
Computing and Interaction

Farhad Arbab1,2

1 Center for Mathematics and Computer Science (CWI), Amsterdam, The
Netherlands

2 Leiden University, Leiden, The Netherlands

Summary. This chapter offers a rough sketch of the landscape of computing with
the specific aim of identifying and interrelating well-established topics such as com-
putability and concurrency to newer areas such as interaction and composition of
behavior.

1 Introduction

The size, speed, capacity, and price of computers have all dramatically changed
in the last half-century. Still more dramatic are the subtle changes in society’s
perception of what computers can, should, and are expected to do. Clearly,
this change of perception would not have been possible without the technolog-
ical advances that reduced the size and price of computers, while increasing
their speed and capacity. Nevertheless, the social impact of this change of
perception and its feedback influence on the advancement of computer sci-
ence and technology, are too significant to be regarded as mere by-products
of those technological advances.

The term computer today has a very different meaning than it did in the
early part of the twentieth century. Even after such novelties as mechanical
and electromechanical calculators had become commonplace in the 1960s,
the arithmetic involved in engineering calculations and book-keeping was a
time consuming and labor intensive endeavor for businesses and government
agencies alike. Analogous to typist pools that lingered on until much later,
enterprises from engineering and accountant firms to banks and insurance
companies employed armies of people to process, record, and extract the large
volumes of essentially numerical data that were relevant for their business.
Since in the early part of the twentieth century, computer was the term that
designated these professionals, the machine that could clearly magnify their



10 F. Arbab

effectiveness and held the promise of replacing them altogether became known
as the electronic computer1.

The social perception of what computers are (to be used for) has evolved
through three phases:

1. computers as fast number crunchers;
2. computers as symbol manipulators;
3. computers as mediators and facilitators of interaction.

Two specific transformations marked the above phase transitions. The
advent of fast, large main memory and mass-storage devices suitable to store
and access the significantly more voluminous amounts of data required for non-
numerical symbol manipulation made symbolic computation possible. The
watershed that set forth the second transition was the availability of affordable
personal computers and digital telecommunication that together fueled the
explosion of the Internet.

In spite of the fact that from the beginning, symbol manipulation was
as much an inherent ability of electronic computers the juggling of numbers,
the perception that computers are really tools for performing fast numerical
computations was prevalent. Problems such as information retrieval that did
not involve a respectable amount of number crunching were either rejected
outright as non-problems, or were considered as problems not worthy of at-
tempts to apply computers and computing to. Subscribers to such views were
not all naive outsiders, many an insider considered such areas as business
and management, databases, and graphics, to be not only on the fringes of
computer applications, but also on the fringes of legitimacy. As late as 1970,
James E. Thornton, vice president of Advanced Design Laboratory of Control
Data Corporation, who was personally responsible for most of the detailed
design of the landmark CDC 6600 computer system, wrote [1]:

There is, of course, a class of problems which is essentially noncompu-
tational but which requires a massive and sophisticated storage sys-
tem. Such uses as inventory control, production control, and the gen-
eral category of information retrieval would qualify. Frankly, these do
not need a computer. There are, however, legitimate justifications for
a large computer system as a “partner” with the computational usage.
[Emphasis added.]

1 As of the date of this writing, on the etymology of the word “computer” the free
encyclopedia Wikipedia (http://en.wikipedia.org/) says: “The word was origi-
nally used to describe a person who performed arithmetic calculations and this
usage is still valid. The OED2 lists the year 1897 as the first year the word was
used to refer to a mechanical calculating device. By 1946 several qualifiers were
introduced by the OED2 to differentiate between the different types of machine.
These qualifiers included analogue, digital and electronic.” According to the free
English dictionary Wiktionary (http://en.wiktionary.org), however, the usage of
the word “computer” as “a person employed to perform computations” is obso-
lete.



Computing and Interaction 11

Of course, by that time many people were not only convinced that legit-
imate computational applications need not involve heavy number crunching,
but were already actively working to bring about the changes that turned
fringe activities such as databases and graphics into the core of computing,
and reshaped it both as science as well as by expanding its domain of applica-
tions. Nevertheless, Thornton’s statement at the time represented the views
of a non-negligible minority that has only gradually diminished since. While
the numerical applications of computing have steadily grown in number, size,
and significance, its non-numerical applications have simply grown even faster
and vaster.

We are still at the tail-end of the second transition (from symbolic com-
putation to interaction) and trying come to terms with its full implications
on computer science and technology. This involves revisiting some established
areas, such as concurrency and software composition, from a new perspective,
and leads to a specific field of study concerned with theories and models for co-
ordination of interactive concurrent computations. Pragmatic concerns in soft-
ware engineering have often driven the advancement of computer science. The
transition from symbolic computation to interaction involves, among others,
coarse-grain reuse in component based software and (third-party) composition
of the behavior of services while their actual software cannot be composed.

Already, a growing number of vendors offer an increasing number of useful
computations and services packaged in various forms as specialized hardware
and/or software. Together with advanced communication networks, this sets
the stage to realize all sorts of new complex applications, from embedded
systems with demanding timing requirements to geographically distributed,
always-on, dynamically evolving cooperation networks of mobile autonomous
agents. Tackling the architectures of complex systems whose organization
and composition must dynamically change, e.g., to accommodate mobility,
or evolve and be reconfigured to adapt to short- as well as long-term changes
in their environment, presents new challenges in software engineering.

Two key concepts emerge as core concerns: (1) interaction, and (2) compo-
sitionality. While researchers have worked on both individually in the past, we
propose that their combination deserves still more serious systematic study
because it offers insight into new approaches to coordination of cooperating
interacting components that comprise such complex systems.

2 Computing

The formal notions of computing and computability were introduced by Alonzo
Church (1903–1995), in terms of λ-calculus, and Alan Turing (1912–1954), in
terms of Turing machines. Both Church and Turing were inspired by David
Hilbert’s (1862–1943) challenge proposed in his 1900 lecture delivered be-
fore the International Congress of Mathematics at Paris, to define a solid
foundation for (mechanical) effective methods of finding mathematical truth.



12 F. Arbab

Hilbert’s program consisted of finding a set of axioms as the unassailable foun-
dation of mathematics, such that only mathematical truths could be derived
from them by the application of any (truth preserving) mechanical operation,
and that all mathematical truths could be derived that way.

But, what exactly is a mechanical operation? This was what Church, Tur-
ing, and others were to define. Turing himself also intended for his abstract
machine to formalize the workings of the human mind. Ironically, his own
reasoning on the famous halting problem can be used to show that Turing
machines cannot find all mathematical truths, let alone model the workings
of the human mind2. Kurt Godel’s (1906–1978) incompleteness theorem of
1931, which brought the premature end of Hilbert’s program for mathemat-
ics, clearly shows the limits of formal systems and mechanical truth derivation
methods. By his halting problem, Turing intended to provide a constructive
proof of Godel’s incompleteness theorem: they both show that there are (even
mathematical) truths that cannot be derived mechanically, and interestingly
in both cases, the crucial step in the proof is a variation of the diagonalization
technique first used by Georg Cantor (1845–1918) to show that the infinity of
real numbers between any two numbers is greater than the infinity of natural
numbers.

It is far from obvious why Turing’s simple abstract machine, or Church’s
λ-calculus, is a reasonable formalization of what we intuitively mean by any
mechanical operation. However, all extensions of the Turing machine that
have been considered, are shown to be mathematically equivalent to, and no
more powerful than, the basic Turing machine. Turing and Church showed the
equivalence of Turing machines and λ-calculus. This, plus the fact that other
formalizations, e.g., Emil Post’s (1897–1954), have all turned out to be equiva-
lent, has increased the credibility of the conjecture that a Turing machine can
actually be made to perform any mechanical operation whatsoever. Indeed,
it has become reasonable to mathematically define a mechanical operation as
any operation that can be performed by a Turing machine, and to accept the
view known as the Church–Turing thesis: that the notion of Turing machines
(or λ-calculus, or other equivalents) mathematically defines the concept of an
algorithm (or an effective, or recursive, or mechanical procedure).

2 Intuitively, human beings believe that the human mind can perceive truths beyond
mathematics. If so, the working of the human mind is likely beyond the scope of
our formal systems. This may be because as Penrose argues [2], what goes on in
the human mind is substantially different than what our formal systems express.
He proposes that to comprehend the human mind, we require a hitherto lacking,
fundamentally important insight into physics, which is also a prerequisite for a
unified theory of everything.



Computing and Interaction 13

3 Interaction

The Church–Turing thesis can simply be considered as a mathematical defi-
nition of what computing is in a strictly technical sense; it reflects the notion
of computing of functions. Real computers, on the other hand, do much more
than mere computing in this restrictive sense. Among other things, they are
sources of heat and noise, and have always been revered (and despised) as
(dis)tasteful architectural artifacts, or pieces of furniture. More interestingly,
computers also interact: they can act as facilitators, mediators, and coordina-
tors that enable the collaboration of other agents. These other agents may in
turn be other computers (or computer programs), sensors and actuators that
involve their real world environment, or human beings. The role of a com-
puter as an agent that performs computing, in the strict technical sense of
the word, should not be confused with its role as a mediator agent that, e.g.,
empowers its human users to collaborate with one another (including, for in-
stance, word-processing, where a single user engages in self-collaboration over
a span of time). The fact that the computer, in this case, may perform some
computation in order to enable the collaboration of other agents, is ancillary
to the fact that it needs to interact with these agents to enable their collab-
oration. To emphasize this distinction, Wegner proposes the concept of an
interaction machine [3, 4, 5]. Some of the formal aspects of interaction ma-
chines are discussed in [6, 7, 8, 9]. Here we focus on the essential difference
between interaction machines and Turing machines.

A Turing machine operates as a closed system: it receives its input tape,
starts computing, and (hopefully) halts, at which point its output tape con-
tains the result of its computation. In every step of a computation, the symbol
written by a Turing machine on its tape depends only on its internal state
and the current symbol it reads from the tape. An interaction machine is
an extension of a Turing machine that can interact with its environment with
new input and output primitive actions. Unlike other extensions of the Turing
machine (such as more tapes, more controls, etc.) this one actually changes
the essence of the behavior of the machine. This extension makes interaction
machines open systems.

Consider an interaction machine I operating in an environment described
as a dynamical system E. The symbol that I writes on its tape at a given
step, not only depends on its internal state and the current symbol it reads
from the tape, but can also depend on the input it obtains directly from E.
Because the behavior of E cannot be described by a computable function,
I cannot be replaced by a Turing machine. The best approximation of I by
a Turing machine, T, would require an encoding of the actual input that I
obtains from E, which can be known only after the start of the computation.
The computation that T performs, in this case, is the same as that of I, but I
does more than T because it interacts with its environment E. What T does,
in a sense, is analogous to predicting yesterday’s weather: it is interesting
that it can be done (assuming that it can be done), but it doesn’t quite pass



14 F. Arbab

muster! To emphasize the distinction, we can imagine that the interaction of
I with E is not limited to just one input: suppose I also does a direct output
to E, followed by another direct input from E. Now, because as a dynamical
system, E is non-computable, and the value of the second input from E to I
depends on the earlier interaction of E and I, no input tape can encode this
“computation” for any Turing machine.

It is the ability of computers (as interaction machines) to interact with
the real world, rather than their ability (as mere Turing machines) to carry
on ever-more-sophisticated computations, that is having the most dramatic
impact on our society. In the traditional models of human–computer inter-
action, users prepare and consume the information needed and produced by
their applications, or select from the alternatives allowed by a rigid struc-
ture of computation. In contrast to these models, the emerging models of
human–computer interaction remove the barriers between users and their ap-
plications. The role of a user is no longer limited to that of an observer or an
operator: increasingly, users become active components of their running ap-
plications, where they examine, alter, and steer on-going computations. This
form of cooperation between humans and computers, and among humans via
computers, is a vital necessity in many contemporary applications, where re-
alistic results can be achieved only if human intuition and common-sense is
combined with formal reasoning and computation.

For example, computational steering allows human experts to intervene
and guide an on-going computation with which they interact through visu-
alizations of various scalar, vector, and tensor fields. Construction and ma-
nipulation of complex simulation models that use numerical approximation
and solutions of partial differential equations, e.g., in computational fluid dy-
namics and biology, already benefit from such techniques. The applications of
computer facilitated collaborative work are among the increasingly important
areas of activity in the foreseeable future. They can be regarded as natural
extensions of systems where several users simultaneously examine, alter, in-
teract, and steer on-going computations. The promise of ubiquitous computing
requires the full harnessing of the potential of these combinations. Interaction
machines are suitable conceptual models for describing such applications.

Interaction machines suggest a new perspective on composition. Tradition-
ally, software composition has focused on composition of algorithms, where
(the designer of) one algorithm, as part of its own internal logic, decides to
engage another algorithm, e.g., through a function call or a method invoca-
tion. Composed behavior ensues as a consequence of composing algorithms
and its implied flow of control. Interaction machines are self-contained enti-
ties that directly neither offer nor engage algorithms. They can be arranged
by third parties to engage one another only through their mutual interactions,
which involve no flow of control. This leads to composition of behavior where
the algorithms (embedded in the individual interaction machines) involved in
a composed system do not directly engage each other and (their designers)
remain oblivious to their composition.



Computing and Interaction 15

Van Leeuwen and Wiedermann offer a formal treatment of some of the
implications of interactive computing and its relationship with the more tra-
ditional views of computability in [10]. Goldin et al. [11] propose persistent
Turing machines (PTMs) as a stream-based extension to the Turing machine
model with persistence and the same notion of interaction as in interaction ma-
chines. They investigate the “minimal” changes to the Turing machine model
necessary for capturing the extra expressive power conjectured by Wegner for
interaction machines over Turing machines, using a general kind of transition
system called interactive transition systems (ITSs) as reference. They show
an isomorphism that implies every equivalence result over PTMs carries over
to ITSs, and vice versa.

Interaction machines have unpredictable input from their external environ-
ment, and can directly affect their environment, unpredictably, due to such
input. Because of this property, interaction machines may seem too open for
formal studies: the unpredictable way that the environment can affect their
behavior can make their behavior underspecified, or even ill-defined. But, this
view is misleading. Interaction machines are both useful and interesting for
formal studies.

On the one hand, the openness of interaction machines and their conse-
quent underspecified behavior is a valuable true-to-life property. Real systems
are composed of components that interact with one another, where each is an
open system. Typically, the behavior of each of these components is ill-defined,
except within the confines of a set of constraints on its interactions with its
environment. When a number of such open systems come together as com-
ponents to comprise a larger system, the topology of their interactions forms
a context that constrains their mutual interactions and yields well-defined
behavior.

On the other hand, the concept of interaction machines suggests a clear
separation of concerns for the formal study of their behavior, both as compo-
nents in a larger system, as well as in isolation. Just like a Turing machine, the
behavior of an interaction machine can be studied as a computation (in the
sense of the Church–Turing thesis) between each pair of its successive interac-
tions. More interestingly, one can abstract away from all such computations,
regarding them as internal details of individual components, and embark on a
formal study of the constraints, contexts, and conditions on the interactions
among the components in a system (as well as between the system and its
environment) that ensure and preserve well-behavedness.

Consider, for example, constructing a simple system using three black-
box components: a clock, a thermometer, and a display. The clock has an
output port through which it periodically produces a string of characters that
represents the current time. Similarly, the thermometer has an output port
through which it periodically produces a string of characters that represents
the current temperature. The display has an input port through which it
periodically consumes a string of characters and displays it. Our goal is to
build a system—similar to what one finds on top of some tall bank buildings—



16 F. Arbab

that alternately displays the current time and current temperature. It is the
constraints on the periods and the relative order of exchanges between these
three components that together shape the desired alternating behavior in
our composed system. It is at least as essential to study and express these
intercomponent constraints that define the behavior of a composed system, as
it is to study and specify the computation carried out by each of its individual
components. It is even more sensible to focus on such protocols and constraints
in isolation from intracomponent computation concerns. And this material is
the thread that weaves the fabric of coordination.

4 Concurrency

The concept of interaction is closely related to concurrency. Concurrency
means that different computations in a system overlap in time. The com-
putations in a concurrent system may be interleaved with one another on a
single processor or actually run in parallel (i.e., use more than one physical
processor at a time). Parallelism introduces extra concerns (over monopro-
cessor computing) such as interprocessor communication, the links that carry
this communication, synchronization, exclusion, consensus, and graceful re-
covery or termination in case of partial failures. The parallel computations in
a system may or may not be geographically distributed. Geographic distribu-
tion escalates the significance of the extra concerns in parallel computing by
increasing communication link delays, potential for partial failures, and the
difficulty of maintaining consistency, which together make schemes based on
central control and global views less tenable in practice.

Nevertheless, concurrency in itself does not change the essence of com-
puting. Clearly, interleaving is but one specific regiment for programming
a Turing machine. Parallelism, on the other hand, involves multiple Turing
machines. Although not obvious at the outset, it turns out that involving
multiple Turing machines does not increase their expressiveness: parallel sys-
tems are mathematically equivalent to a single Turing machine. This is not so
for interactive systems. What distinguishes an interactive system from other
concurrent systems is the fact that an interactive system has unpredictable
input from an external environment that it does not control.

The theoretical equivalence of (closed) concurrent systems and a Turing
machine is of little practical use. It is far more difficult to consider, design, and
reason with a set of concurrent activities than it is to do so with individual
sequential activities; the whole, in this case, is considerably more (complex)
than the sum of its parts.

The study and the application of concurrency in computer science have
a long history. The study of deadlocks, the dining philosophers problem, and
the definition of semaphores and monitors were all well established by the
early 1970s. Theoretical work on concurrency, e.g., CSP [12, 13], CCS [14],
process algebra [15], and π-calculus [16], has helped to show the difficulty of



Computing and Interaction 17

dealing with concurrency, especially when the number of concurrent activities
becomes large. Most of these models are more effective for describing closed
systems. A number of programming languages have been based upon some of
these theoretical models, e.g., Occam [17] uses CSP and LOTOS [18] uses CCS.
However, it is illuminating to note that the original context for the interest in
concurrency was somewhat different than the demands of the applications of
today in two respects:

• In the early days of computing, hardware resources were prohibitively ex-
pensive and had to be shared among several programs that had nothing
to do with each other, except for the fact that they were unlucky enough
to have to compete with each other for a share of the same resources.
This was concurrency of competition. Today, it is quite feasible to allocate
tens, hundreds, and thousands of processors to the same task (if only we
could do it right). This is concurrency of cooperation. The distinction is
that whereas it is sufficient to keep independent competing entities from
trampling on each other over shared resources, cooperating entities also
depend on the (partial) results they produce for each other. Proper passing
and sharing of these results require more complex protocols, which become
even more complex as the number of cooperating entities and the degree
of their cooperation increase.

• It was only in the 1990s that the falling costs of processor and commu-
nication hardware dropped below the threshold where having very large
numbers of “active entities” in an application makes pragmatic sense. Mas-
sively parallel systems with thousands of processors are a reality today.
Current trends in processor hardware and operating system kernel support
for threads make it possible to efficiently have in the order of hundreds of
active entities running in a process on each processor. Thus, it is not un-
realistic to think that a single application can be composed of hundreds of
thousands of active entities. Compared to classical uses of concurrency, this
is a jump of several orders of magnitude in numbers. When a phenomenon
is scaled up by several orders of magnitude, originally insignificant details
and concerns often add up to the extent that they can no longer be ig-
nored; we have not just a quantitative change (i.e., more of the same thing),
but rather a qualitative change (i.e., involving new properties, or even a
whole new phenomenon). In our view, grappling with massive concurrency
requires a qualitative change in (classical) models of concurrency.

The primary concern in the design of a concurrent application must be
its model of cooperation: how the various active entities comprising the ap-
plication are to cooperate with each other. Eventually, a set of communica-
tion primitives must be used to implement whatever model of cooperation
application-designers opt for; the concerns for performance may indirectly
affect their design.

It is important to realize that the conceptual gap between the system sup-
ported communication primitives and a concurrent application must often be



18 F. Arbab

filled with a nontrivial model of cooperation. Ideally, one should be able to
design and understand a concurrent system by separately understanding its
individual active entities, and how they cooperate. Precise description of how
this cooperation is to materialize has a shorter history than models, methods,
and languages for precise descriptions of individual active entities. Various
ad hoc libraries of functions (e.g., PVM [19], MPI [20], and CORBA [21])
have emerged as the so-called middle-ware layer of software to fill this con-
ceptual gap by providing higher-level support for developing concurrent (and
especially distributed) applications on top of the lower-level communication
models offered by operating system platforms.

The two classical approaches to construction of concurrent systems are
shared memory and message passing. In the shared memory model, a piece of
real, virtual, or conceptual memory is simultaneously made available to more
than one entity, which share accessing and modifying its contents through
atomic read/write or store/load operations. In the message-passing model,
entities communicate and synchronize by explicit exchange of messages.

In the shared memory model, communication is only a side effect of the
timing of the memory access operations that its subscribing entities perform,
and of the delay patterns induced by the inherent synchronization imposed
by their atomicity. Participation of an entity in any specific exchange, and
the whole communication protocol, are strongly influenced by ephemeral tim-
ing dependencies. These dependencies are equally likely to arise out of er-
rors, (lucky or unfortunate) coincidences, or subtle implicit ordering and data
dependencies that emerge from the global semantics of an application. The
shared memory model inherently supports indirect, anonymous communica-
tion among participating entities whose activities are decoupled from one
another in the temporal domain. But communication is not always explicitly
obvious in shared memory models.

Communication is the primary concern in message passing models, and
the synchronization involved, if any, is only a side effect of what it takes to
realize communication. There are indeed many substantially different variants
of message passing. Messages can be targeted or untargeted and the exchange
of a message may or may not involve a synchronizing rendezvous between
its sender and receiver. Object oriented programming ties the semantics of
message passing together with method invocation. This further complicates
the semantics of message passing by implicating the semantics of the invoked
method and the states of the entities involved in its execution. For instance,
when an object invokes a method m of another object, o, it expects o to
perform something “meaningful” as suggested by the name of the method m.
The (future) state of the calling object may depend on the fulfillment of this
expectation, which itself involves assumptions about the actual semantics of
the method m, as well as the state of the object o.

While each of the variants of shared memory and message passing commu-
nication models is useful for construction of concurrent systems, composition
of systems involving many active entities raises a number of issues that go



Computing and Interaction 19

beyond concerns for communication of their constituent entities. We address
this in the next section.

5 Composition

From houses and bridges to cars, aircraft, and electronic devices, complex
systems are routinely constructed by putting simpler pieces together. This
holds for software construction as well. We call a software construction com-
positional (with respect to a set of properties) only if the properties of the
resulting system can be defined as a composition of the properties of its con-
stituent parts. For instance, given the memory requirements Mp and Mq of
two programs p and q, the memory requirement of a system constructed by
composing p and q can be computed as a composition of Mp and Mq (e.g.,
Mp + Mq, max(Mp, Mq), etc., depending on how they are composed). On the
other hand, the deadlock-freedom property of a system composed out of p
and q cannot always be derived as a composition of the deadlock-freedom
properties of p and q.

According to one trivial interpretation of this definition, all software con-
struction is compositional: every complex piece of software eventually consists
of some composition of a set of primitive instructions, and in principle, its
properties can always be derived by applying its relevant rules of composition
to the properties of those primitives. This is precisely how one formally de-
rives the semantic properties of relatively simple programs from those of their
primitive instructions. However, this trivial interpretation of compositionality
quickly becomes uninteresting and useless for complex concurrent systems,
for the same reason that deriving interesting properties of a complex piece
of mechanical machinery from those of its constituent atoms is intractable.
With only a smidgen of exaggeration, one can say that attempting to derive
the dynamic run-time behavior of such software in this way is as hopelessly
misguided as trying to derive the properties of a running internal combustion
engine from an atomic particle model of the engine, its fuel, air, and electricity.

To be useful, our definition of compositionality must be augmented with
appropriate definitions of “its constituent parts” and “the properties” that
we are interested in. Both of these notions are manifestations of abstraction.
Instead of considering individual primitive instructions as the constituents of
a complex system, we must identify parts of the system such that each part
consists of a (large) collection of such primitives whose precise number and
composition we wish to abstract away as internal details of that part. The
properties of a collection of primitive instructions that are abstracted away
as internal details of a part, versus those that are exposed as the properties
of the part, play a crucial role in defining the effectiveness of an abstraction
and the flexibility of a composition. The more properties we hide, the more
effective an abstraction we have, allowing more freedom of choice in selecting
the precise collection or sequence of instructions that comprise an implemen-



20 F. Arbab

tation of a part. On the other hand, the less properties we expose, the less
of an opportunity we leave for individual parts to affect and be affected by
the exposed properties of other parts. This, in turn, restricts the possibility
of influencing the role that a given part can play in different compositions.

To identify the exposed properties of a part that can and cannot be in-
fluenced through its composition with other parts, we distinguish between
its behavior versus its semantics. To show the usefulness of this distinction,
consider a simple adder as a (software) part (for instance, consider this adder
as a process, an agent, an object, a component, etc.). This adder takes two
input values, x and y, and produces a result, z, which is the sum of x and y.
For this adder to be useful, it must expose its property of how it relates the
values x, y, and z, that is z = x + y. We call this the semantics of the adder
because it reflects the meaning of what it does. In addition to this semantics,
successful composition of this adder as a part in any larger system requires the
knowledge of certain other properties of the adder that must also be exposed.
For instance, we need clear answers to the following questions:

• Does the adder consume x and y in a specific order, or does it consume
whichever arrives first?

• Does it consume x and y only when both are available?
• Does it consume x and y atomically, or in separate steps that can poten-

tially be interleaved with other events?
• Does it produce z in a separate step, with possible interleaving of other

events, or does it compute and produce z atomically together with:
– the atomic consumption of both x and y, or
– the consumption of x or y, whichever is consumed last?

The answers to such questions define the (externally observable) behavior
of the adder, above and beyond its mere semantics. It is clear that even in
the simple case of our trivial adder, different alternative answers to the above
questions are possible, which means we can have different adders, each with its
own different (externally observable) behavior, all sharing (or implementing)
the same semantics, i.e., z = x + y.

The distinction between behavior and semantics is important in compo-
sition of all concurrent systems. However, it becomes essential in concurrent
systems where autonomy, anonymity, and reuse of parts comprise a primary
concern. Such is the case for a system composed of interacting machines,
which we contend serves as the best model for component-based concurrent
software. Components are expected to be independent commodities, viable
in their binary forms in the (not necessarily commercial) marketplace, devel-
oped, offered, deployed, integrated, and maintained, by separate autonomous
organizations in mutually unknown and unknowable contexts, over long spans
of time. It is impossible to determine the properties of a system composed out
of a set of components without explicit knowledge of both (1) the relevant
behavioral properties of the components, and (2) the composition scheme’s
rules that affect those properties.



Computing and Interaction 21

Traditional schemes for composition of software parts into more complex
systems rely on variants of procedure call (including method invocation of
object oriented models). Typically, each such scheme specifies much of the
extra-semantic properties of the behavior of the composed system by pre-
defining aspects of composition such as the (non)atomicity of the call and its
return result, synchronization points, permissible concurrency, etc. This lim-
its composition alternatives and restricts the possible behavior that can be
obtained by composing a given set of software part to the choices prescribed
in that scheme. Moreover, composition through procedure calls requires an in-
timate familiarity of the caller with the semantics of the called procedure (or
method), which creates an asymmetric semantic dependency between the two.
This semantic dependency, together with the unavailability of (or stringent
restrictions on) the means to control the extra-semantic behavioral properties
of a software composition at its composition time, severely limit the range
of possible variations that can be composed out of the same set of software
parts, which in turn limits the reusability of those software parts.

Component composition is expected to be more flexible than other forms
of software composition, such as module interconnections, method invoca-
tions, or procedure calls. It is expected to allow the same components to
play different roles in different compositions. This flexibility requires the abil-
ity to influence the behavior of components at the time of their composition
and places the emphasis in composition on interaction. Coordination models
and languages [22] address precisely the issues involved in managing the in-
teractions among the constituents of a concurrent system into a coherently
coordinated cooperation. However, the different mechanisms that various co-
ordination models offer to manage interaction do not all equally support the
increased level of flexibility required in component composition.

In the chapter “Composition of Interacting Computations” in this book,
we present a brief overview of coordination models and languages and offer
a framework for their classification. We then describe a specific model, called
Reo [23], that uniquely uses interaction as its only primitive concept for com-
positional construction of component coordination protocols.

6 Discussion

The classical notion of computing was forged to formalize and study the al-
gorithmic aspects of computing mathematical functions. Real computers do
more than compute mathematical functions; they also interact. Interaction is
an increasingly important aspect of the behavior of our modern (hardware
and software) computing devices, which often act as agents that engage and
communicate with other agents in the real world. Interaction is also the key
concern in the composition of complex computing systems out of independent
building block components that often run concurrently with one another. The
model of interaction machines extends the notion of computing, as what real



22 F. Arbab

computing devices do, beyond the classical notion of computing, as algorith-
mic evaluation of mathematical functions.

Our society increasingly relies on computing devices not only as number
crunchers and symbol manipulators, but more importantly, as mediators and
facilitators of interaction. Models of computation that incorporate interaction
as a primitive concept on a par with that of algorithmic computing form
the foundation for study, understanding, and reliable construction of modern
computing.

References

1. Thornton, J.: Design of a Computer: The Control Data 6600. Scott, Foresman
and Company, 1970.

2. Penrose, R.: The Emperor’s New Mind. Oxford University Press, 1990.
3. Wegner, P.: Interaction as a basis for empirical computer science. ACM Com-

puting Surveys 27, 1995, pp. 45–48.
4. Wegner, P.: Interactive foundations of computing. Theoretical Computer Sci-

ence 192, 1998, pp. 315–351.
5. Wegner, P., Goldin, D.: Computation beyond Turing machines. Communica-

tions of the ACM 46, 2003.
6. Wegner, P., Goldin, D.: Coinductive models of finite computing agents. In: Proc.

Coalgebraic Methods in Computer Science (CMCS). Volume 19 of Electronic
Notes in Theoretical Computer Science (ENTCS), Elsevier, 1999.

7. van Leeuwen, J., Wiedermann, J.: On the power of interactive computing. In van
Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T., eds.: Proceedings
of the 1st International Conference on Theoretical Computer Science — Explor-
ing New Frontiers of Theoretical Informatics, IFIP TCS’2000 (Sendai, Japan,
August 17-19, 2000. Volume 1872 of LNCS. Springer-Verlag, Berlin-Heidelberg-
New York-Barcelona-Hong Kong-London-Milan-Paris-Singapore-Tokyo, 2000,
pp. 619–623.

8. van Leeuwen, J., Wiedermann, J.: Beyond the turing limit: Evolving interactive
systems. In Pacholski, L., Ruicka, P., eds.: SOFSEM 2001: Theory and Practice
of Informatics: 28th Conference on Current Trends in Theory and Practice of
Informatics. Volume 2234 of Lecture Notes in Computer Science. Springer-
Verlag, 2001, pp. 90–109.

9. Wegner, P., Goldin, D.: Interaction, computability, and church’s thesis. British
Computer Journal, 2005 (to appear).

10. van Leeuwen, J., Wiedermann, J.: A Theory of Interactive Computation. In:
[24], 2006.

11. Goldin, D., Smolka, S., Attie, P., Sonderegger, E.: Turing machines, transition
systems, and interaction. Information and Computation Journal 194, 2004, pp.
101–128.

12. Hoare, C.: Communicating Sequential Processes. Communications of the ACM
21, 1978.

13. Hoare, C.: Communicating Sequential Processes. Prentice Hall International
Series in Computer Science. Prentice-Hall, 1985.



Computing and Interaction 23

14. Milner, R.: Communication and Concurrency. Prentice Hall International Series
in Computer Science. Prentice Hall, 1989.

15. Bergstra, J., Klop, J.: Process algebra for synchronous communication. Infor-
mation and Control 60, 1984, pp. 109–137.

16. Milner, R.: Elements of interaction. Communications of the ACM 36, 1993, pp.
78–89.

17. INMOS Ltd.: OCCAM 2, Reference Manual. Series in Computer Science.
Prentice-Hall, 1988.

18. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language
LOTOS. Computer Networds and ISDN Systems 14, 1986, pp. 25–59.

19. (PVM) http://www.csm.ornl.gov/pvm.
20. (MPI) http://www-unix.mcs.anl.gov/mpi/.
21. (CORBA) http://www.omg.org.
22. Papadopoulos, G., Arbab, F.: Coordination models and languages. In Zelkowitz,

M., ed.: Advances in Computers – The Engineering of Large Systems. Volume 46.
Academic Press, 1998, pp. 329–400.

23. Arbab, F.: Reo: A channel-based coordination model for component composi-
tion. Mathematical Structures in Computer Science 14, 2004, pp. 329–366.

24. Goldin, D., Smolka, S., Wegner, P., eds.: Interactive Computation: The New
Paradigm. Springer-Verlag, 2006 (this volume).




