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Summary. Previously, we have devised a novel Hybrid Fuzzy A* algorithm that
seamlessly integrates the forward planning feature of A* and the refined reactionary
robot maneuvering capabilities of Fuzzy Logic in a real-time simulation environ-
ment. This paper further explores the uncharted domain of synthesizing three pri-
mary robot maneuvering behaviours, namely target pursuit, obstacle avoidance and
opponent evasion in an adaptive compact Hybrid Fuzzy A* navigation system. In
addition, this work sheds some light onto the dark pits of the previous Fuzzy A* ar-
chitecture proposed, as the former Hybrid approach did not account for the necessity
of evasive behavior, and so modifications to the forward planning layer are deemed
to be necessary. In light of this, this chapter presents a new undesirability compo-
nent that is injected into the A* algorithm, as well as optimisations to the cascade
of fuzzy systems architecture that calculates the robot speed and angle adaptively.
Empirical results are also presented that attest to the algorithm’s robustness when
faced with a formidable army of moving obstacles while in pursuit of a target, as
well as evading multiple opponents.

Key words: Autonomous navigational systems, Path planning, Fuzzy logic,
The A* algorithm, Robot soccer.

1 Introduction

The evasion algorithm presented here is designed to augment the path-
planning layer of the previously developed Hybrid Fuzzy A* Robot Navigation
System [1], and relies on receiving reliable threat information from the sensors
of the robot system. After receiving information concerning threats, a series of
maps (conceptual grids) is created to represent the robot’s environment and a
modified version of the A* algorithm is used to construct a shortest path to a
goal, avoiding obstacles and evading potential threats to the robot. The sys-
tem presented in this chapter has been created to extend navigation systems
specifically for the game of robot soccer, but is applicable to problem domains
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with the same key features. The problem domain for which this algorithm is
intended consists of:

– A complex, three-dimensional environment
– Multiple hostile agents to evade
– A dynamic, moving target to pursue
– A static goal location
– Static and dynamic obstacles to avoid

The evasion algorithm is based on the premise that whilst seeking a target,
a robot must also avoid obstacles and evade competing robots. The game of
robot soccer operates in real time at very high speeds, and therefore demands
extremely fast processing. The window of time available for calculation is ap-
proximately 33 ms and must be shared with machine vision processing and
other system components. Navigation systems must be fast enough to remain
synchronous with the state of the robots, and therefore a balance between
speed of calculation and optimality must be struck.

2 General System Architecture (Fig. 1)

Environment information is collected by the sensors and analysed for key en-
vironment features. Environment features required for the planning layer with
the evasion algorithm are:

– Hostile agent locations and headings
– Obstacle locations
– A goal location

Fig. 1. Architecture of the augmented hybrid fuzzy A* system
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These information are then used to create conceptual grids (maps) of the
environment which are then passed to the planning layer. The environment
processor must create two conceptual grids:

– An environment map
– An undesirability map

An environment map marks obstructed areas of the environment to be ex-
cluded from the search domain of the path-finding algorithm. An undesirabil-
ity map awards undesirability ratings to all areas of the environment based
on the level of perceived threat from hostile agents to that area. The planning
layer draws on both maps to plan a path toward its goal location, avoiding
obstacles and undesirable areas where possible. The waypoints of the path are
passed down to the Fuzzy Logic Control layer, which refines robot movement
and reacts to avoid immediate obstacles. Defuzzified outputs for speed and
rotation of the robot are sent to the actuator control module, where speed
and rotation outputs are decomposed into specific motor instructions.

3 The Evasion Algorithm

The evasion algorithm presented in this chapter is an extension of a dynamic
A* path-finding algorithm [1]. Navigation systems employing dynamic A*
path-finding operate on a 2D grid [2–4], representational of the real environ-
ment, and cells of the grid correspond to nodes in the search domain of the
A* algorithm.

3.1 Dynamic A* Path Finding

For the A* path finding to operate in a dynamic environment, the conceptual
grid must be continually regenerated, keeping up-to-date information on the
locations of moving obstacles. This allows robots to recalculate paths on the
fly when dynamic obstacles move and obstruct the intended path. Cells con-
taining obstacles are excluded from the search process. Figure 2 illustrates a
path calculated on such a grid, where obstructed nodes have been excluded
from path calculation. Other nodes are awarded an f* score from the formula:

f∗ = h∗ + g∗ (1)

where h* represents a heuristic distance from the examined node to the goal
node, and where g* represents the sum of distances between nodes; from the
initial node to the examined node. The A* algorithm finds the shortest path
by searching the domain of nodes and connecting nodes with the lowest f*
scores from the start node to the goal. As can be viewed in Fig. 3, the h* val-
ues for nodes in 2D conceptual grid can be represented in three dimensions,
where z-axis represents the h* value for each node.
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Fig. 2. A Sample A* path finding result (directed arrows) vs. Hybrid Fuzzy A*
Path Finding (curve)

Fig. 3. Example h* values for cells in a conceptual grid

Figure 3 illustrates the h* values for cells in a conceptual grid, where a
start node is at grid position (1, S1) and a goal node at grid position (13,
S13). We can clearly see that, excluding obstacles, the shortest path is in a
straight line; from the highest point to the lowest.
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Fig. 4. Undesirability values awarded to grid cells surrounding a hostile agent

3.2 Undesirability Maps

For the path-planning layer of the navigation system to evade opponents, it
must be provided with information detailing the level of threat to areas of
the environment. To this end, a second conceptual grid of the environment is
created, and each cell is awarded a value based on the undesirability of the
area. A function is required to determine the relative undesirability of each
cell. The valuing function must be tailored to the specific problem domain
and environment.

For the game of robot soccer levels of undesirability centre on each hostile
agent; a teardrop-shaped field of undesirability extends away from the agent
(refer to Fig. 4). Areas of highest undesirability are immediately in front of
the agent. Areas beside the agent are less undesirable to reflect the reduced
threat to those areas, as the agent must rotate before directly threatening
those areas. Areas behind the agent are awarded a lower undesirability value
also; reflecting the reduced threat of the agent reversing or turning around.

Figure 5 illustrates undesirability values in three dimensions for the same
environment as illustrated in Fig. 3, where the z-axis represents the undesir-
ability value of each cell. This effect can be compared to the implementation
of navigation systems employing potential field methods [5–8], but extends
the potential field concept by preempting the movements of hostile agents
and their direction of travel.

3.3 An Evasive Path-Finding Algorithm

Undesirability values and heuristic distance values can be combined to form
a new f* score, balancing the weight of heuristic distance with that of unde-
sirability:

f∗ = h∗ + u∗ + g∗ (2)
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Fig. 5. Example undesirability values for cells in a conceptual grid

Equation (2) presents a new formula; undesirability has been factored into
the heuristic component of the A* algorithm, where h* represents the heuris-
tic distance from the examined node to the goal node, where u* represents
the undesirability value of the examined node, and where g* represents the
cumulative distance from the start node to the examined node.

The combined heuristic distance and undesirability values can be repre-
sented in three dimensions for a “hills-and-valleys” effect, where the z-axis
represents the combined values for each cell in the conceptual grid. Figure 6
illustrates a combination of the heuristic distance values represented in Fig. 3
and the undesirability values represented in Fig. 5. We can see that, as the
algorithm will try to construct a path with lower h* + u* values, it will no
longer plan a path directly to the goal through the centre of the grid, but will
circumnavigate the undesirable areas en route to the goal. The cumulative
g* value ensures that a shortest possible path is created, and not simply the
most “downhill” path.

3.4 Considerations for Evasion

Experimentation with simulation has shown that the weighting given to un-
desirability values is of great importance to the effectiveness of the evasion
system. Values that are too low will effectively produce a system that has no
evasive behavior undesirable regions will be outweighed by the path-finding
components of the f* score formula. Referring to Fig. 6, undesirability values
that are too low would be observed as the peaks created by u* disappear-
ing below the sloping area created by h*. Experiments have shown that if
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Fig. 6. h* + u* values for cells in a conceptual grid

undesirability values are too high, the undesirability component u* of the for-
mula will overcome the path-finding components, compromising the reliability
of the algorithm to produce consistent paths. A balance must be struck by
choosing an appropriate range of undesirability values. Undesirability values
that are too high would be observed by the total dominance of the u* peaks
over the h* slope. The operation taken to determine the undesirability values
for nodes where areas of threat overlap will result in subtle changes to robot
behavior. If, in the problem domain of the robot, areas in between multiple
threats are even more undesirable than areas near one threat alone, it may
make sense to award the area affected the sum of all of the overlapping undesir-
ability values. Otherwise, the maximum of the values may be the most effective
choice.In the game of robot soccer, robots attempting to evade other robots
are often crushed against the walls. In this problem domain, the undesirability
of areas near static obstacles (the walls) can be increased to good effect. For
broader applicability, areas where a robot has more room to evade to ma-
neuver and change course should be less undesirable than those areas where a
robot is more confined. The direction, speed and other details of hostile agents
can be incorporated into the undesirability rating function, so that a very ac-
curate representation of threat can be created in the threat map. Areas further
in front of fast-moving hostile agents are awarded high undesirability ratings,
whilst ratings for areas to the sides and behind those agents are reduced,
as it takes those agents longer to turn around. This additional information
makes more accurate threat maps, but requires additional calculation and is
of diminishing importance to the robot as hostile agents are further away
from it.
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4 Cascade of Fuzzy Systems

Robot navigation systems employing Fuzzy Logic [9–14] require input infor-
mation about a robot’s target; the distance between the robot and the target,
and the angle between the robot’s heading and the target. Utilising the same
inputs, the proposed Fuzzy system architecture embodies multiple fuzzy sys-
tems that collectively perform angle and speed refinements for the tasks of
target pursuit and obstacle avoidance. As can be seen in the diagram of the
Reactionary Layer (Fig. 7), the Path Planning Layer feeds the next intermedi-
ary waypoint to a cascade of Fuzzy systems which paves the way for a smooth
robot maneuvering towards the target.

Such refined robot movements are made precisely to suit the prevailing
circumstances. Target pursuit is carried out by the system whenever it is safe
to do so, and obstacle avoidance is instantaneously engaged with the onset
of any opponent interference. On the top layer is the Fuzzy system for target
pursuit (Fuzzy System 1) that reacts on two inputs, namely the robot’s dis-
tance from the target, and the difference between the robot’s heading angle
and target. The main task of such system is to calculate the correct turning

Fig. 7. Reactionary layer: cascade of fuzzy systems
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Table 1. Fuzzy associative memory matrix for angle control: target pursuit

NEAR FAR VERY FAR

SMALL Mild Turn Mild Turn Zero Turn
MEDIUM Med Turn Mild Turn Mild Turn
LARGE Sharp Turn Med Turn Med Turn

Fig. 8. Fuzzy membership functions for speed control: target pursuit – angle (top)
and Distance (bottom)

angle towards the target relative to its current orientation. Table 1 depicts the
collection of rules that dictate the correct turning angle for a combination of
distance and angle conditions. Such fuzzy sets are defined using trapezoidal
membership functions (Fig. 8). As an example, one of the rules states that:

If the Distance from the Target is NEAR and the Angle from the
Target is SMALL Then the robot should make a Mild Turn.

4.1 Taking Advantage of Angle Symmetry

It is worth mentioning that the design for the fuzzy associative memory ma-
trix takes advantage of the angle symmetry; thereby, considering only the
right-half of the angles involved, from [0, 90] and [270, 360]. As can be viewed
in Fig. 9, the angles were partitioned only into three overlapping parts, each
with its own corresponding fuzzy set. Using this simplified approach, the size
of the FAMM was considerably reduced, since both left and right cases were
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Fig. 9. Fuzzy sets for angle and distance

Table 2. Fuzzy associative memory matrix for speed control: target pursuit

NEAR FAR VERY FAR

SMALL Med Speed Fast Speed Very Fast
MEDIUM Slow Speed Med Speed Fast Speed
LARGE Very Slow Speed Slow Speed Slow Speed

accounted for using the same generic FAMM. In particular, for cases where
the obstacle or target is found on the left-hand side, considering angles from
[90, 270] counter-clockwise, relative to the robot’s orientation, the fuzzy out-
put is simply negated. Moreover, the Fuzzy systems were designed to respond
by taking the minimum turning angle towards the desired robot orientation.
This reactionary robot pursuit movement is further enhanced by yet another
Fuzzy system that handles speed control based on the same inputs fed into
Fuzzy System 1. As an example, a fuzzy rule for speed control comes in the
following form: If the Distance from the Target is VERY FAR and the Angle
from the Target is SMALL Then the robot should move Very Fast. Finally,
the two Fuzzy Systems at the bottom were designed to perform course cor-
rections to account for cases where obstacles are close to the robot. Similar
to Fuzzy System 1, except that it is considering an obstacle instead of the
target, Fuzzy System 3 adjusts the robot’s steering angle based on the robot’s
distance from the obstacle, and difference between the robot’s heading angle
and the angle to the obstacle. In conjunction with Fuzzy System 3, Fuzzy
System 4 deals with speed adjustment, which is also similar to Fuzzy System
2 (Table 2), except that its rule base is designed to avoid collisions.
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4.2 Limits of the Reactionary Fuzzy Systems

Despite the system’s ability to perform refined course corrections to pursue
the target and avoid the obstacles, there are cases however where forward
planning is necessary to prevent the robot from taking routes that could lead
to it getting trapped. Since the fuzzy systems do not take into account the
directions of the moving obstacles, using the fuzzy system solely is not enough
to prevent collisions completely. Thus, the A* algorithm is used to guide the
cascade of fuzzy systems.

5 Conclusions

This chapter has extended our previous paper on a novel Hybrid Fuzzy A*
navigational system, inculcating a predictive quality into autonomous robot
navigation. Robot path planning is now able to second guess the movements of
hostile agents in order to evade the onslaught of potential threats in real time.
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