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Abstract 

Many emerging applications of location-based services continuously 
monitor a set of moving objects and answer queries pertaining to their lo-
cations. Query processing in such services is critical to ensure high per-
formance of the system. Observing that one predominant cost in query 
processing is the frequent accesses to the database, in this paper we de-
scribe how to reduce the number of moving object to database server 
round-trips by caching query information on the application server tier. 
We propose a novel-caching framework, named QACHE, which stores 
and organizes spatially-relevant queries for selected moving objects. 
QACHE leverages the spatial indices and other algorithms in the database 
server for organizing and refreshing relevant cache entries within a config-
urable area of interest, referred to as the cache-footprint, around a moving 
object. QACHE contains appropriate refresh policies and prefetching algo-
rithms for efficient cache-based evaluation of queries on moving objects. 
In experiments comparing QACHE to other proposed mechanisms, 
QACHE achieves a significant reduction (from 63% to $99%) in database 
roundtrips thereby improving the throughput of an LBS system. 
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1 Introduction 

Location-based services (LBS) [10] typically operate in a three-tier archi-
tecture: a central database server that stores past and current locations of 
all moving objects, applications that register to the database server their 
queries that are pertaining to the moving objects locations, and a set of 
moving objects that continuously change their locations (as shown in 
Fig. 1). As moving objects report their changing locations periodically, 
new answers are delivered to the applications when certain criteria are met. 
These queries on moving objects may contain predicates on the spatial lo-
cations as well as any other non-spatial attributes associated with the mov-
ing objects. 

Fig. 1. Location-Based Services 

Consider the following motivational scenario: a LBS system for local 
restaurant promotion sends appropriate restaurant information to nearby 
tourists. A registered restaurant specifies an area around its location using 
a spatial predicate (e.g., within-distance operator in commercial spatial da-
tabases: see [5] for more details) and restricts promotions only to tourists 
(identified by checking for “area_code != restaurant_area_code”) who are 
interested in its specific type of food (specified by predicate 
“user_food_interest == Chinese”). [12] describes how to specify such que-
ries in Oracle database. Upon location updates of all mobile users, the LBS 
system must quickly decide whether one (or more) user matches all query 
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criteria of a registered restaurant so that the promotion message can be sent 
before he/she travels out of the target area. 

A critical problem about answering such queries in LBS is that any de-
lay of the query response may result in an obsolete answer, due to the dy-
namic nature of the moving objects (in our example, tourists). This re-
quires highly efficient query evaluation. On the other hand, while moving 
objects frequently report their location updates to the database server, 
many of the updates do not result in any new query answer. Take the 
above scenario as an example, the service system receives location updates 
from all tourists once every minute; it is too expensive to evaluate all loca-
tion updates against the query criteria of all registered restaurants in the 
database server. Yet it is not necessary to do so because each query in-
cludes both spatial criteria and non-spatial criteria [8, 12] and an answer 
update should be delivered only if both criteria are met, e.g., location up-
dates of tourists preferring Indian cuisine need not be evaluated even if 
they are in the area of Chinatown; likewise, location updates of tourists 
that are too far away from Chinatown need not be evaluated even if they 
do like Chinese food. In summary, query evaluation against irrelevant up-
dates should be avoided as much as possible to reduce database burden and 
average response time. 

To improve the performance of LBS on the delivery of in-time query 
answers, we focus on reducing query evaluation cost by minimizing the 
number of database accesses and the amount of computation required dur-
ing evaluation. One effective technique toward this goal is to cache rele-
vant data for fast answer delivery. In a three-tier LBS system, caching can 
be achieved on any of the three tiers. 

• On the mobile devices of end users: queries are assumed to be issued 
by mobile users asking about its vicinity; when a user issues a query, the 
received answers are stored and used for answering future queries since 
spatial queries issued by the same mobile user usually exhibit high spa-
tial locality. Unfortunately, this approach can only be used to cache ob-
jects that are static. Moreover, it highly relies on the tight processing 
and storage ability of the mobile devices and thus is not widely applica-
ble. 

• On the database server: most frequently referenced data and most fre-
quently executed query plans can be cached by the database server to 
improve the performance of query processing. However, this approach 
increases burden on the already heavily loaded database server with 
large volume of incoming location updates [13]. 
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• On the middle-tier, i.e., application server: relevant data items can be 
stored in the application server that serves as an external cache. When 
location updates are received, the application server can frequently use 
the cached data to process the updates and respond to the application 
users efficiently; location updates that cannot be evaluated are for-
warded to the database for further processing. 

In this paper, we adopt the third approach because it has the following 
advantages: (1) caching on the application server does not rely on the lim-
ited processing and storage ability of end users and it does not impose ad-
ditional burden on the database server; (2) the application server can effec-
tively cache data coming from heterogeneous sources to a single applica-
tion; (3) the application server can provide caching for each moving object 
and this granularity is usually desirable in LBS, because a moving object 
may frequently be monitored for a series of events; and (4) the application 
server can filter out many of the updates that will not result in any new 
query answer and thus avoid unnecessary database accesses. 

We present QACHE, a dynamic query-caching framework on the appli-
cation server in LBS. This framework builds and improves on existing re-
search solutions based on safe distance [7]. The main goal of QACHE is to 
improve the system performance in spatial query monitoring. To achieve 
this goal, QACHE identifies the most relevant spatial queries for the mov-
ing objects (in the sense that the upcoming location updates may result in 
new answers to these queries), and cache information of these queries in 
the application server. QACHE has the following characteristics: 

• The items cached are not the moving objects but are the pending spatial 
queries pertaining to the moving objects. Since moving objects update 
their locations frequently, caching their locations would involve fre-
quent cache replacement and update, and introduce significant over-
head. In contrast, pending spatial queries are relatively stable1 and 
should be cached to improve query response time. 

• The granularity of the cache is per moving object, i.e., session-wise. The 
cache entry for a moving object stores queries that are interested in the 
moving object and are close to its current location. In addition, different 
sessions can share queries in the cache to minimize the storage require-
ment. 

                                                       
1 The pending spatial queries may also change due to insertion or deletion, or 

modification to the query patterns etc. However, these changes occur much less 
frequently than the location updates. 
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• For a given moving object, only those queries that match the non-spatial 
(static) predicates can be cached in the cache entry. 

• The queries cached are carefully organized to support efficient access 
for query answer update. In the cases where database access is neces-
sary after cache access, the number of disk accesses can still be reduced 
by using the information stored in the cache. 

• Our cache is dynamically updated as moving objects change their loca-
tions, so that queries that become farther away from a moving object are 
removed from the cache to make space for queries that get in the vicin-
ity of that object. 

• We propose the concept of cache-footprint for a cache entry, which is 
configured in terms of the minimum time interval between consecutive 
updates of the cache entries. This is represented as a distance maxD from 

the location of the moving object based on its known maximum velocity 
( velocityervalrefreshD max_int_max = ). For a fixed size of the cache 

entry, QACHE employs a two-pronged approach of storing the closest 
queries in true detail and the rest of the queries in cache-footprint region 
as approximations. The queries in true detail provide exact answers for a 
moving object whereas the approximated query regions reduce the false-
positives. This two-level filtering improves the cache-effectiveness 
thereby increasing the throughput of the LBS system. 

The rest of this paper is organized as follows. Section 2 presents the re-
lated work. Section 3 describes the main components of QACHE and Sec-
tion 4 elaborates on its implementation details. Section 5 describes our ex-
perimental evaluation results. Finally, Section 6 concludes the paper. 

2 Related Work 

Various techniques have been proposed to efficiently process spatial que-
ries in LBS. The main approaches can be categorized as follows: (1) re-
ducing the amount of computation when location updates are received by 
grouping pending queries using grid or similar indexing structures and 
conducting spatial join between moving objects and pending queries [6]; 
(2) reducing the number of queries performed by introducing safe dis-
tance/region for moving objects [7]; and (3) reducing the number of disk 
access by building a query index for all pending queries [7]. Unfortu-
nately, the above techniques either focus on optimizing the performance 
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within the database and hence fail to make use of the processing and stor-
age power provided by the middle-tier, or have certain constraints on real-
istic applications. For example, many of the frequent location updates from 
the moving objects will not generate any new query answer and it is thus 
unnecessary to evaluate the pending queries against these updates. 

Caching has been extensively studied in the area of operating systems, 
web information retrieval and content delivery networks. For example, the 
middle-tier data caching products developed by Oracle [3] was designed to 
prevent the database from being a bottleneck in content delivery networks. 
The main idea is to cache data outside of the database server to reduce da-
tabase access load. QACHE differs from the traditional caches in that the 
items cached are queries instead of data. More importantly, the cached 
data is carefully organized for efficient access to minimize overhead. Re-
cently, caching has also been applied to the area of mobile computing. The 
prevailing approach is to cache received answers at the client side for an-
swering future queries. A Furthest Away Replacement (FAR) cache re-
placement policy was proposed in [9] where the victim is the answering 
object furthest away from the moving object's current location. Proactive 
caching for spatial queries [4] extends the caching granularity to per query 
object level. The compact R-tree presented in this work facilitates query 
processing when the cached item cannot answer the query. We use a simi-
lar approach in QACHE that treats both the database (query) index and the 
query data as objects for caching and manage them together to reduce the 
cache miss penalty. 

3 Overview of QACHE 

In this section we first briefly state the assumptions held when building the 
QACHE framework and provide an overview of the architecture and main 
components of QACHE. We then describe how QACHE handles location 
updates and maintains correct query answers. 

3.1 Assumptions 

The basic assumptions of QACHE are as follows: 

1. Moving objects have the ability to determine their current location 
through GPS device. They also have the ability to communicate 
with the server periodically to report their location updates. 

2. The only constraint on the motion of moving objects is that they 
are subject to a maximum speed. 
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3. All moving objects report their location updates to the server syn-
chronously. Please note that this assumption simplifies our simula-
tion and performance analysis, but is not necessary for QACHE to 
function correctly. 

4. The queries stored in the database are indexed using spatial indi-
ces, such as the R-tree [1, 5]. 

3.2 System Architecture 

Fig. 2. System Architecture 

As illustrated in Figure 2, QACHE has five main components: an inter-
face that accepts location updates from moving objects, a session manager
that manages the safe distance for each connected session (moving object), 
a cache manager that manages the cached contents for selected sessions, a 
shared storage manager that actually stores the spatial queries loaded from 
the database, and a cache sweeper that evicts invalid entries and prefetches 
new entries into the cache. 
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• Session manager: The session manager maintains a look-up directory
that keeps, for each moving object, current location, a reference location 
called the base location, the safe distance from the reference location 
which is defined as the distance to the closest query region [7] and meta 
information about the corresponding cache-entry (such as cache-
footprint if relevant). This look-up directory is indexed for efficient ac-
cess. For objects that do not match any non-spatial predicates in any 
query the safe distance is set to infinity. The session manager could also 
maintain a location-logger that records all location updates and has them 
flush back to the database periodically. 

• Cache manager: For each selected moving object, its cache entry con-
sists of all relevant query regions in true detail/approximation. The 
cache manager manages such entries for moving objects whose safe dis-
tance does not exceed the cache-footprint. Due to memory constraints, 
the cache manager may create cache entries only for a subset of such 
moving objects based on their probability of being relevant to a query as 
described in Section 4. 

• Shared storage manager: While the cache manager maintains cache 
entries for selected moving objects on a per session basis, it does not 
store the actual cached queries. Instead, all cached queries are managed 
by the shared storage manager to avoid duplication and thus save mem-
ory space. This is because a single query may be interested in multiple 
moving objects and hence may be cached more than once in QACHE. 
When a cache entry is accessed from the cache manager, a pointer is 
provided to visit the shared storage manager where the actual query is 
stored. 

• Cache sweeper: The purpose of the cache sweeper is to refresh cache 
entries, evict invalidated cache entries and prefetch new entries that are 
not currently in the cache manager. Cache sweeper may refresh a cache 
entry for a moving object as it approaches boundary of the cache-
footprint (refer to Section 4.2) and prefetch those prospective queries 
into QACHE. The refreshed/prefetched cache entry will center on the 
latest location of the moving object, i.e., within Dmax distance from the 
latest location. Note that although prefetching introduces extra accesses 
to the database server, the operation is performed asynchronously thus 
the disk access is not on the critical path for query evaluation. Instead, 
when the prefetched queries do need to be evaluated against the next lo-
cation update, no database access is necessary because those queries are 
already in QACHE thanks to prefetching. The cache sweeper can be 
implemented as background process that operates cooperatively with the 
cache manager. 
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3.3 Processing Location Updates 

Figure 3 illustrated how QACHE handles location updates. When a loca-
tion update from a moving object is received, the session manager first ex-
amines its look-up directory and checks whether the moving object is a 
new session. If so, the moving object is registered to the session manager, 
and the location and maximum speed of this moving object are used to 
query the database server for query evaluation and safe distance calcula-
tion. The safe distance calculated is then inserted into the look-up directory 
for future updates. If the calculated safe distance is less than the cache-
footprint for the moving object, the corresponding cache-entry is created 
and inserted into the cache manager. On the other hand, if the location up-
date is from an existing session, the session manager first examines its 
lookup directory and checks whether the moving object is still in its safe 
distance. If so, nothing needs to be done. Otherwise, the corresponding 
cache-entry is accessed to decide if this moving object has entered any 
query region. Note the cache entry has query regions in true detail or in 
approximate form. 

Fig. 3. Handling Location Updates in QACHE 
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For all true-detail query regions that the moving object matches, the 
query results are propagated to the application. For the matching approxi-
mate query regions, additional processing is performed in the database tier. 
This database processing is also required when a cache entry is missing 
(due to memory constraints, or invalidation by the cache sweeper). 

In summary, when a new query is registered to the system, it is initially 
stored in the database and evaluated against all moving objects in the look-
up directory of the session manager. A cache entry may be created, or an 
old cache entry may be replaced by the cache sweeper. 

4 Design and Implementation of QACHE 

This section elaborates on the design and implementation of three key 
components of QACHE, i.e., session manager, cache manager, shared 
storage manager. We describe: (1) how session manager maintains the safe 
distance for each moving object; (2) how cache manager selects moving 
objects and maintains a cache entry for each selected object to support ef-
ficient evaluation on location updates; and (3) how cached items are man-
aged by shared storage manager and shared across selected moving objects 
to avoid duplication. 

4.1 Maintaining the Safe Distance 

The safe distance is the minimum distance within which a moving object 
will not enter any query region. Location updates of a moving object that 
are not beyond the safe distance need not be evaluated against any query, 
which indicates that the safe distance can serve as a filter in query process-
ing. 

When a moving object first registers to the application server, an initial 
safe distance is calculated for it by performing a nearest neighbor search 
on queries from the database server; the safe distance is then stored in the 
look-up directory of session manager. When a cache entry is created for 
this moving object, depending on the cache replacement policy such as 
LRU, the new safe distance must be recalculated and updated by the cache 
sweeper that mediate between the session manager and the database. 



 QACHE: Query Caching in Location-Based Services 109 

4.2 Building a cache entry 

For each moving object, its corresponding cache entry (if presents) stores 
selected queries that are interested in the object. The selection of queries is 
decided by: the QACHE refresh period (QRP), i.e., the time interval be-
tween two consecutive cache updates, the maximum speed of the moving 
object Vmax and the cache entry size B, i.e., the maximum number of items 
that can be stored in each cache entry.  

QACHE attempts to cache queries within the cache-footprint of the 
moving object. Cache-footprint is described by a maximum distance Dmax

(see Eq. 1): 

QRPVD = maxmax (1)

Ideally, any query within distance Dmax  to the moving object should be 
cached since the moving object is very likely to enter the query region be-
fore the next cache refreshing. However, if the number of such queries ex-
ceeds the maximum size B of each cache entry, QACHE can't possibly 
cache all queries in full detail and has to aggregate some of them. Based 
on our assumption 4 in Section 3.1, queries are indexed using an R-tree in 
the database and hence the internal nodes of the R-tree can be used as an 
approximation of query aggregation. 

As a consequence, each cache entry with a capacity of B stores two 
categories of items: (1) query regions that are stored in true detail: any 
moving object that satisfies such query regions is a true-positive match. A 
hit on this cached item indicates the moving object is a query answer; (2) 
query regions that are stored using approximations: any moving object that 
satisfies any such query approximations could be a false-positive. Addi-
tional processing needs to be done for such queries in the database. Mov-
ing objects not intersecting either category of regions is a true-negative
and no further processing is required. This multi-category-based filtering 
serves as the backbone for the performance of QACHE in pending query 
evaluation. 

To efficiently process location updates, QACHE organizes the cached 
items of each cache entry using an in-memory R-tree, i.e., the content of 
each cache entry is the internal nodes of the R-tree, while the actual cached 
items are managed by the share storage manager (please refer to Sec-
tion 4.3). The algorithm used in QACHE for the construction of a cache 
entry is presented below. The algorithm starts by descending the query-
index tree in the database from root and recursively explores child nodes 
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that may contain eligible objects. A priority queue stores all nodes that are 
within distance Dmax of the moving object. When a node is met, its chil-
dren are enqueued; when a query object is met, it is added to a query list
given that the non-spatial criteria of the query are also satisfied. This proc-
ess terminates when the total size of the priority queue and the query list 
reaches the cache entry capacity B, or when the priority queue becomes 
empty. The query list stores all queries that are explicitly cached and the 
priority queue stores all cached nodes that aggregate the rest of eligible 
queries. 
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For example, in Figure 4, O is the current location of a moving object 
for which a cache entry is to be constructed. I is the root of the database 
R-tree with three children: I1, I2, and I3. The circle illustrates the region 
that is within distance Dmax  to the moving object; queries that intersect this 
region should be explicitly or implicitly cached. Suppose that the cache en-
try size B is set to five. I  is first dequeued, it's three children are then ex-
amined. Only I1 and I2 are enqueued because they are within Dmax  (Step 
2). I1 is then dequeued and its three children are added to the query list 
(Step 3, 4, 5). So far, four items are cached: Q1, Q2, Q3 in the query list 
and I2 in the priority queue. Subsequently I2 is dequeued; its closest child 
Q5 is added to the query list, while Q4and Q6are re-aggregated to a new 
node which is put back to the priority queue (Step 6). At this time we have 
exactly five items in total: Q1, Q2, Q3 and Q5 in the query list and  Q4 +Q6

in the priority queue. These five items are then used to build a in-memory 
R-tree for the cache entry 

Fig. 4.  Example: Create a Cache Entry 

4.3 Sharing Cache Contents Among Sessions 

One novelty of QACHE is its session-wise granularity. When a location 
update is received, it need not be evaluated against all queries in the cache 
because queries that are interested in this particular moving object are al-
ready selected into its own cache entry. Unlike conventional approach, this 
prevents the non-spatial predicate of a query to be evaluated every time: 
the non-spatial predicate is evaluated exactly once when the cache entry is 
create, while the spatial predicate may be evaluated on every subsequent 
location update. 

However, this session-wise granularity has its own deficiency: potential 
waste of memory space. A query may be interested in multiple moving ob-
jects, and hence may be cached in multiple cache entries. To solve this 
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problem, we implemented a shared storage manager that actually holds the 
data cached in memory. Each cache entry only stores pointers to the corre-
sponding slots in the shared storage manager. This guarantees that only 
one copy of each query/node is kept in memory at any time. 

The shared storage manager is implemented as a hash table that is a tu-
ple of index, data, and a reference counter. When a query or an intermedi-
ate node is selected for caching, only its index is stored in the cache entry. 
The actual data, i.e., the geometry of a query or the minimum bounding 
box (MBB) of an intermediate node, will be stored in an entry in the stor-
age manager based on the index. During a query evaluation, the storage 
manager identifies the location of the data using a hash function and the ID 
of the query/node as a hash key. When the storage manager receives a re-
quest for a data insert, it first checks whether the data already exists. If so, 
the storage manager increases the reference counter by one; otherwise, a 
new entry is created. When a cache entry is evicted, all queries/nodes 
cached will have their reference counter decreased by one. When a counter 
becomes zero, the actual data can be safely removed from the shared stor-
age manager. 

5 Performance Evaluation 

We have built a simulation environment for QACHE with the Java pro-
gramming language. We compare QACHE with two other approaches: (1) 
the naive approach where location updates are directly sent to the database 
server and evaluated every time; (2) the safe distance approach (SD) 
where only safe distance is used to reduce number of query evaluation. We 
examined the number of disk accesses to the database (R-tree) as well as 
storage requirement of each approach. With the experimental data, we also 
analyzed the processing time of different approaches to demonstrate the ef-
ficiency of QACHE. 

5.1 Simulation Setup 

Using our own data generator modified from the GSTD tool [11], a data 
set is generated that simulates a mobile environment where N objects 
moves following the Random Waypoint Model [2], a well accepted model 
in the mobile computing community. Each object starts at a randomly se-
lected location in the region of [0...1, 0...1], moves for a period randomly 
generated between [0, QRP] at a speed randomly selected between [0, 
QRP], and sends its new location to the application server at time QRP; af-
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ter this the same process repeats. When an object hits the boundary, its 
moving direction is adjusted to guarantee constant number of moving ob-
jects in the simulation space. The query workload contains 1000 queries 
that are evenly distributed in the simulation space; currently only static 
range queries are considered. 

In our simulation, new location updates from all N objects are collected 
at the same time and processed before the next round of location updates 
arrives. Our simulation processes 5000 rounds of location updates. All ex-
periments were performed on a 3.0 GHz Pentium 4, 1 GB memory work-
station running Windows XP SP2. 

5.2 Disk Access and Memory Requirement 

We conducted three sets of experiments where the number of moving ob-
jects ( Nm.o. ) grows from 1000 to 10000. In each set, we varied the number 
of cache entries ( Nc.e. ) from 5% to 20% of ( Nm.o. ). The cache entry capac-
ity B, i.e., the number of cached items in each entry, is set to 10. A fixed 
number of queries (1000) are organized in the database server as an R-tree, 
the size of which is 640KB excluding the non-spatial predicates. For the 
three approaches (in short, naive, SD, and QACHE), we collected the ex-
pected number of disk page accesses ( E(dpa) ) to the database index R-
tree on every round of location updates. We also recorded the memory re-
quirement and the cache hit ratio when applicable. The performance of 
QACHE and the other two approaches are presented in Table 1. 

Table 1. Disk access and memory requirement of the three different approaches 

..omN 1000 5000 10000 

..ecN 50  100  200 250 500 1000 500 1000 2000 

3626 3626 3626 18255 18255 18255 36191 36191 36191

374 374 374 2051 2051 2051 4009 4009 4009E(dpa)
naive 
SD

QACHE 137 49 2 754 193 7 1310 353 15

- - - - - - - - - 

- - - - - - - - - 
Cache hit

ratio 

naive 
SD

QACHE 56% 85% 99% 54% 88% 99% 56% 89% 99%

- - - - - - - - - 

4000 4000 4000 20000 20000 20000 40000 40000 40000
Memory 

requirement
(Byte) 

naive 
SD

QACHE 11283 18035 24200 52074 73773 93805 93850 124740 150021
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Compared to the safe distance approach, QACHE reduces by E(dpa) at 
least 63%. In each set of experiments, E(dpa)  for the other two ap-
proaches remains constant for a given number of moving objects, but de-
creases significantly for QACHE when the number of cache entries is de-
creased. When Nc.e. is 20% of Nm.o. , the expected disk page accesses is 
almost negligible. This is because almost all query evaluation can be com-
pleted by QACHE and only a few disk page accesses are generated from 
false-positive hits in the cache. 

Another major observation from Table 1 is that QACHE is scalable in 
terms of memory storage requirement. We recorded the total number of 
bytes required by the look-up directory, cache manager and the shared 
storage manager; the results indicate that the total memory requirement 
does not grow in proportion to the number of moving objects. Moreover, 
considering the total size of query R-tree in the database, QACHE is 
highly efficient in utilizing memory space and providing a high hit ratio. 

5.3 Processing Time 

While the number of disk accesses is an important criteria when evaluating 
the effectiveness of QACHE, a quantitative analysis is necessary to decide 
the exact performance improvement. In this section we demonstrate the 
overall speed up that QACHE can achieve in query evaluation over the na-
ive approach and the safe distance approach. In our analysis, the following 
terms are frequently used: (1) disk page access time Tdisk; (2) memory ac-
cess time Tmem; (3) query evaluation time Teval; and (4) the height of the 
query R-tree in the database HQ . For simplicity, we assume that an access 

to the query R-tree in the disk reads 0.75xHQ  disk pages. We also assume 

that the cache entry R-tree has a fan out of 2, thus the in-memory cache R-
tree has a height of log2 B. The average response time to a location update 
can be calculated as follows: 

• Naive approach: 

)(75.0 diskevalQnaive TTHT += (2)

• Safe distance approach: assuming that in each round of location updates, 
10% are beyond the safe distance so that database accesses are required, 
the average response time is: 

)(75.01.0 diskevalQmemsd TTHTT ++= (3)
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• QACHE: assuming that Nc.e.   is 20% of Nm.o. , then only 0.2% of the lo-
cation updates will result in database access (see Table 1), the average 
response time is: 

)(75.0002.0

)(log75.0 2

diskevalQ

diskevalmemqache

TTH
TTBTT

+

+++=

(4)

Based on a reasonable estimation of the relative parameters presented in 
Table 2, QACHE achieves a 498 times speed up over the naive approach 
and a 50 times speed up over the safe distance approach. 

Table 2. Estimations of the required time for each operation 

)(nsTmem )(nsTeval )(nsTdisk QH B
100 100 5000000 10 10 

6 Conclusions 

We have described and evaluated QACHE, a novel query caching frame-
work for LBS systems. By caching spatial queries for appropriate moving 
objects on the application tier, a significant amount of database accesses 
can be eliminated, resulting in a dramatic performance improvement of 
LBS. We examined several important implementation issues and proposed 
effective solutions to them for QACHE to be deployed in real LBS sys-
tems. We compared QACHE with existing solutions based only on safe 
distance. Our simulation results indicate that with the cache capacity 20% 
of total number of moving objects, and the memory requirement ranging 
from 3% to 20% of the query R-tree size in database (depending on the 
number of moving objects), QACHE is capable of eliminating 99% of the 
disk accesses. On real LBS systems, this memory requirement is totally af-
fordable. Further more, our quantitative analysis shows that QACHE 
achieves a 50 times speed up over the safe distance approach and a 
498 times speed up over the naive approach where all location updates are 
directly processed in the database. 
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