
Modeling and Engineering Algorithms for
Mobile Data

Henrik Blunck, Klaus H. Hinrichs, Joëlle Sondern, Jan Vahrenhold

Westfälische Wilhelms-Universität Münster, Institut für Informatik,
48149 Münster, Germany
email: {blunck,khh,joellen,jan}@math.uni-muenster.de

Abstract

In this paper, we present an object-oriented approach to modeling mobile
data and algorithms operating on such data. Our model is general enough
to capture any kind of continuous motion while at the same time allowing
for encompassing algorithms optimized for specific types of motion. Such
motion may be available in a specific form, e.g., described by polynomials
or splines, or implicitly restricted using bounds for speed or acceleration
given by the application context.

Key words: spatio-temporal data; object-oriented modeling; algorithm en-
gineering

1 Introduction

Over the past years, mobile data, such as points, lines, and regions whose co-
ordinates change according to some time-variant function, has been the sub-
ject of increasing interest in Geographical Information Science and closely
related fields. The Spatio-Temporal Databases community has contributed to
the modeling and representation of such data, whereas algorithmic aspects
have mainly been investigated in the field of Computational Geometry. Two
recent surveys [2, 32] not only list the main results but also identify a number
of issues that arise when handling mobile data; these issues include the ques-

62 Henrik Blunck, Klaus H. Hinrichs, Joëlle Sondern, Jan Vahrenhold

tion of numerical robustness, the incorporation of more realistic descriptions
of motion, and the question of how to trade off realism and efficiency.

Efficient algorithms for processing and analyzing mobile data usually
build on assumptions about the nature of the object’s trajectories; commonly,
these trajectories are assumed to have a representation based upon piecewise
linear or (fixed-degree) polynomial curves – see, e.g., [1, 6, 18, 21, 25]. It
has been noted, however, that such an assumption should be avoided wher-
ever possible to allow for more realism [5, 13, 29, 37], especially since these
assumptions are crucial only for the analysis of the running time but rather
seldom for the correctness of the algorithm. In contrast, real-world scenarios
may involve heterogeneous sets of objects whose motion should not be over-
simplified by using a single type of motion description such as polynomials.
Examples include (air) traffic control, monitoring meteorological phenom-
ena, or tracking wildlife. Furthermore, a complete motion description of the
objects may not be known at all or the objects may not be able (or willing)
to publish this description, e.g., in the context of mobile services.

The most general (if not: minimalistic) interpretation of the trajectory of a
mobile object considers it simply as a continuous function f(t). Hence, a tra-
jectory is modeled as a black box whose interface consists of a single method
that allows to obtain the position of the object at any given point in time of
its lifespan. Clearly, the trajectory of any “real-world” object can be modeled
using this approach; this, however, raises a number of new issues such as the
closure of the model and the efficiency of operations on trajectories.

Applications in which the analysis of mobile objects is required can be
classified as either real-time or retrospective; in the first scenario, data can
only be accessed at the current point in time (and thus only in increasing
chronological order), whereas the second scenario allows random access to
data at any point in the past. Application contexts may also provide addi-
tional information about mobile objects, e.g., bounds on speed, acceleration,
or turning radius, and we need to be able to incorporate such information.

1.1 Related Work

Collision Detection and Motion Restrictions. A frequently performed task
in managing mobile data is collision detection and collision warning, and Lin
and Manocha [26] review the broad body of literature. Most practical meth-
ods are considered in a real-time setting, e.g., interaction in virtual-reality
environments, and thus cannot make any assumption about the description
of motion. To cope with this, most methods use hierarchical decompositions
of the objects or temporal coherence for fast pruning of the search space.

Modeling and Engineering Algorithms for Mobile Data 63

A notable exception is the work by Hayward et al. [23] (and the concep-
tually similar model by Kahan [24]) that relies on a completely different
concept: to quickly identify objects that are most likely (or most unlikely)
to collide, it uses a restriction-based approach in which, for each mobile ob-
ject, bounds on the maximal or minimal speed are known. Note, however,
that if no such bounds are known (and exploited), the correctness of the ap-
proach cannot be guaranteed. Similar concepts have been used in the context
of spatio-temporal indexing [31] and in the context of managing uncertainty
in spatio-temporal databases [12, 28, 30, 36].

Kinetic Data Structures. A variety of algorithmic problems involving mo-
bile objects has been addressed successfully in the context of kinetic data
structures [5, 6]. A kinetic data structure (or: KDS) for a set P of mobile
objects maintains a time-variant combinatorial description of some property
of P, e.g., its extent as given by the convex hull – see Guibas’ survey [19] of
recent KDS-related results. Even though the objects are moving according to
some known, continuous “flight plan” (which may or may not be updated),
the combinatorial structure maintained in the KDS will change only at some
discrete points in time. To obtain these points in time, the KDS repeatedly
identifies roots of so-called certificate functions that guarantee the validity
of the combinatorial description.

The main requirement for a meaningful theoretical analysis of the effi-
ciency of a KDS is that the motion, and thus the description of the certifi-
cates as well, is given as a polynomial function of time. A major benefit of
working with polynomials is that there exists a variety of numerically robust
methods for isolating roots – see, e.g., the survey by Schirra [33]. Several of
such methods have been integrated in an upcoming extension package [20]
for the Computational Geometry Algorithms Library CGAL [14] thus pro-
viding efficient support for working with KDSs. The question of whether or
not polynomials provide a “good” level of realism for modeling the motion
of real-world objects has been raised (and answered) by Basch who con-
cludes that using polynomials may be “too restrictive to be of much use in
applications, although it is perfectly adequate for theoretical purposes” [5,
p 103].

Modeling Mobile Data. In the context of spatio-temporal databases, a num-
ber of approaches to modeling mobile data has been presented [7, 15, 22]. In
this paper, we revisit a model that we have proposed earlier [7], and we refer
the reader to our original paper for a discussion of related approaches.

Recently, Mount et al. [27] presented a framework that changes the con-
cept of kinetic data structures to make them applicable to the real-time set-
ting: In contrast to the original approach, this framework follows an earlier
model of Kahan [24] and is based on incremental updates that involve small

64 Henrik Blunck, Klaus H. Hinrichs, Joëlle Sondern, Jan Vahrenhold

time steps. Unlike a classical KDS framework, it does not require complete
knowledge of the kind of motion but instead estimates future locations re-
visiting these estimates whenever safety constraints are violated. Again, the
correctness depends on the presence of motion restrictions. Kahan’s model
has also been revisited in the context of the competitive analysis of on-line
algorithms – see [11] and the references therein.

1.2 Our Results

The main purpose of this paper is to present a general framework for mod-
eling and engineering algorithms for mobile data. This framework has been
successfully implemented in the context of the GOODAC object-oriented
geo-database kernel [8], and it makes a first attempt at addressing the issue of
engineering robust algorithms for more realistic and possibly heterogeneous
motion data. It builds upon a representation scheme we have proposed ear-
lier [7], but whereas our earlier scheme focused on representing and storing
moving objects in an object-oriented database management system, we now
extend it to also support spatio-temporal (main-memory) algorithms. The
main features of our approach are the use of a minimalistic interface (thus
allowing for arbitrary continuous motion description) and a strict isolation
of algorithmic primitives (thus allowing for better algorithm engineering); it
can be seen as extending the concept of kinetic data structures to encompass
more general motion description. We use the problem of collision detection
for a heterogeneous set of objects as a running example and present cor-
responding primitives for both the real-time and the retrospective setting as
well as an improved approach that exploits the properties of the retrospective
setting.

2 Representing Mobile Data

Our approach to representing mobile data [7] is based upon two assumptions:
(1) the trajectory of a moving point (and thus also of a segment’s endpoint
or a polygon’s vertex) is a t-monotone, continuous curve f(t), and (2) the
representation f(t) can be evaluated at any point in its domain. These two
assumptions are the most basic assumptions that can be made about trajecto-
ries and do not imply any restrictions for the representation of the motion of
real-world objects.

Almost all motion data obtained from real-world moving objects is ei-
ther available in advance as a complete motion description or is given as a

Modeling and Engineering Algorithms for Mobile Data 65

collection of timestamped locations, e.g., obtained through the use of GPS-
based devices. In order to convert the latter discrete points to a continuous
function, interpolation and approximation techniques are applied. It has been
noted frequently that there is no single interpolation technique, e.g., piece-
wise linear or polynomial, that is optimal over a wide range of scenarios; the
trajectory of an airport’s ramp-agent or of a plane being towed on ground
level may be represented by a piecewise linear function, but the trajectory of
an airborne plane with a limited possible turning radius can be represented
in a much more realistic way using ν-splines; that is, even if we are working
with a single class of objects, e.g., planes, their motion may have completely
different characteristics.

These considerations result in a class design (see Fig. 1) whose core class
mpoint〈d〉 represents a time-variant point in d dimensions. Each instance of
mpoint〈d〉 stores a collection of timestamped location data, and the (contin-
uous) representation of the motion restricted to each dimension can be (re-)
constructed using a specialization of the Function interpolation class. More
specifically, an instance of mpoint〈d〉 aggregates d instances of specializa-
tions of Function and delegates the evaluation of the trajectory to them.

When working with this framework, a number of issues have to be taken
into consideration, most notably the issue of maintaining the model closed
under (concatenated) operations such as (time-variant) difference or distance
computation. For a more detailed description of the framework and for a dis-
cussion of the practical efficiency of its implementation we refer the reader
to our previous paper [7].

FunctionRules

+createTrajectory(List<InTimeData>) : Function
+evaluate(Time) : Point

mpoint

+getInTimeData() : List<InTimeData>
+evaluate(Time) : Point<d>

d : int

InTimeData

-classification : ctype
-position : Point<d>

-timestamp : Time

Linear

+evaluate(Time) : Point

Function

+evaluate(Time) : Point

Spline

+evaluate(Time) : Point

MixSplineLinear

+evaluate(Time) : Point
...

...

trajectory

1 d
uses

0..* 1

sample points
1

0..*

Fig. 1. Class diagram for representing mobile point data (see [7])

66 Henrik Blunck, Klaus H. Hinrichs, Joëlle Sondern, Jan Vahrenhold

3 Modeling Algorithms for Heterogeneous Sets
of Mobile Data

As we have mentioned in the introduction, polynomials are a very popular
type of curves for modeling motion. A main reason for this is that there
exists a variety of numerically robust methods for isolating the roots of a
polynomial; this is exploited, e.g., in the context of (certificates for) kinetic
data structures. However, in certain applications involving mobile objects
(such as in the above-mentioned airport scenario), it is necessary to consider
sets of objects that have different motion characteristics.

In this section, we extend the model sketched in the previous section to
allow for modeling algorithms for heterogeneous sets of mobile objects. In
Section 4, we discuss how to provide means for a more efficient treatment of
special instances for which additional information about the objects involved
is available.

Example. Our exposition proceeds using the following well-known prob-
lem setting as a running example: Given a set of mobile objects that move
along the real axis, find all collisions between them. In the two-dimensional
(t, y)-parameter space, this setting translates to the problem of finding all
intersections induced by a set of t-monotone curves. At first, this seems
identical to what templated algorithms for t-monotone curves can handle,
e.g., the industrial-strength methods of CGAL’s Arrangement 2 class. A
closer look, however, reveals that the implementation of such methods al-
ways assumes that the curves belong to the same class of functions, e.g.,
polynomials, and since we do not make any assumption about the nature
of the objects involved, our setting is much more general and thus encom-
passes a wider range of scenarios. Any (two-dimensional) specialization of
our Function class, on the other hand, would work fine in the context of
the Arrangement 2 class as long as all primitive operations required by the
corresponding algorithm are realized. This issue is addressed as part of the
following discussion.

3.1 Isolating Primitive Operations from Algorithms

Our design for modeling algorithms for heterogeneous sets of mobile objects
follows a classic “black box”-based approach, that is, we isolate from the
general algorithm all operations (primitives) that are dependent on the type
of trajectory. For each kind of primitive, e.g., intersection-finding, we have
a Decider class that encapsulates knowledge about how to handle different
types of trajectories. Whenever the algorithm needs to process heterogeneous

Modeling and Engineering Algorithms for Mobile Data 67

motion descriptions, it polls a Decider-instance which, depending on the
types of motion, selects an appropriate specialization of the primitive (see
Fig. 2).

PrimitiveOperationAlgorithm Decider
choose according
 to arguments

poll

Fig. 2. Handling heterogeneous sets of mobile objects using a Decider-object

Example. In our intersection-finding example, the main operation that needs
to be isolated is the test for whether or not two given trajectories intersect in
some given (possibly unbounded) time interval [begin , end]; Boissonnat and
Vigneron [10] declare this predicate as “mandatory”. Assuming that we have
to check two curves s and t, this test is implemented as follows:

if (s.intersectsWithin(t, begin, end)) /* ... */

In the above situation, the class of which s is an instance needs to provide a
polymorphic version of the method intersectsWithin for each additional
type of trajectory that is supported by the system.

Using a Decider-instance, we decouple the knowledge about other classes
in the system from the class representing a certain trajectory type. This
knowledge (and thus the main administrative burden) is encapsulated in the
corresponding Decider-class, and the above code fragment then looks as
follows:

IntersectionPred ip = myIntersectionDecider.poll(s, t);

if (ip.eval(s, t, begin, end) == true) /* ... */

The “Double Dispatch”-Problem. The problem we have addressed in this
section is known as the double dispatch problem [16] where the (type of)
result of an operation depends on the type of its operands. While some pro-
gramming languages, e.g. Smalltalk, provide mechanisms to directly address
this issue, the generic solution is to employ the so-called Visitor design pat-
tern [16] which reduces the problem to type-dependent single-argument dis-
patching. As we show in Section 4.2, our algorithms not only depend on the
type of objects but also on (a combination of) their properties. Thus, the Vis-
itor pattern cannot be used, and we feel that our solution discussed above is
the best-suited approach for the problem at hand.

68 Henrik Blunck, Klaus H. Hinrichs, Joëlle Sondern, Jan Vahrenhold

3.2 Modeling Compound Functions

For our running example of intersection-finding, we observe that finding in-
tersections between two curves s and t is equivalent to determining the ze-
ros of s − t. At this point, the minimalistic interface provided by the class
mpoint〈d〉 (see Section 2) turns out to be a strong design advantage: the
concatenation of continuous functions again is a continuous function (with
the necessary care taken for the case of division). A modification of the base
framework allows to represent compound functions (such as Difference)
that are composed of other functions, and we have implemented the frame-
work given in Figure 3.

OneDimInterpolationFunctionRules

+createTrajectory(List<InTimeData>) : OneDimInterpolationFunction
+evaluate(Time) : Point<1>

mpoint

+getInTimeData() : List<InTimeData>
+evaluate(Time) : Point<d>

d : int

+evaluate() : Point<1>

OneDimInterpolationFunction

+evaluate(Time) : Point<d>

Function

d : int

InTimeData

-classification : ctype
-position : Point<d>

-timestamp : Time

InterpolationFunction

d : int

ComposedOfFunction

d : int

Linear Spline MixSplineLinear

Distance Difference

...

...

...

operands

0..*

2
operands

0..*

2

dimensions

0..*

d

uses
0..*

1

trajectory

0..1 1

sample points
1

0..*

Fig. 3. Class diagram for representing mobile point data (extensions highlighted)

To allow for a nested composition of functions, we need to slightly modify
the original framework (cf. Fig. 1): in our extended setting, each instance of
class mpoint〈d〉 now aggregates a single d-dimensional function instead of
d one-dimensional functions.

Example. Assuming that we have a Decider-instance for selecting an ap-
propriate specialization of the root-finding primitive, the code for intersection-
finding can be rewritten as follows.

Difference diff = new Difference(s, t);
ZeroFinderPred zfp = myZeroFinderDecider.poll(diff);

if (zfp.eval(diff, begin, end) == true) /* ... */

Modeling and Engineering Algorithms for Mobile Data 69

4 Handling Motion with Known Restrictions

The example at the end of the previous section reduces the problem of
intersection-finding to the problem of isolating roots, and there exists a
number of numerical and algebraic methods for isolating roots of functions
whose mathematical description is known. For example, if both trajectories
are given by cubic polynomials, the difference between them is a cubic poly-
nomial as well, and we may use an algebraic approach to implementing a
root-finding primitive. If, on the other hand, one trajectory is approximated
using a wavelet while the other is approximated using a ν-spline, we have
to resort to iterative numerical methods. In Section 4.2, we demonstrate that
an iterative algorithm can be guaranteed not to miss any root if we can ex-
ploit additional information such as upper bounds on the velocity of both
objects. Figure 4 illustrates a simple iteration rule: If f(ti) and g(ti) are
known, no root of f − g can occur prior to time ti+1 which is determined
by assuming that f and g move towards each other at maximum speed. The
time ti+1 at which f − g can have its “next” root is the time of the intersec-
tion of bounded-slope segments extending the trajectories of f and g from
time ti onwards—or, equivalently, the root of a bounded-slope linear func-
tion extending the trajectory of f − g. This method is referred to as Lone as
it involves one linear function.

If no restrictions are known, the only feasible approach to root-finding
is to employ “classical” numerical methods such as Newton’s Method, the
Secant Method, or Bisection. However, as these methods may fail to produce
the roots in chronological order, skip roots, or even fail to converge [35], the
correctness of algorithms using them as a primitive cannot be guaranteed.

f

g

tti ti+1

f-g

tt i t i+1

Fig. 4. Intersection-finding by exploiting an upper bound on the velocity

70 Henrik Blunck, Klaus H. Hinrichs, Joëlle Sondern, Jan Vahrenhold

4.1 Modeling Algorithms: The Case of Known Restrictions

By design, our class model does not make any assumption about the type of
trajectories (except for assuming continuity). To fully integrate known results
for handling classes of trajectories for which additional information is avail-
able, we introduce the concept of restrictions.1 A realization of the interface
MotionRestrictionmodels additional information about a trajectory (or a
composition thereof); examples are “real-world” restrictions such as bounds
on speed or acceleration given as part of the application context.2 Such re-
strictions are defining features for applications involving mobile real-world
data and distinguish our setting from related settings involving t-monotone
curves.

Figure 5 displays the extension to our class diagram resulting from the
inclusion of the concept of restrictions: In addition to the design discussed
above, an instance of (a non-abstract specialization of) class Function can
aggregate any number of instances of realizations of MotionRestriction,3

and different realizations are distinguished by unique identifiers.

Function

+evaluateDerivative(Time, order, dimension) : Point<1>
+getRestriction(ID) : MotionRestriction
+getRestrictionIDs() : List<int>

+evaluate(Time) : Point<d>

d : int

HasDerivatives

+getDerivativeOrder() : int [d]

ProvidesExplicitMathRepresentation HasBoundedAbsoluteVelocity

+getMaxAbsoluteVelocity() : double

HasComponentBoundedVelocity

+getMaxVelocity(dimension) : double

HasBoundedAbsoluteAcceleration

+getMaxAbsoluteAcceleration() : double

HasComponentBoundedAcceleration

+getMaxAcceleration(dimension) : double

<<interface>>
MotionRestriction

+uniqueRestrictionID() : int

...

restrictions 0..*

Fig. 5. Additions to the class diagram to model motion with known restrictions

1 A preliminary version of the approach discussed in this subsection has been pre-
sented in our previous work [9].

2 The European Organization for Safety of Air Navigation maintains a database
http://www.eurocontrol.fr/projects/bada of the inflight behavior, e.g., velocity or
descent speed, of over 250 aircraft types to support exact modeling. For obtaining
a correctness guarantee, it is sufficient to use conservative estimates for velocity
or acceleration.

3 The data type double is to be read as a placeholder for the actual numeric data
type used in the application.

Modeling and Engineering Algorithms for Mobile Data 71

To allow for easy access to motion status data, e.g., speed and velocity,
we enhance the interface of Function, such that derivatives at a given time
can be evaluated. Whether or not such information is available, is modeled
by class HasDerivatives, a realization of MotionRestriction.

We also use a realization of MotionRestriction to indicate whether or
not we may explicitly access a mathematical representation such as the coef-
ficients of a fixed-degree polynomial; this allows a Decider-instance to also
consider (semi-)algebraic methods and thus to encompass the techniques dis-
cussed for the polynomial-based KDS-framework of Guibas et al. [20]. The
representation can be accessed using the well-known Factory design pat-
tern [16] or using a language-dependent construction, such as the Java Re-
flection API [4].

4.2 Designing Primitives: The Case of Known Restrictions

In this section, we continue to consider our running example and focus on
primitives for root-finding. The iterative approach Lone uses a velocity-based
restriction to determine a “next” iteration point ti+1 such that [ti, ti+1] is
guaranteed not to contain a root. We show that acceleration-based restrictions
can be used to obtain a similar result; an important observation is that such
a restriction can lead to more efficient algorithms in the retrospective setting
than in the real-time setting.

As a proof-of-concept we present two restriction-based methods for our
running example that we have implemented within our framework. Due to
space constraints we omit proofs for their correctness and efficiency; the
reader may find these proofs in the thesis of one of the authors [34].

Methods for Root-Finding Using Acceleration-Based Restrictions. Let
us assume that the objects subject to collision detection have an upper bound
bacc on their acceleration. The earliest collision after time ti can be computed
by assuming that both objects move towards each other with maximum pos-
sible acceleration. The resulting “exclusion region” for occurrence of the
next possible root is induced by a parabola (see Fig. 6 left), and ti+1 can be
computed – assuming w.l.o.g. that f(ti) > 0 – as follows [34, Sec. 4.3.1]:

ti+1 = ti +
1

bacc

(
f ′(ti) +

√
f ′2(ti) + 2 · bacc · f(ti)

)
(1)

This approach, which we refer to as Pone since it involves one parabola,
has also been used for collision detection. An alternative, more efficient ap-
proach, computes the earliest possible point in time ti+1 at which a second
root may occur. The earliest such occurrence coincides with a double root

72 Henrik Blunck, Klaus H. Hinrichs, Joëlle Sondern, Jan Vahrenhold

f-g

ti tti+1

f-g

ti ti+1 tt

Fig. 6. Intersection-finding by exploiting an upper bound on the acceleration

of the distance function, i.e., the (real-world) objects touch each other. The
continuity of motion and speed implies that this point in time ti+1 can be
computed by first extending f − g by a parabola P as in Pone, but then to
model the deceleration by an inverted copy P̂ of P that continuously extends
P such that the vertex of P̂ lies on the t-axis (thus inducing a double root)
– see Fig. 6 (right). If even a maximal deceleration cannot avoid a collision,
the extension of the distance function by P̂ from ti onwards intersects the
t-axis, and we choose its first intersection point as ti+1. In both cases, ti+1

can be computed in the following, surprisingly simple way [34, Sec. 4.3.1]:

ti+1 = ti+

⎧⎪⎨
⎪⎩

1
bacc

(
f ′(ti) +

√
2 ·

√
f ′2(ti) + 2 · bacc · f(ti)

)
if f ′(ti)≥

√
2·bacc·f(ti)

1
bacc

(
−f ′(ti)−

√
f ′2(ti)− 2 · bacc · f(ti)

)
else (collision unavoidable)

(2)

If f − g has the same sign at time ti and at time ti+1, no root lies within
[ti, ti+1], and we iterate. Otherwise we can employ Newton’s Method to effi-
ciently find the root inside [tleft, ti+1], where tleft is determined as in Pone.4

Since this approach involves two parabolas, we refer to it as Ptwo.

Quality and Applicability of the Methods Pone and Ptwo. Equations 1
and 2 indicate that the cost of computing the next increment, i.e., the number
of arithmetic operations, is almost identical for both methods; the cost is ex-
actly the same if our cost measure is the number of invocations of evaluate
and evaluateDerivative. We analyzed increment and order of conver-
gence:

Fact 1 ([34, Sec. 4.1]) The increment ΔPtwo is always larger than ΔPone:

4 The correctness of Newton’s Method is guaranteed since there is exactly one root
inside [tleft, ti+1]. Also, due to the bound on the acceleration, the method can-
not leave [tleft, ti+1] – for a better understanding of this crucial property, see,
e.g., [35].

left

Modeling and Engineering Algorithms for Mobile Data 73

ΔPone < ΔPtwo ≤ (
√

2 + 1) ·ΔPone .

For decelerating compound speed, e.g., when approaching a root, we have:
√

2 ·ΔPone < ΔPtwo ≤ (
√

2 + 1) ·ΔPone .

Fact 2 ([34, Sec. 4.2]) Pone and Ptwo both converge quadratically while Lone

converges linearly.

However, as both methods use a global bound on the acceleration, their
actual quality inside some time interval depends on how much the accelera-
tion locally deviates from this global bound. Thus Ptwo is “better” than Pone,
since it eventually switches to Newton’s Method, which then is guaranteed
to have quadratic convergence with a (globally) good asymptotic error con-
stant [35]. We conclude that fully exploiting the power of the retrospective
setting, i.e., being able to move forward and backward in time, can lead to
more efficient algorithms than “simply” using known real-time algorithmic
primitives.

4.3 Generalizations

Combination of Restrictions. We mention in passing that we can also engi-
neer primitives for trajectories that underlie a combination of restrictions [34,
Sec. 2.3]; one of these primitives, for example, combines Lone and Ptwo. All
of these primitives can be implemented using the methods evaluate and
evaluateDerivative provided by class Function. All such specializa-
tions of a primitive can be incorporated into the framework we have pre-
sented: the only necessary modification is the incorporation into the decision
process represented by the Decider-class associated with the respective kind
of primitive.

Applications to Kinetic Data Structures. Many problems in the context of
KDSs can be reduced to tracing the relative position of objects and hyper-
planes, and algorithms employ root-finding primitives for real-valued func-
tions to check for changes. Our framework thus can be used to extend the
concept of KDS to encompass more realistic motion descriptions. Moreover,
we can transfer the idea underlying the method Ptwo to the above certifi-
cate functions: using a bound on the acceleration we can – in a retrospective
setting – determine the earliest possible point in time at which the relative
position of an object and a hyperplane can have changed twice.

74 Henrik Blunck, Klaus H. Hinrichs, Joëlle Sondern, Jan Vahrenhold

Collision Warning in Multiple Dimensions. The problem of collision warn-
ing is to find the time intervals during which the distance between two ob-
jects is smaller than some threshold ε > 0. This problem can be solved, e.g.,
by solving a collision detection problem in which one of the objects is ex-
tended by a buffer of width ε, see, e.g., [36]. The boundary of this buffer can
be seen as a replacement for the hyperplane used in the context of a KDS
certificate, and – provided that the description of the buffer is not too com-
plicated – we can again employ a retrospective Ptwo-like approach whose
efficiency unfortunately diminishes for very small values of ε. A real-time
Pone-like approach is discussed by Hayward et al. [23]. Note that the seem-
ingly more fundamental problem of collision detection in a multidimensional
spatio-temporal setting reduces to intersection finding of curves in more than
two dimensions; for this problem, no (theoretically) efficient algorithms are
known – even if the curves are straight lines. This is in contrast to the col-
lision warning setting where (at least for the three-dimensional case) non-
trivial algorithms are known [3].

5 Conclusions

We have presented an object-oriented approach to modeling mobile data and
algorithms operating on such data. Our model is general enough to cap-
ture not only polynomial motion descriptions but also more general (and
thus more realistic) descriptions of continuous motion, e.g., of motion re-
stricted only by bounds for the absolute speed or acceleration. In addition
to being able to encompass “classical” exact algorithms for polynomials,
our approach addresses the problem of numerical robustness and efficiency
by modeling and efficiently utilizing motion restrictions. Using algorithmic
primitives for collision detection as a proof-of-concept, we have shown how
to engineer and to implement efficient algorithmic primitives that exploit
such restrictions. A beneficiary side effect of our approach is that these prim-
itives also have a direct applicability in the context of kinetic data structures;
thus they extend this concept to encompass more realistic motion descrip-
tions.

References

1. Agarwal PK, Arge LA, Vahrenhold J (2001) Time responsive external data struc-
tures for moving points. In: Proc 7th Int Workshop Algorithms and Data Struc-
tures (= LNCS 2125), pp 50–61

Modeling and Engineering Algorithms for Mobile Data 75

2. Agarwal PK et al. (2002) Algorithmic issues in modeling motion. ACM Comp
Surveys 34(4):550–572

3. Agarwal PK, Sharir M (2000) Pipes, Cigars, and Kreplach: The Union of
Minkowski Sums in Three Dimensions. Discrete & Computational Geometry
24(4):645–657

4. Arnold K, Gosling J, Holmes D (2006) The JavaTM Programming Language,
4th ed. Addison-Wesley

5. Basch J (1999) Kinetic Data Structures. PhD Thesis, Dept of Computer Science,
Stanford University

6. Basch J, Guibas LJ, Hershberger J (1999) Data structures for mobile data. J Al-
gorithms 31(1):1–28

7. Becker L, Blunck H, Hinrichs HK, Vahrenhold J (2004) A framework for rep-
resenting moving objects. In: Proc 15th Int Conf Database and Expert Systems
Applications (= LNCS 3180), pp 854–863

8. Becker L, Voigtmann A, Hinrichs KH (1996) Developing Applications with
the Object-Oriented GIS-Kernel GOODAC. In: Proc 7th Int Symp Spatial Data
Handling vol I:5A1–5A18

9. Blunck H, Hinrichs KH, Puke I, Vahrenhold J (2004) Verarbeitung von Trajek-
torien mobiler Objekte (in German). In: Beiträge zu den Münsteraner GI-Tagen,
pp 29–41

10. Boissonnat JD, Vigneron A (2002) An elementary algorithm for reporting in-
tersections of red/blue curve segments. Computational Geometry: Theory and
Applications 21(3):167–175

11. Bruce R, Hoffmann M, Krizanc D, Raman R (2005) Efficient Update Strate-
gies for Geometric Computing with Uncertainty. Theory of Computing Systems
38:411-423

12. Cheng R, Kalashnikov DV, Prabhakar S (2004) Querying imprecise data in
moving object environments. IEEE Trans Knowledge and Data Engineering
16(9):1112–1127

13. Chomicki J, Revesz PZ (1999) A general framework for specifying spatiotempo-
ral objects. In: Proc 6th Int Workshop Temporal Representation and Reasoning,
pp 41–46

14. Fabri A, Giezeman GJ, Kettner L, Schirra S, Schönherr S (2000) On the design
of CGAL a computational geometry algorithms library. Software – Practice and
Experience 30(11):1167–1202

15. Forlizzi L, Güting RH, Nardelli E, Schneider M (2000) A data model and data
structures for moving objects databases. In: Proc ACM Int Conf Management
of Data, pp 319–330

16. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley

17. Goodman JE, O’Rourke J (eds) (2004) Handbook of Discrete and Computa-
tional Geometry. Discrete Mathematics and its Applications, 2nd ed. CRC Press

18. Gudmundsson J, van Kreveld M, Speckmann B (2004) Efficient Detection of
Motion Patterns in Spatio-Temporal Data Sets. In: Proc 12th Symp Geographic
Information Systems, pp 250–257

76 Henrik Blunck, Klaus H. Hinrichs, Joëlle Sondern, Jan Vahrenhold

19. Guibas LJ (2004) Modeling motion. In: Goodman JE, O’Rourke J (eds) Hand-
book of Discrete and Computational Geometry. Discrete Mathematics and its
Applications, chapter 50, 2nd ed, pp 1117–1134

20. Guibas LJ, Karavelas MI, Russel D (2004) A computational framework for han-
dling motion. In: Proc 6th Workshop Algorithm Engineering and Experiments,
pp 129–141

21. Guibas LJ, Mitchell JSB, Roos T (1992) Voronoi diagrams of moving points in
the plane. In: Proc 17th Int Workshop Graph-Theoretic Concepts in Computer
Science (= LNCS 570), pp 113–125

22. Güting RH, Böhlen MH, Erwig M, Jensen CS, Lorentzos NA, Schneider M,
Vazirgiannis M (2000) A foundation for representing and querying moving ob-
jects. ACM Trans Database Systems 25(1):1–42

23. Hayward V, Aubry S, Foisy A, Ghallab Y (1995) Efficient collision prediction
among many moving objects. Int J Robotics Research 14(2):129–143

24. Kahan S (1991) A model for data in motion. In: Proc 23rd ACM Symp Theory
of Comp, pp 267–277

25. Kollios G, Gunopulos D, Tsotras VJ (1999) On indexing mobile objects. In:
Proc 18th ACM Symp Principles of Database Systems, pp 261–272

26. Lin MC, Manocha D (2004) Collision and proximity queries. In: Goodman JE,
O’Rourke J (eds) Handbook of Discrete and Computational Geometry. Discrete
Mathematics and its Applications, chapter 35, 2nd ed, pp 787–807

27. Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AJ (2004) A compu-
tational framework for incremental motion. In: Proc 20th ACM Symp Compu-
tational Geometry, pp 200–209

28. Pfoser D, Jensen CS (1999) Capturing the uncertainty of moving-object repre-
sentations. In: Proc 6th Int Symp Spatial Databases, (= LNCS 1651), pp 111–
132

29. Pfoser D, Jensen CS (2001) Querying the trajectories of on-line mobile objects.
In: Proc 2nd Int ACM Workshop Data Engineering for Wireless and Mobile
Access, pp 66–73

30. Pfoser D, Tryfona N (2001) Capturing fuzziness and uncertainty of spatiotem-
poral objects. In: Proc 5th East European Conf Advances in Databases and In-
formation Systems (= LNCS 2151), pp 112–126

31. Prabhakar S, Xia Y, Kalashnikov DV, Aref WG, Hambrusch SE (2002) Query
indexing and velocity constrained indexing: Scalable techniques for continuous
queries on moving objects. IEEE Trans Computers 51(10):1124–1140

32. Roddick JF, Egenhofer MJ, Hoel E, Papadias D, Salzberg B (2004) Spatial, tem-
poral and spatio-temporal databases. Hot issues and directions for PhD research.
SIGMOD Record 33(2):126–131

33. Schirra S (2000) Robustness and precision issues in geometric computation. In:
Sack JR, Urrutia J (eds) Handbook of Computational Geometry, chapter 14.
Elsevier, pp 597–632

34. Sondern J (2005) Nutzung von Bewegungsrestriktionen für Algorithmik in
Moving-Objects-Datenbanken. Master’s Thesis, Department of Computer Sci-
ence, University of Münster (in German)

35. Suli E, Mayers DF (2003) An Introduction to Numerical Analysis. Cambridge

Modeling and Engineering Algorithms for Mobile Data 77

36. Trajcevski G, Wolfson O, Hinrichs KH, Chamberlain S (2004) Managing uncer-
tainty in moving objects databases. ACM Trans Database Systems 29(3):463–
507

37. Yeh TS, De Cambray B (1995) Modeling highly variable spatio-temporal data.
In: Proc 6th Australasian Database Conf, pp 221–230

