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Summary. A new definition for intuitionistic fuzzy graph is given. Some properties
of intuitionistic fuzzy graphs are considered and the authors introduced the notions
of various concepts. These concepts are analyzed through suitable illustrations.
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1 Introduction

Fuzzy set [4] has emerged as a potential area of interdisciplinary research
and fuzzy graph theory is of recent interest. The concept of a fuzzy relation
was defined by Zadeh [9] and it has found applications in the analysis of
cluster patterns [3]. Rosenfeld [6] considered fuzzy relations on fuzzy sets
and developed the structure of fuzzy graphs, obtaining analogs of several
graph theoretical concepts. Then Bhattacharya [2] introduced some remarks
on fuzzy graphs. Later, complement of fuzzy graphs and some operations on
fuzzy graphs are introduced by Mordeson and Peng [5]. Further, Sunitha and
Vijayakumar [7] defined the complement of a fuzzy graph in a different way
and studied some operations on it. Yeh and Banh [8] have also introduced
various connectedness concepts in fuzzy graphs. After the pioneering work
of Rosenfeld [6], Yeh and Banh [8] in 1975, when some basic fuzzy graph
theoretic concepts and applications have been indicated.

Atanassov [1] introduced the concept of intuitionistic fuzzy (IF) relations
and intuitionistic fuzzy graphs (IFGs). Research on the theory of intuitionistic
fuzzy sets (IFSs) has been witnessing an exponential growth in Mathematics
and its applications. This ranges from traditional Mathematics to Information
Sciences.

This leads to consider IFGs and their applications. In this paper, we in-
troduced IFG and analyzed its components. It is further proposed by the
authors that these concepts can be extended to other types of IFSs and ana-
lyzing various components.
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2 Preliminaries

Definition 1. An IFG is of the form G = 〈V,E〉 where

(i) V = {v1, v2, ..., vn} such that µ1 : V −→ [0, 1] and γ1 : V −→ [0, 1] denote
the degree of membership and nonmembership of the element vi ∈ V,
respectively, and

0 ≤ µ1(vi) + γ1(vi) ≤ 1, . . . . . . (1)

for every vi ∈ V, (i = 1, 2, . . . n),
(ii) E ⊆ V × V where µ2 : V × V −→ [0, 1] and γ2 : V × V −→ [0, 1] are such

that

µ2(vi, vj) ≤ min[µ1(vi), µ1(vj)], . . . . . . (2)
γ2(vi, vj) ≤ max[γ1(vi), γ1(vj)] . . . . . . (3)

and 0 ≤ µ2(vi, vj) + γ2(vi, vj) ≤ 1 . . . . . . (4)

for every (vi, vj) ∈ E, (i, j = 1, 2, . . . n).

Notations

The triple 〈vi, µ1i, γ1i〉 denotes the degree of membership and nonmembership
of the vertex vi. The triple 〈eij , µ2ij , γ2ij〉 denotes the degree of membership
and nonmembership of the edge relation eij = (vi, vj) on V.

Note 1.

(i) When µ2ij = γ2ij = 0, for some i and j, then there is no edge between vi
and vj .

(ii) When either one of the following is true, then there is an edge relation
between vi and vj .
– µ2ij > 0 or γ2ij > 0.
– µ2ij = 0 or γ2ij > 0.
– µ2ij > 0 or γ2ij = 0.

(iii) If one of the inequalities (1) or (2) or (3) or (4) is not satisfied, then G is
not an IFG.

Example 1. Consider G =〈V,E〉 where V ={v1, v2, v3, v4, v5}. (refer Fig. 1)

Example 2. Consider G =〈V,E〉 where V = {v1, v2, v3, v4, v5, v6}. (refer Fig. 2)

Definition 2. An IFG H = 〈V′,E′〉 is said to be an IF subgraph (IFSG) of
the IFG, G = 〈V,E〉 if V′ ⊆ V and E′ ⊆ E.

In other words, if µ′1i ≤ µ1i ; γ′1i ≥ γ1i and µ2ij
′ ≤ µ2ij ; γ2ij

′ ≥ γ2ij for
every i, j = 1, 2, . . . ,n.
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(0.9, 0.0) v4 

(0.7, 0.3) v5 

v3 (0.0, 1.0) 

v2 (0.7, 0.2) 

v1 (0.3, 0.6) 

Fig. 1. Intuitionistic fuzzy graph

(1.0, 0.0) v5 

(0.3, 0.6) v6 

v4 (0.8, 0.2)

v2(0.0,0.9) 

v1 (0.6, 0.2) 

v3 (0.4, 0.6)

Fig. 2. G is not an intuitionistic fuzzy graph

Definition 3. An IFG , G = 〈V,E〉 is said to be a semi-µ strong IFG if

µ2ij = min (µ1i, µ1j), for every (vi, vj) ∈ E.

Definition 4. An IFG , G = 〈V,E〉 is said to be a semi-γ strong IFG if

γ2ij = max (γ1i, γ1j), for every (vi, vj) ∈ E.

Definition 5. An IFG, G = 〈V,E〉 is said to be a strong IFG if

µ2ij = min (µ1i, µ1j) and γ2ij = max (γ1i, γ1j) for all (vi, vj) ∈ E.

Example 3. Let V = {v1, v2, v3, v4, v5}. (refer Fig. 3)
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(0.8, 0.2) v4

0.7),3.0(1v

(0.1, 0.7) v5 

v3 (0.7, 0.1) 

v2 (0.5, 0.4) 

Fig. 3. Semi-µ strong IFG

(0.7, 0.1) v3 v2 (0.3, 0.6) 

v1 (0.5, 0.5) 

Fig. 4. Semi-γ strong IFG

Example 4. Let V = {v1, v2, v3}. (refer Fig. 4)

Definition 6. A path P in an IFG is a sequence of distinct vertices v1,
v2 . . . vn such that either one of the following conditions is satisfied:

(a) µ2ij > 0 and γ2ij = 0 for some i and j,
(b) µ2ij = 0 and γ2ij > 0 for some i and j,
(c) µ2ij > 0 and γ2ij > 0 for some i and j (i, j = 1, 2, . . . n).

Example 5. Let V = {v1, v2, v3, v4, v5}. (refer Fig. 5)
Here v1v4v3v2 is a path.

Definition 7. The length of a path P = v1v2 . . . vn+1 (n > 0) is n.

Definition 8. A path P = v1v2 . . . vn+1 is called a cycle if v1 = vn+1, and
n ≥ 3.

Definition 9. Two vertices that are joined by a path are said to be connected.

Definition 10. The µ-strength of a path P = v1v2 . . . vn is defined as

min
i,j
{µ2ij} . . . . . . (5)
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(0.7, 0.3) v5

(0.5, 0.2) v4
v3 (0.7, 0.0) 

v2 (0.3, 0.0) 

v1 (0.5, 0.0) 

Fig. 5. A path in an IFG

and is denoted by Sµ.
The γ-strength of a path P = v1v2 . . . vn is defined as

max
i,j
{γ2ij} . . . . . . (6)

and is denoted as Sγ.

Note 2.

If an edge possesses both the values (5) and (6), then it is the strength of the
path P and is denoted by SP.

Definition 11. For any t, 0≤ t ≤ 1, the set of triples 〈Vt, µ1t, γ1t〉, where

µ1t = {vi ∈ V : µ1i ≥ t} . . . . . . (7)
or γ1t = {vi ∈ V : γ1i ≤ t} . . . . . . (8)

for some i = 1, 2, . . . n, is a subset of V
and the set of triples 〈Et, µ2t, γ2t〉, where

µ2t = {(vi, vj) ∈ V ×V : µ2ij ≥ t} . . . . . . (9)
or γ2t = {(vi, vj) ∈ V ×V : γ2ij ≤ t} . . . . . . (10)

for some i, j = 1, 2, . . . n, is a subset of E.

Example 6. Let V = {v1, v2, v3, v4, v5}. (refer Fig. 6)
Here, V0.6 = {v1, v2, v4, v5},
E0.6 = {v1v2, v2v5, v4v5, v5v1}.

3 Properties

Theorem 1. If 0 ≤ x ≤ y ≤ 1, then (Vx,Ex) is a subgraph of (Vy,Ey).

Proof. Let G = 〈Vy,Ey〉 and H = 〈Vx,Ex〉.
To prove H is a subgraph of G, it is enough to prove that Vx ⊆ Vy and

Ex ⊆ Ey.
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(0.9, 0.1) v5 
v4 (0.3, 0.6) 

v3 (0.2, 0.8) 

v2 (1.0, 0.0) 
(0.7, 0.2) v1 

Fig. 6. V0.6 and E0.6

Let vi ∈ Vx. Therefore, γ1i ≤ x

≤ y, since x ≤ y.
⇒ vi ∈ Vy. Hence Vx ⊆ Vy.

Let (vi, vj) ∈ Ex. Therefore, γ2ij ≤ x

≤ y, since x ≤ y.

Thus, we have (vi, vj) ∈ Ey. Hence, Ex ⊆ Ey.
Hence, ( Vx,Ex) is a subgraph of ( Vy,Ey ). �

Theorem 2. If H = 〈V′,E′〉 is an IF subgraph of G = 〈V,E〉, then for any
0 ≤ x ≤ 1, 〈V ′

x,E
′
x〉 is an IF subgraph of 〈Vx,Ex〉.

Proof. Given V′ ⊆ V and E′ ⊆ E .
To prove V′

x ⊆ Vx ; E′
x ⊆ Ex, it is enough to prove (7)–(10) for µ or γ.

Let vi ∈ V′
x

⇒ µ′1i ≥ x
⇒ µ1i ≥ x, since µ′1 ≤ µ1

⇒ vi ∈ Vx

⇒ V′
x ⊆ Vx

Let (vi, vj) ∈ E′
x

Therefore, µ′2ij ≥ x

⇒ µ2ij ≥ x, since µ′2 ≤ µ2

⇒ (vi, vj) ∈ Ex

Hence, E′
x ⊆ Ex.

Therefore, 〈V ′
x,E

′
x〉 is an IF subgraph of 〈Vx,Ex〉. �
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Definition 12. Let 〈eij , µ2ij , γ2ij〉 and 〈ejk, µ2jk, γ2jk〉 be two edge relations
on V. The composition of these two edge relations is an IFS, denoted by
eij • ejk, is of the form 〈eik, µ2ik, γ2ik〉 where

µ2ik = max {min
j

[µ2ij , µ2jk]} and

γ2ik = min {max
j

[γ2ij , γ2jk]}, for all vi, vk ∈ V.

Definition 13. Let 〈eij , µ2ij , γ2ij〉 be an edge relation on V. Then it is said
to be

(i) reflexive if 〈eii,µ2ii,γ2ii〉 = 〈vi, µ1i, γ1i〉 for all vi ∈ V.
(ii) symmetric if 〈eij , µ2ij , γ2ij〉 = 〈eji, µ2ji, γ2ji〉, for all vi, vj ∈ V.
(iii) transitive if the edge relations (vi, vj) and (vj , vk) imply the edge relation

(vi, vk).

Definition 14. The powers of edge relation eij are defined as

e1
ij = eij = 〈eij , µ2ij , γ2ij〉

e2
ij = eij • eij =

〈
eij ,µ

2
2ij , γ

2
2ij

〉

e3
ij = eij • eij • eij =

〈
eij , µ

3
2ij , γ

3
2ij

〉
and so on.

Also,
e∞ij =

〈
eij , µ

∞
2ij , γ

∞
2ij

〉

where µ∞2ij = max
k=1,2,...n

{µk
2ij} and γ∞2ij = min

k=1,2,...n
{γk

2ij} are the µ-strength and

γ-strength of connectedness between any two vertices vi and vj.

Also,

e0ij =
{

0, if vi �= vj ,
〈vi, µ1i, γ1i〉 , if vi = vj .

Theorem 3. If H = 〈V ′,E′〉 is an IF subgraph of G = 〈V,E〉, then for some
(vi, vj) ∈ E, µ

′∞
2ij ≤ µ∞2ij and γ

′∞
2ij ≥ γ∞2ij.

Proof. By given, V′ ⊆ V and E′ ⊆ E.

⇒ µ′1i ≤ µ1i; γ′1i ≥ γ1i, for every vi ∈ V . . . . . . (11)
and µ′2ij ≤ µ2ij ; . . . . . . (12)

γ′2ij ≥ γ2ij . . . . . . (13)

for every vi, vj ∈ V.
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Consider a path v1v2 . . . vn of H.
Here,

µ
′∞
2ij = min

k=1,2,...n

{
(µ′2ij)

k
}

. . . . . . (14)

γ
′∞
2ij = max

k=1,2,...n

{
(γ′2ij)

k
}

. . . . . . (15)

and

µ∞2ij = min
k=1,2,...n

{
(µ2ij)k

}
. . . . . . (16)

γ∞2ij = max
k=1,2,...n

{
(γ2ij)k

}
. . . . . . (17)

Therefore, we have

µ
′∞
2ij = min

k=1,2,...n

{
(µ′2ij)

k
}

≤ min
k=1,2,...n

{
(µ2ij)k

}
, by (12)

= µ∞2ij .

Also,

γ
′∞
2ij = max

k=1,2,...n

{
(γ′2ij)

k
}

≥ max
k=1,2,...n

{
(γ2ij)k

}
,by (13)

= γ∞2ij .

Hence proved. �

Definition 15. Let G = 〈V,E〉 be an IFG. Let vi, vj be any two distinct
vertices and H = 〈V′,E′〉 be an IF subgraph of G obtained by deleting the edge
(vi, vj).

That is, H = 〈V′,E′〉, where

µ′2ij = 0 and γ′2ij = 0
and µ′2 = µ2

γ′2 = γ2 for all other edges.

Now, (vi, vj) is said to be a bridge in G, if either µ
′∞
2xy < µ

∞
2xy and γ

′∞
2xy ≥ γ∞2xy

or µ
′∞
2xy ≤ µ∞2xy and γ

′∞
2xy > γ

∞
2xy, for some vx, vy ∈ V.

In other words, deleting an edge (vi, vj) reduces the strength of connect-
edness between some pair of vertices (or) (vi, vj) is a bridge if, there exists
vx, vy such that, (vi, vj) is an edge of every strongest path from vx to vy.



Intuitionistic Fuzzy Graphs 147

v1 (0.3, 0.7) 

(0.6, 0.4) v4
v2 (0.7, 0.0) 

v3 (1.0, 0.0) 

Fig. 7. (v1, v4) is a bridge

Example 7. Let V = {v1, v2, v3, v4}.

In Fig. 7, the strength of P = v1v4 in G is (0.3, 0.2). Also, the strength of
P′ = v1v2v4 is (0.2, 0.3). Here, (v1, v4) is a bridge, because if we delete (v1,v4)
from G, the strength of the connectedness between v1 and v4 in G− (v1, v4)
is decreased.

Theorem 4. Let G = 〈V,E〉be an IFG. For any two vertices vi, vj in G, the
following conditions are equivalent:

(i) (vi,vj) is a bridge.
(ii) µ

′∞

2ij < µ2ij and γ
′∞
2ij > γ2ij.

(iii) (vi ,vj) is not an edge of any cycle.

Proof. (ii) ⇒ (i).

Assume µ
′∞

2ij < µ2ij and γ
′∞
2ij > γ2ij .

To prove (vi ,vj) is a bridge. If (vi , vj) is not a bridge, then

µ
′∞

2ij = µ∞2ij ≥ µ2ij , and γ
′∞
2ij = γ∞2ij ≤ γ2ij

which implies µ
′∞

2ij ≥ µ2ij and γ
′∞
2ij ≤ γ2ij , a contradiction.

Hence, (vi, vj) is a bridge.
(i) ⇒ (iii)
Assume (vi, vj) is a bridge. To prove (vi, vj) is not an edge of any cycle.
If (vi, vj) is an edge of a cycle, then any path involving the edge (vi, vj)

can be converted into a path not involving (vi, vj) by using the rest of the
cycle as a path from vi to vj . This implies (vi, vj) cannot be a bridge which
is a contradiction to our assumption. Therefore, (vi, vj) is not an edge of any
cycle.

(iii) ⇒ (ii)
Assume (vi, vj) is not an edge of any cycle.
To prove µ

′∞

2ij < µ2ij and γ
′∞
2ij > γ2ij .
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Assume that µ
′∞
2ij ≥ µ2ij and γ

′∞
2ij ≤ γ2ij . Then, there is a path from vi to

vj not involving (vi, vj) that has strength greater than or equal to µ2ij and
less than or equal to γ2ij and this path together with (vi, vj) forms a cycle
which is a contradiction. Hence, µ

′∞

2ij < µ2ij and γ
′∞
2ij > γ2ij . Therefore, the

statements (i), (ii) and (iii) are equivalent. �

Theorem 5. Let G = 〈V,E〉 be an IFG with the set of vertices V. Then

(i) If µ2ij and γ2ij are constants for all vi , vj ∈ V, then G has no bridge.
(ii) If µ2ij and γ2ij are not constants for all (vi, vj) ∈ E, then G has at least

one bridge.

Proof. (i) Let µ2ij and γ2ij are constants for all vi , vj ∈ V.
Let µ2ij = c1 and γ2ij = c2 for all vi , vj ∈ V, where 0≤ c1 ≤ 1 and

0 ≤ c2 ≤ 1.
In this IFG, since each edge has the same weight (the degree of membership

and nonmembership values of an edge), deleting any edge does not reduce
the strength of connectedness between any pair of vertices. Hence, G has no
bridge.

(ii) Assume that µ2ij and γ2ij are not constants for all (vi, vj) ∈ E.

Choose an edge (vx, vy) ∈ E such that

µ2xy = max{µ2ij}
γ2xy = min{γ2ij}, for all vi, vj ∈ V.
Therefore, µ2xy > 0 and γ2xy < 1.

There exists at least one edge (vs, vt) distinct from (vx, vy) such that

µ2st < µ2xy and γ2st > γ2xy.

We claim that (vx, vy) is a bridge of G. For, if we delete the edge (vx, vy),
then the strength of connectedness between vx and vy in the IF subgraph thus
obtained is decreased. In other words, µ′∞2xy < µ2xy and γ′∞2xy > γ2xy.

Therefore, by Theorem 4, (vx, vy) is a bridge of G. �

Corollary 1. In an IFG, G = 〈V,E〉 for which µ2 : V × V −→ [0, 1] and
γ2 : V×V −→ [0, 1] are not constant mapping, an edge (vi, vj) for which µ2ij

is maximum and γ2ij is minimum . Therefore it is a bridge of G.

Definition 16. A vertex vi is said to be a cut-vertex in G if deleting a vertex
vi reduces the strength of connectedness between some pair of vertices or vi is
a cut vertex if and only if there exists vx, vy such that vi is a vertex of every
strongest path from vx to vy.

In other words, µ′∞2xy ≤ µ2xy and γ′∞2xy < γ2xy (or) µ′∞2xy < µ2xy and γ′∞2xy ≤
γ2xy for some vx, vy ∈ V.

Example 8. Let V = {v1, v2, v3, v4, v5}.
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(0.7, 0.2) v5
v4 (0.2, 0.8) 

v3 (0.8, 0.0) 

v2 (0.5, 0.4) 
(0.2, 0.8) v1

Fig. 8. v1 is a cut-vertex

4 Conclusion

In this paper, the intuitionistic fuzzy extension of some known concepts of
fuzzy graphs has been investigated. Much more work could be done to inves-
tigate the structure of IFG. It would be useful, since IFGs have applications
in pattern clustering and network analysis which in turn would have applica-
tions in telecommunications. In this work, we have restricted our discussion
to the first type IFS. It is also proposed to extend these concepts on the other
extensions of IFSs.
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