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Summary. This work presents first practical implementation of a new algorithm
for solving max-product fuzzy relational equations as inference engine. The original,
analytical provided procedure computes the greatest solution and the set of all
minimal solutions, in case of consistency. In case of inconsistency, which presents
not adequate knowledge base or not adequate case for solution, the equations, that
correspond to the unsatisfied rules, are obtained. The algorithm is implemented for
solving max-product fuzzy linear system for predicting properties of textile yarns,
but these systems as inference engine are applicable in wide range of areas. Several
methodology problems of the practical implementation like the type of membership
functions, relation coefficients, dealing with multiple interactions are presented.
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1 Introduction

There are several approaches for building the inference engine. Those of them,
which follow directly programmed “if-then” rules are suitable for the diagnosis
problems, but not for engineering applications for prediction of certain prod-
uct properties as function of the technological process. Most popular are the
neuronal networks, often combined with fuzzy input and/or output. They are
very powerful because of their multilayer nonlinear approximation nature, but
they do not present clearly and user-friendly the knowledge base. The most
important disadvantage for the current case is the impossibility to work in
inverse direction, for backward reasoning. The fuzzy linear equations present
clear definitions of the relations between output and input for a given system.
Due to further development of the theory, they can be successfully used in
both the directions: for forward reasoning – for calculating the outputs when
the inputs and the relation matrix are given, and for backward reasoning – to
calculate which input has to be provided in order to receive certain output.

There are several applications of fuzzy relational equations in the textile
engineering. Some of them use fuzzy max–min linear systems for diagnos-
tics [1–4]. The max–min composition is suitable for a specific kind of reasoning,
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if the main task is to establish whether some events are present or not, tak-
ing into account the fuzziness of the used data. For predicting the properties
of the materials or for similar engineering applications, often proportionality
between the variables has to be present. In this case max-product law of com-
position provides a suitable mathematical description of the relations among
the physical parameters. The direct problem (calculation of the max-product
composition between the input vector X and the weight matrix A) is trivial,
but for solving inverse problem there are still open fields for researching. Here
we present first practical implementations of the algorithm presented in [5].
It uses algebraic-logical approach by using objects for representing the way
of thinking of the man by solving fuzzy equations and is based on universal
algorithm [6], developed as an extension of the theory and software in [7]. In
Sect. 2 is explained basically how to use the fuzzy linear systems as inference
engine. After that, in Sect. 3 are described some methodology problems, which
we had to solve during the practical implementation of the fuzzy linear system
as inference engine. At the end is presented a short example.

2 Max-Prod Fuzzy Linear Equations as Inference Engine

2.1 Mathematical Model

The properties of the textile yarns depend on a large number of parame-
ters. Detailed experimental investigations over influence of some preparation
processes over the parameters of the fibers sliver [8], some machine construc-
tion and adjustments [9,10], as well as the complex numerical and experimen-
tal investigations of the drafting process [11] prove, that predicting the yarn
properties requires a complex mathematical model.

Formalized description of the process of prediction of yarn properties is
presented in Fig. 1, where are mentioned only the most important input and
output parameters. Let us present the process of prediction as a general sys-
tem with N inputs xi and M outputs bj , where i = 1 · · ·N and j = 1 · · ·M . In
the yarn production is important to have estimation of the maximum possible
strength of the yarn for a certain material. At the same time, the yarn irreg-
ularity CV , as well as the yarn hairiness have to remain in certain limits. All
these requirements are output parameters. They depend on a set of input pa-
rameters, like machine adjustment, working speed, material preparation, tem-
perature and humidity in the rooms etc. The relations between all inputs and
outputs are usually nonlinear and they include complex interactions among
several single inputs. One full experimental investigation of these relations
by using design of experiments requires a large number of tests, which is not
usually possible in industrial conditions and is time and resources consuming.
On the other side, the complexity and multiscaling of the real problems par-
ticularly for spinning and for other textile processes, complicates building of
phenomenological models, which represent the physics of all interactions. Our
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Fig. 1. Inputs, relation matrix and outputs when building a system for prediction
of the properties of textile yarns

goal is to create a simple, fast and user friendly model, which consists of the
main important relations between single inputs and outputs, and allows both
forward and backward reasoning. The fuzzy linear system of equations fulfill
these requirements, as for the case most appropriate is the use of max-product
composition.

Let the relation between all inputs X = xi and the output bj is presented
with the equation

(aj1. x1)∨ · · · ∨(aj n−1. xn−1) ∨ (aj n. xn) = bj , (1)

where ∨ denotes max operator and . – multiplication. The complete system
for all outputs is

∣∣∣∣∣∣

(a11. x1) ∨ · · · ∨ (a1 n. xn) = b1
· · · · · · · · · · · · · · ·

(am 1. x1) ∨ · · · ∨ (am n. xn) = bm

, (2)

written in the following equivalent matrix form

A�X = B,

where A = (aij)m×n stands for the matrix of coefficients,X = (xj)n×1 stands
for the matrix of unknowns, B = (bi)m×1 is the right side of the system. For
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each i, 1 ≤ i ≤ m and for each j, 1 ≤ j ≤ n, we have aij , bi, xj ∈ [ 0, 1 ] and
the max-prod composition is written as �.

The coefficients aij matematically represent the influence (weight) of the
input xi over the output bj . In industry, the experts are looking for the best
performance, quality or seek the reasons for the worst cases. The best and
worst cases of one output bj correspond to its maximal and minimal value.
Looking for minimum can be inverted to looking for maximum [7], thus we
will work furtherly only with the maximal value.

2.2 Forward and Backward Schemes of Reasoning

We suppose that the relations’ matrix A and one vector X with input pa-
rameters, for example raw material, equipment and process data are given.
The estimation of the output parameters requires only computing of the com-
position of the left side of (1). This corresponds to the forward scheme of
reasoning, or to the so called direct problem. This way of calculation is fast,
because is connected to one matrix composition. It is useful for predicting of
the properties of the yarn, when the different materials, process parameters
or machine equipment are used. One can define goal function for some ele-
ments of the vector B and to start optimization problem, looking for the most
suitable inputs X. Such optimization is often not effective, because the sys-
tem (1) can have a large number of solutions and the standard optimization
algorithms will find only a local solution. More effective is the optimization,
when is used backward scheme of reasoning.

In this case, used also for diagnosis problems, we have to solve the inverse
problem, finding all solutions of (1) for given outputs B and relations A. If
the system (1) has solutions, it has one greatest and one or lots of lower solu-
tions. The lower solutions can be interpretated as the cheapest and the worst
material, which can be used for production of the yarn with the required in B
quality and properties. The greatest solution gives the best (and expensive)
material, which still will lead to producing the yarn with the same properties.
The interval solutions of the system build the range of variations of the input
parameters, where the output will remain unchanged. The interval solutions
are of great importance for the application engineers, as they show which
input parameters can be changed without loss of quality.

The application of the backward scheme of reasoning for optimization is
a little bit different from the optimization with forward scheme. Here the
required (maximum) values in B have to be given initially. Then, solving the
system (1), all interval solutions can be calculated. For the experts remains
the task to select this or these from the solutions X, which are more effective.

2.3 Solution Notes

If A � X = B is consistent, it has unique greatest solution Xgr = At � B
[5, 13–15].
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The �-product of matrices A and B is in general defined as matrix C =
(cij)m×n = A � B, if

cij =
p

min
k=1

(aik � bkj),when 1 ≤ i ≤ m, 1 ≤ j ≤ n.

In our case B is a vector and C becomes vector too, and the At denotes
transpose matrix of the A, where At = (at

ij) = aji.
A program implementation of exact method and an algorithm for solving

the system A � X = B for the unknown X is explained in [5, 7]. As much
as possible improvements over the straightforward exhaustive depth search
of this NP-hard problem are obtained. Rather than work with the system
A � X = B, is used a matrix, whose elements capture all the properties of
the equations. In depth first search, it is proposed how to drop branches that
do not lead to minimal solutions. A sequence of simplification rules is defined,
which brings the matrix into a new form. Once in this form, dominance is
applied to remove redundancy. In this manner the time complexity of an
exhaustive search is reduced merely by making a more clever choice of the
objects over which the search is performed. This provides an easy finding of
the complete solution of the original system.

3 Implementation Methodology

3.1 Membership Functions

The selection of the membership functions depends on the specificity of the
problem.

For instance the yarn strength depends on the yarn twist nearly quadrat-
ically, as the type of the real function is presented in Fig. 2. In this case, we
split the single input variable twist into new four input variables, which can be
named like “very low”,“low”,“normal”, and “high” twist, and which have also
a unique range. Furtherly, we input four output variables for yarn strength,
no matter that, for the forward reasoning this is not obligatory. These four
output variables in this case are required, because some of the physical value
of the yarn strength can be obtained for two different values of the variable
“twist” – one before the maximum and one after the maximum. With the
additional new output variables can be exactly specified, if the value is “high
strength, but under the critical twist” or “high strength, but above the critical
twist.”

The next not typically used is the type of certain membership functions.
For the above mentioned case (Fig. 2) the physical input variable increases
monotonously and there is no overlapping between the local areas. For such
type of parameters we used “saw” – like membership functions for normaliza-
tion of the input variables (Fig. 3, left). Of course a lot of parameters work
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Fig. 2. Local approximation and setting up of new variables for the nonlinear
relationships between input and output. The presented curve is typical for the rela-
tionship between yarn twist and yarn strength

Fig. 3. Membership functions for continuous input variable without overlapping
(left) and triangular membership functions for uncertain variables, like “state of the
machine,” connected with not exact definition of the state of working parts, gears,
dirtiness level etc. (right)

well with the standard type functions (Fig. 3, right), for which more explana-
tion can be found in almost all introductional literature about fuzzy logic, as
for instance [12].

3.2 Coefficients of the Relation Matrix

The most important key point for expert system building is the selection of
the proper structure of the relation matrix A. Its coefficients aij are obtained
from experts, using mechanical models of the system for some of the relations
or experimental results for the more complicated ones. They are divided into
three groups, depending on the type of the relation between the input and
output variables in the system (2):

– Physical (deterministic) relation between the inputs and outputs. Exam-
ple: during the drafting process the fiber sliver becomes longer and finer.
The drafting ratio I connects the input Tinp and output Tout fineness, as
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Tout = Tin · I. For this case, the corresponding coefficient in the system
(1) has value aij = I, if the finenesses Tout and Tin are normalized.

– Stochastic correlation between the input and output parameters. Exam-
ple: at higher working speed of the machine V the irregularity of the sliver
CV becomes higher, too. This relation is not well (jet) deterministically
described, but exists enough statistical data as a proof of its significance
(Fig. 4, left). At the same time the speed of the machine does not influ-
ence significantly the mean fiber length L50%, and in this case we will set
correspondent aij = 0.

– Relation between the variances of the input and output parameters. This
can be the case not only for the stochastic relation between parameters,
but also for the deterministic ones. The models usually do not describe
all the influences, like the humidity and temperature of the room, some
defects in the gears, sticking of the dust, which is usual for the textile pro-
duction. We use the variances of all input and output variables, and input
their relation in the corresponding coefficient aij . Here, in general can be
assumed that aij = 1 − r2ij , where rij is the correlation coefficient of the
regression equation for the connection between input xi and output bj .
In this system all the input and output parameters are analyzed as pairs
“parameter–variance”: xi−xK+i, where K is the number of the indepen-
dent input variables, 2K ≤ N . The use of the additional variables for the
variances per input and output parameters makes the fuzzy linear system
two times larger (actually four, but the half of the coefficients are zeros),
but the variances are required for proper description of the processes. Ex-
ample of confidential area of the influence between input “machine speed”
and output “yarn mass irregularity” is presented on the Fig. 4 (right).

3.3 Significant Multiple Interactions

In some cases the interactions between two or more input parameters are
very important. They can not be properly modeled by the system (2) and for

Fig. 4. Variation coefficient of the sliver (intermediate half-finished product), left,
depending nonlinear on the machine velocity with very high degree of correlation.
The same coefficient for the final product – yarn on the right figure, has the same
trend, but with quite large confidence interval
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this reason we used the idea for the multilayers from the neural networks. If
the interaction between variables xi and xk is significant, we build new one,
composite variable, xl = xi · xk. We use such composite variables during the
solution of (1) formally as independent variables, but after that, during the
decoding of the results, these variables require some additional operations and
checks about possible logical contradictions.

4 Numerical Example

The relation matrix when working with industrial problems is usually bigger
than 15 × 10, which is not convenient for printing. Because of this, the re-
alization of forward and backward reasoning in the MATLAB environment
are presented here as an example with highly reduced size. Let the relation
matrix A is given as

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.0 0.9 1.0 0.0 0.0 0.0
0.1 0.6 0.3 0.0 0.0 0.0
0.8 0.4 0.2 0.0 0.0 0.0
0.0 0.0 0.0 0.4 0.8 0.1
0.0 0.0 0.0 0.2 0.1 1.0
0.0 0.0 0.0 0.4 0.1 0.8

⎞

⎟⎟⎟⎟⎟⎟⎠

Here is demonstrated the block-architecture of this matrix, where the upper
left block represents the coefficients of the relation between the input and
output variables, the bottom right block – the coefficient for the variances
between these variables. For forward scheme of reasoning, we need the outputs
B, if the inputs X are given. For instance X =

(
0.3 0.9 1.0 0.2 0.0 0.6

)t. Here
we have to compute the max-prod composition B = A � X, which in the
MATLAB environment using the library, described in [5] is simple:

>> B=fuzzy_maxprod(A,X’)

B =

1.0000
0.5400
0.3600
0.0800
0.6000
0.4800

Let us solve the inverse example, typical for the backward reasoning, asking –
which inputs X have to be used, in order to receive the presented output B?
The solver calculates the greatest and finds two lower solutions
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>> s=solvedot(A,B)
greatest solution - transposed

0.4500 0.9000 1.0000 0.2000 0.1000 0.6000

lower solutions - transposed
0 0.9000 1.0000 0.2000 0 0.6000
0 0.9000 1.0000 0 0.1000 0.6000

which builds two interval solutions of the problem

X1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

[0, 0.45]
0.9
1

0.2
[ 0, 0.1]

0.6

⎞

⎟⎟⎟⎟⎟⎟⎠
, X2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

[0, 0.45]
0.9
1

[ 0, 0.2]
0.1
0.6

⎞

⎟⎟⎟⎟⎟⎟⎠
.

This example demonstrates, that for certain relation matrix A there are three
inputs variables, which value can be changed and despite of this to receive the
same outputs B. The variable x1 has to be between 0 and 0.45, which means,
that it has no significant influence over the outputs in this case. The variables
x4 and x5 are connected – one of them can vary in some limits if the other one
is fixed. On the language of the application engineers this solution set means,
that we can obtain the same yarn properties, by relative large variation of the
input parameters x1 and careful choice between the variation of one of the
inputs x4 or x5.

5 Discussion

In order to take into account the spread of the parameters, that is usually
for the textile products, we use the variances for almost all input and output
quantities as variables in the system, too. This increases the size of the system
and worsens the clarity of the knowledge presentation. Better approach can
be realization of the system by the means of logic [2, 7], where probably by
using membership and nonmembership degrees, can be modeled the spread of
the investigated variables as well. The use of intuitionistic approach formally
would lead to saving the number of variables, but the amount of the data and
calculations will be again almost identical with the presented here. The use of
the intuitionistic approach still requires some additional development in the
theory and software, which did not allow us to implement it.
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6 Conclusions

The use of the max-prod fuzzy linear systems of equation as inference engine is
explained. The practical implementation of these systems requires additional
knowledge about the selection of the membership functions, presenting the
highly nonlinear relations, spread of the variables, as well as the ways for
filling the relation matrix. Interpretations of the mathematical model, from
the point of view of the prediction of textile yarn properties are given, but
the model is applicable in a wide range of areas.
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