
QACHE: Query Caching in Location-Based
Services

Hui Ding1, Aravind Yalamanchi2, Ravi Kothuri2, Siva Ravada2,
Peter Scheuermann1

1 Department of EECS, Northwestern University, hdi117
 email: peters@ece.northwestern.edu
2 Oracle USA; email: [aravind.yalamanchi]@oracle.com

Abstract

Many emerging applications of location-based services continuously
monitor a set of moving objects and answer queries pertaining to their lo-
cations. Query processing in such services is critical to ensure high per-
formance of the system. Observing that one predominant cost in query
processing is the frequent accesses to the database, in this paper we de-
scribe how to reduce the number of moving object to database server
round-trips by caching query information on the application server tier.
We propose a novel-caching framework, named QACHE, which stores
and organizes spatially-relevant queries for selected moving objects.
QACHE leverages the spatial indices and other algorithms in the database
server for organizing and refreshing relevant cache entries within a config-
urable area of interest, referred to as the cache-footprint, around a moving
object. QACHE contains appropriate refresh policies and prefetching algo-
rithms for efficient cache-based evaluation of queries on moving objects.
In experiments comparing QACHE to other proposed mechanisms,
QACHE achieves a significant reduction (from 63% to $99%) in database
roundtrips thereby improving the throughput of an LBS system.

Key words: location-based services, query processing caching

100 H. Ding, A. Yalamanchi, R. Kothuri, S. Ravada, P. Scheuermann

1 Introduction

Location-based services (LBS) [10] typically operate in a three-tier archi-
tecture: a central database server that stores past and current locations of
all moving objects, applications that register to the database server their
queries that are pertaining to the moving objects locations, and a set of
moving objects that continuously change their locations (as shown in
Fig. 1). As moving objects report their changing locations periodically,
new answers are delivered to the applications when certain criteria are met.
These queries on moving objects may contain predicates on the spatial lo-
cations as well as any other non-spatial attributes associated with the mov-
ing objects.

Fig. 1. Location-Based Services

Consider the following motivational scenario: a LBS system for local
restaurant promotion sends appropriate restaurant information to nearby
tourists. A registered restaurant specifies an area around its location using
a spatial predicate (e.g., within-distance operator in commercial spatial da-
tabases: see [5] for more details) and restricts promotions only to tourists
(identified by checking for “area_code != restaurant_area_code”) who are
interested in its specific type of food (specified by predicate
“user_food_interest == Chinese”). [12] describes how to specify such que-
ries in Oracle database. Upon location updates of all mobile users, the LBS
system must quickly decide whether one (or more) user matches all query

 QACHE: Query Caching in Location-Based Services 101

criteria of a registered restaurant so that the promotion message can be sent
before he/she travels out of the target area.

A critical problem about answering such queries in LBS is that any de-
lay of the query response may result in an obsolete answer, due to the dy-
namic nature of the moving objects (in our example, tourists). This re-
quires highly efficient query evaluation. On the other hand, while moving
objects frequently report their location updates to the database server,
many of the updates do not result in any new query answer. Take the
above scenario as an example, the service system receives location updates
from all tourists once every minute; it is too expensive to evaluate all loca-
tion updates against the query criteria of all registered restaurants in the
database server. Yet it is not necessary to do so because each query in-
cludes both spatial criteria and non-spatial criteria [8, 12] and an answer
update should be delivered only if both criteria are met, e.g., location up-
dates of tourists preferring Indian cuisine need not be evaluated even if
they are in the area of Chinatown; likewise, location updates of tourists
that are too far away from Chinatown need not be evaluated even if they
do like Chinese food. In summary, query evaluation against irrelevant up-
dates should be avoided as much as possible to reduce database burden and
average response time.

To improve the performance of LBS on the delivery of in-time query
answers, we focus on reducing query evaluation cost by minimizing the
number of database accesses and the amount of computation required dur-
ing evaluation. One effective technique toward this goal is to cache rele-
vant data for fast answer delivery. In a three-tier LBS system, caching can
be achieved on any of the three tiers.

• On the mobile devices of end users: queries are assumed to be issued
by mobile users asking about its vicinity; when a user issues a query, the
received answers are stored and used for answering future queries since
spatial queries issued by the same mobile user usually exhibit high spa-
tial locality. Unfortunately, this approach can only be used to cache ob-
jects that are static. Moreover, it highly relies on the tight processing
and storage ability of the mobile devices and thus is not widely applica-
ble.

• On the database server: most frequently referenced data and most fre-
quently executed query plans can be cached by the database server to
improve the performance of query processing. However, this approach
increases burden on the already heavily loaded database server with
large volume of incoming location updates [13].

102 H. Ding, A. Yalamanchi, R. Kothuri, S. Ravada, P. Scheuermann

• On the middle-tier, i.e., application server: relevant data items can be
stored in the application server that serves as an external cache. When
location updates are received, the application server can frequently use
the cached data to process the updates and respond to the application
users efficiently; location updates that cannot be evaluated are for-
warded to the database for further processing.

In this paper, we adopt the third approach because it has the following
advantages: (1) caching on the application server does not rely on the lim-
ited processing and storage ability of end users and it does not impose ad-
ditional burden on the database server; (2) the application server can effec-
tively cache data coming from heterogeneous sources to a single applica-
tion; (3) the application server can provide caching for each moving object
and this granularity is usually desirable in LBS, because a moving object
may frequently be monitored for a series of events; and (4) the application
server can filter out many of the updates that will not result in any new
query answer and thus avoid unnecessary database accesses.

We present QACHE, a dynamic query-caching framework on the appli-
cation server in LBS. This framework builds and improves on existing re-
search solutions based on safe distance [7]. The main goal of QACHE is to
improve the system performance in spatial query monitoring. To achieve
this goal, QACHE identifies the most relevant spatial queries for the mov-
ing objects (in the sense that the upcoming location updates may result in
new answers to these queries), and cache information of these queries in
the application server. QACHE has the following characteristics:

• The items cached are not the moving objects but are the pending spatial
queries pertaining to the moving objects. Since moving objects update
their locations frequently, caching their locations would involve fre-
quent cache replacement and update, and introduce significant over-
head. In contrast, pending spatial queries are relatively stable1 and
should be cached to improve query response time.

• The granularity of the cache is per moving object, i.e., session-wise. The
cache entry for a moving object stores queries that are interested in the
moving object and are close to its current location. In addition, different
sessions can share queries in the cache to minimize the storage require-
ment.

1 The pending spatial queries may also change due to insertion or deletion, or

modification to the query patterns etc. However, these changes occur much less
frequently than the location updates.

 QACHE: Query Caching in Location-Based Services 103

• For a given moving object, only those queries that match the non-spatial
(static) predicates can be cached in the cache entry.

• The queries cached are carefully organized to support efficient access
for query answer update. In the cases where database access is neces-
sary after cache access, the number of disk accesses can still be reduced
by using the information stored in the cache.

• Our cache is dynamically updated as moving objects change their loca-
tions, so that queries that become farther away from a moving object are
removed from the cache to make space for queries that get in the vicin-
ity of that object.

• We propose the concept of cache-footprint for a cache entry, which is
configured in terms of the minimum time interval between consecutive
updates of the cache entries. This is represented as a distance maxD from

the location of the moving object based on its known maximum velocity
(velocityervalrefreshD max_int_max =). For a fixed size of the cache

entry, QACHE employs a two-pronged approach of storing the closest
queries in true detail and the rest of the queries in cache-footprint region
as approximations. The queries in true detail provide exact answers for a
moving object whereas the approximated query regions reduce the false-
positives. This two-level filtering improves the cache-effectiveness
thereby increasing the throughput of the LBS system.

The rest of this paper is organized as follows. Section 2 presents the re-
lated work. Section 3 describes the main components of QACHE and Sec-
tion 4 elaborates on its implementation details. Section 5 describes our ex-
perimental evaluation results. Finally, Section 6 concludes the paper.

2 Related Work

Various techniques have been proposed to efficiently process spatial que-
ries in LBS. The main approaches can be categorized as follows: (1) re-
ducing the amount of computation when location updates are received by
grouping pending queries using grid or similar indexing structures and
conducting spatial join between moving objects and pending queries [6];
(2) reducing the number of queries performed by introducing safe dis-
tance/region for moving objects [7]; and (3) reducing the number of disk
access by building a query index for all pending queries [7]. Unfortu-
nately, the above techniques either focus on optimizing the performance

104 H. Ding, A. Yalamanchi, R. Kothuri, S. Ravada, P. Scheuermann

within the database and hence fail to make use of the processing and stor-
age power provided by the middle-tier, or have certain constraints on real-
istic applications. For example, many of the frequent location updates from
the moving objects will not generate any new query answer and it is thus
unnecessary to evaluate the pending queries against these updates.

Caching has been extensively studied in the area of operating systems,
web information retrieval and content delivery networks. For example, the
middle-tier data caching products developed by Oracle [3] was designed to
prevent the database from being a bottleneck in content delivery networks.
The main idea is to cache data outside of the database server to reduce da-
tabase access load. QACHE differs from the traditional caches in that the
items cached are queries instead of data. More importantly, the cached
data is carefully organized for efficient access to minimize overhead. Re-
cently, caching has also been applied to the area of mobile computing. The
prevailing approach is to cache received answers at the client side for an-
swering future queries. A Furthest Away Replacement (FAR) cache re-
placement policy was proposed in [9] where the victim is the answering
object furthest away from the moving object's current location. Proactive
caching for spatial queries [4] extends the caching granularity to per query
object level. The compact R-tree presented in this work facilitates query
processing when the cached item cannot answer the query. We use a simi-
lar approach in QACHE that treats both the database (query) index and the
query data as objects for caching and manage them together to reduce the
cache miss penalty.

3 Overview of QACHE

In this section we first briefly state the assumptions held when building the
QACHE framework and provide an overview of the architecture and main
components of QACHE. We then describe how QACHE handles location
updates and maintains correct query answers.

3.1 Assumptions

The basic assumptions of QACHE are as follows:

1. Moving objects have the ability to determine their current location
through GPS device. They also have the ability to communicate
with the server periodically to report their location updates.

2. The only constraint on the motion of moving objects is that they
are subject to a maximum speed.

 QACHE: Query Caching in Location-Based Services 105

3. All moving objects report their location updates to the server syn-
chronously. Please note that this assumption simplifies our simula-
tion and performance analysis, but is not necessary for QACHE to
function correctly.

4. The queries stored in the database are indexed using spatial indi-
ces, such as the R-tree [1, 5].

3.2 System Architecture

Fig. 2. System Architecture

As illustrated in Figure 2, QACHE has five main components: an inter-
face that accepts location updates from moving objects, a session manager
that manages the safe distance for each connected session (moving object),
a cache manager that manages the cached contents for selected sessions, a
shared storage manager that actually stores the spatial queries loaded from
the database, and a cache sweeper that evicts invalid entries and prefetches
new entries into the cache.

106 H. Ding, A. Yalamanchi, R. Kothuri, S. Ravada, P. Scheuermann

• Session manager: The session manager maintains a look-up directory
that keeps, for each moving object, current location, a reference location
called the base location, the safe distance from the reference location
which is defined as the distance to the closest query region [7] and meta
information about the corresponding cache-entry (such as cache-
footprint if relevant). This look-up directory is indexed for efficient ac-
cess. For objects that do not match any non-spatial predicates in any
query the safe distance is set to infinity. The session manager could also
maintain a location-logger that records all location updates and has them
flush back to the database periodically.

• Cache manager: For each selected moving object, its cache entry con-
sists of all relevant query regions in true detail/approximation. The
cache manager manages such entries for moving objects whose safe dis-
tance does not exceed the cache-footprint. Due to memory constraints,
the cache manager may create cache entries only for a subset of such
moving objects based on their probability of being relevant to a query as
described in Section 4.

• Shared storage manager: While the cache manager maintains cache
entries for selected moving objects on a per session basis, it does not
store the actual cached queries. Instead, all cached queries are managed
by the shared storage manager to avoid duplication and thus save mem-
ory space. This is because a single query may be interested in multiple
moving objects and hence may be cached more than once in QACHE.
When a cache entry is accessed from the cache manager, a pointer is
provided to visit the shared storage manager where the actual query is
stored.

• Cache sweeper: The purpose of the cache sweeper is to refresh cache
entries, evict invalidated cache entries and prefetch new entries that are
not currently in the cache manager. Cache sweeper may refresh a cache
entry for a moving object as it approaches boundary of the cache-
footprint (refer to Section 4.2) and prefetch those prospective queries
into QACHE. The refreshed/prefetched cache entry will center on the
latest location of the moving object, i.e., within Dmax distance from the
latest location. Note that although prefetching introduces extra accesses
to the database server, the operation is performed asynchronously thus
the disk access is not on the critical path for query evaluation. Instead,
when the prefetched queries do need to be evaluated against the next lo-
cation update, no database access is necessary because those queries are
already in QACHE thanks to prefetching. The cache sweeper can be
implemented as background process that operates cooperatively with the
cache manager.

 QACHE: Query Caching in Location-Based Services 107

3.3 Processing Location Updates

Figure 3 illustrated how QACHE handles location updates. When a loca-
tion update from a moving object is received, the session manager first ex-
amines its look-up directory and checks whether the moving object is a
new session. If so, the moving object is registered to the session manager,
and the location and maximum speed of this moving object are used to
query the database server for query evaluation and safe distance calcula-
tion. The safe distance calculated is then inserted into the look-up directory
for future updates. If the calculated safe distance is less than the cache-
footprint for the moving object, the corresponding cache-entry is created
and inserted into the cache manager. On the other hand, if the location up-
date is from an existing session, the session manager first examines its
lookup directory and checks whether the moving object is still in its safe
distance. If so, nothing needs to be done. Otherwise, the corresponding
cache-entry is accessed to decide if this moving object has entered any
query region. Note the cache entry has query regions in true detail or in
approximate form.

Fig. 3. Handling Location Updates in QACHE

108 H. Ding, A. Yalamanchi, R. Kothuri, S. Ravada, P. Scheuermann

For all true-detail query regions that the moving object matches, the
query results are propagated to the application. For the matching approxi-
mate query regions, additional processing is performed in the database tier.
This database processing is also required when a cache entry is missing
(due to memory constraints, or invalidation by the cache sweeper).

In summary, when a new query is registered to the system, it is initially
stored in the database and evaluated against all moving objects in the look-
up directory of the session manager. A cache entry may be created, or an
old cache entry may be replaced by the cache sweeper.

4 Design and Implementation of QACHE

This section elaborates on the design and implementation of three key
components of QACHE, i.e., session manager, cache manager, shared
storage manager. We describe: (1) how session manager maintains the safe
distance for each moving object; (2) how cache manager selects moving
objects and maintains a cache entry for each selected object to support ef-
ficient evaluation on location updates; and (3) how cached items are man-
aged by shared storage manager and shared across selected moving objects
to avoid duplication.

4.1 Maintaining the Safe Distance

The safe distance is the minimum distance within which a moving object
will not enter any query region. Location updates of a moving object that
are not beyond the safe distance need not be evaluated against any query,
which indicates that the safe distance can serve as a filter in query process-
ing.

When a moving object first registers to the application server, an initial
safe distance is calculated for it by performing a nearest neighbor search
on queries from the database server; the safe distance is then stored in the
look-up directory of session manager. When a cache entry is created for
this moving object, depending on the cache replacement policy such as
LRU, the new safe distance must be recalculated and updated by the cache
sweeper that mediate between the session manager and the database.

 QACHE: Query Caching in Location-Based Services 109

4.2 Building a cache entry

For each moving object, its corresponding cache entry (if presents) stores
selected queries that are interested in the object. The selection of queries is
decided by: the QACHE refresh period (QRP), i.e., the time interval be-
tween two consecutive cache updates, the maximum speed of the moving
object Vmax and the cache entry size B, i.e., the maximum number of items
that can be stored in each cache entry.

QACHE attempts to cache queries within the cache-footprint of the
moving object. Cache-footprint is described by a maximum distance Dmax

(see Eq. 1):

QRPVD = maxmax (1)

Ideally, any query within distance Dmax to the moving object should be
cached since the moving object is very likely to enter the query region be-
fore the next cache refreshing. However, if the number of such queries ex-
ceeds the maximum size B of each cache entry, QACHE can't possibly
cache all queries in full detail and has to aggregate some of them. Based
on our assumption 4 in Section 3.1, queries are indexed using an R-tree in
the database and hence the internal nodes of the R-tree can be used as an
approximation of query aggregation.

As a consequence, each cache entry with a capacity of B stores two
categories of items: (1) query regions that are stored in true detail: any
moving object that satisfies such query regions is a true-positive match. A
hit on this cached item indicates the moving object is a query answer; (2)
query regions that are stored using approximations: any moving object that
satisfies any such query approximations could be a false-positive. Addi-
tional processing needs to be done for such queries in the database. Mov-
ing objects not intersecting either category of regions is a true-negative
and no further processing is required. This multi-category-based filtering
serves as the backbone for the performance of QACHE in pending query
evaluation.

To efficiently process location updates, QACHE organizes the cached
items of each cache entry using an in-memory R-tree, i.e., the content of
each cache entry is the internal nodes of the R-tree, while the actual cached
items are managed by the share storage manager (please refer to Sec-
tion 4.3). The algorithm used in QACHE for the construction of a cache
entry is presented below. The algorithm starts by descending the query-
index tree in the database from root and recursively explores child nodes

110 H. Ding, A. Yalamanchi, R. Kothuri, S. Ravada, P. Scheuermann

that may contain eligible objects. A priority queue stores all nodes that are
within distance Dmax of the moving object. When a node is met, its chil-
dren are enqueued; when a query object is met, it is added to a query list
given that the non-spatial criteria of the query are also satisfied. This proc-
ess terminates when the total size of the priority queue and the query list
reaches the cache entry capacity B, or when the priority queue becomes
empty. The query list stores all queries that are explicitly cached and the
priority queue stores all cached nodes that aggregate the rest of eligible
queries.

 QACHE: Query Caching in Location-Based Services 111

For example, in Figure 4, O is the current location of a moving object
for which a cache entry is to be constructed. I is the root of the database
R-tree with three children: I1, I2, and I3. The circle illustrates the region
that is within distance Dmax to the moving object; queries that intersect this
region should be explicitly or implicitly cached. Suppose that the cache en-
try size B is set to five. I is first dequeued, it's three children are then ex-
amined. Only I1 and I2 are enqueued because they are within Dmax (Step
2). I1 is then dequeued and its three children are added to the query list
(Step 3, 4, 5). So far, four items are cached: Q1, Q2, Q3 in the query list
and I2 in the priority queue. Subsequently I2 is dequeued; its closest child
Q5 is added to the query list, while Q4and Q6are re-aggregated to a new
node which is put back to the priority queue (Step 6). At this time we have
exactly five items in total: Q1, Q2, Q3 and Q5 in the query list and Q4 +Q6

in the priority queue. These five items are then used to build a in-memory
R-tree for the cache entry

Fig. 4. Example: Create a Cache Entry

4.3 Sharing Cache Contents Among Sessions

One novelty of QACHE is its session-wise granularity. When a location
update is received, it need not be evaluated against all queries in the cache
because queries that are interested in this particular moving object are al-
ready selected into its own cache entry. Unlike conventional approach, this
prevents the non-spatial predicate of a query to be evaluated every time:
the non-spatial predicate is evaluated exactly once when the cache entry is
create, while the spatial predicate may be evaluated on every subsequent
location update.

However, this session-wise granularity has its own deficiency: potential
waste of memory space. A query may be interested in multiple moving ob-
jects, and hence may be cached in multiple cache entries. To solve this

112 H. Ding, A. Yalamanchi, R. Kothuri, S. Ravada, P. Scheuermann

problem, we implemented a shared storage manager that actually holds the
data cached in memory. Each cache entry only stores pointers to the corre-
sponding slots in the shared storage manager. This guarantees that only
one copy of each query/node is kept in memory at any time.

The shared storage manager is implemented as a hash table that is a tu-
ple of index, data, and a reference counter. When a query or an intermedi-
ate node is selected for caching, only its index is stored in the cache entry.
The actual data, i.e., the geometry of a query or the minimum bounding
box (MBB) of an intermediate node, will be stored in an entry in the stor-
age manager based on the index. During a query evaluation, the storage
manager identifies the location of the data using a hash function and the ID
of the query/node as a hash key. When the storage manager receives a re-
quest for a data insert, it first checks whether the data already exists. If so,
the storage manager increases the reference counter by one; otherwise, a
new entry is created. When a cache entry is evicted, all queries/nodes
cached will have their reference counter decreased by one. When a counter
becomes zero, the actual data can be safely removed from the shared stor-
age manager.

5 Performance Evaluation

We have built a simulation environment for QACHE with the Java pro-
gramming language. We compare QACHE with two other approaches: (1)
the naive approach where location updates are directly sent to the database
server and evaluated every time; (2) the safe distance approach (SD)
where only safe distance is used to reduce number of query evaluation. We
examined the number of disk accesses to the database (R-tree) as well as
storage requirement of each approach. With the experimental data, we also
analyzed the processing time of different approaches to demonstrate the ef-
ficiency of QACHE.

5.1 Simulation Setup

Using our own data generator modified from the GSTD tool [11], a data
set is generated that simulates a mobile environment where N objects
moves following the Random Waypoint Model [2], a well accepted model
in the mobile computing community. Each object starts at a randomly se-
lected location in the region of [0...1, 0...1], moves for a period randomly
generated between [0, QRP] at a speed randomly selected between [0,
QRP], and sends its new location to the application server at time QRP; af-

 QACHE: Query Caching in Location-Based Services 113

ter this the same process repeats. When an object hits the boundary, its
moving direction is adjusted to guarantee constant number of moving ob-
jects in the simulation space. The query workload contains 1000 queries
that are evenly distributed in the simulation space; currently only static
range queries are considered.

In our simulation, new location updates from all N objects are collected
at the same time and processed before the next round of location updates
arrives. Our simulation processes 5000 rounds of location updates. All ex-
periments were performed on a 3.0 GHz Pentium 4, 1 GB memory work-
station running Windows XP SP2.

5.2 Disk Access and Memory Requirement

We conducted three sets of experiments where the number of moving ob-
jects (Nm.o.) grows from 1000 to 10000. In each set, we varied the number
of cache entries (Nc.e.) from 5% to 20% of (Nm.o.). The cache entry capac-
ity B, i.e., the number of cached items in each entry, is set to 10. A fixed
number of queries (1000) are organized in the database server as an R-tree,
the size of which is 640KB excluding the non-spatial predicates. For the
three approaches (in short, naive, SD, and QACHE), we collected the ex-
pected number of disk page accesses (E(dpa)) to the database index R-
tree on every round of location updates. We also recorded the memory re-
quirement and the cache hit ratio when applicable. The performance of
QACHE and the other two approaches are presented in Table 1.

Table 1. Disk access and memory requirement of the three different approaches

..omN 1000 5000 10000

..ecN 50 100 200 250 500 1000 500 1000 2000

3626 3626 3626 18255 18255 18255 36191 36191 36191

374 374 374 2051 2051 2051 4009 4009 4009E(dpa)
naive
SD

QACHE 137 49 2 754 193 7 1310 353 15

- - - - - - - - -

- - - - - - - - -
Cache hit

ratio

naive
SD

QACHE 56% 85% 99% 54% 88% 99% 56% 89% 99%

- - - - - - - - -

4000 4000 4000 20000 20000 20000 40000 40000 40000
Memory

requirement
(Byte)

naive
SD

QACHE 11283 18035 24200 52074 73773 93805 93850 124740 150021

114 H. Ding, A. Yalamanchi, R. Kothuri, S. Ravada, P. Scheuermann

Compared to the safe distance approach, QACHE reduces by E(dpa) at
least 63%. In each set of experiments, E(dpa) for the other two ap-
proaches remains constant for a given number of moving objects, but de-
creases significantly for QACHE when the number of cache entries is de-
creased. When Nc.e. is 20% of Nm.o. , the expected disk page accesses is
almost negligible. This is because almost all query evaluation can be com-
pleted by QACHE and only a few disk page accesses are generated from
false-positive hits in the cache.

Another major observation from Table 1 is that QACHE is scalable in
terms of memory storage requirement. We recorded the total number of
bytes required by the look-up directory, cache manager and the shared
storage manager; the results indicate that the total memory requirement
does not grow in proportion to the number of moving objects. Moreover,
considering the total size of query R-tree in the database, QACHE is
highly efficient in utilizing memory space and providing a high hit ratio.

5.3 Processing Time

While the number of disk accesses is an important criteria when evaluating
the effectiveness of QACHE, a quantitative analysis is necessary to decide
the exact performance improvement. In this section we demonstrate the
overall speed up that QACHE can achieve in query evaluation over the na-
ive approach and the safe distance approach. In our analysis, the following
terms are frequently used: (1) disk page access time Tdisk; (2) memory ac-
cess time Tmem; (3) query evaluation time Teval; and (4) the height of the
query R-tree in the database HQ . For simplicity, we assume that an access

to the query R-tree in the disk reads 0.75xHQ disk pages. We also assume

that the cache entry R-tree has a fan out of 2, thus the in-memory cache R-
tree has a height of log2 B. The average response time to a location update
can be calculated as follows:

• Naive approach:

)(75.0 diskevalQnaive TTHT += (2)

• Safe distance approach: assuming that in each round of location updates,
10% are beyond the safe distance so that database accesses are required,
the average response time is:

)(75.01.0 diskevalQmemsd TTHTT ++= (3)

 QACHE: Query Caching in Location-Based Services 115

• QACHE: assuming that Nc.e. is 20% of Nm.o. , then only 0.2% of the lo-
cation updates will result in database access (see Table 1), the average
response time is:

)(75.0002.0

)(log75.0 2

diskevalQ

diskevalmemqache

TTH
TTBTT

+

+++=

(4)

Based on a reasonable estimation of the relative parameters presented in
Table 2, QACHE achieves a 498 times speed up over the naive approach
and a 50 times speed up over the safe distance approach.

Table 2. Estimations of the required time for each operation

)(nsTmem)(nsTeval)(nsTdisk QH B
100 100 5000000 10 10

6 Conclusions

We have described and evaluated QACHE, a novel query caching frame-
work for LBS systems. By caching spatial queries for appropriate moving
objects on the application tier, a significant amount of database accesses
can be eliminated, resulting in a dramatic performance improvement of
LBS. We examined several important implementation issues and proposed
effective solutions to them for QACHE to be deployed in real LBS sys-
tems. We compared QACHE with existing solutions based only on safe
distance. Our simulation results indicate that with the cache capacity 20%
of total number of moving objects, and the memory requirement ranging
from 3% to 20% of the query R-tree size in database (depending on the
number of moving objects), QACHE is capable of eliminating 99% of the
disk accesses. On real LBS systems, this memory requirement is totally af-
fordable. Further more, our quantitative analysis shows that QACHE
achieves a 50 times speed up over the safe distance approach and a
498 times speed up over the naive approach where all location updates are
directly processed in the database.

116 H. Ding, A. Yalamanchi, R. Kothuri, S. Ravada, P. Scheuermann

References

1. Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The R*-Tree: An
Efficient and Robust Access Method for Points and Rectangles. In: SIGMOD
Conf, pp 322–331

2. Broch J, Maltz DA, Johnson DB, Hu Y-C, Jetcheva J (1998) A performance
comparison of multi-hop wireless ad hoc network routing protocols. Mobile
Computing and Networking:85–97

3. Greenwald R, Stackowiak R, Stern J (2001) Oracle Essentials. O'Reilly
&Associates Inc., CA

4. Hu H, Xu J, Wong WS, Zheng B, Lee DL, Lee WC (2005) Proactive caching
for spatial queries in mobile environments. In: ICDE, pp 403–414

5. Kanth KVR, Ravada S, Sharma J, Banerjee J (1999) Indexing medium-
dimensionality data in oracle. In: SIGMOD Conf, pp 521–522

6. Mokbel MF, Xiong X, Aref WG (2004) SINA: Scalable incremental process-
ing of continuous queries in spatio-temporal databases. In: SIGMOD Conf,
pp 623–634

7. Prabhakar S, Xia Y, Kalashnikov DV, Aref WG, Hambrusch SE (2002)
Query indexing and velocity constrained indexing: Scalable techniques for
continuous queries on moving objects. IEEE Trans Computers 51(10):1124–
1140

8. Kothuri R, Beinat EGA (2004) Pro Oracle Spatial. Apress
9. Ren Q, Dunham MH (2000) Using semantic caching to manage location de-

pendent data in mobile computing. In: MOBICOM:210–221
10. Schiller J, Voisard A (2004) Location-Based Services. Morgan Kaufmann

Publishers, CA
11. Theodoridis Y, Silva JRO, Nascimento MA (1999) On the generation of spa-

tiotemporal datasets. In: SSD, pp 147–164
12. Yalamanchi A, Kanth Kothuri VR, Ravada S (2005) Spatial Expressions and

Rules for Location-based Services in Oracle. IEEE Data Eng Bull 28(3):
27–34

13. Yalamanchi A, Srinivasan J, Gawlick D (2003) Managing expressions as data
in relational database systems. In: CIDR

