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Summary. This paper first reviews several learning methods for training Hopfield-
type associative memories as well as a novel architecture with neurons of
nonmonotonic stimulus functions. These learning rules are classified into three
groups according to a measure of stability closely related to the storage capac-
ity. This measure helps us better study the ability of a network to store patterns
as stable states of its dynamics in case it is highly loaded. We then analyze the ex-
perimental data related to the stability measure and classify the previously studied
learning methods according to the measure. We also show that the behavior of those
learning rules converges to either the behavior of Hebbian learning or that of the
pseudo-inverse method.
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1 Introduction

Hopfield-type neural networks are shown to be amenable to thorough analysis.
They have simple synthesis procedures and interesting aspects for scientific
investigations including those related to the content addressability [3], stor-
age capacity [8], robustness against noise and adaptability to the neurons’
malfunction [10]. Fundamentally, networks of Hopfield-type suffer from poor
capacity and performance. Many architectures are innovated to remedy the re-
strictions of the Hopfield associative memory, including those trying to modify
the connections and updating schemes (for example [12]) and those employing
new learning rules [2].

This paper tends to classify some architectures and learning rules accord-
ing to a stability condition related to the storage capacity of the network. Of
course, there are many other capacity and performance indices, which are open
to examine for Hopfield-like architectures, and we leave them to the forthcom-
ing articles. We first review the conventional Hopfield network model. Then we
discuss the capacity issues in recurrent associative memories. Some learning
methods for Hopfield networks are discussed in Sect. 3 and finally we classify
them according to a stability measure by experimental analysis.
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2 The Hopfield Model and Its Storage Capacity

The Hopfield network is a recurrent neural network governed by the difference
equation:

ai(0) = pi, ni(t+ 1) =
N∑
j

wijaj(t) + bi, ai(t+ 1) = f(ni(t+ 1))

f(u) = sgn(u)
(1)

where pi is the unknown pattern to be recognized, ai is the output of the
network, wij is the connection weight between neurons i, j, bi is the threshold
term and the stimulus function is f(u). This is a discrete version of the Hop-
field model. The connection weight matrix should be calculated to store the
required prototype patterns as fixed states of the network dynamics so that
patterns can be recalled from noisy or incomplete initial inputs.

2.1 Storage Capacity

The storage capacity of the Hopfield-like associative memories is of great
consideration in the neurocomputing literature. It is formulated by either big
O notation in terms of the number of neurons (Mc), or the relative capacity
αc defined as αc = L/N , where L is the number of patterns stored and N is
the number of neurons.

Although one can place any load upon a neural system, there is obviously
a value for α above which some of the vectors in the training set will not be
stored as stable states. We refer to this as the maximum permissible loading
(or just loading) and denote it by αmax. Both of the aforementioned formula-
tions are deeply discussed and it has been shown that for randomly realized
unbiased binary patterns, αmax ≈ 0.14 and Mc = N/ logN [8].

3 Some Learning Methods and Architectures

There are several methods to obtain a weight matrix with higher perfor-
mance for a recurrent associative memory. We consider here, Hebbian, pseudo-
inverse, Menhaj–Seifipour, and Li–Michel learning rules. Besides, we examine
the architecture proposed by Yanai and Amari [12] which uses nonmonotonous
stimulus functions for the neurons.

3.1 Hebbian Learning

This is the conventional learning rule for recurrent associative memories with:

wij =
L∑

l=1

pl
ip

l
j (2)
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3.2 The Pseudo-Inverse Method

The Pseudo-inverse rule is introduced by Personnaz et al. [11] and studied
deeply by Yen and Michel [13] to generate the weight matrix according to the
rule:

W = PP+ (3)

where P is the matrix whose columns are the pland P+ is its pseudo-inverse,
the matrix with the property that: P+P = I. It is notable that many modified
methods such as Perceptron-style methods are approximate versions of the
pseudo-inverse method [3–5].

3.3 Menhaj–Seifipour Algorithm

Menhaj and Seifipour propose a new algorithm, and state that it has a better
storage capacity and a higher speed of convergence [9]. They build the memory
matrix by:

rij =
1
2L

L∏

l=1

(pl
i + pl

j) (4)

W = RTR (5)

This network is proved to minimize the energy function:

E(t) = −
∑

i

∑

j

wij [ai(t) + aj(t)]2 − 4
∑

i

bi(t)ai(t) (6)

Additionally, the matrix built by the above rule is sparse and results in a
higher decrease of the energy function in each time-step than the classical
Hopfield network with Hebbian learning. The architecture of sparsely con-
nected networks is studied by Liu and Michel and the sparse nature of the
networks is proved to be beneficial [7].

3.4 Li–Michel Learning Rule

Li–Michel synthesis method relies on a vigorous mathematical foundation, i.e.,
analysis of linear systems operating on a hypercube [6]. For the sake of clarity,
we just present a brief algorithm, without thorough theoretical considerations.

To store L prototype patterns in a Hopfield-type memory as asymptotically
stable equilibrium points, let:

X = [x1, x2, . . . , xL−1], xi = pi − pL, i = 1, 2, 3, . . . , L− 1 (7)

Then obtain a Singular Value Decomposition of X:

X = USV T , U = [u1, u2, . . . , uN ] (8)
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Suppose that k is the rank of S, then k is the dimension of the space spanned
by xi’s. Then the weight matrix and the bias vector are obtained by:

W+ =
k∑

j=1

uju
T
j W− =

N∑

i=1

uiu
T
i (9)

W+ = αW+ − βW−b = αpL −WpL (10)

in which α, β are properly selected constants which satisfy: α > 1, β < 1.
This algorithm guarantees the system to have at most 3Nequilibrium

points. Additionally, at most 2Nof the equilibrium points are asymptotically
stable.

3.5 Yanai–Amari Architecture

Yanai and Amari [12] propose an associative memory with two stage nonlinear
dynamics:

a(k + 1) = sgn[W (a− f(Wa))] = sgn[Wa−Wf(Wa)] (11)

They use a nonmonotonic function for their network:

f(u) =

⎧
⎨

⎩

a(u+ h)− c
0
a(u− h) + c

u < −h
−h ≤ u ≤ h
u > h

(12)

where h and c are non-negative. We used a = 0.4, h = 0.1, c = 0 in this
paper.

4 Empirical Analysis of Storage Capacity

To obtain the relative capacity of the models examined, we trained Hopfield-
type networks of 100 neurons, with a set of random unbiased prototype pat-
terns. Loading was increased and the response of the network to an erratic
version of one of the stored patterns (with a Hamming distance of 10) is eval-
uated, and the normalized overlap (1−Hd/N) of the response and the stored
pattern is illustrated in Fig. 1. The absolute capacity is usually defined as the
maximum loading in which the network can recall a pattern more than 90%
(and sometimes exactly 100%) perfectly.

It is obvious from Fig. 1 that αmax is 0.15, 0.35, 0.25, and 0.05 for Hebbian,
pseudo-inverse, Li–Michel and Menhaj–Seifipour learning rules, respectively.
It is also notable that in high loadings, Hebbian learning is able to recall the
patterns with a 70% overlap, but other rules recall the patterns with more
than 94% overlap, although loaded highly. Yanai and Amari reported α = 0.3
for their architecture [12].
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Fig. 1. Pattern recall by (a) Hebbian learning (b) pseudo–inverse rule (c) Li–Michel
rule (d) Menhaj–Seifipour training method. Each network has 100 neurons and is
trained by random patterns. Every point on the plots is generated by averaging over
20 runs. N = 100

5 Classification of Hopfield Memories via a Stability
Measure

Abbott classified all Hopfield models into three groups. Any member of each
group may have a different behavior when the loading upon it is not near
αmax, but all members loaded near αmax have the same behavior [1].

From the dynamic equations of the network, it can be seen that a state a
will be stable if ni has the same sign as ai for all i. So, the parameter niai

should be non-negative for all i in order for the network to have a pattern p
as its stable equilibrium point. Furthermore, assume a network with a set of
stable states. The weight matrix could be scaled by any positive number, and
thereby the synaptic signals will increase (and obviously the niai’s) but the
domains of attraction of the stable states will not get wider. Thus, the follow-
ing stability measure is defined to characterize the nature of stable states:

γl
i =

nl
ip

l
i

‖Wi‖
‖Wi‖ =

√√√√
N∑

j=1

(wij)2 (13)

Considering the worst case analysis, the minimum value of γl
is is a parameter

for identification of the network’s basins of attraction [5].
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The global groups of recurrent networks are different in the distribution
of their γ values. The first group, known as Hopfield group, has a normal
distribution with a mean of 1/

√
α, α < 0.15. In this group of models, negative

values of γ could be present in the network, and this is a sign of the existence
of unstable patterns (Hopfield network with Hebbian learning is within this
group of models).

The second group has matrices of pseudo-inverse type. The γ values theo-
retically converge to the same value γ0 =

√
(1− α)/α. So we suppose a notch

distribution of γ values in our numerical results. The third group has a clipped
normal distribution, with positive γ values [4].

6 Classification of the Models via Experimental Analysis

In this section, we analyze the γ distributions of different algorithms in the
paper. Figure 2 depicts different γ distributions for the learning rules. The
distributions are plotted by training networks consisting 1,000 neurons with
a set of 500 unbiased random bipolar patterns.

It is easily observed that Hebbian learning causes a normal distribution of
γ’s. It is notable that many values of γ are negative, so in high loadings, some
of the patterns will not be stored as stable states.
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Fig. 2. Gamma distributions of (a) Hebbian learning (b) network with non-
monotonic neurons (c) pseudo-inverse rule (d) Li–Michel learning rule. Each network
is trained by 500 patterns and has 1,000 neurons



Classification of Some Hopfield-Type Learning Rules 81

The pseudo-inverse rule, as the canonical model of the second group, is
tested by γ values as well and a notch distribution is resulted. Li–Michel
learning rule results in a very notch distribution with no negative values.
Thereby, it could be concluded that this rule falls into the pseudo-inverse
class of models. It may be a cause of its high performance (this procedure was
performed many times and γ never became negative).

Yanai and Amari state that their proposed model is an approximation of
the pseudo-inverse rule. The γ distribution of this rule has negative values, so
it could not be classified into the pseudo-inverse group, although the γ values
are not distributed very widely, and it is less likely that the γ’s be negative (in
some cases, the authors encountered distributions without negative values).
The architecture is therefore classified into the first group.

About Menhaj–Seifipour learning rule, we inspected the convergence prop-
erties of the network’s γ distribution (Fig. 3). We plotted the γ distributions in
different loadings. In high loadings the γ values converge to the same amount
of γ0 = 1 and this fact helps us figure out that this rule could be classified
in the pseudo-inverse group of models. When the number of stored patterns
becomes large even though the loading is low, the matrix constructed by the
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Fig. 3. Gamma distributions of Menhaj rule with (a) L = 5 (b) L = 9 the network
is not loaded very highly and the distributions behavior is not similar to that in the
saturation. With (c) L = 11 (d) L = 15 the network’s distributions converge to a
notch distribution. The notch distribution is reached when the number of patterns
grows and it does not related to the number of neurons, because the resulting weight
matrix converges to the identity matrix. For biased data this convergence will be
slower. Here the number of neurons is N = 1,000
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Fig. 4. Gamma distributions for biased patterns. (a) Hebbian (b) pseudo-inverse
(c) Michel (d) Yanai–Amari N = 1000, L = 300

rule will converge to the identity matrix and all γ values become the same,
which is similar to the theoretically derived distribution for the pseudo-inverse
group of models.

We also analyzed the effect of bias on patterns in γ distributions. We
trained the networks with a set of random patterns in which the probability
of presence of 1 is 90%, in contrast to the case of unbiased patterns, in which
this probability is 50% (Fig. 4). It is obvious that Hebbian learning and Yanai
model are not tolerant to biased data, in contrast to Michel and pseudo-inverse
rules which maintain their notch distribution.

7 Conclusion

In this article, we classified different algorithms of learning via stability mea-
sures proposed by Abbott. We showed that Li–Michel and Seifipour–Menhaj
rules’ behaviors converge to that of the pseudo-inverse method. The behavior
of the Yanai–Amari network model converges to that of the Hopfield model,
although because of its nature, it has a similarity with the pseudo-inverse
group of models. We leave deeper discussions about the information theo-
retical aspects of Menhaj–Seifipour rule, finding the shape and size of the
attraction basins of the discussed rules and the convergence properties of the
networks trained by them to future contributions.
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