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Abstract 

A novel method for the analysis of spectra and detection of absorption fea-
tures in hyperspectral signatures is proposed, based on the ability of wave-
let transformations to enhance absorption features. Field spectra of wheat 
grown on different levels of available nitrogen were collected, and com-
pared to the foliar nitrogen content. The spectra were assessed both as ab-
solute reflectances and recalculated into derivative spectra, and their re-
spective wavelet transformed signals. Wavelet transformed signals, 
transformed using the Daubechies 5 motherwavelet at scaling level 32, per-
formed consistently better than reflectance or derivative spectra when 
tested in a bootstrapped phased regression against nitrogen. 

1 Introduction 

Recent advances in remote sensing have resulted in the development of 
high spectral and spatial resolution sensors. These sensors enable us to 
measure more objects more accurately. Recent work has shown the utility 
of hyperspectral data to detect foliar nitrogen (Kokaly 2000; Lilienthal et 
al. 2000; Ferwerda et al. 2005), phosphorous (Mutanga et al. 2003), chlo-
rophyll (Haboudane et al. 2002; Coops et al. 2003) and phenolic com-
pounds (Soukupova et al. 2002; Ferwerda et al. in press).  
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Fig. 1. Wavelets used for decomposition, and an illustration of the effect of scal-
ing wavelets in the time-domain. With increasing scale levels the window of 
analysis, or time support, increases, and the frequency resolution decreases 

With the development of high spectral resolution sensors, reflectance 
data has become near continuous. This has created an opportunity to treat 
individual measurements (in the case of field spectra) or the combined 
band values for individual pixels (in the case of hyperspectral images) as a 
continuous signal, where electromagnetic radiation reflectance is measured 
as a function of wavelength. Several methods, which were developed to 
detect absorption features in hyperspectral data, such as derivative analysis 
(Demetriades-Shah et al. 1990; Tsai and Philpot 1998) and continuum re-
moval (Clark and Roush 1984), are based on the fact that the data forms a 
near-continuous signal. It is therefore surprising to note that studies using 
wavelet transformations for the analysis of absorption features in hyper-
spectral reflectance data are rare. Wavelet analysis is based on the Fourier 
transform, developed by Joseph Fourier in 1807. It decomposes a complex 
signal into component sub-signals. Each of these sub-signals is active at a 
different signal scale, or frequency. This makes it ideal for the detection of 
absorption features in complex signals  

Wavelets look like small oscillating waves, and they have the ability to 
analyze a signal according to signal scale (frequency, see Fig. 1). In other 
words, during analysis the original wavelet, or mother wavelet, is scaled 
along the time-axis, to match signals at different frequencies. Thus a nar-
row wavelet (low scaling number) is used to match high frequency signals, 
irrespective of the underlying low-frequency changes. Low frequency sig-
nals are picked up using a wide wavelet (high scaling number), while high 
frequency signals (e.g., noise) is ignored.  

The analysis of a signal is equivalent to computing all the correlations 
between the wavelet function at a certain scale and the input signal 
(Abbate et al. 2002, p 26). The results of the wavelet transform are the 
wavelet coefficients C, which are a function of scale and position of the 
transform. Multiplying each coefficient by the appropriately scaled and 
shifted wavelet yields the constituent wavelets of the original signal. This 
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can be repeated at different wavelet scales, to either match against low or 
high frequency signals in the input signals. A specific form of wavelet 
transformation, the continuous wavelet transformation, decomposes a sig-
nal into an output signal with the same length as the input signal. To pro-
vide the reader with a comprehensive technical background of wavelet 
analysis falls outside the scope of this paper. For more information on the 
mathematical and historical aspects of wavelet analysis, please see the 
work by Hernandex (1996), Abbate (2002) or Ogden (1997). 

Although wavelet analysis is used in remote sensing, this is mainly for 
the purpose of data compression (Amato et al. 2000; Bjorke and Nilsen 
2002) and edge detection (Gruen and Li 1995). Examples of the use of 
wavelet transforms to enhance absorption features in hyperspectral data 
originate predominately from the food industry, where quality control is 
performed using near infrared lab-based spectroscopy. Chen (2002) for in-
stance improved prediction of oil content in instant noodles by applying a 
4-scale Mallat wavelet transform to NIR reflectance spectra. Fu (2005) 
successfully applied a Daubechies wavelet transform to NIR spectra of 
vinegar to derive sugar content. In the environmental sciences, Koger 
(2003) used wavelet-based analysis of hyperspectral reflectance signals for 
early season detection of ‘Pitted morning-glory’ in soybean fields. A field 
where the unambiguous identification of the characteristics of absorption 
features is of critical importance is that of hyperspectral remote sensing of 
foliar chemistry. Chemical components in foliage result in distinct absorp-
tion features, with a specific spectral location, and a depth and width re-
lated to the concentration of that component (Curran 1989). Therefore, 
during data processing it is crucial to be able to quantify changes in the 
depth and width of absorption-features. For the project presented here we 
hypothesized that wavelet analysis might do just that. Since wavelet trans-
formed signals represent a measure of resemblance between the mother 
wavelet stretched at a certain scale, and the input signal at each specific 
spectral location, we hypothesize that this match between wavelet and de-
rivative spectra will provide us with an unbiased measure of the shape of 
the absorption feature at that spectral location. Typically only the informa-
tion of one or a few bands is included in a model to predict the concentra-
tion of specific foliar components. However, since wavelet transformation 
matches a subset of the input signal against a scaled wavelet, the output 
signal combines information on the variation over a number of surrounding 
bands. Therefore it is expected that the wavelet transform is less sensitive 
to noise and will result in a better relation to the component of interest than 
pure reflectance or derivative signals.  
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The ability to predict chemical composition of plants using remote sens-
ing is directly dependent on the selection of appropriate bands to use. When 
specific absorption features are unknown, most studies have used stepwise 
regression techniques to determine which wavebands are most appropriate 
to use. This may however result in over-fitting of prediction models. Princi-
pal component analysis is another method, which combines the information 
from several bands into one predictor variable, and reduces this problem. It 
however minimizes the understanding of the relation between absorption 
features and chemical composition, since the effects of individual bands are 
combined into one factor. Because it reduces the number of variables while 
maintaining most of the information, principal component analysis has also 
been used to compress data. Still, selecting the appropriate predictor bands, 
and managing the volume of this data remains a problem. Ferwerda et al. 
(in Press) suggested a method they referred to as bootstrapped phased re-
gression, that partially overcomes this problem. In short, from the original 
dataset of n unique samples, a bootstrap dataset of n samples is selected, al-
lowing duplicate samples to occur (Efron and Tibshirani 1993). This is re-
peated 10 000 times, a number comparable to that suggested by Potvink and 
Roff (1993) and Pitt and Kreutzweiser (1998) for bootstrapping routines. 
For each repetition, the waveband with maximum correlation to the compo-
nent of interest is recorded, which results in a frequency table detailing the 
number of times that each waveband has maximum correlation with the 
component of interest. The band with the highest frequency after 10 000 it-
erations is selected, where the position of a band is defined as the central 
wavelength of that band. 

This step is repeated in order to build a linear regression model with 
more than one predictor by calculating the regression goodness of fit be-
tween the component of interest and the already selected band combined 
with each of the other bands, again selecting the band with the highest fre-
quency of maximum correlation for 10 000 random datasets. This routine 
deviates from a full stepwise regression within each bootstrap repetition 
because the aim is to select the best waveband to use with respect to al-
ready selected wavebands. This process is repeated until the required num-
ber of bands is reached or until the maximum frequency of maximum cor-
relation drops below 5%. 

This study explores the ability of wavelet transformation to enhance ab-
sorption features in reflectance signatures. Wavelet transformation was ap-
plied to derivative signatures of wheat of which the foliar nitrogen content 
was known. Subsequently a bootstrapped phased regression was applied to 
select the best bands for prediction of foliar N. The predictive power of 
wavelet factors was compared to that of reflectance and derivative spectra. 
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2 Materials and Methods 

2.1 Field Data 

Wheat was grown during the 2004-growing season in Horsham, Victoria, 
Australia (Sowing date: June 17th). As part of a larger experiment on the 
effects of nitrogen and water availability on the productivity of wheat in 
semi-arid systems, wheat was grown on a split-plot factorial design. The 
treatments consisted of irrigated (390 mm; decile 9 for Horsham) and rain-
fed (270 mm; decile 5 for Horsham), combined with two plant densities 
(300 and 150 plants/m2) and four levels of nitrogen applied as urea (0, 34, 
84 and 354 kg urea/ha) in subplots with three replications. 

2.2 Hyperspectral Measurements 

At the end of the growing season (November 8th, 144 days after sowing) 
spectral properties were recorded. Approximately 1 m2 of the canopy was 
recorded using an ASD Fieldspec FR field spectrometer. The FieldSpec® 
FR spectrometer combines three spectrometers to cover the 350 to 
2500 nm range of the electromagnetic spectrum. This spectrometer uses a 
photo diode array to cover the 350 to 1000 nm spectral range with 1.4 nm 
sampling interval and 3 nm bandwidth. Two fast scanning spectrometers 
provide coverage for the wavelength range from 1000 to 2500 nm with 
2 nm sampling interval and 10 nm bandwidth. The optic fiber was placed 
in a pistol grip and mounted on a steel boom 2.5 m above ground surface 
pointing downwards in a 900 angle to measure the up-welling radiance of 
the wheat. Absolute reflectance was calculated using a calibrated Spec-
tralon Reflectance Target (Labsphere, Inc, North Sutton, New Hampshire) 
as a reference. The centre of the measured area was harvested (0.9 m2) and 
a random sub-sampled was chemically analyzed to determine total canopy 
nitrogen content. 

2.3 Data Processing 

The reflectance spectra were very noisy between 1850 and 2500 nm. 
Therefore this part of the spectrum was excluded from further analysis. 
During wavelet transform, the wavelet used should represent the signal to 
be detected as closely as possible. In this paper it was decided to use two 
mother wavelets (e.g., Fig. 1): one which closely represented the derivative 
of a Gaussian distribution; the second of which represented a combination 
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of the derivative of multiple Gaussian absorption features. Therefore 
derivative spectra were calculated of the original reflectance spectra. An 
added advantage is the signal normalizing effect of calculating derivative 
spectra. Derivative analysis (Tsai and Philpot 1998) assumes that differ-
ences in the absolute reflectance do not affect the actual absorption fea-
tures. Therefore derivative spectra are less affected by sun angle and struc-
tural variation than absolute reflectance spectra, and by using the slope of 
the spectrum instead of the absolute reflectance, the same signal is pro-
duced for samples with different absolute reflectance but the same absorp-
tion features.  

Using the reflectance spectra, derivative spectra were calculated using 
an adjusted version of the seven band moving spline smoothing technique 
(Savitzky and Golay 1964; Tsai and Philpot 1998). Instead of smoothing 
the spectra first and then calculating the derivative spectra from the 
smoothed spectra, the parameters of the moving polynomial were used to 
directly calculate the derivative at the centre waveband of the moving 
spline window.  

Reflectance and derivative spectra were averaged by individual treat-
ments, and plotted against wavelength to visually analyze the differences 
in reflectance between treatments, and the effect of normalizing data 
through derivative calculation. To better understand the sources of varia-
tion in the dataset, A full factorial ANOVA was performed on a subset of 
wavebands (350 nm to 1250 nm, step 100 nm), with applied nitrogen level 
(n=4), irrigation (n=2) and planting density (n=2) as interacting factors. 
Similarly, the effect of individual treatments on the foliar nitrogen content 
was tested using a factorial analysis of variance with nitrogen level (n=4), 
irrigation (n=2) and planting density (n=2) as interacting factors. The con-
centration of nitrogen was recorded as a fraction of the dry weight. Since 
these values are typically low (< 10%), these concentrations require a log-
transformation to meet requirements of normality (Zar 1999). After trans-
formation groups did not deviate from normality (Shapiro wilks’ W; p > 
0.05). 

2.4 Wavelet Transform 

The Matlab environment was used to perform continuous wavelet trans-
form on the derivative spectra, decomposing the derivative spectra at 
7 scale levels, in 2a step increments (0 < a < 7). Two mother wavelets were 
used for decomposition. The first is the biorthogonal wavelet 1.5 
‘(Bior.1.5, see Fig. 1), which represents the derivative of a Gaussian curve. 
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The other is the Daubechies wavelet 5 (DB.5) a basic ripple with 5 convo-
lutions (see Fig. 1). 

The 16 resulting datasets (Reflectance spectra, Derivative Spectra and 
2 times 7 wavelet transforms) were tested for their relation foliar nitrogen 
content. To select the most robust wavebands for detecting nitrogen con-
tent, a bootstrapped phased regression was applied. 

3 Results 

3.1 Effects of Treatment 

Fig. 2. Foliar nitrogen content in wheat samples, grouped by nitrogen treatment 
and irrigation treatment. Vertical bars denote 95% confidence interval for the 
mean 

Foliar nitrogen concentration was affected by nitrogen application and 
irrigation treatment individually (ANOVA; p 0.001; see Fig. 2) but not by 
sowing density (ANOVA; p 0.1). Second degree interaction terms were 
not significant. Group sizes were too small to reliably calculate full facto-
rial interaction terms. 

 The effects of irrigation and nitrogen treatments on reflectance spectra 
(see Fig. 3) were significant, but the effect of ‘between planting densities’ 
was not (ANOVA; p 0.001). The interactions between treatments were not 
significant. 
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Fig. 3. Comparison of reflectance and derivative spectra averaged by treatments. 
N levels: 1: 0 kg urea/ha, 2: 34 kg urea/ha, 3: 84 kg urea/ha and 4: 354 kg urea/ha 

Decomposition of spectra using a wavelet transform showed localized 
responses, in particular around 1000 nm and 1400 nm for lower scale 
transforms (matching higher frequency signals, see Fig. 4). Higher scale 
levels (Matching lower frequency signals) result as expected, in responses 
over wider regions of the signal (see Fig. 4).  

Figure 5 depicts the regression goodness of fit (r2) between foliar nitro-
gen concentration and reflectance spectra, derivative spectra, and wavelet 
transformed spectra for models with 1 to 6 predictor bands. Derivative 
spectra of wheat, transformed using a DB.5 wavelet transform at scale 32, 
show a stronger relation to foliar nitrogen concentration than the original 
derivative spectra (see Fig. 5). Figure 5 shows a mean regression r2 of 0.54 
between the best band for DB.5 scale level 32 transformed derivative spec-
tra over 10 000 bootstrap iterations, whereas this is only 0.03 and 0.31 for 
the pure reflectance spectra, and derivative spectra respectively. For all 
models a maximum mean regression goodness of fit is achieved when de-
rivative spectra are transformed using DB.5 at scale level 32 (see Fig. 5). 
Derivative spectra have a higher mean regression goodness of fit than re-
flectance spectra. Derivative spectra transformed using Bior.1.5 perform 
less good than the input derivative spectra (see Fig. 5). 
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Fig. 4. Derivative spectrum of wheat and the 7 wavelet transforms using a 
Daubechies 5 continuous wavelet transform 

4 Discussion 

Transforming derivative spectra in the wavelet transformed signals re-
sulted in an increased correlation with foliar nitrogen concentration. Low 
scale analysis uses a small window for analysis, in other words: the mother 
wavelet is stretched across only a small part of the spectrum during the 
analysis. Therefore it is well suited to detect high-frequency changes in the 
signal (absorption features). An increase scale results in a wider analysis 
window and the mother wavelet is scaled along a wider stretch of the spec-
trum. Wavelet transformations at higher scales are consequently more suit-
able for detecting changes in large absorption features. The graphs in Fig-
ure 5 show a steep increase in the relation between the Daubechies wavelet 
transformed signal and foliar nitrogen when moving from scale 2 to scale 
32, for all regression models. At scale 64 the regression goodness of fit is 
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lower than at scale 32. This suggests that the optimal scale for detection of 
nitrogen using derivative spectra is located between 16 and 64. 

Fig. 5. Mean regression goodness of fit (r2) over 10 000 bootstrap iterations for 
regression models with 1 to 6 predictors, in regression between nitrogen and re-

flectance, derivative and wavelet transformed spectra 
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The current work does not take into account the various aspects of re-
mote sensing using imaging spectrometers, such as mixed signals, canopy 
shading and varying canopy architecture. Obviously these factors will af-
fect the outcome of these results, and to fully understand whether wavelet 
transformations are appropriate signal processing tools for hyperspectral 
data, a subsequent study is required. This would ideally integrate the ideas 
presented here in a purpose designed image-based study.  
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