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Abstract 

Granularity in time and space has a fundamental role in our perception and 
understanding of various phenomena. Currently applied analysis methods 
are based on a single level of granularity that is user-driven, leaving the 
user with the difficult task of determining the level of spatiotemporal ab-
straction at which processing will take place. Without a priori knowledge 
about the nature of the phenomenon at hand this is often a difficult task 
that may have a substantial impact on the processing results. In light of 
this, this paper introduces a spatiotemporal data analysis and knowledge 
discovery framework, which is based on two primary components: the spa-
tiotemporal helix and scale-space analysis. While the spatiotemporal helix 
offers the ability to model and summarize spatiotemporal data, the scale 
space analysis offers the ability to simultaneously process the data at mul-
tiple scales, thus allowing processing without a priori knowledge. In par-
ticular, this paper discusses how scale space representation and the derived 
deep structure can be used for the detection of events (and processes) in 
spatiotemporal data, and demonstrates the robustness of our framework in 
the presence of noise.  
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1 Introduction 

Many phenomena in virtually all areas of natural sciences involve the 
study of change, and in particular change in spatial data over time. A pri-
mary reason for this interest in change is simple: change has a fundamental 
role in our perception and understanding of the world as it provides a sys-
tematic approach to the evolution of things in space and time. The identifi-
cation and formalization of change patterns allows us to achieve what is 
often taken for granted: formalize rules, apply reasoning, and predict fu-
ture behaviors of a given phenomenon. Consequently, the study of change 
in spatial data over time is essential in various areas, such as meteorology, 
geophysics, forestry, biology, and epidemiology.  

The study of change in all these disciplines is closely related to the 
study of events. The description of change in terms of events is natural to 
us, primarily because as humans we intuitively tend to perceive an activity 
as consisting of discrete events (Zacks and Taversky 2001). Yet the term 
event, which is often used rather loosely in daily life, may have different 
meanings under different circumstances and different contexts. In view of 
their wide variability in space and time, there have been various sugges-
tions for a more general model of events. For example, Galton (2000), 
based on an analysis of change, has identified three classes, namely states 
(the absence of change), processes (on-going change), and events (a pre-
defined amount of change). Yet, as Galton has indicated, the distinction 
between states and events is not always straightforward: “Thus processes 
seem to have a chameleon-like character, appearing now as states, now as 
events, depending on the context in which they are considered.” (Galton 
2000, p 215).  

Zacks and Taversky (2001) have also addressed the nature of events in 
human perception and conception and have defined events as a segment of 
time at a given location that is conceived by an observer to have a begin-
ning and an end. Yet, in light of this definition they have also indicated 
that “In general, it seems that as we increase the time-scale of our view, 
events become less physically characterized and more defined by the 
goals, plans, intentions and traits of their participants” (Zacks and Taver-
sky 2001, p 7).  

These different examples of how events are defined and considered em-
phasize the intricate nature of events. In particular, a primary factor that 
contributes to the dual nature of events (processes events and ob-
jects events) is granularity in time and space, which has a fundamental 
role in our perception and understanding of various phenomena. Granular-
ity refers to the notion that the world is perceived at different grain sizes 
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(Hornsby and Egenhofer 2002), and in the context of this work relates to 
the amount of detail necessary for a data analysis task.  

The motivation for this work stems from the effect granularity has on 
our ability to analyze and understand spatiotemporal events. Currently ap-
plied analysis methods are based on a single level of granularity that is 
user-driven, that is, the user has the difficult role of determining a level of 
spatiotemporal abstraction at which the processing will take place. Yet in 
many cases, and in particular when analyzing unfamiliar phenomena, it is 
difficult to determine beforehand the granularity level at which event proc-
essing should take place without a priori knowledge: a too fine granularity 
will result in detail overloading while a too coarse granularity will result in 
over abstraction and loss of detail. In other cases, users may not be inter-
ested in events in a single granularity level, but rather in a range of levels 
in the study of events in given phenomenon (for example, users may be in-
terested in analyzing rapid changes in the cloud mass of a hurricane both at 
the hourly and daily levels). This often leads to a need to repeat the proc-
essing of the data at each granularity level, thus resulting in low efficiency 
and high computational cost. Furthermore, such an approach makes it dif-
ficult to compare between phenomena that have a similar behavior but oc-
cur at different temporal scales. 

It should be noted that the issue of the effect of granularity on the analy-
sis of events is closely related to the problem of temporal zooming 
(Hornsby 2001) and the modeling of moving objects over multiple granu-
larities (Hornsby and Egenhofer 2002). Yet, while this previous work fo-
cused primarily on the transition between identity states of objects and on 
adjusting the level-of-detail of object representations as a result of a 
change in granularity, the focus of this contribution is on the simultaneous 
analysis of spatiotemporal data over multiple granularities rather than a 
specific one. 

In light of this, the main contribution of this work is the introduction of 
a novel spatiotemporal data analysis framework, which is based on two 
primary building blocks: the spatiotemporal helix – a formal representa-
tion of spatiotemporal data, and a scale-space analysis of the data in the 
temporal domain. Such an analysis offers two distinct advantages, namely, 
the ability to analyze the data at multiple granularities instantaneously, and 
the ability to reveal the hierarchical structure of events within the given 
phenomenon. To illustrate this, we will focus on a hurricane data analysis 
application, in which it is required to discover similar hurricanes by clus-
tering. Our data source in this case is a time-series of remotely sensed im-
agery of each of the hurricanes, as provided by the National Oceanic and 
Atmospheric Administration (NOAA) (NASA 2005). 
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The remainder of this paper is organized as follows: Section 2 provides 
an overview of the spatiotemporal helix model that is used in this work to 
represent and summarize spatiotemporal phenomena. Section 3 provides a 
review of the scale space representation, followed by an analysis of the 
utilization of this representation as an event detection and analysis frame-
work in spatiotemporal helixes. Section 4 describes an example application 
of the proposed framework using real-world data. Finally, conclusions and 
future work are summarized in Section 5. 

2 The Spatiotemporal Helix 

In our paradigm the spatiotemporal helix is used as a formal model of a 
spatiotemporal phenomenon. The spatiotemporal helix is a framework for 
describing and summarizing a spatiotemporal phenomenon. It is composed 
of a compact data structure and a set of summarizing tools capable of gen-
eralizing and summarizing spatiotemporal data, thus allowing efficient 
querying and delivering of such data. This framework can be applied to a 
variety of spatiotemporal data sources, ranging from manual monitoring of 
an object through time to spatiotemporal data that is collected through a 
single sensor or a sensor network (Venkataraman et al. 2004). 

The idea behind the spatiotemporal helix is based on the observation 
that as an object moves, two key characteristics change over time: location 
and deformation. Using an image time series [see Fig. 1(a)] we extract the 
object using image-based feature extraction, from which we can track the 
object’s location by calculating its center of mass and collecting this in-
formation in a database. In addition, we also track the deformation of the 
object by recording expansion and contraction magnitudes in each of four 
cardinal directions. This inclusion of deformation in the helix model pro-
vides the ability not only to track the changes in the location of the object, 
but also changes in its morphology. The result of the feature extraction 
process is depicted in Figure 1(b), which shows that a visualization of the 
extraction results in a three-dimensional space, consisting of a number of 
object out-lines stacked one on top of the next, with time as the vertical 
axis. 

While initially all possible location and deformation information is 
gathered from the image time series, the summarization aspect of the helix 
is introduced by retaining only the frames that include significant informa-
tion based on a user-defined change threshold. In this process we collect 
two types of entities: nodes consisting of the coordinates of the object’s 
center of mass for each time instance, and prongs that capture information 
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about the object’s expansion or contraction. These prongs consist of a re-
cord of the time instance, magnitude, and direction in which the object has 
expanded or contracted. Nodes and prongs are therefore the building 
blocks of the spatiotemporal helix, where nodes construct the spine of the 
helix and prongs provide an annotation of the spine [see Fig. 1(c)]. An out-
line of the helix construction process from motion imagery is depicted in 
Figure 1. The interested reader may find more information about the spa-
tiotemporal helix model in Agouris and Stefanidis (2003) and Stefanidis et 
al. (2005).  

 (a) (b) (c) 

Fig. 1. Spatiotemporal helix visualized as stacking of objects over time. (a) An 
image time series of size n. (b) Feature extraction results in space and time. (c)
The spatiotemporal helix (arrows represent prongs, circles represent nodes) 

3 Scale Space Analysis 

As was mentioned earlier, scale space analysis has a central role in our 
framework due to several distinct advantages it offers in the context of 
spatiotemporal event analysis. In order to demonstrate this we will first 
provide a short overview of scale space representation, and will then ana-
lyze the different characteristics in the context of spatiotemporal event 
analysis. It should be noted that in view of the ample body of literature on 
scale space representation, only a brief and non-exhaustive description of 
the key ideas and results are provided here. The interested reader may refer 
to Lindeberg (1994a, 1994b) and Sporring et al. (1997) for further details. 

3.1 Scale Space Representation and Deep Structure 

The development of the scale space representation stemmed from the un-
derstanding that scale plays a fundamental and crucial role in the analysis 
of measurements (signals) of physical phenomena. In order to demonstrate 
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this, consider a signal f, which was obtained from a set of real-world 
measurements. The extraction of information from f is based on the appli-
cation of an operator with a predefined scale. A fundamental question in 
this process is therefore the determination of the proper scale of the opera-
tor. Clearly, there is a direct connection between the scale of the operator 
we chose to apply and the scale of the structures (information) in f that we 
wish to detect (Lindeberg 1994b). If the scale of the operator is too large 
or too small, our ability to derive information from f will be compromised, 
leading to either high sensitivity to noise or low sensitivity to the structures 
sought. Consequently, proper scale should be used in order to ensure the 
optimal extraction of meaningful information from f. The determination of 
the proper scale is straightforward in cases where a priori knowledge about 
f exists, yet in other cases where there is no a priori knowledge the deter-
mination of the proper scale becomes a fundamental challenge and all 
scales should be considered. This notion of considering all possible scales 
is at the heart of the scale space representation (Lindeberg 1994b). 

The construction of a scale space representation is carried out by em-
bedding the signal f into a one-parameter family of derived signals, in 
which the scale is controlled by a scale parameter . More formally, given 
a signal f(x): x , the (linear) scale space representation 
L(x, ): +  of f(x) is defined such that L(x,0)= f(x), and the repre-
sentation at coarser scales are given by L(x, )=g(x, )  f(x), where  is the 
convolution operator, and g(x, ) is a Gaussian kernels of increasing width 
(Lindeberg 1994b). In the case of a one-dimensional signal, g(x, ) is taken 
as the one-dimensional Gaussian kernel (Witkin 1983; Lindeberg 1990): 

( )
2 21,

2
xg x e= (1)

The two-dimensional space formed by (x, ) is termed scale space. The 
scale space representation of f(x) is therefore comprised from a family of 
curves in scale space that have been successively smoothed by the kernel. 

While the generation of the scale space representation (L) results in a 
family of signals with an increasing level of smoothing, it is the inner 
structure of the scale space representation that exhibits distinct inherent 
behavior. In particular, it was found that the extrema points (the zero-
crossings of the nth derivative) in scale space representation form paths in 
scale space that will not be closed from below and that no new paths will 
be created as  increases. Hence, as  increases new extrema points cannot 
be created (Witkin 1983; Mokhtarian and Mackworth 1986). We carry out 
the generation of such paths by computing the location of the zero-
crossings for each of the derived signals in L, and then stacking these dif-
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ferent locations in scale space. As result of this process a binary image 
showing these paths is created. Following Florack and Kuijper (2000) and 
Kuijper et al. (2001), we term the resulting binary image the deep structure
of the Gaussian scale space, that is the structure of at all levels of granular-
ity simultaneously.  

To illustrate how the scale space representation and the deep structure 
are used for the detection of features in the data consider the example de-
picted in Figure 2, which shows the analysis of a one-dimensional signal 
[see Fig. 2(a) top].  

 (a) (b) 

Fig. 2. An example of a scale space analysis of a one-dimensional signal. (a) Top 
– A one-dimensional signal; Bottom – the deep structure of the signal as de-rived 
by the zero-crossings of the 1st derivative (b) The scale space representation of the 
signal, which was derived using a Gaussian kernel of increasing size. In all figures 
the x-axis represents time 

By convolving this signal with a Gaussian kernel of an in-creasing size 
(see Eq. 1) the scale space representation (L) is derived. Figure 2(b) shows 
the scale space representation as a three-dimensional surface (note how the 
original signal becomes smoother as the scale of the Gaussian kernel in-
creases). Once the scale space representation is derived, the zero-crossings 
of the nth derivative are detected for each scale level and the deep structure 
[see Fig. 2(a), bottom] is recovered by stacking the zero-crossings one on 
top of the other. Here, for the sake of simplicity, we have chosen to use the 
zero crossing of the 1st derivative to construct the deep structure due to its 
direct relation to features in the signal. Consequently, the paths formed in 
the deep structure describe how extrema points in the signal evolve as 
scale increases. To demonstrate this, consider the deep structure at a scale 
level of 8 [marked by the dashed horizontal line in Fig. 2(a), bottom] 
which shows five points, A through E. Clearly these five points correspond 
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to local extrema in the signal, as marked by the five rectangles in Fig-
ure 2(a), top. It is easy to see that as the scale parameter decreases more 
extrema points appear in the deep structure due to the noisy nature of the 
signal. 

3.2 Analysis of Events Using Scale Space Representation 

The adaptation of the scale space representation approach to the analysis 
of events in spatiotemporal helixes can offer several distinct advantages. In 
order to demonstrate this we first define events within the helix framework 
and then analyze the different characteristics of the scale space representa-
tion in light of this definition. 

Following Galton (2000) and Grenon and Smith (2004), we define 
events within the context of spatiotemporal helixes as the transition be-
tween states. As such, we regard events as all entities that exhaust them-
selves in a single instant of time (Grenon and Smith 2004). Consequently, 
events are used to define the boundaries of processes and indicate the tran-
sition within processes.  

Having this definition in mind, let us now analyze how the scale space 
representation and the deep structure of a physical measurement signal 
could be used for the detection of events. As noted earlier, the zero cross-
ing of the nth (commonly n=2) derivative of L is used to construct the deep 
structure. Since the zero-crossing condition ensures a change of sign in the 
second derivative (note that this is not the same as requiring that the sec-
ond derivative will be zero), the deep structure serves as an indicator of in-
flection points1 in the given signal f. Such inflection points indicate either a 
minimum or a maximum in the gradient of L. In conclusion, the deep 
structure can be used for detecting minimum or maximum rates of change 
(the first derivative) of a process, or changes in the sign of the rate of 
change (the second derivative) of a process. Note that in our interpretation 
we view processes as occurring between inflection points (events), which 
corresponds to our definition of events.  

To illustrate this, let us assume that f is a vector of the x coordinate of a 
hurricane that was tracked in time. The first derivative of f indicates the 
speed of the hurricane in the x direction, while the second derivative indi-
cates the acceleration of the hurricane in the x direction. Transforming f
into a scale space representation and the recovery of the deep structure en-

                                                       
1  Given a twice differentiable function g(x), a point x=c on g is an inflection point 

if g(c)  is an extremum point and g(c)  changes its sign in the neighborhood of c
(Binmore 2001). 
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ables the detection of the following events: maximum speed events, mini-
mum speed events, acceleration to deceleration events, and deceleration to 
acceleration events.

Let us now turn back to the deep structure of spatiotemporal helixes and 
analyze its characteristics in relation to the analysis of events. Several key 
observations can be made here:  

1. As was mentioned earlier, the derived deep structure is based on the 
detection of inflection points, which form paths that are guaranteed 
not be closed from below. It is also guaranteed that no new paths will 
be created as  (the scale factor) increases. These characteristics are 
essential in the analysis of events as it is expected that no new proc-
esses will emerge, as the time granularity of a physical process is 
made coarser. Furthermore, this property ensures that a process 
(which is defined between inflection points) cannot disappear and 
then reemerge in coarser time granularities.  

2. In general, paths in the deep structure will not cross each other (Mok-
htarian and Mackworth 1986). This property of the paths assures that 
time conflicts will not occur. Consider for instance the example in 
Figure 2: since the x axis of both the data and the deep structure is 
time, paths that cross each other will indicate that two events that oc-
curred in one order in one time granularity level will occur in the op-
posite order in another granularity level. This property therefore en-
sures that the proper order of events will be maintained at all 
granularity levels. 

3. In general, paths in the deep structure will either form arch-like paths 
that are closed from above [for example, curve e in Fig. 3(a)], or will 
form a single path line. In the context of events, these properties indi-
cate that as time granularity is made coarser processes that are de-
fined between two events (inflection points) will converge to a single 
event point (the top point of a path for which the gradient is zero) and 
eventually disappear. This can be seen in Figure 3(a), where path b
converges to a single point (tangent to the dashed horizontal line) at 
scale i, and disappears at coarser granularities. In addition, single 
path lines indicate transition events [for example, curve a in 
Fig. 3(a)] that are not defining processes within the framework of the 
data provided but rather a change in the process. 

In summary, the deep structure (and the scale space representation) can 
be used for the detection of events through which processes can be de-
fined. Furthermore, the Gaussian scale space ensures that as time granular-
ity is made coarser (a) no new processes will emerge, (b) processes can not 
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disappear and reemerge, (c) the proper order of events (and processes) is 
maintained, (d) processes in lower granularity will tend to converge to a 
single event point, and eventually disappear.  

In addition to these characteristics it is important to note that the deep 
structure inherently offers the ability to reveal the hierarchy of events and 
processes. To illustrate this, consider the scale space path b in Figure 3(a). 
As can be seen, this path contains two additional paths, c and d, which can 
be seen as two sub-processes. It should be noted that as granularity in-
creases sub-processes turn to a single point event and eventually disappear. 
This hierarchy can be further described in a process tree [see Fig. 3(b)]. 

 (a) (b) 

Fig. 3. Event and process hierarchy discovery through scale space representation. 
(a) A sample deep structure. (b) The derived process tree 

3.3 Scale Space Analysis of Events in Spatiotemporal Helixes 

As was described in Section 2, the spatiotemporal helix is a framework for 
describing and summarizing a spatiotemporal phenomenon. Given an im-
age time series which contains an object that should be analyzed, the spa-
tiotemporal helix collects the following information about the object along 
its spine (Stefanidis et al. 2005): the x and y location of the center of mass, 
acceleration, rotation, and expansion/contraction in north, east, south, and 
west directions.  

In order to analyze the helix and detect events (and processes), we treat 
each of the 8 attributes of the spatiotemporal helix as a one-dimensional 
signal. Based on this, we can then apply a scale space analysis for each of 
these signals. This will result in 8 scale space representations and deep 
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structures that could be used in various ways in order to understand the 
underlying physical phenomenon at hand. In particular, the following ap-
plications of the deep structures are considered in the analysis of helixes: 

1. Single helix dimension analysis – in this case, a single dimension of a 
single helix can be analyzed (for example, the x or y location of the 
center of mass). Here, the deep structure can be used as an inspection 
tool for the detection of events and processes at multiple granulari-
ties. Furthermore, the deep structure provides an insight into the evo-
lution of events and to the hierarchy of processes [see Fig. 3(b)]. 

2. Multiple helix dimension analysis – in this case, two or more dimen-
sions of a single helix are analyzed by overlaying their deep struc-
tures. This would allow, for instance, detecting of processes that oc-
cur at the same time interval in different dimensions, from which 
higher-level inferences about the phenomenon could be derived. 

3. Helix clustering – in this case, the primary goal is to estimate the 
similarity between helixes for the purpose of discovering similar 
physical phenomenon. In this case the similarity function, S( , ), be-
tween helixes Hi and Hj can be computed by: 

( ) ( ) ( )( )
1

, ,
n

i j k k i k j
k

S H H w C DS H DS H
=

= (2)

where k is the number of dimensions (attributes) in each helix, wk is a 
weight assigned to each dimension (user defined), DSk( ) is the deep 
structure of the kth dimension (a two-dimensional matrix of size u v), 
and C( , ) is the two-dimensional cross correlation coefficient be-
tween DSk(Hi) and DSk(Hj) that is given by: 

( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
22

,k i k j

k kk i i k j j
u v

k kk i i k j j
u v u v

C DS H DS H

DS H DS H DS H DS H

DS H DS H DS H DS H

=

=
(3)

If the length of the two helixes is not the same, a template matching ap-
proach is used, in which the deep structure of the shorter helix is shifted 
along the x axis (time) of the deep structure of the longer helix, and the 
maximum cross correlation coefficient [see Eq. (3)] is taken. It should be 
emphasized that because the deep structure of the kth dimension is used in 
Equation (3), the cross correlation is being simultaneously computed in 
multiple granularities. Thus, S [see Eq. (2)] is a measure of the overall 
similarity of the two helixes over multiple granularities. 



240 Arie Croitoru, Kristin Eickhorst, Anthony Stefandis, Peggy Agouris 

4 An Example: Spatiotemporal Hurricane Data Clustering 

In order to demonstrate the capabilities and robustness of our approach we 
have applied the proposed framework to the following problem: given a 
data set of n imagery time series of physical phenomena, partition the data 
set into subsets of similar phenomena without any a priori knowledge 
about the granularity of the phenomena. The primary motivation for se-
lecting this particular task was the centrality that role clustering has in nu-
merous areas, such as data mining and knowledge discovery, search en-
gines, machine learning, and pattern recognition. In all these areas reliance 
on minimal a priori knowledge and robustness to noise are crucial. 

For this work we have collected real-world satellite imagery time series 
of five different tropical storms and hurricanes. The satellite data was ob-
tained from NASA-GFSC’s GOES project (http://goes.gsfc.nasa.gov) that 
provides GOES-12 imagery. The storms that were collected are Alex (1–5 
August, 2004), Allison (4–14 June, 2001), Charley (11–14 August, 2004), 
Dennis (7–11 July, 2005), and Frances (August 31 – September 7, 2004).  

The preliminary processing of each of the five hurricane image time se-
ries included the delineation of the contour of the hurricane cloud mass 
from each image frame. This process, which resulted in a binary image 
time series, was then used as input to the helix construction process (Ste-
fanidis et al. 2005) from which a spatiotemporal helix was created for each 
hurricane (see Fig. 4). Then, from each of the five helixes four more per-
mutations were created by corrupting the original helix data with an in-
creasing level of random noise that was added to the center of mass and 
the expansion/contraction dimensions. This process resulted in a data set 
consisting of a total of 25 helixes. In order to cluster this data set we have 
implemented two different methods:  

1. The local extreme event approach – in this approach we defined ex-
treme events based on the deviation from the average attribute value 
using a moving window, that is, given a confidence level d all helix 
attribute values within a window of a user-defined size that deviate 
more than d  from the average are considered to be extreme events. 
By changing the window size and the value of d the user can then 
control the level of granularity in which extreme events are detected. 
Based on these extreme events we then computed the distance be-
tween all possible helix pairs using the technique described by Ste-
fanidis et al. (2005), and constructed a distance matrix from which a 
dendrogram was derived.  

2. The scale space approach – in this approach we implemented the 
pro-posed scale space clustering technique that was described in Sec-
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tion 3.3. Similar to the first approach, here we have also computed 
the distance between all possible helix pairs using Equation (2) and 
(3), and constructed a distance matrix from which a dendrogram was 
derived.  

 (a) (b) 

Fig. 4. Examples of the derived spatiotemporal helixes for the hurricane data sets. 
(a) hurricane Frances, (b) hurricane Alison. In both figures the central black line 
represents the spine of the helix, the black circles represent the nodes, and the gray 
lines represent prong information 

Using these methods two different clustering experiments were con-
ducted. The first experiment included the clustering of data from two hur-
ricanes, Frances and Alison, including their permutations (a total of 10 he-
lixes) using both methods. The second included the clustering of the entire 
hurricane data set (a total of 25 helixes) using the scale space approach. In 
both experiments a correct clustering would result in distinct clusters in the 
dendrogram, where each cluster contains data from only one of the hurri-
canes. An example of the deep structure (2nd derivative) that was derived 
and utilized for each helix in both experiments is depicted in Figure 5. 

The results of the first experiment are depicted in Figure 6, where Fig-
ure 6(a) through (c) show the distance matrices and dendrograms that were 
obtained from the local extreme event approach. 

Fig. 5. The deep structure of the spatiotemporal helix of hurricane Alison. (a) x
location, (b) y location, (c) acceleration, (d) rotation, (e) through (h) expansion / 
contraction in the north, east, south, and west direction respectively 
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(a) 

(b)

(c) 

(d)

Fig. 6. Results of the first clustering experiment. (a) through (c) – The distance 
matrix (left) and dendrogram (right) using the local extreme event approach with a 
moving window size of 5, 7, and 9 respectively. (d) The distance matrix (left) and 
dendrogram (right) using the scale space approach. In all figures numbers 1–5 cor-
respond to Allison and numbers 6–10 correspond to Frances. Darker shades in the 
distance matrices correspond to higher similarity 
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Fig. 2. Results of the second clustering experiment using the entire hurricane data 
set. (a) The distance matrix. (b) The resulting dendrogram. In both figures num-
bers 1–5 correspond to Allison, 6–10 correspond to Frances, 11–15 correspond to 
Dennis, 16–20 correspond to Alex, and 21–25 correspond to Charley 

The effect of the granularity at which the processing takes place is evi-
dent: as the window size increases some clusters do begin to emerge; yet 
the correct clustering is not obtained. In practical application this demon-
strates the difficulty users are likely to face when analyzing such data 
without proper a priori knowledge. In contrast, the scale space approach 
produced the correct clustering [see Fig. 6(d)], resulting in two well-
defined clusters, one for each set of hurricane data. 

The results of the second experiment are depicted in Figure 7. As can be 
seen, the scale space approach successfully recovered the five clusters of 
hurricanes in this case as well. 

5 Conclusions 

Granularity in time and space has a fundamental role in our perception and 
understanding of various phenomena. Furthermore, since improper granu-
larity may lead to erroneous results, it is essential that proper granularity 
be used in spatiotemporal data analysis and knowledge discovery. In spite 
of the importance of granularity, it is often difficult to determine at which 
granularity data processing should take place without a priori knowledge. 
This paper addressed this problem by adopting a scale space approach, in 
which all granularity levels are considered instead of applying a single 
granularity level. Based on this approach we presented a framework con-
sisting of the spatiotemporal helix as a modeling and summarization tool, 

(a) (b) 
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and the scale space representation as an analysis and knowledge discovery 
tool. The primary advantage of our framework is that it does not require a 
priori knowledge about granularity.  

We analyzed how scale space representation and the derived deep struc-
ture could be used for the detection and analysis of events and processes 
and showed that due to its unique characteristics, deep structure can be 
used for the detection of events through which processes can be defined. 
Furthermore, we showed that the deep structure ensures that as time granu-
larity is made coarser no new processes will emerge, processes can not 
disappear and reemerge, the proper order of events (and processes) is 
maintained, and that processes in lower granularity will tend to converge 
to a single event point, and eventually disappear. Additionally, we described 
how the deep structure could be used for the discovery of a hierarchy of 
events and processes. To demonstrate the capabilities of our approach we 
applied the proposed framework to the problem of real-world hurricane data 
clustering, and showed its robustness in the presence of noise. 

In the future we plan to further explore and expand our framework. In 
particular, we are interested in utilizing the proposed approach for deter-
mining the proper granularity that should be used in the analysis of a given 
data set, and in developing additional similarity functions for scale space 
representations. 
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