters to coalesce
(Napel and Widgren, 2004, 2005).

In this article we try to construct another approach to define such indices.
Consider an example. Let three parties A, B and C with 50, 49 and 1 sets,
respectively, are presented in a parliament, and the voting rule is the simple
majority one, i.e., 51 votes for. Then winning coalitions are A + B, A + C ,
A + B + C and A is pivotal in all coalitions, B is pivotal in the first coalition
and C is pivotal in the second one. (Normalized) Banzhaf power index2 for
these parties is equal to

β(A) = 3/5, β(B) = β(C) = 1/5.

Assume now that parties A and B never coalesce in pairwise coalition, i.e.,
coalition A + B is impossible. Let us, however, assume that the coalition
A + B + C can be implemented, i.e., in the presence of ‘moderator’ C parties
A and B can coalesce. Then the winning coalitions are A+C and A+B +C ,
and A is pivotal in both coalitions while C is in one; B is pivotal in none of the
winning coalitions. In this case β(A) = 2/3, β(C) = 1/3 and β(B) = 0, i.e.,
although B has almost half of the seats in the parliament, its power is equal to
0.

If A and B never coalesce even in the presence of a moderator C , then
the only winning coalition is A + C , in which both parties are pivotal. Then,
β(A) = β(C) = 1/2. Such situations are met in real political systems. For
instance, Russian Communist Party in the second parliament (1997-2000) had
had about 35% of seats, however, its power during that period was always
almost equal to 0 (Aleskerov et al., 2003).

We introduce here two new types of indices based on the idea similar to
Banzhaf power index, however, taking into account agents’ preferences to co-
alesce. In the first type the information is used about agents’ preferences over
other agents. These preferences are assumed to be linear orders. Since these
preferences may not be symmetric, the desire of agent 1 to coalesce with agent
2 can be different than the desire of agent 2 to coalesce with agent 1. These
indices take into account in a different way such asymmetry of preferences. In
the second type of power index the information about the intensity of prefer-

2Banzhaf power index is evaluated as

β(i) =
biX

j

bj

,

bi is the number of winning coalitions in which agent i is pivotal, i.e., if agent i expels from the coalition it
becomes a loosing one (Banzhaf, 1965). This form of Banzhaf index is called the normalized one.
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ences is taken into account as well, i.e., we extend the former type of power
index to cardinal information about agents’ preferences.

The structure of the paper is as follows. Section 2 gives main notions. In
Section 3 we define and discuss ‘ordinal’ power indices. In Section 4 cardinal
indices are introduced. In Section 5 we evaluate power distribution of groups
and factions in the Russian Parlament in 2000-2003 using some of new indices.
Section 6 and 7 provides some axioms for the indices introduced. Section 8
cocludes.

2. Main Notions

The set of agents is denoted as N , N = {1, ..., n}, n > 1. A coalition ω is
a subset of N , ω ⊆ N . We consider the situation when the decision of a body
is made by voting procedure; agents who do not vote ‘yes’ vote against it, i.e.,
the abstention is not allowed.

Each agent i ∈ N has a predefined number of votes, vi > 0, i = 1, . . . , n.
It is assumed that a quota q is predetermined and as a decision making rule the
voting with quota is used, i.e., the decision is made if the number of votes for
it is not less than q, ∑

i

vi ≥ q.

The model describes a voting by simple and qualified majority, voting with
veto (as in the Security Council of UN), etc.

A coalition ω is called winning if the sum of votes in the coalition is no less
than q. An agent i is called pivotal in a coalition ω if the coalition ω\{i} is a
loosing one.

For such voting rule the set of all winning coalitions Ω possesses the fol-
lowing properties:

∅ /∈ Ω,

N ∈ Ω,

ω ∈ Ω, ω′ ⊇ ω =⇒ ω′ ∈ Ω.

Sometimes, one additional condition is applied as well

ω ∈ Ω =⇒ N\ω /∈ Ω,

implying q ≥ �n
2 �, where �x� is the smallest integer greater than or equal to

x.
Next we introduce two types of indices, ordinal and cardinal. Both types are

constructed on the following basis: the intensity of connection f(i, ω) of the
agent with other members of ω is defined. Then for such agent i the value χi

is evaluated as
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χi =
∑
ω

f(i, ω),

i.e., the sum of intensities of connections of i over those coalitions in which i
is pivotal.

Naturally, other functions instead of summation can be considered.
Then the power indices are constructed as

α(i) =
χi∑

j

χj

.

The very idea of the index α is the same as for Banzhaf index, with the
difference that in Banzhaf index we evaluate the number of coalitions in which
i is pivotal, i.e., in the definition of Banzhaf index χi is equal to 1, on the
contrary, in our case χi is defined by the value of intensity function.

The main question is how to construct the intensity functions f(i, ω). Below
we give two ways how to construct those functions.

Each agent i is assumed to have a linear order3 Pi revealing her preferences
over other agents in the sense that i prefers to coalesce with agent j rather than
with agent k if Pi contains the pair (j, k). Obviously, Pi is defined on the
Cartesian product (N\{i}) × (N\{i}).

Since Pi is a linear order, the rank pij of the agent j in Pi can be defined.
We assume that pij = |N | − 1 for the most preferable agent j in Pi.

The value pij shows how many agents less preferable than j are in Pi. For
instance, if N = {A,B,C,D} and PA : B 	 C 	 D, then pAB = 3, pAC =
2 and pAD = 1.

Using these ranks, one can construct different intensity functions.
A second way of construction of f(i, ω) is based on the idea that the values

pij of connection of i with j are predetermined somehow. In general, it is not
assumed pij = pji. Then the intensity function can be constructed as above.

Below we give six different ways how to construct f(i, ω) in ordinal case
and sixteen ways of construction of cardinal function f(i, ω).

3. Ordinal Indices

For each coalition ω and each agent i construct now an intensity f(i, ω) of
connections in this coalition. In other words, f is a function which maps N×Ω
(= (2N\{∅}) into R1, f : N × Ω → R1. This very value is evaluated using
the ranks of members of coalition. Several different ways to evaluate f using
different information about agents’ preferences are provided:

a) Intensity of i’s preferences.

3i.e. irreflexive, transitive and connected binary relation. We often denote it as �.
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In this form only preferences of i’s agent over other agents are evaluated,
i.e.,

f+(i, ω) =
∑
j∈ω

pij

|ω| ;

b) Intensity of preferences for i . In this case we consider the sum of ranks
of i given by other members of coalition ω.

f−(i, ω) =
∑
j∈ω

pji

|ω| ;

c) Average intensity with respect to i ’s agent

f(i, ω) =
f+(i, ω) + f−(i, ω)

2
;

d) Total positive average intensity.
Consider any coalition ω of size k ≤ n. Without loss of generality one can

put ω = {1, . . . , k}. Then consider f+(i, ω) for each i and construct

f+(ω) =

∑
i∈ω

f+(i, ω)

|ω| ;

e) Total negative average intensity is defined similarly by the formula

f−(ω) =

∑
i∈ω

f−(i, ω)

|ω| ;

f) Total average intensity is defined as

f(ω) =

∑
i∈ω

f(i, ω)

|ω| .

It is worth emphasizing here that the intensities d) – f) do not depend on
agent i, i.e., for any agent i in the following calculation of power indices we
assume that for any i in the coalition ω the corresponding intensity is the same.

Consider now several examples.
Example 1. Let n = 3, N = {A,B,C}, v(A) = v(B) = v(C) = 33, q =

50. Consider two preference profiles given in Tables 1 and 2.
For both preference profiles there are three winning coalitions in which

agents are pivotal. These coalitions are A + B,A + C and B + C .
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Table 1. First preference profile

PA PB PC

C C A
B A B

Table 2. Second preference profile

PA PB PC

B C A
C A B

Let us calculate the functions f as above for each agent in each winning
coalition. The preferences from Tables 1 and 2 can be re-written in the matrix
form as

‖pij‖ =

A B C
A
B
C

⎛
⎝ 0 1 2

1 0 2
2 1 0

⎞
⎠

‖pij‖ =

A B C
A
B
C

⎛
⎝ 0 2 1

1 0 2
2 1 0

⎞
⎠

Now, for the profile given in Table 1 one can calculate the values of intensi-
ties a)–f) obtained by each agent i in each winning coalition ω. These values
for the first preference profile are given in Table 3 and for the second one – in
Table 4.

Using these intensity functions one can define now the corresponding power
indices α(i). Let i be a pivotal agent in a winning coalition ω. Denote by χi

the number equal to the value of the intensity function for a given coalition ω
and agent i. Then the power index is defined as follows

α(i) =

∑
ω

i is pivotal in ω

χi

∑
j∈N

∑
ω

j is pivotal in ω

χj
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Table 3. Intensity values for the first preference profile

f+(i, ω) f−(i, ω) f(i, ω)
A B C A B C A B C

A + B 1/2 1/2 - 1/2 1/2 - 1/2 1/2 -
A + C 1 - 1 1 - 1 1 - 1
B + C - 1 1/2 - 1/2 1 - 3/4 3/4

f+(i, ω) f−(i, ω) f(i, ω)
A B C A B C A B C

A + B 1/2 1/2 - 1/2 1/2 - 1/2 1/2 -
A + C 1 - 1 1 - 1 1 - 1
B + C - 3/4 3/4 - 3/4 3/4 - 3/4 3/4

Table 4. Intensity values for the second preference profile

f+(i, ω) f−(i, ω) f(i, ω)
A B C A B C A B C

A + B 1 1/2 - 1/2 1 - 3/4 3/4 -
A + C 1/2 - 1 1 - 1/2 3/4 - 3/4
B + C - 1 1/2 - 1/2 1 - 3/4 3/4

f+(i, ω) f−(i, ω) f(i, ω)
A B C A B C A B C

A + B 3/4 3/4 - 3/4 3/4 - 3/4 3/4 -
A + C 3/4 - 3/4 3/4 - 3/4 3/4 - 3/4
B + C - 3/4 3/4 - 3/4 3/4 - 3/4 3/4
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Table 5. Power indices values

First profile (Table 1) Second profile (Table 2)
A B C A B C

α1 1/3 1/3 1/3 1/3 1/3 1/3

α2 1/3 2/9 4/9 1/3 1/3 1/3

α3 1/3 5/18 7/18 1/3 1/3 1/3

α4 1/3 5/18 7/18 1/3 1/3 1/3

α5 1/3 5/18 7/18 1/3 1/3 1/3

β 1/3 5/18 7/18 1/3 1/3 1/3

As we already mentioned this index is similar to the Banzhaf index. The
difference is that in the Banzhaf index χi is equal to 1, in the case under study
χi represents some intensity value.

The indices α(i) will be denoted by α1(i), . . . , α6(i).
Let us evaluate now the values α1(·) – α6(i) for all agents for the preference

profile from Table 1.
The agent A (as well as agents B and C) is pivotal in two coalitions; the sum

of the values f+(i, ω) for each i is equal to 3/2. Then

α1 =
3/2

3/2 + 3/2 + 3/2
=

1

3
= α1(B) = α1(C).

The value α2(·) is evaluated differently. The sum of values f−(i, ω) from

Table 3 for all i and ω is equal to 9/2. However, for A
∑
ω

f(A,ω) = 3/2,∑
ω

f(B,ω) = 1 and
∑
ω

f(C,ω) = 2. Then α2(A) = 3
9 = 1

3 ; α2(B) = 2
9

and α2(C) = 4
9 .

The values of the indices α1(·)–α6(i) for both preference profiles are given
in Table 5 as well as the values of Banzhaf index β.

Consider now another example.

Example 2. Let N = {A,B,C,D,E}, each agent has one vote, q = 3 and
the preferences of agents are given in Table 6. The values of indices α2(·)–
α4(i) are given in Table 7.

Note that α1 is equal to the Banzhaf index, which for this case gives ∀i ∈ N
β(i) = 1/5.

Example 3. Consider the case when 3 parties A, B and C have 50, 49 and
1 seats, respectively. Assume that decision making rule is simple majority, i.e.
51 votes. Then the winning coalitions are A+B, A+C and A+B+C. Note that
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Table 6. Preferences of agents for N = {A,B,C,D,E}
PA PB PC PD PE rank
B A D A B 4
C C A B A 3
D D B C D 2
E E E E C 1

Table 7. The values of the indices α2 – α4 for Example 2.

A B C D E
α2 0.28 0.26 0.18 0.2 0.008
α3 0.24 0.23 0.19 0.2 0.14
α4 0.22 0.21 0.2 0.2 0.17

A is pivotal in all three coalitions, B and C are pivotal in one coalition each.
Then β(A) = 3/5, β(B) = β(C) = 1/5.

Consider now the case with the preferences of agents given below: PA;C 	
B; PB : C 	 A and PC : A 	 B.

Then the values of α1 and α2 (constructed by f+(i, ω) and f−(i, ω)) are as
follows

α1(A) = 5/12, α1(B) = 1/4, α1(C) = 1/3,
α2(A) = 5/12 α2(B) = 7/36 α2(C) = 7/18.

Consider another preference profile: P ′
A : C 	 B, P ′

B : C 	 A and P ′
C :

B 	 A, i.e., the only agent C changes her preferences. Then one can easily
evaluate α′

1(A) = 5/11, α′
1(B) = 3/11, α′

1(C) = 3/11, α′
2(A) = 10/33,

α′
2(B) = 3/11, α′

2(C) = 14/33.

4. Cardinal Indices

Assume now that the desire of party i to coalesce with party j is given as
real number pij ,

∑
j

pij = 1, i, j = 1, . . . , n. In general, it is not assumed that

pij = pji.
One can call the value pij as an intensity of connection of i with j. It may

be interpreted as, for instance, a probability for i to form a coalition with j.
We define now several intensity functions
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a) average intensity of i’s connection with other members of coalition ω

f+(i, ω) =

∑
j∈ω

pij

|ω| ;

b) average intensity of connection of other members of coalition with i

f−(i, ω) =

∑
j∈ω

pji

|ω| ;

c) average intensity for i

f(i, ω) =
1

2

(
f+(i, ω) + f−(i, ω)

)
;

d) average positive intensity in ω

f+(i, ω) =

∑
i∈ω

f+(i, ω)

|ω| ,

e) average negative intensity in ω

f−(i, ω) =

∑
i∈ω

f−(i, ω)

|ω| ,

f) average intensity in ω

f(ω) =

∑
i∈ω

f(i, ω)

|ω| ,

In contrast to ordinal case now we can introduce several new intensity func-
tions:

g) minimal intensity of i’s connections

f+
min(i, ω) = min

j
pij;

h) maximal intensity of i’s connections

f+
max(i, ω) = max

j
pij;
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i) maximal fluctuation of i’s connections

fmf (i, ω) =
1

2

(
min

j
pij + max

j
pij

)
;

j) minimal intensity of connections of other agents in ω with i

f−
min(i, ω) = min

j
pji

k) maximal intensity of connections of other agents ω in with i

f−
max(i, ω) = max

j
pji

l) s-mean intensity of i’s connections with other agents in ω

f+
sm(i, ω) =

1

|ω| s

√∑
j

ps
ij;

m) s-mean intensity of connections of other agents ω in with i

f+
sm(i, ω) =

1

|ω| s

√∑
j

ps
ji;

n) max min intensity

fmax min(ω) = max
i

min
j

pij;

o) min max intensity

fmin max(ω) = min
i

max
j

pji;

p) maximal fluctuation

fmf (ω) =
1

2
(fmax min(ω) + fmin max(ω)) .

Note that the intensity functions in the cases d)–f), n)–p) do not depend on
agent herself but only on coalition ω.

Now the corresponding power indices can be defined as above, i.e.,

αcard(i) =

∑
ω is winning

i is pivotal in ω

χi

∑
j∈N

∑
ω is winning

j is pivotal in ω

χi(ω)
,

where χi is one of the above intensity functions.
Example 4. Let N = {A,B,C,D}, each voter has only one vote, the quota

is equal to q = 3, and the matrix ‖pij‖ is given in Table 8. In Table 9 the power
indices are given for the cases a), b), e), h).
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Table 8. Matrix ‖pij‖ for Example 3

A B C D
A 0.7 0.2 0.1
B 0.3 0.5 0.2
C 0.1 0.7 0.2
D 0.7 0.2 0.1

Table 9. Some cardinal indices for Example 3

A B C D
αa) 0.25 0.25 0.25 0.25

αb) 0.27 0.40 0.20 0.13

αc) 0.25 0.27 0.24 0.23

αh) 0.25 0.25 0.25 0.25

5. Evaluation for Russian Parliament

We will study now a distribution of power among factions in the third Rus-
sian Parliament (1999-2003) using these new indices. The matrix ‖pij‖ is
constructed using the consistency index; the latter (the index of consistency of
positions of two groups) is constructed as

c(q1, q2) = 1 − |q1 − q2|
max(q1, 1 − q1, q2, 1 − q2)

,

where q1 and q2 be the share of “ay” votes in two groups of MPs (Aleserkov et
al., 2003).

We consider the value of consistency index as the value of intensity of con-
nections between agents i and j. Then we are in cardinal framework, and one
can use one of the indices introduced in the previous section.

On Fig. 1 the values of αa) index are given for the Russian Parliament
from 2000 to 2003 on the monthly basis. It can be readily seen that index
α gives lower values for Communist Party (sometimes up to 3%) and higher
values for Edinstvo (up to 1%). It is interesting to note that Liberal-Democrats
(Jirinovski’s Party) had had almost equal values by both indices, which corre-
sponds to the well-known flexibility of that party position.

Let us note that different ways to use the index α are possible. For instance,
following the approach from Aleskerov et al. (2003), we may assume that if
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the consistency value for two factions is less than some threshold value δ, then
parties do not coalesce, i.e., pij = 0.

Figs. 2 and 3 give power distribution for the factions in the Russian Parlia-
ment for the same period calculated on the basis of factions coordinates on a
political map. On that map each faction at each period is characterized by two
coordinates – the level to which extent it is liberal or state oriented and the
level of support of the president (pro-reforms or anti-reforms) (Aleskerov et
al., 2005).

Having these two coordinates, we calculate the distance on the map between
the positions of two factions. Then it is possible to construct a measure τij –
intensity of connections among factions i and j – as

τij =
1√
2

(
1 +

√
2

1 + dij

− 1

)
,

where dij is the Euclidean distance between positions of factions i and j on
political map.

It can be easily seen that τij = 0 if dij =
√

2 (the maximal distance on the
map), and τij = 1 if dij = 0 (i.e., when positions of two factions coincide).
Using the values τij for two factions and consider them as a measure of pref-
erence to coalesce, one can calculate the cardinal indices introduced above, in
particular, the index for the case a). These very evaluations are given on Figs. 2
and 3 for five main parties in Russian parliament during the period 2000-2003.

6. Axiomatic Construction of a Cardinal Intensity
Function

Now we will try to axiomatize a construction of cardinal intensity function.
First, we define an intensity function depending on intensities pij of connec-

tions of i with other members of coalition ω, i.e., if ω = {1, . . . ,m}, m ≤ n,

f(i, ω) = fi (p11, . . . , p1m, p21, . . . , p2m, . . . , pi1, . . . , pim, . . . , pmm) .

As it is seen, the intensity function for i depends not only of i’s connec-
tions with other members of coalition, but depends also of connections of other
members among themselves. We can consider, for instance, the case when the
intensity of agent i to join a coalition ω depends on the average intensity of
connections between members of ω, say, the intensity can be low if that aver-
age intensity is below some threshold.

However, we will restrict this function in a way which is similar to indepen-
dence of irrelevant alternatives (Arrow, 1963): f(i, ω) will depend on connec-
tions of agent i with other members of coalition ω only, i.e.,

f(i, ω) = fi (pi1, . . . , pim) .
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For the sake of simplicity we put pω
ij ≥ 0 for all i, j and ∀i

∑
j∈ω

pω
ij = 1.

I would like to emphasize that in this formulation the sum of pω
ij is equal to

1 in each ω, i.e., now connections are defined by 2N − 1 matrices ‖pω
ij‖ for

each coalition ω.
Consider several axioms which reasonable function f(i, ω) should satisfy

to.
Axiom 1. For any m – tuple of values (pi1, . . . , pim) there exist a function

f(i, ω) such that 0 ≤ f(i, ω) ≤ 1, f is continuous differentiable function of
each of its arguments.

Axiom 2. If pij = 0 for any j, then f(i, ω) = 0.
Axiom 3. (Monotonicity). A value of f(i, ω) increases if any value pij

increases, and a value of f(i, ω) decreases if pij decreases. Moreover, equal
changes in intensities pij lead to equal changes of f(i, ω). This means that

∂fi

∂pij

= µi for any j,

and
∂fi

∂plj

= 0 for any l �= i.

Then the following theorem holds
Theorem. An intensity function f(i, ω) satisfies Axioms 1–3 iff it is repre-

sented in the form

f(i, ω) =

∑
j

pij

|ω| .

Proof is a re-formulation of the proof of the theorem from Intriligator (1973)
given in the framework of probabilistic social choice and hence is omitted.

An axiomatic characterization of other types of intensity functions is still an
open problem.

7. Axioms for Power Indices

We introduce several axioms, which any reasonable power index should
satisfy to.

First, we call a voting situation a four-tuple [N, q, v, �P ], where N is a set
of agents, |N | = n, n > 1, q is a quota, v = (v1, . . . , vn) is a set of votes
which agents possess, �P is a preference profile, where each agent i ∈ N has a
preference (linear order) Pi over N\{i} or preference matrix ‖pij‖.

Axiom 1. Under a given quota rule for any agent i ∈ N there exists a
preference profile �P such that α(i) > 0.
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In words, for no agent it is known in advance, independently of agents’
preferences, that her power is equal to 0.

Axiom 2. Consider two voting situations [N, q, v, �P ] and [N, q, v′, �P ]. Let
∃A ∈ N such that v′(A) ≥ v(A), and ∀B ∈ N , v′(B) = v(B). Then,
α′(A) ≥ α(A).

Assume that for a given distribution of votes and a given preference profile
we evaluate power distribution among agents. Then we increase the number of
votes for a given agent A, keeping the votes of other agents unchanged. Then
Axiom 2 states that voting power of A in new situation should not be less than
before.

Axiom 3. (Symmetry) Let η be a one-to-one correspondence of N to N .
Then

η(α1, . . . , αn) = (αη(1), . . . , αη(n)).

Axiom 3 states that power of agents does not depend of their names, i.e.,
the procedure of evaluation of power distribution must treat agents in a similar
way.

Axiom 4. Let i ∈ N be pivotal in no winning coalition ω. Then, α(i) = 0.
It is usual axiom in voting power models (in fact, in game – theoretic mod-

els, see Shapley and Shubik (1954)): a dummy player has power equal to 0.
Axiom 5’. First Monotonicity Axiom (FMA). Consider two voting situa-

tions [N, q, v, �P ] and [N, q, v, �P ′]. Let for some i and any k �= i Pk = P ′
k

holds. Let additionally for some p′ij > pij holds. Then, α′(j) ≥ α(j).
This axiom can be explained in a simple way: all preferences except i’s are

the same in two profiles; in i’th preference the evaluation of j is higher in new
profile than in the old one. Then in new voting situation (with �P ′) the power
of j should not be less than before.

Axiom 5”. Second Monotonicity Axiom (SMA). Consider two voting situ-

ations [N, q, v, �P ] and [N, q, v, �P ′]. Let for two agents i and j α(i) ≥ α(j)

holds, where α(i) is the voting power of i in the first voting situation. Let �P ′
is such that for any k �= l Pk = P ′

k holds, and in the preferences of l’s agent

p′li − p′lj > pli − plj

holds.
Then α′(i) ≥ α(j) (weak version of SMA) or α′(i) > α(j) (strong version

of SMA), where α′(i) is the voting power of i with respect to second voting
situation.

In words, assume that the power of i is not less than the power of j with
respect to first voting situation. Let �P ′ is such that for any agent but 
 her new
preferences coincide with old ones, and in l’s preference the relative position
of i with respect to j is higher in P ′

l than in Pl. Then the voting power of i
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should be not less than that of j in new voting situation (weak version) or even
must be greater than that of j (strong version).

Axiom 6. Let �P ′ be an intensity matrix such that p′ij = kpij for every
i, j = 1, . . . , n. Then α′(i) = α(i) where α′ is the power vector obtained from
�P ′.

Axiom 6 deals with cardinal power indices. It says that voting power of
agents does not change under the transformation of scale of intensities in the
form

p′ij = kpij,

i.e., when intensities multiply to the same constant k.
It is possible to formulate axioms similar to those from Section 5 and prove

a theorem similar to the given above but for α–indices. However, it will be
interesting to analyze how the axioms from this Section provide an axiomatic
characterization of α indices.

8. Concluding Remarks

We have considered three ways to construct power indices taking into ac-
count voters’ preferences to coalesce. The first one is based on the consistency
index showing to which extent two groups of voters (party factions) vote in
a similar way. The values of consistency index define the possibility of these
groups to coalesce. Then the Banzhaf index is defined on the set of admissible
coalitions only.

The second way uses the functions defining the intensity of factions to co-
alesce being based on the intensity to coalesce of individual faction. We have
defined six ordinal intensity indices and sixteen cardinal ones. For a simplest
cardinal intensity index the corresponding axioms are introduced and the char-
acterization theorem is proved.

Then the power index is defined in a way similar to Banzhaf index – instead
of calculating number of coalitions in which faction is pivotal we calculate an
intensity of faction to coalesce in the coalitions in which it is pivotal.

Finally, we define an intensity function as a function of distance using the
coordinates of factions on the political map. The latter is constructed using
data of real voting in a parliament (see, for instance, Aleskerov et al. (2005)).

Then using this intensity of faction one can calculate one of the power in-
dices defined above for a cardinal case.
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Abstract Gerrymandering - the artful and partisan manipulation of electoral districts - is
a well known pathology of electoral systems, especially majoritarian ones. In
this paper, we try to give theoretical and experimental answers to the following
questions: 1) How much biased can the assignment of seats be under the effect
of gerrymandering? 2) How effective is compactness as a remedy against gerry-
mandering? Accordingly, the paper is divided into two parts. In the first one, a
highly stylized combinatorial model of gerrymandering is studied; in the second
one, a more realistic multiobjective graph-partitioning model is adopted and lo-
cal search techniques are exploited in order to find satisfactory district designs.
In a nutshell, our results for the theoretical model mean that gerrymandering is
as bad as one can think of and that compactness is as good as one can think of.
These conclusions are confirmed to a large extent by the experimental results
obtained with the latter model on some medium-large real-life test problems.

Keywords: Gerrymandering, partition, graph coloring.

1. Introduction

Gerrymandering - the partisan manipulation of electoral district boundaries
- has plagued modern democracies since their early times. Far from being
defeated, it keeps displaying its perverse effects even at present (Balinski,
2004). It was only with the rise of the electronic computer that researchers
started thinking about neutral and rational procedures for political districting.
Its nature as a multicriteria decision problem was soon recognized. Suppose
that the territory is subdivided into elementary administrative units (counties,
townships, wards,..). The most commonly adopted districting criteria are the
following: integrity (no unit may be split between two or more districts); conti-
guity (the units within the same district should be geographically contiguous);
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population equality (the district populations should be equal or nearly equal,
especially in majoritarian systems); compactness (each district should be com-
pact, that is, “closely and neatly packed together” (Oxford Dictionary)); con-
formity to administrative boundaries (the electoral district boundaries should
not cross other administrative boundaries, such as those of regions, provinces,
local or minority communities). Among these criteria, compactness stands as a
powerful weapon against gerrymandering, since it bans indented or elongated
districts: a sunfish-shaped district is deemed to be compact, while an octopus-
shaped or an eel-shaped one is not.

The present paper deals with the following two basic problems:

1) How bad can gerrymandering be?

2) How effective is compactness in preventing gerrymandering?

We shall give both theoretical and experimental answers to these two prob-
lems. Accordingly, our paper is divided into two parts. In the first one, an ide-
alized combinatorial model is investigated; in the second part, a more realistic
and flexible multicriteria graph-theoretic model is adopted, and computational
results are presented for some medium to large real-life test problems.

2. A Combinatorial Gerrymandering Model

As a motivation for the present section we mention a striking artificial ex-
ample of gerrymandering given by Dixon and Plischke (1950). Suppose that
only two parties P and C compete under a first-past-the-post system and that,
as in Figure 1, the territory is divided into elementary units having the same
population with an homogeneous electoral behavior, that is, the whole popula-
tion of an elementary unit votes for the same party. If the district map of Figure
1 (a) is adopted, party C wins in 8 districts out of 9; however, if the alternative
district map of Figure 1(b) is adopted, party C wins only in 2 districts out of 9,
so the outcome is drastically reversed.

A careful look at Figure 1 gives us a clue about an effective strategy for
maximizing the number of districts won by either party: the districts should be
designed so that every win should be close and every loss should be sweeping.

In this section we shall consider an idealized graph-theoretic formulation
that captures the essence of the artificial example by Dixon and Plischke. Given
a territory composed by territorial units, define the following integers:

n is the number of territorial units;

p is the number of districts;
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C C P P C C C P P C

C P P C C C P P C C 

P P C C P P P C C P

P P C C P P P C C P

C P C P C C P C P C

C C C P C   C C C P C

P C C P P P C C P P

P P C C P P P C C P

C C C P P C C C P P

  (a)     (b)

Fig. 1. Example by Dixon and Plischke: (a) Party P wins 1 seat and party C wins 8;
(b) Party P wins 7 seat and party C wins 2.

s is the common district size (number of territorial units in each district).

Clearly, the three parameters n, p, s must satisfy the relation n = ps.
We model the territory as an undirected graph G = (V,E) with |V | = n,

where the vertices represent territorial units and the edges represent adjacency
between territorial units.

A connected partition of G is a partition of its set of vertices V such that
each component induces a connected subgraph of G.

A district design is a connected partition of the graph into p components or
districts of the same size. Notice that this definition takes into account the crite-
ria of integrity, contiguity and population equality. If at least one such partition
exists, the graph is said to be p-equipartitionable. Checking such property is
not easy: in fact, Frieze and Dyer (1985) proved its NP-completeness even for
bipartite graphs. We assume that G is p-equipartitionable.

A vote outcome is a bicoloring of the vertices that assigns to each vertex
either the color blue or the color red: this means that all voters in the corre-
sponding unit vote for the same party, blue or red, respectively. A vote outcome
is balanced if the number of blue vertices is equal to the number of red ones.

A balanced vote outcome corresponds to a situation in which the electoral
population is perfectly split between two parties.



22 Nicola Apollonio et al.

From now on, except for the last section, we shall consider only balanced
vote outcomes. We shall also make the following assumptions on the integers
n, s, and p:

n is even: this is a necessary condition for the existence of balanced vote
outcomes;

s is odd and greater or equal to 3: this assumption forbids trivial cases
and ties between the two parties;

p is even: this follows from the relation n = ps.

If in a district D the number of blue vertices is greater than the number of
red ones, we will say that D is a blue district. In a similar way we can define a
red district. We will denote by Π the set of all district designs and by Ω the set
of all possible balanced vote outcomes.

We define an electoral competition to be a pair (ω, π) such that ω ∈ Ω and
π ∈ Π. The functions b(ω, π) and r(ω, π), compute the number of blue and
red districts, respectively, resulting from the electoral competition (ω, π). Let

B(G) = max
ω∈Ω,π∈Π

b(ω, π)

be the maximum number of blue districts for all the electoral competitions
(ω, π) ∈ Ω×Π. In a similar way we can define R(G) with respect to r(ω, π).

Property 1 Since, for any bicoloring, it is possible to switch the colors of
the vertices so that the red vertices become the blue vertices and viceversa,
any property related to the blue party that does not explicitly depend on any
given bicoloring must hold for the red party also. In particular we have that
B(G) = R(G).

By this property we can define the function

W (G) = B(G) = R(G).

Moreover the results that we will provide for the blue party hold also for the
red one.

Given an electoral competition (ω, π) ∈ Ω × Π, for any district k, k =
1, ..., p, let

bk = number of blue vertices in district k,

rk = number of red vertices in district k.
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Property 2 Given a p-equipartitionable graph G, for any (ω, π) ∈ Ω × Π
the following inequality holds:

b(ω, π) ≤ �n/(s + 1)�.
Proof. Given an electoral competition (ω, π) ∈ Ω × Π, for each district k

let bk and rk be defined as above. Since ω is balanced, we may assume:∑
k=1,...,p

(bk − rk) = 0.

Hence:

0 =
∑

k=1,...,p

(bk − rk) =
∑

k:bk>rk

(bk − rk) +
∑

k:bk<rk

(bk − rk)

≥ b(ω, π) − s(p − b(ω, π)) = (s + 1)b(ω, π) − sp

Since n = ps and b(ω, π) is a natural number we obtain:

b(ω, π) ≤ �n/(s + 1)�.

Corollary 1 If G is p-equipartitionable, then W (G) = �n/(s + 1)�.

Proof. Let π ∈ Π be any district design. It is possible to color the vertices of
the graph G in such a way that �n/(s+1)� districts have at least (s+1)/2 blue
vertices. In fact, in any balanced vote outcome, the number of blue vertices is
n/2 and:

s + 1

2

⌊
n

s + 1

⌋
≤ n

2
.

Since a district with (s + 1)/2 blue vertices is blue, we obtain a vote outcome
with at least �n/(s + 1)� blue districts. But, by Proposition 2, this is an upper
bound for the number of blue districts, hence W (G) = �n/(s + 1)�.

Corollary 2 If G is p-equipartitionable, and p = q(s + 1) + r with 1 ≤
r ≤ s + 1 then W (G) = qs + r − 1 1.

Proof. From Corollary 1 we have:

W (G) =

⌊
n

s + 1

⌋
= qs +

⌊
rs

s + 1

⌋
.

1Notice that q and r might not coincide with the quotient and the remainder, respectively, of the division of
p by s + 1.
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Since r ≤ s + 1, ⌊
rs

s + 1

⌋
=

⌊
r − r

s + 1

⌋
= r − 1,

hence
W (G) = qs + r − 1.

Given a bicoloring ω ∈ Ω and a partition π ∈ Π, we say that a district is
(blue) edgy if it contains (s + 1)/2 blue vertices and (s − 1)/2 red vertices,
while we will say that a district is (blue) sweeping if all its vertices are blue.
Moreover we say that a district design π is (blue) extremal if the number of
blue districts b(ω, π) is equal to its upper bound �n/(s+1)�. Similar concepts
can be introduced for the red party.

Remark 3 If p ≤ s+1, each blue extremal partition has p− 1 blue districts
and one red district.

We are especially interested in the following optimization problem:

GAP (G) = max
ω∈Ω

(max
π∈Π

b(ω, π) − min
π∈Π

b(ω, π)).

For a given graph G the function GAP (G) is a measure of the maximum
bias of an electoral outcome in terms of number of seats in single member
majority districts.

Proposition 4 GAP (G) ≤ 2W (G) − p = 2� n
s+1� − p.

Proof. Since b(ω, π) + r(ω, π) = p, we have

GAP (G) = max
ω∈Ω

(max
π∈Π

b(ω, π) + max
π∈Π

r(ω, π)) − p ≤ (1)

max
ω∈Ω

max
π∈Π

b(ω, π) + max
ω∈Ω

max
π∈Π

r(ω, π) − p = 2W (G) − p.

For a given p-equipartitionable graph G we are interested in finding, if it
exists, a bicoloring ω∗ ∈ Ω such that there are both a blue extremal partition
and a red extremal one, both w.r.t. ω∗. If such a bicoloring exists, we will say
that G is two-faced and there exist two partitions πb, πr ∈ Π such that:

b(ω∗, πb) = r(ω∗, πr) = W (G) = �n/(s + 1)�.
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Corollary 5 We have

GAP (G) = 2W (G) − p (2)

if and only if G is two-faced.

Proof. Follows from (1).
Two-faced graphs are those for which gerrymandering exhibits its worst

case bias. There is an absolute threshold for the largest number of seats that
a party can obtain when the vote outcome is balanced. In two-faced graphs,
for a suitable balanced vote, both parties can achieve this threshold by artful
gerrymandering.

3. Theoretical Results on Grid Graphs

The main result of this section is that, under the above assumptions on n, s,
and p, any grid graph with an even number of vertices is two-faced.

Let G be a grid graph with M rows and N columns, and n = MN . Since
we assume that n is even, at least one between M or N must be even. In the
following we assume, without loss of generality, that M is even.

Even grids feature one simple property which is crucial for the development
of the results to follow: they are hamiltonian (see Figure 2). On the one hand,
this property implies that even grids are p-equipartitionable, since obviously
a cycle of length n = ps can always be partitioned into p paths of length s
(remember that p-equipartitionability is NP-complete for general graphs). On
the other hand, in an even cycle there are only s partitions into subpaths of
the same size s. Each of them results from cutting p equidistant edges of the
cycle, and thus it can be easily obtained from the others by a suitable rotation
of the cuts along the cycle. If one can show that there exists one such partition
satisfying certain properties, then this is sufficient to establish the existence in
an even grid of a district map satisfying the same properties. This tool will be
often exploited in our constructions.

We start from the case p = s + 1, where a blue extremal partition has
exactly s edgy districts and one sweeping district. In fact, by Corollary 2
with q = 0 and r = s + 1, the upper bound on the number of blue districts
is s. These districts must be edgy since the number of blue vertices in G is
s(s + 1)/2. It follows that the remaining district is red sweeping. We will
show how to construct such an extremal partition on a hamiltonian cycle H of
G. We suppose that the vertices of H are consecutively numbered from 1 to n
along the cycle (traversed clockwise).

A boa is a path with (s + 1)(s − 1)/2 vertices that can be partitioned into
(s+1)/2 components having (s−1)/2 consecutive blue vertices and (s−1)/2
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Fig. 2. Hamiltonian cycle in a grid graph with an even number of rows.

s=5

s=7

Fig. 3. Examples of boas.

consecutive red vertices each. Boas have the following nice property: if one
cuts the s-th, the 2s-th, . . . , the ((s − 1)s/2)-th edge from left to right, one
obtains (s−1)/2 red edgy districts and the remaining (s−1)/2 nodes are blue;
a symmetrical property holds when one interchanges the two colors “red” and
“blue”, as well as “right” and “left”.

In Figure 3 the boas for s = 5 and s = 7 are shown. Here, as in all black
and white figures in the sequel, blue vertices are displayed in white and red
vertices in black.

In Figure 4 we consider the case s = 5 and we show how to use two boas
in order to find a bicoloring of H for which there are both a blue extremal
partition and a red extremal one. One obtains such bicoloring by splitting H
into four consecutive subpaths that are colored in the following way:

the first subpath P1 extends from vertex 1 to vertex (s + 1)/2 and all its
vertices are red;

the second subpath P2 is a boa starting from the red vertex (s+1)/2+1
and ending at the blue vertex s(s + 1)/2;

the third subpath P3 extends from vertex s(s + 1)/2 + 1 to vertex (s +
1)(s + 1)/2 and all its vertices are blue;
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P1

P2

P3

P4

n = 30, s = 5, p = 6

Fig. 4. Bicoloring for the case p = s + 1.

the fourth subpath P4 is a boa starting from the red vertex (s + 1)(s +
1)/2 + 1 and ending at the blue vertex s(s + 1).

It is easy to verify that the number of blue vertices is equal to the number
of red ones. Since H is a cycle, one can obtain an arbitrary partition into
p connected components by cutting p edges. In Figure 5 the two extremal
partitions are shown for the case s = 5. If the cut edges are (s, s+1), (2s, 2s+
1), ..., (s2, s2+1), ((s+1)s, 1) the district containing vertices from 1 to s is red
sweeping and all the other ones are blue edgy (Figure 5 (a)). Thus the partition
is blue extremal. By shifting each cut to its next edge (clockwise) (s + 1)/2
times, we obtain a blue sweeping district from vertex s(s + 1)/2 + 1 to vertex
s(s + 1)/2 + s and all the other districts are red edgy. So the partition is red
extremal (Figure 5 (b)).

(a) (b)

n = 30, s = 5, p = 6

Fig. 5. Partitions for the case p = s + 1.

Let us consider now the case p < s + 1. Since p is even and positive we can
suppose p = (s + 1)− 2k for some k such that 1 ≤ k ≤ (s− 1)/2. As shown
in Figure 6 for the case s = 5 and k = 1, starting from the bicoloring of the
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case p = s + 1 we delete from the subpath P2 the last ks vertices and from the
subpath P4 the first ks vertices. We obtain a cycle with s(s+1)−2ks vertices
where the number of blue vertices is equal to the number of red ones. If one
cuts the edges as above, starting from (s, s+1), the district containing vertices
from 1 to s is red sweeping and all the other ones are blue edgy except the one
containing the subpath P3, which is not edgy because it contains (s+1)/2+k
blue vertices and (s − 1)/2 − k red vertices. The obtained partition is blue
extremal. By shifting the cuts as for the case p = s + 1, the resulting partition
is red extremal. In fact, in the district containing the subpath P3, the blue party
wins since there are s − k blue vertices and k red vertices, while all the other
districts are red edgy.

(b)(a)

n = 20, s = 5, p = 4, k = 1

Fig. 6. Bicoloring and Partitions for the case p < s + 1.

Finally suppose that p > s + 1.

Proposition 6 Under the above assumptions on M , N , p and s, G can be
decomposed into p grid subgraphs having s vertices each.

Proof. Since MN = ps there exist four natural numbers M1, M2, N1 and N2

such that:

M = M1M2, N = N1N2, M1N1 = s, M2N2 = p.

As shown in Figure 7 (a), by partitioning the columns of G into N2 components
having N1 columns each and the rows of G into M2 components having M1

columns each, one can decompose G into p grid subgraphs having M1 rows
and N1 columns each. Notice that, since s is odd, also M1 and N1 are odd;
hence, since M is even, also M2 is even.

As in Corollary 2, we suppose that p = q(s + 1) + r, with q ≥ 1 and
1 ≤ r ≤ s + 1. Notice that, since s + 1 and p are even, also r must be even.

We represent the decomposition given in Proposition 6 by a grid graph G,
with M2 rows and N2 columns, whose vertices Vk, k = 1, ..., p, correspond
to the grid subgraphs and there is an edge connecting the vertices Vk and Vj if
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s = 9, p = 20, M =12, N = 15, M1 = 3, M2 = 4, N1 = 3, N2 = 5

M1

M1

M1

M1

N1 N1 N1 N1

M2

N2

N1

(a) (b)

G20

G17

G18

G19

G16

G15

G14

G9

G10

G11

G12

G8

G7

G6

G5

G1

G2

G3

G4 G13

Fig. 7. Decomposition of G into p grid subgraphs. The hamiltonian path is marked
bold.

some vertex of the grid corresponding to Vk is adjacent to some vertex of the
grid corresponding to Vj (see Figure 7 (b)). Let us consider the hamiltonian
path P = (V1, V2, ..., Vp) of G and partition it into q subpaths having s + 1
vertices each and one subpath having r vertices. Let Pj be the j-th subpath of
P .

Lemma 7 For each j = 1, ..., q + 1, and for each column c of G, the number
of vertices of Pj in column c is even.

Proof. The proof is based on the fact that the number of rows of G, M2, and
the number of vertices in each subpath Pj , s + 1 or r, are even. Let c1 be
the smallest numbered column whose intersection with some of the subpaths
Pj is odd. Then c1 must intersect in an odd number of nodes an even positive
number of subpaths Pj . But then the smallest numbered such subpath, by
the minimality assumption on c1, would contain an odd number of nodes, a
contradiction.

As shown in Figure 8, the subpaths Pj , j = 1, ..., q + 1, define in G a
decomposition into q + 1 connected subgraphs H1, ...,Hq+1.

Proposition 8 For each j = 1, ..., q + 1, Hj is hamiltonian.

Proof. As shown in Figure 8, each Hj can be decomposed into at most three
grid subgraphs which, by Lemma 7, have an even number of rows. Hence it is
possible to find a hamiltonian cycle of Hj as in the graph of Figure 9.



30 Nicola Apollonio et al.

s = 9, p = 48, M = 18, N = 24, M1 = 3, M2 = 6 N1 = 3, N2 = 8

Fig. 8. Decomposition of G into q + 1 hamiltonian subgraphs.

Fig. 9. Hamiltonian cycle in a Hj subgraph of G.

Since Hj , j = 1, ..., q + 1 is hamiltonian, then, as shown before, it is two-
faced and so it is possible to find a bicoloring such that there exist a blue
extremal partition and a red extremal one. By using the blue extremal partitions
of the subgraphs Hj , one can obtain a partition of G having qs + r − 1 blue
districts. In fact, by Corollary 2, in each of the q subgraphs having s(s + 1)
vertices, there are s blue districts and in the subgraph having rs vertices there
are r−1 blue districts. But, again by Corollary 2, qs+r−1 is an upper bound
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on W (G), hence the partition of G is blue extremal. The same arguments can
be used for obtaining a red extremal partition. Then G is two-faced.

By the constructions shown for the cases p = s + 1 and p < s + 1 and the
decomposition found for the case p > s + 1, the following theorem holds.

Theorem 9 Under the above assumptions on p and s, any grid graph with
ps vertices is two-faced.

Corollary 10 If G(s+1, s) is a grid graph with s+1 rows and s columns,
then

limodd s→∞
GAP (G(s + 1, s))

s + 1
= 1.

Proof. After Theorems 5 and 9, one has

GAP (G(s + 1, s))

s + 1
=

2W (G(s + 1, s)) − s − 1

s + 1
=

2s − s − 1

s + 1
=

s − 1

s + 1
.

When s odd → ∞, the thesis follows.

Corollary 10 is stunning: it means that, for certain infinite families of grids,
as the number and size of the districts grow, vicious gerrymandering can make
the percentages of blue districts and red ones both arbitrarily close to 1 even
under the assumptions that the vote outcome is the same and that the blue party
and the red one get the same total number of votes.

In conclusion, we have shown that for all even grids one can construct
Dixon-Plischke-like examples where gerrymandering can heavily reverse the
electoral result in terms of Parliament seats.

Our final result shows that for some highly symmetric colorings, on the one
hand, there are blue and red extremal district designs; on the other hand, the
most compact design, namely, the partition of the grid into square subgrids,
yields the same number of blue and red districts.

To address the question we introduce the notion of skew-symmetric coloring.
Let ϕ be the mapping of the grid onto itself that maps node (i, j) into (M +

1 − i,N + 1 − j). Notice that ϕ is the product of two reflections, the first one
around the y-axis, the second one around the x-axis. Since M is even, ϕ fixes
no point of G. A coloring ω ∈ Ω is skew-symmetric if (i, j) and ϕ(i, j) have
opposite colors.

If a grid is skew-symmetrically colored, then ϕ(G) is isomorphic to G, the
colors of its vertices being interchanged (in fact ϕ is an automorphism of the
grid). In other words, up to the labels of the vertices, the effect of ϕ on G
reduces to switching the colors of its vertices.
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Theorem 11 Let G be an M × N grid having ps vertices with p ≤ s + 1
and p even. One can always find a blue- and a red- extremal partition with
respect to some skew-symmetric bicoloring of G.

Proof. (Sketch). We can divide the grid into two equally sized parts, say L
and R, of ps

2 vertices each, in such a way that: (i) (i, j) ∈ L if and only if
ϕ(i, j) ∈ R; (ii) both L and R induce subgraphs containing hamiltonian paths.

(a)

(b) (d)

L R L R

(c)

Fig. 10. (a): The most compact and equitable partition of a 6 × 12 skew-
symmetrically colored grid. (b): The hamiltonian cycle from which the two extremal
partitions in (c) and (d) are generated. Starting from the framed blue (white) vertex,
and cutting the 9th, 18th, 27th and 36th edges of the cycle (clockwise) the right hand
side of the partition in (c) is generated (the left hand side of the partition in (d) can be
obtained by symmetry). Similarly, the right hand side of the partition in (d) (and, by
symmetry, the left hand side of the partition in (c)) is generated by starting from the
framed red (black) vertex. (c),(d): Red and blue extremal partitions.

Let us consider the subgraph GR induced by R. We can define a coloring of
GR and two connected partitions π′

R and π′′
R into p/2 components such that:

π′
R is a partition all whose districts are red edgy, π′′

R is a partition all whose
districts but one are blue edgy, the exceptional one being red (see Figure 10).
Using ϕ we extend the coloring of GR to the entire grid. By construction this
coloring is skew-symmetric. Moreover, if C is any component of either π′

R or
π′′

R, ϕ(C) is a connected component of GL (the graph induced by L), isomor-
phic to C but with colors interchanged. It follows that if π′

L and π′′
L are the
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partitions of GL corresponding via ϕ to π′
R and π′′

R, respectively, then π′
R ∪π′′

L
and π′′

R ∪ π′
L are extremal partitions of G.

However, skew-symmetric colorings give rise not only to maximally biased
designs, but also to minimally biased compact designs (see Figure 10).

Theorem 12 Let G be a skew-symmetrically colored M ×N grid. Suppose
that G can be divided into squares of sides of length

√
s and let π be the

partition formed by such squares. Then, in π, the number of red district equals
the number of blue districts .

Theorem 11 shows that even highly symmetrical vote outcomes can be ma-
nipulated in a partisan way. Nevertheless, in view of Theorem 12, compactness
can be considered (at least within the frame of our idealized model) as an ef-
fective remedy against gerrymandering.

4. Experimental Results on Real-Life Test Problems

In this section we provide a multiobjective graph partitioning model for po-
litical districting and we study gerrymandering from an experimental point of
view on real-life data. Starting from the graph-theoretic model described in
Section 2, here we relax some of the previous assumptions in order to adhere
to reality as much as possible. In both models the territory is represented by a
graph and one looks for a connected partition of the graph in order to enforce
the integrity and contiguity requirements. In the previous sections the underly-
ing graph was assumed to be a rectangular grid, while here it may be, more gen-
erally, an arbitrary planar graph. In the former model nodes were unweighted
and a vote outcome was but a node bicoloring; here nodes are weighted both
by their populations and their votes. Whereas the stylized previous model is
more amenable to theoretical investigation, the one we shall study in this sec-
tion is more flexible and offers a more accurate description of real-life political
districting. It is no coincidence that variants of it have been considered by
several Authors (Bussamra et al., 1996, Garfinkel and Nemhauser, 1970, Mer-
hotra et al., 1998, Nygreen, 1988, Ricca and Simeone, 2005). In spite of their
differences, both models lead, in different ways, to the same conclusions: ger-
rymandering can drastically reverse the final outcome of an election, and com-
pactness does provide an effective protection. Thus the experimental results of
the present section corroborate and validate the theoretical results obtained so
far.

Remember that our aim is to investigate both how bad gerrymandering can
be and, simultaneously, to determine if there exist effective weapons against
it, such as compactness or other districting criteria, which can be adopted in
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order to avoid this practice. Thus, in our experiments we undertake a multicri-
teria approach and develop an optimization model in which different objective
functions - measuring different criteria - are considered one at a time.

4.1 The Model and the Database

As before, n denotes the total number of territorial units in the territory, n =
|V |, and p, 1 ≤ p ≤ n, is a positive integer denoting the number of districts.
Let pi, ∀i ∈ V , be positive integral node-weights, representing territorial unit
populations and dij , ∀i, j ∈ V , be positive real distances defined for each unit
pair (i, j). For each territorial unit, the list of all those administrative areas
(regions, provinces,...) that contain the unit is known. Finally, with reference
to political elections in Italy, for each territorial unit we introduce two positive
integral node weights, voi and vpi, ∀i ∈ V , representing the number of votes
obtained in unit i by the Olive Tree and by the Pole of Liberties, respectively2.

The general graph partitioning problem can be formulated as follows:
Given a graph G, partition its set of nodes into p subsets (districts) such that
the subgraph induced by each subset is connected and a given function of the
partition is optimized.

In the sequel, we use the term “district design” as a synonym of “connected
partition into p components”. Actually, we are no longer imposing the further
restriction that the districts be equally sized since in real-life cases this require-
ment is too strict and we can only try to get close to the ideal case as much as
possible by optimizing a suitable objective function.

In our experiments we used data of three Italian Regions, namely, Piedmont,
Latium and Abruzzi, whose townships are taken to be the territorial units. The
weights pi associated to territorial units correspond to the Italian population
from 1991 Census, and we considered the real road distances between pairs
of territorial units. In this application we considered the Italian (majoritarian)
vote distribution of Political Elections of 1996.

4.2 Districting Criteria and Local Search Algorithm

In our real life model we considered several of the most commonly adopted
districting criteria discussed in Section 1. In particular, integrity and contiguity
are automatically guaranteed by the graph-theoretic model in which each ele-
mentary territorial unit is represented by a vertex of the graph. The remaining
criteria of population equality (PE), compactness (C) and conformity to admin-

2In this application we consider the Italian (majoritarian) vote distribution of Political Elections of 1996.
The Olive Tree and Pole of Liberties parties were the center-right and center-left coalitions, respectively,
which were in competition at that time.
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istrative boundaries (AC) are measured by proper indicators to be optimized.
To this purpose, we adopted some indicators already used in similar applica-
tions (Grilli di Cortona et al., 1999). Actually, they measure non-population
equality, non-compactness and non-administrative conformity, therefore they
must be minimized. Firstly, an ideal situation of perfect population equality,
perfect compactness and perfect administrative conformity is defined and a
proper index is chosen so that its value is equal to 0 when the ideal situation is
met, while in the other cases it provides a measure of the corresponding error.
These indexes are generally normalized in order to be independent of scaling
factors. Therefore, they can be read as percentages.

Let C1, C2, . . . , Cp ⊂ V be the subsets of nodes of the p districts of a given
district design. Let Pk =

∑
i∈Ck

pi, k = 1, 2, . . . , p, be the population of
district Ck. Then, the population equality index for the district design is given
by

PE =

∑
k |Pk − P̄ |

pP̄
(3)

where P̄ =
P

k Pk

p is the average district population. This is the average devi-

ation of the population of each district from P̄ , divided by the normalization
factor P̄ .

On the basis of the distances dij , for each pair of vertices i, j ∈ V , we
define a global compactness index given by the sum of compactness indices
computed over each district separately. For a given district C it can be briefly
described as follows. Let dij be the distance between unit i and unit j. For
each unit compute its eccentricity

d(i) = max
j∈C

dij

and set

δ = d(s) = min
i∈C

d(i)

By definition, s is the center of district C and the compactness in district C
is measured by:

C =

∑
i∈C pi∑
j∈D pj

(4)

where D = {j ∈ V : djs ≤ δ}.

The compactness index (4) is a measure of the deviation of the districts from
the ideal situation in which they all have a regular, “round” shape.
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The administrative conformity index adopted in this application is defined
on the basis of the discrepancies between the already existing administrative
district maps (of different type) and the electoral district design. For a given
district and a given type of administrative boundaries it is basically computed
as a measure of those units which produce discrepancies. The global index,
which varies between 0 and 1, is obtained by averaging over all types of admin-
istrative boundaries and over all the electoral districts. A detailed description
of the index is reported in (Grilli di Cortona et al., 1999).

We considered these three indexes as objective functions in our optimization
model, both separately and combined together into a single objective function
given by a convex combination of them.

Notice that the population equality index defined for the real-life application
can be considered as the counterpart of the principle of equal size districts
stated in the combinatorial model of Section 2. In our graph-theoretic model
a vertex corresponds to an elementary unit of the territory. In general - as in
our case - territorial units are given by townships and it is not guaranteed that
they have the same size. Thus, the requirement of Section 2 which forces each
district to have exactly the same number of units as each other here does not
work. Actually, the one-man-one-vote principle addressed by that assumption
here must be necessarily pursued through population equality, regarded not as
a hard constraint, but as a criterion to be fulfilled as much as possible.

On the other hand, the idea of compact districts sketched in Section 3 (see
Figure 10) perfectly matches the principle embedded in our compactness index
(4).

The additional administrative conformity index was considered in our ex-
periments since it is generally included among the commonly and widely ac-
cepted political districting criteria. The experimental results related to it add
some more information to our knowledge and can be useful for evaluating the
actual relevance of this criterion in a districting procedure.

Since we are interested in studying how far gerrymandering can be pushed,
we must also consider partisan criteria. Here we are obliged to adhere to re-
ality and, in our case, we refer to the real vote distribution of Italian political
elections of 1996. With respect to this vote, for any given district design, we
are able to compute how many seats are assigned to the Pole and to the Olive
party, respectively. The idea is that both Pole and Olive would like to win the
election. To this purpose, if they each had the opportunity of designing their
own political districts, they would try to find the district design that makes
them win as many seats as possible (gerrymandering). Actually, for a given
district design, the number of seats assigned to a party can be considered as a
measure of the utility of the district design for that party. For a given district,
let ρ be the ratio between the number of votes for the Pole and those for the
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Olive. Then, the utility of this single district for the Pole can be measured
through the following step function:

h(ρ) =

{
0, if ρ < 1
1, if ρ ≥ 1,

(5)

and the sum of such district utilities for the Pole over all the districts provides
a partisan index for the Pole. Similarly, we can compute a partisan index for
the Olive party. These two indexes can be adopted as objective functions in our
experimental analysis when we study how far the Pole and the Olive party can
manipulate the district design, respectively.

In our experiments we used the Old Bachelor Acceptance metaheuristic (Hu
et al., 1995) in order to find solutions that minimize the six different objectives.
This metaheuristic has shown to perform well when applied to territorial polit-
ical districting problems. For details, see (Ricca and Simeone, 2005).

We notice here that local search techniques are particularly suitable also
for the design of partisan districts. Actually, starting from an initial district
design, they work by performing small perturbations of the current solution.
At each step a node belonging to the boundary of a district migrates towards
an adjacent district. Thus, two consecutive district designs differ just for one
node in only two districts and it is hard to distinguish between them. Migration
by migration, it is possible to obtain a district design which favors a given
party (its utility is maximized) and such that the initial given district design is
modified as little as possible. However, when applying local search techniques,
(5) is not sufficiently sensitive to the migration of a vertex from one district to
another. This explains why we chose to replace the step function (5) by a
smoother objective function. For a given party, say the Pole, in each district
we compute the following district-utility logistic function for that party

g(ρ) =
c

1 + exp(b (1 − ρ))
,

where c and b are suitably chosen in order to get the desired shape of the utility
function. The idea is that the district-utility increases rapidly when ρ is near 1
(see Figure 11).

The aim of our experimental study is twofold. On the one hand, we want to
test if our four objective functions, given by PE, C and AC, and their convex
combination, are good weapons against gerrymandering. On the other hand,
starting from a given district design we try to manipulate it as much as possible
in order to maximize the objective function given by the utilities of the Pole
and the Olive party, respectively. The underlying idea is that gerrymandering
can be investigated experimentally in order to identify worst case configura-
tions and the corresponding upper bounds over the maximum number of seats
that a party can get. From our previous experimental works, we already know
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Fig. 11. District-utility logistic function for c = 100 and b = 11, 51.

the good performance of PE, C and AC as objective functions in non-partisan
districting problems. However, in this paper the results referring to the manip-
ulation of the districts are new. Moreover, as we will see in the next section, our
experimental results show that our neutral objectives can be used as an alarm
signal for gerrymandering, since they tend to deteriorate when gerrymandering
is practiced.

It is clear that our experimental results cannot be compared to the exact
bounds given in Section 2. However, we believe that these results are of inter-
est on their own because they represent the real-life counterpart of our theo-
retical results of the previous sections. Therefore, such results are not a mere
mathematical curiosity, but they capture the gist of the real threat posed by
gerrymandering. As we will see in Section 4.3, there are regions in which, for
suitable district designs, the Pole or the Olive party gets the total number of
seats.

4.3 Experimental Plan and Results

Table 1 shows the main characteristics of the graphs representing the terri-
tories of three Italian regions considered in our experimental plan.

As before, here PE means “Population Equality”, C means “Compactness”
and AC means “Administrative Conformity”, while MT refers to the “Mixed
Target” which is defined as the following convex combination of PE, C and
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Table 1. Graphs of the Italian Regions

Region N. of Nodes N. of Edges Density N. of Districts

Piedmont 1208 3527 2.92 28
Latium 374 1006 2.69 19
Abruzzi 305 847 2.78 11

AC:

0.5PE + 0.3C + 0.2AC.

For each region we performed six different runs of Old Bachelor Acceptance
metaheuristic with PE, C, AC, MT and the two utility functions as objectives,
respectively. Following (Ricca and Simeone, 2005), we implemented a ran-
domized version of this metaheuristic, that is, starting from an initial solution,
at each iteration Old Bachelor Acceptance chooses a random solution in the
neighborhood of the current one. Notice that randomization is a useful tool for
the diversification of the search: it is used to avoid cycling and explore a large
amount of different solutions. When the objectives are PE, C, or AC, the ini-
tial solution is generated randomly. After a spanning tree T of G is randomly
generated, p − 1 randomly chosen edges of T are cut in order to get p subtrees
whose node-sets correspond to the p initial districts. For the MT criterion we
preferred to start from the district map generated by the ADEN heuristic in
(Grilli di Cortona et al., 1999).

The optimal solutions found in the previous four runs were adopted as pos-
sible initial solutions for the case in which the objective is to maximize the
utility of a given party. The idea was that starting from an already optimized
set of districts could make it more difficult to manipulate the given district de-
sign in favor of one of the two parties. However, also the Institutional district
design of the Italian Political Elections of 1996 was considered as possible ini-
tial solution. Among the results obtained w.r.t. these 5 different initial district
designs, we selected the worst observed case.

Tables 2-4 show our experimental results on the three different graphs. The
last row of Tables 2-4 refers to the values of the six objectives computed for the
Institutional district design adopted in Italy for the Political Elections of 1996.
This row was included in order to favor the comparison between our - neutral
and partisan - district designs and the one that was actually adopted in 1996.

On the basis of our experiments, we can state the following conclusions:

1. Given a vote distribution, gerrymandering is able to dramatically reverse
the electoral outcome (see, the fifth and the sixth row of each table).
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Table 2. Piedmont

District Design PE C AC MT Pole seats Olive seats

Min PE 0.075 0.911 0.577 0.426 10 18
Min C 0.771 0.531 0.347 0.614 11 17
Min AC 0.940 0.643 0.113 0.686 12 16
Min MT 0.094 0.762 0.288 0.334 11 17
Max Pole 1.052 0.777 0.454 0.850 21 7
Max Olive 1.364 0.593 0.263 0.913 3 25
Institutional 0.105 0.859 0.143 0.339 11 17

Table 3. Latium

District Design PE C AC MT Pole seats Olive seats

Min PE 0.046 0.778 0.523 0.361 13 6
Min C 1.226 0.166 0.143 0.692 12 7
Min AC 1.072 0.620 0.050 0.732 13 6
Min MT 0.050 0.502 0.270 0.230 10 9
Max Pole 1.512 0.321 0.061 0.864 19 0
Max Olive 1.299 0.277 0.131 0.759 3 16
Institutional 0.060 0.683 0.202 0.275 10 9

Table 4. Abruzzi

District Design PE C AC MT Pole seats Olive seats

Min PE 0.040 0.744 0.508 0.345 4 7
Min C 0.668 0.390 0.288 0.508 4 7
Min AC 0.894 0.539 0.056 0.620 4 7
Min MT 0.113 0.442 0.263 0.242 4 7
Max Pole 1.217 0.425 0.320 0.800 10 1
Max Olive 1.129 0.473 0.328 0.772 1 10
Institutional 0.078 0.633 0.215 0.272 5 6

2. The districting bias produced by gerrymandering algorithms implies the
deterioration of the values of all the traditional PD criteria.
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3. It turns out that there is a substantial stability of the number of seats
attributed to the Pole and to the Olive when the criteria of Population
Equality, Compactness, Administrative Conformity and the Mixed one
are optimized.

4. Compactness is a good shield against the practice of gerrymandering.
On the other hand, in view of 3, and since gerrymandering deteriorates
all the districting criteria, satisfying the other criteria helps in preventing
gerrymandering. This is why the use of more than one traditional PD
criterion is generally recommended.
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Apportionment: Uni- and Bi-Dimensional

Michel Balinski
Laboratoire d’Économétrie, École Polytechnique

Abstract This paper characterizes divisor methods for vector and matrix apportion prob-
lems with very simple properties. For the vector problem—a vector gives the
votes of parties or the populations of states, a single number the size of the
house—they are shown to be the only methods that are coherent with the defi-
nition of the corresponding divisor method when applied to only two states or
parties. For the matrix problem—rows correspond to districts, columns to par-
ties, entries to votes for party-lists, and the number of seats due to each row (or
district) and each column (or party) is known—one extra property is necessary.
The method must be proportional: it must give identical answers to a problem
obtained by re-scaling any rows and/or any columns of the matrix of votes.

Keywords: Apportionment, divisor method, coherence, biproportional apportionment,
rounding, justified rounding.

1. Introduction

“Bi-dimensional” (or “matrix”) apportionment is now a recognized system
for designating winners in an election system. It is the law of the land in the
Swiss canton and the city of Zürich (Pukelsheim and Schuhmacher, 2004), and
it may well become so in the Faroe Islands (Zachariassen and Zachariassen,
2005). Developed, justified, explained and applied in a series of papers and a
book (Balinski and Demange, 1989a,b; Balinski and Rachev, 1997; Balinski
and Ramírez, 1997,1999a; Balinski, 2002, 2004) it may also be viewed as a
simple and direct extension of the more familiar “uni-dimensional” (or “vec-
tor”) apportionment problem. That is what this paper aims to do.

2. Vector Apportionment: a Primer

A vector (or uni-dimensional) apportionment problem is a pair (v, h), where
v = (vi) > 0 for i = 1, . . . ,m are the populations of m regions (or the votes of
m parties) and h is the number of seats in an assembly to be distributed “pro-
portionally” among them. An apportionment is a vector a = (a1, . . . , am),
where ai ≥ 0 is integer valued and

∑
i ai = h. Vector apportionment is the



44 Michel Balinski

classical problem of allocating seats to regions or states when v is the vector of
their populations, or of allocating seats to political parties when v is the vector
of their votes: by what method should a solution be chosen from among the
many possible apportionments?

In general, a (vector) method of apportionment Φ selects a nonempty subset
of apportionments Φ(v, h) for any problem (v, h).

A divisor criterion is any real valued function d on the nonnegative integers
k ≥ 0 that satisfies k ≤ d(k) ≤ k + 1 and for which there are no two integers
p > 0 and q ≥ 0 where d(p) = p and d(q) = q+1. In effect, a divisor criterion
is simply a point on each closed interval [k, k + 1] for k ≥ 0 and integer, with
the stipulation that if in some interval the point is at the lower (the upper) end
then in no other interval can it be at the upper (the lower) end. Suppose that a
real number x is in the interval [a, a + 1], a an integer. Then a d-rounding [x]d
of x > 0 is a if x < d(a) and a + 1 if x > d(a); if x = d(a) then [x]d is either
a or a + 1 (so in fact [x]d is a set that is usually single valued). A d-rounding
of 0 is always 0: [0]d = 0. The d(a) are thresholds in the intervals [a, a + 1]:
below the threshold x is rounded-down to a, above it is rounded-up to a + 1,
at the threshold it is either rounded-up or -down.

A divisor method based on d is the set of apportionments

Φd(v, h) =

{
a = (ai) : ai = [λvi]d for λ chosen so that

∑
i

ai = h

}
. (1)

If, contrary to the definition, d(p) = p, d(q) = q + 1 for some integers p >
0, q ≥ 0, then (p−1, q+1) ∈ Φd

(
(p, q), p+q

)
, showing that although a perfect

apportionment exists it may not be chosen, and explaining the exclusion. Note
also that d(0) = 0 implies [λvi]d ≥ 1 for every λ > 0 and vi > 0.

If a ∈ Φd then d(ai − 1) ≤ λvi ≤ d(ai) for all i, implying

Φd(v, h) =

{
a = (ai) : min

ai>0

vi

d(ai − 1)
≥ max

aj≥0

vj

d(aj)
,
∑

i

ai = h

}
, (2)

where vj/0 = ∞ and d(−1) = 0. Consequently, a divisor method may also
be described recursively as follows. Φd(v, 0) = 0 and suppose a ∈ Φd(v, h).
Then

ā ∈ Φd(v, h + 1) where ā = a, except āl = al + 1 for
vl

d(al)
= max

i

vi

d(ai)
.

(3)
This description implies that a ∈ Φd(v, h) if a solves

max
a

min
i

vi

d(ai − 1)
when

∑
i

ai = h and ai ≥ 0 integer. (4)
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From the recursive definition it also follows that an apportionment a of the
divisor method Φd is a solution to

max
a

∑
i

ai−1∑
k=0

vi

d(k)
when

∑
i

ai = h and ai ≥ 0 integer, (5)

(assuming h ≥ m if d(0) = 0). This is easy to see because the solution
is “greedy”: at each allocation of an “extra” seat give to the integer variable
k the value that maximizes vi/d(k) over i in conformity with the recursive
procedure. Precisely the same argument shows that an apportionment a of the
divisor method Φd is also a solution to

max
a

∏
i

ai−1∏
k=0

vi

d(k)
when

∑
i

ai = h and ai ≥ 0 integer. (6)

There are many other “objective functions” that are optimized by the appor-
tionments of one or another of the divisor methods.

The parametric (divisor) method Φδ based on δ, for 0 ≤ δ ≤ 1, is the divisor
method Φd based on d where d(k) = k + δ for all integer k ≥ 0. Adams’s
method is the parametric method based on δ = 0; Condorcet’s method is the
parametric method based on δ = 2

5 ; Webster’s or Sainte-Laguë’s is based on
δ = 1

2 ; and Jefferson’s or D’Hondt’s is based on δ = 1.
Letting v̄ =

∑
vi, an apportionment a of the parametric method Φδ is a

solution to (see Balinski and Ramírez (1999b)):

min
a

∑
i

vi

(
ai + δ − 1

2

vi
− h

v̄

)2

when
∑

i

ai = h and ai ≥ 0 integer. (7)

Notice that solutions to the optimization problems (4), (5) and (6) do not
change when v is replaced by λv for any λ > 0.

There are an infinite number of divisor methods for vector problems, and
they can yield very different apportionments. They have been characterized
by a set of properties so desirable in the context of apportionment that it is
fair to say they are the only acceptable methods (Balinski and Young, 1982).
The most important of these properties—coherence—stems from a very simple
idea.

Suppose that the h seats have been apportioned among the several regions
in a manner that is “fair”. Any subset of the regions could reasonably ask
the question: Do our shares represent a “fair” division among us considered
as a separate group? Suppose that they believed that a different division of
their pooled shares would be more fair. In that case it would be possible to
substitute this different division for their initial apportionment to obtain a new
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apportionment among all that is “fairer” for the regions of the subset, and the
same for all others. How could one then affirm that the initial division was fair
to all? A rule that did this would surely be judged to be “incoherent”! The idea
is captured in the slogan: “Any part of a fair division must be fair.”

To be precise, consider an apportionment chosen by a method—a “global”
apportionment—sum the seats it assigns to any subset of the regions, and con-
sider the apportionment(s) obtained by applying the same method to redis-
tribute this sum among the members of the subgroup (each of the latter set is
a local apportionment). The method is coherent when two properties hold: (i)
the shares assigned to each of the regions of the subset by the original (global)
apportionment is a local apportionment and (ii) if there is another local ap-
portionment among the regions of the subgroup, then another (global) appor-
tionment of the method to all the regions is found as follows: substitute the
shares in the local apportionment for what those regions have in the original
apportionment.

For example, imagine an apportionment of the seats in the U.S. House of
Representatives: if the method that is used yields an apportionment that gives
29 of the country’s congressional seats to New York and 53 to California (as it
did in accordance with the 2000 census), then surely the same method should
divide the sum of 82 seats between New York and California in the same way.
If the method also gives rise to a local apportionment that assigned 28 seats
to New York and 54 to California, then replacing their shares in the initial
apportionment with these should yield a second apportionment that belongs to
the method. There would then be two possible apportionments of the House (a
theoretical possibility unlikely to occur in practice). The concept of a coherent
method1 is quite general and is germane to many problems of fair division
(Balinski, 2005), but it first arose in the context of the apportionment problem
(Balinski and Young, 1982) where it is particularly important.

3. From Divisions Between Two to Divisions Among All in
Uni-Dimensional Apportionment

Given any apportionment problem (v, h), consider an apportionment ob-
tained by a coherent rule. By definition, every pair of regions must share the
seats they receive together h′ in accordance with the rule applied to those re-
gions when they are to be allocated h′ seats. This immediately implies that
knowing how to divide any number of seats between any two regions (mean-
ing two regions having any number of inhabitants) suffices to completely deter-
mine a coherent rule. Deciding how to divide seats between only two regions is
obviously an easier task than deciding how to divide seats among an arbitrary

1Coherence was earlier called “uniformity” and also “consistency.”
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number: this idea is pursued here to show how simple it is to extend vector
apportionment to matrix apportionment.

Let Φ2 be a method for dividing any number of seats between two regions
(or parties), and Φ2

d be the divisor method based on d for dividing any number
of seats between two regions (or parties). The methods Φ2

d enjoy two evident
properties that will shortly be used. First, they are “monotone”: if (a1, a2) ∈
Φ2

d

(
(v1, v2), h

)
and (a′1, a

′
2) ∈ Φ2

d

(
(v1, v2), h

′) for h′ > h then a′1 ≥ a1 and
a′2 ≥ a2. Second, if {(a1, a2), (a

′
1, a

′
2)} ⊆ Φ2

d

(
(v1, v2), h

)
then |a1 − a′1| ≤ 1

and |a2 − a′2| ≤ 1: two apportionments for a same h can differ by at most 1.
Given any two apportionments a, b of a problem (v, h), consider a− b. It is

a vector of integers summing to 0: so a may be obtained from b in a sequence
of changes each of which transfers one seat from one party (or region) i where
bi > ai to another j where aj < bj : “local” change always involves just two
parties (or regions).

A single property suffices to determine a divisor method.

Property 3 A method Φ for vector problems is said to be coherent with Φ2

if for every pair i, j

a ∈ Φ(v, h) implies (ai, aj) ∈ Φ2
(
(vi, vj), ai + aj

)
. Moreover,

(bi, bj) ∈ Φ2
(
(vi, vj), ai + aj

)
implies a′ ∈ Φ(v, h),

where a′ = a except a′i = bi, a
′
j = bj.

The really essential—and at first blush surprising—point about coherence is
that Φ treats every pair i, j exactly as does Φ2. In addition, if a change could
be made that agrees with Φ2 then it would yield another apportionment of Φ.

Theorem 1 The unique method Φ for vector problems that is coherent with
Φ2

d is the divisor method Φd.

Proof. The condition is necessary, since Φd is obviously coherent with Φ2
d.

To see that the condition is sufficient, suppose Φ is any method that is co-
herent with Φ2

d and that a ∈ Φ(v, h). It is shown that a ∈ Φd(v, h). Choose
λ > 0 such that

∑
i[λvi]d = h, and let bi = [λvi]d, so b ∈ Φd(v, h), implying,

in particular, that (bi, bj) ∈ Φ2
d

(
(vi, vj), bi + bj

)
for every pair i, j. The coher-

ence of Φ with Φ2
d implies that (ai, aj) ∈ Φ2

d

(
(vi, vj), ai + aj

)
for every pair

i, j. Suppose b �= a. Then there exists a pair i, j for which ai > bi and aj < bj .
But this is impossible unless ai + aj = bi + bj so ai = bi + 1, aj = bj − 1
and {(ai, aj), (bi, bj)} ⊆ Φ2

d

(
(v1, v2), ai + aj

)
. The coherence of Φd with Φ2

d
implies that substituting (ai, aj) for (bi, bj) in b yields an apportionment that
belongs to Φd(v, h) which agrees with more components of a than did b. Re-
peating the same argument until a is obtained shows that a ∈ Φd(v, h), and so
completes the proof.
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So, if one wishes to verify that a ∈ Φd(v, h) it suffices to check that
(ai, aj) ∈ Φ2

d

(
(vi, vj), ai + aj

)
for every pair i, j: “local” conditions deter-

mine the solution, just as in well-behaved optimization problems no possible
local “improvement” implies the solution in hand is an optimum. The analogy
with optimization carries further: the λ found in (1) may be viewed as a kind
of “dual” variable which, once known, makes it possible to solve the problem
by assigning the obvious value to each ai independently, namely, by taking it
to be a d-rounding of λvi.

The parametric methods Φδ, 0 ≤ δ ≤ 1, each have a particularly simple
closed-form formula for calculating how two regions divide any number of
seats between them. The simplest—and most natural—of all is Webster’s or
Sainte-Lagu«’e’s: the proportional share of each is rounded to the closest inte-
ger. For a positive real number x, suppose x = n+r, n integer and 0 ≤ r < 1.
Define [x]δ = n if r ≤ δ, and [x]δ = n + 1 if r ≥ δ (so [n + δ]δ = n or n + 1).
It is a simple exercise to show:

Lemma 2 Given a two-region problem
(
(v1, v2), h

)
, let v̄k = vk/(v1 + v2),

k = 1, 2. Then ak =
[
v̄k(h + 2δ − 1)

]
δ
, k = 1, 2 (and if v̄k(h + 2δ − 1)

has a remainder of exactly δ then one of the a’s is rounded-up, the other is
rounded-down).

4. Matrix Apportionment: a Primer

A matrix (or two-dimensional) apportionment problem is a triple (v, r, c),
where v = (vij) ≥ 0 for i = 1, . . . ,m and j = 1, . . . , n is a nonnegative
matrix with no row or column of 0’s, and r = (r1, . . . , rm) > 0 and c =
(c1, . . . , cn) > 0 are vectors of integers whose sums are equal,

∑
ri =

∑
cj =

h. An apportionment is a matrix a = (aij), where aij ≥ 0 is integer valued,∑
j aij = ri for all i and

∑
i aij = cj for all j. Matrix apportionment is a

more recent problem where vij is the vote of party i’s list in region j, ri is
the number of seats deserved by each party i (on the basis of the total vote of
all of its lists

∑
j vij , for example) and cj is the number of seats assigned to

each region j (typically on the basis of its population): which one of the many
possible apportionments a should be chosen?

In general, a (matrix) method of apportionment Φ selects a nonempty subset
of apportionments Φ(v, r, c) for any problem (v, r, c).

When vij = 0 (or, more generally, when vij is less than some preset positive
threshold) imposes that aij = 0, it may be that no apportionment exists. But
this is rather unlikely. The example of figure 1 is typical of the only situations
when none exists. The subset of regions (or columns) J that consists of the
4th through the 7th regions are to receive together a total of 8 seats (in general,
c(J) =

∑
J cj seats). The subset of parties (or rows) IJ each of which received

some votes (or more than the threshold of votes) from at least one of the regions
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1st 2nd 3rd 4th 5th 6th 7th seats
Party 1 + + + + + + + 2
Party 2 + + + + + + + 5
Party 3 + + + 0 0 0 0 4
Party 4 + + + 0 0 0 0 6
Seats 4 2 3 1 1 2 4

Fig. 1. Example of votes that allows no feasible apportionment. (+ means any
number of votes, 0 means no votes or too few to permit a seat.)

of J , namely, the parties 1 and 2, deserve a total of 7 seats (in general, IJ =
{i : vij = + for some j ∈ J} having a total of r(IJ) =

∑
IK

ri seats). Thus
the regions J are to have 8 seats but they can only fill them from candidates
of the parties IJ who deserve 7 seats: clearly, there can be no apportionment
in this case. If regions assigned 8 seats give all of their votes to parties that in
total only deserve 7 seats, the total turnout in those regions must be abnormally
low. There is a symmetric explanation. The set I consisting of parties 3 and
4 deserve r(I) = 10 seats; the set JI consisting of those regions who gave
some votes (or more than the threshold) to at least one of the lists of parties
I , namely, regions 1, 2, and 3, are to receive c(JI) = 9 seats. This is again
clearly impossible since it asks that parties deserving 10 seats get them all from
regions having only 9 seats, but also unlikely for in this case the turnout in the
regions JI must be abnormally high. Yet, as the following theorem shows, this
is the only situation that can deny the existence of apportionments (its proof is
easily deduced from duality in linear programming or from the min-cut, max-
flow theorem of network flows).

Theorem 3 There exist apportionments if and only if c(K) ≤ r(IK) for
every subset of the regions (or columns) K.

A problem that has apportionments will be said to be feasible.
A (matrix) divisor method based on d is, for any feasible problem, the set of

apportionments:
Φd(v, r, c) = (8)

{a = (aij) : aij = [λivijµj ]d for λ, µ such that
X

j

aij = ri and
X

i

aij = cj}.

Note, again, that d(0) = 0 implies [λivijµj]d ≥ 1 for every λivijµj > 0. This
means that Φd(v, r, c) may be empty when d(0) = 0 despite the fact that the
problem is feasible. In order for Φd(v, r, c) to be nonempty when d(0) = 0
there must exist an apportionment a that satisfies the row- and column- equa-
tions and also aij ≥ 1 when vij > 0 and aij = 0 when vij = 0: call such
problems super-feasible.
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Properties of matrix methods of apportionment similar to those appealed to
for vector methods of apportionment characterize the matrix divisor methods
(Balinski and Demange, 1989a).

Theorem 4 (Balinski and Demange, 1989b). For any feasible matrix prob-
lem (v, r, c) there exist multipliers λ, µ and an a ∈ Φd(v, r, c) with aij =
[λivijµj]d when d(0) > 0; and when d(0) = 0 the same is true if the problem
is super-feasible. The multipliers are not unique, and there may be several ap-
portionments in Φd; however, if there is more than one apportionment in Φd,
all of them are obtained with a same set of multipliers.

5. From Divisions Between Two to Divisions Among All in
Bi-Dimensional Apportionment

One property sufficed to determine a divisor method for uni-dimensional
problems. For bi-dimensional problems two properties suffice.

Given an m by n matrix v, an m-vector λ = (λ1, . . . , λm) and an n-vector
µ = (µ1, . . . , µn), let λ ◦ v ◦ µ = (λivijµj); that is, the matrix obtained from
v by multiplying its ith row by λi and its jth column by µj , for all i, j.

An essential property in vector apportionment is that a method (any method)
should yield the same solutions to (v, h) and to (λv, h) for any scalar λ >
0: that is, how votes are scaled should make no difference. It came for free
in the uni-dimensional case, but must be called upon in the bi-dimensional
case. Since a party i (or row) deserves a fixed number of seats ri, rescaling
by multiplying its votes by λi > 0 should (as in the vector problem) change
nothing; symmetrically, since a region j is assigned a fixed number of seats cj ,
rescaling its votes by µj > 0 should (as in the vector problem) change nothing
as well.

Property 4 A method Φ for matrix problems is said to be proportional if

Φ(v, r, c) = Φ(λ ◦ v ◦ µ, r, c) for every real λ, µ > 0.

Given any two apportionments a, b of a problem (v, r, c), consider a − b. It
is a matrix of integers each of whose rows and columns sums to 0: so a may be
obtained from b in a sequence of changes each of which transfers 1 seat from
one to another entry of the matrix within a simple cycle C

i(1)j(1) i(2)j(2) . . . i(k − 1)j(k − 1) i(k)j(k) i(1)j(1)
↓ ↗ ↓ ↗ ↗ ↓ ↗ ↓ ↗

i(1)j(2) i(2)j(3) . . . i(k − 1)j(k) i(k)j(1)
(9)

for which bi(s)j(s) > ai(s)j(s) and bi(s)j(s+1) < ai(s)j(s+1) for s = 1, . . . , k,
where k + 1 is taken as 1, the indices i(s) are different and so are the in-
dices j(s). The change decreases the bi(s)j(s) by 1 and increases the bi(s)j(s+1)
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by 1 in the cycle: “local” change always involves party-regions (i, j) that
form a cycle. To simplify the description below, rename the “even” entries
(i(s), j(s)) = (s, s) and the “odd” entries (i(s), j(s + 1)) = (s, s + 1) and
(i(k), j(1)) = (k, 1).

Property 5 A method Φ for matrix problems is said to be coherent with Φ2

if for any problem (v, r, c) there exists an equivalent problem (v′, r, c), v′ =
λ ◦ v ◦ µ, for which

a ∈ Φ implies (akl, ast) ∈ Φ2
(
(v′kl, v

′
st), akl + ast

)
,

for every pair of indices (k, l), (s, t). Moreover, suppose that for some simple
cycle C as in (9) there is a b for which

(bss, bss+1) ∈ Φ2
(
(v′ss, v

′
ss+1), ass + ass+1

)
for all s(mod k), and

(bs−1s, bss) ∈ Φ2
(
(v′s−1s, v

′
ss), as−1s + ass

)
for all s(mod k).

Then

a′ ∈ Φ(v′, r, c), where a′ = a except a′ij = bij for (i, j) ∈ C.

Again, the really essential—and at first blush surprising—point about co-
herence is that Φ treats every pair (k, l), (s, t) exactly as does Φ2 relative to
the equivalent problem (v′, r, c). In addition, if a change could be made that
agrees with Φ2 with respect to the equivalent problem, then that would yield
another apportionment of Φ. But a change in a matrix apportionment implies
at least a change in a simple cycle C .

Theorem 5 The unique proportional method for matrix problems Φ that is
coherent with Φ2

d is the divisor method Φd.

Proof. The conditions are necessary since Φd is obviously proportional and
coherent with Φ2

d.
To see that the conditions are sufficient, suppose Φ is any proportional

method that is coherent with Φ2
d and that a ∈ Φ(v, r, c). It will be shown

that a ∈ Φd(v, r, c).
There exist λb > 0, µb > 0 so that b = (bij) ∈ Φd(v, r, c), where bij ∈

[λb
ivijµ

b
j]d.

a ∈ Φ(v, r, c) and Φ coherent with Φ2
d implies there exist λa > 0, µa > 0

so that aij ∈ [λa
i vijµ

a
j ]d.

Suppose a �= b. Then for some (i, j), aij < bij , and (i, j) belongs to a
simple cycle C as in (8). Simplifying the notation again, let {(1, 1), (2, 2), . . . ,
(s, s)} be the even entries and {(1, 2), . . . , (s−1, s), (s, 1)} be the odd entries,
so that aii < bii, aii+1 > bii+1 for i = 1, . . . , s(mod s). Multiplying λa by
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λb
1/λ

a
1 and dividing µa by the same amount changes nothing, so it may be

assumed that λa
1 = λb

1. Now notice that in general, if x, y are reals, a ∈ [x]d
and b ∈ [y]d, then a > b implies x ≥ y and a > b + 1 implies x > y.

Begin the cycle C at (1, 1) and follow it with the indices increasing. λa
1 =

λb
1 and a11 < b11 implies µa

1 ≤ µb
1 (with strict inequality if a11 + 1 < b11).

Also, λa
1 = λb

1 and a12 > b12 implies µa
2 ≥ µb

2 (with strict inequality if
a12 > b12 + 1). But µa

2 ≥ µb
2 and a22 < b22 implies λa

2 ≤ λb
2 (with strict

inequality if either a22 + 1 < b22 or µa
2 > µb

2). Continuing around the cycle,
µa

s ≥ µb
s and ass < bss implies λa

s ≤ λb
s (with strict inequality if either

ass + 1 < bss or µa
s > µb

s). But this means that λa
s ≤ λb

s, µa
1 ≤ µb

1 and
as1 > bs1, a contradiction unless the following holds: λa

i = λb
i , µa

i = µb
i for

i = 1, . . . , s and the differences between the values of the a’s and b’s in the
cycle C are all exactly 1. But in this case there is a massive “tie”. Defining
b′ = b, except that every b-entry in the cycle C is replaced by the corresponding
value of a, another apportionment b′ ∈ Φd(v, r, c) is obtained. Repeating the
same argument until a is obtained shows that a ∈ Φd(v, r, c), and so completes
the proof.

The analogy with optimization may be carried further here as well: the vec-
tors λ, µ found in (7) may be thought of as “dual” variables which, once known,
make it possible to solve the problem by assigning the obvious (or “greedy”)
value independently to each aij , namely, by taking it to be a d-rounding of
λivijµj .

There can be no multipliers λ, µ that yield different solutions, showing that
uni- and bi-proportional apportionments are, in essence, the same problem, and
that a matrix apportionment treats every pair (i, j), (k, l) fairly.
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Minimum Total Deviation Apportionments
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Abstract This note presents an algorithm for computing the minimum total deviation ap-
portionment. Some properties of this apportionment are also explored. This
particular apportionment arises from the jurisprudential concern that total devia-
tion is the appropriate measure for the harm caused by malapportionment of the
United States House of Representatives.

Keywords: Apportionment, House of Representatives, districting, one person - one vote.

1. Introduction

The goal of this paper is to revive interest in evaluating methods of ap-
portionment based on the objective functions that they optimize rather than
their intrinsic axiomatic properties. The latter approach is certainly the domi-
nant one as evidenced by such texts as (Balinski and Young, 2001) and (Saari,
1994). Nevertheless there are circumstances for which this may not be the
best approach. I have argued elsewhere (Edelman, to appear) that the case
of the apportionment of the United States House of Representatives is exactly
such a circumstance. Subsequent to the “one person, one vote” rulings of the
mid-1960’s, the United States Supreme Court has adopted the measure of to-
tal deviation to quantify the harm resulting from unequal voting district sizes.
Once having established a measurement of the harm, the Court should require
that any apportionment do what it can to mitigate that harm. This implies that
any method of apportionment should look to minimize the total deviation.

As it happens there are two papers, both pre-dating “one person, one vote,”
investigating methods of apportionment that minimize total deviation. The
first, by Burt and Harris (1963), argued in favor of apportioning the House of
Representatives so as to minimize total deviation on equitable principles and
presented an algorithm using dynamic programming to find such an apportion-
ment. This paper has been cited a number of times in the literature.

A year later and in the same journal, Gilbert and Schatz (1964) published a
response to Burt and Harris. Their rebuttal made three arguments: First, the eq-
uitable arguments in favor of minimizing total deviation were not convincing;
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second, there may be many apportionments that minimize total deviation, and
last, that the algorithm provided by Burt and Harris to produce the minimiz-
ing apportionment was unduly complicated. They provided quite an elegant
algorithm, which I will present subsequently.

Oddly, Gilbert and Schatz’s article seems to have escaped notice. As far
as I know it has never been cited. Yet it contains some quite lovely ideas. A
secondary purpose of this paper is to present the ideas of Gilbert and Schatz in
a contemporary setting so they will get the attention that I think they deserve.

This paper is organized as follows: The next section presents the necessary
background from the theory of apportionment. It is necessarily brief, and I
will rely on the reader to have a basic familiarity with the techniques. Section
3 presents an algorithm to compute the minimum total deviation (mtd) appor-
tionments. The method presented is due to Gilbert and Schatz (1964) although
I have streamlined the presentation and proofs. The next three sections discuss
technical issues associated with mtd apportionments. Section 4 confronts the
problem of multiple mtd apportionments, Section 5 discusses bias and Section
6 examines the Alabama paradox. Section 7 is a brief conclusion.

2. Preliminaries

In this section I will introduce the necessary terminology. Since I am pri-
marily interested in the apportionment of the United States House of Repre-
sentatives, I will phrase the apportionment problem in terms of assigning seats
to states. Assume that there are s states and let p = (p1, p2, . . . , ps) be the
state populations. For h a positive integer we call a = (a1, a2, . . . , as) an h-
apportionment if

∑
ai = h. We will refer to ai as the number of seats that

state i receives. I will assume throughout that the state populations are generic
in the sense that

pi

j
�= pk

l

for 1 ≤ i, k ≤ s and for all positive integers 1 ≤ j, l ≤ s.
Given p and h-apportionment a let

1 Max(p,a) = maxi
pi

ai

2 Min(p,a) = mini
pi

ai
, and

3 TD(p,a) = maxi,j{pi

ai
− pj

aj
} = Max(p,a) − Min(p,a).

Thus, Max(p,a) is largest population/seat ratio among the states, Min(p,a)
is the smallest such value, and TD(p,a), the total deviation of the apportion-
ment, is the gap between these two values.
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Two methods of apportionment will be of particular importance in this pa-
per. The first is the Adams method, which can be described in the following
way (Balinski and Young, 2001, page 142): Given s states with populations
p, and a house of size h, h ≥ s, we let Adams(p, h) be the h-apportionment
given recursively by

1 Adams(p, s) = (1, 1, . . . , 1),

2 Let A = Adams(p, h − 1). If t is the state so that pt

at
= Max(p,A)

then define

Adams(p, h)i =

{
Ai + 1, if i = t;

Ai, otherwise.

Note that from the definition we have that Max(p, Adams(p, h)) is strictly
decreasing as a function of h.

Lemma 1 The Adams apportionment Adams(p, h) minimizes Max(p,a)
over all h-apportionments a.

Proof. This fact is noted in (Balinski and Young, 2001, page 104) without
proof. For the sake of completeness I include one here. Let Adams(p, h) = A

and suppose there is an h-apportionment a so that

pi

ai
= Max(p,a) < Max(p,A) =

pj

Aj
.

It follows that aj > Aj and, since both a and A are h-apportionments, there
must be some k so that ak < Ak. Since the Adams h-apportionment assigns
more seats to state k than a does, it follows that for some h′ < h we have
pk

ak
= Max(p, Adams(p, h′)). Since Max(p, Adams(p, h))is strictly de-

creasing as a function of h, pk

ak
>

pj

Aj
which contradicts the assumption that

pi

ai
= Max(p,a).
If h′ > h and a and a′ are h- and h′-apportionments, respectively, I will say

that a′ is an h′-extension of a if a′ ≥ a, i.e., a′k ≥ ak for all 1 ≤ k ≤ s. The
following lemma helps to illustrate this idea and will prove useful in the next
section.

Lemma 2 Let A = Adams(p, h). If a is an apportionment with

Max(p,a) = Max(p,A)

then a is an h′-extension of A for some h′ ≥ h.
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Proof. Let pk

Ak
= Max(p,A). Because the Adams method always gives

priority to the state with the largest ratio of population to seats, we know that
pl

Al−1 > pk

Ak
for all l �= k, since the Adams method gave state l its Ath

l seat

before k gets its Ath
k . Thus, Max(p,a) = Max(p,A) implies that al ≥ Al

for all l and thus a is an extension of A.
If a is an h-apportionment, the h′-Jefferson extension of a, JExt(a, h′) is

defined recursively by:

1 JExt(a, h) = a,

2 Let J = JExt(a, h′ − 1). If t is the state so that

pt

Jt + 1
= Maxi{ pi

Ji + 1
}

then define

JExt(p, h′)i =

{
Ji + 1, if i = t;

Ji, otherwise.

It is clear that Jeff(p, h) = JExt(0, h), where 0 = (0, . . . , 0), is just the
usual Jefferson h-apportionment (Balinski and Young, 2001, page 142).

Lemma 3 If a is an h-apportionment, and h′ ≥ h, then JExt(a, h′) maxi-
mizes Min(p,a′) over all h′-extensions of a.

Proof. An essentially equivalent fact is stated in (Balinski and Young, 2001,
page 104) without proof. For completeness I include one here.

Let J = JExt(a, h′). Suppose that a′ is another h′-extension of a for which

pi

a′i
= Min(p,a′) > Min(p,J) =

pk

Jk
.

It follows that a′k < Jk, and since both J and a′ are h′-extensions, there must
be some l so that a′l > Jl. We also know that ak < Jk and so state k received
at least one more seat in JExt than in a. From the definition of JExt, then,
we know that

pk

Jk
>

pl

Jl + 1
≥ pl

a′l
>

pi

a′i
which is a contradiction.

There is but one last piece of notation required. Suppose that a is an h-
apportionment and let k be a state. By a|k I mean the (h − ak)-apportionment
for the states with k removed.
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3. Minimum Total Deviation Apportionment

In this section I will present the algorithm for finding an apportionment that
minimizes the total deviation function TD(p,a). This algorithm first appeared
in (Gilbert and Schatz, 1964) and I have done little to improve it other than to
update the terminology and streamline the proof. Their idea is quite clever and
deserves to be more widely known. The key to the construction is to begin
an apportionment using the Adams method, but extend it using the Jefferson
extension. Since the Adams method minimizes Max(p,a) and the Jefferson
extension maximizes Min(p,a) combining the two methods results in mini-
mizing the gap TD(p,a).

Let p be the set of state populations as before, and suppose we want to find
the h′-apportionment that minimizes the total deviation. For h, h′ ≥ h ≥ s, let
Ah = Adams(p, h). If k is the state so that

pk

Ah
k

= Max(p,Ah)

let Jh be the h′-apportionment obtained by taking JExt(Ah|k, h′ − Ah
k) and

then assigning Ah
k seats to state k . That is, Jh is obtained by assigning the

first h seats using Adams method, setting aside the state which maximizes the
population/seat ratio and then extending the rest of the apportionment using
Jefferson’s method. Thus, Jh is an h′-apportionment of p for every h, h′ ≥
h ≥ s.

Theorem 4 The minimum of TD(p,a) over all h′-apportionments is equal
to

min
{h | h′≥h≥s}

TD(p,Jh).

That is, the minimum of TD(p,a) over all h′-apportionments is achieved by
one of the h′-apportionments in the set {Jh}.

Proof. Suppose that a′ is an h′-apportionment that achieves the minimum
of TD(p,a). Let

pk

a′k
= Max(p,a′).

Since the Adams h′-apportionment minimizes Max(p,a) over all h′-appor-
tionments, it must be true that for some h ≤ h′ we have

pk

a′k
= Max(p, Adams(p, h)).

By Lemma 2 we know that a′ is an h′-extension of Adams(p, h). Thus
a′|k is an extension of Adams(p, h)|k and so, by Lemma 3, Min(p,a′) ≤
Min(p,Jh). Thus,

TD(p,a′) ≥ TD(p,Jh)
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and the theorem is proved.
This idea of starting an apportionment using one standard method and then

extending it using a different one is interesting and understudied. It is also
more subtle than it might seem at first glance. One might think that the above
construction done in the opposite order, i.e., start an apportionment using the
Jefferson method and then extend it using Adams, would result in the same
outcome, but it need not. For while no extension of an apportionment can in-
crease Max(p,a), most extensions will result in decreasing Min(p,a). Thus
following Jefferson with Adams will almost surely result in losing control of
Min(p,a) and no claim similar to Theorem 4 will be true.

4. A Multiplicity of Minima

An unfortunate aspect of total deviation is that minimizing apportionments
need not be unique. This was observed first by Gilbert and Schatz (1964) who
provided an example based on a modification of the 1960 US census data. The
existence of such examples was, for them, a reason to disqualify minimizing
total deviation as a means of choosing an apportionment. I have argued other-
wise, elsewhere (Edelman, to appear). Nevertheless, this is an unusual aspect
of total deviation which is worth considering further.

If the House of Representatives were apportioned using a total deviation
minimizing method, then two of the twenty-two apportionments would not
have been unique. In both 1810 and 1840 there were multiple apportionments
that had the same minimum total deviation. Table 1 lists the 14 different ap-
portionments for the House in 1810 which achieve the minimum.

Table 1. 1810 Minimum Total Deviation Apportionments

State Population 1 2 3 4 5 6 7 8 9 10 11 12 13 14

New York 953043 26 26 26 26 26 26 27 27 27 27 25 25 25 25
Virginia 817615 22 22 22 23 23 23 22 22 22 23 22 23 23 23
Pennsylvania 809773 22 23 23 22 22 23 22 22 23 22 23 22 23 23
Massachusetts 700745 20 19 20 19 20 19 19 20 19 19 20 20 19 20
North Carolina 487971 14 14 13 14 13 13 14 13 13 13 14 14 14 13
Kentucky 374287 10 10 10 10 10 10 10 10 10 10 10 10 10 10
South Carolina 336569 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Maryland 335946 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Connecticut 261818 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Tennessee 243913 7 7 7 7 7 7 7 7 7 7 7 7 7 7
New Jersey 241222 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Ohio 230760 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Vermont 217895 6 6 6 6 6 6 6 6 6 6 6 6 6 6
New Hampshire 214460 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Georgia 210346 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Rhode Island 76888 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Delaware 71004 2 2 2 2 2 2 2 2 2 2 2 2 2 2

It is interesting to note that the Hamilton, Webster, Dean, and Hill methods
all give the same apportionment in this case and that apportionment, number 4
in Table 1, is a mtd apportionment. The population data for the 1840 census,
which also has multiple mtd apportionments has a similar property; Hamilton,
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Webster, Dean and Hill all agree, although this time that apportionment is not
mtd. This suggests that one might be able to say more about population data
that produces multiple mtd apportionments. What can one say about situations
for which the mtd apportionment is unique? To begin, observe that the gener-
icity assumption that the population/seat ratios are all distinct does not exclude
that the differences of the ratios are distinct. This opens the door for two appor-
tionments to have the same total deviation by chance. For example, consider
three states, A,B and C, with populations 4704, 2076 and 539, respectively.
One can check that the minimum total deviation is achieved by two different
apportionments, (8, 3, 1) and (7, 4, 1). In the first apportionment state B has
the largest population/seat ratio of 692, C has the smallest at 539 for a total
deviation of 153. In the second apportionment, state A is largest (672) and B

is smallest (519) for the same total deviation.
I will call a set of populations hyper-generic if, not only are the popula-

tion/seat ratios distinct (for all house sizes suitably small), but the differences
of population/seat ratios are also distinct. For hyper-generic populations, two
apportionments can have the same total deviation only if the states achieving
the maximum and minimum population/seat ratios are the same in each appor-
tionment and the differences occur in the distribution of seats among the other
states. The data from the 1810 census illustrates this situation, where Ohio has
the largest population/seat ratio and New Jersey the smallest. The variation
in the apportionments comes from reallocating the seats among some of the
other states in such a way that their population/seat ratios stay within the range
established by Ohio and New Jersey. The question then becomes when such
an internal reallocation is possible. There are a few situations in which we can
say something concrete about whether a mtd apportionment is unique:

Lemma 5 If the state populations are hyper-generic, and the Adams appor-
tionment minimizes total deviation, then it is the unique apportionment that
minimizes total deviation.

Proof. In order for there to be another mtd apportionment, one must be able
to reallocate a seat from one state to another. But in the Adams apportionment
reducing the number of seats to any state will increase its population/seat ratio
above that of the current maximum and thus increase the total deviation.

In the following lemmas I will use the notation from Section 3. Recall that
Jh is the h′-apportionment obtained from Adams(p, h) by taking JExt(Ah|k,
h′−Ah

k), where k is the state with the largest population/seat ratio in Adams(p,
h), and then assigning Ah

k seats to state k.

Lemma 6 Suppose the state populations p are hyper-generic and Jh is a mtd
h′-apportionment. This is the unique mtd apportionment if

JExt(Ah|k, h′ − Ah
k) = Jeff(p|k, h′ − Ah

k).
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That is, if the Jefferson extension agrees with the actual Jefferson apportion-
ment, then the mtd apportionment will be unique.

Proof. It follows from Lemma 3 that any h′ − Ah
k-apportionment a for the

states pk will have

Min(pk,a) < Min(pk, Jeff(p|k, h′ − Ah
k) = JExt(Ah|k, h′ − Ah

k).

Thus Jh must be the unique mtd apportionment.

Lemma 7 Suppose that Jh is a mtd h′-apportionment, that it differs from
Adams(p, h) in at least 2 states, and JExt(Ah|k, h′−Ah

k) �= Jeff(p|k, h′−
Ah

k). Then the mtd h′-apportionment is not unique.

Proof. That

JExt(Ah|k, h′ − Ah
k) �= Jeff(p|k, h′ − Ah

k)

implies that there is some state j �= k, with seat allocation Jh
j , so that

pj

Jh
j + 1

> Min(p,Jh).

Moreover, since there are at least two states on which Jh differs from
Adams(p, h), there must be a state i different from both j and k so that

pi

Jh
i − 1

< Max(p,Jh)

and hence the transfer of a seat from state j to state i will result in an h′-
apportionment with the same total deviation as Jh.

These three lemmas leave just a little uncertainty about the nature of the mtd
apportionments that are not unique. The remaining case is if Jh, the mtd appor-
tionment, differs from Adams(p, h) in only one state. Such apportionments
may or may not be unique depending on the existence of a second state to
which a seat can be added without decreasing Min(p,Jh). Either possibility
can arise.

5. Bias

A traditional concern in apportionment is whether there is an inherent bias
in the method with respect to the size of the state. It is well-established (Balin-
ski and Young, 2001, Chapter 9) that among standard methods, Hamilton and
Webster are unbiased while Adams is biased toward small states and Jefferson
is biased toward large ones. What can one say about the bias inherent in the
mtd apportionment?
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As noted in the previous section, in 20 of the 22 apportionments of the
United States, the mtd apportionment was the same as the Adams apportion-
ment. Thus, one might conclude that the mtd apportionment has a bias to small
states. The difficulty with this line of reasoning is that, as shown previously,
there may be a multiplicity of mtd apportionments and in those situations, there
may be little or no bias. For example, as previously noted, among the mtd ap-
portionments for the 1810 census data is the apportionment that agrees with
the Hamilton, Webster, Hill and Dean methods.

So, to prove anything conclusively we would need more detailed informa-
tion on two aspects of mtd apportionments; first, how often are there multiple
mtd apportionments, and second, can we choose among multiple mtd appor-
tionments in such a way as to minimize the resulting bias overall. The results
in the previous section are but a small step in the first direction. The second is
totally unresearched.

6. Alabama Paradox

A method of apportionment is said to exhibit the Alabama paradox if an
increase in the size of the house may result in the decrease in the number of
seats allocated to a state. It is well-known that the divisor methods do not
exhibit the paradox, while the Hamilton method does. In what way does the
mtd apportionment behave?

Since mtd apportionments may not be unique one must be careful in how
this problem is phrased. There is no question that if the mtd apportionments
are chosen injudiciously the Alabama paradox may result. Consider the appor-
tionment problem (taken from Figure 1) that consists of states New York, Vir-
ginia, Pennsylvania, New Jersey, and Ohio, with populations 953043, 817615,
809773, 241222, and 230760, respectively. One mtd 83-apportionment is 26,
22, 22, 7, and 6 seats for each state, respectively. A mtd 84-apportionment is
25, 23, 23, 7, and 6. So this pair of apportionments exhibits the Alabama para-
dox. On the other hand, 25, 23, 22, 7, and 6 is also a mtd 83-apportionment,
which would show no Alabama paradox. It is also true that 26, 23, 22, 7, and
6 is a mtd 84-apportionment. So, by making an appropriate choice among the
mtd apportionments one need not have the Alabama paradox manifest itself in
this instance.

Can one always avoid the Alabama paradox in this way? I don’t know.
Balinski and Young (Balinski and Young, 2001, Proposition 3.9) assert that
apportionments can exhibit the Alabama paradox, but they give no specific ex-
ample. This leaves it unclear whether they were referring to the phenomenon
just discussed or a more robust example in which the Alabama paradox is un-
avoidable.
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7. Conclusion

What I have presented here is a method of apportionment designed to mini-
mize total deviation, a particular measure of harm in malapportionments. It is
the measure of harm that has been recognized by the United States Supreme
Court. While this method has less desirable behavior than standard methods
from an axiomatic point-of-view, that does not mean that it is inappropriate for
certain purposes. And it certainly does not mean that it is not an interesting
method worth studying further.
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1. Introduction

Simulation may be very useful in the comparative assessment of electoral
systems; actually, it is difficult to imagine a field where the simulative ap-
proach may be more effective. There are two reasons for that. The first is
that the real world feature that must be simulated is very simple - a set of
preferences. The assessment of the relative performance of electoral systems
requires a set of preferences, but is entirely downstream of the reasons that
produced a set or another one. A ’virtual’ case of a society that uses perfect
proportionality and where there are some major parties and a cohort of minor
ones provides nearly the same information offered by an analogous real-world
case (pre-reform Italy, in this paper).

The second reason is even more compelling, and possibly less obvious, at
least for non-social scientists. While the virtual set of preferences is nearly as
informative as a real one, the single virtual subject is identical to a real one.
According to the basic theorems of choice (Arrow’s and May’s), and more
generally to the basic individualistic paradigm of social sciences, no prefer-
ence must be privileged. Hence, there is no reason to ask why a given subject
provided a given choice. The entire process of evaluating the result of his/her
and others’ combined choices is again downstream. In other terms, in this field
the virtual subjects include all the relevant features of the real ones.
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In this paper we argue in favor of the simulative approach for the evaluation
of electoral systems. In Section 2 we present a simple empirical rule that al-
lows choosing among electoral systems, in the line discussed in (Fragnelli et
al., 2005). As we will see, the procedure requires the decision-maker to explicit
its preferences; consequently, the choice rule is not affected by the theorem of
Arrow (and cannot aspire to pinpoint the system objectively preferable). Sec-
tion 3 contains an example obtained employing ALEX4, the improved version
of a new and more powerful simulation program, announced (as ALEX3), but
not used in (Fragnelli et al., 2005)1. Section 4 extends the discussion to power
matters, proposing tools and methodologies for defining better indices. Con-
clusions are in Section 5. Technicalities are in appendices.

2. The Choice of the Optimal Electoral System

The choice of the best electoral system affects a lot of facets of the politi-
cal process. (Ortona, 2002) provides a list with some twenty items, arguably
not complete. Fortunately, however, there is a general agreement that the effi-
ciency in representing electors’ will (representativeness, R) and the effect on
the efficiency of the resulting government (governability, G) are of paramount
relevance 2, 3. There are at least two good reasons to privilege R and G.

First, to summon the representatives and to form a government are the ba-
sic aims of a Parliament (bar, obviously, to make laws). Possible pitfalls of
other dimensions may be managed in other moments of the political process,
but this is not the case for representativeness and governability, if we admit
the sovereignty of the voters in choosing their representatives and that of the
representatives in choosing the government. In addition, it is sensible to think
that other dimensions are lexicographic with respect to them 4. If this is so, the
results obtained with reference to R and G will keep their validity irrespective
of the dimensions judged relevant.

R and G may be evaluated through the assessment of plausible (albeit ar-
bitrary) numerical indicators. The ones used in our simulations are briefly
described in Appendix B (for further details, see (Bissey et al., 2004)). We
will label them r and g, respectively 5. The range of both is the interval 0-1.

1The most relevant additional features are the consideration of new electoral systems (including the Single
Transferable Vote) and the possibility to define individually the virtual voters.
2See (Bowler et al., 2005).
3A more detailed characterization of both R and G and of the related trade-off (R is likely to increase with
the number of parties and G to decrease) is provided in Appendix B, through the definition of the indices
employed to assess them. For a broader discussion, see (Ortona, 1998) and (Bissey et al., 2004).
4Note however that the method outlined here may be extended to further dimensions, provided that suitable
indices are available.
5A slightly different version of these indices has been employed also in (Ortona, 1998).
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Results for different electoral systems, referring to a single case, may con-
sequently be computed out. There are three possibilities. First, the values of
both r and g of a given system may be greater than those of all other systems
considered; we define that system dominant, and it is obviously the best. Un-
fortunately, this system is very likely not to exist, given the trade-off between
the two dimensions. Second, the values of both r and g for a given system may
be lower than those of another one. We define that system dominated, and it
may safely be excluded: no need to consider system X, if system Y , better
on both dimensions, is available. Third, systems may be neither dominant nor
dominated, i.e. all of them are Pareto optimal, like (usually) plurality voting
and proportional representation in real world. We label these systems alterna-
tive. Obviously, the rule we look for is useful only if it allows choosing among
alternative systems. Note that there may be at most one (strongly) dominant
system, while the dominated systems can be more than one.

In principle, to compare different electoral systems, we need voting results
for different systems: a majoritarian vote, a proportional vote, a list of voters’
ordered preferences for Condorcet voting, and so on. It is usually impossible
to collect these data from real world. But given a set of virtual electors, each
with her/his preferences, it is perfectly possible to produce them. Given the
votes, every system considered will produce a potential Parliament, and each
Parliament will have a pair of values of r and g. If a system will result as
dominant, it is the good one; but, as we noticed, this result is very unlikely,
given the trade-off between the two dimensions. Apparently, what we need to
compare them is a social utility function (SUF) - admittedly a quite formidable
requirement, to say little. Actually, we may be satisfied with something less.

Let us admit the SUF for representativeness and governability to be a typical
Cobb-Douglas function in g and r, U = Kgarb, where K is a suitable constant.
We choose this form not only for its simplicity and versatility, but also for
the meaning of a and b, the partial elasticity of U with reference to g and r,
respectively; as we will see, this provides a meaningful characterization of the
choice rule. Now consider two non-dominated systems, X and Y . We may
write that:

X 	 Y ⇐⇒ Kga
Xrb

X > Kga
Y rb

Y (1)

where X 	 Y means that system X is preferred to system Y .

Let p =
a

b
. It is easy to obtain that condition (1) reduces to:

p >
ln rY

rX

ln gX

gY

(2)

supposing that X refers to the system with the higher value of g.

Remark 1 The comparison of systems is strongly influenced by the actual
scaling of the indices with respect to each other. This inconvenience is reduced
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by the choice of a multiplicative utility function. Suppose that a decision-maker
thinks that g should be given more (less) relevance, and that the increase (de-
crease) of relevance may be established through the attachment to g of a multi-
plicative constant > 1 (< 1). This procedure leaves the choice rule unaffected.

It is important to notice that the ratio of the elasticities, p, can be seen as
the price in terms of a relative decrease of r that the community accepts to
pay for a given relative increase of g. If, for instance, we have p = 2, it is
worthwhile to accept a 2% reduction of r to gain a 1% increase of g (but for
the approximation due to the use of differentials). In general, if an increase in
g is valued more than the same increase in r, then p > 1, and vice versa 6.

The only a priori information we need to assess the fulfillment of the condi-
tion, is the value of p. We argue that this parameter may actually be provided
by the political system. Several procedures may be adopted, as discussed in
Ortona (2005).

Equation (2) allows for binary comparisons of non-dominated electoral sys-
tems, and hence for finding out the Condorcet winner. The winner is the best
system 7.

Alternatively, we may trace indifference curves and pick the system that lies
on the higher curve. This procedure allows for a graphical individuation of the
preferred system. For details, see (Fragnelli et al., 2005).

3. An Example

In this section we provide an example that mirrors the actual Italian case.
The input is a representative survey of electoral preferences of Italian citi-

zens collected by the Osservatorio del Nord Ovest of the Università di Torino
in the first quarter of 2004. The simulation program described in Appendix A
provides the data of Table 1 and Figure 1.

The choice set may be considerably reduced through the exclusion of sys-
tems that are dominated or weakly dominated. This criterion leaves us with the
ten systems labeled 2, 3, 4, 6, 8, 11, 17, 18, 20, 21.

An elicitation procedure implemented with 80 students at the Laboratorio
di Economia Sperimentale e Simulativa of the Universita’ del Piemonte Ori-
entale and described in detail in Ortona, 2005, provided the value 0.696 for
p (with 0.402 standard deviation). However, each participant to the experi-
ment provided his/her value; given these values, it was tedious but simple to
apply the choice method described in this paper to the ten systems above and
to each participant. It is not inappropriate to state that participants voted their

6For the proof see (Fragnelli et al., 2005).
7A Condorcet cycle may result only by chance, and may be ruled out simply by adding a further figure
while rounding the results - or by tossing a coin.
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Table 1. A simulation of an Italian-like case.

System r g share of seats of the parties of the
governing coalition governing coalition

1 Borda 0.66 0.275 0.55 2
2 Run-off plurality 0.66 0.300 0.60 2
3 Plurality 0.74 0.233 0.70 3
4 Mixed-sc. (a) 0.85 0.207 0.61 3
5 Mixed (a) 0.82 0.207 0.62 3
6 Prop. (1 district) 1.00 0.104 0.52 5
7 Threshold Prop. (b) 0.87 0.170 0.51 3
8 Condorcet 0.70 0.295 0.59 2
9 Prop. Hare (c) 0.92 0.135 0.54 4

10 Prop. Imperiali (c) 0.88 0.087 0.52 6
11 Prop. Sainte-Lague (c) 0.94 0.135 0.54 4
12 Prop. D’Hondt (c) 0.84 0.180 0.54 3
13 STV N.B. (c) 0.94 0.106 0.53 5
14 STV Droop (c) 0.95 0.108 0.54 5
15 STV Hare (c) 0.91 0.108 0.54 5
16 Prop. Hare (d) 0.99 0.106 0.53 5
17 Prop. Imperiali (d) 0.99 0.106 0.53 5
18 Prop. Sainte-Lague (d) 0.98 0.108 0.54 5
19 Prop. D’Hondt (d) 0.96 0.104 0.52 5
20 Mixed-sc (d) 0.91 0.177 0.53 3
21 Mixed (d) 0.87 0.190 0.57 3
22 Threshold prop. (b, d) 0.96 0.106 0.53 5

(a) 25 seats assigned through one-district proportionality, 75 through plurality.
’sc’ (after the Italian word ’scorporo’) means that votes used for the proportional share are

not considered for the assignment of the plurality seats.
(b) Threshold 5%.
(c) Ten ten-seat districts.
(d) Five twenty-seat districts. The program ran out of memory for STV.
Simulations were performed with 100 seats.
• prop. = pure proportionality
• STV = single transferable vote

preferred electoral system. Condorcet got 46 votes, pure proportionality 17,
mixed (5 districts) 12, and mixed (ten districts) 5. The Condorcet winner is
Condorcet; a result hardly unexpected for a theorist, but not that easy to detect
from data, as Condorcet ranks second in g but only second to last in r.

4. The Role of Power

We think that representativeness and governability should take into account
more than the distribution of seats w.r.t. the distribution of votes. Mathematics
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Fig. 1. The voting systems of Table 1 in the r − g space.

offers a lot of distances or norms in order to measure the distance of the dis-
tribution of voters, vi and the distribution of seats according a system h, sh

i ;
among them the most widely used are:

Norm 1: dh
1 =

∑
i∈N |vi − sh

i |

Norm 2: dh
2 =

√∑
i∈N (vi − sh

i )2

Norm ∞: dh∞ = maxi∈N |vi − sh
i |

where N is the set of parties.
This approach may be largely far from our needs, as shown in the following

example.

Example 2 8 Suppose that there are four parties PA, PB , PC and PD; the
preferences of the voters are respectively 40, 25, 20 and 15 per cent and the

8Taken from (Fragnelli et al., 2005).
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majority quota is 50 per cent; suppose also that the parliament consists of 4
seats and that two voting systems generate the two partitions of seats (2,1,1,0)
and (1,1,1,1). We start by computing the distances of the two partitions from
the distribution of voters:

(2,1,1,0) (1,1,1,1)
d1 0.4 0.4
d2 0.01

√
350 0.01

√
350

d∞ 0.15 0.15

The two voting systems seem to be equivalent. ♦
In order to avoid these unlikely situations we can relate the indices not di-

rectly to the distributions of votes and seats, but to the power of the parties.
The elusive notion of power has a lot to do with the choice of the electoral

system; and both with governability and with representativeness. If we stick
to the microcosm notion of representativeness, we should want a distribution
of power similar to that of preferences, while the governability is normally
supposed to be enhanced if the power is highly concentrated. To find out the
’right’ distribution of power is a formidable task, and we will not deal with it.
More modestly, we argue that in order to tackle that problem it is necessary
to be able to compare the distribution of power with that of preferences; and
again simulation is highly useful, for the same reasons that we discussed above
- the non-availability of reliable real world data.

So, the new problem we have to face is to determine the distribution of the
power of the parties.

Game theory is a natural habitat for the problem of evaluating the power
of the parties in a voting situation. Since the pivotal paper of Shapley (1953)
different indices were introduced, with the aim of assigning to each agent a
number that represents his/her relevance in a multiagent situation. It may be
useful to recall some basic notions. A cooperative game with transferable
utility (TU-game) is a pair G = (N, v), where N is the set of players (the
agents) and v is the characteristic function that assigns to each subset of players
S ⊆ N , called coalition, a real number that can be considered as its worth
independently from the behavior of the other players. A game is said to be
simple if v(S) ∈ {0, 1}, i.e. the worth of a coalition may be only 0 or 1; a
game is said to be monotonic if S ⊂ T implies v(S) ≤ v(T ), i.e. if a coalition
is enlarged then its worth cannot decrease.

In particular we are interested in the weighted majority games, simple mono-
tonic games that are widely used in voting situations. Suppose that each player
i ∈ N is associated with a non negative real number, the weight wi, and sup-
pose that if some players join to form a coalition S the weight of the coalition
is the sum of the weights of the players, i.e. the weights are additive; if the
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weight of a coalition is strictly larger than a given positive real number q, the
so-called quota, the coalition is said to be winning, and it is said to be los-
ing otherwise. Formally we define the characteristic function w of a weighted
majority game as:

w(S) =

{
1 if

∑
i∈S wi > q

0 if
∑

i∈S wi ≤ q
∀ S ⊆ N

Usually such a situation is summarized by the (n + 1)-upla (q;w1, ..., wn).
As a consequence we can say that if v(S) = 1 then S is a winning coalition

and if v(S) = 0 then S is a losing coalition. A winning coalition is called
minimal if all its subcoalitions are losing.

The weighted majority games associated to the distributions of voters and
of seats, according to a given electoral system, allow us evaluating the impor-
tance of each party with respect to a suitable power index. Game theory dealt
with this problem from the beginning of its history. Many different power
indices were proposed, each of them emphasizing different properties of the
underlying situation. In this paper we consider the Shapley-Shubik index, the
normalized Banzhaf-Coleman index, the Deegan-Packel index and the Holler
(or Public goods) index.

The Shapley-Shubik index (Shapley and Shubik, 1954), φ, is the natural
extension of the Shapley value (Shapley, 1953) to simple games. Let Π be the
set of all the permutations of the players and for each π ∈ Π let P (i, π) be
the set of players that precede player i in π; the Shapley value is the average
marginal contribution of each player w.r.t. the possible permutations 9:

φi =
1

|N |!
∑
π∈Π

[v(P (i, π) ∪ {i}) − v(P (i, π)] ∀ i ∈ N

The normalized Banzhaf-Coleman index (Banzhaf, 1965 and
Coleman, 1971), β, is similar to the Shapley-Shubik index, but it considers the
marginal contributions of a player to all possible coalitions, without consider-
ing the order of the players. Let us introduce β∗

i = 1
2|N|−1

∑
S⊆N,S�i[v(S) −

v(S \ {i})], i ∈ N . By normalization we get:

βi =
β∗

i∑
j∈N β∗

j

∀ i ∈ N

The Deegan-Packel index (Deegan and Packel, 1978), δ, considers only the
minimal winning coalitions; the power is firstly equally divided among mini-
mal winning coalitions and then the power of each is equally divided among

9We denote by |A| the cardinality of the set A
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its members:

δi =
∑

Sk∈W,Sk�i

1

|W |
1

|Sk| ∀ i ∈ N

The Holler index, or Public Goods index (Holler, 1982 and Holler and
Packel, 1983), H , considers the number of minimal winning coalitions which
player i belongs to, ci, i ∈ N ; then by normalization we get:

Hi =
ci∑

j∈N cj
∀ i ∈ N

The different indices take into account various aspects of the coalition for-
mation process, so that the power of a given party may assume different values.
In particular the power could be concentrated in few large parties or spread on
many of them.

Example 3 Referring to Example 2, we can define the majority games w(v)
on voters, w(s1) on the first parliament and w(s2) on the second parliament

game 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N
w(v) 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1
w(s1) 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1
w(s2) 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

whose corresponding indices are:

game φ β δ H

w(v)
(

1
2 , 1

6 , 1
6 , 1

6

) (
1
2 , 1

6 , 1
6 , 1

6

) (
9
24 , 5

24 , 5
24 , 5

24

) (
1
3 , 2

9 , 2
9 , 2

9

)
w(s1)

(
2
3 , 1

6 , 1
6 , 0

) (
3
5 , 1

5 , 1
5 , 0

) (
1
2 , 1

4 , 1
4 , 0

) (
1
2 , 1

4 , 1
4 , 0

)
w(s2)

(
1
4 , 1

4 , 1
4 , 1

4

) (
1
4 , 1

4 , 1
4 , 1

4

) (
1
4 , 1

4 , 1
4 , 1

4

) (
1
4 , 1

4 , 1
4 , 1

4

)
Finally, for each index, we compute the distances between the power w.r.t.

the voters and to each parliament:

(2,1,1,0) (1,1,1,1)
φ β δ H φ β δ H

d1 0.333 0.333 0.417 0.444 0.500 0.500 0.250 0.167
d2 0.236 0.200 0.250 0.281 0.289 0.289 0.144 0.096
d∞ 0.167 0.167 0.222 0.208 0.250 0.250 0.125 0.083

where numbers in bold indicate the ’best’ voting system according to each
index.
The distances on the power indices allow us to distinguish the two systems. In
particular the indices of Shapley-Shubik and Banzhaf-Coleman favor the first
parliament, while the second parliament is preferable according to the indices
of Deegan-Packel and Holler. ♦
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Another measure may be obtained referring to the distribution of voters, v,
to the assignment of seats according to an electoral system h, sh, and to the
power of the parties related to the votes and to the seats, ϕ and ϕh respectively
(see Gambarelli and Biella, 1992). The resulting distance ∆ is:

∆ = max
i∈N

∣∣∣|vi − sh
i | − |ϕ − ϕh|

∣∣∣
Example 4 Referring again to Example 2, we obtain the following
distances:

∆
Voting system ϕ = φ ϕ = β ϕ = δ ϕ = H
s1 0.067 0.033 0.058 0.072
s2 0.100 0.100 0.058 0.072

where again numbers in bold indicate the ’best’ voting system according to
each index.
Also using this measure the Shapley-Shubik and Banzhaf-Coleman favor the
first parliament, while the two parliaments are equivalent according to the
indices of Deegan-Packel and Holler. ♦

Remark 5 The first two indices and the last two have similar behavior; this
depends on the matter that the first two take into account all the coalitions,
while the last two consider only minimal winning coalitions.

The main conclusions of this section are the following. First, the indication
of the example - were it for real - would be precious. Yet the starting point
are, by necessity, the data on votes. If votes are those actually cast in a, say,
plurality election, they are useless to compare the distribution of power with
that of preferences. Arguably, the distribution of votes may be assumed as a
proxy to that of preferences only in proportional systems with large districts
(and, we must add, with low running costs). The same conclusions of Section
3 apply. Real data cannot provide useful information; the simulation does. To
accumulate experimental (i.e. simulative) evidence would probably provide
relevant suggestions for real world analysis and policing.

Second, in our opinion, a better definition of both representativeness and
governability should rest on the notion of power. Game theory is a very useful
tool for this aim. In particular the index of concentration (Gini, 1914) applied
to the distribution of power may be exploited to define a representativeness
index, while for the governability index two approaches seem promising: the
coalitional value (Owen, 1977), that takes into account the role of the a priori
agreements of the parties and the propensity to disruption (Gately, 1974) that
measures the relative gain of the players when leaving the grand coalition.
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5. Concluding Remarks

We argued that the simulation approach to the evaluation of electoral sys-
tems is very powerful. To add evidence, we suggest a (very partial) list of
problems that could profitably be tackled this way. What is the difference in
results between Borda and Condorcet? When do pure proportionality and sin-
gle transferable vote provide analogous results? What is the actual effect of
district magnitude on proportionality? How do indices of proportionality per-
form? Are Condorcet cycles really a problem?

It is not difficult to add others, so we will not pursue this point further.
Instead, we argue that experimental results may be improved if the simula-
tion programs are further elaborated. We suggest that main methodological
improvements should regard the possibility of including and managing sur-
vey data, the addition of further indices, mostly but not only with reference to
power issues, and obviously the addition of further electoral systems. How-
ever, to our opinion the main methodological challenge is the addition of new
evaluation dimensions, and consequently indicators. Obviously, this requires
that they may be quantified, and consensus on what we desire about.

To conclude, simulation is very useful to analyze the performance of the
electoral systems including random elements, e.g. the absence of some mem-
bers of the parliament in a voting session, or to study the possibility of ma-
nipulating the elections, e.g. via merging or splitting of the parties in order to
profit of suitable features of the system.

Appendix A - The Simulation Program

Given the utility and the versatility of the simulative approach for the anal-
ysis of electoral systems, it is quite surprising that it is so little employed in
the political science literature. A survey is in (Fragnelli et al., 2005); there are
some, but not that many, suggestive case studies, but very few papers address
the matter we are dealing with here, to compare electoral systems, after some
pioneering papers (see Mueller, 1989; Merrill, 1984 and Merrill, 1985). (Gam-
barelli and Biella, 1992) analyze the effect in Italy of a change to a number of
electoral systems, and (Christensen, 2003), compares six majoritarian systems,
but without reference to a Parliament. Consequently, it is not surprising that the
simulation programs so far available (like those developed by Accuratedemoc-
racy, www.accuratedemocracy.org) are of limited use for purposes of the kind
suggested here.

The simulations produced in this paper have been carried out with a specific
program, ALEX4; its number refers to the version currently in use. ALEX4 is
written in Java, and it is the heir of a program originally written in Visual Basic,
g&r (for Governability and Representativeness), dating back to 1998 (Ortona,
1998; Trinchero, 1998). ALEX4 is a cosmetic improvement of ALEX3, which
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is described in detail in (Bissey et al., 2004); hence here we provide only some
basic hints. All the versions of ALEX have been written by Marie-Edith Bissey
at the Universita’ del Piemonte Orientale.

The user is requested to provide some basic inputs, namely, the size of the
Parliament, the number of voters, the number of parties (i.e. the number of
candidates in every constituency for non-proportional systems), the share of
votes of the parties, the concentration of the parties across the constituencies,
the probability that second and further preferred parties are the closest to the
first, to the second etc., the probability that third and further preferred parties
are the closest to the second, to the third etc., and the probability that second
and further preferred candidates are the closest to the first, the second, etc. The
first two probabilities are employed to generate a complete set of preferences
for parties, for each voter; the last one to generate a complete set of prefer-
ences for candidates, to be employed for single transferable vote. The program
produces the Parliaments for (up to now) sixteen systems, namely one-district
proportionality; one-district threshold proportionality 10; Hare, D’Hondt, Im-
periali and Sainte-Lague multi-district proportionality; N.B., Droop and Hare
multi-district single transferable vote; two mixed-member systems 11; plural-
ity; run-off majority; Condorcet; Borda; and VAP, a suggested new system
described in detail in (Ortona, 2004). Approval voting is not included (but it
will be in further versions) because previous experiments (with g&r) indicated
that it is commonly dominated by other systems. Finally, the program com-
putes the index of representativeness and the index of governability (the user
is requested to define the governing coalition). Both indices are described in
Appendix B.

Appendix B - The Indices Employed

Index of Representativeness, r

An index of representativeness suitable to compare electoral systems cannot
be based on the difference between the share of votes and that of seats, albeit
all the indices of proportionality commonly employed, like Gallagher’s 12, are
constructed this way. The obvious and compelling reason is that the voting
behavior is affected by the electoral system itself. Instead, our index is based
on the difference between votes cast in a nation-wide proportional district and

10The threshold may be fixed by the user.
11With and without the exclusion of votes employed in the plurality election from the proportional election.
The share of seats assigned through proportionality may be fixed by the user.
12Introduced by (Gallagher, 1991).



Comparison of Electoral Systems: Simulative and Game Theoretic Approaches 77

seats assigned by a given electoral system. The formula is:

rh = 1 −
∑

i∈N |Sh
i − SPP

i |∑
i∈N |Su

i − SPP
i |

where N is the set of parties, Sh
i is the number of seats of party i with system

h, SPP
i is the number of seats of party i with the perfect proportional system

and Su
i is the total number of seats for the relative majority party under system

h and it is 0 otherwise.
The index reads as follows. For the sum at the numerator, we assume that

the representativeness R is maximal under perfect proportionality rule (PP ).
Hence the loss of representativeness incurred by party i is the (absolute) dif-
ference between the seats it would get under PP and those actually obtained.
Summing this loss across all the parties we obtain the total loss of R. The sum
at the denominator is introduced to normalize this value. It is the maximum
possible loss of R. This maximum is obtained when ’winner takes all’ in a
very strict sense, that is when the relative majority party, according to the se-
lected system, takes all the seats instead of just its quota. The ratio of the sums
is a loss of representativeness index, normalized in the range 0-1; subtracting
it from 1 we transform it into a representativeness index.

Example 6 Suppose three parties, L, C and R, in a parliament of 100 seats.
Under PP they obtain 49, 31 and 20 seats respectively, under majority (M )
90, 10 and 0, and under some other system (S) 30, 55 and 15. So rM =
1 − 41+21+20

51+31+20 = 0.196 and rS = 1 − 19+24+5
49+45+20 = 0.579 (obviously rPP =

1 − 0
51+31+20 = 1) ♦

As this index is not that easy to grasp, in the example described in Section
3 above we employed a simpler one, which is 1 minus the ratio between the
total number of seats assigned in excess to the proportional share and the total
number of seats. In the previous example the value of this second index is 0.59
for M and 0.89 for S (and 1 for PP ). For more realistic cases, however, the
two indices are strongly correlated; for data of Section 3 the correlation index
is 0.963.

Index of Governability, g

According to the mainstream doctrine, governability is inversely related to
the number of parties that take part in the governing majority. Our index is
based on this assumption. It depends on the number of parties of the governing
coalition that may destroy the majority if they withdraw, m, and on the share
of seats of the majority, f . m is more important, so we add (lexicographically)
the f -component to the m-component. Hence the index is made by the sum
of two terms, the first related to m, gm, and the second related to f , gf . Thus,
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g = gm+gf . The range of the second term is the difference between successive
values of the first: the term in m defines a lower and an upper bound, and the
term in f specifies the value of the index between them.

The range defined for gm is simply 1
m (upper bound) and 1

m+1 (lower
bound). For instance, if the government is supported by just one party, g is
in between 0.5 and 1; if it supported by two parties, then g is in between 0.333
and 0.5, and so on. The number of seats of the majority coalition specifies the
value of g in the given range. The amount gf to be added to the lower bound
depends from the lead of the majority coalition, according to the proportion

gf
1
m − 1

m+1

=
f − T

2

T − T
2

. In sum, the formula for g is:

g = gm + gf =
1

m + 1
+

1

m(m + 1)

f − T
2

T
2

For instance, if there are 100 seats and the governing majority is made up
of one party with 59 members, we have gf = 9

50
1
2 = 0.09. This value must be

added to 0.5, to give g = 0.59.
The maximum value of g is 1, when a party has all the seats; the lowest

tends to zero as the number of parties increases, thus justifying the claim that
the range of g is in between 0 and 1.

Again, in Section 3 we employed a simpler index, based on the same theo-
retical assumptions, i.e. the ratio between the share of seats and the number of
parties of the governing coalition. In the example, the value of this index13 is
again 0.59; and this index is strongly correlated with the previous one; for data
of Section 3 the correlation index is 0.994.

Appendix C - A Short Description of the Electoral Systems

This appendix is taken from the readme file of ALEX4 package. Many
systems allow for variants; the definitions provided here refer to those adopted
in ALEX4. For a description of how the systems are implemented, see the
Final Note of this paper, and the readme file quoted. For an easy-to-read, more
detailed description of the systems, see (Farrell, 2001).

- Plurality In each district, the winner is the candidate with most votes.

13There is a reason for dissatisfaction with indices of governability based on the number of parties, which to
our opinion is why this kind of indices perform quite poorly when applied to real cases, and more generally
why the governability is not that greater in majoritarian systems (see Lijphart, 1999). The reason is that
a party may be and may be not be a single subject. At one extreme it is, but at the other it is a set of
independent decision-makers. ALEX5, the next version of the program ,will take into account this feature
through the addition of a suitable parameter.
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- One-district Proportionality The seats in the Parliament are distributed
according to the shares of votes in the population, rounded to the closer
integer.

- Threshold Proportionality All the parties who have a share of votes in
the population smaller than the established threshold are excluded from
the Parliament. The seats are distributed proportionally among the re-
maining parties.

- Run-off Plurality In each district all parties but the two with the most
votes are excluded. The second round is carried out with these two par-
ties only and the one with the most votes wins. If after the first round the
first party has at least 50% of the votes, it wins the seat without the need
of a second round.

- Mixed Part of the parliament is elected with the Plurality System, and
the rest is elected using the Proportional System.

- Mixed with ’Scorporo’ As for the previous system, but the votes used to
elect the Plurality share are lost for the Proportional share.

- Borda count This system uses the electors’ complete preference order-
ing. Each elector gives points to each party, from 0 for the most preferred
party to N − 1 for the least preferred party, where N is the total number
of parties. In each district, the winner is the party with fewer points.

- Condorcet winner In each district, the Condorcet winner is the party that
beats all the others when taken in pairs.

- Multi-district Proportionality The method is the same as in one-district
proportionality. In this case, however, the rounding procedure is rele-
vant. We employed four: D’Hondt, Hare, Imperiali and Sainte-Lague.

- Single Transferable Vote The seats for each party, in each plurinominal
district, are assigned according to a quota value. If some seats are not
assigned with this method, the votes unused by the elected candidates
are transferred to the next candidates in the elector’s preference order-
ing, and the candidates with the highest number of votes (obtained +
transferred) are elected. The quota value may be computed according to
three different procedures: N.B., Droop, and Hare.

Final Note

If you are interested, you may download and use the simulation program
ALEX4. There will be no charge, but you will be asked to observe some
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gentleperson-agreement conditions - basically, no liability for possible mis-
takes and quotation of the source of the program. Please contact Guido Ortona
for further details or for downloading instructions.
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Abstract Approval balloting is applied to the problem of electing a representative com-
mittee. We demonstrate several procedures for determining a committee based
on approval ballots, paying particular attention to weighting methods that can
reduce the influence of voters with extreme views. We show that a general class
of voting systems based on approval ballots can be implemented through analy-
sis of appropriate tables. A by-product of this procedure is a clarification of the
complexity of these systems.
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Introduction

Approval voting is a well-known voting procedure applicable to single-
winner elections. Voters approve of as many candidates as they like, and the
candidate with the most approvals wins (Brams and Fishburn, 1978, Brams
and Fishburn, 1983, Brams and Fishburn, 2005). But this method of aggregat-
ing approval votes is not the only one possible, as Merrill and Nagel (1987)
argue. It is therefore useful to distinguish between approval balloting (each
voter submits a ballot that identifies which candidates are approved) and ap-
proval voting (the method, indicated above, by which approval ballots are tal-
lied to determine the winner).

In this paper, we discuss how approval ballots can be used to select a com-
mittee—a subset of the candidates—that represents, in some sense, all voters.
In such an election, voters would be instructed to indicate on their approval
ballots the subsets of candidates that best represent them.

Our procedures for identifying a most representative subset of the set of
candidates capitalize on the fact that each ballot also specifies a subset of this
set. Of course, different voters will typically specify different subsets. We
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view the problem of identifying the most representative committee as that of
identifying the subset that is “closest” to the collection of subsets specified by
the voters. Our procedures can be adapted to reflect restrictions on the size or
composition of the committee to be elected.

Based on an appropriate measure of distance, we discuss two criteria of
closeness to the collection of subsets specified by the voters, minimax (a rep-
resentative subset should minimize the maximum distance to the subsets of
all voters) and minisum (a representative subset should minimize the sum of
distances or, equivalently, the average distance to the subsets of all voters).
Elsewhere we offer a broader discussion of criteria of fairness in electing com-
mittees (Brams, Kilgour, and Sanver, 2005).

1. Terminology and Notation

There are n > 1 voters. The set of k > 1 candidates is denoted C =
{1, 2, . . . , k}. We represent a subset of the candidates S ⊆ C by a (row) vector
p = (p1, p2, . . . , pk), where ph = 1 if h ∈ S and ph = 0 otherwise. (Usually
we will write subsets in vector notation without punctuation—for example,
1001101 designates the subset comprising candidates 1, 4, 5, and 7.)

The n voters’ ballots are p1, p2, . . . , pn, which we write as rows of a 0-1
matrix, P , called the ballot data matrix. Note that P has n rows (corresponding
to the voters) and k columns (corresponding to the candidates); the entry in row
i and column h of P , pi

h, is 1 if voter i approves of candidate h and 0 otherwise.

Example 1 There are n = 3 voters and k = 3 candidates. Voter 1’s ballot
is 100 (i.e. voter 1 approves of candidate 1 only), whereas voter 2’s ballot is
110, and voter 3’s ballot is 101. The ballot data matrix is

P =

⎛
⎝ 1 0 0

1 1 0
1 0 1

⎞
⎠

The ballot data matrix records the subset of candidates approved by each
voter. Because we wish to construct anonymous voting systems, we need not
maintain a record of which voter approved of a particular subset. Moreover,
as the number of voters increases (and the number of candidates becomes
relatively small), it is increasingly likely that some voters will cast identical
ballots—that is, approve of exactly the same subset. If so, the ballot data ma-
trix will contain many identical rows. To simplify the data, we record only the
distinct ballots (in any order), and the number of times each is chosen.

More specifically, we associate with the voted-for subsets, q1, q2, . . . , q�,
corresponding counts m1,m2, . . . ,m�, indicating that mj > 0 different voters
approve of exactly the subset qj . It follows that

∑�
j=1 mj = n and qj �= qj′

whenever j �= j′. As before, we write q1, q2, . . . , q� as rows of a 0-1 matrix
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Q, called the compressed ballot data matrix. Note that Q has 
 rows and k
columns, and the entry in row j and column h of Q is denoted qj

h. Associated
with Q is a count vector, m, which is a column vector with the count, mj , as
its jth entry. We call (Q,m) compressed ballot data.

Example 2 There are n = 4 voters and k = 3 candidates. Voters 1, 2, and
3 vote as in Example 1; voter 4 votes exactly as voter 3. The compressed ballot
data, (Q,m), are

Q =

⎛
⎝ 1 0 0

1 1 0
1 0 1

⎞
⎠ , m =

⎛
⎝ 1

1
2

⎞
⎠

To measure the distance between two subsets of C (possible committees), p
and q, we will use the Hamming distance, d(p, q) =

∑k
h=1 |ph − qh|. Thus,

d(p, q) equals the number of components of p and q that are different, or the
number of candidates who are in one of p or q but not the other. Note that for
any subsets p and q of C , 0 ≤ d(p, q) ≤ k and, of course, d(p, q) = 0 iff p = q.
To illustrate using Examples 1 and 2, d(100, 110) = 1 (the two subsets differ
only on candidate 2), and d(110, 101) = 2 (the subsets differ on candidates 2
and 3).

2. Minisum and Minimax Criteria

We begin by addressing the problem of selecting a representative subset
of candidates, p, given a ballot data matrix, P . We assume that there are no
restrictions on the subset to be selected.

This problem was considered by Brams, Kilgour and Sanver (2004). One
solution they proposed was majority voting (MV), which can be implemented
on P by summing each column to obtain the total vote for each candidate. An
MV committee is a committee comprising only candidates who receive at least
n
2 votes.1 There is always at least one MV committee; in the extreme case
in which every candidate receives fewer than n

2 approvals, the MV committee
contains no members, that is 00 . . . 0.

Formally, for ballot data P , the number of votes for candidate h is nP (h) =∑n
i=1 pi

h. Define the conditions Yh = Yh(P ) and Nh = Nh(P ) as follows: Yh

is True if nP (h) > n
2 and False otherwise; Nh is True if nP (h) < n

2 and False

1We adopt this definition, rather than the standard requirement of more than n
2

votes, for technical reasons
that will become apparent shortly. Our definition is equivalent to the conventional one whenever n is odd;
when n is even, differences are unlikely unless n is small. Our definition implies that the MV committee is
not unique (i.e., two or more subsets are tied for winning) if and only if n is even and at least one candidate
receives precisely n

2
votes. In this case, an MV committee includes all candidates who receive more than

n
2

votes, plus any subset of the set of candidates who receive exactly n
2

votes.
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otherwise. Thus, Yh is true iff candidate h has majority support, and Nh is true
iff candidate h is opposed by a majority. The set of all MV committees is then

MV (P ) = {p ⊆ C : ∀h = 1, . . . , k, ph = 1 if Yh and ph = 0 if Nh} . (1)

For instance, in Example 1, the total votes for candidates 1, 2, and 3 (the col-
umn sums of P ) are nP (1) = 3, nP (2) = 1, and nP (3) = 1, respectively.
Because only candidate 1 receives more than n

2 = 3
2 votes, and no candidate

receives exactly 3
2 votes, the unique MV committee is 100 (i.e., it includes only

candidate 1).
Brams, Kilgour and Sanver (2004) proved (Proposition 4) that a subset of

the candidates, p, is an MV winner if and only if it minimizes
∑n

i=1 d(p, pi).
Thus, the MV winners are the subsets of candidates that are at minimum to-
tal distance (or, equivalently, at a minimum average distance) from the voters’
ballots. For this reason, they referred to an MV committee as a minisum com-
mittee. We define

minisum(P ) = MV (P ).

There are two or more committees in minisum(P ) whenever at least one
candidate receives precisely n

2 votes. If so, the total distance from the ballots to
a committee containing such a candidate is exactly equal to the total distance
from the ballots to the same committee without the candidate, rendering both
of these committees members of minisum(P ).

As a second approach to finding a representative committee, Brams, Kilgour
and Sanver (2004) adapted the unanimity version of the Fallback Bargaining
procedure (Brams and Kilgour, 2001). They proposed an iterative procedure
that takes place in discrete time, t = 0, 1, 2, . . .. At time t, voter i is modeled as
willing to be represented by any subset of candidates in his or her acceptable
set

Ai
P (t) = {p ∈ C : d(pi, p) ≤ t}. (2)

For example, at time t = 0, voter i’s only acceptable subset is pi, the subset
specified on his or her approval ballot. At time t = 1, Ai(t) includes pi and
any subset at Hamming distance 1 from pi —any subset that differs from pi in
exactly one candidate, who might be a member of pi now excluded, or a non-
member of pi now included. At time t = 2, voter i’s acceptable set includes
all subsets at Hamming distance at most 2 from pi, and so on. This fallback
process continues until there is a subset that is acceptable to all voters.

Formally, the fallback process ends at time t∗P defined by

t∗P = min{t = 0, 1, . . . :

n⋂
i=1

Ai
P (t) �= ∅}. (3)
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The fallback (FB) winners are all subsets acceptable to all voters at time t∗P .
Formally,

FB(P ) =
{
p ⊆ C : p ∈ Ai

P (t∗P ), i = 1, . . . , n
}

. (4)

For instance, in Example 1, the three voters’ acceptable subsets at times 0 and
1 are shown in Table 1.

Table 1. The fallback process applied to Example 1.

Time (t) A1(t) A2(t) A3(t)

0 {100} {110} {101}
1 {100,000,110,101} {110,010,100,111} {101,001,111,100}

Observe that the acceptable sets at time t = 0 are disjoint, while the acceptable
sets at time t = 1 have exactly one common member, namely 100. It follows
that t∗P = 1 and FB(P ) = {100}. Hence the unique FB committee corre-
sponding to P is 100, according to this iterative procedure in which acceptable
sets for each voter become larger and larger over time until there is at least one
subset in common.

Based on (Brams and Kilgour, 2001, Theorem 3), Brams, Kilgour and San-
ver (2004) showed that a subset, p, is an FB winner if and only if it minimizes
maxi=1,...,n d(p, pi). Thus, the FB winners are the subsets of candidates for
which the maximum distance to any voter’s ballot is a minimum. For this
reason, they referred to an FB committee as a minimax committee. We define

minimax(P ) = FB(P ).

Brams, Kilgour, and Sanver (2005) next asked whether duplication of bal-
lots could change the set of winning committees. In our more general setting,
we consider how the minisum and minimax procedures can be applied to com-
pressed ballot data, (Q,m), as opposed to ballot data, P .

It is immediate that, for compressed ballot data, the number of votes for
candidate h is nQ,m(h) =

∑�
j=1 mjq

j
h. Given this emendation, the condi-

tions Yh = Yh(Q,m) and Nh = Nh(Q,m) become as follows: Yh is True if
nQ,m(h) > n

2 and False otherwise; Nh is True if nQ,m(h) < n
2 and False oth-

erwise. Again, Yh is True iff candidate h has majority support, and Nh is True
iff candidate h is opposed by a majority. The set of all minisum committees is
then

minisum(Q,m) = {p ⊆ C : ∀h, ph = 1 if Yh and ph = 0 if Nh} , (5)
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essentially unchanged from (1).
When the minimax procedure is applied to ballot data, P , (2) defines the

acceptable set of voter i at time t. For compressed ballot data, the acceptable
set at time t for a voter who voted for qj is, analogously,

Aj
Q,m(t) = {p ∈ C : d(qj , p) ≤ t}. (6)

The set of minimax winners can then be determined using

t∗Q,m = min{t = 0, 1, 2, . . . :

�⋂
j=1

Aj
Q,m(t) �= ∅};

minimax(Q,m) =
{

p ⊆ C : p ∈ Aj
Q,m(t∗Q,m), j = 1, . . . , 


}
,

which is essentially unchanged from (2), (3), and (4).
As Brams, Kilgour and Sanver (2005) noted, the minimax winners are not

altered by the duplication of ballots. In our terms, minimax(Q,m) does not
depend on the count vector, m, because FB committees reflect only which
subsets were voted for, not how many votes each one received. While this
property is consistent with some approaches to fairness (the FB committees
are the committees for which the worst-represented voter is best represented,
which recalls the approach to justice of (Rawls, 1971)), it makes the outcome
highly sensitive to outliers and thus not representative of any tendency of voters
to cast similar ballots.

Brams, Kilgour and Sanver (2005) suggested that it might be appropriate
to revise the minimax procedure so that the rate of increase of the acceptable
subset centered at qj depends inversely on mj . Applying this variation to com-
pressed ballot data would yield, instead of (6),

Aj ′
Q,m(t) =

{
p ∈ C : d(qj , p) ≤ t

mj

}
. (7)

Then the revised minimax winners would be determined using

t∗′Q,m = min{t ∈ [0,∞) :

�⋂
j=1

Aj′
Q,mi(t) �= ∅};

minimax′(Q,m) =
{

p ⊆ C : p ∈ Aj ′
Q,m(t∗Q,m), j = 1, . . . , 


}
.

Note that the iterative fallback process still starts at time t = 0, but it now
takes place in continuous (rather than discrete) time. (Because the mj are
integers, the threshold times t∗′Q,m are always rational, but we make no use
of this simplification.) Note that the minimax committees produced by this
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adjusted procedure reflect ballot duplication: The more voters who vote for qj ,
the slower the acceptable set centered at qj grows.

Let us illustrate our results so far, taking P as in Example 1 and (Q,m)
as in Example 2. We noted earlier that minisum(P ) = {100}. For (Q,m),
nQ,m(1) = 4, nQ,m(2) = 1, nQ,m(3) = 2, and n

2 = 2, so minisum(Q,m) =
{100, 101}. In other words, both 100 and 101 are minisum committees for
(Q,m).

We determined earlier that minimax(P ) = {100}. An identical calculation
shows that minimax(Q,m) = {100}. But the action of the revised procedure,
which takes into account duplicate ballots, is different, as shown in Table 2.

Table 2. The revised fallback process applied to Example 2.

Time (t) A1 ′(t) A2 ′(t) A3 ′(t)

0 {100} {110} {101}
1 {100, 000, 110, 101} {110, 010, 100, 111} {101}
2 {100,000,110,101, {110,010,100,111, {101,001,111,100}

010,001,111} 000,011,101}

Note that at time t = 1 the three acceptable sets have no common member, as
they did in the previous table (namely, outcome 100). But at time t = 2, there
are three common members; formally, t∗′Q,m = 2 and minimax′(Q,m) =

{100, 101, 111}.

3. Weighted Distances

The main objective of this paper is to show how different weightings—
which take into account, for example, similarities among ballots—can affect
the determination of representative committees. The first observation is sim-
ple: If we write Aj = Aj ′

Q,m, then (7) is equivalent to

Aj(t) =
{
p ∈ C : wjd(qj , p) ≤ t

}
, (8)

provided wj = mj . Thus, whether a particular subset belongs to the acceptable
subset centered at qj can be understood to depend on weighted distances.

It follows from (8) that increasing the weight of qj tends to draw the winning
subset closer to qj: At any particular time, t, fewer other subsets are acceptable
to a voter who supported qj . One weighting of interest, the count weight, is
based on the count vector; the weight of a voted-for subset, qj , is wj = mj ,
the number of voters who voted for qj , that we described earlier.
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Another weighting, which we will argue is useful for both minimax and
minisum procedures, is proximity weight, in which the weight of qj reflects
the extent to which a qj voter is similar to, or different from, other voters.
Specifically,

wj =
mj∑�

r=1 mrd(qj , qr)
, (9)

so that the weight of qj is proportional to mj , the number of voters who voted
for qj . The denominator of the fraction in (9) is the sum of the Hamming
distances from qj to the subsets approved by all voters. (Of course, d(qj , qj) =
0, so the distance from qj to itself does not contribute to this sum.) Thus wj ,
the weight of qj , is small when few voters approve of exactly qj or any subset
similar to it. By giving them less weight, proximity weighting tends to make
the outcome less sensitive to the views of “extreme” voters—that is, voters
whose ballots differ substantially from those of most other voters.

To generalize our analysis, consider compressed ballot data (Q,m), and as-
sume that a positive weight, wj , has been assigned to each qj . (There is no
requirement other than that all weights be positive; in particular, no normaliza-
tion is assumed—the weights need not sum to 1.) We define the weighted vote
for candidate h = 1, . . . , k to be

nw(h) =

�∑
j=1

wjq
j
h. (10)

A natural threshold of weighted votes is S = 1
2

∑�
j=1 wj , or half the total

weight. Thus, a weighted-majority rule or MVw committee is a committee
that includes all candidates whose weighted vote is greater than S and no can-
didates whose weighted vote is less than S.2 We will show that the MVw

committees are precisely the minisum committees in a weighted-distance con-
text.

We think of wjd(p, qj) as the weighted distance between a voted-for subset
qj and a possible committee p ∈ C . Then (8) defines the subsets acceptable to
a qj voter at time t. The unanimity version of the fallback bargaining procedure
can be implemented using (8) and

t∗ = min{t ∈ [0,∞) :
�⋂

j=1

Aj(t) �= ∅}; (11)

FBw = {p ⊆ C : p ∈ Aj(t
∗), j = 1, . . . , 
} . (12)

2We follow the same convention as discussed in the previous footnote. In particular, a candidate whose
weighted vote is exactly S may or may not be included in an MVw committee.
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The interpretation is as before: The time t∗ is the earliest moment that at least
one subset is acceptable to all voters; FBw is the set of all subsets that are
acceptable to all voters at time t∗.

We next characterize the weighted versions of the minisum and minimax
procedures in terms of the weighted distances they minimize. At the same
time, we develop a simple procedure for computing all winning committees.

Theorem 3 A subset p ∈ C is an MVw committee iff it minimizes

�∑
j=1

wjd(p, qj).

A subset p ∈ C is an FBw committee iff it minimizes

max
j=1...�

wjd(p, qj).

Proof. For any fixed h = 1, . . . , k and any fixed j = 1, . . . , 
, define

δh(p, qj) =

{
wj if qj

h �= ph

0 if qj
h = ph

from which it follows that

�∑
j=1

δh(p, qj) =

{ ∑�
j=1 wjq

j
h if ph = 0∑�

j=1 wj(1 − qj
h) if ph = 1

Therefore, using (10),

�∑
j=1

δh(p, qj) =

{
nw(h) if ph = 0
2S − nw(h) if ph = 1

But
∑�

j=1 wjd(p, qj) =
∑�

j=1

∑k
h=1 δh(p, qj) =

∑k
h=1

∑�
j=1 δh(p, qj). It

follows that p ∈ C minimizes
∑�

j=1 wjd(p, qj) iff (i) ph = 0 whenever
nw(h) < S and (ii) ph = 1 whenever nw(h) > S. This proves the first
statement of the theorem.3

The second statement follows directly from the result of (Brams and Kil-
gour, 2001, Theorem 4) that the FBw procedure determines the set of all sub-
sets that minimize the maximum distance.

3This part of the proof generalizes the proof of (Brams, Kilgour and Sanver, 2004, Proposition 4.)
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We will refer to MVw and FBw committees as weighted minisum and
weighted minimax committees, respectively. Theorem 3 and its proof provide
a simple procedure for finding all such committees.

Given compressed ballot data (Q,m) and a weight, wj , for each voted-for
subset, qj , compute a 2k × 
 matrix in which the rows represent subsets and
the columns voted-for subsets. The (p, j) entry is wjd(p, qj). Then find the
sum and the maximum of the entries in each row. The rows with minimum
sum correspond to the weighted-minisum committees, and the rows with the
minimum maximum to the weighted-minimax committees.

We illustrate first with Example 2 using count weights. The three columns
of the body of Table 3 refer to the voted-for committees (listed across the top).
Below each voted-for committee is its weight—in this case, its component of
the count vector. The rows of the table correspond to the possible winning
committees, which in this illustration are all subsets of C = {1, 2, 3}. Each
entry of the table is the weighted distance between the column subset and the
row subset. The two right-most columns record the row sum and row maxi-
mum.

Table 3. Determination of winning subset(s), Example 2, with count weights.

Voted-for Committee: 100 110 101
Weight: 1 1 2

∑
max

Subsets: 000 1 2 4 7 4
100 0 1 2 3∗ 2∗
010 2 1 6 9 6
001 2 3 2 7 3
110 1 0 4 5 4
101 1 2 0 3∗ 2∗
011 3 2 4 9 4
111 2 1 2 5 2∗

The winning subsets are indicated with asterisks. The weighted-minisum com-
mittees are 100 and 101, and the weighted-minimax committees are 100, 101,
and 111. These results accord exactly with those given earlier.

Note also that the table simplifies an extended procedure we recommended
elsewhere (Brams, Kilgour, and Sanver, 2005): Choose either minisum and
minimax as the primary criterion; use the other as a secondary criterion to
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Table 4. Determination of winning subset(s), Example 2, with proximity weights.

Voted-for Committee: 100 110 101
Weight: 5 3 10

∑
max

Subsets: 000 5 6 20 31 20
100 0 3 10 13 10
010 10 3 30 43 30
001 10 9 10 29 10
110 5 0 20 25 20
101 5 6 0 11∗ 6∗
011 3 2 4 9 4
111 10 3 10 23 10

break ties. Doing so leads us to discard 111 as a minimax committee, leaving
100 and 101 as the two committees selected according to both criteria.4

We next analyze the same example using proximity weights. As determined
by (9), these work out to be w1 = 1

3 , w2 = 1
5 , and w3 = 2

3 . (For instance,
from q1 = 100 the Hamming distances to q1, q2 = 110, and q3 = 101 are 0,
1, and 1, respectively; because q1, q2, and q3 are selected by m1 = 1, m2 = 1,
and m3 = 2 voters, respectively, w1 = 1

(1×0)+(1×1)+(2×1) = 1
3 .) To make

Table 4 neater, we have cleared denominators by multiplying the weights by
15, producing 15 × 1

3 = 5, 15 × 1
5 = 3, and 15 × 2

3 = 10.
There is now a unique winning committee, 101, as shown by the asterisks,
according to both the minisum and minimax criteria.

Of course, there may be restrictions on the size or composition of the com-
mittee to be elected. Restrictions might be imposed, for example, to fix the
exact size of the committee, to establish bounds (upper, lower, or both) on its
size, or to ensure that the committee contains representatives of certain sub-
groups of the candidate set. One important feature of our procedures is that
they can be adapted to satisfy restrictions of this sort.

In fact, changing the procedure to incorporate such restrictions is easy. Sim-
ply delete from the table all rows that correspond to subsets that fail to meet
the restrictions. For example, in the table above (Example 2, using proximity
weights), a plausible restriction might be that the committee to be elected is to
have exactly one member. If so, only the second, third, and fourth rows of the
table correspond to eligible subsets; all other rows must be removed. Clearly,

4A more sophisticated approach would be to order the rows of the table using the leximin ordering—see (
Fishburn, 2001) for details.
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the committee selected would be 100 by the minisum criterion, and either 100
or 001 by the minimax criterion.5

4. Conclusions

We have analyzed how minisum and minimax criteria can be used to elect
a representative committee using approval balloting. Motivating our study is
a natural link between approval balloting and committee elections: Both the
ballot and the outcome of the election are subsets of the set of candidates.
We have assessed minisum and minimax criteria, which give rise to proce-
dures with several desirable properties—they are anonymous (treat all voters
equally), neutral (treat all candidates equally), and symmetric (votes for and
against a candidate have an equal influence on the outcome). Moreover, we
have shown how both of these criteria can be adjusted using weights.

Based on the construction of tables such as Table 3 and Table 4, it is possible
to draw some inferences about the complexity of the minisum and minimax
criteria.6 Compressed ballot data, (Q,m), determines the number of voters,
n, the number of candidates, k, and the number of voted-for committees, 
.
Count weights can, of course, be obtained directly from the data. To calculate
all proximity weights using (9) takes approximately 
3k arithmetic operations.

Now suppose that the minisum or minimax procedure is to be applied using
a table. The table has 
2k entries, each of which is a (weighted) distance deter-
mined by 
k comparisons. Once the table is constructed, the determination of
each row maximum, and the comparison of the maxima, takes relatively few
steps. Thus, the complexity of either procedure, or both together, is roughly

2k2k .

Note, however, that the minisum criterion can be applied much more effi-
ciently using (5), if it is known that no candidate received exactly n

2 votes—for
example, if n is odd. Then the unique minisum committee can be determined
by using (10) to calculate the weighted vote for each candidate. The required
subset contains all candidates whose weighted vote exceeds the threshold S.
This calculation takes on the order of 
k arithmetic operations.

Thus, the order of complexity of the minimax procedure is always higher.
In the worst case, when 
 = n, the minimax procedure may be exponential
in the number of candidates, but it is always polynomial in the number of
voters. Hence, we believe that both the minisum and minimax criteria can be
the basis of practical procedures for using approval balloting in the election of
a committee. Further study of their properties is merited.

5Application of the two criteria in sequence, as discussed above, would break the tie in favor of 100.
6Algorithms for the computation of minisum and minimax vertices on graphs are studied in (Mirchandani
and Francis, 1990).
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On Some Distance Aspects in Social
Choice Theory

Christian Klamler
University of Graz

Abstract This paper investigates the relationship between Kemeny-type distance functions
on the set of choice functions and the original Kemeny distances on the set of
binary relations with special emphasis on the set of linear orders. First, it will be
shown in what way such distances differ. Second, for the Kemeny-type distance
function on the set of choice functions we will provide an explicit expression in
terms of the linear orders that rationalize them.

1. Introduction

The idea of measuring distances between binary relations has been increas-
ingly used in areas such as social choice and computer sciences in problems
of aggregation of individual rankings into a group ranking. Most prominent
in that respect is the distance function devised and characterized by Kemeny
(1959), which is based on the cardinality of the symmetric difference between
binary relations.1 In contrast to binary relations, choice functions are an alter-
native and very attractive possibility to represent (individual) preferences that
are used in economic and political models. Choice functions have been inten-
sively analysed in Aizerman and Aleskerov (1995) and Aleskerov and Mon-
jardet (2002). Especially in aggregation problems whenever little structure is
imposed on individual and/or group preferences, the use of choice functions
seems compelling (Xu, 1996). In that respect, choice functions can help to
avoid various paradoxes, such as Arrow’s impossibility theorem (Sen, 1986).
Distance functions on the set of choice functions have been used in connec-
tion to convexity issues and the aggregation of individual choice functions by
Albayrak and Aleskerov (2000) and Ilyunin and Popov (1988). A character-
ization of such a distance function which is based on the cardinality of the
symmetric differences of choice sets - and hence in the spirit of the Kemeny

1A generalization of the Kemeny distance function to a distance function on partial orders has been provided
by Bogart (1973).
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distance on binary relation - can be found in Klamler (2005).
The main goal of this note is to investigate the relationship between such a
Kemeny-type distance function on the set of choice functions and the original
Kemeny distance on the set of binary relations, where in this paper we focus on
linear orders. First, we will show in what way such distances differ. Second,
for the Kemeny distance on linear orders we will provide an explicit expression
in terms of the rationalized choice functions, and for the Kemeny-type distance
function on the set of choice functions we will provide an explicit expression
in terms of the linear orders that rationalize them. It will be seen that the latter
is based on the alternatives’ positions in the corrsponding linear orders.

2. Formal Framework

Let X be a finite set of m alternatives and denote the set of all non-empty
subsets of X by K. A choice function on X is a function C : K → K such
that for all S ∈ K, C(S) ⊆ S. The set of all choice functions is denoted by C.
A function d : C × C → R+ is called a distance function on set C if it satisfies
the following three conditions:

d(C,C ′) = 0 ⇔ C = C ′

d(C,C ′) = d(C ′, C)

d(C,C ′′) ≤ d(C,C ′) + d(C ′, C ′′)

In the following we will use the notion of “betweenness” for choice func-
tions as stated in Albayrak and Aleskerov (2000). In particular we will say that
for any C,C ′, C ′′ ∈ C, choice function C ′ lies between C and C ′′, if for all
S ∈ K, C(S) ∩ C ′′(S) ⊆ C ′(S) ⊆ C(S) ∪ C ′′(S).

Klamler (2005) characterizes a distance function on C using the following
properties:

A1.1 d(C,C ′) ≥ 0 where equality holds if and only if C = C ′

A1.2 d(C,C ′) = d(C ′, C)

A1.3 d(C,C ′′) ≤ d(C,C ′) + d(C ′, C ′′) and equality holds if and only if C ′
is between C and C ′′.

A2 If C̃, C̃ ′ results from C,C ′ by a permutation of the alternatives, then
d(C,C ′) = d(C̃, C̃ ′)

A3 If two choice functions C,C ′ ∈ Ĉ overlap except for a set K̄ ⊂ K which
is part of the domain in both choice functions, then the distance d(C,C ′)
is determined exclusively from the choice sets over K̄.
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A4 Let four choice functions C,C ′, C ′′, C ′′′ ∈ Ĉ disagree only on set T ∈
K such that for some S ⊆ T , C(T ) = C ′′(T ) ∪ S, and C ′(T ) =
C ′′′(T )∪S. Then the distance between C and C ′ should be equal to the
distance between C ′′ and C ′′′.

A5 The minimal positive distance is 1.

Let us now define the following distance function on C:

Definition 1 For any C,C ′ ∈ C, dF (C,C ′) =
∑

S∈K |C(S)∆C ′(S)|.
Hence, dF measures the sum of the cardinality of the symmetric differences

of all choice sets in the two choice functions. The following result has been
proved in Klamler (2005).2

Theorem 2 A distance function d on C is equal to dF if and only if it satisfies
the axioms A1-A5.

Another, more widely used way of representing preferences, is to take bi-
nary relations R ⊂ X×X. We will use xRy for saying that x is at least as good
as y (or x ≥ y). Using similar axioms as those in the above characterization,
Kemeny (1959) characterized a distance function on the set of binary relations.
In the following we will restrict ourselves to the set of all linear orders, L, i.e.
all complete, antisymmetric and transitive binary relations on X.

Definition 3 A function dK : L × L → R+ is the Kemeny distance if for
all R,R′ ∈ L, dK(R,R′) = |R∆R′|.

3. Choice Functions Versus Binary Relations

In this section we want to investigate whether the distance between choice
functions, measured by dF , corresponds to the distance between the prefer-
ences that rationalize them, measured by dK .3 We say that a choice function
C is linearly rationalizable if there exists an R ∈ L such that for all S ∈ K,
C(S) = maxRS, where maxRS = {x ∈ X : ∀y ∈ X,xRy}. It should be
clear that this leads to the following:

Remark 4 a If C ∈ C is linearly rationalized by R ∈ L, then xRy ⇔
C({x, y}) = {x}.

b If C,C ′ ∈ C are linearly rationalized by R,R′ ∈ L, respectively, then
C ≡ C ′ ⇔ R ≡ R′.

2Actually the proof is based on the larger set of “quasi” choice functions, i.e. choice functions where empty
choice sets are possible.
3On rationalization of choice functions see Suzumura (1983).
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From Remark 4(b) we see that there is a one-to-one correspondence, φ,
between the set of linear orders and the set of choice functions rationalized by
them.

Example 5 Let R1, R2, R3 ∈ L be as stated in Table 1 (where less preferred
alternatives are in lower rows).

Table 1. Linear orders with 3 alternatives.

R1 R2 R3

x y x
y x z
z z y

The corresponding choice functions C1, C2, C3 are given in Table 2 (for
notational convenience the value of C on singletons will be omitted throughout
the paper).

Table 2. Choice functions rationalized by the linear orders in Table 1.

C1(.) C2(.) C3(.)
X x y x
xy x y x
xz x x x
yz y y z

Using our previously defined distance functions dK and dF , the distances
between the above preferences are as follows:

dK(R1, R2) = 2; dK(R1, R3) = 2

dF (C1, C2) = 4; dF (C1, C3) = 2

Proposition 6 There exist binary relations R1, R2, R3 ∈ L and corre-
sponding choice functions C1, C2, C3 ∈ C, such that dK(R1, R2) ≥ dK(R1,
R3) and dF (C1, C2) < dF (C1, C3).

Proof. See example 1.
It seems quite remarkable that such similar concepts of measuring distance

provide different results. Actually for four or more alternatives the distances
could switch completely as stated in the following proposition:

Proposition 7 If m ≥ 4, there exist binary relations R1, R2, R3 ∈ L and
corresponding choice functions C1, C2, C3 ∈ C, such that dK(R1, R2) >
dK(R1, R3) and dF (C1, C2) < dF (C1, C3).
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Proof.
Let us start with the case m = 4 and let there be R1, R2, R3 ∈ L given as

in Table 3.

Table 3. Linear orders with 4 alternatives.

R1 R2 R3

x y x
y x w
z z y
w w z

The corresponding choice functions that are rationalized by those linear or-
ders are stated in Table 4.

Table 4. Choice functions rationalized by linear orders in Table 3

C1(.) C2(.) C3(.)
X x y x

xyz x y x
xyw x y x
xzw x x x
yzw y y w
xy x y x
xz x x x
xw x x x
yz y y y
yw y y w
zw z z w

In this example the distances between the binary relations are dK(R1, R2)=
2 and dK(R1, R3) = 4, but the distances between their corresponding choice
functions are dF (C1, C2) = 8 and dF (C1, C3) = 6. Hence, what is considered
of larger distance in space L is considered of lower distance in space C.

For any situation with m > 4 we can now introduce additional alternatives
such that the switches in the binary relations are maintained as in the above
example. Assume set A ⊂ X being a linearly ordered set of alternatives in
X and consider a ∈ X. A general binary relation would be as in Table 5,
where alternatives above A are strictly preferred to all alternatives in A and
alternatives below A are strictly preferred by all alternatives in A.

Hence the distance between R1 and R2 is dK(R1, R2) = 2 whereas dK(R1,
R3) = 4. However, as R1 and R2 only differ in the first two alternatives, this
means that in the respective choice functions there is a change in the choice set
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Table 5. Linear orders with m alternatives.

R1 R2 R3

x y x
y x y
A A A
a a w
z z a
w w z

from x to y in 2m−2 sets leading to a distance dF (C1, C2) ≥ 16 for m ≥ 5.
On the other hand the change of alternative w from bottom position to position
m− 2 leads to a change in 3 choice sets and hence to a distance dF (C1, C3) =
6.

What could be the reason for this observation? It turns out that in using
distance function dF , switches between alternatives which are higher up in
the corresponding ranking get more weight than switches at the lower end of
the ranking. Switching the two bottom ranked alternatives only changes the
choice of one set (namely that of the two alternatives) whereas switching the
two top ranked alternatives changes the choice of 2m−2 sets (namely all those
in which both alternatives are contained). This might indeed be a reasonable
way of thinking about distances especially as in many voting situations alter-
natives lower down the ranking are not considered at all. The different weights
assigned to switches between alternatives depending on their positions in the
ranking will be of importance in the analysis of the distance functions.

4. Distance Functions

The previous section has illuminated the differences between dK and dF .
Now, the question arises whether we can explicitly express dK(R,R′) in terms
of the corresponding rationalized choice functions φ(R) and φ(R′) and wheth-
er we can explicitly express dF (C,C ′) in terms of the rationalizing binary
relations φ−1(C) and φ−1(C ′).

From Remark 4(b) we know that if C ∈ C is linearly rationalized by R ∈ L
then xRy ⇔ C({x, y}) = {x}. Hence it is obvious that for all R,R′ ∈ L
such that xRy and yR′x, the Kemeny distance between R and R′ restricted
to set {x, y} is 2 and this is equal to the cardinality of the symmetric differ-
ence of the corresponding choices from {x, y}, i.e. |C({x, y})∆C ′({x, y})| =
|{x}∆{y}| = 2. Hence this leads to the obvious corollary:
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Corollary 8 For any R,R′ ∈ L with corresponding C,C ′ ∈ C,

dK(R,R′) = |R∆R′| =
∑

S∈K2

|C(S)∆C ′(S)|

where K2 = {T : |T | = 2}.

It is by far less obvious to explicitly express dF (C,C ′) in terms of φ−1(C)
and φ−1(C ′). As discussed in the previous section, dF takes into account the
positions of the alternatives in the corresponding rankings. Hence it seems
clear that in addition to the number of switches in pairs of alternatives also
positional information about those alternatives will be required. Therefore we
will introduce the following notion of switching:4

Let R,R′ ∈ L. Since R and R′ are both complete and antisymmetric it
follows that (x, y) ∈ R\R′ ⇔ (y, x) ∈ R′\R. We call a pair (x, y) ∈ R
an R − R′-transposition if (y, x) ∈ R′.5 Moreover, R − R′-transpositions
(x, y) can be grouped by x. Let τ(x) ≡ τR,R′(x) = |{y ∈ X|(x, y) ∈ R and
(y, x) ∈ R′}| be the number of transpositions involving x (where τ(x) might
be zero). Let pR : X → {1, 2, ...,m} be the ranking of X w.r.t. R, i.e.,

(x, y) ∈ R and x �= y ⇒ pR(x) < pR(y).

This enables us to make the following claim:

Claim 9 Let R,R′ ∈ L with corresponding choice functions C,C ′ ∈ C and,
for x ∈ X, let Kx ≡ {S ∈ K|C(S) = {x}}. Then∑

S∈Kx

|C(S)∆C ′(S)| = 2
(
2m−pR(x) − 2m−pR(x)−τ(x)

)

Proof. Obviously, for C rationalized by R, |Kx| = 2m−pR(x) − 1, namely
the number of sets in which x is chosen. By the same argument, the number of
sets in which x is chosen w.r.t. R′ is 2m−pR′ (x) −1. As we restrict ourselves to
alternatives for which pR(x) > pR′(x) it follows from pR′ = pR − τ(x) that
a change in the choice sets occured in exactly 2m−pR(x) − 2m−pR(x)−τ(x) sets.
As R,R′ ∈ L, and hence |C(S)∆C ′(S)| is either zero or two, the above claim
follows.

Hence a straightforward corollary is the following:

4I am very grateful to a referee for suggesting this idea and herewith making the results much clearer and
simpler.
5Notice that the Kemeny distance dk(R, R′) between R and R′ is twice the number of R − R′-
transpositions.
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Corollary 10

dF (C,C ′) =
∑
x∈X

∑
S∈Kx

|C(S)∆C ′(S)| = 2

m−1∑
i=1

(
2m−i − 2m−i−τ(xi)

)

Obviously, this expresses dF (C,C ′) as a function of τ ≡ τR,R′ and hence
of R and R′.

5. Summary

This paper has investigated the difference between Kemeny-type distance
functions based on the set of all choice functions and the original Kemeny dis-
tance on binary relations. We have illuminated the differences between those
distances. Moreover, both distance concepts seem reasonable as they differ
only by the weight attached to the alternatives according to their positions in
the preference rankings. Finally, we have provided explicit statements of those
distance functions using their counterparts, namely linear orders and choice
functions, respectively.
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Algorithms for Biproportional
Apportionment

Sebastian Maier
Institut für Mathematik, Universität Augsburg

Abstract For the biproportional apportionment problem two algorithms are discussed, that
are implemented in the Augsburg BAZI program, the alternating scaling algo-
rithm and the tie-and-transfer algorithm of Balinski and Demange (1989b). The
goal is to determine an integer-valued apportionment matrix that is “proportional
to” a matrix of input weights (e.g. vote counts) and that at the same time achieves
prespecified row and column marginals. The alternating scaling algorithm finds
the solution of most of the practical problems very efficiently. However, it is
possible to create examples for which the procedure fails. The tie-and-transfer
algorithm converges always, though convergence may be slow. In order to make
use of the benefits of both algorithms, a hybrid version is proposed.

Keywords: Biproportional divisor method; biproportional rounding algorithm; discrete al-
ternating scaling; tie-and-transfer algorithm; BAZI.

1. Introduction

The Zurich Canton parliament is composed of seats that represent elec-
toral districts as well as political parties (Pukelsheim, 2004b; Balinski and
Pukelsheim, 2006; Pukelsheim, 2006). Each district i = 1, . . . , k is repre-
sented by a number of seats ri proportional to its population, and each political
party j = 1 . . . l gets cj seats proportional to its total number of votes. The
vote count in district i of party j is denoted by vij . Altogether the vote counts
are assembled into a vote matrix V ∈ N

k×l (see Box on page 106).
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Box: Biproportional divisor method with standard rounding (Neues Zürcher Zuteilungsver-

fahren).

The seats per district are apportioned in the middle of the legislature period on the basis of

the population counts. Party seats are allocated on election day on the basis of the total party

ballots in the whole electoral region. As the Zurich electoral law provides each voter with as

many ballots as the district has seats, we need to compute the support for a party in a district.

This is done by dividing the raw data that are returned by the polling stations by the district

magnitude, and by rounding the resulting quotient to the closest integer. For each party, these

district support sizes are summed over all districts leading to the overall support size for a

party. The support size may be interpreted as number of people supporting a party. It is used

to compute the superapportionment, this is, the allocation of the seats to the parties across

the whole electoral region.

The final step is the subapportionment, the allocation of the seats to the parties within the

districts. It provides a two-way proportionality, achieving the prespecified district magni-

tudes and the party seats. To compute the apportionment we need two sets of divisors, the

district divisors and the party divisor. Each vote count of a party in a district is divided by

its corresponding district divisor and party divisor; this quotient is rounded in the usual way

to obtain the seat-number. A more detailed description of the Zurich apportionment method

can be found in Balinski and Pukelsheim (2006) and Pukelsheim (2006).

Zurich City Parliament election of 12 February 2006, Superapportionment:

SP SVP FDP Greens CVP EVP AL SD City divisor
Support size 23180 12633 10300 7501 5418 3088 2517 1692 530
Seats 125 44 24 19 14 10 6 5 3

Zurich City Parliament election of 12 February 2006, Subapportionment:

SP SVP FDP Greens CVP EVP AL SD District-
125 44 24 19 14 10 6 5 3 divisor

"1+2" 12 28518-4 15305-2 21833-3 12401-2 7318-1 2829-0 2413-0 1651-0 7000
"3" 16 45541-7 22060-3 10450-1 17319-3 8661-1 2816-0 7418-1 3173-0 6900
"4+5" 13 26673-5 8174-2 4536-1 10221-2 4099-1 1029-0 9086-2 1406-0 5000
"6" 10 24092-4 9676-1 10919-2 8420-1 4399-1 3422-1 2304-0 1106-0 6600
"7+8" 17 61738-5 27906-2 51252-5 25486-2 14223-1 10508-1 5483-1 2454-0 11200
"9" 16 42044-6 31559-4 12060-2 9154-1 11333-1 9841-1 2465-0 5333-1 7580
"10" 12 35259-4 19557-3 15267-2 9689-1 8347-1 4690-1 2539-0 1490-0 7800
"11" 19 56547-6 40144-4 19744-2 12559-1 14762-2 11998-2 3623-1 6226-1 9000
"12" 10 13215-3 10248-3 3066-1 2187-1 4941-1 0-0 429-0 2078-1 4000
Partydivisor 1.006 1.002 1.01 0.97 11333-1 0.88 0.8 1

Table entries are of the form v-a, where v is the number of party votes in the district and

a is the number of seats apportioned to that party’s list in the district. The party ballot v is

divided by the associated district and party divisors, and then rounded in the standard way to

obtain a. In district "1+2" the Greens had 12401 ballots and were awarded by 2 seats, since

12401/(7000 × 0.97) = 1.83 ↗ 2.
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This leads to the following proportional matrix problem (cf. Balinski and
Demange 1989a,b; Pukelsheim, 2004; Balinski and Pukelsheim, 2006; Pukels-
heim, 2006). Find a matrix apportionment A ∈ N

k×l and row divisors ρi, i =
1 . . . k and column divisors γj, j = 1 . . . l which satisfy the following condi-
tions:

aij =

[
vij

ρi · γj

]
s

(1)

ai+ =
∑
j≤l

aij = ri, i = 1, . . . , k (2)

a+j =
∑
i≤k

aij = cj , j = 1, . . . , l. (3)

The rounding [x]s of a positive number x ∈ [n, n + 1], n ∈ N depends on a
dividing point s(n) ∈ [n, n + 1]. We have [x]s = n + 1, if x > s(n), and
[x]s = n, if x < s(n). In the case x hits the signpost s(n), x can be either
rounded down or up. Thus the commonly known divisor methods for vector
apportionments are extended to the matrix case. Matrix apportionments which
are computed using divisor methods share nice properties, e.g. uniformity and
homogeneity, and are unique up to ties (Balinski and Demange 1989a,b).

Since the matrix problem cannot be solved in one step, we need iterative
procedures. In Section 2 we review two algorithms for computing the matrix
apportionment. In Section 3 we investigate the runtime and the error func-
tional. This leads us to suggest merging the advantages of both algorithms to a
hybrid algorithm in Section 4.

2. Algorithms

The two algorithms to be reviewed are the alternating scaling algorithm,
a discrete version of the commonly known iterative proportional fitting algo-
rithms from statistics, and the tie-and-transfer algorithm proposed in (Balinski
and Demange, 1989b).

For both algorithms, a measure for the improvement is the error count in
step t which corresponds to an interim apportionment A(t):

f(t) :=
1

2

∑
i≤k

|ai+(t) − ri| + 1

2

∑
j≤l

|a+j(t) − cj |

This is the number of seat transfers necessary to achieve the solution, that
is, the number of "wrong" allocations within the apportionment matrix. The
procedure stops as soon as the error count is zero.

Before starting the computation, existence of a solution can be checked by
using a max-flow min-cut algorithm (Joas, 2005). For the continuous case,
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existence is investigated for example in Bacharach (1970) or Pretzel (1980). In
the sequel, we assume existence. Also we do not pay attention to multiplicities
that are possible when the scaled weights hit a signpost.

2.1 Alternating Scaling Algorithm (AS)

The continuous alternating scaling algorithm was proposed by Deming and
Stephan (1940) and has many applications in statistics, such as fitting contin-
gency tables or fitting loglinear models (Fienberg and Meyer, 1983). This pro-
cedure, also known as the RAS algorithm, is extensively studied in literature
(Ireland and Kullback, 1968; Marshall and Olkin, 1968; Bacharach, 1970). A
more extensive and detailed overview on the literature can be found in Balinski
and Pukelsheim (2006). The discrete version of the alternating scaling proce-
dure and its properties is described in Pukelsheim (2004). The idea is to solve
the vector problem for rows in odd steps and for columns in even steps. Hence,
either rows or columns are fitted. If the rows are fitted, errors may be left in the
columns, and if the columns are fitted, errors may be left in the rows. Thus the
matrix problem is reduced to many vector problems, either by solving a set of
row problems, or by solving a set of column problems. To solve such a vector
problem, the algorithm described in Dorfleitner and Klein (1999) is used in up-
dating the divisors in each step. The algorithm succeeds in presenting row and
column divisors fulfilling (1) – (3). A Java implementation of the following
algorithm can be downloaded from www.uni-augsburg.de/bazi.

Algorithm (Discrete Alternating Scaling)

(0) Initialize start divisors Pi(0) = 1, i = 1 . . . , k and Γj(1) = 1, j =
1, . . . , l. At every step t, the scaled weights will be of the form vij(t) =

vij

Pi(t)·Γj (t) .

(i) For odd steps, find row divisors ρi(t) such that, with updated divisors
Pi(t) = ρi(1)ρi(3) . . . ρi(t), the apportionment aij(t) = [vij(t)]s satis-
fies (2).

(ii) For even steps, find column divisors γj(t) such that, with updated divi-
sors Γj(t) = γj(2)γj(4) . . . γj(t), the apportionment aij(t) = [vij(t)]s
satisfies (3).

The algorithm terminates successfully after finitely many steps, T say, when
(1) – (3) are satisfied with divisors ρi = Pi(T ) and γj = Γj(T ).
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Note that row divisors are updated only in odd steps, and column divisors in
even steps. Therefore the updated divisors are of the form

Pi(t) = ρi(1)ρi(3) · · · ρi

(
2� t

2
� − 1

)
, Γj(t) = γj(2)γj(4) · · · γj

(
2� t

2
�
)

.

2.2 Tie-and-Transfer (TT)

The tie-and-transfer algorithm was first described in Balinski and Demange
(1989b), in a more general form dealing with inequality constraints for rows
and columns. The case of equality constraints can be found in Balinski and
Rachev (1997). The main idea is to transform the biproportional problem into
a bipartite graph. This graph is used to find a feasible flow corresponding to
a biproportional apportionment (Balinski and Demange, 1989b; Balinski and
Rachev, 1997; Zachariasen, 2006).

Algorithm (Tie-and-Transfer)

(0) Start with an initial apportionment exhausting the housesize. This initial
apportionment is obtained by fitting all columns as proposed in Balinski
and Rachev (1997). Then the following labelling procedure is estab-
lished.

(i) Either determine subsets of rows and columns to modify the row and
column divisors. The modification is done in such a way that at least
one more of the rescaled weights is either scaled down to the previous
signpost, or scaled up to the next signpost. This means that the rescaled
weight can be rounded either down or up without affecting the divisors.

(ii) Else determine a path from an underrepresented row to an overrepre-
sented row in the graph. The path is along an interim apportionment on
rescaled weights hitting a signpost alternating being rounded down and
rounded up. Along this path the direction of rounding is changed, that
is, rescaled weights which were rounded down will now be rounded up,
and rescaled weights which were rounded up will now be rounded down.
This procedure increases the number of seats in the underrepresented
row and decreases the number of seats in the overrepresented row. The
net effect of the transfer is a decrease of the error function by exactly
one unit. The transfer does not affect any other row or column sums.

The algorithm will terminate after finitely many steps.

Note that the apportionment is only modified on arcs that correspond to
rescaled weights on signposts. This ensures at every step an apportionment
which can be obtained by the current divisors. The error count decrease is
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Table 1. Runtimes, iterations and starting errors: AS seems to perform better than
TT, except for examples MOC3T and MOD3T.

Tie-and-Transfer Alternating Scaling
time start error time iterations
(sec.) (count) (sec.) (count)

KRW1995 2 30 1 11
KRW1999 2 29 2 75
KRW2003 2 29 1 18
MOB3T 6 499 2 177
MOC3T 6 500 25 2294
MOD3T 6 500 34 3472
MOB3M 7674 499092 5 395
MOC3M 7756 499902 92 6535
MOD3M 7043 499999 112 9468

o(lkf(0)) (Balinski and Demange, 1989b). In contrary to the alternating scal-
ing algorithm, the tie-and-transfer-algorithm in every step either modifies the
divisors, or changes the apportionment.

3. Properties and Data

The BAZI-program (www.-augsburg.de/bazi) includes not only various
apportionment methods, but also an extensive data-base. This data-base in-
cludes examples for vector problems and for matrix problems, empirical ex-
amples, and academic ones. To study the performance of the algorithms on
empirical data, we choose the last three elections for the Zurich Canton parlia-
ment, KRW1995, KRW1999, KRW2003. There are 18 districts, and 13 or 14
participating parties. The housesize is 180, the district magnitudes vary from
4 to 16, the parties get 1 to 55 seats.

We also study 3 × 3 weight matrices that are motivated by the literature
on the continuous iterative proportional fitting algorithm (Marshall and Olkin,
1968). These matrices have large "housesizes" of 3000 (MOB3T, MOC3T,
MOD3T), or 3000000 (MOB3M, MOC3M, MOD3M).

Table 1 summarizes the observed runtimes of the computation. Since the
error count function is linearly decreasing for the tie-and-transfer algorithm,
only the starting error count is given. For the alternating scaling algorithm the
number of iterations is shown. Both algorithms are quite fast for the Zurich
Canton Parliament Election data, taking about 1 to 2 seconds. For MOB3T
both algorithms are very fast, but for MOC3T and MOD3T alternating scaling
takes about four to six times longer than tie-and-transfer. The three examples
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Fig. 1. Error count for MOD3T: For TT, the decrease is constant. For AS, the
decrease is fast at the beginning and slow towards the end. It reaches 0 after 3472
iterations.

with housesizes 3000000 exhibit an extreme behavior: tie-and-transfer takes
hours, while the alternating scaling algorithm ends within seconds or minutes.
To explain this behavior, we take a closer look at the development of the error
counts.

Figure 1 shows the error count function for MOD3T for the tie-and-transfer
algorithm on the left hand side, and for the alternating scaling algorithm on
the right hand side. The running times are 6.5 seconds for tie-and-transfer, and
34.4 seconds for alternating scaling. For the alternating scaling algorithm, the
decrease is very fast in the beginning, but very slow towards the end. It takes
225 steps for a decrease from three to two, 511 steps from two to one, and
another 2200 steps to end at zero. It is known from Fienberg and Meyer (1983)
that the convergence of the continuous iterative scaling procedure may be very
slow. The tie-and-transfer algorithm shows the predicted linear behavior, by
reducing the error count one by one. Starting with an error of 500, it is faster
than alternating scaling which looses a lot of time towards the end.

Figure 2 conveys the same information. A constant decrease for the tie-and-
transfer algorithm, but it has to start with an error count of 499092, and it takes
rather long (about 2 hours) to work this down to zero. Alternating scaling is
fast, but again the last steps take excessively long. It takes 491 steps for the
decrease from three to two, 46 steps from two to one, and another 1577 steps
from one to zero.
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Fig. 2. Error count for MOC3M: The decrease is constant for TT with starting
error 499902. For AS, the decrease is fast at the beginning and slow towards the end,
reaching 0 after 653 iterations.

4. Hybrid Algorithm

On the basis of these examples we may summarize the runtime properties of
the two algorithms: the alternating scaling algorithm is very fast in the begin-
ning, but may take very long towards the end. The tie-and-transfer algorithm
processes the error count one by one, even if there is a big error count left.

To combine the advantages of both algorithms, we suggest a hybrid ver-
sion, starting with the alternating scaling algorithm and finishing with the tie-
and-transfer algorithm. The challenge is to implement an appropriate time to
switch.

At the end of the column adjustment there is a check for a switch of the
method. We have experimented with two switching rules.

1 Fast switch: The error count stays the same for two iterations.

2 Adaptive switch: The error count stays the same as many iterations as it
has digits, e.g. six iterations for an error count of 499902.

Figure 3 shows the error count decrease of the hybrid algorithm with adap-
tive switch for MOD3T and MOC3M. The decrease is fast in the beginning on
the left hand side of the vertical line that marks the switching point. After the
switch on the right hand side the error count function is linear like the error
count function of the tie-and-transfer algorithm. To compare the decrease of
the hybrid algorithm, the decrease of the alternating scaling algorithm is also
plotted. The error count function of the hybrid algorithm decreases faster than
that for the alternating scaling algorithm.



Algorithms for Biproportional Apportionment 113

Fig. 3. Error count for MOD3T and MOC3M using the hybrid algorithm with
adaptive switch: On the left hand side of the vertical line the decrease of AS can be
seen. After the switching point the error count decreases linearly using the hybrid
algorithm.

Table 2. Runtimes, iterations and error counts for the the tie-and-transfer algorithm,
the alternating scaling algorithm, and the hybrid algorithm: The hybrid algorithm
performs always better than the other proposed algorithms.

Tie-and-Transfer Alternating Scaling Fast Sw. Hybrid Adapt. Sw. Hybrid
time start error time iter. time iter.+err. c. time iter.+err. c.
(sec.) (count) (sec.) (count) (sec.) (count) (sec.) (count)

KRW1995 2 30 1 11 1 6 + 2 1 6 + 2
KRW1999 2 29 2 75 2 6 + 1 2 6 + 1
KRW2003 2 29 1 18 2 6 + 2 2 6 + 2
MOB3T 6 499 2 177 1 52 + 20 1 52 + 20
MOC3T 6 500 25 2294 0 24 + 4 0 24 + 4
MOD3T 6 500 34 3472 1 52 + 25 1 52 + 25
MOB3M 7674 499092 5 395 4 270 + 24 4 282 + 17
MOC3M 7756 499902 92 6535 24 832 + 709 26 1380 + 317
MOD3M 7043 499999 112 9468 51 922 + 1806 40 1934 + 571
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Table 2 summarizes the runtime improvements of the hybrid algorithm. In
each line there is a runtime decrease. For empirical examples both switch-
ing rules have the same effect, because of the small number of error counts.
For larger housesizes there is a runtime decrease from about two hours for the
tie-and-transfer algorithm down to one minute. The improvement for the alter-
nating scaling algorithm is also substantial, though not quite so spectacular.

Another way to speed up the calculation is to start with continuous iterative
proportional fitting (IPF) and switch according to some rule to one of the dis-
crete algorithms. This approach is proposed in Balinski and Demange (1989b)
for finding a good starting point for the tie-and-transfer algorithm.

Table 3 summarizes running times and remaining error counts for the tie-
and-transfer algorithm and required iterations for the alternating scaling pro-
cedure for a switching barrier of one. Table 4 applies for a switching barrier of
ten. For the Canton Zurich data the combination of continuous and discrete al-
ternating scaling is approximately as fast as the discrete algorithm. If there is a
higher error count left, e.g. for MOC3T, MOC3M, MOD3T, and MOD3M with
barrier ten, the disadvantage of slow convergence towards the end becomes vis-
ible. Using barrier one, the combination of continuous iterative proportional
fitting and alternating scaling is quite fast. Using iterative proportional fitting
together with tie-and-transfer together is a little slower than the other combina-
tion (IPF – AS) for the empirical examples. For the artificial examples, it has a
very good performance. After the initial fitting of columns, there is no or only
a small error count left for barrier one. Especially for MOC3M and MOD3M
there are 369 and 445 alternating scaling steps necessary to reduce the error
count to zero, but this is processed very fast by the tie and transfer algorithm.

In conclusion we find that the hybrid algorithm performs better than one
of the proposed methods alone The choice of the switching rule has practi-
cally no influence, hence we decided to implement the fast switching rule in
BAZI. The use of the continuous iterative proportional fitting procedure at the
beginning would be another option. Another proposol to improve upon the tie-
and-transfer algorithm, and a detailed investigation of the runtime properties
of the algorithms can be found in Zachariasen (2006).
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Table 3. Runtimes, iterations and error counts for continuous hybrid algorithm using
a switching barrier of one: Starting with IPF speeds up the computation. For larger
housesizes switching to TT performs better.

TT AS IPF–TT (1) IPF–AS (1)
time time time err. c. time iter.
(sec.) (sec.) (sec.) (count) (sec.) (count)

KRW1995 2 1 1.3 6 0.9 16
KRW1999 2 2 2.1 8 1.3 39
KRW2003 2 1 1.6 6 0.7 11
MOB3T 6 2 0.2 1 0.2 9
MOC3T 6 25 0.8 0 0.8 2
MOD3T 6 34 1.4 0 1.3 1
MOB3M 7674 5 0.2 0 0.2 2
MOC3M 7756 92 2.1 1 5.8 369
MOD3M 7043 112 3.2 1 7.5 445

Table 4. Runtimes, iterations and error counts for continuous hybrid algorithm using
a switching barrier of ten: Starting with IPF speeds up the computation. Switching to
AS the disadvantage of slow convergence towards the end becomes visible again.

TT AS IPF–TT (10) IPF–AS (10)
time time time err. c. time iter.
(sec.) (sec.) (sec.) (count) (sec.) (count)

KRW1995 2 1 1.3 6 0.7 16
KRW1999 2 2 2 8 1.15 32
KRW2003 2 1 1.8 6 0.76 9
MOB3T 6 2 0.2 5 1 82
MOC3T 6 25 0.2 5 24.76 2286
MOD3T 6 34 0.4 5 30.26 3105
MOB3M 7674 5 0.3 5 0.92 74
MOC3M 7756 92 1.6 5 27.95 2257
MOD3M 7043 112 2.4 5 30.8 2806
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Abstract Social choice theory deals with aggregating individual opinions into social choi-
ces. Over the past decades a large number of choice methods have been evalu-
ated in terms of various criteria of performance. We focus on methods that can
be viewed as distance minimizing ones in the sense that they can be analyzed in
terms of a goal state of consensus and the methods themselves can be seen as
minimizing the distance of the observed profile from that consensus. The meth-
ods, thus, provide a way of measuring the degree of disagreement prevailing in
the profile.

Keywords: Voting systems, metrics, consensus, outranking, tournament.

Introduction

When a group of people has an identical opinion concerning a set of decision
alternatives, it makes no difference which minimally reasonable social choice
rule is used in making the collective decision. This seems like a truism and in
a way it is. Its validity hinges, however, on what we mean by opinion, reason-
able rule and collective decision. If the individual opinions are expressed - as
they commonly are in social choice theory - as complete and transitive prefer-
ence relations over the alternatives and if the collective decision is also such
a relation, then it is easy to envision rules which result in collective decisions
that differ from the unanimously held opinion. One example is the rule that
converts the unanimous preference ranking into its mirror image, i.e. if x is
preferred to y by all individuals, then y is preferred to x in the collective deci-
sion. Such a rule is, however, downright bizarre and, thus, cannot be regarded
as reasonable.

∗The authors thank an anonymous referee for several constructive comments on an earlier version.
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The collective decision may, however, differ from the unanimously held
individual opinion in its structure. For example, the collective decisions may
be sets rather than rankings. Or they may be rankings over just a subset of
alternatives. With unanimous individual preference rankings, all reasonable
choice rules preserve the relevant part of the individual ranking. If the winner
is sought for, then the unanimously first-ranked alternative is the reasonable
choice. If the best three alternatives should be found, then the three highest
ranked alternatives in the collective ranking is the obvious choice. That the
unanimously held opinion should be reflected in the social choice is one of the
most obvious criteria one can impose on social choice rules.

But the setting where all individuals have an identical opinion on the alterna-
tives is certainly not typical. If it were, there would not be much need for theo-
rizing about social choices. It is easy to see that even a smallest deviation from
perfect unanimity may bring about differences in choices under reasonable ag-
gregation rules. Consider a profile with 5 voters and 6 alternatives so that 4
voters have an unanimous preference ranking A 	 B 	 C 	 D 	 E 	 F
and one voter has the ranking B 	 C 	 D 	 E 	 F 	 A (Nurmi, 2005).
Here the collective preference ranking ensuing from the Borda count differs
from that held by all but one voter. This shows that the Borda count violates
the no-veto condition which requires that whenever all voters save one agree
on which alternative is best, then this alternative ought to be chosen (Maskin,
1985). Under the approval voting and assuming that all voters cast their vote
for the same number of highest ranked alternatives, the nearly unanimously
first-ranked A will not be collectively first-ranked unless all voters approve
of just one alternative. All other acceptance thresholds result in some other
alternative being collectively top-ranked.

In this paper we focus on choice rules that can be characterized in terms
of a consensus profile and distance measure so that the application of the rule
in effect amounts to minimizing the distance between consensus profile and
the observed one. In effect, these methods look for the profile that is in some
specific sense closest to the one observed and reflects in some relevant sense
consensus among voters.

1. The Methods

The best-known method of the distance-minimizing variety is Kemeny’s
rule (Kemeny, 1959). Given an observed preference profile, it determines the
preference ranking over all alternatives that is closest to the observed one in
the sense of requiring the minimum number of pairwise changes in individual
opinions to reach that ranking. In the 5-voter example above, the closest collec-
tive ranking is the one held by all but one voter since this can be reached from
the observed profile by making 5 preference changes (one pushing A above F,
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the second taking it above E, etc.). All other candidates for unanimous collec-
tive preference rankings require a strictly larger number of pairwise inversions
of alternatives.

Kemeny’s rule has many desirable properties as a choice rule: it is mono-
tonic, always chooses a Condorcet winner if one exists (i.e. is a Condorcet
extension), never chooses the eventual Condorcet loser, to name a couple. By
the same token, it also has all those drawbacks that Condorcet extensions nec-
essarily have. Notably, it is vulnerable to the no-show paradox, in fact, even to
the strong version thereof (Pérez, 2001). This means that under Kemeny’s rule
it may happen that a voter is better off by not voting at all than voting according
to his/her (hereinafter his) preferences. Indeed, he might get his first-ranked
alternative elected if he refrains from voting, while it is not elected if he votes
according to his preferences.

It has been suggested that Kemeny’s rule is, in fact, what Marquis de Con-
dorcet had in mind when devising his voting system in late 18’th century
(Michaud, 1985; Young, 1988). Condorcet was preoccupied with maximizing
the probability of reaching the correct collective decision, given that the indi-
vidual members of the collectivity have a constant probability of being right.
It can be shown (see Young (1988)) that the maximum likelihood consensus
ranking is the one obtained by applying Kemeny’s method.

The Borda count is typically mentioned in connection with positional pref-
erence aggregation systems.1 Indeed, the usual definition of the system deter-
mines the Borda ranking on the basis of the positions that various alternatives
occupy in individual preference rankings. If the number of alternatives is k,
each first rank gives k − 1 points, each second rank k − 2 points etc. for each
alternative. The Borda score of an alternative is the sum of points it receives
from all voters. The Borda ranking, in turn, is the ranking determined by the
magnitude of the Borda scores.

As Borda pointed out, the method can be implemented purely on the basis
of pairwise comparisons. In the k × k matrix of comparisons, let the entry
(i, j) denote the number voters who prefer alternative i to alternative j, with
(i, i) = 0. Summing over row i of the matrix then gives us the Borda score of
alternative i.

Writing about a century later than Borda and Condorcet, C.L. Dodgson pro-
posed a voting system that - under specific circumstances - can be implemented
on the basis of pairwise comparisons, but in general requires also positional in-
formation regarding voter preferences. The system works as follows. Given a

1The Borda count has apparently been proposed much before the time of Jean-Charles de Borda. McLean
and Urken attribute this system to Ramon Lull who in somewhat ambiguous terms outlined it in a novel
written in late 13’th century (McLean and Urken, 1995, 16-19). It is, however, fair to say that Borda was
the first writer to systematically examine the system.
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preference profile, determine first if there is an alternative that beats all the
others in pairwise comparisons with a majority of votes. If such an alternative,
the Condorcet-winner, exists, then it is the winner. Otherwise, that is, when
there is no Condorcet winner, one tallies the number of pairwise preference
changes that are needed to make each alternative the Condorcet winner. That
alternative which requires the smallest number of such changes is the winner
in Dodgson’s sense. Obviously, Dodgson’s procedure allows us to construct a
social ranking over the alternatives: the fewer the changes that are needed to
make an alternative the Condorcet winner, the higher its rank.

Copeland’s system is of more recent origin although it has very likely been
used for a long time under various names. It is based on pairwise compar-
isons (Copeland, 1951). In fact, one never needs more than this information
to compute the Copeland winner and ranking. The basic version of the system
tallies the number of alternatives that a given alternative defeats by a majority
of votes. This number is the Copeland score of the alternative. The Copeland
ranking is the same as the order of the Copeland scores: the higher the score,
the higher the ranking.

Slater’s rule combines features of Copeland with those of Kemeny (Slater,
1961). Given a preference profile, one constructs the corresponding tourna-
ment matrix, i.e. a 0−1 matrix where 1 in ith row and jth column indicates that
ith alternative defeats the jth one by a majority. Otherwise the entry is 0. Let us
call it the observed tournament matrix over the alternatives. This may or may
not be cyclic. One then compares this matrix with all those tournaments that
represent complete and transitive relations over the same alternatives. Finally,
one computes the distance of the observed matrix with all those representing
complete and transitive rankings. The distance is measured by the number of
binary switches of preferences needed to transform the observed matrix into
one representing a complete and transitive relation (Nurmi, 2002, 326-328).

Three more recent methods will also be dealt with in this paper: Litvak’s,
Tideman’s and Schulze’s (Litvak, 1982; Bury and Wagner, 2003; Tideman,
1987; Zavist and Tideman, 1989; Schulze 2003). Like Borda’s also Litvak’s
method is based on a scoring rule. Each preference ranking is assigned a vector
of k components. The component i indicates how many alternatives are placed
ahead of the i’th one in the ranking under consideration. Each such vector
thus consists of numbers 0, . . . , k−1. Litvak’s rule looks for the k-component
vector V that is closest to the observed preferences in the sense that the sum of
component-wise absolute differences between the reported preference vectors
and V is minimal.

Tideman’s method is a sequential one proceeding from the largest pairwise
victory of an alternative against another. Assume that x1 and x2 form such a
pair. Denoting by vi the number of votes xi receives, this means that v1 − v2

is the largest difference of votes. We preserve this pair by drawing an arrow
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from x1 to x2. We then look for the next largest victory margin and preserve it
similarly. Proceeding in this manner we may encounter a situation where pre-
serving a pair would create a cycle. In these situations the respective relation
between alternatives is ignored. Otherwise we proceed in decreasing order of
victory margins. Eventually all alternatives are located in a directed graph with
no cycles. The root of the graph is the winning alternative. Since by construc-
tion the cycles are excluded, Tideman’s method yields a ranking over the set
of alternatives.

Schulze’s method, in turn, determines the “beatpaths” from each alternative
x to every other alternative y. The path consists of ordered alternative pairs
in the chain x,w1 . . . , wj , y - where w1, . . . , wj are alternatives - that leads
from x to y. The strength of the beatpath is the smallest margin of victory in
the chain. There are typically several beatpaths leading from one alternative to
another. Each of them, thus, has the strength of its weakest link. Denote now
by Sxy the strength of the strongest path from x to y. In other words, all but the
strongest path between any two alternatives are ignored. Schulze’s (potential)
winner is the alternative xS for which Sxsy ≥ Syxs for all alternatives y.2

Schulze proves that at least one such candidate always exists. Moreover, the
relation Sxy > Syx is transitive. That is, if Sxy > Syx and Syz > Szy, then
also Sxz > Szx, for all alternatives x, y, z.

In addition to the above somewhat technical systems, we shall also deal
with the plurality voting which is perhaps the best-known voting procedure. It
is often regarded as the embodiment of the one-person-one-vote principle. In
this system every individual has one vote and the winning alternative is one
with the largest vote sum.

2. Consensus States and Metrics

Apart from Kemeny’s rule the above systems do not explicitly contain an
idea that the voting outcome would be such a consensus state which is nearest
to the reported preferences. Yet, upon closer scrutiny this idea can be asso-
ciated with each of the systems outlined above. The state from which the
distance to the observed profile in Kemeny’s system is measured is one of una-
nimity regarding all positions of the ranking of alternatives, i.e the voters are in
agreement about which alternative is placed first, which second etc. throughout
all positions. The metric used in measuring the distance from the consensus is
the inversion metric. Let us briefly remind ourselves of these concepts.

We define a distance function over a set P (of points, for example) as any
function d : P × P → R+, where R+ is the set of non-negative real numbers.

2In case there are several potential winners, Schulze suggest a tie-breaking procedure which, however, will
not be discussed here (Schulze, 2003, 3).
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A distance function dm is called a metric if the the following conditions are
met for all elements x, y, z of P :

1 dm(x, x) = 0,

2 if x �= y, then dm(x, y) > 0,

3 dm(x, y) = dm(y, x), and

4 dm(x, z) ≤ dm(x, y) + dm(y, z).

Substituting preference relations for elements in the above conditions we
can extend the concept of distance function to preference relations. But these
conditions leave open the way in which the distance between two relations
is measured. Kemeny’s proposal is the following (Kemeny (1959), see also
Baigent (1987a,b)). Let R and R′ be two rankings. Then their distance is:

dK(R,R′) = |{(x, y) ∈ X2 | R(x) > R(y), R′(y) > R′(x)}|.
Here we denote by R(x) the number of alternatives worse than x in a ranking
R. This is called inversion metric.

The distance of two rankings is the number of inversions of consecutive
choices needed to transform one ranking into another. This can be easily seen
because:

If two consecutive choices are in wrong order they must be inverted at
some point

If two consecutive choices are in right order they need not to be inverted.

The distance between two preference profiles of the same size is, then, the
sum of the distances between the individual rankings. That is,

dK(P,P ′) =

n∑
i=1

dK(Ri, R
′
i),

where the profile P consists of rankings R1, . . . , Rn and the profile P ′ of rank-
ings R′

1, . . . , R
′
n. Similarly, we can measure the distance between a profile P

and a set of profiles S,

dK(P,S) = min
P ′∈S

dK(P,P ′).

We can generalize any distance function of rankings this way.
Let U(R) denote an unanimous profile where every voter’s ranking is R.

Kemeny’s rule results in the ranking R̄ so that

dK(P,U(R̄)) ≤ dK(P,U(R)) ∀R ∈ R \ R̄
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where P is the observed profile and R denotes the set of all possible rankings.
If all the inequalities above are strict then R̄ is the only winner.

To turn now to the Borda count, let us consider an observed profile P . For a
candidate x we denote by W(x) the set of all profiles where x is first-ranked in
every voter’s ranking. Clearly in all these profiles x gets the maximum points.
We consider these as the consensus states for the Borda count (Nitzan, 1981;
Farkas and Nitzan, 1979).

For a candidate x, the number of alternatives above it in any ranking of
P equals the number of points deducted from the maximum points. This is
also the number of inversions needed to get x in the winning position in every
ranking. Thus, using the metric above, wB is the Borda winner if

dK(P,W(wB)) ≤ dK(P,W(x)) ∀x ∈ X \ wB.

The plurality system is obviously also directed at the same consensus state
as the Borda count, but its metric is different. Rather than counting the num-
ber of pairwise preference changes needed to make a given alternative unan-
imously first ranked, it minimizes the number of individuals having different
alternatives ranked first.

We define a discrete metric as follows

dd(R,R′) =

{
0 if R = R′,
1 otherwise.

As above the distance between two preference profiles of the same size is

dd(P,P ′) =
n∑

i=1

dd(Ri, R
′
i),

where the profile P consists of rankings R1, . . . , Rn and the profile P ′ of rank-
ings R′

1, . . . , R
′
n. That is, the distance indicates the number of rankings that

differ in the two profiles. Note that we consider the profiles always in such a
way that the order of the rankings in the profiles is irrelevant. Also, the distance
between a profile P and a set of profiles S is, similarly,

dd(P,S) = min
P ′∈S

dd(P,P ′).

The unanimous consensus state in plurality voting is one where all voters
have the same alternative ranked first. With the metric, in turn, we tally for each
alternative, how many voters in the observed profile do not have this alternative
as their first ranked one. The alternative for which this number is smallest is
the plurality winner. The plurality ranking coincides with the order of these
numbers.
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Using this metric we have for the plurality winner wp,

dd(P,W(wp)) ≤ dd(P,W(x)) ∀x ∈ X \ wp.

The only difference to the Borda winner is the different metric used.
Dodgson’s system is based on a different idea of the goal state, viz. one

where there is a Condorcet winner. For any candidate x we denote by C(x)
the set of all profiles where x is the Condorcet winner.

Provided that a Condorcet winner exists in the observed profile, the winner
is this alternative. Otherwise, one constructs, for each alternative x, a profile
in C(x) which is obtained from the observed profile P by moving x up in one
or several voters’ preference orders so that x emerges as the Condorcet winner.
Obviously, any alternative can thus be rendered a Condorcet winner. It is also
clear that for each alternative there is a minimum number of such preference
changes involving the improvement of x’s position vis-„a-vis other alternatives
that are needed to make x the Condorcet winner. The Dodgson winner wD is
then the alternative which is closest, in the sense of Kemeny’s metric, of being
the Condorcet winner. That is,

dK(P,C(wD)) ≤ dK(P,C(x)) ∀x ∈ X \ wD.

Dodgson’s method is thus characterized by Kemeny’s inversion metric com-
bined with a goal state where a Condorcet winner exists.

Litvak’s procedure results in the ranking that is nearest to the observed one
in terms of minimizing the sum (over individuals) of absolute rank position
differences of alternatives in the former and the latter. As the position num-
bers play an important role in the Borda count, one would expect that Litvak’s
method is similar to the Borda count. This is, however, not the case (Nurmi,
2004, 8-9). For example, Litvak’s procedure may end up with a Condorcet
loser being ranked first which is never the case under the Borda count. Lit-
vak’s procedure also differs for Kemeny’s. To see this, consider the distance
of A 	 B 	 C 	 D to C 	 D 	 A 	 B, on the one hand, and to
D 	 C 	 B 	 A, on the other. In Kemeny’s sense, the latter difference
is larger than the former, while in Litvak’s sense they are equidistant from
A 	 B 	 C 	 D.

We define the Litvak metric formally as follows:

dL(R,R′) =
∑
x∈X

|R(x) − R′(x)|.

The Litvak winning ranking RL has the property

dL(P,U(RL)) ≤ dL(P,U(R)) ∀R ∈ R \ RL

exactly like the Kemeny winner except for the different metric.
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The Litvak and Kemeny metrics are related in the following way:

If a ranking R′ is derived from ranking R by only moving one candidate
up (or down) by n steps then 2dK(R,R′) = 2n = dL(R,R′)

If a ranking R cannot be turned into ranking R′ by switching adjacent
candidates without moving at least one candidate at some point first up
then down (or first down then up), then dK(R,R′) < dL(R,R′) <
2dK(R,R′)

An example: reversing order A 	 B 	 C this way requires moving B to
both directions. The distance of that order and its reverse is 3 using Kemeny
metric and 4 using Litvak metric: 3 < 4 < 6.

Because of the first property we have that for any P and x

dL(P,W(x)) = 2dK(P,W(x))

and
dL(P,C(x)) = 2dK(P,C(x)).

Thus we find the same Borda count and Dodgson winners using either of
the metrics.

For the sake completeness we shortly consider what we get if we combine
the discrete metric with consensus states U(R) or C(x). In the former case
simply the most popular ranking is selected; that is, the ranking with least
opposition.

The latter case is more interesting. We can formally define the winner wY

as the option with property

dd(P,C(wY )) ≤ dd(P,C(x)) ∀x ∈ X \ wY .

In other words we find the largest set of voters such that the Condorcet winner
exists. This system has been attributed to H. P. Young (Smith, 2005).

3. Outranking and Tournament Matrices

We now move to different kind of systems. In the following we define the
distance of two profiles, not rankings. Also the distance is calculated using
outranking matrices instead of individual rankings.

We denote by V the outranking matrix where entry Vxy indicates the number
of voters in profile P preferring candidate x to candidate y. The diagonal
entries are left blank.

We define the metric using outranking matrices as follows: if V and V ′ are
the outranking matrices of profiles P and P ′ then

dV (P,P ′) =
1

2

∑
x,y∈X

|Vxy − V ′
xy|.
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In other words, the distance tells us how much pairwise comparisons differ in
the corresponding outranking matrices.

This metric is very similar to the inversion metric and, indeed, we find the
same Borda count (or, alternatively, Kemeny) winners using this metric in-
stead.

The interesting case is the one where the goal is a Condorcet winner.
In the Condorcet least-reversal system the winner is the candidate which

can be turned into Condorcet winner with minimum number of reversals of
pairwise comparisons. That is, the Condorcet least-reversal system winner wlr

is the candidate with property

dV (P,C(wlr)) ≤ dV (P,C(x)) ∀x ∈ X \ wlr.

Copeland’s procedure has also a similar goal state as Dodgson’s and Con-
dorcet’s least reversal one, namely, one with a Condorcet winner. Given an ob-
served profile P one considers the corresponding tournament matrix T where
entry Txy = 1 if majority of the voters in profile P are preferring candidate x
to candidate y. Otherwise Txy = 0.

Now, the Condorcet winner is seen as a row in T where all k − 1 non-
diagonal entries are 1s.

We define yet another distance between profiles P and P ′ with tournament
matrices T and T ′ as

dT (P,P ′) =
1

2

∑
x,y∈X

|Txy − T ′
xy|.

The Copeland winner wC is the alternative that wins the largest number of
comparisons with other candidates i.e. has the smallest number of 0s in its
row in the tournament matrix. Thus the winner wC is the candidate that comes
closest to win every other candidate, that is, using the distance above,

dT (P,C(wC)) ≤ dT (P,C(x)) ∀x ∈ X \ wC .

Obviously, the goal states of Condorcet least-reversal system and Copeland’s
system are the same, but metrics differ. The latter pays no attention to majority
margins, while the former depends on them.3

We can expand the idea of the Condorcet winner into a Condorcet ordering.
Let P be a profile and X ′ be a subset of the set of candidates X. We denote
by P |X′ the profile we get when we only consider the candidates in X ′ and
dismiss all other candidates. We say that a profile P has a Condorcet ordering
if for every X ′ ⊂ X the profile P |X′ has a Condorcet winner.

3See, Klamler (2005) for another distance based characterization of the Copeland rule.
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More precisely, there is a candidate w1 ∈ X which wins every other candi-
date in pairwise comparisons with a majority of votes. And there is a candidate
w2 which wins every other candidate except w1 in pairwise comparisons with
a majority of votes. And there is a candidate w3 which wins every other candi-
date except w1 and w2 in pairwise comparisons with a majority of votes. And
so on. The Condorcet ordering is w1 	 w2 	 · · · 	 wk, where k = |X|.

It can be easily seen that P has a Condorcet ordering if and only if the
tournament matrix of P does not have any cycles, i.e. there are no candidates
x1, x2, . . . , xi such that Tx1x2

= Tx2x3
= · · · = Txi−1xi

= Txix1
=1.

We denote by Co(R) the set of all profiles that have Condorcet ordering R.
This set is a natural goal for a decision rule. But, as above there are several
different methods to decide which ordering is closest to the profile that does
not have a Condorcet ordering.

Two natural measures are the number of pairwise comparisons that need
to be reversed and the number of pairwise losses with majority that need to be
turned into wins. That is, we could measure the differences in either outranking
or tournament matrices. The latter of these methods is connected to the work
of P. Slater (Slater, 1961),

dT (P,Co(RSl)) ≤ dT (P,Co(R)) ∀R ∈ R \ RSl.

The other method does not have a name:

dV (P,Co(RU1
)) ≤ dV (P,Co(R)) ∀R ∈ R \ RU1

.

The other three winners we can define with the metrics mentioned above are
also yet to be named:

dK(P,Co(RU2
)) ≤ dK(P,Co(R)) ∀R ∈ R \ RU2

dL(P,Co(RU3
)) ≤ dL(P,Co(R)) ∀R ∈ R \ RU3

dd(P,Co(RU4
)) ≤ dd(P,Co(R)) ∀R ∈ R \ RU4

.

4. Metrics Based on the Elimination of Candidates

Above we have defined the metric counting the differences in the individual
rankings (dK , dL, dV ), the pairwise defeats (dT ), and the inconsistent rankings
(dd). Another approach would be to consider the candidates that vary in two
preference profiles.

There are several recursive elimination systems that are based on the order
of the eliminations of the candidates.

Let R be some ranking of the candidates, x1 ≺ x2 ≺ · · · ≺ xk and P the
voting profile we are considering. We begin by comparing the Hare system
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and the function

FP (R) =

k∑
i=1

(n + 1 − dd(Pi−1,W(xi)))(n + 1)k−i

where Pi−1 = P |X\Si−1

j=1
xj

.

On the first round of the Hare system we eliminate the candidate with the
smallest number of first places. The function FP gets its smallest value when
the function

F ′
P (x1) = (n + 1 − dd(P,W(x1)))(n + 1)k−1

gets its smallest value. This happens when x1 is the candidate with the smallest
number of first places in P and thus dd(P,W(x1)) is maximal. Note that the
part

k∑
i=2

(n + 1 − dd(Pi−1,W(xi)))(n + 1)k−i

of FP (R) is always smaller than (n + 1)k−1. That is why we do not need to
care about candidates x2, x3, . . . , xk at this point.

On the second round of the Hare system we eliminate the candidate with the
smallest number of first places after we have removed the candidate that was
eliminated at the previous round. The function FP gets its smallest value when
the function

F ′′
P (x1, x2) =(n + 1 − dd(P,W(x1)))(n + 1)k−1

+ (n + 1 − dd(P |X\x1
,W(x2)))(n + 1)k−2

gets its smallest value. This happens when x1 is the candidate with the smallest
number of first places and x2 is the candidate with the smallest number of first
places after x1 is eliminated from P . Note again that the part

k∑
i=3

(n + 1 − dd(Pi−1,W(xi)))(n + 1)k−i

of FP (R) is always smaller than (n + 1)k−2. That is why we do not need to
care about candidates x3, x4, . . . , xk at this point.

If we continue these considerations we obtain that the function FP gets its
smallest value when x1, x2, . . . is the order of the eliminations using the Hare
system.

Next we turn this function into a metric. A metric is always symmetric. Let
P and P ′ be two preference profiles of n rankings and their sets of candidates
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X and X ′ have k and k′ elements, respectively. We write shortly Pi−1 =
P |X\Si−1

j=1
xj

. Let the metric for the Hare system be

dH(P,P ′) = min

{ m∑
i=1

(n + 1 − dd(Pi−1,W(xi)))(n + 1)k−i+

m′∑
i=1

(n + 1 − dd(P
′
i−1,W(x′

i)))(n + 1)k
′−i

∣∣ xi ∈ X,x′
i ∈ X ′, Pm = P ′

m′

}
.

Because dH(P,P ) must be zero for any P , we only calculate the distance until
Pm = P ′

m′ for some m and m′.
Note that when we calculate the distance between a profile P and the sets

W(x) (or, alternatively, C(x)) there is always a profile in the closest set W(x)
(or C(x)) such that the second part of the distance function is zero.

When we combine this metric with goal states W(x) we get the Hare sys-
tem. If we instead use the goal states C(x) we get a system named after
Thomas Hill. For the Coombs method we have the metric

dC(P,P ′) = min

{ m∑
i=1

(dd(Pi−1,L(xi)) + 1)(n + 1)k−i

+

m′∑
i=1

(dd(P
′
i−1,L(x′

i)) + 1)(n + 1)k
′−i

∣∣∣ xi ∈ X,x′
i ∈ X ′, Pm = P ′

m′

}
,

where we denote by L(x) the set of all profiles where x is last-ranked in every
voter’s ranking Finally, for the Baldwin, also called Borda runoff, method we
have

dB(P,P ′) = min

{ m∑
i=1

(kn − dK(Pi−1,W(xi)))(kn)k−i

+

m′∑
i=1

(k′n − dK(P ′
i−1,W(x′

i)))(k
′n)k

′−i
∣∣∣ xi ∈ X,x′

i ∈ X ′, Pm = P ′
m′

}
.

5. Two More Systems

Turning now to somewhat more recent systems, Tideman’s procedure op-
erates on pairwise majority margins. At every step the algorithm fixes one
comparison between two candidates such that a minimum amount of voters
are disappointed. The result is a complete directed graph without cycles i.e. a
ranking. Clearly the idea of this procedure is to generate a ranking that contra-
dicts as few pairwise comparisons as possible in the outranking matrix. This is
exactly what the Kemeny rule does. While Kemeny’s always chooses the rank-
ing that is closest to the profile Tideman’s procedure tries to find that ranking
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Table 1. Goal states, metrics and voting systems.

Goal state Unanimous Condorcet Beatpath

Metric
winner
W(x)

order
U(R)

winner
C(x)

order
Co(R)

winner/
order

Inversion, dK Borda Kemeny Dodgson U 2 Schulze
Manhattan, dL Borda Litvak Dodgson U 3 Schulze

Inversion for
V matrices, dV

Borda Kemeny Condorcet
least-reversal

U 1 Schulze

Inversion for
T matrices, dT

- -4 Copeland Slater Schulze

Discrete, dd Plurality Plurality Young U 4 Schulze

Instant
runoff, dH

Hare (Hare) Hill -4 Schulze

Disapproval
runoff, dC

Coombs (Coombs)5 U5 -4 Schulze

Borda
runoff, dB

Baldwin (Baldwin)5 Baldwin -4 Schulze

4 The goal states and the metric are incompatible or their meaning is unclear.
5 The reversed order of the eliminations can be interpreted as the resulting order.

using greedy algorithm. From the computational point of view the Tideman
winner is always fast to find while finding the Kemeny winner can be very
slow if the number of candidates is large.

The last system we consider is Schulze’s method. Let us denote by Sxy the
maximum strength of all beatpaths from x to y. Using these we generate the
“beatpath tournament matrix” B of the profile P such that the entry Bxy = 1
if Sxy ≥ Syx; otherwise Bxy = 0. We say that the ranking R where R(x) >
R(y) iff Bxy = 1 corresponds to this beatpath tournament matrix.

As above we could define the Schulze winning ranking RSc in profile P
with the help of a profile PSc that is closest to P (with respect to some metric
d) and has a beatpath tournament matrix that corresponds to some complete
ordering RSc: Let PSc be a beatpath tournament matrix that corresponds to
complete ordering RSc and

d(P,PSc) ≤ d(P,P ′)

for all profiles P ′ that have a beatpath tournament matrix that corresponds to
some complete ordering.
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But every profile has a beatpath tournament matrix that corresponds to com-
plete ordering. Thus, regardless of the metric, d(P,PSc) = 0 and the winning
ranking RSc is the ordering corresponding to the beatpath tournament matrix
of P .

6. Conclusion

The observations made in the preceding are summarized in Table 1.
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A Strategic Problem in Approval Voting

Jack H. Nagel∗
Political Science Department, University of Pennsylvania

Abstract Problems of multi-candidate races in U.S. presidential elections–exemplified by
Ralph Nader’s spoiler effect in 2000–motivated the modern invention and advo-
cacy of approval voting; but it has not previously been recognized that the first
four U.S. presidential elections (1788-1800) were conducted using a variant of
approval voting. That experiment ended disastrously in 1800 with an infamous
Electoral College tie between Thomas Jefferson and Aaron Burr. The tie, this
paper shows, resulted less from miscalculation than from a strategic tension built
into approval voting, which forces two leaders appealing to the same voters to
play a game of Chicken. All outcomes are possible, but none is satisfactory–
mutual cooperation produces a tie, while all-out competition degrades the sys-
tem to single-vote plurality, which approval voting was designed to replace. In
between are two Nash equilibria that give the advantage to whichever candidate
enjoys an initial lead or, in the case of initial parity, to the candidate who is less
cooperative and more treacherous.

Keywords: approval voting, U.S. presidential elections, Aaron Burr, election of 1800, elec-
toral systems, voting methods

1. Introduction

Approval voting is a balloting method that allows each elector to vote for,
or “approve”, as many alternatives as he or she desires, even if that number ex-
ceeds the number to be chosen. In contrast to preferential (rank-order) ballots,
each vote counts equally. Invented (or rediscovered) independently by three
groups of social scientists in the 1970s, approval voting is designed chiefly to
solve problems that arise when three or more candidates compete in single-
winner, plurality rule (first-past-the-post) elections. Foremost among these
problems is the danger that a minority will prevail if the majority divides its
votes between two candidates who appeal to the same voters.

∗For helpful, if sometimes dissenting, comments, I am grateful to Samuel Merrill, Robert Norman, and
participants in the Erice workshop, especially Steven Brams.
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American advocates of approval voting are motivated mainly by concern
about U.S. presidential elections–both the crowded fields of candidates typi-
cal in early primaries and the frequent presence of significant third-party con-
tenders in general elections. It is therefore surprising that no one has previ-
ously noticed that a variant of approval voting was used in the first four U.S.
presidential elections–1788, 1792, 1796, and 1800. Unfortunately, that early
experience was inauspicious. The 1800 election produced an Electoral College
tie between Thomas Jefferson and his running mate, Aaron Burr. As the Con-
stitution provided (and still does today), the decision then passed to the House
of Representatives. Voting in February 1801, the House remained deadlocked
for thirty-five ballots. On the thirty-sixth ballot, Jefferson was elected presi-
dent, thus pulling the fledgling democracy back from a constitutional crisis and
the brink of civil war. Before the approval-voting feature could be used again,
it was repealed in 1804 by the Twelfth Amendment to the U.S. Constitution,
which substituted a conventional balloting system that gives each elector only
one vote per office.

Because the connection to approval voting has been overlooked, the flaw in
the original presidential election system is usually viewed as a mere historical
oddity, due to the Framers’ inability to foresee the emergence of contests dom-
inated by political parties. Similarly, the debacle of 1800-01 is remembered
as a curious accident, owing to a failure of coordination within the victorious
Republican Party of Jefferson and Burr.1 Instead, this paper will argue that
the outcome of 1800 resulted not from an accidental mistake, but rather from
a strategic dilemma inherent in the original method of voting for president. I
shall call that problem the Burr Dilemma after a man whom history has seldom
honored in any other way.

The thesis of this chapter is that the Burr Dilemma remains a potential prob-
lem for modern approval voting, though less obviously than in the system of
1788-1800. An initial historical section describes the original U.S. presidential
election system, relates it to approval voting, and shows how a strategic prob-
lem emerged in the first three elections and then caused a debacle in 1800. The
second section defines the Burr Dilemma, contends that the early U.S. voting
method is relevant to modern approval voting, analyzes the dilemma as a game
of Chicken, and discusses how it can pose a problem for competitors under
approval voting just as it did for the candidates of 1800.

1Following the lead of most historians, I use the original name for the party organized by Jefferson and
James Madison. They called themselves “Republicans” to signal opposition to the alleged monarchical
tendencies of the governing Federalists, led by Alexander Hamilton and John Adams. The label soon gave
way to “Democratic-Republicans” and then to “Democrats,” a term originally used by their adversaries as a
pejorative.
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2. Approval Voting in the First Four Presidential
Elections

Hostile to “mob rule” and the “mischief of faction,” the Framers of the U.S.
Constitution entrusted election of the President not to the people directly, but
to the Electoral College, intending it to be an elite group capable of making
enlightened judgments. They conceived of voting by the electors in the spirit
of the Condorcet jury theorem: not as a test of strength among competing
interests, but rather as a collective method of reaching the correct decision
about who was best suited to lead the government. Believing that the most
likely temptation away from that ideal would arise from local interests and
loyalties, the Framers devised approval voting as an antidote: Electors were to
“vote by ballot for two persons, of whom one at least shall not be an inhabitant
of the same State with themselves.”2

Thus at least one vote would be cast for a man of “continental character,”
rather than a local favorite son. The candidate receiving the most votes, “if
such number be a majority of the whole number of electors appointed,” would
become president. The runner-up would become vice president, having been
identified by the collective judgment as the person next-best-qualified to be
president. The office of vice president was created in part to ensure that electors
would cast two votes, rather than leave the second vote blank.3

In the original system, each of the electors’ two votes counted equally and
both were tallied as if cast for the presidency. Thus the method of 1788-1800
embodied the essential feature of approval voting as invented in the late twen-
tieth century–more than one equal vote could be cast for a single office. There
were, however, four differences from modern approval voting: (a) Presidential
electors could not cast more than two votes, whereas approval voting permits
voters to approve more than two candidates if they wish. (b) Although not
distinguished on the ballot, a second office (the vice presidency) was at stake,
so in one sense, electors cast a number of votes equal to the number of can-
didates to be elected. (c) To win, a presidential candidate, then as now, had
to receive votes from a majority of electors, whereas approval voting is usu-
ally recommended in combination with the plurality decision rule (Merrill and
Nagel 1987). (d) The number of electors was small (ranging from 69 in 1788
to 138 in 1796 and 1800), whereas proponents of approval voting recommend
it for both small-scale and mass elections. Each of those differences can be sig-
nificant in its own way, but none affects the central nature of the Burr Dilemma
and its relevance to approval voting today. I will justify this claim later, after

2U.S. Constitution, Article II, Section 1.3.
3This paragraph draws on Ackerman and Fontana 2004 and Ceaser 1979 (ch. 1).
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defining the Burr Dilemma, but first it is necessary to summarize the remark-
able events of 1800-01.

2.1 The Election of 1800

After the 1796 election resulted in the victory of John Adams over Thomas
Jefferson by the narrow electoral vote margin of 71-68, the two leaders, now
serving as president and vice president, prepared to compete again in 1800.4

Correctly calculating that the votes of New York (which Adams carried in
1796) would be critical to Jefferson’s chances, the Republicans in May 1800
designated Aaron Burr of that state as their choice for vice president. The pre-
ceding month, by a brilliant feat of electioneering in New York City, Burr had
captured control of the state legislature for the Republicans. The legislature
was to choose New York’s twelve presidential electors using a unit rule system
that would give all electors to the majority party.5 To secure New York’s votes
for himself, the Virginian Jefferson needed a New Yorker as running mate, and
Burr was an obvious choice.

In December, when the electors voted in their respective state capitals (as
the Constitution requires), it became known that the deal between Jefferson
and Burr had worked all too well–the two Republicans were tied with 73 votes
each, three above the 70-vote majority required for election. Adams followed
with 65. His Federalist Party avoided a tie of their own because one Rhode
Island elector “threw away” his second vote to John Jay, thus “cutting” the
Federalist vice presidential candidate, Charles Cotesworth Pinckney of South
Carolina, who received 64 votes.

To break a tie such as the one between Jefferson and Burr, the Constitution
provides that the House of Representatives must choose between the top two
candidates, with each state’s delegation casting just one vote and a majority
of all the states required to elect a winner. At the time, the union consisted of
sixteen states, so the votes of nine were needed to resolve the deadlock. Re-
publicans controlled the delegations of only eight states. Federalists dominated
six caucuses; and two states (Vermont and Maryland) were evenly divided, so
they could not vote as long as members of the two parties cancelled each other.
The Federalists decided to support Burr, thus exploiting their blocking power
to prevent election of their arch-rival, Jefferson.

4All electoral votes are from the website of the U.S. National Archives and Records Administration,
http://www.archives.gov/federal register/electoral college/votes. My account of early elections draws on
van der Linden 1962, Daniels 1970, Freeman 2002, Randall 1993, McCullough 2001, and Wills 2003.
5As many people learned to their dismay during the 2000 Florida fiasco, the Constitution gives each state’s
legislature the power to decide how its electors will be chosen (Article II, Section 1.2). In 1800, most
legislatures retained for themselves the power to appoint electors. In the early years of the Republic, states
moved to the unit rule in a competitive effort to gain, or avoid loss of, relative voting power. In the election
of 1800, only three states chose divided delegations of electors.
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What did Federalists hope to gain by creating a deadlock and thus a con-
stitutional crisis? Three possibilities enticed them: (1) If the impasse contin-
ued long enough, their party might retain control of the presidency by extra-
constitutional maneuvers, such as putting the president pro tempore of the Sen-
ate in charge of the executive branch.6 (2) Alternatively, a handful of Repub-
licans in three states might eventually shift their votes to Burr, thus electing
the Republican many Federalists considered more pliable or, because he was a
Northerner, ideologically more compatible.7 (3) As a last resort, the Federal-
ists might use their position to extract vital policy concessions before allowing
either Republican to win. Not all Federalists approved of their party’s strat-
egy. In particular, Alexander Hamilton bombarded Federalist Congressmen
with confidential letters arguing that his longtime foe Jefferson would be less
dangerous than Burr, whom he condemned as a man of “no principle, public or
private....sanguine enough to hope every thing, daring enough to attempt every
thing, wicked enough to scruple nothing.” (van der Linden 1962, 262)

On February 11, 1801, the House assembled in snowbound Washington,
the raw new capital. Members vowed to remain in session until a president
was chosen. Through six days and 35 ballots, the two sides held firm. Jeffer-
son’s fate was in the hands of Federalist Representative James Bayard. As tiny
Delaware’s sole member of the House, Bayard controlled his state’s pivotal
vote. He was also the acknowledged leader of the five Federalists from Mary-
land and Vermont, any of whom could elect Jefferson simply by abstaining.
Bayard was willing to listen to Hamilton, whom he admired; but he continued
to vote for Burr while seeking from either Jefferson or Burr a signal of policy
concessions on four “cardinal points:” preservation of the Federalists’ fiscal
system, neutrality between England and France, expansion of the navy, and re-
tention of Federalist officeholders (van der Linden 1962, 306). Suspicion and
antagonism on both sides grew more and more fevered. Encouraged by Jeffer-
son, the Republican governors of Pennsylvania and Virginia, Thomas McKean
and James Monroe (a future president), prepared to mobilize their states’ mili-
tias so they could resist with force any “usurpation” by Burr and the Federalists
(Wills 2003, 84-6).

To Bayard’s consternation, Burr refused to deal. Although some of Burr’s
friends lobbied Congress to promote his election, the candidate absented him-

6Although the administration of George Washington (1789-97) was initially pre-party and remained osten-
sibly above party, Federalists had effective control of the executive throughout the first twelve years of the
new constitutional system. In transferring power from one party to another as a result of electoral processes,
the events of 1800-01 established a precedent of enormous importance for democracy in the United States
and around the world–but a peaceful transition very nearly failed to occur because of the tie vote.
7Jefferson owned slaves; and all of his Electoral College support came from Southern slave states, except for
the twelve electors from New York and eight from a divided Pennsylvania delegation. Only ten of Adams’
65 electoral votes came from slave states.



138 Jack H. Nagel

self in Albany, preparing for the wedding of his beloved daughter Theodosia.
Meanwhile, Bayard later charged, Jefferson was using promises of patronage
appointments to prevent defections by Republicans from New York, New Jer-
sey, Maryland, and Vermont. “Every man on whose vote the event of the
election hung has since been distinguished by presidential favor,” Bayard said
in 1806, naming names (van der Linden 1962, 330). With no sign of any
shift to Burr, Bayard finally received–so he thought–the policy assurances
he wanted from Jefferson. According to Bayard, Republican Congressman
Samuel Smith, who lived in the same boardinghouse as Jefferson, told him
“that he had seen Mr. Jefferson, and stated to him the points mentioned, and
was authorized by him to say that they corresponded with his views and inten-
tions...”8 Thus satisfied by Bayard, Federalists from Vermont and Maryland
abstained on the thirty-sixth ballot, swinging their states’ previously dead-
locked votes to Jefferson, who thereby became the third president of the United
States.9

2.2 The Strategic Problem of 1800 in Light of Earlier
Elections

At first glance, it might seem that the tie between Jefferson and Burr was
simply a failure of coordination, one that was not altogether surprising, given
the Constitutional requirement that electors meet separately in their respec-
tive state capitals, which were hundreds of miles apart at a time of primitive

8When Bayard testified to this effect in 1806, Jefferson called his claim “absolutely false,” offering a
lawyerly denial (worthy of his namesake, William Jefferson Clinton) that hinged on the distinction be-
tween a “conversation” with Smith as opposed to “assurances to anybody...[about] what I would or would
not do.” (van der Linden 1962, 307)
9As is well known, hostilities inflamed by this crisis led to personal tragedies for two of the principal players
(Daniels 1970). Aaron Burr had conducted himself with perfect propriety from a constitutional standpoint.
Formally, the electoral votes he received were for president just as much as Jefferson’s, and the final decision
was for the House to make. Denying any wish to compete with Jefferson, he refrained from bargaining with
the Federalists and generally kept himself above the fray. Burr refused, however, to accede to Republicans’
entreaties that he pledge to renounce the presidency if he should win the vote in the House. Thus, from the
partisan perspective of Jefferson and his allies, he became a betrayer and a would-be usurper. After Burr
took office as vice president, Jefferson shunned him. In 1804, having been informed by Jefferson that he
would not be renominated as vice president, Burr ran unsuccessfully for governor of New York. His enemy
Hamilton again intervened with denunciations of Burr’s character, some of which were reported in the press.
Burr demanded that Hamilton deny the accusations or give him the satisfaction of a duel. Hamilton accepted
the challenge. On July 11, 1804, at Weehawkin, New Jersey, Burr fatally shot his enemy, the first Secretary
of the Treasury and co-author of the Federalist Papers. A fugitive from murder charges in both New Jersey
and New York, Vice President Burr escaped to Washington, where he resumed his duties as presiding officer
of the Senate, despite the scorn of most members. After his term ended, Burr’s fortunes fell even lower.
When he took a journey along the Ohio and Mississippi rivers, it was alleged that he conspired to lead a
secession of western U.S. territories into a new empire under his own rule. Tried repeatedly at Jefferson’s
insistence for a variety of offenses, Burr was found not guilty by a series of juries. Afflicted by debts and
public opprobrium, the former vice president spent four years in European exile before returning in 1812 to
the U.S., where he lived the rest of his life in poverty and relative obscurity.
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communication. As Jefferson wrote to Burr in December 1800, “It was badly
managed not to have arranged with certainty what seems to have been left to
hazard [i.e., the cutting of at least one vote from Burr].” (van der Linden 1962,
246) Closer examination reveals, however, that, far from being a mere over-
sight arising from excessive partisan solidarity, the tie was a logical outcome
of the strategic dilemma created by the voting system, which exacerbated deep
distrust between the two Republican candidates and the factions they led (Free-
man 2002).

With two offices at stake and two undifferentiated votes at the disposal of
each elector, candidates backed by the same party faced a fundamental tension.
On the one hand, they would want their shared supporters to vote for them
both, in order to maximize their respective totals and minimize the chance that
either (or both) would lose to rivals from the other party. On the other hand, any
candidate who aspired to the presidency would need some votes to be denied
his running mate in order to ensure his own victory for the premier office.

This tension was felt before 1800 and by Federalists as well as Republicans.
In 1788, when George Washington was the universal choice to become the first
president, his lieutenant Alexander Hamilton worked secretly to disperse votes
from John Adams, ostensibly in order to avoid embarrassing Washington with
a close result.10 Washington received votes from all 69 electors, while Adams
got just 34, with the remaining 35 scattered among ten other notables. Adams
was “deeply hurt” by his relatively modest support and later felt “sickened”
when he learned that his total had been reduced by what he called a “dark
and dirty intrigue.” (McCullough 2001, 394, 409) In the 1792 election, which
resulted in re-election of Washington and Adams, Hamilton did not need to
divert votes from Adams. Although Washington continued to enjoy unanimous
support (132 votes), the emergence of what soon became the Republican Party
resulted in a significant challenge to the Vice President from George Clinton
of New York, who received 50 votes to Adams’ 77.11

In 1796, with Washington stepping down, a partisan contest ensued between
Adams and Jefferson. With the vote expected to be close, each side sought re-
gional balance in picking a vice presidential running mate–Thomas Pinckney
of South Carolina for Adams, and Aaron Burr for Jefferson. The tension inher-
ent in the approval voting system emerged with a vengeance. On the Federalist
side, Hamilton was suspected of promoting the more malleable Pinckney over
Adams for the presidency when he urged the strongest possible support for the
South Carolinian –ostensibly to prevent Jefferson from finishing second (Mc-

10It may be that Hamilton also did not want Adams to acquire enough prestige to threaten his own ascen-
dance within Washington’s administration.
11In addition, Jefferson received four votes and Burr one–the latter (ironic in view of later events) a cut of
one vote in South Carolina from an otherwise solid Washington-Adams tally.
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Cullough 2001, 463; van der Linden 1962, 9-10). As Hamilton hoped, the
eight electors from South Carolina crossed party lines to vote for both Jeffer-
son and their favorite son, so Hamilton’s plan would have succeeded had not
eighteen Federalist electors in three New England states foiled it by cutting
Pinckney, who finished with 59 votes, twelve behind Adams’ 71. Jefferson
was a close second with 68. Thus, in the last hurrah for original constitutional
intent, the two most distinguished candidates were chosen president and vice
president, even though they were partisan opponents. Meanwhile, on the Re-
publican side, Burr suffered the unkindest cuts of all when 38 of Jefferson’s
68 electors threw away their second votes on various alternatives rather than
support the New Yorker. All but one of the 38 defectors were from Southern
states, including nineteen of twenty electors from Jefferson’s Virginia.12

As had Adams in 1788, Burr felt humiliated by the low vote caused by
his betrayal at the hands of Southern Republicans. In 1800, Jefferson, driven
by electoral necessity and showing considerable chutzpah, sought to revive
the Republicans’ Virginia-New York alliance by asking Burr to serve again as
his running mate. The latter was willing to stand only “if assurances can be
given that the southern states will act fairly.” Jefferson’s emissary, Albert Gal-
latin, pledged that they would (Wills 2003, 71). Soon afterwards, a meeting
of Republicans in Philadelphia duly endorsed a ticket of Jefferson and Burr.
Any breach of the bargain would tarnish the personal honor of leaders on both
sides, given the strong commitments they had made (Freeman 2002). Never-
theless, both wings of the Republican party were in an agony of anxiety that
the other would renege, and each frequently reminded the other of its pledge.
James Madison personally made sure that none of his fellow Virginia electors
cut Burr. As he noted, confidence (conveyed by Burr’s emissaries) that New
York would hold for Jefferson impelled Virginia “to give an unanimous tho’ re-
luctant vote for B. as well as J.” To ensure that no Burr ally in New York would
drop a vote from Jefferson, one of the latter’s loyalists there, General Philip
van Cortlandt, “sportively insisted” on preparing each of his fellow electors’
ballots for their signatures (van der Linden 1962, 229-32, 260).

With the two biggest Republican states thus voting in lockstep, could not
a vote or two have been dropped from Burr in a smaller state? Jefferson
expected that to happen. After a trip through New England, Burr sent assur-
ances that Jefferson would win one or two votes more than himself in Rhode
Island or Vermont (Daniels 1970, 218; van der Linden 1962, 179). Whether
Burr’s prediction was an honest mistake or a deliberate deception, both states
ended up in the Federalist camp. Jefferson may also have anticipated a reprise
of 1796 in South Carolina. To appeal to that pivotal state, the Federalists had

12Why did Southerners cut Burr? Although aspersions against his character already abounded in 1796, he
was also “a lifelong opponent of slavery” (Wills 2003, 77).
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nominated another favorite son, Charles Cotesworth Pinckney, a cousin of their
1796 candidate. Hamilton was again intriguing for a Jefferson-Pinckney vote
there, but he overplayed his hand by writing a vicious attack on his own party’s
President, John Adams.13 Burr obtained a copy of Hamilton’s pamphlet, which
was intended for limited distribution, and released it to the press. The resulting
backlash stiffened Federalist support for Adams. It may also have motivated C.
C. Pinckney’s principled decision to spurn a deal with his state’s Republican
legislators, insisting instead on equal electoral votes for himself and Adams
(van der Linden 1962, 239-43).

Thus, aside from constitutional and communications obstacles to coordina-
tion, dropping votes to prevent a tie risked two grave dangers for Republicans:
(a) In light of the three-vote margin in 1796, uncertain prospects in several
states right up until December 1800, and Hamilton’s machinations on behalf
of Pinckney, throwing away votes from either member of the ticket could eas-
ily have resulted in victory for one or both of their Federalist opponents. For
example, if Republicans in South Carolina had repeated the 1796 cross-party
vote, Pinckney would have defeated Burr for the vice presidency. A split there
combined with one vote cut from Jefferson in any other state would have cre-
ated a tie for the presidency between Pinckney and Jefferson. The House
might well have resolved such a deadlock in favor of Pinckney (Ackerman
and Fontana 2004). (b) Even more perilous, as Joanne Freeman (2002, 105-
6) emphasizes, was the risk–given the intense mistrust between Jefferson and
Burr–that to “drop a vote would be to invite retributive vote dropping else-
where, thereby destroying whatever national party unity existed, and probably
throwing the election to the Federalists.” As the Federalist Uriah Tracy gloated,
“It is really pleasant to see the Democrats in such a rage for having acted with
good faith....Each declaring if they had not had full confidence in the treachery
of the other, they would have been treacherous themselves; and not acted as
they promised to act at [Philadelphia] last winter, (viz.) all vote for Jefferson
& Burr.” (van der Linden 1962, 250)

3. Generalizing from the Election of 1800

Does the unhappy experience of 1800 portend danger if approval voting in
its modern form were widely adopted for hotly contested elections? To ad-
dress that question, this section will (a) extract the Burr Dilemma as a general
version of the strategic problem in 1800, (b) argue that differences between
the early U.S. voting system and modern approval voting do not negate the
contemporary relevance of the Burr Dilemma, and (c) in light of the dilemma,

13Adams had alienated Hamilton and other “High Federalists” by successfully resisting war with France
and dismissing Hamilton’s closest allies from the Cabinet.
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analyze the strategic situation of candidates under approval voting as a game
of Chicken.

3.1 The Burr Dilemma

To apply the problem revealed in 1800 to approval voting generally, it will
be helpful to state a generalized version of the Burr Dilemma:14

When three or more candidates compete for an office that only
one can win, and voters (V ) may support two (or more) of them
by casting equal (approval) votes, candidates (C1 and C2) seeking
support from the same group (G) of voters will maximize their re-
spective votes if all members of G vote for both C1 and C2. Both
candidates thus have an incentive to appeal for shared support.
However, if such appeals succeed completely and neither candi-
date receives votes from members of V − G, the outcome will be
at best a tie in which neither C1 nor C2 is assured of victory. Each
candidate therefore has an incentive to encourage some members
of G to vote only for himself or herself. If both C1 and C2 success-
fully follow such a strategy, either or both may receive fewer votes
than some other candidate C3 supported by members of V − G.
The risk that both C1 and C2 will lose is exacerbated if a retalia-
tory spiral increases the number of single votes cast by members
of G. At the limit, such retribution reduces approval voting to con-
ventional single-vote balloting among the members of G or, if the
problem is endemic, among all voters. The nearer that limit is ap-
proached, the lower the probability that advantages claimed for
approval voting will be realized.

3.2 Differences Between Approval Voting and the Method
of 1788-1800

As I noted earlier, the system of presidential elections originally established
by the Constitution differs in four ways from modern approval voting: (a)
Presidential electors were required to vote for exactly two candidates, whereas
approval voting allows voters to support as many candidates as they choose,
from one to everyone running. (b) Approval voting is usually recommended
for single-winner elections, whereas the electors’ vote could determine two
winners, the president and vice president. (c) Approval voting is typically
combined with the plurality decision rule, whereas the Constitution requires an
absolute majority. (d) The Electoral College in 1800 consisted of only 138 vot-
ers, whereas advocates of approval voting are most concerned to see it adopted
in mass popular elections.

14The dilemma also applies when approval voting is used to decide policies rather than offices, and to
situations where more than two candidates or options appeal to the same group.
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Do any of these features of the system of 1788-1800 eliminate or substan-
tially undermine the relevance of the Burr Dilemma to modern approval vot-
ing? I contend that they do not. Let us consider each in turn.

Exactly two votes. The ability to vote for more than two candidates might
change electoral dynamics by encouraging entry of additional candidates seek-
ing the support of group G, by giving candidates based on G hope that they
might find votes in V − G, and by encouraging candidates based on V − G
to seek votes in G. By complicating the situation and making prediction more
difficult, those possibilities reduce the perceived likelihood of a tie. They do
not, however, affect the basic tension summarized in the Burr Dilemma–both
C1 and C2 are motivated to ask members of G who favor the other candidate to
double vote while encouraging their own supporters to bullet vote. As for the
possibility of voting for only one candidate, electors in 1788-1800 could–and
did–perform the functional equivalent by “throwing away” their second votes
on a dignitary who was not seriously competing.

Two winners. Anticipating the possibility of throwing away votes, the Fra-
mers invented the office of vice president in part to reduce that temptation, by
making the second vote count for something. After parties developed, most
electors wanted to keep the vice presidency within their own party, so the in-
centive to vote a straight ticket was high, thus increasing the possibility of a
tie. Nevertheless, everyone saw the presidency as the real prize–including the
first two vice presidents. “The most insignificant office that ever the invention
of man contrived” said Adams of his role as Washington’s understudy (Mc-
Cullough 2001, 447). Similarly, on taking second place to Adams in 1796,
Jefferson commented, “[It] is the only office in the world about which I am
unable to decide in my own mind whether I had rather have it or not. A more
tranquil & unoffending one could not have been found for me. It will give
me philosophical evenings in winter & rural days in summer.” (van der Linden
1962, 32-3) Consequently, temptation to win the greater office by exploiting
weaknesses of the voting system affected even those candidates who agreed to
compete just for the vice presidency–whether due to a candidate’s opportunis-
tic ambition, for which Burr was fairly or unfairly blamed, or to manipulation
by others, as with Hamilton and the two Pinckneys, and the Federalists and
Burr. Thus the existence of a consolation prize does not change the basic
character of elections in 1788-1800 as contests dominated by the choice of a
single winner.

Majority rule. Early in the development of approval voting, Brams and
Fishburn (1983, 42) warned that “coupling approval voting to a runoff sys-
tem [which requires an absolute majority] ... produces a combination that is
never strategyproof.” Merrill and Nagel (1987) extended that warning, show-
ing the strategic pitfalls of combining approval balloting with any decision rule
other than plurality, and recommending (pending further study) only the “ap-
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proval plurality” combination. The Constitutional requirement of an absolute
majority makes the Electoral College a runoff system in which the contingent
second stage is a vote by a quite different electorate (the House), conducted
under bizarre rules. The majority requirement did not cause the impasse of
1800, however, because both Jefferson and Burr surpassed fifty percent of the
vote. Instead, it created a second way the Electoral College could have been
indecisive, but the possibility of a tie would have existed even if the decision
rule had been plurality. The contingent election in the House also made a tie
worse for the Republicans than other conceivable tie-breakers, such as flipping
a coin, because it put them at the mercy of their enemies, the Federalists. Al-
though other tie-breakers might be less dangerous, they would not change the
motivational source of the Burr Dilemma–any candidate who aspires to win
prefers an outright victory to a tie.

Small electorate. Obviously, the probability of a tie is greater in an elec-
torate of 138 members than in one with 100,000,000 voters. Is the Burr Di-
lemma therefore realistically a problem only for small electorates? I think not,
for two reasons.

First, although the Burr Dilemma is revealed most dramatically when the
strategy of approving two candidates produces a tie between them, ambitious
candidates choosing strategies ex ante will want not only to avoid a tie, but also
its more general equivalent, a .5 probability of victory. In a large electorate,
the probability of a literal tie may be exceedingly small, but if two candidates
competing for the same base both scrupulously encourage double voting, it
may be that neither will have an advantage–each will have a 50-50 chance of
winning. To gain an edge–a higher probability of finishing first–each therefore
has an incentive to encourage at least some supporters to bullet vote.

Second, the tie in 1800 was due less to the small size of the Electoral College
than to the cohesion of its Republican members (even if that cohesion was the
product of mutual mistrust). The 73 Republican electors responded to direc-
tions given, ultimately, by just two leaders–who in turn were vigilantly watch-
ing each other’s every move. Heretofore, analysts have usually approached the
question of strategic choices under approval voting from the viewpoint of in-
dividual voters deciding atomistically within a relatively large electorate (e.g.,
Brams and Fishburn 1983, Merrill 1988). If instead most voters respond to the
cues of a few leaders, then even a large electorate may be analyzed as a game
affected by strategic moves of those players (plus, in most cases, a random
element).

The tendency of ordinary voters to follow directions from leaders, parties,
or other groups increases with the complexity of voting choices. For exam-
ple, in Australian Senate elections, the great majority of voters (almost 95% in
1998) mark their ballots to follow party recommendations, because use of the
preferential ballot, combined with the requirement of a complete ordering of
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candidates, can compel voters to rank literally scores of candidates (Sharman,
Sayers, and Miragliotta 2002, p. 552).15 Similarly, in American cities using
the “long ballot” (electing many officeholders, major and minor, at a single
election), the power of party leaders derives from voters’ willingness to use
the “big party lever” or “sample ballot” endorsement cards, because they oth-
erwise have no idea whom to support for most offices. In an approval-voting
election with k candidates, each voter has 2k − 1 possible strategies (exclud-
ing the choice of approving no one). (Brams and Fishburn 1983, 27) A field
of eight candidates–not uncommon in early U.S. presidential primaries–entails
255 voting options! Even in the simplest case, a three-candidate race, the voter
must decide among seven approval-voting options. Consequently, many voters
will respond to leaders’ cues not just out of loyalty and admiration, but also to
reduce the cognitive burdens of voting. In the next section, I therefore analyze
approval voting from a different angle, as a game of strategy played by leaders.

3.3 Strategic Analysis of Approval Voting

In its simplest version, the Burr Dilemma in approval voting can be analyzed
as a two-person game in normal form. Assume a three-candidate race to be
decided by a set V , consisting of v voters. (Throughout, upper-case letters
will designate individuals and sets, while lower-case letters will indicate the
number of members in a set.) Candidates C1 and C2 appeal to voters belonging
to group G, G ⊂ V , while C3 is supported by members of {V −G}. Members
of G1 ⊂ G, prefer C1 to C2 while those in another subset, G2 , prefer C2.16

All members of G strongly favor both C1 and C2 over C3 . For the present, we
assume that neither C1 nor C2 is acceptable to any member of {V −G}, all of
whom will cast bullet votes for C3. The candidates believe that g > v − g, but
also believe that margin is small enough that g−g1 < v−g, and g−g2 < v−g.
That is to say, neither C1 nor C2 can beat C3 without votes from the other’s
supporters. C1 and C2 each have two strategies. They can ask their supporters
to cast two votes, one for each candidate, or they can recommend a bullet vote.
If all voters follow their leaders’ cues, the possible outcomes are as shown in
Table 1.

C1’s preference order over the four outcomes is y > w > x > z. C2

ranks them x > w > y > z. This configuration defines the game known as
Chicken, after a scenario in which two teenage thrill-seekers drive their cars
straight at each other.17 The first to swerve is derided as a weak and cow-
ardly “chicken,” whereas the one who continues straight on wins admiration

15The Australian Senate is elected using the single-transferable vote.
16Besides G1 and G2, there may be other members of G who are strictly indifferent between C1 and C2.
Approval voting is ideal for them.
17For details about Chicken on which my account draws, see Dixit and Skeath 1999. See also Brams 1994.
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Table 1. The Burr Dilemma as a Game of Chicken

C2 Recommends Vote for C1 and C2 Vote for C2 Only
C1 Recommends

w
C1 and C2 tie x

Vote for C1 and C2 (or, more generally, C2 wins
each has a .5 chance

of winning)

Vote for C1 Only y z
C1 wins C3 wins

for reckless courage. Each driver most prefers the outcome where he contin-
ues straight while the other swerves (y for C1, x for C2), but if both continue
straight, they create a mutual disaster–death or injury in a head-on collision (z).
In between, each prefers being thought no worse a chicken than the other (w,
mutual swerving) to the humiliation of being the only chicken while the other
gets bragging rights (x for C1, y for C2). In approval voting, the counterpart of
driving straight is recommending a vote only for oneself, while the equivalent
of swerving is the cooperative strategy of encouraging one’s followers to cast
a second vote for another candidate.

Unlike the more famous Prisoner’s Dilemma, there is no dominant strategy
in Chicken. Each player’s best choice varies depending on what the other is
expected to do. If C1 knows that C2 will recommend a double vote, she can
win by asking her followers to vote only for herself. Conversely, if she knows
that C2 will not share votes, she can deny the other party (C3 ) a victory, but
only by handing the prize to her in-group rival, C2. Mutatis mutandis, the same
holds for candidate C2. As an instance of Chicken, the Burr Dilemma thus has
two Nash equilibria, outcomes x and y, each to the advantage of a different
candidate. In determining which (if either equilibrium) will occur, there is
a strong first-mover advantage. Whichever candidate can credibly commit,
before the other, to a bullet-vote strategy forces the second mover to relinquish
victory in order to prevent the triumph of the third candidate whom they both
oppose.

However, when the actors are emotional human beings, as opposed to ab-
stract rational choosers, there is no guarantee that either Nash outcome will oc-
cur. If C1 commits to a single-vote strategy, C2 (or his followers) may refuse to
meekly cede victory to an uncooperative rival who has put personal ambition
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ahead of group welfare. Following C2’s lead or acting on their own resent-
ment, members of G2 may also bullet-vote, like their counterparts in G1. If so,
approval voting collapses into conventional single-vote balloting; the majority
is split between two candidates; and a candidate desired by only a minority
wins. Conversely, as happened in 1800, both G1 and G2 may adhere to the
two-vote strategy as each reminds the other of “the benefits of reciprocity and
reputation.” (Dixit and Skeath 1999, 213) The result of such mutual “swerv-
ing” will be a tie in which the group wins, but the individual candidates must
take their chances with whatever mechanism exists for breaking a deadlock.

Whereas resentment can undermine the two Nash equilibria, the other two
outcomes (w and z) are unstable precisely because they are not equilibria. The
temptation to defect can upset w (mutual cooperation) as either or both groups
try to grab an opportunistic win by bullet voting. Conversely, z (mutual defec-
tion) can give way to the temptation to capitulate by casting double votes in
order to stave off victory by the third force. Any outcome can happen, and all
are precarious.18

It may be objected that this pessimistic conclusion depends on two exces-
sively simplistic assumptions–dichotomous strategies and uniform behavior
within groups. To the contrary, both assumptions can be relaxed without elim-
inating the Burr Dilemma.

Dichotomizing leaders’ strategies assumes that they have only two choices–
recommend that all followers cast two votes, or recommend that all cast just
one vote. In a real election the more likely strategy is the one both sides feared
in 1800–leaders publicly affirm their commitment to two votes while surrepti-
tiously asking a few supporters to cut the rival candidate. Such duplicity would
be difficult to keep entirely secret or unsuspected, especially in a large group. If
C2 learned that C1 was trying to prevent a tie by having just one of her support-
ers cut him, then he should respond by having two of his own backers cut C1.
She could retaliate by arranging three cuts. Eventually (perhaps quite soon, as
in 1800), the retaliatory spiral would result in C3’s defeating both C1 and C2.
Thus the second choice for each candidate can be read as “Some Supporters
Vote for Ci Only” without changing the essential nature of the problem.

The tie outcome (x) results because everyone in G casts a double vote (un-
less prompted otherwise by their leaders) while no one outside of G votes for
either C1 or C2. Such sharp divisions are plausible only in a relatively small,
highly disciplined voting body–such as the Electoral College in 1800 (and also
many legislatures). Relaxing the assumption of uniform behavior, however,

18This conclusion is compatible with, though independent of, Saari and van Newenhizen’s (1988a, b) more
general criticism that virtually any outcome is possible under approval voting with the same preference
profiles, depending on the approval strategies voters choose to employ. For replies, see Brams, Fishburn,
and Merrill 1988 and Brams and Sanver 2006.
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does not change the basic strategic problem, as long as the cuts in G and gift
votes from {V − G} are unpredictable or predicted to affect both C1 and C2

equally (within the margin of polling error). Such cuts and gifts act as a ran-
dom vote generator, making an actual tie less likely; but the expectation for
both candidates remains an unpredictably close race, which they can most eas-
ily influence in their own favor by encouraging followers to bullet vote.19

The Burr Dilemma vanishes only if the candidates and voters know that
exogenous cuts and gifts will favor one competitor significantly more than the
other. Let us consider that possibility, while also relaxing the assumption that
members of G1 and G2 always follow their candidate’s cues. According to
the Poll Assumption of Brams and Fishburn (1983, 115), given reliable poll
information, utility-maximizing voters will vote for the more preferred of the
two front-runners plus any trailing candidate(s) whom they prefer to that front-
runner. In our three-person example, there are three possibilities, which I will
consider from the viewpoint of G1, voters who like C1 best: (i) C1 and C2 are
the front-runners. If their lead over C3 seems secure, members of G1 will vote
only for C1. Why cast a second vote that might help C2 defeat their favorite
if there is no danger that C3 will win? (ii) C1 and C3 are the leaders. Again,
a member of G1 has no reason to help C2. The only vote that has a chance to
affect the outcome is the one he would cast for C1 anyway. (iii) C2 and C3 top
the poll, with C1 trailing. Only in this case will a voter in G1 cast two votes–a
practical vote for C2 to help him defeat the least-liked C3 , and a sentimental
or send-a-message vote for C1.

If reliable polls thus identify a clear leader between C1 and C2, that candi-
date (say, C1) can stay above the fray when it comes to offering advice about
voting strategies. She does not want her followers to give a vote to C2, because
doing so increases the risk that she will end up in a tie with him; but she does
not need to promote a bullet-voting strategy, because her supporters will reach
that conclusion for themselves, if they behave according to the Poll Assump-
tion (i.e., they learn about poll results and calculate rationally). C2, on the
other hand, is in a bind. If he pushes for bullet voting, many of his followers
may nevertheless double vote or even desert him entirely for fear of wasting
their votes. He spares them that dilemma and thus maximizes his own vote by

19Samuel Merrill (2004) points out that if candidates care only about their own individual prospects, putting
no value on victory for their group, then their ranking of outcomes follows the pattern of a Prisoner’s
Dilemma, rather than Chicken. C1, for example, would prefer z to x, because she reasons that bullet-voting
by her own supporters maximizes her chance of defeating the in-group rival, C2, without reducing her vote
relative to C3. By similar reasoning, C2 prefers z to y. I grant that such purely egocentric motivation may
sometimes occur, but when it does, approval voting faces an even greater problem than under the Chicken
pattern. If candidates conform to Prisoner’s Dilemma motives, encouraging bullet-voting is the dominant
strategy for each candidate, z is the sole Nash equilibrium, and an approval voting election degenerates into
single-vote plurality. A real election in which such degeneration occurred is described in Saari 2001a.



A Strategic Problem in Approval Voting 149

endorsing a two-vote strategy; but as long as C1 has no need to reciprocate, C2

is condemned to finish as an also-ran.
The preceding scenario is what advocates of approval voting usually have in

mind. Ability to support more than one candidate enables voters “to give the
devil his due” (e.g., Ralph Nader in 2000 or 2004) while preventing him from
acting as a spoiler. Would the benefits approval voting offers in such situations
offset the problems it might cause when the Burr Dilemma occurs? To make
such a judgment, it is necessary to consider not only the relative likelihood
of each scenario, but also whether, in view of the Burr Dilemma, a different
electoral reform might be more promising than approval voting.

4. Conclusion

The mere fact that approval voting runs into a problem with strategic be-
havior is not sufficient to reject it. We know from the Gibbard-Sattherthwaite
theorem that, when there are three or more choices, all voting procedures are
vulnerable–not always, but under some configurations of preferences–to ma-
nipulation by strategic voting (Gibbard 1973). Therefore, simply showing the
possibility of such a problem should never suffice to discredit a voting system.
Choosing among voting methods requires comparative judgments involving
numerous criteria, of which discouragement of (or vulnerability to) strategic
voting is only one. Others include simplicity, economy of administration, like-
lihood of majority rule (Condorcet efficiency), avoidance of highly unpopular
outcomes (Condorcet losers), resistance to spoilers (independence of irrele-
vant alternatives), and positive responsiveness to voters’ choices (monotonic-
ity). Moreover, in evaluating manipulability through strategic voting, analysts
must go beyond its mere possibility to assess various forms of strategic voting
and their relative undesirability, obviousness, ease, and probability under al-
ternative voting systems. Thus recognizing that the Burr Dilemma can occur
does not necessarily entail rejecting approval voting, especially as the method
can function well when the conditions required for the Poll Assumption ob-
tain. Nevertheless, the problem is sufficiently serious as to require more care-
ful analysis of approval voting in comparison with other options for reform of
single-winner elections.
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The Italian Bug: A Flawed Procedure
for Bi-Proportional Seat Allocation

Aline Pennisi

Abstract There is a serious technical flaw in the newly approved Italian electoral law. The
flaw lies in the method used to allocate the Chamber of Deputies seats to par-
ties (or coalitions) within multi-member regional constituencies. The procedure
stated in the law could produce contradictory results: it could end up assigning
a party more (or less) seats than it is entitled to receive on the basis of the same
law. At least two types of paradoxes may occur. Although they have been utterly
overlooked in the debate over electoral reform, they can be critical in practice
when trying to determine the actual seat allocation. The failure of the current
Italian electoral law was inherited from the previous one but the consequences
are worse. Moreover, a correction mechanism introduced into the law at the
last-minute does not prevent it from producing contradictory results. The para-
doxes that undermine the Italian electoral law are pointed out and a solution is
proposed. A broad conclusion is that a more extensive use of mathematics in the
design and evaluation of electoral systems would help identify flaws and deliver
more transparent, logical and fairer electoral laws.

Keywords: Bi-proportional allocation, Italian electoral system, proportional systems.

1. Introduction

On the 14th of December 2005 Italy endorsed a new law1 for the election
of representatives at the Chamber of Deputies and Senate. The new electoral
law replaced a fairly recent hybrid system2 with a proportional one, which in-
cludes a threshold for parties to be eligible to receive seats and a (potentially
big) majority prize for the party (or coalition of parties) with the most votes.
The debate over electoral reform questioned the opportunity of introducing

1The initial proposal for a reform of the electoral system was presented on 13th September 2005 by the
Polo coalition in the lower house (Chamber of Deputies), approved with some modifications in October and
ratified by the upper house (Senate) on the 14th December.
2In the mixed system (L. 4 agosto 1993), also know as “Legge Mattarella” or “Mattarellum”, 75% of the
seats were assigned on first-past-the-post rules and the remaining 25% on proportional basis. It was first
introduced in 1993, at the time of a major turmoil in Italian political setting caused by Tangentopoli and the
consequent collapse of the traditional parties.
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such a radical change with general elections forthcoming in spring 2006 and
mainly focused on its political effects in terms of coalition strategies and party
fragmentation. The public and the media utterly overlooked a serious techni-
cal flaw that the new law inherits from the old one. The procedure adopted
to transform votes into seats has a “bug” and one could end up with paradox-
ical results: the law might award a party more (or less) seats than those it is
entitled to by the same law! This has considerable practical consequences on
how to decide the actual seat allocation and casts doubt on the legitimacy of
the electoral law itself. The flaw has to do with the fact that, for some voting
outcomes, the procedure will get stuck when distributing the seats among par-
ties/coalitions within the regional constituencies for the Chamber of Deputies.
The purpose of this paper is not to discuss whether it was appropriate to change
the Italian electoral system but to prove one of its shortcomings from a purely
technical point of view. Whatever the opinion on the law and modifications
it introduces, one would surely agree that it should guarantee a consistent and
unique outcome in terms of seats and attempt, to the extent to which this is pos-
sible, to guarantee fairness (i.e., citizens’ votes should have the same weight
in determining the electoral outcome). The transformation of votes into seats
is a mathematical problem and in order to satisfy basic requirements of logic,
transparency and equity among citizens it should be consistently defined and
correctly solved in all circumstances. Unfortunately, the system under exam
fails to do so.

The new Italian electoral law for the election of representatives of the Cham-
ber of Deputies (Ddl Camera 2620 13, 2005) allocates seats proportionally to
the votes obtained by each party (and coalition of parties) at the national level
and within multi-member regional constituencies. A majority prize is meant to
ensure that the party or coalition with the greatest number of total votes wins
a full majority of seats in the Chamber of Deputies (i.e., at least 340 seats) no
matter how many votes the other parties receive3 There is a single ballot and
candidates are elected on the basis of regional “blocked” lists (citizens do not
express their preference for a candidate but a vote for a party list). Moreover,
a complex scheme of thresholds is adopted to select which parties and coali-
tions are eligible to compete in the seat allocation. The Italian Constitution
sets the size of the Chamber of Deputies at 630 seats. There are 27 multi-
member regional constituencies in total. The Constitution also establishes that
the number of seats at stake in each regional constituency must be proportional
to the number of its inhabitants, according to the latest population census. The
only exception is the region of Valle d’Aosta which has a single-member dis-

3The seat bonus represents 54 per cent of the seats, no matter what the weight of the strongest party in
terms of votes, and basically introduces a majority component which undermines the proportional principle
attempted in the law.
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trict. Finally, 12 seats are assigned to a constituency of Italian citizens resident
abroad4.

The electoral reform of 2005 is not the first attempt to modify the Italian
mixed system which previously allocated 75% of the seats in single-member
districts with first-past-the-post rules and the remaining 25% on a proportional
basis. Several other proposals have been made in the last decade, but surpris-
ingly enough they usually sought to abolish the proportional seats and intro-
duce a fully first-past-the-post system. On the other hand, the new electoral
law adopts a proportional logic, although mitigated by the majority prize.

2. Where the Italian System Fails

The Italian electoral law wishes to achieve a double proportionality: at the
national level and within the regional constituencies. But the procedure im-
plemented to achieve this is flawed and, for some voting outcomes, it will end
up by awarding a party more (or less) seats within the regional constituencies
than those the same party is entitled to at the national level. A similar flaw was
identified by Balinski and Ramirez in the 1996 Mexican electoral law (Balin-
ski and Ramírez González, 1997). In short, the new electoral law first allocates
seats to parties at the national level and then assigns seats to the parties within
each regional constituency. Both steps are carried out on a proportional ba-
sis, according to a method called Hare or Largest Remainders. A fundamental
property of the method is that the number of seats is always equal to the ex-
act share (quota) of seats a party should receive on a proportional basis, either
rounded down or rounded up. There is an extensive literature on proportional
electoral systems and the Largest Remainders method, for details see for exam-
ple (Balinski, 2004; Balinski and Young, 1982; Grilli di Cortona et al., 1999).

Since the computation of the number of seats to each party or coalition at
the national level is carried out first, the allocation of seats to parties within
the regional constituencies is bound to satisfy two sub-totals: (a) the sum of
the seats assigned to all parties within a given constituency must be equal to
the number of seats actually at stake in the constituency and (b) the sum of the
seats awarded to a given party in all constituencies must be equal to the number
of seats it was awarded on the basis of the national computation.

The procedure adopted to allocate seats to parties within the regional con-
stituencies starts by computing the exact number of seats due to each party one
constituency at a time (starting from the smallest one). This number is equal
to the size of the constituency multiplied by the percentage of ballots the given
party has obtained. This “exact quota of seats” is not necessarily an integer

4Voting by Italian nationals resident abroad is governed by L. 27 dicembre 2001 n. 459 (known as “Legge
Tremaglia”) and by its implementing regulation (D.P.R. no.104 / 2003).
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and usually carries a fractional part. Since a seat cannot be divided among
different candidates, the law first assigns each party a number of seats equal to
the exact quota rounded down. If there still remain seats to be assigned, these
are awarded to parties in the order of the largest fractional remainders.

The problem with this procedure is it does not guarantee that, once all seats
are assigned, the total amount awarded to each party is the same as the amount
computed at the national level. Basically, by operating one constituency at
a time, without worrying about the total amount of seats a party is entitled
to at the national level, the sum constraint might not be satisfied. This is not a
negligible defect and it has serious practical consequences: should such a para-
doxical result occur, who will decide the final seat assignment? The size of the
Chamber of Deputies cannot be changed. Some parties will gain more seats
with the regional allocation but others will with the national one. The failure
of the Italian electoral law could trigger a serious controversy between polit-
ical parties on whether the result of the national allocation should prevail on
the results of the regional allocations. Claims of the different political groups
would presumably vary according to which case is the most advantageous for
them.

3. Electoral Paradoxes

Small scale examples of the Italian electoral paradox have been already dis-
cussed in (Pennisi et al., 2005a) but more realistic examples can easily be pro-
duced. Consider the case of six political parties competing for the 617 seats at
stake in the Italian Chamber of Deputies and the 26 regional constituencies5 .
Let the voting outcome be the one detailed in Table 1. In this example the
number of votes is comparable with those expressed by Italian citizens in the
last general elections held in 2001: there is, at the most, a 4.5 point difference
between the share of party votes shown in the example and those obtained in
2001. Notice that party C is competing only in some constituencies. This was
the case of the Northern League in the 2001 elections. Let the party with the
greatest number of votes be the “majority list” and the quotient between the to-
tal number votes and the number of seats at stake (617) be called the fractional
national coefficient. This number rounded downwards is called the national
coefficient and represents the “cost” of a seat in terms of votes in the national
contest.

5The actual size of the Chamber of Deputies is 630 seats, as established in the Italian Constitution (article
56), but 12 of them are reserved to the election of representatives of the Italians living abroad and 1 to the
single/member district of Valle d’Aosta.
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Table 1. Number of votes per party and constituency.

Constituency Party A Party B Party C Party D Party E Party F Total Seats
votes at

stake

Piemonte 1 400783 96054 73072 249544 237700 30383 1087536 24
Piemonte 2 285589 124753 194327 180623 132317 33655 951264 22
Lombardia 1 761543 249386 160114 321368 396133 48568 1937112 40
Lombardia 2 636642 192461 410789 192385 357854 97506 1887637 43
Lombardia 3 186671 78789 127148 170008 79445 1607 643668 15
Trentino
Alto Adige 82778 55049 0 51517 67413 36885 293642 10
Veneto 1 329782 158402 169965 177987 251340 8289 1095765 29
Veneto 2 317041 89550 143286 131320 180218 44223 905638 20
Friuli
Venezia Giulia 186371 96356 67321 66763 146959 1847 565617 13
Liguria 280399 84842 77958 249392 123161 43594 859346 17
Emilia
Romagna 641699 307914 0 839563 469029 266707 2524912 43
Toscana 508202 350951 0 774294 360079 219358 2212884 38
Umbria 134556 134860 0 183441 113560 83630 650047 9
Marche 244594 179000 0 252977 183337 95155 955063 16
Lazio 1 564330 559634 0 473675 491237 173156 2262032 40
Lazio 2 307780 200949 0 183038 126949 84146 902862 15
Abruzzi 239180 157899 0 179005 131944 84537 792565 14
Molise 71393 59449 0 71950 59301 48741 310834 3
Campania 1 567890 239670 0 312391 197204 129222 1446377 33
Campania 2 463265 250225 0 212514 261133 101904 1289041 29
Puglia 681996 397202 0 341107 415243 150335 1985883 44
Basilicata 103244 72139 0 100214 101297 56334 433228 6
Calabria 270118 195793 0 223719 150159 97080 936869 22
Sicilia 1 478296 150643 0 190233 188381 88548 1096101 26
Sicilia 2 504881 221958 0 171734 271583 82452 1252608 28
Sardegna 301315 153912 0 209921 166320 126415 957883 18
TOTAL 9550338 4857840 1423980 6510683 5659296 2234277 30236414 617

The procedure adopted by the law first allocates the 617 seats to parties at
the national level taking into account the majority prize, as follows6:

assign to each party its exact quota of seats rounded down, i.e. divide
the number of votes the party has obtained by the national coefficient
and round this number down. Then count the number of seats that must
still be awarded and assign an additional seat to those parties which have
the greatest fractional remainders (this is a slight variant of the typical
statement of the largest remainders method);

check whether the majority list has achieved at least 340 seats;

6The whole setting is slightly more complicated because of the national and regional thresholds on the
number of votes parties must obtain to compete in the electoral contest. For the sake of simplicity, suppose
all parties in the example satisfy the thresholds. The technical flaw put forth in this paper is not related to
the use of thresholds, although in paragraph 4 we do suggest that thresholds may play a role in making the
paradoxes more likely to occur.
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if this is not the case, assign 340 seats to the majority list and calculate
the majority electoral coefficient (i.e., the total majority list votes divided
by 340 and rounded downwards) and the minority electoral coefficient
(i.e., the sum of votes obtained by the other parties divided by 277 and
rounded downwards). Distribute the 277 remaining seats among the mi-
nority parties with the method of largest remainders described above, but
using the minority electoral coefficient.

The majority and minority coefficients represent the cost in terms of votes of
a seat for the majority list and for all other parties, respectively. In a truly pro-
portional electoral system the cost of a seat is the same for all parties, but here,
the adoption of the 340-seat majority prize can introduce large differences:
seats may cost much less for the majority list and much more for all other par-
ties. In the example the cost of a seat for “minority” parties is 2.7 times larger
that the cost of a seat for the majority list (approximately 28 thousand ballots
are needed for the majority list to get a seat against about 75 thousand for the
other parties!). The number of seats assigned to each party is given in Table 2.

Table 2. Seats awarded at the national level, taking into account the majority prize.

Party A Party B Party C Party D Party E Party F Total
seats

Seats awarded
at the 340 65 19 87 76 30 617
national level

At this point, seats must be allocated to the parties within the regional
constituencies. The procedure consists of the following steps, for each con-
stituency:

divide the number of votes obtained by the majority list by the majority
coefficient and for each other party, divide the number of votes by the
minority coefficient; these indexes are the relative costs of a seat in the
constituency.

multiply the number of seats at stake in the constituency by each party’s
index and divide this product by the sum of all indexes to obtain the exact
number of seats assigned to each party, and round this number down;

assign the remaining seats at stake in the constituency on the basis of
largest remainders.

Despite the convoluted formulation, this procedure is nothing more than a
slight variant of the largest remainders method, applied at the constituency
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level and taking into account two different totals (for majority and minority
seats). The result is given in Table 3. The law’s internal contradiction is clear:
parties A, C and D end up with more seats than those they are entitled to at the
national level while E and F have less. The only correct result is the number of
seats assigned to party B.

In the bill for electoral reform presented in September 2005 the procedure
ended at this point, totally neglecting the fact that a paradox - such as the one
shown in the example - could occur. During parliamentary discussion the leg-
islators must have realized, at the last moment, that something could go wrong.
In a version of the law approved by the Chamber of Deputies in October a cor-
rection procedure was introduced. The idea underlying the correction mech-
anism is to re-balance the seat distribution through transfers of seats between
parties with a surplus (in the example A, C and D) to parties with a deficit (E
and F). Unfortunately, this mechanism is once again flawed!

The correction mechanism is executed whenever the sum of seats awarded to
parties in the regional constituencies is not equal to the corresponding national
seat allocation. It is applied starting from the party with the largest seat surplus,
in decreasing order. Seats are transferred from the party with a surplus in those
constituencies in which the party has obtained an additional seat thanks to its
remainders, selecting the smallest remainders (the underlying idea is that seats
are taken away from the party in those cases in which it was less entitled to
them respect to other constituencies). The seats are transferred to a party with
a seat deficit in the same constituency provided that such party has not already
benefited from an additional seat on a remainder’s basis and according to the
largest unused remainder (the idea is to award the seat to the party which is
next most entitled to it).

Although it is meant to correct the damage done, the mechanism does not
always work because it operates only on seats rounded up, i.e. assigned to
a given party thanks to its relatively “large” remainder. In other words the
correction mechanism assumes that a paradox may occur, but only because
a party has benefited too much from its exact quotas being rounded up. In
Table 3 bold figures highlight exact quotas rounded upwards, i.e. cases in
which an additional seat was awarded to the party during the regional allocation
procedure thanks to the largest remainders. Note that party C is in surplus of
seats although it has received only exact quotas rounded down. A double-
star identifies cases in which a surplus party received an additional seat with
relatively small remainders (the smallest among all remainders it has used) and
a star identifies cases in which a deficit party has the largest unused remainders.
These are the parties and constituencies involved in the seat transfers.

One can already notice that, despite transfer operations, the inconsistency
between the sum of seats allocated to parties within the regional constituen-
cies and the national allocation will still hold: party C will keep two extra
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Table 3. Seats awarded to parties within the constituencies on the basis of largest
remainders.

Constituency Party A Party B Party C Party D Party E Party F Row
sum

Piemonte 1 15 1 1 4** 3 0* 24
Piemonte 2 12 2 3 3 2 0 22
Lombardia 1 25 3 2 4 5 1 40
Lombardia 2 25 3 6 3 5 1 43
Lombardia 3 8 1 2 3 1 0 15
Trentino
Alto Adige 5 1 0 1 2 1 10
Veneto 1 16** 3 3 3 4* 0 29
Veneto 2 12 1 2 2 2 1 20
Friuli
Venezia Giulia 7 2 1 1 2 0 13
Liguria 10** 1 1 3 2 0* 17
Emilia
Romagna 20 4 0 10 6 3 43
Toscana 17 4 0 10 4 3 38
Umbria 4 1 0 2 1 1 9
Marche 8 2 0 3 2 1 16
Lazio 1 19 7 0 6 6 2 40
Lazio 2 9 2 0 2 1 1 15
Abruzzi 7 2 0 2 2 1 14
Molise 1 1 0 1 0 0 3
Campania 1 21 3 0 4 3 2 33
Campania 2 17 4 0 3 4 1 29
Puglia 25 6 0 5 6 2 44
Basilicata 3 1 0 1 1 0 6
Calabria 11 3 0 4 2 2 22
Sicilia 1 17 2 0 3 3 1 26
Sicilia 2 18 3 0 2 4 1 28
Sardegna 10 2 0 3 2 1 18

Column sum 342 65 21 88 75 26 617

Seats awarded
at the 340 65 19 87 76 30 617
national level

Surplus
and/or deficit +2 0 +2 +1 -1 -4

seats and party F will lack them. There is no mention in the law on how to
resolve such situations. In fact, the law states that when seat transfers within
a same constituency are no longer possible (just as in the example), in order
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to eliminate any other surplus, seats may be given to parties with a deficit in
a different constituency, with the largest unused remainders first. However, it
never acknowledges the fact that a surplus of seats may be due to the simple
assignment of exact quotas rounded down and not to seats awarded according
to largest remainders. Other realistic examples can be produced, as shown in
(Pennisi et al., 2005b). There are at least two types of paradoxes undermining
the Italian electoral law and for which its correction mechanism is not sufficient
to repair:

the surplus paradox for parties with exact regional quotas all rounded
downwards: when the sum of the seats assigned to a party (or coalition
of parties) in the constituencies is greater than the number of seats it is
entitled to at national level and all its regional seats are the result of exact
quotas rounded downwards;

the deficit paradox for parties with exact regional quotas all rounded
upwards: when the sum of the seats assigned to a party (or coalition) in
the constituencies is smaller than the number of seats it is entitled to at
the national level and it has already benefited from extra seats thanks to
largest remainders in all constituencies where it has obtained votes.

The first type of paradox is shown in the example, the second is symmetric.
In the second case the correction mechanism will get stuck because the law
never considers the possibility that a lack of seats can occur although a party’s
exact quota of seats has already been rounded upwards in all constituencies
(and therefore the party is never eligible to receive additional seats).

Moreover, applying the correction mechanism can cause a third type of para-
dox: the constituency paradox. In fact, given that seat transfers between parties
in different constituencies are allowed, the total number of seats awarded in
each constituency can end up being different from the number of seats actually
at stake in the same constituency!7

As mentioned earlier, the “bug” in the new Italian electoral law was inher-
ited from the previous one. The proportional seat allocation of the hybrid sys-
tem adopted for elections in 1994, 1996 and 2001 - also known as the Mattarel-
lum system from the name of its maker - was in fact carried out with the same
largest remainders procedure, applied first at the national level and then in the
regional constituencies one at a time. There was no correction mechanism but
while allocating additional seats to parties according to the Largest Remain-
ders at the regional level, the number of seats each party was entitled to at the

7Actually, this occurred in the 2006 elections where 11 seats were assigned in Trentino Alto Adige - one
more than the number of seats at stake in that constituency - and 2 seats were awarded in Molise instead of
3. Such a result is in clear contradiction with the Italian Constitution.
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national level was considered an upper bound. Hence, the idea was to prevent a
party from violating the constraint on the total number of seats it could receive
by rounding its exact quota up only until it had not reached the number of seats
already awarded at the national level. This does not prevent the paradoxes
from occurring because, as we have stressed, even parties with exact quotas
all rounded down can end up with a surplus and parties with exact quotas all
rounded up can end up with a deficit.

In the new electoral law the technical flaw is even worse than in the old
one, for several reasons. First of all, because it concerns the allocation of all
617 seats, harming the whole electoral outcome, while the Mattarellum system
allocated only 25% of the seats on proportional basis. Secondly, because, in
the case of coalitions competing in the electoral contest, the paradox occurring
in trying to justify national and regional results may also occur in trying to re-
allocate the seats awarded to the coalition among its member parties. Finally,
the introduction of a correction mechanism while the bill was under exam in
Parliament suggests that legislators saw a flaw in the procedure; the persisting
failure of the correction mechanism proves they have not understood the real
nature of the problem.

4. Tackling the Italian Electoral Problem

From a mathematical point of view, put aside the majority prize the electoral
procedure adopted in the Italian case is meant to solve the following problem:
find a matrix of nonnegative integers (the seats), whose row (the constituen-
cies) and column (the political parties) sums are fixed and whose entries are
“proportional” to a given matrix (the matrix of votes). This is the well-known
bi-proportional allocation problem in integers which is in itself of great in-
terest and has many applications, not only in the electoral field (for example
Bacharach, 1970; Balinski, 1989a; Leti, 1970). Let M be a set of regional con-
stituencies, N a set of political parties (or coalitions) and s a positive integer
equal to the total amount of seats to be allocated (or house-size). The following
notation is used:

vij the number of votes for party j in constituency i;
si the number of seats at stake in constituency i and such that

∑
i∈M si = s;

tj the number of seats awarded to party j at the national level;
v the total number of votes.

Then viN and vMj are respectively the sum of the votes cast in constituency
i (across all parties) and the sum of the votes cast for party j (across all con-
stituencies):
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viN =
∑
j∈N

vij

vMj =
∑
i∈M

vij

vMN =
∑

i∈Mj∈N

vij = V

The bi-proportional allocation problem in integers is to find a matrix of seats
sij for each constituency i ∈ M and each party j ∈ N such that the following
constraints hold:

sMN = s
siN = si for every constituency i
sMj = tj for every party j
sij ≥ 0 for all i, j
sij integer for all i, j

(1)

Finally, one would like sij to be “as proportional as possible” to vij for all
i ∈ M and j ∈ N .

Let qij = vij
si

viN
be the exact quota of seats for party j in constituency i.

Now qiN = si and qMN = s. Perfect proportionality is achieved by letting
sij = qij . If there are no further constraints, this is the obvious solution to
the problem, but sij must be integer and sMj = tj must hold as well. The
idea underlying the Italian method is to consider the exact quotas each party is
entitled to in the regional constituency and to round these numbers up or down
(in the case the majority prize is assigned to some party, these quotas are not
the exact ones but a modified version based on the majority or minority seats).
Unfortunately, it is fairly easy to build realistic examples for which, however
the rounding is carried out, it is impossible to satisfy both row and column
constraints (siN = si and sMj = tj). The Italian electoral law adopts the
method of largest remainders both at the national and regional level. Therefore,
all resulting seat allocations comply with a property called quota satisfaction:
i.e, ⌊

vij
si

viN

⌋
≤ sij ≤

⌈
vij

si

viN

⌉
holds for every party j and constituency i (at the regional level) but also:⌊

vMj
s

v

⌋
≤ tj ≤

⌈
vMj

s

v

⌉
holds for every party j at the national level.
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The surplus paradox occurs if there is a party j such that:

∑
i∈M

⌊
vij

si

viN

⌋
>

⌈
vMj

s

v

⌉
(2)

The deficit paradox occurs if there is a party j such that:

∑
i∈M

⌈
vij

si

viN

⌉
<

⌊
vMj

s

v

⌋
(3)

For the paradoxes to occur there must be some kind of imbalance between
vote/seat ratios at the national and regional level (or between the cost of a seat
at the national and regional level), as shown below.

Proposition 1 If si/viN = s/v, for every i ∈ M the two paradoxes cannot
occur.

Proof. If si/viN = s/v, for every i ∈ M , then for every party j:

∑
i∈M

⌊
vij

si

viN

⌋
=

⌊
v1j

s

v

⌋
+

⌊
v2j

s

v

⌋
+ . . . +

⌊
vMj

s

v

⌋
≤

≤ v1j
s

v
+ v2j

s

v
+ . . . + vMj

s

v
=

s

v

∑
i∈M

vij ≤
⌈
vMj

s

v

⌉

which is the opposite of (2). The same can be shown for (3).

In other words discrepancy between national and regional coefficients is a
necessary condition for the paradoxes, but it is not sufficient. Nevertheless,
to get some intuition one may notice that when the regional seat apportion-
ment plan is “perfect” - in the sense that the number of seats at stake in each
constituency is perfectly proportional the corresponding regional population
(fractional seats being allowed)- the “anti-paradox” condition si/viN = s/v is
equivalent to assuming the same rate of vote participation across the country.

Proposition 2 Let p be the total country population and pi the population
of the i-th constituency. Given a perfectly proportional seat apportionment
plan, the condition si/viN = s/v for every i ∈ M is equivalent to the condi-
tion viN/pi = v/p for every i ∈ M .

Proof. In a perfectly proportional seat apportionment plan si/s = pi/p. If
si/viN = s/v holds for every i ∈ M , then viN = siv/s = vpi/p for every
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i ∈ M and vice-versa.

In real life a certain degree of discrepancy between the vote/seat ratios at
the national and regional level is usual. Significant differences may be due to
factors which are out of the legislator’s control, such as different rates of ab-
senteeism (citizens not voting at all) or protest (citizens casting invalid ballots)
across the regions. As suggested in Proposition 2, they might also be due to
the way the electoral law is put into practice, such as a “bad” regional appor-
tionment plan (where the seats at stake in each regional constituency do not
tend to reflect of the size of the constituency’s population). Despite a “good”
regional apportionment plan, there are at least two other features of the Italian
electoral law that could be responsible for an imbalance between the national
and regional ratios:

The thresholds on the number of votes parties and coalitions must obtain
to participate in the electoral contest. When a small party is cut out from
the competition because of the threshold, its votes are deducted from
the total constituency outcome in terms of votes. Parties running such a
risk are typically groups of local interest which run only in very specific
regions (at least in the Italian case);

The majority prize. When the majority list wins 340 seats although it has
obtained proportionally a much smaller amount of votes, the majority
and minority coefficients tend to be very different, and different from
the national vote/seat ratio.

Although the problem the Italian electoral law attempts to solve is not an
easy one, a “sound” solution always exists as proved by Balinski and Demange
(1989a and 1989b). The authors actually prove that a solution satisfying a num-
ber of basic properties (such as monotonicity, uniformity, relevance, exactness,
etc.) can be found with an algorithm resembling the well-known out-of-kilter
algorithm for minimum cost network flows.

5. Drawing Some Conclusions

The history of electoral systems is full of examples of paradoxes and fail-
ures - some of which have been used with bias for the purpose of political
advantage. A mathematical approach to electoral systems can help identify
such failures. In fact a more thorough use of mathematical tools to evaluate
and design the many features that make an electoral system - from the design
of electoral districts to the choice of a method to transform votes into seats - is
fundamental (see also Balinski and Young, 1982; Grilli di Cortona et al., 2005).
The paradoxes underlying the Italian law are not due to the fact that achieving
double proportionality, at the national level and within regional constituencies,
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is an unsolvable problem but to fact that the method adopted is not an appro-
priate one. In the case examined in this paper the legislators do not seem to
have been aware of the underlying complexity of the problem they were facing
and they have basically established a procedure which is too simple to address
bi-proportional allocation in integers. Appropriate and correct procedures exist
although they use somewhat sophisticated mathematics and might have to be
carried out with the help of a computer program. This should not prevent elec-
toral laws to adopt correct procedures: the University of Augsburg developed
a Java-program for matrix apportionments using divisor methods and based
on alternate scaling called BAZI, which has been adopted to shape the Zurich
electoral law in 2003 (Pukelsheim, 2004). The idea of using a complex algo-
rithm and a computer-aided solution to elect the representatives of Parliament
opens to a number of questions. Surely such a fundamental law for democracy
must be clear and transparent to all citizens and not only an optimum according
to mathematicians. Moreover, the procedure must be replicable in all its steps
and, above all, it must guarantee a unique solution.
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Current Issues of Apportionment Methods

Friedrich Pukelsheim
Institut für Mathematik, Universität Augsburg

Abstract Three apportionment problems are addressed that are of current interest in Ger-
many and Switzerland: the assignment of committee seats in a way that pre-
serves the parliamentary majority-minority relation, the introduction of mini-
mum restrictions in a two-ballot system to accomodate the direct seats won by
the constituency ballots, and biproportional apportionment methods for systems
with multiple districts so as to achieve proportionality between party votes as
well as between district populations.

Keywords: Gentle majority clause; direct-seat restricted divisor methods; biproportional di-
visor methods; BAZI computer software.

1. Introduction

Three proportional representation problems are sketched that are of practical
and current interest. The first problem is to map a majority of votes into a
majority of seats, encountered when the German Bundestag had to apportion
sixteen committee seats. All of the methods that the Bundestag had been using
so far produced a tie, assigning eight seats to the government majority and
another eight to the opposition minority. A gentle majority clause is suggested
to resolve the tie (Section 2).

The second problem concerns the election of the Bundestag deputies proper.
The German Federal Electoral Law provides each voter with two ballots, a
party ballot and a constituency ballot. The party ballots form the basis for
a proportional apportionment of all Bundestag seats, while the constituency
ballots are instrumental in identifying direct-seat winners in single-member
constituencies. The Electoral Law desires to combine the two components, but
actually fails to do so when setting up the operational instructions to evaluate
the two ballots. Defects may evolve, the most serious – and actually fatal, in
our view – defect being that more party ballots may actually cause a loss of
seats. The system may thus discourage voters to cast their ballots in favor of
the party of their choice! Luckily, the apportionment theory of Balinski/Young
(2001) offers a remedy, by imposing minimum restrictions. Direct-seat re-
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stricted methods evade the defects, and successfully combine the two compo-
nents of the German system, of a proportional apportionment via party ballots,
and of an election of persons via constituency ballots (Section 3).

The third problem considers electoral systems where the whole electoral
region is subdivided into various electoral districts. We review recent work
on biproportional methods tailored to achieve two-way proportionality, that is,
proportionality among the vote counts for parties, and proportionality among
the populations numbers for districts (Section 4).

2. A Gentle Majority Clause

With the start of a legislative period, a new German Parliament [Bundestag]
elects its delegates for the Bundestag-Bundesrat Conference Committee [Ver-
mittlungsausschuss]. The Bundesrat is the assembly of the 16 states [Länder],
each sending one representative into the Conference Committee. In order to be
on par with the Bundesrat, the Bundestag occupies another 16 seats, apportion-
ing them to the parliamentary factions proportional to their size. The faction
size [Fraktiongröße] is the number of deputies belonging to the faction. In the
2002 legislative period, there were four factions, SPD, CDU/CSU, Bündnis
90/Die Grünen, and FDP, of sizes 249 : 247 : 55 : 47.

Over the years the Bundestag has familiarized itself with three apportion-
ment methods: the divisor method with standard rounding (Webster/Sainte-
Laguë/Schepers), the divisor method with rounding down (Jefferson/D’Hondt/
Hagenbach-Bischoff), and the quota method with residual fit by largest re-
mainders (Hamilton/Hare/Niemeyer). All of these methods allocate the 16 seat
Bundestag delegation as 7 : 7 : 1 : 1, entailing a tie of 8 : 8 seats between the
government majority (Social Democrats and Greens, 249 + 55 = 304 seats),
and the opposition minority (Conservatives and Liberals, 247 + 47 = 294
seats).

To break the tie, the Bundestag majority passed a motion to proportionally
apportion just 15 seats, and to directly assign the last seat to the largest fac-
tion. The resulting allocation 8 : 6 : 1 : 1 secured a committee majority
of 9 : 7 for the government parties. Not surprisingly, the opposition minor-
ity challenged the apportionment in court. On 8 December 2004 the German
Federal Constitutional Court ordered the Bundestag to reconsider the appor-
tionment, but was otherwise vague and nebulous which constitutional princi-
ples the Bundestag was to observe when renewing its deliberations. The Court
specified, though, that the procedure used ought to be “transparent, calculable,
and abstract-general”.

On 17 February 2005 the Bundestag Rules Committee, who was in charge of
the proceedings, conducted an expert hearing. The opinion presented by us is
published in Pukelsheim/Maier (2005). Our preferred option is a gentle major-
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ity clause, consisting of two parts. First and foremost, the Bundestag attempts
to select a committee size for which the divisor method with standard round-
ing (Webster/Sainte-Laguë/Schepers) yields an apportionment that preserves
the majority-minority relation. The idea is not at all new, just codifying what
already now is standard Bundestag practice. The first part, though, does not re-
solve the Conference Committee issue. The size of the Bundestag delegation is
fixed at 16, the number of states in the federation. To evade the threatening tie,
the divisor method with standard rounding (Webster/Sainte-Laguë/Schepers)
needs to be amended.

The second part of the gentle majority clause comes to bear only in such
cases when the first part results in a tie. Then the smallest possible majority
in the committee is allocated with the government majority, thus leaving the
largest possible committee minority for the opposition minority. Within each
of the two groups, the seats available are apportioned using the divisor method
with standard rounding (Webster/Sainte-Laguë/Schepers). For the Conference
Committee, the government majority shares 9 seats in the relation 7 : 2, while
the opposition minority allocates the remaining 7 seats as 6 : 1. In summary,
the resulting apportionment is 7 : 6 : 2 : 1. Pukelsheim/Maier (2005) argue
that the gentle majority qualifies to be transparent, calculable, and abstract-
general.

3. Direct-Seat Restricted Methods

The German Federal Electoral Law provides every voter with two ballots,
a constituency ballot [Erststimme] and a party ballot [Zweitstimme]. Voters
mark the two ballots on a single sheet of paper where the choices for the con-
stituency ballot are printed on the left half of the page, while the party ballot
choices occupy the right half. To aid voters in distinguishing between the two
halves, one is printed in blue, the other, in black.

The party ballots are the basis for the superapportionment [Oberzuteilung],
a proportional apportionment of all 598 Bundestag seats among parties. Parties
participate in the apportionment process only if they gain at least five percent
of the valid party ballots. Thus the party ballots serve to run a proportional
representation system with a five percent threshold, straight and simple. The
system becomes more demanding when deciding who is going to fill the seats.
The Law stipulates that the seats of a party are manned primarily by such can-
didates who, in their constituencies, won a relative majority of the constituency
ballots. In other words, the objective of the constituency ballots is “to elect per-
sons” in single-member districts. There are 299 constituencies, and hence the
same number of winners of direct seats [Direktmandate].

The remaining 299 seats are filled with candidates from party lists. This is
where the Law becomes tricky: party lists are organized by states, whence a
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party generally commands 16 state lists [Landeslisten]. Of course, the idea is
that deputies have roots in the geographical region where they are elected, if
not in their constituency, than at least in their state. Thus the seats that a party
received in the superapportionment are proportionally broken down to its 16
state lists. Hopefully the subapportionment [Unterzuteilung] allocates enough
seats to a party in a state, to accomodate all direct-seat winners (of that party
in that state). Any additional seats are filled from the state list, usually referred
to as list seats [Listenmandate].

There remain “exceptional” cases where a party wins more direct seats in
a state than the state list receives in the subapportionment. In such cases, the
direct seats stay with the party, even though the proportional allocation via
super- and subapportionments does not justify that many seats. This generates
additional seats, called overhang seats [Überhangmandate], enlarging the size
of the Bundestag beyond the initial 598. While the literature sometimes speaks
of “surplus seats”, we stick to the experts’ terminolgy deliberately coined when
New Zealand adopted the German electoral system (New Zealand Electoral
Commission 1986). The current Bundestag comprises 614 deputies, with 9
overhang seats for the Social Democrats and 7 for the Conservatives. Alas, the
2005 election is an “exceptional” case.

Well, since 1980 every Bundestag has had its overhang seats. We are us-
ing quotation marks because the “exceptional” cases occur regularly. Over
the years there have been 73 overhang seats (Fehndrich 2005), of which 65
benefitted the government majority no matter whether the parties composing
the majority were center, left, or right. Thus the Law grants a ninety percent
chance that overhang seats boost the government majority, rather than being
“misplaced” with the opposition minority.

Whoever forms the majority, it is not opportune for them to question a twist
in the rules instrumental to bring them into being. The 1994 Bundestag elected
Helmut Kohl Chancellor with the narrowest possible margin of one vote, his
government majority providing a happy home to 12 overhang seats. Who
would expect an overhang chancellor to bite the hand that voted him to power?
The system defies not so much the politicians who, after all, must make the best
out of a parliament as is. The challenge is up to the voters, to fight for their
right to electoral equality, and to the courts, to check upon the justifiability
with constitutional principles.

In essence, the malalignment of party and constituency ballots causes three
defects (Pukelsheim 2000, Section II). One is overhang seats. The second is
doubly successful votes, where the constituency ballot helps electing a deputy
by circumventing her or his party’s state list (because the party fails to pass
the five percent hurdle, or the candidate is independent), while the party ballot
still enters into the aggregation of another party list. In 2002, there were at
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least 270 162 voters who enjoyed the good fortune of being doubly successful
(Pukelsheim 2004, page 407).

The third defect, negative ballot weights, is prone to prove fatal, or so we
believe: more party ballots may be the cause for a party to lose a seat. The
system gives rise to situations where voters are discouraged to cast their party
ballots for the party of their choice!

Negative ballot weights were discussed first by Meyer (1994, page 321).
The problem received some subdued press coverage, with the upshot that the
electoral system entertains its oddities. Then, in the 2005 election, the defect
hit all German newspapers, irritating the electorate and ridiculing the system.
In the Dresden I constituency, a candidate had died shortly before the election
day of September 18. This caused a shift of the election, in this constituency, to
a by-election [Nachwahl] on October 2. In the main election, on September 18,
the Conservatives gained four overhang seats in Sachsen state. The by-election
threatened to return “too many” party votes for them, letting their proportional
share grow enough to convert an overhang seat into a proportionally justified
seat. The bottom line would have been the loss of one seat. The numbers speak
for themselves: The Conservative voters understood, and deprived the CDU of
their party ballots (Cantow/Fehndrich/Zicht 2005). The feared loss of a seat
did not materialize.

Under a constitution that builds on a strict separation of powers, such as the
German Fundamental Law [Grundgesetz], the constitutionaliy of a law is ex-
amined by the courts. The Federal Electoral Law falls under the jurisdiction of
the Federal Constitutional Court. The issue of negative ballot weights was pre-
sented to the Court; surprisingly, the Court remained silent about it. With the
data from the 2005 Dresden I by-election, the Court will get a chance to recon-
sider. The Court has otherwise upheld the Electoral Law, ruling that its com-
mendable effort to combine the elections of persons with a proportional rep-
resentation system entails the disputed defects as “necessary consequences”.
Here errs the Court. The defects cannot be justified as being necessary, in
the accepted sense of the word, other than that they are consequences of the
instructions in the current Law. There are methods evading the defects and,
at the same time, coming closer to merging the two electoral principles, of
electing persons and of mirroring party strenghts.

Table 1 illustrates a defect-free method, for the 2005 Bundestag election
data (Schorn/Schwartzenberg 2005). The procedure is called the direct-seat
restricted divisor method with standard rounding, and works as follows. The
number d of direct seats won by a party is imposed as a minimum restriction,
to make sure that enough seats are allocated to provide every constituency
winner with a seat. To calculate the number of proportionally justified seats,
p, the divisor method with standard rouding (Webster/Sainte-Laguë/Schepers)
is used. The method divides the number of party ballots by the divisor given
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in Table 1, and rounds the resulting quotient in a standard fashion (down if the
fractional part is below one half, and up if it is above) to obtain p. The larger
of the two numbers, denoted by d ∨ p (read: the larger value of d or p), is
the number of seats allocated. The divisors in Table 1 are such that the seats
apportioned exhaust the seats available.

For example, in the superapportionment the 16 194 665 party ballots of the
SPD are divided by 76 000. The resulting quotient 213.1 is rounded to p =
213. Since this exceeds the number of direct seats, d = 145, the SPD is eligible
to 213 seats, on the federal level. In the subapportionment, the 213 seats are
broken down to the 16 SPD state lists. The divisor used is 80 000, shown at
the bottom of the column. The SPD in Sachsen-Anhalt (ST) won d = 10
direct seats, but received just p = 6 proportionally justified seats. Formerly,
the difference would have generated four overhang seats. With the direct-seat
restricted method, the larger of the two numbers applies, 10. For the SPD, the
direct seat component dominates in five states (HH, BB, ST, TH, SL), in two
states the tally is balanced (MV, HB), and in the other nine the proportionally
justified seats are effective.

4. Biproportional Methods

The subdivision of a single large electoral region into various smaller elec-
toral districts is an ubiquitous topic. The German Electoral Law, dealing with
sixteen states, provides just one way of handling the issue. Another well-
established approach allocates the total number of seats to the electoral dis-
tricts proportionally to population counts, some time during the legislative pe-
riod. With the seat numbers for each district prespecified, the votes are then
evaluated separately in each district. This is the system that was in use in the
Canton of Zurich, Switzerland. Due to population mobility, however, some
districts shrunk to as few seats as two, in the presence of some seven and more
parties competing. Naturally, the idea of proportionality must fail when appor-
tioning just two seats among many competitors. This provided the motivation
to switch to a biproportional method.

Biproportional apportionment methods were introduced into the literature
by Balinski/Demange (1989a,b). Balinski (2002) applied the method to Mex-
ico, in a popular science article that I translated into German. Shortly after-
wards Christian Schuhmacher, from the Zurich Justice and Interior Depart-
ment, hit upon the Augsburg Bazi group in the Internet. Together, we adopted
Balinski’s idea to the Zurich situation (Pukelsheim/Schuhmacher 2004). The
new Zurich apportionment procedure [Neues Zürcher Zuteilungsverfahren,
NZZ] had its world debut with the Zurich City Parliament election on 12 Febru-
ary 2006 (Balinski/Pukelsheim 2006a,b).
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Table 1. Election of the sixteenth German Bundestag on 18 September 2005, direct-
seat restricted divisor method with standard rounding.

SPD CDU FDP Die Linke Grüne CSU
Superapportionment of the 598 Bundestag seats to parties (Divisor = 76 000)

16 194 665 13 136 740 4 648 144 4 118 194 3 838 326 3 494 309
145 ∨ 213 = 213 106 ∨ 173 = 173 0 ∨ 61 = 61 3 ∨ 54 = 54 1 ∨ 51 = 51 44 ∨ 46 = 46

Subapportionment of overall party seats to state lists (na = no list submitted)
SH 655 361 624 510 173 320 78 755 144 712 na

5 ∨ 8 = 8 6 ∨ 8 = 8 0 ∨ 2 = 2 0 ∨ 1 = 1 0 ∨ 2 = 2
MV 314 830 293 316 62 049 234 702 39 379 na

4 ∨ 4 = 4 3 ∨ 4 = 4 0 ∨ 1 = 1 0 ∨ 3 = 3 0 ∨ 1 = 1
HH 365 546 272 418 84 593 59 463 140 751 na

6 ∨ 5 = 6 0 ∨ 3 = 3 0 ∨ 1 = 1 0 ∨ 1 = 1 0 ∨ 2 = 2
NI 2 058 174 1 599 947 426 341 205 200 354 853 na

25 ∨ 26 = 16 4 ∨ 20 = 20 0 ∨ 6 = 6 0 ∨ 3 = 3 0 ∨ 5 = 5
HB 155 366 82 389 29 329 30 570 51 600 na

2 ∨ 2 = 2 0 ∨ 1 = 1 0 ∨ 0 = 0 0 ∨ 0 = 0 0 ∨ 1 = 1
BB 561 689 322 400 107 736 416 359 80 253 na

10 ∨ 7 = 10 0 ∨ 4 = 4 0 ∨ 1 = 1 0 ∨ 5 = 5 0 ∨ 1 = 1
ST 474 909 357 663 117 155 385 422 59 146 na

10 ∨ 6 = 10 0 ∨ 5 = 5 0 ∨ 2 = 2 0 ∨ 5 = 5 0 ∨ 1 = 1
BE 637 674 408 715 152 157 303 630 254 546 na

7 ∨ 8 = 8 1 ∨ 5 = 5 0 ∨ 2 = 2 3 ∨ 4 = 4 1 ∨ 3 = 3
NW 4 096 112 3 524 351 1 024 924 0 13 529 967 782 551 na

40 ∨ 51 = 51 24 ∨ 44 = 44 24 ∨ 44 = 44 0 ∨ 7 = 7 0 ∨ 10 = 10
SN 649 807 795 316 269 623 603 824 126 850 na

3 ∨ 8 = 8 14 ∨ 10 = 14 0 ∨ 4 = 4 0 ∨ 8 = 8 0 ∨ 2 = 2
HE 1 197 762 1 131 496 392 123 178 913 340 288 na

13 ∨ 15 = 15 8 ∨ 14 = 14 0 ∨ 5 = 5 0 ∨ 2 = 2 0 ∨ 5 = 5
TH 432 778 372 435 115 009 378 340 69 976 na

6 ∨ 5 = 6 3 ∨ 5 = 5 0 ∨ 1 = 1 0 ∨ 5 = 5 0 ∨ 1 = 1
RP 822 074 877 632 278 945 132 154 172 900 na

5 ∨ 10 = 10 10 ∨ 11 = 11 0 ∨ 4 = 4 0 ∨ 2 = 2 0 ∨ 2 = 2
BY 1 806 548 na 673 817 244 701 559 941 3 494 309

1 ∨ 23 = 23 0 ∨ 9 = 9 0 ∨ 3 = 3 0 ∨ 7 = 7 44 ∨ 46 = 46
BW 1 754 834 2 283 085 693 835 219 105 623 091 na

4 ∨ 22 = 22 33 ∨ 29 = 33 0 ∨ 9 = 9 0 ∨ 3 = 3 0 ∨ 8 = 8
SL 211 201 191 067 47 188 117 089 37 489 na

4 ∨ 3 = 4 0 ∨ 2 = 2 0 ∨ 1 = 1 0 ∨ 2 = 2 0 ∨ 0 = 0
Divisor 80 000 79 300 77 000 77 000 75 000 76 000

SH Schleswig-Holstein HB Bremen NW Nordrhein-Westfalen RP Rheinland-Pfalz
MV Mecklenburg-Vorpommern BB Brandenburg SN Sachsen BY Bayern
HH Hamburg ST Sachsen-Anhalt HE Hessen BW Baden-Württemberg
NI Niedersachsen BE Berlin TH Thüringen SL Saarland

The seats apportioned are written as d ∨ p, that is, the larger value of d or p, where d is the count of direct seats
won and p is number of proportionally justified seats. In the superapportionment, the SPD entry 145 ∨ 213 = 213
means that the party won 145 direct seats, while its party ballots justify 213 seats; the larger number prevails, 213.
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Table 2. Biproportional divisor method with standard rounding, retrospectively ap-
plied to the 2002 Zurich City Parliament election.

SP SVP FDP Grüne CVP SenL AL
City

divisor
Electorate
support

33287 17753 15307 8299 6072 3475 3223 710

Biproportional apportionment of overall party and district lists

125 47 25 22 12 9 5 5
District
divisor

“1+2” 12 42192-4 20508-2 28956-3 12960-2 7668-1 2964-0 2208-0 9600
“3” 16 68219-6 28897-3 16992-2 13752-2 8619-1 5428-1 8040-1 10400
“4+5” 13 40339-6 9854-1 7358-1 11271-2 6071-1 1781-0 12220-2 7000
“6” 10 36257-4 13491-2 14874-2 9556-1 4708-1 3592-0 2797-0 8000
“7+8” 17 84456-5 41191-2 74018-5 32963-2 16456-1 8245-1 6987-1 16480
“9” 16 58119-6 43585-5 20258-2 11681-1 15130-1 7717-1 3684-0 9500
“10” 12 49241-5 25620-2 24797-3 10621-1 7762-1 5351-0 4355-0 10706
“11” 19 77998-7 63333-5 30541-3 14643-1 18027-1 12088-1 4685-1 11515.5
“12” 10 19700-4 15159-3 4861-1 2105-0 4462-1 3438-1 650-0 5000
Party divisor 1.022 1 0.9 0.87 1.08 1 0.81366

The table entries p-s list party votes p and seat numbers s. To obtain s, party votes p are
divided by the associated district and party divisors, and then rounded. In District “1+2”,
party SP wins p = 42192 votes and gets s = 4 seats, since p/(9600 × 1.022) = 4.3 ↘ 4.
The divisors (right and bottom, in italics) are such that the prespecified district seats and
the overall party seats (left and top, in italics) are met exactly. The overall party seats result
from the superapportionment, on the basis of electorate supports.

Table 2 shows the method at work in a hypothetical, restrospective evalua-
tion of the past 2002 election data. In order to participate in the apportionment
process, the five percent threshold must be passed in at least one district. In
2002, this would have left seven parties. The first step then is the superappor-
tionment, the apportionment of all 125 parliament seats among parties, pro-
portionally to their electorate support. This step responds to the constitutional
demand that all voters contribute to the electoral outcome equally. Other than
with the former system of separate district evaluations, it no longer matters
whether voters cast their ballots in districts that are large or small. The second
step is the subapportionment: The overall party seats are handed down to the
districts, while verifying the prespecified district totals. Mathematics guaran-
tees that, when a biproportional method is used, the resulting apportionment is
unique (up to ties).

A complication arises since a Zurich voter is provided with as many ballots
as the district has seats to fill. Thus voters in District “1+2” command 12 bal-
lots, in District “3” they have 16, etc. The ballots may be split among parties,
and cumulated. The resulting counts are called party ballots [Parteistimmen];
these are the raw data returned from the polling stations. The districtwise party
ballots need to be aggregated across the whole electoral region. To this end,
party ballots are divided by the district magnitude and rounded, yielding the
district support [Wahlkreis-Wählerzahl] of a party. The sum of the district
supports is called the electorate support [(Kanton-)Wählerzahl] of a party, in-
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dicating how many voters back the party across the whole electoral region.
Since the conversion to support quantities adjusts for the distinct number of
ballots handed out in a district, every voter contributes to the superapportion-
ment in an equal manner.

In Table 2, the SP enjoys in District “1+2” a district support of 42192/12 =
3516, while in District “3” the support is 68219/16 = 4263.7 ↗ 4264. The
seven parties participating in the apportionment process turn out to win elec-
torate supports of 33287 : 17753 : 15307 : 8299 : 6072 : 3475 : 3223. Using
the divisor method with standard rounding (Webster/Sainte-Laguë/Schepers),
the superapportionment allocates the 125 seats according to 47 : 25 : 22 : 12 :
9 : 5 : 5 (city divisor 710).

The subapportionment employs the biproportional method with standard
rounding. It achieves a two-way proportionality, while verifying the prespec-
ified district magnitudes as well as exhausting the overall party seats just cal-
culated. The restrictions form the left and top borders of Table 2, typeset in
italics. The method aims at proportionality among the party votes that form
the table body. Two sets of divisors come into play, district divisors and party
divisors, bordering Table 2 on the right and at the bottom (in italics).

The method divides the party votes by the associated district and party di-
visors, and rounds the resulting quotient in a standard fashion to obtain the
seat number. For instance, the SP in District “1+2” receives 42192/(9600 ×
1.022) = 4.3 ↘ 3 seats. The same district divisor is used for the vote counts of
all parties, in any given district, thus treating parties districtwise equally. Simi-
larly, the same party divisor is applied to the vote counts in all districts, for any
given party, again honoring the proportionality principle. The biproportional
apportionment is coherent, in that it fairly approximates the ideal shares of
seats a party may claim when contesting individual seats (Balinski/Pukelsheim
2006b).
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Abstract The divisor method with standard rounding (Sainte-Laguë/Schepers) is amended
by a gentle majority clause, in order to map the government majority in parlia-
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1. Itio in Partes

We address the problem of how to constitute legislative committees while at-
tempting to reconcile two objectives that sometimes conflict in closely divided
legistlatures: representing parties proportional to their seats in the legislature,
and maintaining control of the committee by the party or coalition that enjoys
a majority in the legislature. The problem arises in many legislatures at the
national, state, and municipal levels. A notable recent instance occurred for
the German Bundestag, and led to the December 2004 decision of the German
Federal Constitutional Court, concerning the composition of the 16 seat Bun-
destag delegation in the Bundestag-Bundesrat Conference Committee.1 On
17 February 2005, the Rules Committee of the German Bundestag conducted
an expert hearing to elucidate the Court’s decision. The present paper is the
solution that the authors recommended to the Bundestag, and closely follows
their testimony.2

1Decision of 8 December 2004 (Az. 2 BvE 3/02), here quoted using the marginal running numbers (Rn.)
of the Internet publication www.bverfg.de/entscheidungen/es20041208 2bve000302.html. — As
far as the German Bundestag-Bundesrat Conference Committee is concerned, a corrective action violating
proportionality in order to preserve the government majority is considered inadmissible by J. Masing, who
finds the contrary conclusion in the decision of the German Federal Constitutional Court inconsistent and
nebulous, see Section C.I.3 of his commentary on Art. 77 GG in Mangoldt/Klein/Starck (2005). — See also
Kämmerer (2003), Lovens (2003), Stein (2003), Lang (2005).
2Pukelsheim/Maier (2005). See also Meyer (2005).
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Our proposal of a “gentle majority clause” builds on historic precedence. In-
spired by the Pax Augustana of 1455, proclaimed in Augsburg some 450 years
ago, the peace of Westphalia of 1648 codified constitutional clauses backing a
peaceful coexistence of the two dominating Christian confessions. This in-
cluded the procedural parity of an itio in partes.3 The splitting into parts
guaranteed an equal treatment of two unequal groups when the preservation
of the mutual identities was considered essential for the whole body. In the
then confessional age, the parts were the Corpus Catholicorum and the Cor-
pus Evangelicorum. In today’s democracies, the two groups are majority and
minority.

For the expert hearing, the Bundestag Rules Committee compiled a cata-
logue of five questions. Question 1 concerns the constitutionality of obtaining a
mirror image, or of preserving a parliamentary majority. Questions 3–5 aim at
procedural and other legislative consequences. Mathematics cannot contribute
to these questions. Question 2, adressed in the sequel, asks which operational
options are available under the premise that a preservation of the parliamentary
majority does conform with the Constitution:

2. If it is constitutionally legitimate to preserve the majority,
a) which measures (for example seat numbers of the factions; re-

lation between majority and opposition),
b) which procedural possibilities (for example combination of one

of the usual apportionment procedures with a correction factor;
choice of a hitherto not practiced, but majority preserving ap-
portionment procedure, other alternatives) and

c) which changes to the rules and standing orders of the Bundestag
would be called for in order to achieve a “gentle balance”?

The notion of a “gentle balance” [schonender Ausgleich] is taken from the
Court decision.4 However, we find the wording “balance” somewhat besides
the point, and instead speak of majority clauses.

2. A Gentle Majority Clause

On 30 October 2002, right at the beginning of the legislative period, the
Bundestag passed a motion on how to apportion committee seats.5 The motion
comprised two parts, of which Part 1) poses no particular problems:

1) The number of committee seats apportioned to a faction and the se-
quence of the allocation of chairpersons, of the Steering Committee and

3Heckel (1978), Burkhardt (1998). — The Court decision (Rn. 76) refers to the itio in partes in
US Senate-House conference committees, see Riescher/Ruß/Haas (2000, page 39), or in the Internet
www.house.gov/rules/98-382.pdf.
4BVerfGE 2 BvE 3/02, Rn. 64, 77, 84, 86. Dissenting: Rn. 112.
5BVerfGE 2 BvE 3/02, Rn. 8–10.



A Gentle Majority Clause for the Apportionment of Committee Seats 179

of the other committees of the German Bundestag, are determined by
means of the procedure of mathematical proportions (Sainte-Laguë/Sche-
pers), unless the Bundestag decides otherwise.
The same procedure is used for the apportionment of seats to other par-
liamentary bodys, unless a different procedure is stipulated by law.
Rather than using the term “procedure of mathematical proportions (Sainte-

Laguë/Schepers)”, we speak of the divisor method with standard rounding
(Sainte-Laguë/Schepers), thus providing some guidance about how the seat ap-
portionments are calculated.6 For example, for a delegation of size 16 the cur-
rent faction sizes 249 : 247 : 55 : 47 result in an apportionment of 7 : 7 : 1 : 1
seats (divisor 37). Hence the government majority and the opposition minority
are tied, with 8 seats each. Part 2) of the Bundestag motion serves as a tie
breaking rule, to be called the prevailing majority clause:

2) If the parliamentary majority is not preserved, the method of D’Hondt
is used. If this method also fails to preserve the parliamentary majority,
the method of Sainte-Laguë/Schepers is used with the amendment that
the number of seats to be apportioned is reduced by one and that the
remaining seat is given to the largest faction.

For a delegation of size 16, the second sentence of Part 2) applies. Thus 15
seats are apportioned using the divisor method with standard rounding (Sainte-
Laguë/Schepers), giving in an intermediate allocation of 7 : 6 : 1 : 1 seats
(divisor 38.2). The sixteenth seat is given to the largest faction, resulting in a
final apportionment of 8 : 6 : 1 : 1 seats.

The Court decision seems to indicate, or so we believe, that the prevail-
ing majority clause secures a somewhat questionable advantage for the largest
faction.7 From the viewpoint of mathematics, the prevailing majority clause
simply lacks general applicability.8 The following proposal, to be called the
gentle majority clause, applies quite generally:

6In the Data Handbook of the German Bundestag, the method is called the “Proportional procedure (of
Sainte-Laguë/Schepers)”, see Schindler (1999, Volume II, page 2085). The method is attributed to Daniel
Webster (1782–1813), see Balinski/Young (2001). — André Sainte-Laguë [sε̃t la′gy] (1882–1950) was
professor of Mathématiques générales en vue des applications with the Conservatoire national des arts et
métiers in Paris. Hans Schepers (∗1928) was Head of the Data Processing Group of the scientific staff of the
German Bundestag (Pukelsheim 2002). Sainte-Laguë was not a saint, whence it is inappropriate to shorten
his name to “St. Laguë” or “Ste. Laguë” — Sample calculation: The quotient 249/37 = 6.7 is rounded in
standard fashion to 7, as is 247/37 = 6.7 ↗ 7, and 55/37 = 1.49 ↘ 1, as well as 47/37 = 1.3 ↘ 1.
The divisor 37 is indicative of 37 deputies being represented by one (up to rounding) delegate. — The
government majority was composed by SPD (249 deputies) and Greens (55), the opposition minority by
CDU/CSU (247) and Liberals (47).
7BVerfGE 2 BvE 3/02, Rn. 83, 85.
8For example, a transfer of ten opposition seats from FDP to CDU/CSU turns the faction sizes into 249 :
257 : 55 : 37, making CDU/CSU the largest faction to be awarded the bonus seat. Hence the intermediate
allocation 6 : 7 : 1 : 1 (divisor 39) leads to the final apportionment of 6 : 8 : 1 : 1 seats. Although
government majority and opposition minority stay put at 304 : 294 deputies, the prevailing majority clause
produces a majority reversal of 7 : 9 seats in the committee.
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2) If the government majority is to be preserved, then first and foremost
it is attempted to achieve the goal by selecting an appropriate committee
size. Otherwise, the smallest possible committee majority is apportioned
among the factions composing the government majority, while the re-
maining committee seats are apportioned among the remaining factions;
both apportionments are calculated by means of the divisor method with
standard rounding (Sainte-Laguë/Schepers).
Applying the gentle majority clause to a delegation of size 16, the govern-

ment majority gets allocated 9 seats and the opposition minority 7 seats. The
two factions forming the government majority have 249 : 55 deputies whence
they allocate their 9 seats into 7 : 2 (divisor 35). The opposition minority, with
247 : 47 parliamentary seats, share their 7 seats as 6 : 1 (divisor 38.2). In
summary, the 16 seats are apportioned into 7 : 6 : 2 : 1.

In the first sentence, the gentle majority clause honors standard practice
of the Bundestag. If feasible, the best way-out is to select a committee size
evading a tie. The second sentence comes into play only when this road is
blocked. In these exceptional cases, the committee is split into a majority
part and a minority part, applying the divisor method with standard rounding
(Sainte-Laguë/Schepers) to the two groups separately.9

3. Transparency, Calculability, and Abstract Generality

The Federal Constitutional Court demands of the Bundestag to formulate
deviations from the majority principle in a transparent, calculable, and abstract-
general manner.10 As far as deviations from the majority principle are con-
cerned, a transition from the prevailing majority clause to the gentle majority
clause would not introduce any changes. The reservation at the end of the first
paragraph in Part 1) of the Bundestag motion allows to enact other procedures
for particular cases (Children’s Commission, Conference Committee etc.), if
so desired.

However, we find it appropriate to emphasize that a transition to the gen-
tle majority clause generates deviations from the mirror image principle that
conform with the Court’s standards. Indeed, Part 2) of the gentle majority
clause is transparent and explicit. It maintains a global mirror image as long
as possible. The whole committee splits into a majority group and a minority
group only when necessary. But even then the mirror image principle is fol-
lowed as much as possible, by properly apportioning seats separately within
each of the two groups. Moreover, the gentle majority clause is calculable and

9We emphasize that the same method is applied with and without a split, and, if split, within either group.
A paradoxical seat transfer triggered by a change of apportionment methods is reported by M. Fehndrich,
on the Internet site (www.wahlrecht.de/systemfehler/zweiverfahren.html).
10BVerfGE 2 BvE 3/02, Rn. 86.
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abstract-general. Table 1 illustrates the usage of the gentle majority clause,
with committee sizes from 1 up to 45. Every committee size preserves the
government majority, requiring a split into majority and minority parts in the
fifteen rows marked with a star ∗.11

The consistency of Table 1 is remarkable: There are no backward jumps!12

The seat apportionments for the majority group stay the same or increase, but
never decrease; the same applies to the seat apportionments of the minority.
Since divisor methods are coherent, a merger of the two within-group appor-
tionments yields the same global apportionment that is obtained from a one-
step calculation (without a split into majority and minority groups) whenever
the latter is such that the majority is preserved.13

4. Success-Value Equality of the Deputies’ Votes

Electoral systems should be judged not so much on the basis of such execu-
tive attributes as transparency, calculability, and abstract generality. Instead the
judgment should focus on the question of whether the system satisfies the prin-
ciple of electoral equality. The decision of the German Federal Constitutional
Court touches this issue only in passing.14

The apportionment of committee seats involves three groups of actors that
each can put forward a constitutional claim to equality: The deputies, the fac-
tions, and the committee members. From a mathematical viewpoint there is
a structural similarity for the transitions, from Bundestag deputies to commit-
tee members via the apportionment method laid down in the Bundestag rules,
and from voters to Bundestag deputies via the electoral system set forth in
the Federal Electoral Law. For the Electoral Law, the Federal Constitutional
Court interprets the abstract principle of electoral equality as “success-values
equality” [Erfolgswertgleichheit] of the voters’ ballots.

In the same vein, the problem of apportioning committee seats calls for an
equal success-value of the deputies who are being represented in the commit-

11In a newly convening Bundestag it would then suffice to work with this one table of seat apportionments,
only, rather than with the three tables used up to now: a first table with the Sainte-Laguë/Schepers apportion-
ments, a second table with D’Hondt apportionments, and a third table with Hare/Niemeyer apportionments.
12Called “illogical jumps” in the Handbook of the German Bundestag, see Schindler (1999, Volume II,
page 2084).
13Balinski (2004a, page 196; 2004b). Balinski/Young (2001, page 141) speak of uniformity in place of
coherence. – Let M = 1, 2, 3 . . . , 45 denote the committee size. The smallest possible majority then
comprises (M + 1)/2 seats when M is odd, and (M + 2)/2 seats when M is even. Hence the minority is
assigned (M − 1)/2 or (M − 2)/2 seats according as M is odd or even:

Committee size: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . 45 M
Majority: 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 . . . 23 �(M + 1)/2�
Minority: 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 . . . 22 �(M − 1)/2�

Thus the “next” seat alternates between majority and minority, in the range of seats considered.
14BVerfGE 2 BvE 3/02, Rn. 82. Dissenting: Rn. 107–129.
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Table 1: Apportionment of committee seats
using the gentle majority clausea

Seats SPD CDU/ B90/Die FDP Divisor(s)
CSU Grünen

1 1 0 0 0 496
∗2 2 0 0 0 165; 496
3 2 1 0 0 165
∗4 2 1 1 0 100; 165
5 2 2 1 0 100
6 3 2 1 0 99
7 3 3 1 0 96
∗8 4 3 1 0 71; 96
9 4 3 1 1 71

∗10 5 3 1 1 55; 71
11 5 4 1 1 55
∗12 6 4 1 1 45; 55
13 6 5 1 1 45
∗14 7 5 1 1 38.2; 45
15 7 6 1 1 38.2
∗16 7 6 2 1 35; 38.2
17 7 7 2 1 35
18 8 7 2 1 33
19 8 8 2 1 32
∗20 9 8 2 1 29.2; 32
21 9 8 2 2 29.2
∗22 10 8 2 2 26.1; 29.2
23 10 9 2 2 26.1
∗24 11 9 2 2 23.6; 26.1
25 11 10 2 2 23.6
∗26 11 10 3 2 21.8; 23.6
27 11 11 3 2 21.8
28 12 11 3 2 21.6
29 12 12 3 2 20
30 13 12 3 2 19.8
31 13 13 3 2 19
∗32 14 13 3 2 18.4; 19
33 14 13 3 3 18.4
∗34 15 13 3 3 17.1; 18.4
35 15 14 3 3 17.1
∗36 16 14 3 3 16; 17.1
37 16 15 3 3 16
∗38 16 15 4 3 15.4; 16
39 16 16 4 3 15.4
40 17 16 4 3 15
41 17 17 4 3 14.6
42 18 17 4 3 14.2
43 18 18 4 3 14
44 19 18 4 3 13.44
45 19 18 4 4 13.4

aon the basis of faction
sizes on 1 February 2005:
SPD 249, CDU/CSU
247, Bündnis 90/Die
Grünen 55, FDP 47.

All apportionments are
calculated using the divi-
sor method with standard
rounding (Sainte-Laguë/
Schepers). In lines
marked ∗ two separate
calculations are carried
out, one for the majority
group and one for the
minority group.

Sample calculation for
committee size *16: The
majority divisor 35 yields
249/35 = 7.1 ↘ 7
and 55/35 = 1.6 ↗ 2.
The minority divi-
sor 38.2 leads to
247/38.2 = 6.47 ↘ 6
and 47/38.2 = 1.2 ↘ 1.

Sample calculation

for committee size 18:

The divisor 33 gives

249/33 = 7.55 ↗ 8 and

247/33 = 7.48 ↘ 7 and

55/33 = 1.67 ↗ 2 and

47/33 = 1.4 ↘ 1.
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tee. Our preferred proposal of a gentle majority clause builds on the divisor
method with standard rounding (Sainte-Laguë/Schepers). The reason is that
this method produces seat apportionments that are in an exceptional harmony
with the principle of success-value equality whence, in this very specific sense,
the method is superior to other competing apportionment methods.15

The gentle majority clause is our preferred proposal because it does away
with an ecclectic multitude of apportionment methods, and builds solely on the
success-value oriented divisor method with standard rounding (Sainte-Laguë/
Schepers).

5. Preservation of the Majority by Means of D’Hondt

In the remaining sections we discuss other possibilities to respond to the
Rules Committee’s Question 2.16

For an appraisal of the following alternatives we recall that the prevailing
majority clause, in its Part 2), resorts to the divisor method with rounding down
(D’Hondt) for the reason that this method is known to be biased, in favor of
larger participants and at the expense of smaller participants. These seat biases
do not materialize every time the method is applied, but become clearly visible
in repeated applications. As it happens, for the problem under discussion, with
faction sizes 249 : 247 : 55 : 47 and committee size 16, the D’Hondt method
results in the already familiar tie 7 : 7 : 1 : 1 (divisor 33).17

15See Pukelsheim (2000a, b, c).
16It would also be conceivable to apply the German Federal Electoral Law which (as of this writing) employs
the quota method with residual fit by largest remainders (Hare/Niemeyer). — Thomas Hare (1806–1891)
was a barrister and Inspector of Charities in London. Horst F. Niemeyer (*1931) is Professor emeritus
for Mathematics with the Rheinisch-Westfälische Technische Hochschule Aachen. — The Federal Elec-
toral Law (BWahlG) contains in its §6(3) a majority clause. Its constitutionality has been confirmed by
NdsStGHE 1 (1978, pages 335–372). To apply this clause to a committee of size 16, the calculations are as
follows. The faction sizes 249 : 247 : 55 : 47 are divided by the quota 598/16 and result in the ideal shares
6.66 : 6.61 : 1.47 : 1.26. This gives rise to the main apportionment 6 : 6 : 1 : 1, leaving two residual
seats. According to §6(3) BWahlG, the majority is preserved by appropriately assigning the residual seats,
leading to the final apportionment 7 : 6 : 2 : 1. — Alternatively, one could carry out the calculations in
two steps, with a split into two parts. Considering the majority and minority groups, of 304 : 294 deputies,
their ideal shares are 8.13 : 7.87 and lead to the main apportionment 8 : 7. According to §6(3) BWahlG,
the remaining residual seat is allocated with the majority group, whence the two groups end up with 9 : 7
seats. The sub-apportionments of the 9 seats within the majority, and of the 7 seats within the minority yield
the same final apportionment 7 : 6 : 2 : 1 as before. — For committees of size 8 and 12 either way leads to
the apportionments 4 : 3 : 1 : 0 and 6 : 4 : 1 : 1, which coincide with those given in Table 1.
17In the Data Handbook of the Bundestag the method is called “Höchstzahlverfahren (nach D’Hondt)”, see
Schindler (1999, Volume II, page 2083). — Victor D’Hondt (1841–1901) was Professor for Civil Law and
Financial Law with the University of Gent. He himself and his contemporaries spelled his name with a
capital initial “D”, librarians file the name under the letter “H”. In Switzerland, the method is named after
Eduard Hagenbach-Bischoff (1833-1910), Professor of Physics with the University of Basel. — Sample
calculation: After subdivision by the divisor, all resulting quotients are rounded down: 249/33 = 7.5 ↘ 7,
and 247/33 = 7.5 ↘ 7, and 55/33 = 1.7 ↘ 1, and 47/33 = 1.4 ↘ 1. — For the succession of
apportionment methods the Bundestag has used so far, from D’Hondt via Hare/Niemeyer (from 1970 on) to
Sainte-Laguë/Schepers (from 1980 on), see Fromme (1970), and Schindler (1999, Volume II, page 2081–



184 Friedrich Pukelsheim, Sebastian Maier

Of the fifteen tied rows in Table 1, ten persist under the divisor method with
rounding down, while five ties are resolved. For instance, in a committee of
size 32, the divisor method with standard rounding (Sainte-Laguë/Schepers)
leads to the tie 13 : 13 : 3 : 3 (divisor 18.7). In contrast, the divisor method
with rounding down (D’Hondt) transfers a seat from the smallest to the largest
participant and yields 14 : 13 : 3 : 2 (divisor 17.8), which is the same appor-
tionment resulting from the gentle majority clause in Table 1.

We may summarize the effects of the divisor method with rounding down
(D’Hondt) as follows. At best it produces the same result as the gentle majority
clause. Otherwise, it may preserve the majority without, however, securing
within the majority and minority groups success-values as balanced as those
coming with the gentle majority clause. And there is the third possibility that
the method re-produces the tie it was suppose to resolve.

6. A Brutal Majority Clause

Technically, a split into majority and minority groups can also be imple-
mented with the divisor method with rounding down (D’Hondt). The govern-
ment majority, commanding 249 : 55 deputies, would share their 9 commit-
tee seats in the proportion 8 : 1 (divisor 30). The opposition minority, with
247 : 47 Bundestag seats, would be allocated 6 : 1 committee seats (divisor
40). The resulting apportionment is 8 : 6 : 1 : 1, which is the seat allocation
contested in Court. From our point of view as mathematicians, this majority
clause is brutal and hard to defend. The split into majority and minority groups
is aggravated by the seat biases inherent in the divisor method with rounding
down (D’Hondt). The brutal majority clause comes with a greater deviation
from proportionality than is needed for a gentle, minimal intervention.18

4). — When the D’Hondt method is applied to four participants, the largest participant can expect an
advantage of +0.5 seat fractions, the second largest +0.1 fractions. To even out these advantages, the third
participant misses its ideal share on the average by −0.2 fractions of a seat, the smallest participant by
−0.4. See Schuster/Pukelsheim/Drton/Draper (2003, page 663).
18The German Federal Constitutional Court might well (presumably, at present) judge the brutal majority
clause to be constitutional. In fact, the Court puts the divisor method with rounding down (D’Hondt) on
a par with the divisor method with standard rounding (Sainte-Laguë/Schepers), even though the D’Hondt
method exhibits noticable seat biases, while the Sainte-Laguë method is exceptionally concordant with the
Court’s imperative of success-value equality. Other German courts circumnavigate the shallowness in the
decisions of the Federal Constitutional Court, by stating that the D’Hondt method is generally admissible,
but then overruling its specific apportionment results as unlawful: due to multiple applications in separate
electoral districts (BayVerfGHE 45, pages 12–23, 54–67, 85–89), due to a misuse of list combinations
(BVerwG Az. 8 C 18.03 of 10 December 2003), due to a deviation from the ideal shares (BayVerwGH
Az. 4 BV 03.117 and Az. 4 BV 03.1159 of 17 March 2004). We take this casuistry as a first evidence that the
legal viewpoint is changing, as is implied by the State Court for the Land Baden-Württemberg (decision of
24 March 2003, Az. GR 3/01, Section B.III.2.b). A second evidence is the fact that appelants who lost their
court case did not appeal to the top Federal courts although the contested facts were not unconstitutional
(explicit: page 192 in BayVerfGH 47, 1994, 84-194; implicit: page 283 in BVerfGE 96, 1998, 264-288).
A revision to the top Federal courts may induce these courts to turn to the Federal Constitutional Court for
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7. Preservation of the Majority by Means of Hill et al.

If the divisor method with rounding down (D’Hondt) induces a tie-break, it
does so for the reason that a seat of a smaller minority party is transferred to a
larger majority party. Not surprisingly, there are counterparts resolving a tie by
taking a seat away from a larger minority party and allocating it with a smaller
majority party.19

A first such procedure is the divisor method with geometric rounding (Hill),
used in the USA since 1941 for the apportionment of the 435 seats in the House
of Representatives to the 50 States. Applying this method to a delegation of
size 16, the faction sizes 249 : 247 : 55 : 47 are mapped into 7 : 6 : 2 : 1 seats
(divisor 38.3). Size 16 is the only tie situation resolved by this method, for the
range considered inTable 1.20

A second method is the divisor method with 0.4-rounding (Condorcet),
which also produces the final result 7 : 6 : 2 : 1 (divisor 38.8). This method
resolves two of the fifteen ties listed in Table 1.21

A third procedure is the divisor method with rounding up (Adams), resolv-
ing five of the fifteen tie situations. The method is used in France to apportion
the seats of the Assemblé Nationale to the Départments.22

There are committee sizes for which neither the divisor method with geo-
metric rounding (Hill) nor the one with 0.4-rounding (Condorcet) resolves the
tie. Moreover, it is possible that both methods do resolve a tie, but differently.
An example is the German Bundestag 2002 at the beginning of the legislative
period, with the then faction sizes 251 : 248 : 55 : 47. For a committee of size
36, the divisor method with standard rounding (Sainte-Laguë/Schepers) leads
to the tie 15 : 15 : 3 : 3 (divisor 17). If we attempt to resolve the tie by using
the two methods mentioned above, we get two conflicting answers: The divisor
method with rounding down (D’Hondt) yields 16 : 15 : 3 : 2 (divisor 15.68),
while the divisor method with rounding up (Adams) leads to 15 : 14 : 4 : 3
(divisor 17.8).23

clarification. But confronting the Court with the state-of-the-art raises the “danger”, for the appellant, that
the Court revokes not just a single D’Hondt apportionment, but the whole D’Hondt method.
19Marshall/Olkin/Pukelsheim (2002).
20Balinski/Young (2001, page 48). — Joseph Adna Hill (1860–1938) was Chief Statistician, Division of
Revision and Results, US Bureau of the Census. — Sample calculation: The quotient 249/38.3 = 6.5 lies
above the decision point

√
6 · 7 = 6.48 and hence is rounded up to 7, while 247/38.3 = 6.45 is rounded

down to 6. The quotient 55/38.3 = 1.44, when compared with the decision point
√

1 · 2 = 1.41, rounds
up to 2, while 47/38.2 = 1.2 goes down to 1. The decision points are geometric means of two neighboring
integer numbers, whence the method receives its name.
21Balinski/Young (2001, page 63). — Marie Jean Antoine Nicolas Caritat, Marquis de Condorcet (1743–
1794) was one of the leading politicians during the French Revolution. — Sample calculation: Fractions
are rounded down when smaller than 0.4, and rounded up otherwise. Thus we get 249/38.8 = 6.42 ↗ 7
and 247/38.8 = 6.37 ↘ 6 and 55/38.8 = 1.42 ↗ 2 and 47/38.8 = 1.2 ↘ 1.
22See Balinski (2004a, page 190). — John Quincy Adams (1767–1848) was the sixth President of the USA.
23The gentle majority clause yields 16 : 14 : 3 : 3 (majority divisor 16, minority divisor 17.1).



186 Friedrich Pukelsheim, Sebastian Maier

As a consequence we refrain from a proposal to remedy the prevailing ma-
jority clause by taking recourse to a multitude of different apportionment meth-
ods. When many methods are tendered like on a flea market, many answers
are conceivable: at best a unique and clear-cut tie break, or otherwise no tie
break at all, or else multiple but conflicting results. A methodological zoo
degenerates into a game of numbers. Instead the focus ought to be on elec-
toral principles such as success-value equality, set forth by the German Federal
Constitutional Court in 1952 and since then having generated an impressively
consistent body of constitutional decisions.

8. Minimum Seat Requirements

As a final point we would like to draw attention to the problem of guaran-
teeing each participant a minimum number of seats. With current faction sizes
249 : 247 : 55 : 47 and for a committee of size 10, the divisor method with
standard rounding (Sainte-Laguë/Schepers) results in the tie 4 : 4 : 1 : 1 (di-
visor 60). The prevailing majority clause would resort to the divisor method
with rounding down (D’Hondt), giving 5 : 4 : 1 : 0 (divisor 49.6) and thus
excluding the smallest party from representation.

However, the present problem concerns a committee of size 16, for which
the Sainte-Laguë method yields the tie 7 : 7 : 1 : 1. Considering how the
divisor method with rounding down (D’Hondt) transfers seats from smaller to
larger parties, there are just two possibilites: either the tie persists, or else it is
broken into 8 : 7 : 1 : 0. That is, the only way in which the prevailing majority
clause could have resolved the tie would have deprived the smallest party of
being represented at all. This may have set off some legal action of a different
sort.24

It is easy to augment the gentle majority clause by the additional restric-
tion that each participant be guaranteed representation. All that needs to be
done is to modify the (unconditional) divisor method with standard rounding
(Sainte-Laguë/Schepers), by demanding the minimum requirement that every
participant receive at least one seat.25

We conclude with a ceterum censeo. The current topic, the apportionment of
committee seats, is important. However, more important is the apportionment

24It is not clear to us how the Federal Constitutional Court would have settled the case. The Court sees the
Conference Committee as a parliamentary body sui generis, for which the Constitution mandates neither
a preservation of the majority (2 BvE 3/02, Rn. 67), nor a representation of all parliamentary groups, see
BVerfGE 96 (1998) 264–288.
25The minimum committee size then is 5, of course, with the four parties filling one seat each and the fifth
seat establishing a majority. The apportionments turn out to be 2 : 1 : 1 : 1 for a committee of size 5, next
3 : 1 : 1 : 1 for size 6, then 3 : 2 : 1 : 1 for size 7, and finally 4 : 2 : 1 : 1 for size 8. For committee sizes
larger than 8 the apportionments of Table 1 apply.
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of the Bundestag seats proper. The two-ballots electoral system of the German
Federal Electoral Law is a top-quality product, enjoying high international es-
teem and serving as a prototype system.26 But even top-quality products need
be attended to. Negative weights of a ballot, doubly successful ballots, and
overhang seats damage the image of the system.27

These deficiencies disappear when the idea of imposing minimum require-
ments is followed up. A simple adaptation of the divisor method with standard
rounding would do, namely, imposing the minimum restrictions that each list
receives at least as many seats as have been won in the constituencies. The
direct-seat restricted method leaves no room for negative ballot weights, dou-
bly successful ballots, nor overhang seats, and yet it stays in close harmony
with the principle of success-value equality.28 Whatever the requirements, the
common denominator is the divisor method with standard rounding (Sainte-
Laguë/Schepers). The method is so powerful that a few amendments suffice to
adjust it to all practical purposes.
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Allotment According to Preferential Vote:
Ecuador’s Elections
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Abstract In this paper we show results for some unipersonal and pluripersonal elections
in Ecuador and in Spain, observing that the used methods can be replaced by
better ones. We present a method for individual elections based on one-on-
one comparisons, and preferential voting. This method verifies CONDORCET
and PARETO, and it is furthermore better than the Two Round method. For
multicandidate elections we give proportional and monotone methods based on
preferential vote. We also analyse the electoral system of Ecuador and propose
alternatives for it.

Keywords: Electoral Systems, Preferential Vote, Borda, Condorcet, Sample Transferable
Vote, Proportionality.

1. Introduction

Results from some unipersonal and pluripersonal elections in Ecuador, and
similar results in others countries such as France, Spain, etc., show that the
currently used methods cannot be satisfactory.

In unipersonal elections, the Two Round method is frequently used, and
normally the two candidates participating in the second round are the most
preferred by the voters; but this is not always true. The second round between
Chirac and Le Pen in the 2002 Presidential in France is a well known case:
the three most voted candidates obtained a very similar percentage of votes,
concretely J. Chirac obtained 19.71 %, J. M. Le Pen 16.95 % and L. Jospin
16.12 %.

There are many unipersonal elections in which three or more candidates
obtain a close percentage of votes (as in the 2002 Presidential election in
Ecuador), and so we can not affirm in general that the most preferred candidate
is elected when we use the Two Round method (or TR method).

In this paper we show that there exists a method that is better than the TR
method for unipersonal elections. It is a method based on one-on-one compar-
ison according to an agenda and therefore the method verifies CONDORCET.
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On the other hand, in multicandidate elections, Approval Voting (AV)
(Brams and Fishburn, 1983) or Limited Approval Voting methods (LAV) are
sometimes used (in LAV the number of candidates that the voters can vote for
is limited). For example, LAV is used for political elections in Ecuador, for the
Senate election in Spain, for university elections in Spain, etc. In such cases
low proportionality is obtained; the Senate election in Spain is an example
(Ramirez and Palomares, 2006). When proportionality is required, the Single
Transferable Vote (or STV) can be used, but STV is not monotone; that is, a
candidate A can obtain a seat when n representatives must be elected, but A
does not win when the number of representatives is n + 1.

In this paper, for unipersonal election we establish some desirable properties
such as PARETO, CONDORCET (Taylor A., 1995, pg. 106), etc..., and we
describe a procedure based on pairwise comparison of candidates according to
an established agenda. This method is better than the TR method in a given
sense.

For multicandidate elections we show certain voting procedures with a pro-
portionality equivalent to some classical proportional methods such as Webster
and Jefferson. Then, manipulation via cyclical voting and the thresholds of rep-
resentation are analyzed. We give proportional methods based on preferential
vote, whose threshold of representation is less than that corresponding to the
methods AV and LAV.

In addition, we analyse the elections for the President and the Congress in
Ecuador and we offer alternatives.

2. Unipersonal Election

2.1 The 2002 Presidential Election in Ecuador

In the 2002 Presidential election in Ecuador, six candidates obtained vot-
ing percentages between 11.9% and 20.6 % in the first round. The exact re-
sults were (http://www.tse.gov.ec, http://www.electionworld/ecuador.htm) (Ta-
ble 1).

The two first candidates in the first round were Gutierrez and Noboa; next,
in the second round Gutierrez beat Noboa with 54.8% of the votes. Edwing
Gutierrez was the President of Ecuador from 2002 to 2005. We put forth some
questions:

◦ Would Gutierrez have beaten Roldos, Borja or Neira, etc., in a one-on-
one competition?

◦ Was E. Gutierrez the most desired candidate in the election of 2002?
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Table 1. Results for the 2002 presidential election in Ecuador.

Candidate First Round Second Round

Lucio Edwing Gutierrez Barbua 20.6% 54.8 % Winner Gutierrez
Álvaro Fernando Noboa Ponton 17.4% 45.2%
Leon Roldos Aguilera 15.4%
Rodrigo Borja Cevallos 14.0% belongs to ID (3th party in the Congress)
Antonio Xavier Neira Menendez 12.1% belongs to PSC (1st party in the Congress)
Jacobo Bucaram Ortiz 11.9% belongs to PRE (2nd party in the Congress)
Five Remaining candidates 8.6 %

100%

– Possibly: Yes.

– Possibly: No (we do not know the answer)

In the case at hand, E. Gutierrez belongs to a political party with few depu-
ties in the Congress. The Congress terminated Gutierrez’s employment on
April 20, 2005.

If the TR method can not guarantee satisfactory answers, we may consider
the STV method. But is the STV method consistently better than the TR
method? In what way?

Verifiying the Condorcet criterion: No.

Example 1

Preferences Votes
A > B > C > D 35
B > D > A > C 30
C > B > D > A 25
D > C > B > A 10

Here B is the Condorcet winner, being the winner under the TR Method.

Under the STV method, D is the first candidate to be eliminated, fol-
lowed by B, meaning that A is the winner (because A triumphs over C)

2.2 Properties for Unipersonal Elections

We say that a method M is better than the TR method (in unipersonal elec-
tions) if, for each election:

M gives the same solution as that of the TR method

or

the winner under method M is more desired than each one of the candidates
taking part in the second round.
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This means that if A and B are admitted to the second round, and C is the
winner with method M, then:

◦ C is equal to A, or

◦ C is equal to B, or

◦ C wins over A (in a one-on-one competition), and

C wins over B (in a one-on-one competition).

But this is not the only property that we wish to guarantee. We are looking
for a method M that:

a. Verifies CONDORCET,

b. Verifies PARETO (unanimity) and moreover

c. Must be better than the TR method, in the previously established sense.

3. The One-on-One Comparison Method

One possible solution to the above problem is very simple: Comparing the
candidates one against one according to an agenda (or an order).

On the basis of the first preference we make an agenda for the comparisons
(if they are equal then the second preference is used . . . ). More precisely, for
each candidate i = 1, . . . ,m, we define the vector vi = (vi1, vi2, . . . , vim),
where vik is the number of votes (possibly 0) that rank i as the k-th candidate,
and then we stipulate that candidate i precedes candidate j in the agenda if vi

is lex-greater than vj . So, for Example 1 the agenda would be: ABCD.
The comparisons are performed backwards in the agenda.
Therefore, for Example 1, the method begins by comparing C with D (in

this case, C wins over D, 60-40); then it compares B with C (here 65-35); and
goes on to compare A with B (here 35-65). Thus B is the winner with this
method.

When in the last comparison of the agenda, the first candidate of the agenda
wins (A in the previous example) and we have not made the comparison be-
tween the first two candidates (A and B, above) we must look at an additional
comparison. For example:

Example 2

Preferences Votes
A > B 60
B > D > C > A 40
C > A > D > B 50
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(The preference A>B is equivalent to saying A > B > C = D).
Now, the agenda is : ACBD
Comparison BD: 100-50, winner B.
Comparison CB: 50-100, winner B.
Comparison AB: 110-40, winner A. The additional comparison AC is

needed.
Additional comparison AC: 60-90, winner C. So C is the winner with this

method (in this case C is also the winner under the TR Method).

Example 3 In the following case:

Preferences Votes
A > B 60
B > D > C > A 40
C > D > B 50

the agenda is ACBD, and the winner after the first three comparisons is B.
Therefore, no additional comparison is needed. In this example, B is the Con-
dorcet winner.

Example 4 Finally, we consider the case:

Preferences Votes
A 24
B 22
C 20
D > E 12
D > C 6
E 16

The agenda is ABCDE, and the winner after four comparisons is C. In this
example, the Condorcet paradox can be seen.

There are agendas for which PARETO (unanimity) is not verified (Saari,
1994 and Taylor, 1995). Trivially, with the proposed agenda, PARETO is al-
ways verified.

Now, the following result is obvious:

Theorem 5 The method based on one-on-one comparison according to the
previous agenda verifies the properties established above (that is, a., b. and c.
of section 2.).
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4. Choosing Several Representatives. Results for
Different Elections

We will show some results from multi-candidate elections, in Spain and in
Ecuador, and look for new properties, such as proportionality.

4.1 The Elections in the Spanish Universities

How does the electoral method work in Spanish universities?
It is very similar in most Spanish universities.

◦ All the candidates appear on the same list.

◦ The voters must vote for a maximum number of candidates. For exam-
ple,

– To choose 50 representatives, the voters are able to vote for a max-
imum of 38 candidates (this figure is likely to change, depending
on the different universities)

– There are usually between 150 and 400 voters.

◦ However, normally less than 40% of the electors vote.

◦ The candidates with the most votes are chosen.

Manipulation. A very beneficial strategy: voting cyclically
Sometimes a group of candidates may be organised by a person that knows,

very well, how to manipulate the electoral method. For example:

In a Center of Granada University, in 1998, a Teacher chose 50 candi-
dates, let us say from c1,. . . , to c50. He explained to them how to vote
cyclically. In this way, c1 must vote from c1 to c38 (each one of them
obtains a point for the vote of c1); c2 must vote from c2 to c39, . . . . ;
similarly, c20 must vote from c20 to c50 and from c1 to c7.

- Therefore, the votes of the 50 chosen candidates result in 38 points to
each one of them.

- Meanwhile, each one of the remaining candidates usually votes for him
or herself, and he or she obtains one point.

- The rest of the electors are not organized and they can not modify the
result. This means that the 50 candidates who voted cyclically would be
the winners.

- In this Center precisely 50 (organized) candidates will obtain represen-
tation, gaining between 46 and 65 votes each (many of the new repre-
sentatives would be unknown due to the fact that they are new teachers).
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- The other candidates would obtain less than 19 votes.

Numerically and graphically the results of this election in 1998 are shown
in Table 2 and Figure 1.

Table 2. Example of manipulated university election in Spain using AVL method.

Votes 0 - 9 10 - 18 19 - 27 28 – 36 37 - 45 46 - 54 55 – 65

Candidates 8 10 0 0 0 33 17

Elected? no no - - - yes yes

This leads us to the following question:
If there are 350 voters, for example, how many of them must vote only for

c51 to ensure him/her a representative’ position when the remaining voters vote
cyclically? It is very easy to see that over 150 are needed (more than 43% of
them), a very high threshold of representation.

4.5 13.5 22.5 31.5 4.5 49.5 58.5

5

10

15

20

25

30

Fig. 1. Graph corresponding to the example of Table 2 (manipulated election).

Few changes and little proportionality.
The previous example is very special as many of these candidates were new

teachers (organized by veteran teachers). Sometimes a very important aspect of
the organized candidates is that they were representatives during the previous
period.

For this reason, in Spanish universities many people continue to be repre-
sentatives time and time again.
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When there is only one organised group, it can obtain almost all the repre-
sentative positions. If there are two or more organised groups, the major group
with 50 or more candidates and the other groups with less than 38 (for example
20 or less per each), it is possible for the first group to obtain all positions. In
any case: a great margin for manipulation and no proportionality at all.

4.2 The Election of Ecuador’s Congress

For the election of the Ecuadorian Congress

◦ There is a ballot containing all of the candidates from all of the political
parties.

◦ Each voter can vote for candidates belonging to one party or belonging
to several political parties.

◦ Each elector can vote for a number of candidates equal to the size of
their constituency.

◦ Usually, each voter will vote for candidates that belong to the same po-
litical party. Examples:

The size of the Congress in Ecuador is 100 and the number of constituencies
is 22.

The name and the size of the five greatest constituencies can be seen in Table
3 :

Table 3. The five greatest constituencies in Ecuador.

Constituency Guayas Pichincha Manabi Los Rios Azuay Other

Deputies 18 14 8 5 5 Less than 5

Some results from the election of 2002 were (The Supreme Electoral Court
in Ecuador, http://www.tse.gov.ec and http://www.electionworld/ecuador.htm):

Guayas: 18 deputies
The 18 candidates with the most votes were (all of them belonging to PSC):
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1st Febres PSC 10th Ramirez PSC
2nd Harb PSC 11th Ordonez PSC
3rd Cioppo PSC 12th Martillo PSC
4th Viteri PSC 13th Gamboa PSC
5th Jaramillo PSC 14th Concha PSC
6th Davila PSC 15th Jaya PSC
7th Varas PSC 16th Salazar PSC
8th Moran PSC 17th Mussuh PSC
9th Valverde PSC 18th Samaniego PSC

The most voted, Febres, obtained 461,316 votes, . . . , the 18th, Samaniego,
348,273 votes; the 19th was Carrera belonging to PRIAN who gained 221,815
votes. For the Andean Parliament election (party list), which took place simul-
taneously, the results for PSC and PRIAN were: PSC = 422,179 votes, PRIAN
= 188,898 votes.

In many other constituencies all of the most voted candidates belonged to
the same political party, shown in Table 4.

Table 4. Parties of the most voted candidates.

Constituency Size (h) Party of the h most voted candidates

Pichincha 14 ID ID ID ID ID ID ID ID ID ID ID ID ID ID
Manabi 8 PSC PSC PRE PSC PSC DP-UDC PRE PRE
Los Rios 5 PRE PRE PRE PRE PRE
Azuay 5 ID ID ID ID ID

Only in Manabi did the h most voted candidates belong to two or more
political parties.

If we assign the seats of deputy to the h most voted candidates, it may be
that only one political party obtains all of the representatives - a total lack of
proportionality.

Nevertheless, Ecuador’s Constitution states in its article 99 that the number
of deputies for each political party must be proportional. By virtue of this, in
Ecuador proportional apportionment is applied to the sum of the votes of the
candidates of each political party. Hence, these methods have been used:

- Before 2004, Ecuador applied Jefferson’s method (in February 2004,
Jefferson’s method was declared inconstitutional).

- After 2004 (October), a method was introduced with the divisors: 2, 3,
4, . . . proposed by the TSE.
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In the above examples the voters can vote for a number of candidates equal
to or close to the number of representatives to be chosen (the LAV method). We
underline that LAV can prove very manipulable (as in the Spanish universities),
and not proportional when the voters vote as in elections based on lists of
political parties (as in the Spanish Senate (Ramirez and Palomares, to appear)
and the Ecuadorian Congress).

5. Proportional Methods Based on Preferential Votes

5.1 Accepting the Proposed Order, (AO)

- Let us suppose that the candidates form groups (or political parties) g1,
g2, . . . , gn, not necessarily of the same size.

- We say that the voters behave by accepting the proposed order (AO) if
each voter chooses only candidates in one group (or political party) and
they accept the order in which the candidate names appear (Ramirez and
Palomares, 2006). For example, if the groups and the candidates are the
following ones:

Groups (or Lists) Candidates
g1 c11c12...c1r

g2 c21c22...c2s

. . . . . .
gn cn1cn2...cnt

The electors have an AO behaviour if each voter casts a partial preferential
vote as c11 > c12 > ... > c1r, or c21 > c22 > ... > c2s, . . . , or cn1 > cn2 >
... > cnt

That is, if the results are as follows:

Example 6

Preferences Votes
c11 > c12 > ... > c1r v1

c21 > c22 > ... > c2s v2

. . .
cn1 > cn2 > ... > cnt vn

5.2 AO and Proportional Social Choice for Preferential
Votes

- Let us assume a social choice method S based on preferential vote and a
proportional apportionment method P . Let us suppose that the electors
have an AO behaviour (as before).
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- Then we say that the social choice method S has the same proportion-
ality as the proportional method P if the result using S (for the prefer-
ences) is the same as if we use the P method (for the votes v1, v2,..., vn).
Therefore, we say that the method S is P -Proportional.

Answer using S (for preferences) = Answer using P for the votes (v1, v2,...,
vn).

Example 7

In order to choose four representatives, let us suppose that 100 electors vote
for nine candidates in this way:

Preferences Votes
c1 > c2 > c3 > c4 50
c5 > c6 > c7 35
c8 > c9 15

The quotas for the three groups are: q = ( 2.0, 1.4, 0.6 ).
Then,

- If S has the same proportionality as Webster (or Saint-Laguë), the an-
swer must be: c1, c2, c5 and c8 (when we apply S to the preferences).

- If S has the same proportionality as Jefferson (or d’Hondt) the answer
must be: c1, c2, c5 and c6.

The Approval Voting method is not proportional (the answer, in this case
will be c1, c2, c3 and c4). Likewise, LAV is not proportional.

5.3 The Proportional Single Transferable Vote (STV)

STV has the same proportionality as that of:

- The Droop method, when it uses the Droop quota.

- The Hamilton method (or Greatest Remainder method), when it uses the
Hare quota.

5.4 Borda-Type Methods for Proportional Choice

- A Borda-type method uses a sequence of positive numbers (the weights):
w1 > w2 > ... > wn

- If an elector votes A>B>C. . . , then

– candidate A adds w1 points
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– candidate B adds w2 points, etc.

Theorem 8

We have obtained the following results (Ramirez and Palomares, to appear):

◦ The Borda-Type method with weights: w1 = 1, w2 = 1
3 ,. . . ,wi =

1
2i−1 ,.. (or Borda-Webster methods) has the same proportionality as
Webster’s method.

◦ The Borda-type method with weights: w1 = 1, w2 = 1
2 ,. . . ,wi =

1
i+1 ,.. has the same proportionality as Jefferson’s method.

◦ Similarly for other divisor methods.

If we apply the Borda-Webster and Borda-Jefferson methods to the Example
6, we obtain the points that are shown in Table 5, in bold the elected candidates.

Table 5. Points obtained by the candidates from Example 6.

Candidate c1 c2 c3 c4 c5 c6 c7 c8 c9

Borda-W 50 16.7 10 7.1 35 11.7 7 15 5

Borda-Jef 50 25 16.7 12.5 35 17.5 11.7 15 7.5

The answers are the same when we apply, respectively, Webster’s method
and Jefferson’s method (Balinski and Young, 1982) to assign four seats in pro-
portion to the votes (50, 35, 15).

6. Threshold of Representation for Different Methods

Now, let us suppose that four representatives must be chosen. Then, one
question is:

How many voters must vote for c5 (only) to assure a win to c5, if the rest of
the voters vote cyclically for c1, c2, c3 and c4?

If we use the Borda-Webster method, and there are 100 voters, the best
strategy for c1, c2, c3 and c4 would be equal points for all of them, that is:

c1 > c2 > c3 > c4 k votes
c2 > c3 > c4 > c1 k votes
c3 > c4 > c1 > c2 k votes
c4 > c1 > c2 > c3 k votes
c5 100 − 4k votes
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Then, c1, c2, c3 and c4 obtain k(1 + 1
3 + 1

5 + 1
7 ) points each, and c5 obtains

100 − 4k points. Therefore, k must be greater than 17. So, 29 votes for c5

would always ensure a win to c5.
Next, in Table 6, the threshold of representation will be shown with regard

to Borda-Webster method, Borda- Jefferson method, Limited Approval Voting
(limited to 70% of the constituency’s size) and Approval Voting methods.

Table 6. Threshold of representation as percentages for different methods.

Size Borda-Webs. Borda-Jef. LAV-70% AV

10 17.6% 22.7% 41% 50%
20 11.0% 15.2% 41% 50%
40 6.6% 9.7% 41% 50%
80 3.8% 5.8% 41% 50%

7. Some Remarks Regarding Borda-Type Proportional
Methods

◦ A unique Borda-Type proportional method exists and can be applied to a
preferential vote with the same proportionality as each divisor method in
proportional representation. The weights are the inverse of the divisors.

◦ No Borda-Type method verifies CONDORCET.

◦ All Borda-Type methods are monotone with respect to the number of
representatives.

◦ Borda-Type methods have a threshold of representation lower than those
of AV and LAV.

8. Other Proportional Methods Based on Preferential
Vote

We can obtain proportional methods based on preferential votes (total or
partial) as a generalization of the one-on-one comparison method proposed for
unipersonal elections. Firstly we establish the agenda for the comparisons. The
representatives are obtained one by one. When a candidate gets a seat, he or
she is eliminated from the agenda.

In this case we must use weights (as in Borda-Type methods) in the com-
parisons to obtain the second, the third, etc. representatives. The weights are
applied according to the previous representatives elected.
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Therefore, in practice, a computer is required for the application of this
method.

Example 7. Selecting two candidates according to the following preferences

Preferences Votes
A > B > 10
D > C 10
B > A > C 10
C > A > B 9.

Then, if we use the Borda-Webster method the answer is: A and B. If we use
the one-on-one comparison method, the agenda is ABDC and the first selected
candidate is A; so the new agenda is BDC and the second winner (using one-
on-one comparison with the same proportionality as Webster) is C.

9. Ecuador’s Electoral System for Congress: a Brief
Analysis

The sizes of the 22 Constituencies for Ecuador’s Congress are in Table 7:

Table 7. The sizes of the 22 constituencies in Ecuador.

Guayas 18 Chimborazo 4 Imbabura 3 Pastaza 2
Pichincha 14 Cotopaxi 4 Carchi 3 Zamora 2
Manabi 8 Tunguragua 4 Bolivar 3 Marona-Sant. 2
Los Rios 5 El Oro 4 Orellana 2 Napo 2
Azuay 5 Loja 4 Sucumb. 2 Gal«apagos 2
Esmeraldas 4 Ca~nar 3

And the results of the 2002 Congressional election are shown in Table 8.

9.1 Remarks on Ecuador’s Electoral System

◦ In the last presidential election of 2002, six candidates obtained a close
percentage of votes in the first round. Surely, in this case (also in other
similar cases) the one-on-one comparison method gives a better result
than that of the TR method.

◦ For the Congress,

– Ecuador’s Constitution favours proportionality and makes it possi-
ble to vote for candidates that belong to different political parties.
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Table 8. The 2002 Congress Election in Ecuador.

Social-Christian Party, PSC 24
Ecuatorian Roldosist Party PRE 15
Party of the Democratic Left ID 13
Institutional Renewal Party of National Action PRIAN 10
Coalition MUPP-NP/PSP 6
Pluri-National Pachakutik United Movement-New Country, MUPP-NP 5
People’s Democracy-Christian. Union-Popular Democracy, DP-UDC 4
Democratic People’s Movement MPD 3
Patriotic Society Party PSP 2
Joint list of MUPP-NP and PS-FA 2
Joint List of MPD and PS-FA 2
Social Party-Broad Front PS-FA 1
Concentration of People’s Forces CFP 1
Provincial Integration Movement MIP 1
Solidary Fatherland Movement MPS 1
Democratic Transformation TD 1
Joint list of ID and MIRE 1
Joint list of ID and DP-UDC 1
Joint list of ID and NP 1
Joint list of MUPP-NP and MCNP 1
Joint list of DP-UDC, PS-FA and AN 1
Joint list of PSC and UN-UNO 1
Joint list of PSC and AN 1
Joint list of PSP and MPD 1

100

– 60% of the deputies were chosen in constituencies whose size is
less than or equal to 5. Therefore, in these cases the proportionality
in each constituency is low.

– Usually each elector votes for candidates of the same political par-
ty. Therefore, if we just applied AV or LAV (limited to the con-
stituency size), then the largest party would obtain all of the repre-
sentatives in the constituency.

10. Conclusions

◦ In unipersonal elections, when we use the comparative one-on-one meth-
od, CONDORCET is verified; and this method does not harm in a sig-
nificant way the presence of candidates that compete for the same votes.

◦ In pluripersonal elections, the Borda-Webster method is proportional
and monotone. To obtain proportionality, the Borda-Webster method
may be preferred when the size of the constituency is large.
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◦ However, when there are many small constituencies, as for the Ecuado-
rian Congress, the proportionality is low and other techniques can prove
more adequate. For example, for Ecuador’s Congress we might:

– Not change the Constitution.

– Not change the form of voting. That is, use the current LAV meth-
od, or the Approval Voting one proposed by S. Brams (always with
a normalisation of votes). This is a very easy method for the voters.

– Establish a threshold (fewer parties in the Congress). Beyond this
all votes must count equally.

– Change (in the “Ley de Elecciones” = electoral law) the formula
for assigning the seats and apply complex formulas to obtain fair
results, if necessary. For example, apply the Bi-Proportional appor-
tionment (Balinski and Demange, 1989) to the sum of the points
(normalised votes) of the total candidates of each political party.
Usually, the BAZI algorithm developed by F. Pukelsheim
(www.math.uni-augsburg.de/stochastik/bazi/pseudoCode.html),
among others, finds the number of representatives of each politi-
cal party in each constituency that must be assigned. Finally, the
seats of a party are assigned to the candidates who receive the most
votes.
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for the Allotment of the European
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Abstract In this work we present several methods for distributing the seats of the Euro-
pean Parliament amongst the States of the European Union, in accordance with
the restrictions established in article I-20 of the projected European Constitution.
The proposed methods can be applied to the current composition of the EU, but
also if there is a change in the number of states or their populations. They are
based on adjusting the quotas of every country so that they verify the constitu-
tional restrictions, and so that their rounding to an integer number will constitute
an allotment of the seats of the Parliament.

Keywords: European Parliament, European Constitution, Proportional Representation, De-
gressive Proportionality, Quota Adjustment, Webster, Jefferson.

1. Introduction

The European Parliament is the institution that most resembles the Congress
of any democratic country (but with important differences). The European Par-
liament exercises, jointly with the European Council, legislative and budgetary
functions, as well as certain control functions, and it is in the charge of electing
the President of the Commission. It has been growing in size with the succes-
sive enlargements of the EU, though the projected Constitution limits its size
in the future to a maximum of 750 members.

The number of seats in the European Parliament must be distributed a-
mongst the States of the EU in accordance with their populations. Tradition-
ally, the distribution of the seats of the European Parliament does not follow
proportionality criteria, as is usual when the seats of the Congress of a coun-
try are allotted amongst their constituencies; yet in the EU the small countries
have been over-represented with respect to the large ones. For example, Lux-
embourg at present has six seats (as in previous legislatures), although its exact
quota is less than one. On the other hand, countries with important differences
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in population have received the same number of representatives. Thus, France,
the United Kingdom and Italy have the same number of representatives, al-
though their populations are appreciably different (before its unification, the
Federal Republic of Germany also used to receive the same number of seats as
these countries).

How has the allocation of seats to the States of the European Parliament
been established in every legislative period? By negotiation.

Obviously, negotiation is not the definitive solution. In fact, the Project of
European Constitution itself states that the European Council must adopt a de-
cision that fixes the composition of the European Parliament. Such a decision
would, logically, contain a formula to determine the distribution of the seats of
the member States. Moreover, it must be valid for the allotment of seats to the
present States, while remaining valid if the number of UE countries, or the size
of their populations, changes.

This formula would not be common to other problems of constituency allot-
ment (http://www.publications.parliament.uk/pa/ld200203/ldselect/ldeucom/
169/16921.htm), as the European Constitution has established criteria that im-
pose disproportionality – perhaps, a disproportionality somewhat similar to
that which results from the negotiations for previous and present allotments.

The aim of this work is to analyse with precision projected EU constitu-
tional restrictions and, accordingly, to propose different methods for allotting
the seats of the European Parliament to the EU States.

Firstly, in section 2 we analyse the Project of Constitution and then establish
and introduce the concept of quota adjustment for a degressively proportional
allotment. Next, we justify the established criteria. We tackle the problem of
the “degressive proportionality” as that of obtaining a quota adjustment such
that, when rounded using a proportional method, it gives rise to an allotment
in accordance with the Constitution. That is, the degressive proportionality
is reached by adjusting quotas. For rounding, we use the Webster method of
proportional allotment, because it is the only method that is consistent and
impartial, and the Jefferson method because it benefits the biggest countries
(Balinski and Young, 1982). The Webster method – noted in the following by
W – rounds every fraction to the closest whole number; the Jefferson method
– noted in the following by J – rounds every fraction to its integer part.

In section 3, we proof that several adjustments of quotas (linear, parabolic,
potential, etc.) allow degressively proportional allotment to be obtained ac-
cording to the Project of Constitution. We show some numerical and graphical
examples for the case of the 25 member States and some enlargements of the
EU.

In section 4, we establish additional remarks to help in choosing a method to
allot the seats of the European Parliament. Four possibilities have been devel-
oped in the previous sections: the parabolic and potential adjustment rounding
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with either W or J. All four are equally easy to apply in practice, though we
believe that the parabolic one more closely resembles with the last negotiated
allotment and we recommend it if we prefer not to give the advantage to the
smallest countries.

2. Restrictions and Temporary Regulations in the Project
of European Constitution

The projected European Constitution1 of October 2004 states, in its article
I-20, that the European Parliament will be made up of Union citizens, and that
the number of parliamentary members will not exceed 750. It also says that
representation will be “degressively proportional”, and every member State
must receive a minimum of six deputies and a maximum of 96.

The Constitution has also foreseen the representation of Romania and/or
Bulgaria if they become members of the Union before the European Council
approves the composition of the European Parliament. In such a case, Roma-
nia will be represented by 35 Euro-deputies and Bulgaria by 18, so that the
parliament will have 785 until the end of the 2004-2009 legislature.

The term “degressively proportional” is a recent concept that does not re-
spond to a concrete formula of seat allotment (http://www.taemag.com/docLib/
20040128 p4043.pdf), but to a limitation according to which the States with
fewer inhabitants receive fewer representatives than the States with more in-
habitants; yet the States with fewer inhabitants receive more representatives
than they proportionally deserve, and the more populated States receive fewer
representatives than they proportionally deserve (Bovens, L. “Welfare, Vot-
ing and the Constitution of a Federal Assembly”, http://www.uni-konstanz.de/
ppm/EU.pdf).

2.1 Notations and Definitions

Given the populations of the n States P = (p1, p2, . . . , pn) and the size H
of the European Parliament, the exact quota, xi, corresponding to a country

with population pi is xi =
piH

T
, T being the total number of inhabitants of

the EU. Let m and M be the quotas respectively corresponding to the smallest
and the biggest two countries. So, at the current EU, m = 0.64 corresponds to
Malta, and M = 132.92 to Germany (see Table 1).

Definition 1: A quota adjustment function is a function A : [m,M ] −→ R
transforming quotas x into other adjusted quotas A(x).

1Tratado por el que se establece una Constitución para Europa, Ministerio de Asuntos Exteriores y de
Cooperación, Ministerio del Interior y Ministerio de la Presidencia, Dep. Legal M-53614/2004.
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Definition 2: In this paper, an allotment will be called degressively pro-
portional if it is the result of applying a rounding proportional method using a
non-decreasing concave quota adjustment function A.

2.2 Criteria for the Quota Adjustment Function A

Derived from the Projected Constitution.

1 Increase

x < y implies that A(x) < A(y), ∀x, y ∈ [m,M ].

That is, if the exact quotas of two States are x and y, verifying x < y,
then the corresponding adjusted quotas must verify the same relation.

2 Bounds

Meanwhile, if the exact quotas of all the countries belong to an interval
[m,M ], it must be verified that:

6 ≤ [A(x)]r ≤ 96 for all x in the interval [m,M ],

where [A(x)]r is the rounding of A(x) with a proportional method.

We can therefore guarantee the maximum and minimum limits of seats
that a country can receive.

3 Concavity

The quotas mean the exact proportionality, that is, the adjustment func-
tion A(x) = x (whose plot is the bisectrix of the first quadrant, a line
of slope one), whose function corresponds to the exact proportionality.
The total absence of proportionality would be to assign the same num-
ber of representatives to every country, this corresponding to the function
A(x) = c (a constant function, so, with zero slope).

In this third sense, then, it is possible to interpret that the concept “de-
gressively proportional” implies using a function A(x) whose slope is
decreasing, or at least not increasing. So, in the case that we use an
adjustment function that can be twice differentiated, we require that

A′′(x) ≤ 0, for all x ∈ [m,M ].

If A(x) is piecewise rectilinear, the successive slopes of the polygonal
would be smaller and smaller.
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4 Assign H seats
n∑

i=1

[A(xi)]r = H

That is, at least one of the roundings of [A(xi)]r must sum H .

As, we will use the Webster or the Jefferson method, for the rounding.
We will change the subscript r to W or J respectively.

Obviously, there are infinite possibilities for choosing the functions that
adjust the quotas verifying the previous requirements (although the num-
ber of different allotments that they produce is finite). We try to choose
the simplest possible adjustment functions.

3. Several Quota Adjustments for Degressively
Proportional Allotment in the EU

3.1 The Rectilinear Adjustment of Quotas

The simplest adjustment is the rectilinear one, that is, the adjustment
that uses a function like A(x) = a + bx (whose plot is a straight line).
If, from the current populations of the 25 member States of the EU and
H = 732, we consider the rectilinear adjustment that gives 96 seats to
the largest country, we obtain that possible functions – rounding with
Webster or Jefferson, AW or AJ – verifying the four previous criteria,
are:

AW (x) = 96 + 0.644(x − 132.92) = 10.3995 + 0.644x,

AJ(x) = 96 + 0.64(x − 132.92) = 10.9376 + 0.64x,

In this case, the rounding of AW (xi) with the Webster method and the
rounding of AJ(xi) with the Jefferson method give the same results.
Specifically, the allotment for the 25 countries will be:

11-11-11-12-12-13-14-15-16-16-16-19-20-21-21-21-21-22-27-50-53-
70-72-72-96

It is possible to make other rectilinear adjustments that sum up to 732,
which is the actual size of the European Parliament, but such adjust-
ments allocate 11 or more seats to the least populated countries. The
next example shows one such adjustment:

A(x) = 93 + 0.615(x − 132.92) produces the following rounding with
W:
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12-12-12-13-13-14-15-15-16-17-17-19-20-21-21-22-22-22-27-49-52-
68-70-70-93

With the first of these two adjustments, Germany receives 96 seats, while
the smaller States receive at least 11 seats, although their exact quota is
less than 6 (even smaller than 1 for some of them, as we can see in Table
1), and the projected Constitution only forces the assignment of six.

The second adjustment produces an allotment that is even less propor-
tional with the current data. However, both adjustments verify the four
properties previously established – increasing, bounding, concavity and
sum equal to H – and so, it seems reasonable to find new adjustment
functions, in order to avoid giving more representation to very small
States, at least with the present situation.

It is easy to see that with the current population data, the allotments
that assign only 6 seats to the smallest country, using Webster for the
rounding, require an H value under 650. Specifically, for H = 649, we
can use

A(x) = 6.49 +
90

132.92 − 0.64
(x − 0.64) ! 6.05 + 0.68x

and we obtain

6-7-7-8-8-9-10-10-12-12-12-15-16-17-17-17-17-18-24-48-52-69-71-
71-96

Therefore, forcing a rectilinear adjustment, for H ≥ 650, with the cur-
rent populations of the States, and allotting only 6 seats to the smallest
country, is impossible.

3.2 The Quota Adjustment with Parabolic Functions

We now attempt an adjustment of the kind of A(x) = a + bx + cx2 (which
we call parabolic); it is more flexible that the linear one because it has one more
parameter than the rectilinear adjustment, and it allows for the present situation
(and for a wide range of values of H) to assign six seats to the smallest country,
and 96 to the most populated one (using Webster or Jefferson for the rounding).
Also, as we show later, we can use this kind of adjustment analogously, facing
future enlargements of the EU.

For simplicity, in the following, as occurs at present with seven countries
having quotas under six, we suppose m ≤ 6.

Let f1 and f2 be the following functions:

f1(x) = 6 + 90
M−m(x − m)

f2(x) = 6 + 90
M−m(x − m) − 90

(M−m)2
(x − m)(x − M)
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Their graphs (in Figure 1) are the straight line connecting the points (m, 6)
with (M, 96) and the parabola connecting the same points and slope zero at
x = M .

20 40 60 80 100 120

20

40

60

80

f1

f2

Fig. 1. Graph of the functions f1 (straight line) and f2 (parabola).

Now, rounding with the Webster method, we denote:

r1 =
n∑

i=1

[f1(xi)]W and r2 =
n∑

i=1

[f2(xi)]W ,

For example, for the present data, we have r1 = 635 and r2 = 846.
We define the parabolic adjustment function for the Webster method as the

following:

Aλ(x) =

⎧⎨
⎩

6 + λ(x − m) if H < r1,
6 + 90

M−m(x − m) + λ(x − m)(x − M) if r1 ≤ H ≤ r2,

96 + λ(x − M)2 if H > r2,

where, in each case, the λ parameter is used to adjust the allotment to H seats
(that is, to verify the fourth criterion).

In the first case, the smallest country obtains six seats. In the second one,
the smallest country obtains six seats and the largest 96 seats. And in the final
case, the largest country obtains 96 seats.

In the following, we say that the value of H is compatible with the bounds
of the projected Constitution when 6n ≤ H ≤ 96n.

Proposition 1 If the value of H is compatible with the bounds, there al-
ways exists, at least one value for λ for which an allotment obtained, applying
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the Webster method to the parabolic adjustment function given above, will ver-
ify the four established criteria.

Proof. Trivially, the value for λ must be

i) In the first case, 0 ≤ λ < 90
M−m , and the Webster method allots between

6n and r1 seats.

ii) In the second case, − 90
(M−m)2

≤ λ ≤ 0, with the Webster method allot-
ting between r1 and r2 seats.

iii) In the third case, λ < 0, permits the allotment of up to 96n seats.

Proposition 2 We can obtain r1 and r2 for the rounding with the Jefferson
method (r1 = 626, r2 = 833). Then, a similar proposition is true for the
corresponding Aλ.

Remark 3 We have used f1 and f2 connecting the points (m, 6) and (M, 96)
because this permits using either the Webster or Jefferson method and assigns
6 seats to the smallest country and 96 to the biggest country. But if we establish
just one method for rounding, for example Webster, we can change the 6 to any
value from the interval (5.5, 6.5) and the 96 to any other belonging to (95.5,
96.5), etc. In (Ramirez, 2004) and (Ramirez, Palomares and Marquez, 2006)
we use only the Webster method for rounding and we show the results obtained
changing the interpolation point (m, 6) to (0, 5.5).

The parabolic method applied to the present data in the European Parlia-
ment.

For the present data, the adjustment function is like the second one above,
that is

Aλ(x) = 6 +
90

M − m
(x − m) + λ(x − m)(x − M)

whether we use Webster or Jefferson for the rounding.
When Webster is used for the rounding, the possible values of λ are those

that belong to the interval

λ ∈ [−0.0023144,−0.0023140].

And when Jefferson is used the possible values of λ are those that belong to
the interval

λ ∈ [−0.0026590,−0.0026583].

The allotments are shown in Table 1 (columns 5 and 7, both in bold). Also
in this table we can see the inhabitants, the exact quota, the adjusted quota
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Table 1. Current data for the EU and parabolic allotment, using W and J methods.

Exact W. Adjust. Parabolic J. Adjust. Parabolic
Country Inhabitants Quota x Aλ(x) W -25 Aλ(x) J-25 Present
Germany 82536700 132.92 96.00 96 96.00 96 99
France 59630100 96.03 79.04 79 80.25 80 78
United K. 59328900 95.54 78.78 79 80.00 80 78
Italy 57321000 92.31 76.98 77 78.26 78 78
Spain 41550600 66.91 61.21 61 62.72 62 54
Poland 38218500 61.55 57.50 57 58.99 58 54
Netherlands 16192600 26.08 29.59 30 30.53 30 27
Greece 11018400 17.74 22.20 22 22.87 22 24
Portugal 10407500 16.76 21.30 21 21.94 21 24
Belgium 10355800 16.68 21.22 21 21.86 21 24
Czechia Rep. 10203300 16.43 21.00 21 21.63 21 24
Hungary 10142400 16.33 20.91 21 21.54 21 24
Sweden 8940800 14.40 19.13 19 19.69 19 19
Austria 8067300 12.99 17.83 18 18.34 18 18
Denmark 5383500 8.67 13.77 14 14.11 14 14
Slovakia 5379200 8.66 13.37 14 14.10 14 14
Finland 5206300 8.38 13.50 14 13.83 13 14
Ireland 3963600 6.38 11.59 12 11.83 11 13
Lithuania 3462600 5.58 10.81 11 11.03 11 13
Latvia 2331500 3.75 9.05 9 9.18 9 9
Slovenia 1995000 3.21 8.52 9 8.63 8 7
Estonia 1356000 2.18 7.52 8 7.58 7 6
Cyprus 715100 1.15 6.50 7 6.52 6 6
Luxembourg 448300 0.72 6.08 6 6.08 6 6
Malta 397300 0.64 6.00 6 6.00 6 5
total 454552300 732 729.80 732 743.50 732 732

for λ = −0.002314 when the Webster method is used (AW ), and for λ =
−0.0026590 when Jefferson is used (AJ ), and the present allotment for the
current 25 member States of the EU.

As above, the value of λ is not unique (except when there are ties).

Graphs a), of Figure 2, show the parabola of quota adjustment and the allot-
ment with the parabolic method rounding with J . Graph b), shows the same
parabola and the present allotment.

A similar view can be obtained when we compare the parabolic allotment,
using Webster for rounding, with the present allotment.

Application of the parabolic method facing enlargements in the EU.
Let us suppose that the European Parliament is fixed in the maximum al-

lowed, H = 750, and that we consider the following enlargements of the
present EU, that is the EU-25:

a) EU-25 + Bulgaria + Romania (noted by EU-27).

b) EU-25 + Bulgaria + Romania + Croatia (noted by EU-28).

c) EU-25 + Bulgaria + Romania + Croatia + Turkey (noted by EU-29).



214 Victoriano Ramírez, Antonio Palomares, Maria L. Márquez

20 40 60 80 100 120

20

40

60

80

20 40 60 80 100 120

20

40

60

80

100

Fig. 2. a) Parabolic adjustment function, and corresponding allotment, rounding
with Jefferson for 25 member States. b) Parabolic adjustment function with Jefferson,
and present allotment.

In these cases the corresponding values of r1 and r2 are:

Rounding with W Rounding with J
EU-27 EU-28 EU-29 EU-27 EU-28 EU-29

r1 680 690 768 670 680 758
r2 917 932 1025 903 917 1009

The corresponding allotments using parabolic adjustment appear in Table 2.

The quota adjustment function used in each case is the following:

EU Round Parabolic adjustment function
EU-27 W 6 + 90

127.48−.61365
(x − .61365) − .001629(x − .61365)(x − 127.48)

EU-27 J 6 + 90

127.48−.61365
(x − .61365) − .0019(x − .61365)(x − 127.48)

EU-28 W 6 + 90

126.33−.60809
(x − .60809) − .00143(x − .60809)(x − 126.33)

EU-28 J 6 + 90

126.33−.60809
(x − .60809) − .0017(x − .60809)(x − 126.33)

EU-29 W 6 + .78538(x − .53543)
EU-29 J 6 + .802(x − .53543)

Figure 3, graph a) shows the parabolic quota adjustment function and corre-
sponding allotment for EU-27, rounding with Webster. Graph b) is analogous,
but for EU-28, and rounding with Jefferson.

For EU-29, the two quota adjustment functions are straight lines; so, if the
enlargements had affected more countries, the parabolic adjustment function
would also be a line.
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Table 2. Parabolic allotments for enlargements of the EU, using W and J methods.

State Inhabitants W -27 J-27 W -28 J-28 W -29 J-29
Germany 82536700 96 96 96 96 93 94
Turkey 66500000 - - - - 76 77
France 59630100 76 77 75 76 69 70
United K. 59328900 76 76 75 76 69 69
Italy 57321000 74 74 73 74 66 67
Spain 41550600 58 58 57 57 50 50
Poland 38218500 54 55 53 54 46 46
Romania 22000000 35 36 35 35 30 29
Netherlands 16192600 27 28 27 27 23 23
Greece 11018400 21 21 20 20 17 17
Portugal 10407500 20 20 19 19 17 16
Belgium 10355800 20 20 19 19 16 16
Czechia Rep. 10203300 20 19 19 19 16 16
Hungary 10142400 19 19 19 19 16 16
Sweden 8940800 18 18 17 17 15 15
Bulgaria 8428000 17 17 17 17 14 14
Austria 8067300 17 16 16 16 14 14
Denmark 5383500 13 13 13 12 11 11
Slovakia 5379200 13 13 13 12 11 11
Finland 5206300 13 12 13 12 11 11
Croatia 4436000 - - 11 11 10 10
Ireland 3963600 11 11 11 11 10 9
Lithuania 3462600 10 10 10 10 9 9
Latvia 2331500 9 8 9 8 8 8
Slovenia 1995000 8 8 8 8 8 7
Estonia 1356000 7 7 7 7 7 7
Cyprus 715100 6 6 6 6 6 6
Luxembourg 448300 6 6 6 6 6 6
Malta 397300 6 6 6 6 6 6
total 454552300 750 750 750
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Fig. 3. a) Parabolic quota adjustment function, and allotment, rounding with W for
EU-27 and H = 750. b) The same for EU-28, and rounding with Jefferson.

3.3 The Quota Adjustment with Power-Type Functions

Now, for the r1 value obtained previously using Webster, we consider the
following function for the adjustment of the quotas, defined in [m,M ]:

Aα(x) =

{
6 + 90α

M−m(x − m) if H ≤ r1,

6 + 90
(

x−m
M−m

)α
if H > r1
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Table 3. Power type allotments for the present data in EU-25 and for several en-
largements of the EU.

State Inhabitants Present W-25 J-25 W-27 J-27 W-28 J-28
Germany 82536700 99 96 96 96 96 96 96
France 59630100 78 75 75 74 74 73 73
United K. 59328900 78 75 75 73 73 73 73
Italy 57321000 78 73 73 71 71 71 71
Spain 41550600 54 58 58 55 56 55 55
Poland 38218500 54 54 54 52 52 51 51
Romania 22000000 - - - 35 35 34 35
Netherlands 16192600 27 30 30 28 28 27 27
Greece 11018400 24 23 24 21 21 21 21
Portugal 10407500 24 23 23 20 21 20 20
Belgium 10355800 24 23 23 20 20 20 20
Czechia Rep. 10203300 24 22 22 20 20 20 20
Hungary 10142400 24 22 22 20 20 19 20
Sweden 8940800 19 21 21 19 19 18 18
Bulgaria 8428000 - - - 18 18 17 18
Austria 8067300 18 19 19 18 17 17 17
Denmark 5383500 14 15 15 14 14 13 13
Slovakia 5379200 14 15 15 14 14 13 13
Finland 5206300 14 15 15 14 14 13 13
Croatia 4436000 - - - - - 12 12
Ireland 3963600 13 13 13 12 12 11 11
Lithuania 3462600 13 12 12 11 11 11 11
Latvia 2331500 9 10 10 9 9 9 9
Slovenia 1995000 7 10 10 9 9 9 8
Estonia 1356000 6 9 8 8 8 8 7
Cyprus 715100 6 7 7 7 6 7 6
Luxembourg 448300 6 6 6 6 6 6 6
Malta 397300 5 6 6 6 6 6 6
total 454552300 732 732 732 750 750 750 750

(When H > r1 and α = 0 we establish Aα(m) = 96)

In both cases, when α ∈ [0, 1] the function Aα is increasing, concave, with
values belonging to [6, 96], then we can use the parameter α to adjust the sum
to H .

Proposition 4 If the value of H is compatible with the Constitutional
bounds, there exists always, at least one value of α for which an allotment
obtained applying the Webster method to the power-type adjustment function
above will verify the four criteria for degressively proportional allotment.

Proof. If H ≤ r1, Aα(x) = 6 + 90α
M−m(x − m), and then varying α from 0

to 1, we can obtain all the allotments that sum from 6n to r1.

If H > r1, the adjustment quota function is Aα(x) = 6 + 90
(

x−m
M−m

)α
so

when α decreases, Aα increases, and limα→0 Aα(x) = 96,∀x ∈ [m,M ]; then
using Webster, all countries can obtain 96 seats.
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Proposition 5 If we use the Jefferson method to calculate r1 and to round
the adjusted quotas, a very similar affirmation to Proposition 3 can be estab-
lished and proofed.

The power method for the present situation in the European Parliament
and some enlargements.

For the present 25 members of the EU with H = 732 and the enlargements
EU-27, EU-28 with H = 750, the corresponding adjustment functions are:

EU H Rounding Adjustment function

EU-25 732 W 6 + 90
(

x−.63980
132.92−.63980

).803

EU-25 732 J 6 + 90
(

x−.63980
132.92−.63980

).786

EU-27 750 W 6 + 90
(

x−.61365
127.48−.61365

).8675

EU-27 750 J 6 + 90
(

x−.61365
127.48−.61365

).85

EU-28 750 W 6 + 90
(

x−.60809
126.33−.60809

)0.892

EU-28 750 J 6 + 90
(

x−.60809
126.33−.60809

)0.8655

The corresponding allotments for the present EU-25 as well as the EU-27
and EU-28 using W and J, and using this power-type method, are shown in
Table 3. For EU-29, the parabolic quota adjustment function and the power
one are the same straight line. Therefore, the power-type allotment for EU-29
is the same as the parabolic method.

In the graph of Figure 4, we compare the power-type methods, rounding
with J, with the present allotment.

20 40 60 80 100 120

20

40

60

80

20 40 60 80 100 120

20

40

60

80

100

Fig. 4. a) Power-type adjustment function, and corresponding allotment, round-
ing with Jefferson for EU-25. b) Power-type adjustment function with Jefferson, and
present allotment.
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In the graph of Figure 5, we compare parabolic adjustment quota func-
tion and power-type adjustment quota function, and corresponding allotments,
rounding with Webster, for EU-27.
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Fig. 5. Parabolic adjustment quota function (continuous) and power-type adjust-
ment quota function (broken line), and corresponding allotments, rounding with Web-
ster, for EU-27.

Remark 6 The power-type adjustment function generally grows faster than
the parabolic one when the quota x is near m, and the contrary occurs when
the quota x is near M . Therefore, the power-type adjustment method using
Webster is more favourable for the small countries, and the parabolic method
using Jefferson favours the larger countries.

We can see this fact comparing Table 3 with tables 1 and 2; and with the
graphs of figures 4 and 5 we show these differences for EU-27 and EU-28.

3.4 Other Quota Adjustment Functions

Many other adjustment functions can be proposed, usually more complex
than the parabolic method or the power-type method shown above.

For example splines functions. Linear splines suffice, even with just three
nodes: {m,k,M}; k being an intermediate node between m and M . If r1 <
H , then we use the spline connecting the points (m, 6), (k, b) and (M, 96).
There is always a linear spline function with three nodes for the quota adjust-
ment that verifies the four properties, and we choose the b parameter such that
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one of the roundings sum up to H . Besides, there are many valid values for
the k intermediate node. Precisely, this versatility becomes a disadvantage for
using the splines. What intermediate node do we use? (This is even more
complex if we increase the number of nodes.)

The spline is not differentiable in its intermediate node, which is another
disadvantage with respect to the parabolic method and power-type method.
Splines involve a more abrupt change than the one resulting from these two
methods. Furthermore, for the EU of 29 countries, as well as any future
enlargements, the spline method, the parabolic method and the power-type
method produce the same quota adjustment function, a straight line, and so
they produce the same allotment.

4. What Method to Use?

We have developed parabolic and power-type adjustment functions round-
ing with Webster and Jefferson, four total possibilities. All of them are logical
options for solving the problem at hand. When differences are seen, they are
small, in some cases. For the EU-25, the bigger differences can be seen in
Figure 6, where we compare the power-type method, rounding with Webster,
versus the parabolic method, rounding with Jefferson.
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Fig. 6. Parabolic quota adjustment function rounding with Jefferson (continuous)
and power-type quota adjustment function rounding with Webster (broken line), and
corresponding allotments for EU-25.
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Also, we observe:

The adjustment of the parameter is of the same difficulty whether we use
the parabolic or the power-type method. In both cases it is easy.

For the rounding method chosen, we have to calculate r1 and r2, and
then depending on these values, and H , we will know the expression of
the Aλ or Aα function. Next a method similar to bisection is used to
easily obtain a value of the parameter that allots the H seats. Only in the
case where more than one solution exists (that is, a tie), minor additional
work is required.

In short, both the parabolic method and the power-type method, are very
easy to apply.

While Webster’s is an impartial method and Jefferson favours the big-
ger countries, as the adjusted quotas are between 6 and 96 this causes
that the differences obtained between using Webster or Jefferson are not
important. As we can see in tables 1, 2 and 3, the difference between
using Webster or Jefferson method is always at most one seat, for every
country.

Power-type methods are most favourable than the parabolic one for small
countries.

Therefore, if for example, as the projected Constitution gives a minimum of
6 seats to the smaller countries, the parabolic method is the method that more
compensates this Constitutional restriction better than the power-type one.
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Hidden Mathematical Structures of Voting∗

Donald G. Saari
University of California, Irvine

Abstract The complexities of voting theory are captured by Arrow’s Impossibility Theo-
rem and McKelvey’s chaos result in spatial voting. A careful analysis of Arrow’s
theorem, however, proves that not all of the supplied information is used by the
decision rule. As such, not only does this seminal result admit a benign inter-
pretation, but there are several ways to sidestep Arrow’s negative conclusion.
McKelvey’s result is described in terms of more general voting rules. Then a
new solution concept, called the ‘finesse point’, is introduced. This centrally
located point generalizes the core and minimizes what it takes to respond to any
proposal by another person.

Keywords: Arrow’s theorem, spatial voting, majority vote, chaos theorem, core, finesse
point.

1. Introduction

For me, an important part of the excellence of this Erice conference came
from the diverse intellectual interactions that allowed us to learn from others.
In this spirit, I changed my conference presentation to respond to comments
made in earlier talks. We heard, for instance, how the negative conclusion of
Arrow’s Theorem (Arrow, 1952), often described as showing that “no election
rule is fair,” proves it is impossible to solve the central problems of social
choice and voting theory. Other conference comments were directed toward
the distinct weaknesses of pairwise majority vote elections as manifested by
the negative consequences of McKelvey’s “chaos theorem” (McKelvey, 1979).

After reminding the reader what Arrow’s and McKelvey’s seminal theorems
state, I explain why neither result is as discouraging as widely assumed. In-
stead, both results, which involve pairwise comparisons, can be handled with-
out undue difficulty. As part of my explanation, I introduce the “finesse point”
concept, which is a new way to extend the notion of a “core.”

∗My thanks to a referee who clearly did a careful job as he caught some subtle errors!
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2. Arrow’s Theorem

After identifying the domain and range of a social welfare function, Arrow’s
seminal theorem describes conditions that most people probably would accept
as being satisfied by all reasonable decision rules. In particular, for voter pref-
erences, Arrow stipulates

Preferences: Each voter has a complete, transitive ranking over all alternatives;
there are no other restrictions on the voter’s ranking.

Arrow also requires the outcomes to be transitive.

Societal Ranking: The societal ranking forms a complete transitive ranking.

Transitivity is a tradition assumption in this area. This rationality condition
is where if, say, a voter prefers Aline to Federica, and Federica to Susan, then
he must also prefer Aline to Susan. A rationale for this assumption is to help
ensure that societal decisions can be made. If, for instance, all the above voters
had these preferences where they really did prefer Susan to Aline, then who do
they want?

Not Aline, because they prefer Susan. Not Susan because they prefer Federica.
Not Federica because they prefer Aline.

So without requiring voters to have transitive beliefs, we must anticipate cyclic
societal outcomes. To achieve transitive societal rankings, then, it is natural
to require the voters to have transitive preferences. In other words, these two
“transitivity” conditions are inextricably intertwined.

We now come to the conditions Arrow imposed on the decision rule. The
first is obvious: if everyone prefers one candidate to another, then the unani-
mously accepted ranking should be the societal ranking. The second condition
extends this unanimity notion to more general settings. For instance, suppose a
committee ranking candidates for tenure track positions prefers Anne to Barb.
Imagine Barb’s reaction if told that the committee would have ranked her over
Anne if they had a better opinion of Connie! Why should their opinions of
Connie affect the {Anne, Barb} ranking? Shouldn’t their opinions about Con-
nie be irrelevant for the Anne, Barb ranking?

Decision rules. Pareto, or unanimity. If for any pair of candidates all voters rank
them in the same manner, then that common ranking is the societal ranking.

Binary Independence, or Independence of Irrelevant Alternatives (IIA). The so-
cietal ranking of any two candidates strictly depends on the voters rankings of
these two candidates; all other information is irrelevant. In particular, for any
two profiles whereby each voter has the same relative ranking of a pair, the pair’s
societal ranking is the same.

These conditions sound quite reasonable and even innocuous. It is their
reasonableness that constitutes the surprise and mystery of Arrow’s Theorem.
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Theorem 1 (Arrow, 1952) With three or more alternatives, any decision rule
that satisfies the above conditions on preferences, the societal ranking, and the
properties for a decision rule must be equivalent to a dictatorship. Namely,
there is a specific voter whereby the societal outcome always agrees with that
voter’s preferences independent of the choices for any other voter.

2.1 An Explanation

A dictator? How can that be!! The power of Arrow’s result derives from
selecting minimal conditions that most people probably assume hold for all
decision rules. But Arrow proved that unless subjected to a dictatorship, some
of these conditions must be violated. As these rules appear to be desirable, it
is easy to appreciate why the mystery of Arrow’s result helped to generate the
rebirth of the academic area and why his theorem often is described as meaning
“no voting rule is fair.”

A half century later and after examining the hidden mathematical structures
of Arrow’s Theorem (Saari, 1998,2001), we now understand that Arrow’s re-
sult does not mean what we had thought it meant. Instead, mathematics proves
that Arrow’s result admits a benign interpretation. Even more; we now can
replace the difficulties of Arrow’s negative result with positive conclusions.

Before indicating the source of Arrow’s conclusion, let me mention that
during this conference, I discovered, to my delight, that the Erice restaurants
served Sicilian red wine, white wine, and beer. With enjoyable experimenta-
tion, I learned that I prefer their red wine to their white. The question is: over
these three choices, are my preferences transitive?

This question is impossible to answer because there is not enough infor-
mation. To determine whether my preferences are transitive, you must also
know my {white wine, beer} and my {red wine, beer} rankings. This aside
explains Arrow’s result; when determining the societal ranking for Sicilian
red and white wines, IIA, or the binary independence condition, forbids using
any information about beer. More precisely, IIA requires the decision rule to
ignore any and all information about the transitivity of the election rankings
of the individuals. This observation is crucial because, as emphasized above,
without using the transitivity of individual preferences, there is no reason to
expect transitive societal outcomes. But the decision rule must ignore this cru-
cial assumption, so the surprise and mystery of Arrow’s theorem completely
disappears. A more correct assertion is that Arrow’s theorem shows that seri-
ous negative consequences can arise by ignoring valuable information, which
everyone expected was being used, to determine the societal ranking.

Before explaining Arrow’s dictator, permit me another digression to brag
about my youngest granddaughter. At ten months, Tatjana could move along
alphabet blocks on the floor by first crawling by the “A” block, then the “B”
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block, next the “C” block, and so forth in the correct order down the alpha-
bet! Honest! Well I helped a bit by arranging the blocks in the appropriate
order along her crawling path. OK, so her accuracy in selecting the blocks
may not measure her acumen; instead it may register the careful ordering of
the data. Similarly, because a rule obeying IIA is forbidden from using infor-
mation about the transitivity of individual rankings, the rule needs significant
help if it is to register a transitive societal outcome. To achieve this conclusion,
mimic the alphabet block scheme by using highly selective data. But by doing
so, remember that it is the structure of the data, not the properties of the deci-
sion rule, that imposes order on the societal outcome: this explains the role of
“profile restrictions” in choice theory. An extreme condition is to use the tran-
sitive rankings of a single agent: this is Arrow’s dictator. In other words, rather
than describing a decision rule, Arrow’s “dictator” is an extreme version of a
profile restriction.

Mathematical Structure. For readers interested in what hidden mathematical
structures allowed me to discover the source of Arrow’s result, notice how the
Pareto and binary independence requirements directly emphasize pairs. The
main role played by the Pareto condition (Saari, 1995,1998) is to ensure that
each pair has at least two societal rankings. Binary independence requires that
the way the societal ranking of a pair is determined is independent of what
happens with others.

These conditions decompose a ranking into its pairwise rankings; e.g., A 	
B 	 C becomes A 	 B, B 	 C, and A 	 C. A change in a strict ranking
of any pair is represented by an operation in the group Z2; it either keeps
the ranking, or it reverses it. To find what can happen over all three pairs, it
follows from IIA that we must examine the Z2×Z2×Z2 orbit of any ranking—
this orbit has eight rankings, not just the six transitive rankings—the two new
rankings are cyclic. By examining this structure of “completing the space” of
individual preferences, the argument becomes immediate.

2.2 Finding Resolutions

The source of Arrow’s Theorem, then, is that his conditions prevent the
decision rule from using information that is explicitly specified. This means
that rather than Arrow’s conclusion that the decision rule must be equivalent
to a dictatorship, a more accurate conclusion is that

Arrow’s Theorem means that his conditions prevent decision rules from using
the crucial information about individual rationality that we expect is being used.

Arrow’s theorem is not the only negative result with this explanation; as ex-
plained in my November, 2004, Condorcet Lectures (Saari, 2004), all of the
impossibility or “troublesome” results that I have investigated (from social
choice, probability, etc.) occur because the decision rule does not use crucial
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information that, by being specified, we expect is being used. (For instance,
with respect to Sen’s theorem, see Saari and Petron (2006) and Li and Saari
(2005).) An important payoff from this description is that we now know how
to avoid the negativity associated with all of these conclusions: modify the
conditions so that the rules can use the information that we find to be vital.

In Arrow’s result, the approach is simple. Modify IIA, or binary indepen-
dence, in a manner so that the decision rule can use the crucial information
about the transitivity of voter preferences. While all of this is described in my
book Saari (2001), a simple approach is to not only rank each pair, but also
specify how many alternatives separate the pair. For instance, the A 	 B 	 C
ranking is treated as (A 	 B, 0), (B 	 C, 0), and (A 	 C, 1) where the
“0” or ‘1” indicates how many candidates separate the specified ranking. With
this modified “intensity IIA condition” (IIIA), Arrow’s dictator is replaced by
several rules including the Borda Count.

3. McKelvey’s Chaos Theorem

Pairwise majority vote elections are widely used in departmental meetings,
legislatures, and on and on. But what do they mean? Arrow’s theorem suggests
that we must expect negative conclusions, and they most surely occur. In Saari
and Sieberg (2001), for instance, we show that rather than viewing pairwise
outcomes as reflecting the actual profile, they actually reflect a statistical aver-
age over all possible supporting profiles. Notice how this interpretation almost
ensures all sorts of unintended and inappropriate outcomes! To illustrate this
phenomenon, Sieberg created a clever example for Saari and Sieberg (2001) to
show how the same election outcome can support radically different intentions
and interpretations. In Saari (2006) I build on her example to develop a differ-
ent explanation that shows how the pairwise vote, or IIA, severs all intended
connections among pairs.

In spite of its many faults and weaknesses, the pairwise vote continues to be
used. As such, it remains reasonable to discover ways to temper the negativity
with positive conclusions, and that I will do. Start with a single issue where
each voter has an “ideal point”—a preferred position: propositions closer to her
ideal point are more preferred. If the positions of three voters are indicated with
bullets in Fig. 1a, where should a candidate position herself? One choice might
be to take the average position; another choice might be to assume the midpoint
between the extremes, as indicated by the arrow representing candidate 1.

Neither choice is optimal. The optimal choice, as selected by candidate 2
in Fig. 1a, is the ‘median voter’s’ position. By being at this point, candidate 2
earns the votes of the median voter and the one to the left; candidate 1 loses by
obtaining only the vote of the voter to the right. Experimentation proves that
no matter where candidate 1 is positioned, candidate 2 will win.
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Core

Fig. 1. What policies to adopt?

Candidate 2’s position illustrates the game theoretic notion of a “core.”
More precisely, a core point is one that can never be beaten under the rules
of the game: the ‘core’ is the set of all core points. But while a core point
can never be beaten, it need not win. An illustration is in Fig. 1b where the
median—the core—is the interval between the second and third voters’ ideal
points. With both candidate’s positions in the core, neither can be beaten, but
neither wins. It is easy to see that with one issue (where the modeling is on
a line), a core always exists; this is, essentially, Black’s single peaked con-
dition. Now consider what happens with two issues, which is modeled in a
two-dimensional setting.

3.1 Two Issues, Two Dimensions

Consider a simple setting where, say, a committee of three must recommend
the number of hours and salary paid to teaching assistants. A voter’s ideal
point, then, consists of two coordinates (hours, salary). If the three voters’ ideal
points define a triangle, what should be the compromise ‘decision point’? Most
surely the group would never accept a point such as the dagger to the far right
of the Fig. 2a triangle; or would they? Presumably agreement is somewhere
in the center of the triangle; perhaps where the three dashed circles in Fig. 2a
meet.

This central point is not a core point. The proof is immediate: each circle’s
center is a voter’s ideal point, so the voter prefers anything inside of the circle
to the proposal. These three circles intersect in a trefoil: each leaf of the trefoil
indicates choices preferred by a winning coalition to the purposed choice. For
example, anything in the large lower leaf can be achieved by the coalition
{1, 2}. Similarly, anything in the smaller leaf on the left can be achieved by
coalition {1, 3}.

Indeed, the geometry of circles ensures that unless the ideal points for the
three voters are on a line, then for any proposal, there always is a counter-
proposal that can win by being supported by a two voter coalition. Thus the
majority vote core for three voters and two issues does not exist.

A reaction might be, so what? What difference does it make whether the
core exists? The consequences for democracy are startling and surprisingly
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Fig. 2. More issues

negative: this is the McKelvey chaos theorem, which asserts that a society
can start from any specified position and, even with sincere majority votes,
end up at any other specified position. Illustrating with Fig. 2a, McKelvey’s
result proves it is possible to start at the center of this circle, and, with an
appropriately designed agenda, these voters will sincerely adopt the dagger
that is far from any of their ideal points! After stating this beautiful theorem, I
will indicate how surprisingly easy it is to achieve this outcome.

Theorem 2 (McKelvey, 1979) For any number of voters, suppose that the
majority vote core for their ideal points is empty. It is possible to specify start-
ing and ending positions ps, pf and an agenda—a list of proposals {pj}N

j=1
so that p1 = ps and pN = pf and pj+1 will beat pj , j = 1, . . . N − 1, in a
majority vote.

To illustrate McKelvey ‘chaos theorem’ with the Fig. 2a challenge, I will
indicate how to start at the central point and design an agenda so that the dagger
will be accepted by these voters. At the first stage let voters 1 and 2 combine
to select a point near the bottom of the Fig. 2a leaf in the trefoil; e.g., the bullet
below the triangle in Fig. 2b. Redraw the circles with this new proposal—
points in the larger circle with voter three’s ideal point at the center and that
for voter two now come much closer to the dagger. It should be clear that
creating an agenda to reach the dagger is fairly easy—even though all voters
prefer the center point to the dagger!

4. Challenges

McKelvey’s theorem raises at least two mathematical challenges:

1 When does the core exist? More precisely, as the core always exists for
one issue, what is the maximum number of issues for which the core will
exist?
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2 When the core fails to exist, can we find a substitute concept to replace
core points?

To provide a more complete exposition, I answer both questions for “q-
rules.” This quota rule is where, to win in a pairwise comparison, you need
at least q of the n possible votes where n

2 < q ≤ n: denote the q-rule core
by C(q, n). The lower bound, where q is the first integer greater than n

2 , is the
majority vote, while the upper bound, where q = n, is the unanimity rule. As
C(n, n) is the convex hull of the n ideal points, it always exists.

By increasing the quota (i.e., selecting a larger q value), the stability (per-
haps of the status quo) also increases. By this I mean that if q1 < q2 and
C(q1, n) exists, then C(q2, n) exists and C(q1, n) ⊂ C(q2, n). (For a proof, if
p ∈ C(q1, n), then no proposal can get q1 votes against p. In turn, no proposal
can obtain q2 > q1 votes against p, so p ∈ C(q2, n).) With this added stability,
we must wonder whether McKelvey’s result extends to other q-rules. It does.

My former student Monica Tararu (Tataru, 1996,1999) proved in her Ph. D.
thesis that if C(q, n) = ∅, then McKelvey’s conclusion, where it is possible
to start anywhere and end up anywhere else, holds for this q-rule. She did
more: she established upper and lower bounds on the minimum number of
items needed in an agenda to accomplish this behavior. Her bounds use the
distance between the specified starting and ending position divided by a term
determined by the ideal points. But the disquieting sense of electoral instability
promoted by the “chaos theorem” (McKelvey’s and Tataru’s results) suggests
augmenting the above mathematical challenges with the following:

3. Find a “natural stability” concept that counters the chaos theorem’s sense
of instability.

4.1 Plott Diagrams

C. Plott (1967) proved for any number of issues that ideal points can be posi-
tioned so that a majority vote core exists. Because q1 < q2 requires C(q1, n) ⊂
C(q2, n), Plott’s diagrams also establish the existence of C(q, n), q > n

2 , for
any dimensional space. An example is Fig. 3a, which shows that the key to
the Plott diagrams is symmetry. To see why voter 5’s ideal point is the Fig.
3a core, select any other proposal, such as the diamond. As illustrated by the
dashed lines, draw a line (the horizontal one) perpendicular to the line from
voter 5’s ideal point to the diamond. Voter 5’s point wins as it is supported by
the majority {1, 4, 5} who are on or below the horizontal line.

To understand Plott’s approach, start with a setting where a core point exists;
e.g., with points on the line. Rotate pairs of points about the core point as
indicated by the Fig. 3a dotted curves with points 1 and 3. The symmetry
of the construction allows the core point to persist, but precariously. More
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Fig. 3. Plott diagram and sensitivity of the core

precisely, without this exacting symmetry, C(3, 5) can vanish. In Fig. 3b, for
instance, moving voter 2’s ideal point ever so slightly to the left leads to an
empty core. To see this, notice that the Pareto set for a coalition (i.e., points
that if moved will result in a less preferred position for some coalition member)
is the convex hull of coalition members’ ideal points. So if C(3, 5) �= ∅ for Fig.
3b, C(3, 5) would be in the convex hulls for coalitions {2, 3, 5} and {3, 4, 5};
i.e., C(3, 5) would be on the line connecting points 3 and 5. But by disturbing
the symmetry by slightly moving voter 2’s ideal point, the {1, 2, 4} Pareto set
misses this line resulting in C(3, 5) = ∅.

The lesson learned is that while C(q, n) might exist, it could be useless if
even the slightest change in preferences could cause it to vanish. Consequently,
rather than asking whether C(q, n) exists, the above challenge 1 should be
replaced with the more realistic and relevant challenge:

1’. When does the core exist generically? That is, for what dimensional
spaces—for how many independent issues—will the the core persist
even with small changes in preferences?

5. Generic Existence of a Core

The quest to determine the dimensions of issue space for which C(q, n)
can exist generically has a long history where, among several others, major
contributions were made by Schofield (1963), McKelvey (1986), McKelvey
and Schofield (1987), and Banks (1995); I finally resolved the issue in Saari
(1997). (An exposition is in Saari (2004).)

It is reasonable, of course, to question why in the above description the
voter preferences are given by circles. They need not be; in my resolution of
the core problem, I replaced Euclidean distances with smooth utility functions.
Thus small changes in preferences go beyond changing the ideal point to also
permit small changes in the utility function. For instance, “small changes”
permit the above circles to be replaced with ellipses, or other geometric objects.
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The general answer for challenge 1’ is given by the following theorem. Brace
yourself; the statement is ugly.

Theorem 3 (Saari, 1997) Let k be the dimension of issue space. The core
C(q, n) exists generically for k = 1. The core C(q, n) exists generically for
k ≤ 2 when q = 3 and n = 4. If n ≥ 5 and 4q < 3n + 1, then C(q, n) exists
generically if and only if

k ≤ 2q − n. (1)

For super-majorities in which 4q ≥ 3n + 1, let α be the largest odd integer
such that q

n > α
α+1 . C(q, n) exists generically if and only if

k ≤ 2q − n − 1 +
α − 1

2
. (2)

The precise statement (Saari, 1997,2004) is even more complicated as it
divides core points into categories where the k values differ. Also, the com-
plicating α values reflect changes permitted by utility functions, so this term
plays no role with the preferences described earlier.

Let me offer a common sense interpretation that holds for the earlier Eu-
clidean preference discussion where changes are in the position of ideal points.
In this setting, C(q, n) exists generically iff k ≤ 2q − n. There is a sim-
ple way to appreciate this bound: the maximum number of issues equals the
number of voters that must change views to convert a previously losing po-
sition into a winner. To illustrate, if n = 100 and q = 80, then there are
20 voters on the losing side. For this group to become winners, they must
persuade 80 − 20 = 60 voters to change their vote. Thus, for this example,
60 = 2q − n = 2(80) − 100 ≥ k is the maximum number of issues.

An often expressed concern is to explain why actual political settings appear
to be more stable than suggested by theory. An answer is suggested by how the
rule for the bound on k is described. For instance, consider a close majority
vote election in a city of the size of Minneapolis, where the winner might have
only 50.2% of the vote given by the 502, 000 to 498, 000 tally. With an abuse
of Thm. 3, notice how the pneumonic showing that the maximum k value is the
number of voters that must change views to change the outcome also suggests
that the election will remain stable for up to 2001 issues: this constitutes con-
siderable stability. Moreover, the proof of Thm. 3 used the mathematical tool
of “singularity theory,” which carries an implicit assumption that each voter
has views independent of others. This is not true in general: more realistic as-
sumptions lead to a much stronger sense of stability—at the expense of a more
complex mathematical analysis.
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Fig. 4. Finding the d-finesse point

6. The Finesse Point

The core ensures stability while its absence suggests, via the chaos theo-
rems, instability. It is natural to wonder whether a solution concept could be
found between these extremes, where exercising thoughtful control ensures
some level of stability. To understand the objective, if a core point cannot be
beaten, then the sought after solution concept should be one that minimizes
what needs to be done (in changing positions) to keep from being beaten. This
is the finesse point.

To understand what it takes to avoid being beaten, we first need to under-
stand how to defeat a position. So consider Fig. 4a and proposal p0 at the
bullet near the center. All points that can beat p0 are in the trefoil, or “winning
set,” defined by the three circles passing through p0. While any point in the
winning set can defeat p0, the counter-response is immediate. Suppose, for
instance, that the challenge is given by point p1 in the lower leaf. A response
is to sufficiently change p0 so that p1 is outside the new winning set. This is
easy to do. As p1 is slightly closer to the circle with the first voter’s ideal point
as a center (call this distance α), an effective counter-response is to modify
p0 by moving α units directly toward voter 1’s ideal point. The move reduces
the circle’s radius of the first circle by α, so the new winning set excludes the
challenge put forth by p1.

As this description indicates, the worse case scenario is if the p1 challenge is
located at the middle of widest point of the widest leaf; in Fig. 4a, this is where
the bottom leaf intersects the edge connecting ideal points 1 and 2. Using the
geometry of circles (and where the circles intersect on the {1, 2} edge), the
width of this leaf is 2d1,2 = r1 + r2 − z1,2, where rj is the radius of the circle
with center at the jth voter’s ideal point that passes through p0 and zj,k is the
edge length between the jth and kth ideal points. Here the maximum change
in p0 to respond to a counterproposal is d1,2. Rewriting this equation in terms
of r1 + r2, which is the sum of the distances from p0 to the two ideal points,
we have

r1 + r2 = z1,2 + 2d1,2 (3)
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More generally, if the sum of distances from any proposed point to the two
ideal points satisfies Eq. 3, the width of the defined leaf is 2d1,2 and the maxi-
mum required change is d1,2.

The above comments indicate how to find what I call the “d-finesse point.”
To see the basic idea, recall that an ellipse can be drawn by looping a string
over two nails as indicated in Fig. 2b. With the looped string pulled taut with
a pencil, move the pencil all the way around to draw an ellipse. With a string
length 2z1,2 +2d, call the figure a “d-ellipse.” The part of the string connecting
the nails is z1,2, so the portion of the string tracing out the figure has length
z1,2 + 2d. Comparing this description with Eq. 3, we discover that any point
on a d-ellipse defines a winning set leaf with maximum width 2d.

If a player has no knowledge about the nature of possible counterproposals
to an initial p0, he should minimize the amount of change required to respond
to any winning coalition. This requires finding a proposal p0 where the width
of each winning set agrees. (If not so, then an opponent might select a point
in a wider leaf.) Finding such a point is easy for three voters with the majority
vote. About each pair, construct a d-ellipse. As indicated in Fig. 4c, there
are three d-ellipses where any two intersect. At this intersection point, the
maximum width of the leaf for each of the two coalitions is 2d. If the third
d-ellipse does not include this point, the maximum width (maximum change
for a successful counterproposal) for the third leaf is larger. Thus, to minimize
all possible worse case scenarios, we need to find the point where all three
d-ellipses meet.

Definition 4 For three voters and the majority vote, the d-finesse point is
where the three d-ellipses intersect for the minimal value of d. For a q-rule
with more voters and issues and a winning coalition C , let Ed(C) be the set
consisting of the Pareto set of C and the d-ellipsoid for each pair of points in
C . The d-finesse point is a point that is in Ed(C) for all winning coalitions C ,
and d is the minimal value for which this is true.

By construction, the d-finesse point is the location that requires a minimal
response for any counterproposal; the value of d could be, but need not be,
small. Let Sd(q) be the “adjustment region” where all adjustments to a position
with a q-rule to regain a winning position are possible: Sd(q) is a sphere of
radius d. Many results, including a description about how to find the d-finesse
point are described in Saari (2005), so let me just state some conclusions. The
first ensures that this point always exists, the second shows that the adjustment
region Sd(q) can refine the standard concept of a “yolk,” while the third asserts
that the finesse point is an extension of the core.

Theorem 5 (Saari, 2005) With n voters given by their ideal points, the fol-
lowing are true:
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1 For any q-rule and any number of issues, a q-rule d-finesse point exists.

2 For n voters and n − 1 issues, the adjustment set Sd(n − 1) is a proper
subset of the yolk. In particular, for three voters and the majority vote,
the adjustment region always is in the interior of the yolk.

3 A d-finesse point is a core point if and only if d = 0.

7. Selective Core and Finesse Point

The core and finesse point respond to all possible winning coalitions. But a
quick glance at contemporary politics reveals certain coalitions that never can
occur. Some examples, involving extreme conservatives and liberals, can be
so preposterous that it is not worth listing them. Yet the core and the d-finesse
point include possible reactions to the impossible. The response is obvious.

Definition 6 For a specified list of winning coalitions C, which does not
include all winning coalitions, a selective core point is one that cannot be
beaten by any coalition in C. Similarly a selective d-finesse point is one that is
defined by the winning coalitions in C.

To illustrate these terms, notice that the Fig. 4a ideal points require C(2, 3)=
∅. While the core is empty, suppose that the issue represented by the horizontal
axis is sufficiently divisive (maybe extreme views on abortion) to prevent a
{1, 2} coalition from forming. Thus C = {{1, 3}, {2, 3}}, and the selective
core consists of voter 3’s ideal point.

8. Conclusion

As established in Saari and Sieberg (2001), Saari (2006), and elsewhere,
pairwise voting loses so much information that it should not be used. Included
among the dismissed information is the rationality of voters as captured by
their transitive ranking of preferences. The problem of using pairwise methods
is captured by Arrow’s impossibility theorem (Arrow, 1952); the resolution,
which is achieved by reintroducing the rationality of voter preferences, is de-
scribed in Saari (2001).

Beyond standard voting are game theoretic concepts such as the core. The
core, however, fails to exist in many natural settings. We know this; if the core
always did exist, we would be stymied forever at the status quo. On the other
hand, we must understand when the core does exist and persist, and what to
do when it does not. Beyond answering these questions, it is suggested why
the prevalence of stability is greater than usually indicated by theory. On the
other hand, there are settings, as captured by the chaos theorem, where stability
does not exist. Here a sense of stability is reintroduced via the finesse point.
This point is not a gift; it requires effort. Namely, the finesse point ensures
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a “minimal” (which could be “large”) effort to counter new proposals. The
relationship of this point to positive and negative campaigning is indicated in
Saari (2005).
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A Comparison of Electoral Formulae for the Faroese
Parliament
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Abstract The Faroese electoral system uses a method of proportional representation for
distributing the seats in the Faroese Parliament (The Løgting). The electoral
formulae attempt to give each political party a number of seats that is close to
its vote share. In addition, each district should receive a number of delegates
that is proportional to the number of voters in the district. We show that the
current electoral formula has significant weaknesses, and propose 7 alternative
electoral formulae which consider various subsets of constraints – such as lower
bounds on the number of seats in districts and electoral thresholds. Numerical
simulations with the current and proposed electoral formulae on the elections
from 1978 to 2004, and on randomly generated election results, are presented.
The results show that some of the proposed alternatives clearly are superior to
the current electoral formula with respect to well-known quality measures.

Keywords: Electoral formula; apportionment method; proportional representation; multi-
member districts; biproportional rounding; numerical simulations.

1. Introduction

The Løgting is the parliament of the Faroe Islands, a group of islands in
the North Atlantic Ocean between Scotland, Norway and Iceland. The islands,
with its nearly 50 thousands inhabitants, have been an autonomous region of
the Kingdom of Denmark since 1948 and have, over the years, taken control
of most matters, except amongst others defence and foreign affairs.

The Løgting is elected for a period of four years, and has 27 district seats
plus up to 5 adjustment seats. Election can take place before the end of an
election period if the Løgting agrees on dissolving itself, as was the case in the
latest election in January 2004, where the previous election was held in April
2002.

For more than fifty years the members of the Løgting typically have be-
longed to one of 6 political parties, four large parties (6-8 seats each) and two
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smaller parties (1-3 seats each). Traditionally the Faroese government has been
based on a parliamentary majority consisting of 2-3 large parties and some-
times one or both of the smaller parties. At the 2004 election, for instance, the
party distribution in the Løgting was 8+7+7+7+2+1, and 3 of the larger parties
with 7+7+7 seats formed the current coalition.

The electoral system of the Løgting can be classified as a List PR system
with two-tier districting. At the lower-level 27 members are elected in 7 multi-
member districts using the d’Hondt (Jefferson) apportionment method. District
codes and district magnitude are: NO/4, EY/5, NS/2, SS/8, VA/2, SA/2, and
SU/4. Then, at the national level, up to 5 adjustment seats are distributed
among parties and districts based on the LR Hare (Hamilton) method (see
Zachariassen (2005) for details). Note that with this two-tier method, the to-
tal number of seats can vary from 27 to 32. The electoral threshold is 1/27
for receiving an adjustment seat, while district seats are distributed with the
threshold inherent to the d’Hondt method.

As part of the electoral formula that assigns the seat distribution of the Løgt-
ing a ‘necessary’ number of adjustment seats is calculated in order to obtain
a ‘perfect’ proportional result. When this number happens to be less than 5,
the size of the Løgting would be less than 32. However, at the nine general
elections held since 1978, when the current Election Act came into force, the
necessary number of adjustment seats turned out to be at least 6 (tree times)
and at most 10 (twice), so the size of the Løgting topped at 32 at every election.
Generally, the higher the number of necessary adjustment seats, the less pro-
portional is the result. Furthermore, an over-representation at the district-level
in the smallest district contributes to the high necessary number of adjustment
seats.

This weakness of the electoral formula for the Løgting became obvious at
the 2004 election, when the third largest party in vote share obtained 8 seats,
one more than the two largest parties in vote share, obtaining 7 seats each.
Such a vote-seat reversal is not suprising when taking into account the 10 ad-
justment seats that would be necessary in this election to get a proportional
result. Consequently there seems to be a growing interest among politicians to
revise the current Electoral Act.

The main purpose of this paper is to compare the current electoral for-
mula with some alternatives while preserving the concept of multi-member
districts. First we present a numerical comparison of some classical appor-
tionment methods for proportional representation using a 32 seat parliament
election with 6 running parties in a single national district (section 2). Then
8 district-based electoral formulae are presented, considering various subsets
of constraints – such as lower bounds on the number of seats in the districts
and electoral thresholds (section 3). Numerical simulations on the elections
from 1978 to 2004, and on randomly generated election results, are presented
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in section 4. The generated elections results are based on the 2004 election and
on a 10-year demographic forecast. Concluding remarks are given in section
5.

2. Seat Bias of Apportionment Methods

In this section we compare some well-known apportionment methods by
simulating a 32 seat parliament election with 6 running parties in a single na-
tional district. No electoral threshold is used. The simulation procedure is as
follows: A 5 pseudo-random sample {pi, i = 1, ...5} from the uniform distri-
bution on [0, 1] is generated, and, assuming p1 < p2 < p3 < p4 < p5 , the 6
parties vote shares are defined by the numbers p1, p2−p1, p3−p2, p4−p3, p5−
p4 og 1 − p5. The results given below are based on a series of 5000 elections
simulated in this way.

Four apportionment methods are used on these simulated vote shares:
d’Hondt (Jefferson), Scandinavian ‘Modified Sainte-Laguë’, Sainte-Laguë
(Webster) and LR-Hare (Hamilton). For an introduction to these methods, see
Balinski and Young (2001).

Figure 1 displays, for each method, the mean seat biases for each party.
The parties are ordered from the smallest to the largest by their vote shares.
Figure 1 also displays (for each method and party) the maximum seat bias of
the actual seat share above and below the fair seat share according to the vote
share. For example, by using the d’Hondt method for the next largest party the
lowest occurrence among the 5000 simulated elections is approximately -0.8
(e.g. 7 seats with 7.8 in fair seat share).

Table 1 shows the mean bias values in Figure 1, along with – for the three
classical methods d’Hondt, Sainte-Laguë, LR-Hare – conjectured formula val-
ues from Schuster et al (2003). There seems to be a fairly good correspon-
dence between simulated and formula values. Simulated values for the Modi-
fied Sainte-Laguë are also shown.

For each election simulation we define the ’allocation distance’ between
two apportionment methods to be half the L1-distance between their seat al-
location vectors. Thus, when two methods result in identical seat allocations
the distance is 0. The distance between the seat allocations (2,2,4,5,9,10) and
(1,1,4,5,9,12), based on the same vote share, is 2.

Table 2 presents some statistics on the allocation distance between each pair-
wise combination (6 in total) of the four considered apportionment methods
based on the 5000 simulated elections. A simple frequency distribution (f=0,
1, >1) is shown along with the empirical mean of the allocation distance. Fig-
ure 2 depicts an ’apportionment method map’, where the pairwise geometrical
distance approximately equals the empirical mean of the allocation distance
shown in Table 2.
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Fig. 1. Mean seat bias and maximum seat bias above and below the fair seat share
for the apportionment methods: d’Hondt (Jefferson), Modified Sainte-Laguë, Sainte-
Laguë (Webster), LR-Hare (Hamilton) based on 5000 simulations of a 32 seat parlia-
ment election with 6 running parties. The parties are ordered from the smallest (left)
to the largest (right) by their vote shares. For example, by using the d’Hondt method
the next largest party’s lowest occurrence is approximately -0.8 (e.g. 7 seats with 7.8
in fair seat share).

Table 1. Mean seat bias values

Mean Modified
fair d’Hondt Sainte- Sainte-Laguë LR-Hare
seat Laguë

Party share Simu- For- Simu- Simu- For- Simu- For-
rank k lations mula∗ lations lations mula lations mula
largest 1 12.36 0.636 0.725 0.095 0.022 0.021 0.005 0.009

2 7.75 0.214 0.225 0.057 0.010 0.011 0.009 0.009
3 5.29 -0.009 -0.025 0.038 0.007 0.006 0.012 0.009
4 3.50 -0.187 -0.192 0.010 0.002 0.003 0.011 0.009
5 2.13 -0.306 -0.317 -0.045 -0.001 -0.000 -0.002 0.009

smallest 6 0.97 -0.347 -0.417 -0.155 0.039 -0.041 -0.035 -0.045
∗(−1 +

∑f
j=k

1
j )/2, f = 6 (Schuster et al, 2003)
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Table 2. Allocation distance between each pairwise combination (6 in total) of the
four considered apportionment methods based on 5000 simulations of a 32 seat parlia-
ment election with 6 running parties. The combinations are numbered from the largest
to the smallest distance. Frequency distributions (f=0, 1, >1) are shown, e.g. in 16%
of the simulations Sainte-Laguë and Modified Sainte-Laguë produce allocations with
distance 1.

Pair of Mean f=0 f=1 f>1
methods distance % % %

1 d’H – LR-H 0.935 24 59 17
2 d’H – S-L 0.924 27 55 18
3 d’H – M-S-L 0.791 33 55 12
4 LR-H – M-S-L 0.281 73 26 1
5 S-L – M-S-L 0.172 83 16 1
6 S-L – M-S-L 0.168 83 17 0

Fig. 2. Apportionment method map based on the allocation distances in Table 2.
The largest distance is between d’Hondt and LR-Hare, the shortest between Sainte-
Laguë and LR-Hare.
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The apportionment method map in Figure 2 confirms the well-known sim-
ilarity of LR-Hare and Sainte-Laguë; in 83% of the simulations these two ap-
portionment methods produce identical allocations (Table 2). The outlying of
d’Hondt is also to be expected; in only 24% and 27% of the simulations this
apportionment method produces the same allocations as respectively LR-Hare
and Sainte-Laguë.

In summary, the simulations based on a scenario with a 32 seat parliament
with 6 running parties confirm the differences and similarities of four well-
known apportionment methods (Figure 2). To some extent the simulations
also quantifies the implied seat bias compared to the fair seat share by using
these methods (Figure 1). The mean seat bias of d’Hondt method varies from
-0.35 (for the smallest party) to +0.64 (for the largest party). Also one observes
that the mean seat bias for Sainte-Laguë and LR-Hare are neglible for all the
6 parties in the simulations, but there are differences in the spread for the two
methods; Sainte-Laguë shows a larger spread than LR-Hare for the two largest
parties – for the three smallest parties the relation is reversed.

3. District-Based Electoral Formulae

In this section we present a number of different district-based electoral for-
mulae for distributing the seats in the Faroese Parliament. The formulae are
compared by performing numerical simulations on the elections from 1978 to
2004, and on randomly generated election results. In section 3.1 the method
for constructing randomly generated election results is described.

The electoral formulae are compared by computing three performance in-
dices, which measure the ‘error’ of the seat distributions when compared to
the underlying vote distributions. The indices are described in detail in section
3.2.

In section 3.3 we present 8 different electoral formulae, including the elec-
toral formulae that is used today. Controlled rounding and the biproportional
divisor method are among the other investigated formulae. In their purest
form, these two methods have no supplementary constraints such as elec-
toral thresholds or lower bounds on the number of district seats; they com-
pute seat distributions which are optimal within their framework. Therefore,
the results achieved by these methods are basically the best possible when
(bi)proportionality is the only objective.

The results of our numerical simulations with the 8 electoral formulae are
discussed in section 4. The results are primarily discussed by comparing per-
formance indices. Detailed seat distributions for each of the elections 1978-
2004 are available from www.nvd.fo/fileadmin/pdf/Appendix.pdf.
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3.1 Vote Distributions

Three sets of vote distributions have been studied. The first set contains the
9 election results from 1978 to 2004. These are the elections where the current
electoral formulae has been used. Numerical simulations on these vote distri-
butions show what the outcome of an election would have been (wrt. seats) if
an alternative electoral formulae had been used.

A more thorough comparison of the electoral formulae has been achieved by
performing simulations on randomly generated election results. These election
results were obtained as follows: Let aij be the number of votes for party i
in district j in the 2004 election. In the randomly generated election result,
the number of votes given to party i in district j was first chosen uniformly
at random from the interval [0.5 ∗ aij; 1.5 ∗ aij ]. Then for each district the
generated vote numbers were scaled such that the total number of votes in the
district became identical to the total number in the 2004 election. Thus we
chose to fix the number of voters in each district, but to vary the number of
votes given to each party. We generated 100 random election results of this
type, and they formed the second set of vote distributions.

In order to predict how the electoral formulae will perform in the future we
generated a third set of vote distributions based on an estimate on the number of
voters in each district in 2014. Otherwise the same method as for the randomly
generated 2004 election results was used. The expected population changes
for each district were -3% (NO), +2% (EY), +1% (NS), +6% (SS), –3% (VA),
–8% (SA) and –7% (SU).

3.2 Performance Indices

Since no single performance index gives the full picture of the performance
of an election formulae, we have chosen to report the values of three different
indices.

Consider an apportionment for n parties, where party i with quota qi has re-
ceived ti seats, i = 1, . . . , n. Quota and seat numbers are given in percentages:

∑
i

qi =
∑

i

ti = 100

Gallagher/least-squares index. This index is basically the Euclidean dis-
tance between the quota and seat vectors, that is, the square root of the sum of
squares of the differences between quota and seats (Gallagher, 1991):

√
1

2

∑
i

(qi − ti)2
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A small Gallagher index value indicates that the seat numbers are close to
the quota numbers. The Gallagher index is similar to the Loosemore-Hanby
index (Loosemore and Hanby, 1971), which measures the sum of absolute dif-
ferences between quota and seat numbers. The Gallagher index is, however,
more sensitive to large deviations between seat and quota numbers. A third
index is the Chi-square index, which is the relative sum of squares. It can
be shown to measure the extent to which the voters are equally represented
(Pukelsheim, 2000).

The Gallagher index and the other two indices are strongly correlated. Since
the Gallagher index also is the most widespread, we have chosen to focus on
the Gallagher index in this study.

Quota breaches. A breach of quota happens when the difference between
quota and seats is 1 or more. The quota breach index counts the number of
quota breaches for all parties. Note that this index is always 0 for quota based
methods such as the LR-Hare (Hamilton) method or controlled rounding.

Bias. Some methods are ‘biased’, which means that they give small or large
parties an advantage. In the Faroese Parliament case the number of parties
is small, so well-known methods for measuring bias are not suitable. The
following index was therefore chosen for measuring bias. Let i1 and i2 be the
indices for the two parties that have received the largest number of votes. Our
bias index is now computed as the total number of seats for these two parties
divided by their total quota:

ti1 + ti2
qi1 + qi2

If this number is greater than 1, then the large parties have an advantage
over the smaller parties, and vice versa if the index is less than 1.

In the discussion above the indices were computed for parties, but we may
compute similar indices for districts. Here qi and ti are the quota and seat
numbers, respectively, for district i. In order to distinguish between indices
based on parties and districts, we use the notion party-indices and district-
indices in the discussion of the results in section 4.

3.3 Electoral Formulae

Our study covers 8 electoral formulae, ranging from the (constrained) cur-
rent electoral formulae to unconstrained biproportional divisor methods and
controlled rounding. Each formula (or method) has a number which is given
below and which is used for identification in tables and figures.

Current electoral formula (method 1). The two-tier method given by the
law from 1978. A total of 27 district seats (4+5+2+8+2+2+4) are first dis-
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tributed independently within each district using the d’Hondt divisor method
(lower-tier method). Then up to 5 adjustment seats are distributed among par-
ties and districts (upper-tier method); the procedure for distributing adjustment
seats is based on the largest-remainder (Hamilton) method (see Zachariassen
(2005) for details). Note that with this two-tier method, the total number of
seats can vary from 27 to 32 seats. The electoral threshold is 1/27 for the dis-
tribution of adjustment seats, while district seats are distributed without any
threshold.

Current electoral formula with Sainte-Laguë (method 2). Similar to
method 1, but the 27 district seats are distributed using the Sainte-Laguë di-
visor method.

Hylland method with and without threshold (methods 3 and 5). As in
method 2, the 27 district seats are distributed using the Sainte-Laguë divisor
method. The distribution of adjustment seats follows a method suggested by
Hylland (1990); as a minor change, we fixed the number of adjustment seats
to exactly 5 (as compared to at most 5), such that the total number of seats
always becomes 32. Two variants were considered: One that has an electoral
threshold when distributing adjustment seats (method 3), and one that has no
threshold (method 5).

The Hylland method for distributing adjustment seats is as follows: First
the total number of district seats is computed for each party. Then the number
of adjustment seats for each party is computed by using the socalled adjusting
Sainte-Laguë divisor method. This means that Sainte-Laguë is ‘warm-started’
with the number of district seats for each party as input. When given enough
adjustment seats, this method will end up with a true Sainte-Laguë distribution,
but since we (only) distribute 5 seats, the result may not be a true Sainte-Laguë
distribution.

When the number of adjustment seats for each party has been found, these
seats are then distributed among the districts independently for each party.
Again the adjusting Sainte-Laguë method with the district seat distribution as
input is used for each party.

The Hylland method for distributing adjustment seats is significantly sim-
pler than the one currently used, which mixes several different paradigms.

Balinski with/without constraints and threshold (methods 4, 6 and 7).
The biproportional divisor method given by Balinski and Demange (1989a/b),
Balinski and Rachev (1997), and Balinski (2002). Sainte-Laguë (or standard)
rounding was employed. Algorithmic and experimental aspects of divisor-
based biproportional rounding methods are discussed in Maier (2006) and
Zachariasen (2006). The biproportional divisor method – hereafter just called
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the Balinski method – does not distinguish between district and adjustment
seats.

The Balinski method was used for the first time ever at the Zürich City Par-
liament election on February 12, 2006. The application of the biproportional
divisor method in Zürich is outlined in Pukelsheim and Schuhmacher (2004).

We evaluated three variants of the Balinski method. In the unconstrained
variant (method 7), we distributed the marginals using Sainte-Laguë accord-
ing to row and column vote sums; no electoral threshold was used. In the
constrained variant, we distributed the district marginals by using the current
distribution of district seats (4+5+2+8+2+2+4) as input to the adjusting Sainte-
Laguë method. This way each district receives at least as many seats as it does
using the current electoral formula. We considered one constrained variant
with an electoral (party) threshold of 1/27 (method 4), and one constrained
variant without a threshold (method 6).

Controlled rounding (method 8). The controlled rounding algorithm (Cox
and Ernst, 1982) is a quota method, and it is the two-dimensional general-
ization of the one-dimensional LR-Hare (Hamilton) method. Basically the
method minimizes the total rounding error for all elements in the quota ma-
trix, including the marginals. We only considered the purest variant of this
algorithm, i.e., without electoral threshold or other constraints.

4. Results

First we present some results for the 1978-2004 election data. Figure 3
(left) shows the Gallagher party-index for each of the 8 electoral formulae. For
the current electoral formula (1), the Gallagher party-index is in the range 2
to 4 – with a slight increase from 1978 to 2004. For the other methods that
have an electoral threshold (2,3,4), the Gallagher party-index is a bit smaller.
The constrained Balinski method (4) has the smallest Gallagher party-index
among the methods with electoral thresholds. Among the remaining methods
(5,6,7,8), the Balinski methods (6,7) and controlled rounding are more or less
equal with a Gallagher party-index of approximately 2.

The Gallagher district-indices are presented in Figure 3 (right). The current
and Sainte-Laguë based electoral formulae (1,2) and the Hylland methods (3,5)
have significantly larger Gallagher district-indices than the other methods. The
reason is that these methods distinguish between district and adjustment seats.
The constrained Balinski methods (4,6) have the same lower bound on the
number of seats in each district as the current electoral formula, but there is
no distinction between district and adjustment seats. There is a general in-
crease in the Gallagher district-indices from 1978 to 2004. This is a result
of an increased imbalance in the ‘value’ of district seats from 1978 to 2004.
Apparently the adjustment seats cannot correct this imbalance.
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The number of quota breaches presented in Figure 4 has the same tendency
as the Gallagher index. For the 9 elections from 1978 to 2004, the current
electoral formula had 3 quota breaches for the parties. The Balinski methods
(4,6,7) had no quota breaches. For the bias index, the current formula also
gives the worst result for parties – mainly because of the use of d’Hondt when
distributing district seats.

Table 3 and Figures 5/6 give the results for the generated 2004 election data.
In the figures the distribution of the indices over the 100 generated election re-
sults is shown. The Gallagher indices for the 8 electoral formulae are presented
in Table 3 (top) and Figure 5. The current electoral formula (1) has an average
Gallagher party-index of 3.31, which is higher than for all other methods. The
electoral threshold has a significant influence on the Gallagher party-index; the
four methods that do have an electoral threshold (1,2,3,4) clearly have higher
indices than the remaining methods which do not have an electoral threshold.
For the Gallagher district-indices we see a similar pattern. Those methods that
have lower bounds on the number of district seats perform significantly worse
with respect to the Gallagher district-index. Note that the district-index distri-
butions are less Gaussian, since we fixed the number of votes for each district
in our generation procedure.

The results on quota breaches for the generated 2004 elections are given
in Table 3 (middle) and Figure 6. Again the current electoral formula (1) has
more quota breaches, both for parties and districts, than the other methods. The
Balinski methods (4,6,7) have very few quota breaches, since their marginal
distributions are based on Sainte-Laguë.

The results for the generated 2014 election data are similar to the 2004 re-
sults, but there is one interesting difference. For the methods that have lower
bounds on the number of district seats, the Gallagher district-indices are much
higher for 2014 than for 2004. The reason is the increased imbalance in the
‘value’ of district seats.

5. Conclusion

In this paper we presented substantial numerical simulations with propor-
tional and biproportional apportionment methods for the Faroese Parliament.
Our simulations with classical apportionment methods for a 32 seat parliament
confirmed that the Sainte-Laguë and LR-Lare methods have the smallest seat
biases (when compared to the fair seat share). For the district-based, or bipro-
portional problem, we made simulations with 8 different methods. When com-
pared to the current electoral formula for the Faroese Parliament, most of the
alternatives were superior with respect to well-known quality measures, such
as the Gallagher index. Our study supports the public sentiment to replace the
current electoral formula with a divisor-based biproportional method.
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Fig. 3. Graphs for the Gallagher index for the nine Faroese Parliament elections
from 1978 to 2004. 8 different electoral formulae are used. Party-index to the left and
district-index to the right.
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Fig. 4. Graphs for the quota breach index for the nine Faroese Parliament elec-
tions from 1978 to 2004. 8 different electoral formulae are used. Party-index to the
left and district-index to the right.
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Fig. 5. Histograms for the Gallagher index for 100 simulations based on the
Faroese Parliament election 2004. 8 different electoral formulae are used. Party-index
to the left and district-index to the right. The ^ sign marks the empirical mean value.
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Fig. 6. Histograms for the quota breach index for 100 simulations based on the
Faroese Parliament election 2004. 8 different electoral formulae are used. Party-index
to the left and district-index to the right. The ^ sign marks the empirical mean value.
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Table 3. Performance indices for 100 simulated vote distributions based on the 2004
election for the Faroese parliament.

Index Electoral Formula Party-index District-index
mean 1) lowest highest mean 1) lowest highest

Gallagher 1 Current electoral formula 3.31 - 1.90 5.60 4.64 - 3.27 8.26
2 Current electoral formula with S-Laguë 2.83 . 1.46 5.35 4.52 - 3.27 7.75
3 Hylland method with threshold 2.86 . 1.46 5.50 4.38 - 3.27 8.07
4 Constrained Balinski with threshold 2.68 . 1.73 5.50 3.29 - 3.27 3.86
5 Hylland method without threshold 2.30 . 0.73 5.23 4.09 - 3.27 5.73
6 Constrained Balinski without threshold 1.82 + 0.73 2.64 3.28 - 3.27 3.28
7 Balinski (biproportional divisor method) 1.82 + 0.73 2.64 1.57 + 1.57 1.58
8 Controlled Rounding 1.92 + 0.73 2.83 1.60 + 1.57 1.66

Quota 1 Current electoral formula 0.60 - 0 3 0.98 - 0 4
breaches 2 Current electoral formula with S-Laguë 0.30 . 0 2 0.88 - 0 4

3 Hylland method with threshold 0.34 . 0 4 0.58 - 0 3
4 Constrained Balinski with threshold 0.22 . 0 4 0 + 0 0
5 Hylland method without threshold 0.16 . 0 2 0.42 . 0 2
6 Constrained Balinski without threshold 0 + 0 0 0 + 0 0
7 Balinski (biproportional divisor method) 0 + 0 0 0 + 0 0
8 Controlled Rounding 0 + 0 0 0 + 0 0

Bias 1 Current electoral formula 1.03 . 0.89 1.13 0.92 - 0.85 0.96
2 Current electoral formula with S-Laguë 1.02 + 0.93 1.12 0.92 - 0.85 0.96
3 Hylland method with threshold 1.02 + 0.94 1.11 0.92 - 0.80 0.96
4 Constrained Balinski with threshold 1.02 + 0.97 1.11 0.96 . 0.90 0.96
5 Hylland method without threshold 0.99 + 0.89 1.08 0.93 - 0.85 0.96
6 Constrained Balinski without threshold 0.99 + 0.93 1.04 0.96 . 0.96 0.96
7 Balinski (biproportional divisor method) 0.99 + 0.92 1.04 1.01 + 1.01 1.01
8 Controlled Rounding 1.00 + 0.93 1.08 1.01 + 1.01 1.01

1) Descriptions
Gallagher (G) Quota breaches (Q) Bias (B)

+ G < 2.00 + Q = 0 + 0.98 < B < 1.02
. 2.00 < G < 3.00 . 0 < Q < 0.50 . 0.95 < B < 0.98 or 1.02 < B < 1.05
- G > 3.00 - Q > 0.50 - B < 0.95 or B > 1.05
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