
Turing, Computing and Communication

Robin Milner

Cambridge University, Cambridge, United Kingdom

Summary. This essay is a slightly edited transcription of a lecture given in 1997 in
King’s College, Cambridge, where Alan Turing had been a Fellow. The lecture was
part of a meeting to celebrate the 60th anniversary of the publication of Turing’s
paper On computable numbers, with an application to the Entscheidungsproblem,
published in the Proceedings of the London Mathematical Society in 1937.

1 Introduction

How has computer science developed since Turing’s founding ideas? His think-
ing bore strongly both upon the possibility of mechanical intelligence and
upon logical foundations. One cannot do justice to both in a short lecture,
and I shall continue the discussion of logical foundations begun in the previous
lecture.

Physical stored-program computers came to exist some ten years after
Turing’s paper on the entscheidungsproblem, notably with the EDSAC in the
Cambridge Mathematical Laboratory in 1949, under the leadership of Maurice
Wilkes; a great engineering achievement. Thus logic and engineering are the
two foundation stones of computer science; our constructions rest firmly on
both foundations, and thereby strengthen both. I shall discuss how the logical
foundation has developed through practical experience.

My thesis is that this logical foundation has changed a lot since Turing,
but harks back to him. To be more precise:

THESIS:

1 Computing has grown into informatics,
the science of interactive systems.

2 Turing’s logical computing machines are matched
by a logic of interaction.



2 R. Milner

My message is that we must develop this logical theory, partly because other-
wise the interactive systems which we build, or which just happen, will escape
our understanding and the consequences may be serious, and partly because
it is a new scientific challenge. Besides, it has all the charm of inventing the
science of navigation while already onboard ship.

2 Concepts in Computer Science

In natural science, concepts arise from the urge to understand observed phe-
nomena. But in computer science, concepts arise as distillations of our design
of systems. This is immediately evident in Turing’s work, most strikingly with
the concept of a universal logical computing machine.

By 1937 there was already a rich repertoire of computational procedures.
Typically they involved a hand calculating machine and a schematic use of
paper in solving, say, a type of differential equation following a specific al-
gorithm. Turing’s class of logical computing machines—which he also called
“paper machines”—was surely distilled from this repertoire of procedures.
But he distilled more, namely the idea of a universal paper machine which
can analyse and manipulate descriptions of members of the class, even of
itself. This demonstrated the logical possibility of the general-purpose stored-
program computer.

Turing also, among others, distilled the idea of the subroutine in comput-
ing. The distillation of this idea was a continuing affair, and didn’t happen
all at once. Turing’s term for subroutine was “subsidiary operation”; anyone
familiar with numerical methods must have known exactly what that meant
when referring to humanly performed operations.

A concept rarely stands clear unless it has been reached from different an-
gles. The gene is a prime example; it was seen first logically, then physically.
So each computer design, whether logical or—like the EDSAC—physical, was
a step in the distillation of the notion of subroutine. The distillation continued
with the notion of parametric procedure in high-level programming languages
such as ALGOL, where the humble subroutine was endowed with a rich tax-
onomy which might have surprised Turing himself. Each high-level language
is, at least, a universal paper machine; but each one also expresses higher-level
concepts distilled from practice.

In modern computing we build and analyse huge systems, equal in com-
plexity to many systems found in nature—e.g., an ecology. So in computing,
as in natural science, there must be many levels of description. Computer sci-
ence has its organisms, its molecules and its elementary particles—its biology,
chemistry and physics:



Turing, Computing and Communication 3

Levels of Description

Natural Science Computer Science
Biology organisms Databases, networks, . . .
Chemistry molecules Metaphors of programming
Physics particles Primitives of programming

(elements)

At the level of organism we find, for example, species of database and net-
work, each with a conceptual armoury. At the level of molecule we find the
metaphors, like parametric procedure, provided by programming languages.
At the particle level we find—as it were—the most basic parts of speech. (I
make no apology for talking so much in terms of language. Computers like
screwdrivers are prosthetic devices, but the means to control them is linguis-
tic, not muscular.) The best of these parts of speech and the best of the
metaphors become accepted modes of thought; that is, they become concepts.

3 From Metaphor to Concept

I shall now discuss a couple of molecular concepts or metaphors, distilled over
the last thirty years, in which the notion of interaction is prominent.

There is a Babel of programming languages. This is not surprising; much
of the world we live in can be modelled, analysed or controlled by program,
and each application domain has its own structure. But sometimes a central
idea finds its first clear expression in a language designed for a particular
problem domain. Such was the case with the problem domain of simulation.

In the 1960s there was a great vogue in simulation languages. New ones
kept emerging. They all gave you ways of making queues of things (in the
process which you wished to simulate), giving objects attributes which would
determine how long it took to process them, giving agents attributes to de-
termine what things they could process, tossing coins to make it random, and
recording what happened in a histogram. These languages usually did not
last; one can simulate so many real-world processes that no single genre of
language can cover them all. So simulation languages merged into the general
stream.

But not without effect. One of them highlighted a new metaphor: the
notion of a community of agents all doing things to each other, each persisting
in time but changing state. This is the notion known to programmers as an
object, possessing its own state and its repertoire of activities, or so-called
methods ; it is now so famous that even non-programmers have heard of it.
It originated in the simulation language known as Simula, invented by Ole-
Johann Dahl and Kristen Nygaard. Object-oriented programming is now a
widely accepted metaphor used in applications which have nothing to do with
simulation. So the abstract notion of agent or active object, from being a



4 R. Milner

convenient metaphor, is graduating to the status of a concept in computer
science.

Even more fundamental to computing, at the molecular level, is the time-
honoured concept of algorithm. Until quite recently it could be defined no
better than “the kind of process enacted by a computer program”, which is
no help at all if we are trying to understand what computational processes
are! But recently algorithms have come to be characterized precisely as game-
theoretic interactions. We could hardly wish for better evidence that the notion
of interaction is basic to computer science.

4 Concurrent Processes

The notion of agent or active object brings programming ontology—if you like,
the metaphors programmers use in design—much closer to the real world. So
why, you may ask, did we not always write programs in terms of interactive
agents? The answer lies partly in von Neumann’s so-called bottleneck, and I
want to describe this before I talk about new parts of speech, or elements.

The early computers all followed the model of John von Neumann, in
which—as far as the programmer was concerned—only one thing could hap-
pen at once; at any given time only one agent could be active. So the possi-
bility of concurrent activity or even co-existence of such agents could not be
expressed in a program—even though underneath, as it were in the machine’s
subconscious, many wheels would whirr and circuits cycle simultaneously. One
can speculate why this sequential discipline was adopted. The familiar calcu-
lational procedures, which computers were designed to relieve us of, were all
inherently sequential; not at all like cooking recipes which ask you to conduct
several processes at once—for example, to slice the beans while the water is
coming to the boil. This in turn may be because our conscious thought process
is sequential; we have so little short term memory that we can’t easily think
of more than one thing at once.

The bursting of von Neumann’s bottleneck is due in part to the premature
birth and later triumph of the metaphor of object-oriented programming. But
a river never breaks its banks in one place. In the 1960s and 1970s the de-
signers of computer operating systems, people like Edsgar Dijkstra and Tony
Hoare, were ill-content with sequential programming metaphors. Program-
ming in the von Neumann model was too much like a child’s construction
kit; you can build the lorry but you can’t build the engine. Consider several
programs running simultaneously inside a computer. They may only appear to
run simultaneously, by virtue of time-slicing, but in any case you need to write
the master program—the so-called operating system—which controls them all
by interacting with them. This is not sequential but concurrent activity; you
need new language to express concurrent activity, and new theory for it. You
cannot decently express it as a metaphor in a sequential language.



Turing, Computing and Communication 5

Indeed, in the same period, Carl-Adam Petri developed a new model of
concurrent processes not only to describe computational behaviour, but also
to model office information systems. He was among the first to point out that
concurrency is the norm, not the exception.

What this amounts to is that computer scientists began to invent new
parts of speech, new elements, to express the metaphors suitable for interactive
concurrent systems.

5 The Old and the New Computer Science

The first part of my thesis was that the river of computer science has indeed
burst its von Neumann banks, and has become a structural theory of interac-
tion. I call it informatics here; I don’t know a better word which is as free of
misleading connotation. It goes far beyond describing what programs do; it
claims that the kind of interactions which go on under the bonnet of a sequen-
tial program are no different from those which occur —even involving human
components— in the world outside. For example, we have no need to describe
these two systems in different terms, if we are thinking of information-flow:

INSIDE OUTSIDE

Processor —— Memory Cashpoint —– Bank
\ / \ /

Screen Person

Thus software, from being a prescription for how to do something —in
Turing’s terms a “list of instructions”— becomes much more akin to a de-
scription of behaviour, not only programmed on a computer, but occurring
by hap or design inside or outside it. Here is a set of contrasts, distinguishing
the old computer science as a limiting case of the new:

Old Computing New Computing
Prescription · · · Description
Hierarchical design · · · Heterarchical phenomena
Determinism · · · Nondeterminism
End-result · · · Continuing interaction

(Extension) (Intension)

Take the first line: Software no longer just prescribes behaviour to take
place inside a computer; instead, it describes information flow in wider sys-
tems.

Take the second line: We can no longer confine ourselves to systems which
are neatly organised, like an army with colonels and platoons. Consider the
Internet; it is a linkage of autonomous agents, more of an informatic rab-
ble than an army. Of course we built many of its parts; but the whole is a
heterarchical assembly—something of a natural phenomenon.



6 R. Milner

Take the third line: We can never know enough about an assembly of au-
tonomous agents to predict each twist in its behaviour. We have to take non-
determinism as elementary, not just temporary laziness which we can amend
later by supplying values for all the hidden variables.

Take the fourth line: The meaning of a conventional computer program, as
far as a user is concerned, is just the mathematical function it evaluates. But
we users are inside our interactive systems; we care about what continually
goes on. The meaning surely lies in the whole conversation, not just its end-
result. (Indeed there may be no end-result, since there may have been no
goal.)

Now, here are some sharper contrasts which hint at what might be the
elements of a mathematical theory of interactive systems:

Computation Interaction
active entity P : program active object, agent
its meaning: function process
statics (combination): sequential composition parallel composition

P1; P2 P1 ‖ P2

dynamics (action): operate on datum send/receive message

In the first line, note especially that all programs are prescriptive—they
are designed with a purpose; agents need be neither designed nor purposeful.
As for meanings, there is a big knowledge gap; we have an impressive mathe-
matical theory of functions, but we still have no consensus on a corresponding
theory of discrete processes. (Of course we are working on it.) The composi-
tion of programs emphasizes the sequentiality imposed by the designer; but in
interactive systems everything can happen as soon as the interactions which
trigger it have occurred. Finally, concerning action, note the asymmetry in
computation between an active operator and a passive operand; in an inter-
active system, messages pass between active peers.

6 Elements of Interaction

Now, what are the new particles —parts of speech, or elements— which al-
low one to express interaction? They lie at the same elementary level as the
operation of a Turing machine on its tape, but they differ. For much longer
than the reign of modern computers, the basic idiom of algorithm has been
the asymmetric, hierarchical notion of operator acting on operand. But this
does not suffice to express interaction between agents as peers; worse, it locks
the mind away from the proper mode of thought.

So we must find an elementary model which does for interaction what
Turing’s logical machines do for computation. The second part of my thesis
was that there is a logic of informatic action, and in my view it is based upon
two fundamental elements:



Turing, Computing and Communication 7

Logical Elements of Interaction
Synchronized action

Channel, or vocative name

These two fit together perfectly; indeed, like quarks, they hardly exist
apart. Synchronization is between an action—the vocative use of a name—by
one agent, and a reaction by another. At this level, names and channels are the
same thing; in fact, they are the essence of several superficially different things
which computer scientists have called links , pointers , references, identifiers,
addresses , . . . , and so on. These elements seem slight in themselves, but they
serve to unify our theory; they can form the basis of a logical calculus not only
for traditional computation but for the wider range of interactive systems.

There are many systems of increasing importance in our lives which show
the pervasive role played by naming and synchronized action. We don’t have
to look far for an example; consider simply a document—not a paper copy,
but the virtual kind that exists on the Internet:

• A piece of hypertext representing a document exists nowhere in linear
form. It’s a mass of pointers, or names, which link its parts in a tree-like
way.

• But it does not stop at tree-like structures. Parts of the document will be
links into other structures; many links to one structure, for economy.

• When you “click” on such a link, you synchronize your action with an
action by the document.

• It does not stop at static structures; some links may command a translation
or even a summarization of the text-agent which they call.

• Not all parts reside at one site; some parts may lie across the Atlantic.
• It does not stop at textual structures. Some links will call up animated

pictures, others will provide exercises for the reader, games to play, and
so on.

All this, just starting from the notion of a document! The web will be
much more tangled for other applications. But the point is that you don’t
just read a document like this—you interact with it.

I ask you to think of the term “information” actively, as the activity of
informing. An atomic message, then, is not a passive datum but an action
which synchronizes two agents. Our example of active documents has shown
that the active/passive polarization between operator and operand, between
process and data, is no longer realistic—and we have removed this limitation.

7 Reflection: Back to Turing

We have briefly explored what computer science has become, having been
launched logically by Turing, and physically by the earliest computers. The
technological story is of course a marvel, and has been a prerequisite for the



8 R. Milner

informatic story, which is what concerns us here. To summarize: Turing’s
paper machines have evolved into the kind of informatic web in which we now
live. They are truly virtual, not physical; they are webs of naming, calling,
migrating in a sense which has little to do with where they reside, or with
how they are physically represented.

Can we ask about these webs the kind of question Turing asked about
his paper machines? Both Turing machines and informatic webs are what
Herbert Simon and Allen Newell have called symbol systems. In each class of
symbol systems, one can ask whether a member of the class can represent
and manipulate some property of the class itself. Such a phenomenon is called
reflection. In particular, consider the following:

• A computing entity can compute a means of computing (consider the uni-
versal Turing machine).

• Can a cognitive entity know about knowing?
• Can a learning entity learn how to learn?

. . . and so on. If the answer is “yes”, we are inclined to think that the class
of entities is properly adult, has come of age. Consider then:

• Can a communicating entity communicate a means of communicating?

This question differs intriguingly from the one about computing entities,
because it concerns systems of agents in a heterarchy. In a heterarchy you
cannot manipulate another agent, in the sense that a universal Turing machine
interprets another. The concept of a universal Turing machine relies on a
sharp distinction between passive data (e.g., the description of a machine)
and active agent (e.g., the machine itself), and I have made a case for eroding
this distinction. But in an interactive system you can, by communicating with
your neighbour, acquire new links and relinquish old ones. So distributed
computing is also adult, in the above sense. In our informatic webs, agents
can acquire new contacts by link-manipulation, and so realize new forms of
behaviour. That is, a web can spin itself.

To conclude: I believe that computing has evolved in a direction which
would excite Alan Turing. His search for primitives continues to inspire our
search. He would surely agree that these primitives must relate to computing
practice, since he himself spent much effort on plans to build a physical com-
puter, the ACE, not just logical ones. In the same way, but in a wider sense,
our primitives relate to informatic practice. So I shall be sorry if computer
science ever flies apart into two disciplines, one theoretical and one technolog-
ical. We are back to our two foundation stones, logic and engineering; among
all his other legacies, Turing embodies the wisdom of arching between them.




