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Summary. A novel Neuro-Fuzzy Kolmogorov’s Network (NFKN) is considered. The
NFKN is based on the famous Kolmogorov’s superposition theorem (KST) and is
the development of the previously proposed Fuzzy Kolmogorov’s Network (FKN).
Modifications of the FKN architecture include multiple outputs as required for clas-
sification problems with more than two classes, as well as the possibility of defining
different number of membership functions at each input. A new learning algorithm,
based on the modified perceptron learning rule and designed for classification prob-
lems, is proposed. The validity of theoretical results and the advantages of the new
NFKN are confirmed by experiments in data classification and visualization.
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1 Introduction

A universal approximator called Fuzzy Kolmogorov’s Network (FKN) with
simple structure based on the Kolmogorov’s Superposition Theorem [5], and
its training procedure with high rate of convergence were proposed in [6, 7].
It was demonstrated that the FKN can be successfully used for time series
prediction problems, such as the Mackey–Glass time series prediction and elec-
tric load forecasting, as well as for data classification like separation of two
intertwined spirals and solving the XOR problem. However, the FKN train-
ing algorithm may require a large number of computations in the problems
of high dimension, because it is based on the least squares technique, which
requires inversion of matrices. This problem is alleviated in the Neuro-Fuzzy
Kolmogorov’s Network (NFKN) [1, 8], which is trained with a hybrid algo-
rithm, where the least squares method is used only for the output layer, and
the hidden layer is trained with a gradient descent-based procedure.

Although the FKN [6, 7] and especially the NFKN with the hybrid algo-
rithm [1,8] demonstrated very promising results in classification problems (e.g.
the NFKN was demonstrated to solve the N-parity problem for N=18 after
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only two training epochs in [8]), their training algorithms are based on the
quadratic error function and thus are better suited for regression rather than
for classification problems, because minimization of the sum of squared errors
does not necessarily lead to the reduction in the number of misclassifications.

In this paper, we propose an efficient and computationally simple learning
algorithm, whose complexity depends linearly on both the dimension of the
input space and the number of neurons. The proposed algorithm is a batch
multioutput modification of the perceptron learning rule [9] with improved
convergence, and is designed for classification problems. We use the modified
NFKN architecture [8], which is suitable for classification problems with large
number of inputs and two or more classes. The efficiency of the new algorithm
is confirmed by experiments, in which improved accuracy and the reduction
in network size are achieved.

2 Network Architecture

The original FKN architecture [6, 7] is comprised of two layers of neo-fuzzy
neurons (NFNs) [11] and is described by the following equations:

f̂(x1, . . . , xd) =
n∑

l=1

f
[2]
l (o[1,l]), o[1,l] =

d∑

i=1

f
[1,l]
i (xi), l = 1, . . . , n, (1)

where n is the number of hidden layer neurons, f [2]
l (o[1,l]) is the lth nonlinear

synapse in the output layer, o[1,l] is the output of the lth NFN in the hidden
layer, f [1,l]

i (xi) is the ith nonlinear synapse of the lth NFN in the hidden layer.
The universality of internal functions in the KST [4] suggests that we can

introduce an extended version of the FKN, called NFKN, with Q outputs [8],
having the same hidden layer for all the output neurons:

f̂q(x1, . . . , xd) =
n∑

l=1

f
[2,q]
l (o[1,l]), o[1,l] =

d∑

i=1

f
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l = 1, . . . , n, q = 1, . . . , Q,

where Q is the number of output layer neurons, f [2,q]
l (o[1,l]) is the lth nonlinear

synapse of the qth NFN in the output layer.
The equations for the hidden and output layer synapses are

f
[1,l]
i (xi) =

m1,i∑

h=1

µ
[1]
i,h(xi)w

[1,l]
i,h , f

[2,q]
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µ
[2]
l,j(o

[1,l])w[2,q]
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l = 1, . . . , n, i = 1, . . . , d, q = 1, . . . , Q,

where m1,i andm2,l are the number of membership functions (MFs) per input
in the hidden and output layers, respectively, µ[1]

i,h(xi) and µ[2]
l,j(o

[1,l]) are the
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MFs, w[1,l]
i,h and w[2,q]

l,j are the tunable weights. We assume that the MFs are
fixed, triangular (piecewise-linear), and equidistantly spaced over the range of
each NFN input. The parameters (centers) of the MFs are not tuned.

As in the FKN, the MFs in the NFKN at each input in the hidden and
output layers are shared between all neurons. However, in the NFKN archi-
tecture we allow for different number of MFs at each input. This property is
essential for the processing of data sets with mixed numerical and categorical
inputs, such that each category value of a categorical input corresponds to
one MF and is encoded with a numerical value corresponding to the center
of that MF. This is a more parsimonious and convenient approach than con-
ventional binary coding of categories, because we do not have to introduce
additional inputs to the classifier. When a missing input is encountered, no
membership function for that input is activated, and the corresponding input
synapse produces zero value. The NFKN architecture is shown in Fig. 1.

The outputs of the NFKN are computed via the following two-stage fuzzy
inference procedure:

ŷq =
n∑

l=1

m2,l∑

j=1

µ
[2]
l,j

[
d∑

i=1

m1,i∑

h=1

µ
[1]
i,h(xi)w

[1,l]
i,h

]
w

[2,q]
l,j , q = 1, . . . , Q. (4)

The description 4 corresponds to the following two-level fuzzy rule base:

IFxi IS Xi,h THEN o[1,1] = w[1,1]
i,h d AND . . .AND o1,n = w[1,n]

i,h d,

i = 1, . . . , d, h = 1, . . . ,m1,i,
(5)

IF o[1,l] IS Ol,j THEN ŷ1 = w[2,1]
l,j n AND . . .AND ŷQ = w[2,Q]

l,j n,

l = 1, . . . , n, j = 1, . . . ,m2,l,
(6)

where Xi,h and Ol,j are the antecedent fuzzy sets in the first and second level
rules, respectively.

Total number of rules is

NNFKN
R =

d∑

i=1

m1,i +
n∑

l=1

m2,l, (7)

i.e., it depends linearly on the number of inputs d. Straightforward grid-

partitioning approach would produce
d∏

i=1

m1,i fuzzy rules, leading to com-

binatorial explosion and being practically not feasible for d > 4.

3 Learning Algorithm

The number of tunable weights in an NFKN is S = S1 + S2, where S1 =
d∑

i=1

m1,i·n is the number of parameters in the hidden layer, and S2 =
n∑

l=1

m2,l·Q
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Fig. 1. NFKN with d inputs, n hidden layer neurons, and Q output layer neurons

is the number of parameters in the output layer. The weights of the NFKN here
are determined by means of a batch-training algorithm as described below.

A training set containing N samples is used. The minimized error function
is a batch Q-output modification of the function investigated in [9]:

E(t) =
Q∑

q=1

N∑

k=1

[ |ŷq(t, k)| − yq(k)ŷq(t, k)] (8)

=
Q∑

q=1

N∑

k=1

[(sign ŷq(t, k)− yq(k))ŷq(t, k)] = Tr
[
(signŶ (t)− Y )T Ŷ (t)

]
,

Y = (Y1, Y2, . . . , YQ), Ŷ (t) = (Ŷ1(t), Ŷ2(t), . . . , ŶQ(t)),

Yq = [yq(1), . . . , yq(N)]T
, Ŷq(t) = [ŷq(t, 1), . . . , ŷq(t,N)]T

, q = 1, . . . , Q,

where Y is the matrix (N ×Q) of target values, Ŷ (t) is the matrix (N ×Q)
of network outputs at epoch t. Target values in Y are encoded as –1 or +1.

It is only the sign of the output rather than the output value itself that is
important for the determination of classification error, and this is explicitly
reflected in (8). So the error function (8) would be a potentially better choice
for classification problems compared to the sum of squared errors as in [6, 7]
or [1, 8].



Neuro-Fuzzy Kolmogorov’s Network 45

The error function (8) can be minimized through recursive gradient-based
optimization of the synaptic weights. To derive such a procedure for the output
layer in a compact matrix–vector notation, re–write ( 4) as follows:

ŷ = W [2]Tϕ[2](o[1]), W [2] =

⎡

⎢⎢⎣

w
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...
w

[2,Q]
1,1 , w

[2,Q]
1,2 , . . . , w

[2,Q]
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⎤

⎥⎥⎦

T

, (9)
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1,1(o

[1,1]), µ[2]
1,2(o

[1,1]), . . . , µ[2]
n,m2,n

(o[1,n])
]T

,

where W [2] is the matrix (
n∑

l=1

m2,l ×Q) of the output layer weights.

The update procedure for the output layer weights will be

W [2](t+ 1) =W [2](t)− γ ∂E(t)/∂W [2]

∥∥Φ[2]
∥∥ =W [2](t) + γ

Φ[2]T (Y − signŶ (t))∥∥Φ[2]
∥∥ ,

Φ[2] =
[
ϕ[2](o[1](1)), . . . , ϕ[2](o[1](N))

]T

,
∥∥∥Φ[2]

∥∥∥ =

√√√√√√√
N∑

i=1

n∑
l=1

m2,l

∑

j=1

(Φ[2])2i,j ,

(10)

where γ is the learning rate, and Φ[2] is the regressor matrix (N ×
n∑

l=1

m2,l)

for the linear output layer. The norm
∥∥Φ[2]

∥∥ in the denominator of (10) is
present to speed up convergence.

We can derive a similar gradient descent-based learning rule for the hidden
layer as well. To do this, let us introduce the vector (S1 × 1) of the hidden

layer weights W [1] =
[
w

[1,1]
1,1 , w

[1,1]
1,2 , . . . , w

[1,1]
d,m1,d

, . . . , w
[1,n]
d,m1,d

]T

and the Jacobian

matrix Φ[1] =
[
ϕ[1](x(1), 1), . . . , ϕ[1](x(N), 1), . . . , ϕ[1](x(1), Q), . . . ,

ϕ[1](x(N), Q)
]T

of size (NQ×S1), where

Φ[1] =
[
ϕ[1](x(1), 1), . . . , ϕ[1](x(N), 1), . . . , ϕ[1](x(1), Q), . . . , ϕ[1](x(N), Q)

]T
,

ϕ[1](x, q)=
[
ϕ

[1,1]
1,1 (x1, q), ϕ

[1,1]
1,2 (x1, q), . . . , ϕ

[1,1]
d,m1,d

(xd, q), . . . , ϕ
[1,n]
d,m1,d

(xd, q)
]T

,

ϕ
[1,l]
i,h (xi, q) = a[2,q]

l (o[1,l]) · µ[1]
i,h(xi), i = 1, . . . , d,

h = 1, . . . ,m1,i, l = 1, . . . , n, q = 1, . . . , Q,
(11)

and a[2,q]
l (o[1,l]) are determined as in [8]:

a
[2,q]
l (o[1,l]) =

w
[2,q]
l,p+1 − w

[2,q]
l,p

c
[2]
l,p+1 − c

[2]
l,p

, (12)
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where w[2,q]
l,p and c[2]l,p are the weight and center of the pth MF in the lth synapse

of the qth output layer neuron, respectively. The MFs in an NFN are always
chosen such that only two adjacent MFs p and p+1 fire at a time [11].

Now we can obtain the gradient-based update procedure for the hidden
layer weights:

W [1](t+ 1) =W [1](t)− γ∇
W [1]E(t)

‖Φ[1]‖ =W [1](t) + γ Φ[1]T (
−→
Y −sign

−→̂
Y (t))

‖Φ[1]‖ ,

−→
Y = (Y T

1 , Y
T
2 , . . . , Y

T
Q )T ,

−→̂
Y (t) = (Ŷ T

1 (t), Ŷ T
2 (t), . . . , Ŷ T

Q (t))T ,

∥∥Φ[1]
∥∥ =

√
NQ∑
i=1

S1∑
j=1

(Φ[1])2i,j ,

(13)

where
−→
Y and

−→̂
Y (t) are vectors (NQ× 1).

Since no matrix inversions are involved, the considered training algorithm
is less computationally intensive that both the original algorithm for the FKN
[6, 7] and its hybrid modifications [1, 8]. The number of computations in (10)
for both layers at each epoch depends linearly on both the dimension of the
input space d and the number of neurons n.

For the processing of very large data sets when the storage of matrices for
the complete data set is impossible because of memory limitations, the most
memory-consuming calculations of the gradient ∇W [1]E(t) = −Φ[1]T (

−→
Y −

sign
−→̂
Y (t)) and the norm

∥∥Φ[1]
∥∥ can be performed cumulatively sample by

sample.

4 Experiments

To verify the theoretical results and compare the performance of the proposed
network to the known approaches, we carried out experiments using the data
from the well-known UCI repository [10]: Iris, Wisconsin Breast Cancer, Aus-
tralian Credit, and German Credit. The parameters of the data sets are listed
in Table 1. Note that two data sets, “Australian” and “German”, have several
categorical inputs, and the “Wisconsin” data set has 16 samples with missing
values.

Table 1. Data sets used in experiments

Data set Number of
samples

Samples with
missing values

Numerical
attributes

Categorical
attributes

Classes

Iris 150 0 4 0 3
Wisconsin 699 16 9 0 2
Australian 690 0 6 8 2
German 1000 0 7 13 2
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The results of the experiments with the NFKN and the proposed training
algorithm are summarized in Table 2. The column “neurons” describes the
NFKN architectures: the numbers separated by “+” indicate the number of
the hidden and output neurons, respectively. The column “weights” shows the
number of tunable parameters. The next column shows the average number of
epochs required for the learning algorithm to converge. The last two columns
show the classification error rates. All the results in Table 2 were obtained
with the learning rate γ = 0.05 in the procedures ( 10) and ( 13).

The most important advantages of the NFKN classifier are its simple archi-
tecture, which is not affected by the curse of dimensionality, and fast training
procedures providing at the same time high accuracy of classification. All the
results are at the level of accuracy achieved with the best classification tech-
niques, e.g. the support vector machines [2]. For comparison, the best results
obtained with the NFKN and the hybrid training algorithm from [8] are shown
in Table 3.

Note that for the “Wisconsin” and “Iris” data the accuracy on the checking
set in Tables 2 and 3 is the same, and for the “Australian” and “German”
data sets the new training algorithm yields better results, which can be seen
from the comparison of checking set errors in Tables 2 and 3. In addition,
for the “Wisconsin” and “German” data best results are achieved with fewer
neurons and weights.

Since all the best results from Table 2 are achieved with only two neu-
rons in the hidden layer, visualization of multidimensional data in the two-
dimensional space, formed by the outputs of the hidden layer neurons, is
possible (an example is shown in Fig. 2).

Table 2. Results of experiments for NFKN with the proposed modified perceptron
learning rule (tenfold cross-validation)

Data set Neurons Weights Epochs Training
set
errors(%)

Checking
set
errors(%)

Iris 2+3 54 9.9 1.33 4
Wisconsin 2+1 78 9.1 2.23 3.01
Australian 2+1 116 10.8 11.18 13.48
German 2+1 160 11.6 21.04 24.1

Table 3. Results of experiments for NFKN with the hybrid training algorithm
(tenfold cross-validation)

Data set Neurons Weights Epochs Training set
errors(%)

Checking
set
errors(%)

Iris 2+3 54 4 1.04 4
Wisconsin 4+1 176 11.9 0.54 3.01
Australian 2+1 116 11.7 10.42 14.2
German 3+1 240 29 14.32 24.8
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Fig. 2. Australian credit data projected by the hidden layer of the NFKN trained
with the proposed algorithm (10), (13)

5 Conclusion

A simple and practical approach to the construction of neuro-fuzzy classifiers
was considered. The described NFKN architecture is not affected by the curse
of dimensionality because of its two-level structure according to the KST, and
is suitable for classification problems with multiple classes and both continu-
ous and discrete (categorical) input variables.

The use of the neo-fuzzy neurons enabled us to develop fast and simple
training procedures for both the hidden and output layer parameters, based
on the perceptron learning rule. A new batch multioutput modification of this
learning rule was proposed.

We expect that the NFKN with the new learning algorithm can find ap-
plications in decision support and data mining [3], where classification and
visualization of high-dimensional data are the key problems.

An important issue that needs to be further investigated is the inter-
pretability improvement of the fuzzy rules in the NFKN, because the two-level
rule base (5), (6) lacks transparency and differs from the rule format used in
most of fuzzy modeling approaches.
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