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Summary. This paper introduces applying a neural-based method for determining
minimum embedding dimension for chaotic time series analysis. Many methods have
been proposed on selecting optimal values for delay embedding parameters. Some
frequently used methods are investigated and practically implemented, and then by
using artificial neural networks (ANN) as one of components of the computational
intelligence (CI) an approach was proposed to determine the minimum embedding
dimension. This approach benefits from the multilayer feedforward neural networks
ability in function approximation. The advantage of this method is that it gives a
global nonlinear model for the system that can be used for many purposes such
as prediction, noise reduction and control. Based on the achieved neural model an
indirect algorithm for maximal Lyapunov estimation was suggested.
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1 Introduction

Analysis of time series derived from successive measurements of the underly-
ing system is the most straightforward way to understand the nature of the
underlying system. Chaotic systems that show extremely complex behavior
and amazing structures are of the great interest for researchers because the
time series data arise from such systems seem to be originated from the in-
trinsically random phenomena, but they come from deterministic nonlinear
dynamical systems [3]. When we are encountered with a nonlinear system
which behaves chaotically in some parts of its parameter space, linear data
analysis fails and despite of the determinism leads to the false conclusion that
the system is stochastic [1, 3]. This was a strong reason for developing some
nonlinear techniques to uncover the deterministic structures. Chaotic behav-
ior has appeared in economics, astrophysics, meteorology, biology, chemical
processes and so many other real life events [1, 3].

The nonlinear time series methods studied here are based on the theory
of dynamical systems which are defined by an m-dimensional map or an
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m-dimensional flow in the forms presented in (1) and (2):

xn+1 = F (xn) (1)

ẋ(t) = f(x(t)) (2)
Moreover, we are interested in dissipative systems for which the volume is
contracted by the time evolution if the phase space is finite dimensional [2]. For
such systems, a set of initial conditions of positive measure will be attracted
to some invariant subspace of phase space called the attractor after some
transient time. The set of initial conditions leading to the same nontransient
behavior is referred to the basin of attraction [1].

Since the dynamics of such systems are defined in some phase space, it
is natural to reconstruct the phase space of the investigated system from the
observations taken from system’s output. There are two fundamental methods
for phase space reconstruction, Delay coordinates and Derivative coordinates
[3]. The last is not suitable for experimental data, because Derivatives are
susceptible to noise [1, 3]. Thus the Delay reconstruction is considered for
practical aspects. This method has two parameters, the delay embedding and
the delay time. The appropriate adjustment of these parameters is important
in practice [1, 3–5, 12]. This paper discusses various conventional methods to
select these parameter in an optimal manner, and then introduces a method for
determining minimum embedding dimension estimation. This method utilizes
the artificial neural networks (ANN) as one of the elements of computational
intelligence (CI) and has called the predictive method. Traditional methods
for embedding dimension estimation are usually exploiting from the fact that
the determinism should not be violated and the invariants should not be
changed due to the reconstruction process. Besides satisfying these conditions,
the proposed method processes more flexibly resulting in a global nonlinear
model for the underlying system.

The rest of the paper organized as follows. In Section 2 we first review the
eminent features of chaotic systems, then investigate some nonlinear tools in
order to distinguish chaotic time series from the others via quantifying these
characteristics. To do so, we present the Lyapunov exponents in Section 3.
The natural instability of a chaotic systems manifest itself in positive maximal
Lyapunov exponent. A robust direct algorithm was described to measure this
nonlinear statistics. Section 4 is devoted to the phase space reconstruction
from the given time series and its related theorems. Sections 5 and 6 present
various routines for time lag selection and embedding dimension determination
for delay reconstruction. Section 7 was dedicated to neural based predictive
approach and its procedure. Based on this proposed approach, an algorithm
was suggested to estimate the maximal Lyapunov exponent in Section 8. This
algorithm reduces the computation complexity with respect to the algorithm
described in Section 3. The given methods are practically implemented and
applied to the measured data of Colpitts chaotic oscillator. Simulation results
are presented in Section 9. Finally Section 10 concludes the paper.
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2 Characteristics of Chaotic Systems

The first key feature of chaotic systems is their determinism. Chaos theory says
that the random variables are not the only possible sources of irregularity [1].
Irregularity can be seen in deterministic nonlinear dynamical systems’ outputs
in some part of their parameter space. Interesting attractors can occur in such
deterministic systems.

The hallmark of chaos is the exponential divergence of nearby trajectories
due to the instability of solutions. This property has been referred to sensitive
dependence on initial conditions, and makes the system unpredictable in spite
of the deterministic evolution. For dissipative systems exponential separation
happens in the stretching directions. Other directions are so much contracted
such that the dissipation condition satisfies [2].

This dynamical aspect of chaos has its corresponding side in the geometry
of the attractor [1]. The nonlinearity, the dissipation and the invariance of the
attractor together with the exponential divergence cause the attractor folded
in the phase space and mapped to itself. This process leads to some kind of
self-similarity known as statistical type [5]. If a piece of a strange attractor is
enlarged, it will resemble itself. Due to this reason the attractors of chaotic
systems have been called strange. Strange attractors show globally bounded
but locally instable behavior.

The last key property is related to the power spectrum of these systems.
Although their power spectra still may contain peaks, a noisy background of
broadband spectrum is present [1,3]. We cannot use this feature to distinguish
a noisy quasiperiodic signal from a chaotic one.

In order to verify the chaos, we can define some criteria for investigating
these properties.

3 Maximal Lyapunov Exponent

According to the sensitive dependence on initial conditions in chaotic sys-
tems, an initial infinitesimal perturbation will typically grow exponentially;
the averaged exponent of this growth rate is called the Lyapunov exponent
that quantifies the strength of chaos [1, 15].

The number of definable Lyapunov exponents is equal to the phase space
dimensions [1,15]. Such Lyapunov spectrum is denoted by (λ1, . . . , λm), where
subscript m denotes the phase space dimension. The maximal Lyapunov ex-
ponent, λ, is the most important element of the spectrum because it has
a dominant behavior, and its positiveness is a signature of exponential di-
vergence of nearby trajectories. The quantity λ is defined by the following
equation [3]:

λ = lim
∆n−→∞

lim
δ0−→∞

1
∆n

ln[
δ∆n

δ0
] (3)
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where δ0 is the initial distance between two points in phase space and δ∆n is
the distance between two trajectories deriving from these points at time n. If
δ0 is finite rather than infinitesimal, δ∆n cannot get larger than the diameter
of the attractor [2].

It should be noted that the Lyapunov spectrum and thus the maximal ex-
ponent are characteristic exponents for the system because they are invariant
under smooth transformations [1, 2, 8]. Oseledec (1967) studied on invariant
probability measures, and proved that the Lyapunov spectrum has the prop-
erty of ergodicity by means of his “Multiplicative Ergodic Theorem” [2,16].

In accorded with the importance of maximal Lyapunov exponent, it is
necessary to estimate it from a given data series. Various methods are classified
in direct and indirect approaches. Here, a direct approach is presented [7]:

1. Choose a point yn0 in the m-dimensional phase space.
2. Find all of its neighbors with distance smaller than ε.
3. Compute the average over the distances of all neighbors to the reference

part of the trajectory as a function of relative time.
4. Repeat the above steps for many values of n0.

Finally (4), has to be computed

S(∆n) =
1
N

N∑

n0=1

ln(
1

|Nε(yn0)|
∑

yn∈Nε

|sn0+∆n − sn+∆n|) (4)

where reference points yn0 are phase space vectors and Nε is the neighborhood
of yn0 with ε radius. If for some ranges of ∆n and for some choices of m
and ε, the function S(∆n) exhibits a linear increase, its slope would be an
estimation of the maximal Lyapunov exponent. This method was implemented
and applied to the time series of 2,000 data points obtained from observable
variable x of Henon chaotic map given with (5),

xn+1 = 1− axn
2 + yn

yn+1 = bxn
(5)

for values a = 1.4, b = 0.3 the system is chaotic [2]. We computed (4) for
different values of ε and m. The results for ε = 0.2 and m = 1, . . . , 5 are
plotted in Fig. 1. The parameter ε was choose so that the 500 reference points
have enough neighbors and the distances do not saturate for small ∆n. Using
linear regression for the linear parts of the curves, we can determine λ with a
tolerence of .01 as λ = 0.41± 0.01.

4 Phase Space Reconstruction, Embedding Theorems

Since we do not confront with a phase space object but a time series, we have
to convert it into state vectors such that the invariant characteristics of the
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Fig. 1. Maximal Lyapunov exponent estimation for the time series of 2,000 data
points obtained from observable variable x of Henon map given with (5) and choosing
ε = 0.2 and m = 1, . . . , 5

original unknown attractors are preserved. Thus, an embedding of a compact
smooth manifold A into Rm should be a map G that is a one to one and
immersion on A [1].

As we mentioned before one of the reconstruction method is the delay
coordinates established upon the Takens’ delay embedding theorem [1, 3, 8,
9]. Let us denote the measurement function with s. A sequence of scalar
measurements taken at multiples of a fixed sampling time can be shown as:

sn = s(x(n∆t)) (6)

then the delay reconstruction is formed by the vectors yn,

yn = (sn−(m−1)k, ..., sn)) (7)

In the above, k∆t is referred to the lag or delay time denoted by τ and m is
the dimension of delay reconstruction. Takens proved that for an infinite noise
free data series, a delay map of dimension m ≥ 2D + 1 is an embedding of a
D-dimensional compact manifold, i.e., it is a deffeomorphism [1, 9]. This the-
orem was generalized by Saur et al. called the fractal delay embedding preva-
lence theorem. They replaced the condition m ≥ 2D + 1 with m ≥ 2Df + 1,
where Df denotes the Capacity (Box Counting Dimension) of the attrac-
tor [11]. Moreover, it has been shown that an embedding dimension m > Df

suffices [1, 8, 10].
The delay reconstruction is consisted of two parameters adjustment: the

embedding dimension m and the lag τ . It is easy to show that in reality with
a finite number of noisy data, the estimates of the invariants depend on both
m and τ [3]. Therefore, their optimal selection is of practical importance.

5 Choosing the Delay Time

Except for the fact that in fractal delay embedding prevalence theorem certain
values for ∆t and τ are not allowed to be chosen, these values are not the topic
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of embedding theorem under its ideal conditions [1, 3]. Different τs result in
diffeomorphically equivalent attractors. If τ is selected small compared to the
time scales of the system, components of the delay vectors are strongly corre-
lated. In such cases, all reconstructed vectors are collected around the bisectrix
of Rm, unless m is very large [1, 12]. This situation gets better when τ is in-
creased. In these cases, the attractor unfolds and its structure becomes visible
on larger scales. If τ is increased to very large amounts, the successive elements
get independent which may lead to self-intersection in reconstructed trajecto-
ries [8]. The most conventional method is the minimization of the redundancy
of the coordinates of the reconstructed space [8]. To do so, we can choose
the time at which the autocorrelation function reaches 1/e = 1/2.7183 as
the lag time. Since the autocorrelation is a linear statistical quantity, it is
more sophisticated to choose the time corresponding to the first minimum of
the mutual information function as the delay time. The mutual information
for time delay τ is:

I(τ) =
∑

i,j

pij ln pij(τ)− 2
∑

i

pi ln pi (8)

where pi is the probability to find a time series in the ith bin of the histogram
created for the probability distributions of the data pij is the joint probability.
Note that there is no assurance that I(τ) has an apparent minimum [1,3].

6 Embedding Dimension Estimation

Embedding theorem says that the choice of m needs a priori knowledge of Df

of the original attractor which is unrealistic for experimental data [1, 3, 10].
Thus several methods have been proposed on embedding dimension estimation
[3, 4, 13]. The main classical method can be classified into three types [4].

The first method is the computation of some invariant quantity like the
maximal Lyapunov exponent while increasing the parameter m from low val-
ues to high values. When the estimated value for the invariant stops changing,
the adequate m is achieved. This method is very data intensive and time con-
suming [4].

The second method is the singular value decomposition based approach.
This method is very subjective and also the resultant reconstruction is not
always optimal [3].

The last conventional method is a geometrical approach based on finding
false nearest neighbors [4, 6]. As m increases in the reconstruction of a data
series, the attractor unfolds and when it gets completely unfolded, a trajectory
will never cross itself. The method of false nearest neighbors (FNN) recognizes
that where the trajectory has some self-intersections, two neighboring points
actually will be far away in the true embedding space. Based on this approach,
Kennel (1992) was proposed an algorithm to determine the minimum m [6].
This algorithm was subjective in determining whether a neighbor is false.
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To avoid this problem, Cao (1997) introduced a modified version of the Kennel
algorithm that has been presented below [4]:
Let

E1(m) =
E(m+ 1)
E(m)

(9)

with

E(m) =
1

N −mτ

N−mτ−1∑

t=0

‖ym+1(t)− yNN
m+1(t)‖

‖ym(t)− yNN
m (t)‖ (10)

and
‖ym(t)− yNN

m (t)‖ = max
0≤j≤m−1

|s(t+ jτ)− sNN (t+ jτ)| (11)

where N is the length of the data series and m, τ denote the embedding
dimension and the lag, respectively. The superscript NN means the nearest
neighbor to the other vector as defined by the metric of (11). The optimal
embedding dimension is given by the value of m where E1(m) stops changing.
Cao also proposed a related method to distinguish deterministic signals from
the stochastic ones for practical conditions. He defined

E2(m) =
E∗(m+ 1)
E∗(m)

(12)

where

E∗(m) =
1

N −mτ

N−mτ−1∑

t=0

|s(t+mτ)− sNN (t+mτ)| (13)

for random data, E2(m) will be equal to one for any m. However, for deter-
ministic data the values of E2 (m) will not equal to 1 for any m.

7 Predictive Method for Minimum Embedding
Dimension Estimation

In this section, we propose a neuro based method for minimum embedding
dimension estimation. This method benefits from the multilayer feedforward
neural networks ability in function approximation. It has been shown that
a three layered feedforward net with sigmoid functions in hidden layer and
a linear function in output layer is able to approximate all of the squared
integrable function with any approximation order, provided that there are
enough number of neurons in the hidden layer. This fact has been called the
universal function approximation theorem [14]. However, this theorem has
some practical limitations.

For using this method, assume that the given system can be observed
through the measurement function

y = h(x), x ∈ Rk (14)
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where Rk denotes the original phase space. Let

Fm : R −→ RM (15)

where Fm is the delay map given below:

Y m(n) = Fm(x) = [y(n), y(n− τ), ..., y(n− (m− 1)τ)]T (16)

Furthermore, the time evolution of the dynamics of the underlying system can
be described by a deterministic map like F

x(n) = F (x(n− τ)) (17)

We want to find mE such that

Y mE
(n) ≈ x(n) (18)

This implies that the reconstruction attractor approximates the original one
such that the time evolution from Y mE

(n) to Y mE
(n + 1) follows the time

evolution from x(n) to x(n+ 1) in original attraction. From (16) we have

x(n) = F−1
m (Y m(n)) (19)

Besides, we have

y(n) = h(x(n))
= h◦F (x(n− τ) (20)
= g(x(n− τ))

Combination of (19) and (20) yields

y(n) = g◦F−1
m (Y m(n− τ))

= q(Y m(n− τ)) (21)
= q([y(n− τ), . . . , y(n−m)τ)])

therefore y(n) can be approximated in the form of:

y(n) = q̂(Y m(n− τ)) (22)

Function q̂ as an approximation of q can be obtained using a feedforward
net with error backpropagation (BP) training algorithm. To do so, the net
architecture is made of the input layer, the hidden layer and the output layer.
The input layer consists of m units, and the elements of delay vectors are
distributed to the neurons. In order to determine m = mE :

1. Start from m = 1.
2. Train the net and apply the test set to the trained net to obtain the ŷ(n).

Compare ŷ(n) with y(n). Compute the prediction error, e = ŷ − y.
3. Put m = m+ 1 and compute e again.
4. The routine will be finished when root mean squared prediction error,
e(rms), has no remarkable changes as m.

The value of m for which the e(rms) begins to be constant is equal to the
minimum embedding dimension mE . This approach is illustrated in Fig. 2.
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Fig. 2. The predictive approach for minimum embedding dimension estimation

8 Indirect Method for Maximal Lyapunov Estimation

The predictive method results in determination of mE and also gives a neural
model. Based on this model, an indirect algorithm for maximal Lyapunov
exponent estimation is suggested. This approach is summerized below:

1. Select an arbitrary vector Y m(n) in the delay reconstructed space. Then,
use the neural model to obtain y(n+ τ).

2. Compute Ỹ m(n) = Y m(n) + ε0, where ε0 is a perturbation vector in the
form of (ε0, 0, · · ·, 0) with a small ε0 tending to zero. Then, apply the
neural model to compute the ỹ(n+ τ).

3. Compute S(∆nτ) given by (23). Plot the graph S(∆nτ) versus ∆nτ and
compute its slope which gives an estimation of the quantity λ.

S(∆nτ) =
1
N

N−mτ∑

n0=1

{ln(|ỹm(n+∆nτ)− ym(n+∆nτ)|) (23)

This approach requires less computations than that of the direct one,
because there is no need of neighbor searching.

9 Simulation Results

The methods presented for choosing optimal values for m and τ were prac-
tically implemented and applied to the experimental data derived from the
Colpitts chaotic oscillator [17]. A schematic of Colpitts circuit is given in
Fig. 3. The given time series was made of 6,000 measured points. As men-
tioned before, mutual information is a powerful technique for selecting τ , the
mutual information function was computed for lag from 0 to 32 units. As
Fig. 4 shows, this function has an obvious minimum. Thus, we choose the
corresponding time of this minimum for τ = 4.

The next step is to determinem. We first computed the maximal Lyapunov
exponent by the presented direct method for m = 1 to m = 6. The results are
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Fig. 3. The Colpitts oscillator
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Fig. 4. Computed mutual information function for Colpitts time series

exhibited in Fig. 5. The estimated λ is independent of m for m ≥ 3. The
violations of linear growth in small scales may be due to the measurement noise
or due to the lack of neighboring points. Then, we applied the Cao geometrical
algorithm to the data series. The maximum value for m was set to 8. Figure 6
shows the resultant E1(m) and E2(m). Form the figure, it can be inferred that
m = 3 will give an appropriate selection for embedding dimension. Moreover,
one can figure out that the given time series is not stochastic.

As the last approach, the predictive method was implemented. A feedfor-
ward net was composed of three layers. Having tested different numbers for
neurons, we put 8 units in the hidden layer. The given time series was divided
into the training and test sets. We applied 5,500 data for training and 500
data for testing. The BP learning algorithm with the mean of squared errors
as the index function was used for the training procedure. The value of index
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function to stop the iteration was set to 10−8. The learning curves of the
utilized nets with m-inputs is presented in Fig. 7.

As we can see, in cases m = 1, 2 the learning curves did not reach to the
desired value, but by increasing m to m ≥ 3. The curves have come to the
desired predetermined value. Besides, from Fig. 8 it is obvious that for m ≥ 3
the prediction error has not remarkable changes. Thus we choosem = 3 again.
The reconstructed attractor with m = 3 and τ = 4 is shown in Fig. 9.
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10 Conclusion

Characteristics of chaotic time series were first studied. In order to investi-
gate these properties, some nonlinear analysis tools were reviewed. Since the
reconstruction of phase space is the basis of all nonlinear time series analysis,
delay reconstruction and its parameter adjustments were studied. In addi-
tion to classical method for choosing these parameters a neuro based method
known as predictive was presented. All methods were practically implemented
and applied to the experimental data of Colpitts chaotic oscillator. Among
methods described in the paper, the Cao geometrical approach and our sug-
gested method were very promising. Cao algorithm is better than the other



Neural-Based Method for Chaotic Time Series Analysis 73

Fig. 9. The reconstructed attractor with m = 3 and τ = 4

traditional methods, because it is not subjective and data intensive. The pre-
sented method gives a global nonlinear model for underlying system. This
model can be used for many purposes such as prediction, noise reduction and
control. Besides, based on the achieved neural model an indirect algorithm
for maximal Lyapunov exponent estimation was suggested. This algorithm
reduces remarkably the computational complexity.
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