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Preface

For the 9th time since 1991 we invite researchers to participate in the
Dortmund Fuzzy-Days. I am very glad that our conference has established
itself as an international forum for the discussion of new results in the filed
of Computational Intelligence. Again all papers had to undergo a thorough
review: each one was judged by five referees to guarantee a solid quality of
the programme.

From the beginning of the Fuzzy-Days on Lotfi A. Zadeh felt associated
with the conference. I would like to express my gratitude for his encouragement
and support and I am particularly glad that he once again delivers a keynote
speech. Much to my pleasure Ewa Orlowska, Radko Mesiar together with
Vilém Novák, Ernesto Damiani together with Tharam Dillon and Nik Kasabov
have also agreed to present new results of their work as keynote speakers.

Many thanks go to my friends Janusz Kacprzyk and Enric Trillas who
together with Lotfi Zadeh again served as honorary chairmen.

Due to my retirement in 2006, these are the last Dortmund Fuzzy Days in
the form we had developed over the years. At this point I have to leave open,
whether we find another forum or not.

I wish to thank all participants of the Dortmund Fuzzy-Days for their
commitment to the conference and the organisers, namely Mrs Ulrike Lippe,
for the excellent job they did. Last but not least, I am obliged to the German
research council for their valuable financial support.

September 2006 Bernd Reusch
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José Luis Garćıa-Lapresta
Department of de Economı́a
Aplicada (Matemáticas)
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Technická 2, 616 69 Brno,
Czech Republic
seda@fme.vutbr.cz

Paulo J.A. Serra
Instituto de Desenvolvimento
de Novas Tecnologias UNINOVA
Universidade Nova de Lisboa
Quinta da Torre 2829-516
Caparica, Portugal
pja@uninova.pt

Branimir Šešelja
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wiratna@dia.fi.upm.es

Valérie De Witte
Fuzziness and Uncertainty
Modelling Research Unit
Department of Applied Mathematics
and Computer Science,
Ghent University
Krijgslaan 281-S9
9000 Gent, Belgium
http://www.fuzzy.ugent.be/

Wang Xiaodong
Department of Information Science
and Engineering
Zhejiang Normal University
Beishan Road 269,
321004 Jinhua
China
http://www.zjnu.cn

Mohammad Hossein Yaghmai
Department of computer Engineering
Ferdowsi University of Mashhad
hyaghmae@ferdowsi.um.ac.ir



List of Contributors XXIX

Lotfi A. Zadeh
Berkeley Initiative
in Soft Computing (BISC)
Computer Science Division and the
Electronics Research Laboratory
Department of EECS
University of California
Berkeley, CA 94720-1776, USA
zadeh@cs.berkeley.edu

S�lawomir Zadrożny
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From Search Engines to Question-Answering
Systems: The Problems of World Knowledge,
Relevance, Deduction, and Precisiation

Lotfi A. Zadeh∗

Summary. Existing search engines, with Google at the top, have many truly re-
markable capabilities. Furthermore, constant progress is being made in improving
their performance. But what is not widely recognized is that there is a basic capabil-
ity which existing search engines do not have: deduction capability – the capability
to synthesize an answer to a query by drawing on bodies of information which reside
in various parts of the knowledge base. By definition, a question-answering system,
or a Q/A system for short, is a system which has deduction capability. Can a search
engine be upgraded to a question-answering system through the use of existing
tools – tools which are based on bivalent logic and probability theory? A view which
is articulated in the following is that the answer is: no.

The first obstacle is world knowledge – the knowledge which humans ac-
quire through experience, communication, and education. Simple examples
are: “Icy roads are slippery,” “Princeton usually means Princeton Univer-
sity,” “Paris is the capital of France,” and “There are no honest politicians.”
World knowledge plays a central role in search, assessment of relevance and
deduction. The problem with world knowledge is that it is, for the most part,
perception-based. Perceptions – and especially perceptions of probabilities –
are intrinsically imprecise, reflecting the fact that human sensory organs, and
ultimately the brain, have a bounded ability to resolve detail and store in-
formation. Imprecision of perceptions stands in the way of using conventional
techniques – techniques which are based on bivalent logic and probability
theory – to deal with perception-based information. A further complication
is that much of world knowledge is negative knowledge in the sense that it
relates to what is impossible and/or nonexistent. For example, “A person
cannot have two fathers,” and “Netherlands has no mountains.”

The second obstacle centers on the concept of relevance. There is an ex-
tensive literature on relevance, and every search engine deals with relevance in
its own way, some at a high level of sophistication. But what is quite obvious
is that the problem of assessment of relevance is quite complex and far from
solution.
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There are two kinds of relevance (a) question relevance, and (b) topic
relevance. Both are matters of degree. For example, on a very basic level, if the
question is q: “Number of cars in California?” and the available information
is p: “Population of California is 37,000,000,” then what is the degree of
relevance of p to q? Another example: To what degree is a paper entitled
“A New Approach to Natural Language Understanding” of relevance to the
topic of machine translation.

Basically, there are two ways of approaching assessment of relevance (a)
semantic, and (b) statistical. To illustrate, in the number of cars example,
relevance of p to q is a matter of semantics and world knowledge. In existing
search engines, relevance is largely a matter of statistics, involving counts
of links and words, with little if any consideration of semantics. Assessment
of semantic relevance presents difficult problems whose solutions lie beyond
the reach of bivalent logic and probability theory. What should be noted is
that assessment of topic relevance is more amendable to the use of statistical
techniques, which explains why existing search engines are much better at
assessment of topic relevance than question relevance.

The third obstacle is deduction from perception-based information. As a
basic example, assume that the question is q: What is the average height
of Swedes?, and the available information is p: Most adult Swedes are tall.
Another example is: Usually Robert returns from work at about 6 p.m. What
is the probability that Robert is at home at 6:15 p.m.? Neither bivalent logic
nor probability theory provide effective tools for dealing with problems of this
type. The difficulty is centered on deduction from premises which are both
uncertain and imprecise.

Underlying the problems of world knowledge, relevance, and deduction is
a very basic problem – the problem of natural language understanding. Much
of world knowledge and web knowledge is expressed in a natural language.
A natural language is basically a system for describing perceptions. Since
perceptions are intrinsically imprecise, so are natural languages.

A prerequisite to mechanization of question-answering is mechanization
of natural language understanding, and a prerequisite to mechanization of
natural language understanding is precisiation of meaning of concepts and
proposition drawn from a natural language. To deal effectively with world
knowledge, relevance, deduction, and precisiation, new tools are needed. The
principal new tools are: precisiated natural language (PNL); protoform theory
(PFT), and the generalized theory of uncertainty (GTU). These tools are
drawn from fuzzy logic – a logic in which everything is, or is allowed to be, a
matter of degree.

The centerpiece of the new tools is the concept of a generalized constraint.
The importance of the concept of a generalized constraint derives from the
fact that in PNL and GTU it serves as a basis for generalizing the univer-
sally accepted view that information is statistical in nature. More specifically,
the point of departure in PNL and GTU is the fundamental premise that, in
general, information is representable as a system of generalized constraints,
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with statistical information constituting a special case. This, much more gen-
eral, view of information is needed to deal effectively with world knowledge,
relevance, deduction, precisiation, and related problems.

In summary, the principal objectives of this paper are (a) to make a case
for the view that a quantum jump in search engine IQ cannot be achieved
through the use of methods based on bivalent logic and probability theory;
and (b) to introduce and outline a collection of nonstandard concepts, ideas,
and tools which are needed to achieve a quantum jump in search engine IQ.
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Grant CT1080028046, Omron Grant, Tekes Grant and the BISC Program of UC
Berkeley.



A Fuzzy Approach to Optimal R&D Project
Portfolio Selection

Christer Carlsson, Robert Fullér, and Péter Majlender

1 Introduction

A major advance in the development of strategic investment selection tools
came with the application of options reasoning to the fields of Research and
Development (R&D). By real options we understand the opportunity to invest
in and thus support a project opportunity that essentially involves acquisition
or building of real assets. In every step of the investment program, when
making the appropriate entry (or exit) decisions, we also have to take into
consideration that the underlying projects can open or close the possibility for
further options (which might be more profitable). Defining phases and actively
scheduling and managing investment activities, we can collect information to
decide whether we are ready to go ahead with the investment or not.

Formulating from this point of view, we seek to correct the deficiencies
of traditional investment valuation methods by incorporating the manager-
ial flexibility that can (and usually does) bring significant value to projects.
From our experience, we found that the main issue in the options approach
to strategic project valuation is the correct characterization of the nonstatis-
tical imprecision that we encounter when judging or estimating future cash
flows. Working out schemes for phasing and scheduling systems of interrelated
projects, we will develop a basic model for valuing options on R&D invest-
ment opportunities, when future revenues and expected costs are estimated by
trapezoidal possibility distributions. Furthermore, drawing on our results, we
shall present a fuzzy mixed integer programming model for the R&D optimal
project portfolio selection problem.

The real options valuation methods were first tried and implemented as
tools for working with very large industrial investments, also called as giga-
investments. They presented a unique source of income for corporations
through capturing significant market share from their rivals. However, those
opportunities were often left abandoned due to the huge risks and uncer-
tainties: there was fear that capital invested in very large projects, with an
expected life time of more than a decade is not very productive and that their
overall activity is not very profitable.1

1 The Waeno project; Tekes 40470/00.
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Investment opportunities of R&D types compete for major portions of the
risk-taking capital, and as their outcome is particularly uncertain, compro-
mises have to be made on their productivity. The short-term productivity
may not be high, although the overall return of the investment program can
be forecasted as very good. Another way of motivating an R&D investment
is to point to strategic advantages, which would not be possible without the
knowledge that the investment yields. Thus, R&D projects do offer some in-
direct (intangible) returns as well.

Our experience shows that R&D investments made in the paper and pulp
industry face fierce competition and scenarios of slow growth (2–3% p.a.) in
their key market segments. However, this environment does not prevent other
more effective competitors to gain footholds in their main markets.

There are other issues. Global financial markets make sure that capital
cannot be used nonproductively, as its owners are offered other opportunities,
and the capital will move (often quite fast) to capture these opportunities. The
capital market has learned “the American way,” i.e., there is a shareholder
dominance among the actors, which has often brought short-term shareholder
return to the forefront as a key indicator of success, profitability, and produc-
tivity. There are also lessons learned from the Japanese industry, which point
to the importance of immaterial investments. They show that investments
in buildings, production, and supporting technologies become enhanced with
immaterial investments, and that these are even more important for further
investments and gradually growing maintenance investments.

The core products and services created by R&D investments are enhanced
with life-time services, with gradually more advanced maintenance and finan-
cial add-in services. These features make it difficult to actually assess the
productivity and profitability of the original R&D project, especially if the
products and services are repositioned to serve other (e.g., emerging) markets.
New technology and enhanced technological innovations have been changing
the life cycle of R&D investments. The challenge is to find the right time and
the right innovation to modify the life cycle in an optimal way. Technology
providers are actively involved throughout the life cycle of R&D projects,
which actually changes the way we assess the profitability and the productiv-
ity of such investments.

R&D projects, and in particular, portfolios of R&D projects generate com-
mitments, which possess:

1. Long life cycles (taking into account their possible impacts on other in-
vestments)

2. Uncertain (i.e., vague), sometimes overly optimistic or pessimistic future
cash flow estimates

3. Uncertain (i.e., biased ), sometimes questionable profitability estimates
4. Imprecise assessments of future effects on productivity, market positions,

competitive advantages, and shareholder value
5. The ability to generate series of further investments
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Jensen and Warren [14] propose to use options theory to value R&D in
the telecom service sector. The reasons are rather similar to those we iden-
tified above: research managers are under pressure to explain the value of
R&D programs to the senior management, and at the same time they need
to evaluate individual projects to make management decisions on their own
R&D portfolio. The research in real options theory has evolved from general
presentations of flexibility of investments in industrial cases to more theoret-
ical contributions, which resulted in the application of real option valuation
methods to industrial R&D projects. The term real option was introduced by
Kester [15] and Myers [20] in 1984. The option to postpone an investment
opportunity was discussed by McDonald and Siegel [22]. Pakes [23] consid-
ered patents as options. Siegel et al. [24] discussed the option valuation of
offshore oil properties. Majd and Pindyck [21] analyzed the optimal time and
computed the option value of building operations in investment decisions.
A fundamental book on managerial flexibility and strategy in resource allo-
cation, written by Trigeorgis [25], presented a theory of real options. Abel
et al. [1] discussed a theory of option valuation of real capital and invest-
ments. Faulkner [13] discussed the application of real options to the valuation
of R&D projects at Kodak. Kulatilaka et al. [16] discussed a capability-based
real options approach to managing information technology investments.

The use of fuzzy sets to work with real options is a novel approach, which
has not been considered and analyzed widely so far. One of the first results to
apply fuzzy mathematics in finance was presented by Buckley [4], where he
worked out how to use fuzzy sets to formulate the concepts of future value,
present value, and internal rate of return. Carlsson and Fullér [5] also dealt
with fuzzy internal rate of return in the context of investment decisions to
control paper mills in the industry. Later, Carlsson and Fullér [6] developed
a method for managing capital budgeting problems with fuzzy cash flows.
However, there are a growing number of papers in the intersection of the
disciplines of real options and fuzzy sets. In one of the first papers on develop-
ing the fuzzy Black–Scholes model, Carlsson and Fullér [7] presented a fuzzy
real option valuation method. Muzzioli and Torricelli [19] used fuzzy sets to
frame the binomial option pricing model. Carlsson and Fullér [8] analyzed the
optimal timing of investment opportunities with fuzzy real options. Carlsson
et al. [10,12] developed and tested a method for project selection with optimal
timing and scheduling by using the methodology of fuzzy real options. Majlen-
der [18] presented a comprehensive overview of the development of investment
valuation methods in a possibilistic environment.

2 Real Options for R&D Portfolios

The options approach to R&D project valuation seeks to correct the deficien-
cies of traditional methods of valuation that are based on the methodologies
of net present valuation (NPV) and discounted cash flow (DCF) analyses,
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through the recognition of managerial flexibility and interaction with the
underlying investment opportunities. This uncertainty can bring significant
value to a project.

Real options in option thinking are based on the same principles as
financial options. In real options, the options involve “real” (i.e., productive)
assets as opposed to financial ones, where the options relate to some financial
instruments [2]. To have a “real option” means to have the possibility for
a certain period of time to either choose for or against something, without
binding ourselves up front. The value of a real option is computed by [17]

ROV = S0e
−δTN(d1)−Xe−rf TN(d2),

where

d1 =
ln(S0/X) + (rf − δ + σ2/2)T

σ
√
T

,

d2 =
ln(S0/X) + (rf − δ − σ2/2)T

σ
√
T

= d1 − σ
√
T ,

and where S0 is the present value of expected cash flows, X is the nominal
value of fixed costs, δ is the value lost over the duration of the option, rf
is the annualized continuously compounded rate on a safe asset, T is the
time to maturity of the option in years, and σ stands for the uncertainty of
the expected cash flows potentially involved in S0, and finally N(d) denotes
the probability that a random draw from a standard normal distribution will
be less than d.

The main question that a firm must answer for a deferrable investment
opportunity is the following.

2.1 How Long Should We Postpone the Investment up to T Time
Periods?

To answer this question, Benaroch and Kauffman [3] suggested the following
decision rule for an optimal investment strategy.

Where the maximum deferral time is T , make the investment (i.e., exercise
the real option) at time t∗, 0 ≤ t∗ ≤ T , for which the value of the option Ct∗

is positive and attends its maximum value. That is,

Ct∗ = max
t=0,1,...,T

{Vte
−δtN(d1)−Xe−rf tN(d2)} > 0, (1)

where

Vt = PV(cf0, cf1, . . . , cfT ; r)− PV(cf0, cf1, . . . , cft−1; r) = PV(cft, . . . , cfT ; r)

=
T∑

j=0

cfj

(1 + r)j
−

t−1∑

j=0

cfj

(1 + r)j
=

T∑

j=t

cfj

(1 + r)j
,
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and where cft denotes the expected cash flows at time t, t = 0, 1, . . . , T , and
r is the project-specific risk-adjusted discount rate.

Of course, this decision rule has to be reapplied each time when new infor-
mation arrives during the deferral period to see how the optimal investment
strategy changes in light of the new information. From a real option perspec-
tive, it can be worthwhile to undertake R&D investments with a negative net
present value (NPV), when early investment can provide information about
future benefits or losses of the whole investment program.

3 A Hybrid Approach to Real Option Valuation

A fuzzy set Ã on the real line R is called a trapezoidal fuzzy number with
core [a, b], left width α ≥ 0 and right width β ≥ 0, if its membership function
is of the following form:

Ã(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1−
a− t
α

if a− α < t < a,
1 if a ≤ t ≤ b,

1−
t− b
β

if b < t < b+ β,

0 otherwise,

and we use the notation Ã = (a, b, α, β).
Usually, the present value of the expected cash flows cannot be charac-

terized by a single number. However, they can be estimated by a trapezoidal
possibility distribution of the form

S̃0 = (a, b, α, β).

That is, the most possible values of the present value of the expected cash
flows lie in the interval [a, b] (which is the core of the trapezoidal fuzzy number
S̃0), and (b+β) is the upward potential and (a−α) is the downward potential
for the present value of the expected cash flows. In a similar manner, we
can estimate the nominal value of the expected costs by using a trapezoidal
possibility distribution of the form

X̃ = (a′, b′, α′, β′).

That is, the most possible values of the expected costs lie in the interval [a′, b′]
(which is the core of the trapezoidal fuzzy number X̃), and (b′ + β′) is the
upward potential and (a′ − α′) is the downward potential for expected costs.

In 2003, Carlsson and Fullér [11] suggested the use of the following fuzzy-
probabilistic formula for computing fuzzy real option values

C̃0 = S̃0e
−δTN(d1)− X̃e−rf TN(d2), (2)
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where

d1 =
ln(E(S̃0)/E(X̃)) + (rf − δ + σ2/2)T

σ
√
T

,

d2 =
ln(E(S̃0)/E(X̃)) + (rf − δ + σ2/2)T

σ
√
T

= d1 − σ
√
T ,

and where E(S̃0) denotes the possibilistic mean value of the present value
of expected cash flows, E(X̃) stands for the possibilistic mean value of the
expected costs and σ = σ(S̃0) is the possibilistic variance of the present value
of the expected cash flows [9]. Based on (2), Carlsson and Fullér [11] derived
a similar formula to (1) for the optimal investment strategy in a possibilistic
setting.

4 A Possibilistic Approach to R&D Portfolio Selection

Facing a set of project opportunities of R&D type, the company is usually
able to estimate the expected investment costs of the projects with a high
degree of certainty. Thus, in the following we will assume that X̃ = X ∈ R is
a crisp number. However, the cash flows received from the projects do involve
uncertainty, and they are modeled by trapezoidal possibility distributions. Let
us fix a particular project of length L and maximal deferral time T with cash
flows

c̃fi = (Ai, Bi, Φi, Ψi), i = 0, 1, . . . , L.

Now, instead of the absolute values of the cash flows, we shall consider
their fuzzy returns on investment (FROI) by computing the return that we
receive on investment X in year i of the project as

FROIi = R̃i =
c̃fi

X
=

(
Ai

X
,
Bi

X
,
Φi

X
,
Ψi

X

)
= (ai, bi, αi, βi).

For example, let c̃fi = (0.9, 8.4, 3.9, 5.6) and X = 6. Then

R̃i = (15%, 140%, 65%, 93%)

with possibilistic mean value

E(R̃i) =
ai + bi

2
+
βi − αi

6
=

15 + 140
2

+
93− 65

6
= 82.17%,

and (possibilistic) standard deviation

σ(R̃i) =

√(
bi − ai

2
+
αi + βi

6

)2

+
(αi + βi)2

72

=

√(
140− 15

2
+

65 + 93
6

)2

+
(65 + 93)2

72
= 90.76%.
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We compute the fuzzy net present value of the project by

FNPV =

[
T∑

i=0

R̃i

(1 + r)i
− 1

]
×X.

If a project with rates of return on investment

{R̃0, R̃1, . . . , R̃L}

can be postponed by a maximum of T years, then we will define the value of
its possibilistic deferral flexibility by

F = (1 + σ(R̃0))× (1 + σ(R̃1))× · · · × (1 + σ(R̃T−1))× FNPV,

where 1 ≤ T ≤ L. If a project cannot be postponed then its possibilistic
flexibility equals to its fuzzy net present value. That is, if T = 0 then F =
FNPV.

The basic optimal R&D project portfolio selection problem can be formu-
lated as the following fuzzy mixed integer programming problem

maximize F =
N∑

i=1

uiFi

subject to
N∑

i=1

uiXi +
N∑

i=1

(1− ui)ci ≤ B (3)

ui ∈ {0, 1}, i = 1, . . . N,

where N is the number of R&D projects; B is the whole investment budget; ui

is the decision variable associated with project i, which takes value one if the
project i starts now (i.e., at time zero) and takes value zero if it is postponed
and going to start at a later time; ci denotes the cost of the postponement
of project i (i.e., the capital expenditure required to keep the associated real
option alive); Xi and Fi stand for the investment cost and the possibilistic
deferral flexibility of project i, respectively, i = 1, . . . , N .

In our approach to fuzzy mathematical programming problem (3), we have
used the following defuzzifier operator for F

ν(F) =
(
E(F)− τ × σ(F)

)
×X,

where 0 ≤ τ ≤ 1 denotes the decision maker’s risk aversion.
Since R&D projects are characterized by the long planning horizon and

very large uncertainty, the value of managerial flexibility can be substantial.
Therefore, the fuzzy real options model is quite practical and useful. The stan-
dard work in the field use probability theory to account for the uncertainties
involved in future cash flow estimates. This may be defended for financial
options, for which we can assume the existence of an efficient market with
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numerous players and numerous stocks for trading, which in turn justifies the
assumption of the validity of the laws of large numbers and thus the use of sta-
tistical methods. The situation for real options associated with an investment
opportunity of R&D type is quite different. The option to postpone an R&D
project does have consequences, which differs from efficient markets, as the
number of players producing the consequences is quite small. The imprecision
we encounter when judging or estimating future cash flows is nonstochastic
by nature, and the use of probability theory can give us a misleading level of
precision and a notion that the consequences are somehow repetitive. This is
not the case, since in our case the uncertainty is genuine, i.e., we simply do
not know the exact level of future cash flows. Without introducing fuzzy real
option models, it would not be possible to formulate this genuine uncertainty.

The proposed model that incorporates subjective judgments as well as sta-
tistical uncertainties can give investors a better understanding of the problem
when making R&D investment decisions.

5 Summary

Multinational enterprises with large R&D departments often face the diffi-
culty of selecting an appropriate portfolio of research projects. The cost of
developing a new product or technology is low as compared to the cost of its
introduction to the global market. The NPV rule and other discounted cash
flow techniques for making R&D investment decisions seem to be inappropri-
ate for selecting a portfolio of R&D projects, as they favor short-term projects
in relatively certain markets over long-term and relatively uncertain markets.
Since many new products are identified as failures during the R&D stages,
the possibility of refraining from market introduction can add a significant
value to the NPV of the R&D project. Therefore R&D investments can be
interpreted as the price of an option on major follow-on investments.

In our OptionsPort project,2 we represented the optimal R&D portfolio
selection problem by a fuzzy 0–1 mathematical programming problem, where
the optimal solution(s) defined the optimal portfolio(s) of R&D projects with
the biggest (aggregate) possibilistic flexibility value.
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Choquet Integration and Correlation Matrices
in Fuzzy Inference Systems

R.A. Marques Pereira, P. Serra, R.A. Ribeiro

A fuzzy rule inference system (FIS) of the type Takagi–Sugeno–Kang (TSK)
[7,8], is described by rules such as

Ri : IFx1 isAi1 AND · · · ANDxm isAim THEN yi = ci0+ci1x1+· · ·+cimxm,

where i = 1, ..., n. The set of rules {R1, R2, . . . , Rn} forms the rule base. The
consequent of each rule can be interpreted as a fuzzy singleton whose value is
dependent on the system’s inputs. Each triggered rule provides an activation
level α, which is given by

αi = ⊗(µAi1 , . . . , µAim
),

where i = 1, ..., n, ⊗(·) represents a t-norm and {µAij
|j = 1, ...,m} represents

the set of memberships for each rule’s antecedent variables. The output for
the TSK system is then obtained using an aggregation operator based on the
standard weighted averaging

y(x) =
∑n

i=1 αiyi∑n
j=1 αj

=
n∑

i=1

wiyi where wi =
αi∑n

j=1 αj
and

n∑

i=1

wi = 1,

where we consider the individual weights of the fuzzy rules, wi > 0, to be the
normalized activation levels αi for i = 1, . . . , n.

In this paper we propose an extension to the TSK fuzzy inference system
based on Choquet interation [5, 6], called Choquet–TSK. In our model, a
matrix of pairwise correlations among the activation levels of the FIS rules
is explicitly used in the aggregation process, leading to attenuation effects
when correlations are positive and emphasizing effects when correlations are
negative.

Consider a finite set of interacting criteria N = {1, 2, . . . , n}.
A Choquet measure [1] on the set N is a set function µ : P(N) −→ [0, 1]

satisfying

(1) µ(∅) = 0, µ(N) = 1, (2) S ⊆ T ⊆ N ⇒ µ(S) ≤ µ(T ). (1)
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Given a Choquet measure µ we can define the Choquet integral [1–3] of a
vector x = (x1, . . . , xn) ∈ [0, 1]n with respect to µ as

Cµ(x) =
n∑

i=1

[µ(A(i))− µ(A(i+1))]x(i), (2)

where (·) indicates a permutation on N such that x(1) ≤ x(2) ≤ · · · ≤ x(n).
Also A(i) = {(i), . . . , (n)} and A(n+1) = ∅.

Notice that the Choquet integral with respect to an additive measure µ
reduces to a weighted averaging operator, whose weights wi are given by the
µ(i) values,

µ(A(i)) = µ((i)) + µ((i+ 1)) + · · ·+ µ((n)),

Cµ(x) =
n∑

i=1

[µ(A(i))− µ(A(i+1))]x(i) =
n∑

i=1

µ((i))x(i) =
n∑

i=1

wixi . (3)

Consider the pairwise correlation matrix C = [cij ] among the various fuzzy
rules

cij ∈ [−1, 1], cji = cij , i, j = 1, . . . , n, (4)

where for convenience reasons we take a null diagonal cii = 0 for i = 1, . . . , n.
We consider wi > 0 for i = 1, . . . , n individual weights of the fuzzy rules,

normalized so that Σn
i=1wi = 1.

Given a general pairwise correlation matrix C = [cij ], we define a two-
additive Choquet measure µ : 2N −→ [0, 1] in the following way: making use
of the Möbius transform m of the measure µ, we define m(i) = wi/N for each
singlet {i} and m(ij) = −wicijwj/N for each doublet {i, j}, with null higher
order terms. Then, we define the value of the two-additive measure µ on a
coalition S as the sum of the singlets and doublets contained in the coalition
S, as given by the Möbius transform m

µ(S) =
∑

{i}⊆S

wi/N +
∑

{i,j}⊆S

(−wicijwj)/N , (5)

where the normalization factor N is the sum of all singlets and doublets in
the set N

N=
∑

{i}⊆N

wi +
∑

{i,j}⊆N

(−wicijwj) = 1− 1
2

n∑

i,j=1

wicijwj

=1− 1
2

n∑

i=1

wici = 1− c/2, (6)

where ci =
∑n

j=1 cijwj and c =
∑n

i=1 wici denote weighted averages of pair-
wise correlation values. In particular, we have
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µ(i) = wi/N , i, j = 1, . . . , n,

µ(ij) = (wi + wj − wicijwj)/N . (7)

The measure µ satisfies the boundary conditions µ(∅) = 0 and µ(N) = 1, and
is monotonic.

The graph interpretation of this definition, in which singlets correspond
to nodes and doublets correspond to edges between nodes, is that the value
of the two-additive measure µ on a coalition S is the sum of the nodes and
edges contained in the subgraph associated with the coalition S.

Notice that the proposed Choquet–TSK integration model is an extension
of the standard weighted averaging of the TSK FIS. If the matrix C is null (null
pairwise correlations among the fuzzy rules, i.e., rules are really independent of
each other) then the Choquet measure µ is additive and the Choquet integral
coincides with the weighted arithmetic mean whose weights are wi as in the
standard TSK FIS.

The following example was adapted from the Dinner for Two example of
MATLAB (www.matworks.com.). In this example we have two input variables
and one output variable. The input variables service and food and the output
variable tip are described by the following linguistic terms: Service = {poor,
good, excellent}; Food= {rancid, delicious}; Tip= {cheap, average, generous}.
The rules for this system are as follows:

R1 : IF the service is poor OR the food is rancid THEN the tip is cheap.
R2 : IF the service is good THEN the tip is average.

R3 : IF the service is excellent OR the food is delicious THEN the tip is generous.

The results obtained for 50 randomly generated inputs for both TSK FIS and
Choquet–TSK FIS gave a mean relative deviation of 2% between the values
for both systems.

To observe how the results of the Choquet–TSK FIS can be affected by the
correlation matrix values, some extreme values for this matrix where tested.
For a C matrix with minus ones outside its main diagonal, the mean relative
deviation was 6%, and for a C matrix with ones outside its main diagonal,
the mean relative deviation was 9%. It should also be noted that, using a null
C matrix returned, as expected, the same results as the usual TSK FIS.
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Linguistic Summarization of Some Static
and Dynamic Features of Consensus Reaching

Janusz Kacprzyk, S�lawomir Zadrożny, and Anna Wilbik

Summary. Consensus reaching has been widely recognized as an important com-
ponent of the decision-making process. In previous works Fedrizzi and Kacprzyk
introduced a new concept of consensus referring to the idea of fuzzy majority and
based on the Zadeh’s calculus of linguistically quantified propositions. Basically, the
(degree of) consensus was meant as the degree to which Q1 (e.g., most) of the I (e.g.,
important) individuals agree as to Q2 (e.g., almost all) of B (e.g., relevant) options.
The approach was extended in further works by Fedrizzi, Kacprzyk, Nurmi, and
Zadrożny. Recently Kacprzyk and Zadrożny proposed to apply linguistic summaries
in the sense of Yager to support the consensus reaching process. For instance, “most
individuals definitely preferring option o1 over option o2 also definitely prefer option
o5 to option o7,” “almost all options dominating option o3 in the opinion of expert
e2 also dominate option o6 in the opinion of expert e4,” etc. In the present paper, we
extend this idea and propose to take into account dynamic features of the consensus
reaching process while constructing the linguistic summaries. Basically, linguistic
summaries are meant as a concise description of the current status in the group of
individuals in terms of their preferences. These descriptions may concern particu-
lar individuals, the whole group, or particular options. Moreover we propose here
to take into account also how the preferences are evolving over time. For instance,
“individual e2 is very flexible with respect to his or her preferences between options
o3 and o5,” etc. Such an information might be even more useful for the running,
moderating, etc. of a consensus reaching process than a static description.

Key words: Consensus reaching, Fuzzy majority, Fuzzy preferences, Fuzzy
quantifiers, Linguistic data summary, Linguistic summarization of times
series.

1 Introduction

This paper deals with an aspect of consensus reaching processes in a fuzzy
environment, i.e., under fuzzy preferences and a fuzzy majority. We assume
that there is a set of individuals (experts, decision-makers, . . .) and a set of
options (alternatives, variants, decisions, issues, . . .). The individuals provide
their testimonies concerning alternatives in question which are assumed to be
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fuzzy preference relations. Normally, the individuals initially disagree in their
testimonies, i.e., they are far from “consensus.” Then, assuming that the in-
dividuals are seriously committed to reaching consensus, they are expected
to update step-by-step their testimonies via an exchange of information, ra-
tional argument (e.g., by a moderator), etc., and hopefully to finally attain a
“consensus.”

Traditionally, consensus is meant as a full and unanimous agreement, i.e.,
that the testimonies of all the individuals should be the same at consensus.
Unfortunately, this is utopian in practice. This has implied a need of some
reconsideration of the very essence of “consensus” exemplified by a citation
from Lower and Laddaga [31]: “. . . It can correctly be said that there is a
consensus among biologists that Darwinian natural selection is an important
cause of evolution though there is currently no consensus concerning Gould’s
hypothesis of speciation. This means that there is a widespread agreement
among biologists concerning the first matter but disagreement concerning the
second . . .” (cf. also [30]). The above given quotation suggests that a fuzzy
majority is appropriate, and that it makes sense to speak about a consensus
to a degree.

A “soft” degree of consensus meant as the degree to which, say, “most of the
relevant individuals agree as to almost all of the relevant issues (aspects, etc.)
was proposed by Kacprzyk [9], Kacprzyk and Fedrizzi [10–15], and Fedrizzi
and Kacprzyk [2,3] (see also Kacprzyk et al. [16–18]), and then by Kacprzyk
and Zadrożny [22, 24, 25, 27]. Fuzzy logic with linguistic quantifiers (cf. [35])
was employed.

Consensus is normally reached via a consensus reaching process run by
a moderator (cf. [5, 29]). Thus some tools may be helpful, notably linguistic
summaries as proposed by Kacprzyk and Zadrożny (c.f., e.g., [28]).

In this paper we will add some other analytic tools, notably some linguistic
assessment of how opinions of the individuals evolve over time.

In Sect. 2 we will show how to derive soft degrees of consensus under fuzzy
preferences and a fuzzy majority, in Sect. 3 the idea and basic aspects of lin-
guistic data summaries are presented, and some methods of their derivation
are presented; moreover, it is shown how they can be used to support the run-
ning of a consensus reaching process. In Sect. 4 dynamic aspects of consensus
reaching process are dealt with.

2 Degrees of Consensus under Fuzzy Preferences and a
Fuzzy Majority

We operate in the following basic setting. We have a set of n ≥ 2 options
(alternatives, variants, issues, . . .), O = {o1, . . . , on}, and a set of m ≥ 2
individuals, E = {e1, . . . , em}. Moreover B is a fuzzy set of relevant options
and I is a fuzzy set of important individuals. Each individual ek ∈ E provides
his or her testimony as to the options in O, assumed to be an individual fuzzy
preference relation in O ×O.
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An individual fuzzy preference relation of individual ek, Rk = [rkij ], is given
as

µRk(oi, oj) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if oi is definitely preferred to oj ,
c ∈ (0.5, 1) if oi is slightly preferred to oj ,
0.5 in the case of indifference,
d ∈ (0, 0.5) if oj is slightly preferred to oi,
0 if oj is definitely preferred to oi.

(1)

The “soft” degree of consensus is derived in three steps:

1. for each pair of individuals we derive a degree of agreement as to their
preferences between all the pairs of options,

2. we aggregate these degrees to obtain a degree of agreement of each pair of
individuals as to their preferences between Q1 (a linguistic quantifier as,
e.g., “most,” “almost all,” “much more than 50%,” . . .) pairs of relevant
options B, and

3. we aggregate these degrees to obtain a degree of agreement of Q2 (a lin-
guistic quantifier similar to Q1) pairs of important individuals I as to their
preferences between Q1 pairs of relevant options B, and this is meant to
be the degree of consensus sought.

The point of departure is clearly a degree to which each pair of individuals
agrees as to the preference between a particular pair of options. In the most
basic case, we may define the degree of strict agreement between individuals
ek and el as to their preferences between options oi and oj

vij(k, l) =
{

1 if rkij = rlij ,
0 otherwise,

(2)

where here and later on in this section, if not otherwise specified, k =
1, . . . ,m− 1; l = k + 1, . . . ,m; i = 1, . . . , n− 1; j = i+ 1, . . . , n.

The relevance of a pair of options, (oi, oj) ∈ O × O, may be defined, say,
as bBij = 1

2 [µB(oi) + µB(oj)], which is clearly the most straightforward choice;
evidently, bBij = bBji, and bBii do not matter; for each i, j.

The importance, bIk,l, of a pair of individuals, (ek, el), may be defined as
bIk,l = 1

2 [µI(ek) + µI(el)].
The degree of agreement between individuals ek and el as to their prefer-

ences between all the pairs of relevant options is

vB(k, l) =

∑n−1
i=1

∑n
j=i+1[vij(k, l) ∧ bBij ]∑n−1

i=1

∑n
j=i+1 b

B
ij

. (3)

The degree of agreement between individuals ek and el as to their prefer-
ences between Q1 relevant pairs of options is

vB
Q1

(k, l) = µQ1 [vB(k, l)]. (4)
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In turn, the degree of agreement of all the pairs of important individuals
as to their preferences between Q1 pairs of relevant options is

vI,B
Q1

=
2

m(m− 1)

∑m−1
k=1

∑m
l=k+1[v

B
Q1

(k, l) ∧ bIk,l]∑m−1
k=1

∑m
l=k+1 b

I
k,l

. (5)

Finally, the degree of agreement of Q2 pairs of important individuals as
to their preferences between Q1 pairs of relevant options, called the degree of
Q1/Q2/I/B-consensus, is

con(Q1, Q2, I, B) = µQ2(v
I,B
Q1

). (6)

For some extensions, see, e.g. [6–8].
It is worth noticing that the required consensus does not have to concern

directly the preference relations expressed by the individuals. Usually the ul-
timate goal of the decision-making session is the choice of the best option(s).
Obviously an agreement between the individuals on the level of their pref-
erence relations makes this choice easier [32]. However if the individuals do
not agree with respect to all or most pairs of options they still may be fairly
in agreement as to which option is the best. Thus it may be advantageous
to consider the agreement also on the level of the choice sets of options, i.e.,
the sets of options that should be selected as the best taking into account
each individual preference relation separately. Such a multilevel measuring of
the consensus was proposed by Kacprzyk and Zadrożny in [23, 24, 26, 27], see
also [22] for a discussion of linguistic choice rules.

3 A Consensus Reaching Process and Linguistic Data
Summarization

We assume the following setting of the consensus reaching process (cf. [4,5,29,
36]). We have a set of individuals and a distinguished person, a moderator who
is responsible for running the consensus reaching session. The individual fuzzy
preference relations may initially differ to a large extent, i.e., the group may
be far from consensus. A moderator stimulates an exchange of information,
rational argument, discussion, creative thinking, clarification of positions, etc.
If the individuals are rationally committed to consensus, a change of testi-
monies usually occurs, and they get closer to consensus. It is assumed that
some individuals, even if they are still convinced they are right with their
original preferences, they can accept a consensual preferences established by
the group provided their arguments has been heard and discussed. Thus, their
acceptance of consensus may be effectively treated as a change of their pref-
erences. This is repeated until the group gets sufficiently close to consensus.

Among some means for supporting consensus reaching, linguistic sum-
maries of what happens to the preferences, relations between options, etc.
may be useful.
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A linguistic summary is meant as a natural language like sentence that
subsumes the very essence (from a certain point of view) of a set of data.
This set is assumed to be numeric and is usually large, not comprehensible
in its original form by the human being. The original Yager’s approach to
the linguistic summaries (cf. Yager [33], Kacprzyk and Yager [20], Kacprzyk
et al. [21], and Kacprzyk and Zadrożny [28]) may be expressed as follows:

– Y = {y1, . . . , yn} is a set of objects
– A = {A1, . . . , Am} is a set of attributes characterizing objects from
Y,Aj(yi) denotes a value of attribute Aj for object yi

A linguistic summary of set Y consists of:

– A summarizer S, i.e., an attribute together with a linguistic term (label)
defined on the domain of attribute Aj

– A quantity in agreement Q, i.e., a linguistic quantifier (e.g., most)
– Truth (validity) T of the summary, i.e., a number from the interval [0, 1]

assessing the truth (validity) of the summary (e.g., 0.7); usually, only
summaries with a high value of T are interesting

– Optionally, a qualifier P , i.e., another attribute together with a linguistic
term (label) defined on the domain of attribute Ak determining a (fuzzy)
subset of Y

Note that for brevity we will often identify summarizers and qualifiers with
the linguistic terms they contain.

Basically, the core of a linguistic summary is a linguistically quantified
proposition in the sense of Zadeh [35]. A linguistically quantified proposition,
of type I may be written as:

Qys are S (7)

and the one of type II may be written as

QPys are S. (8)

Then, the component of a linguistic summary, T , i.e., its truth (validity),
directly corresponds to the truth value of (7) or (8). This may be calculated
by using either original Zadeh’s calculus of linguistically quantified statements
(cf. [35]), or other interpretations of linguistic quantifiers, including Yager’s
OWA operators [34].

Using Zadeh’s [35] fuzzy logic-based calculus of linguistically quantified
propositions, a (proportional, nondecreasing) linguistic quantifier Q is as-
sumed to be a fuzzy set in the interval [0, 1] as, e.g.,

µQ(x) =

⎧
⎨

⎩

1 for x ≤ 0.8,
2x− 0.6 for 0.3 < x < 0.8,
0 for x ≥ 0.3.

(9)
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Then, the truth values (from [0, 1]) of (7) and (8) are calculated, respec-
tively, as

truth(Qys are S) = µQ

(
1
n

n∑

i=1

µS(yi)

)
, (10)

truth(QPys are S) = µQ

(∑n
i=1(µP (yi) ∧ µS(yi))∑n

i=1 µP (yi)

)
, (11)

where “∧” is the minimum operation, i.e., a ∧ b = min(a, b), which can be
replaced by, e.g., a t-norm.

Linguistic summaries may, in a convenient way, describe the current state
of agreement in the group and serve as guiding indicators for a further discus-
sion, if needed. They may point out how far the group is from consensus, what
are main obstacles in reaching consensus, which preference matrix may be a
candidate for a consensual one, etc. As shown by Kacprzyk and Zadrożny [27]
the very definition of consensus (6) may be interpreted as a kind of a linguistic
summary.

In [27] other types of linguistic summaries have also been proposed. The
summarizers S and qualifiers P refer to features of either individuals or op-
tions and linguistic terms expressing degrees of preferences, importance of
individuals, and relevance of options.

First, the summarized objects Y may be identified with the individuals E,
and their attributes A are preference degrees for particular pairs of options as
well as their importance degrees. Then, the summaries of the following type
may be useful and helpful for running a consensus reaching session:

Most individuals definitely prefer o1 to o2, moderately prefer o3 to
o4, . . .

Most individuals definitely preferring o1 to o3 also definitely prefer o2
to o4.

The summaries concerning the choice sets of particular individuals may
be exemplified by:

Most individuals choose options o1, o3, . . .

Most individuals reject options o1, o4, . . .

The summaries of the latter type may help exclude some options from a
further consideration and thus better focus the discussion.

Second, the summarized objects Y may be identified with the options O,
and their attributes A are preference degrees over other options as expressed
by particular individuals as well as their relevance degrees. Then, for instance,
the following summaries may be useful:

Most options are dominated by option o2 in opinion of individual e3.

Most options are dominated by option o2 in opinion of individual
e2, e4, . . .
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Most options are preferred to option o1 in opinion of individual e3
also preferred to option o2 in opinion of individual e4.

Thus, summarized are here the preference matrices of the individuals at a
given point in time, i.e., at a given iteration (stage) of the discussion. Quite
clearly, preferences evolve over time, and an interesting problem is to how to
linguistically assess those changes. This is dealt with in the next section.

4 A Dynamic View of Consensus Reaching

Let us now consider some linguistic summaries that take into account dy-
namic, temporal aspects of the consensus reaching process, and notably ex-
press how the preferences evolve over time. These may be exemplified by a
summary

Individual ek is very flexible with respect to his/her
preferences between options oi and oj .

(12)

In such a summary we do not capture an “up” and “down” direction
of change, and what really matters is an absolute change of a preference
degree rkij . Thus the time series data considered here represent the cumulative
changes up to certain point of time (i.e., iteration of discussion) of an expert’s
preferences regarding a pair of options. This may be expressed as the sum of
absolute values of all changes that have occurred until a given point of time
ts, i.e.

change(ts) =
s∑

q=1

∣∣rkij(tq)− rkij(tq−1)
∣∣ , (13)

where rkij(t) denotes the rkij element of the preference matrix of the kth expert
at time (iteration) t. Clearly, the maximal value of change in a single step in
comparison to the previous one equals 1.

As the consensus reaching sessions, and thus a “time series of preference
changes,” are usually very short, then we assume that only one trend, con-
cerning the whole time span is observed. Such a trend is meant to describe a
flexibility of an expert’s opinion: an expert is identified as either flexible or in-
flexible (stubborn). To extract it we use a simple least squares approximation
(LSA) of function (13) by a linear function.

In the summaries we use the slope of the line obtained via LSA to char-
acterize the trend. However it might be impractical to use the actual precise
value of the slope. Instead we use a fuzzy granulation in order to meet the
users’ needs and a task specificity. The user may construct a scale of lin-
guistic terms corresponding to various slopes of the line identifying the trend
as, e.g.,:

– very flexible,
– flexible,
– moderately flexible,
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– inflexible, and
– very inflexible (stubborn).

Figure 1 illustrates the lines corresponding to the particular linguistic
terms. In fact, each term represents a fuzzy granule of directions.

Fig. 1. A visual representation of slope granules defining the dynamics of change

The truth value of the summary (12) is computed via the following three
steps:

1. Compute the values of a cumulative change for all time points until the
current one – we treat them as a time series

2. Find the slope of the LSA line (α)
3. The truth value of the summary is equal to µS(α), where S is the fuzzy

set representing the summarizer of the summary; in case of (12) it is the
fuzzy set representing the linguistic term very flexible

5 Concluding Remarks

We have proposed to use linguistic summaries to evaluate trends of how the
individuals’ preferences evolve over time. Starting from a “soft” definition of
a consensus degree, we have shown that these summaries provide much of
information that can help run a consensus reaching session aimed at reaching
a possibly good agreement among a group of individuals concerning their
preferences.
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Consistency for Nonadditive Measures:
Analytical and Algebraic Methods
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Summary. We consider the problem of choosing an alternative in a set A =
{A1, A2, . . . , Am} of alternatives, given a set D = {d1, d2, . . . , dh} of decision makers
and a set Ω = {O1, O2, . . . , On} of objectives. We assume that any decision maker
dk assigns to any pair (alternative Ai, objective Oj) a number aijk that measures
to what extent Ai satisfies Oj .

We assume that Ω is a subset of a universal set U and, for every alternative
Ai and decision maker dk, the function mik that associates aijk to Oj is a fuzzy
measure. We propose to aggregate the scores aijk by means of a t-conorm ⊕λ of a
family Φλ of t-conorms such that every mik is a ⊕λ-decomposable measure.

We consider also some algebraic and geometric representations of the Archime-
dean fuzzy unions and their additive generators in terms of the theory of hyper-
groups.

By considering the Oj as events, we propose also to assign the scores aijk in such
a way that for some λ the assessment is consistent and to aggregate such evaluations
with the correspondent t-conorm ⊕λ.

Finally we generalize the previous procedure by considering fuzzy measures of
type 2, having as a range a set of fuzzy numbers with the interval [0, 1] as support.

2000 MSC: 03E72, 08A72, 20N20, 91B06, 91B14

Key words: Fuzzy measures, Multicriteria and multiperson decision making,
Fuzzy models, Hypergroups.

1 Choosing Among Several Alternatives

The problem of choosing an alternative in a set A = {A1, A2, . . . , Am} of
alternatives is considered, given a set D = {d1, d2, . . . , dh} of decision makers
and a set Ω = {O1, O2, . . . , On} of objectives.

Let I = {1, 2, . . . ,m}, J = {1, 2, . . . , n}, and H = {1, 2, . . . , h} be finite
sets. Every decision maker dk, k ∈ H, assigns to any pair (Ai, Oj) a number
aijk that measures the grade in which the alternative Ai satisfies the objec-
tive Oj .
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It is assumed also that, for any j ∈ J , weights ωj are associated to objec-
tives Oj , with the condition:

ω1 + ω2 + · · ·+ ωn = 1.

A classical two phases choice algorithm is:

Phase F1. Aggregate the set of the measures assigned by all the decision
makers to an alternative Ai with respect to an objective Oj , by considering
the arithmetic mean bij of the numbers aijk with i and j fixed. Then
obtain a matrix bij , i ∈ I, j ∈ J such that bij is the global grade in which
Ai satisfies the objective Oj .

Phase F2. For every alternative Ai as global utility is assumed a weighted
mean of the numbers bij , j ∈ J with the weights ωj . The alternatives are
ordered with respect to their utilities: the preferred alternative has the
greatest utility.

Let us call the algorithm above “the fair criterion”. We now describe a
new algorithm where the two phases are exchanged and aggregate the decision
makers scores with criteria of different types, e.g., decision makers bargaining
possibly by utilizing cooperative games and in particular their characteristic
functions.

Precisely we consider also the “the bargaining criterion” with the following
phases:

Phase B1. For every alternative Ai as global utility with respect to the decision
maker dk is assumed a weighted mean uik of the numbers aijk, j ∈ J with
the weights ωj .

Phase B2. The decision makers agree with the criteria to aggregate, for every
alternative Aj , the utilities uik.

In any case, in this paper we introduce a double generalization. We assume
the objectives are subsets of a universe set U .

As a first generalization we consider the scores aijk, j ∈ J or the aggregate
scores bij , j ∈ J are the values of a fuzzy measure mi over the set Ω of the
objectives and we aggregate such values with a t-conorm ⊕ such that mi is
decomposable with respect to ⊕.

As a further generalization we consider fuzzy measures of type 2 by replac-
ing the scores aijk with fuzzy scores a∗ijk that are fuzzy numbers with support
in the interval [0, 1].

2 Fuzzy Measures on the Set of Objectives

Let us recall some definition and results [1, 6, 8].

Definition 1. Let U be a universal set and F a family of subsets of U con-
taining ∅, U . A fuzzy measure on (U,F) is a function
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h : F → [0, 1],

such that:

FM1 h(∅) = 0, h(U) = 1;
FM2 ∀A,B ∈ F , A ⊆ B ⇒ h(A) ≤ h(B).

Definition 2. A fuzzy measure bel on (U,F) is said to be a belief measure if:

BF1 F is an algebra of subsets of U ;
BF2 for every positive integer n and for every collection {A1, A2, · · · , An}

of elements of F we have:

bel(A1 ∪A2 ∪ · · · ∪An) ≥
∑

i

bel(Ai)−
∑

i<j

bel(Ai ∩Aj) +

· · · + (−1)n+1bel(A1 ∩A2 ∩ · · · ∩An). (1)

In particular a belief measure bel has the superadditive property:

∀A,B ∈ F , A ∩B = ∅ ⇒ bel(A ∪B) ≥ bel(A) + bel(B). (2)

For further results see [8].

Definition 3. A fuzzy measure pl on (U,F) is said to be a plausibility measure
if:

PL1 F is an algebra of subsets of U ;
PL2 for every positive integer n and for every collection {A1, A2, . . . , An}

of elements of F we have:

pl(A1 ∩A2 ∩ · · · ∩An) ≤
∑

i

pl(Ai)−
∑

i<j

pl(Ai ∪Aj) +

· · · + (−1)n+1pl(A1 ∪A2 ∪ · · · ∪An). (3)

In particular a plausibility measure pl has the subadditive property:

∀A,B ∈ F , A ∩B = ∅ ⇒ pl(A ∪B) ≤ pl(A) + pl(B). (4)

For every fuzzy measure h : F → [0, 1] on (U,F) with F an algebra of
subsets of U , the function h∗ : F → [0, 1] such that ∀A ∈ F , h∗(A) = 1−h(A)
is also a fuzzy measure on (U,F), called the associate measure to h.

It is easy to prove the following.

Theorem 1. Let F be an algebra of subsets of the universal set U . The func-
tion h : F → [0, 1] is a belief measure if and only if its associate measure h∗

is a plausibility measure. Moreover h is a finitely additive probability if and
only if h = h∗.
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Definition 4. A basic probability assignment bp on (U,F), with F an algebra
of subsets of U , is a function bp : F → [0, 1] such that bp(∅) = 0 and

∑

A∈F
bp(A) = 1. (5)

From a basic probability assignment bp we obtain a belief measure bel and
the associate plausibility measure pl = bel∗ by the formulas:

bel(A) =
∑

B:B⊆A

bp(B); (6)

pl(A) =
∑

B:B∩A �=∅
bp(B). (7)

In particular, by the previous formulas, we have that bel (and then also
pl) are probability measures if and only if the set {A ∈ F : bp(A) > 0} is
contained in the set C of the atoms of the algebra F .

In this paper we assume that the set Ω = {O1, O2, ..., On} of the objectives
is a family of subsets of the universal set U and F is an algebra that includesΩ.

If we introduce, for every alternative Ai, a basic probability assignment
bpi, we can obtain the scores of the objectives by the formulas (6) or (7),
according to whether we wish have belief or plausibility measures.

3 Aggregation of Fuzzy Measures with Respect
to a t-Conorm

Suppose that the scores of the objectives Oj , j ∈ J with respect to an alter-
native Ai are the numbers bij , j ∈ J , belonging to the interval [0, 1]. Our
aim is to give a criterion to aggregate these scores and obtain a global score
ci ∈ [0, 1]. Then we have to consider an operation ⊕ on [0, 1] such that:

ci = bi1 ⊕ bi2 ⊕ · · · ⊕ bin.

The expected properties of such an operation lead us to the concept of the
t-conorm.

Definition 5. A t-conorm or fuzzy union is an operation ⊕ on [0, 1] with the
following properties:

FU1 ∀a ∈ [0, 1], a⊕ 0 = a; (boundary conditions)
FU2 ∀a, b, c ∈ [0, 1], (a⊕ b)⊕ c = a⊕ (b⊕ c); (associativity)
FU3 ∀a, b ∈ [0, 1], a⊕ b = b⊕ a; (commutativity)
FU4 ∀a, b, c ∈ [0, 1], b ≤ c⇒ a⊕ b ≤ a⊕ c. (monotonicity)
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The t-conorm ⊕ is strictly monotonic if it is strictly increasing in the open
interval (0, 1)2 with respect to every variable.

A fuzzy union ⊕ is Archimedean if it has the following properties:

FU5 the function ⊕ : (a, b) ∈ [0, 1]2 → a⊕ b is continuous; (continuity)
FU6 ∀a ∈ (0, 1), a⊕ a > a. (superidempotence)

A fuzzy union ⊕ strictly monotonic and Archimedean is said to be strictly
Archimedean.

A characterization of the Archimedean t-conorms is given in the following
theorem (see [9]).

Theorem 2. A binary operation ⊕ on [0, 1] is an archimedean t-conorm if
and only if there exists a strictly increasing and continuous function

g : [0, 1] → [0,+∞], with g(0) = 0,

such that

∀a, b ∈ [0, 1], a⊕ b = g−1[min(g(a) + g(b), g(1))].

Moreover ⊕ is strict if and only if g(1) = +∞.
The function g, called an additive generator of ⊕, is unique up to a positive

constant factor.

Definition 6. Let F be an algebra of subsets of a universal set U and ⊕ a
t-conorm. A fuzzy measure m on (U,F) is said to be a ⊕-decomposable mea-
sure if:

∀A,B ∈ F , A ∩B = ∅ ⇒ m(A ∪B) = m(A)⊕m(B).

We have the following classification theorems (see [15]).

Theorem 3. Let ⊕ be a strictly Archimedean t-conorm with the additive gen-
erator g. A fuzzy measure m on (U,F) is a ⊕-decomposable measure if and
only if the function:

g ◦m : A ∈ F → g(m(A)) ∈ [0,+∞]

is an infinite additive measure with (g ◦m)(U) = +∞.

Theorem 4. Let ⊕ be a nonstrictly Archimedean t-conorm with the additive
generator g. A A fuzzy measure m on (U,F) is a ⊕-decomposable measure if
and only if the function g ◦m satisfy the following property:

∀A,B ∈ F , A ∩B = ∅, (g ◦m)(A ∪B) = min[(g ◦m)(A) + (g ◦m)(B), g(1)].

By Theorem 4 it follows

Corollary 1. For every A,B ∈ F , A ∩B = ∅

(g ◦m)(A ∪B) < g(1) ⇒ (g ◦m)(A ∪B) = (g ◦m)(A) + (g ◦m)(B).
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4 Algebraic and Geometric Representations by Means
of Hypergroups

4.1 Basic Definitions

We show that a fundamental tool to the representation and the treatment
of the uncertainty is the theory of the algebraic hyperstructures that consider
multi-valued operations, i.e., the case in which an operation has a nonempty
set of possible results, in general greater to 1.

The theory started in 1934 with a paper by Marty [10], but its present
development begins in 1978 with the First International Congress on Algebraic
Hyperstructures and Applications (AHA), and the book Join geometries by
Prenowitz and Jantosciak [12].

For further developments and results see [3] and [4].
We recall some basic definitions.

Definition 7. A hypergroupoid, or hyperstructure with a hyperoperation, is a
pair (H,σ), where H, called the support, is a nonempty set and

σ : H ×H → ℘∗(H) = ℘(H)− {∅},

called the hyperoperation, is a function that associates to any ordered pair
(a, b) of elements of H a nonempty subset of H, denoted aσb.

The elements of H are called points and any singleton {a}, a ∈ H, is
identified with the point a. So, for every a, b ∈ H, if aσb is a singleton, the
hyperoperation reduces to an operation on H.

For every A,B ∈ ℘∗(H) we assume:

AσB = {aσb : a ∈ A, b ∈ B}.

Definition 8. A hypergroupoid (H,σ) is said to be:

– a semihypergroup, if for every a, b, c ∈ H, aσ(bσc) = (aσb)σc (associative
property);

– a weak semihypergroup, if for every a, b, c ∈ H, aσ(bσc) ∩ (aσb)σc �= ∅
(weak associative property);

– a quasihypergroup if for every a ∈ H, aσH = H = Hσa (reproducibility
property);

– an hypergroup if it is both a semihypergroup and a quasihypergroup;
– a commutative hypergroupoid if for every a, b ∈ H, aσb = bσa (commu-

tative property); and
– a weak commutative hypergroupoid if for every a, b ∈ H, aσb ∩ bσa �= ∅.

(weak commutative property).

The most important case is the one in which (H,σ) is a hypergroup. For
the geometric applications we have to consider the following definitions.



Consistency for Nonadditive Measures 35

Definition 9. A hypergroup (H,σ) is said to be a geometric hypergroup if it
is commutative and

∀a ∈ H, aσa = {a} (idempotence).

The hyperoperation σ is usually called a hypermultiplication. If (H,σ) is a
commutative hypergroup, we define also the division / as the function that to
any pair (a, b) ∈ H2 associates the set a/b = {x ∈ H : a ∈ xσb}.

The division is an hyperoperation on H if and only if ∀a, b ∈ H, a/b �= ∅.
For further results and details see [3, 4, 12].

Definition 10. A commutative hypergroup (H,σ) is said to be a join space if
the following incidence property holds:

∀a, b, c, d ∈ H, a/b ∩ c/d �= ∅ ⇒ aσd ∩ bσc �= ∅.

Prenowitz and Jantosciak [12] proved that the Euclidean Spaces and the
Convex Sets are particular join spaces. The incidence property is a different
formulation of the Pasch axiom (see, e.g., [2]).

Also the Projective Spaces are join spaces and the incidence axiom is
reduced to the Veblen–Young axiom (see, e.g., [2]).

4.2 Fuzzy Sets and Coherent Probability Assessments
as Hypergroup

In order to deal with the uncertainty it is very important to recall that a fuzzy
set with universal set U is a particular hypergroup with support U . Actually
the following theorem holds (see [4, 11]).

Theorem 5. Let ϕ : U → [0, 1] be a fuzzy set. For every a, b ∈ U , let

aσb = {x ∈ U : min{ϕ(a), ϕ(b)} ≤ ϕ(x) ≤ max{ϕ(a), ϕ(b)}}.

The pair (H,σ) is a commutative hypergroup, called the hypergroup associated
to the fuzzy set ϕ. Precisely it is a geometric hypergroup and a join space.

Also the set of coherent subjective probability assessments is a hypergroup.
Let Γ = {E1, E2, . . . , En} be a finite set of events and U the Euclidean

space En having such events as axes. If K is an atom associated to Γ , we call
the representative of K on U the point P (K) ∈ U such that, for every Ei, its
projection Pi(K) on the axis Ei is 1 if K ⊆ Ei and 0 if K ⊆ Ei, the contrary
of Ei. Let ∆ be the set of all the atoms associated to Γ .

As shown by de Finetti [5], a point p = (p1, p2, . . . , pn) ∈ U is a coherent
probability assessment on Γ , with pi = p(Ei), if and only if p ∈ conv(∆), with
conv(∆) the convex set generated by ∆.

We can easily prove the following theorem (see [11]).
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Theorem 6. Let S be the subset of the Euclidean space En of all the coherent
probability assessments on a set Γ of n events. The application σ that to any
pair (a, b) of elements of S associates the close segment with extremes a and b
is an hyperoperation on S. The pair (S, σ) is a commutative hypergroup, that
we call the hypergroup of the coherent probability assessments on Γ . Precisely
it is a geometric hypergroup and a join space.

4.3 Geometric Spaces of the Fuzzy Unions and Additive
Generators

The Space of the L-Fuzzy Sets

Let L be a totally ordered set, U the universal set, and Φ the set of the L-fuzzy
sets with universe U . For every α, β ∈ Φ we put

ασβ = {ϕ ∈ Φ : ∀x ∈ U,min{α(x), β(x)} ≤ ϕ(x) ≤ max{α(x), β(x)}}.

We have {α, β} ⊆ ασβ and then (Φ, σ) is a commutative quasihypergroup.
Let σ(α, β, γ) be the set

{ϕ ∈ Φ : ∀x ∈ U,min{α(x), β(x), γ(x)} ≤ ϕ(x) ≤ max{α(x), β(x), γ(x)}}.

We can prove that:

– ∀α, β, γ ∈ Φ, (ασβ)σγ = σ(α, β, γ) = ασ(βσγ);
– ∀α ∈ Φ,ασα = {α}.

Then we have the following theorem.

Theorem 7. The pair (Φ, σ) is a geometric hypergroup.

We denote with B the set of all the hyperproducts ασβ with α, β ∈ Φ. The
elements of B are called blocks of Φ and the pair (Φ,B) the geometric space
associated to Φ.

The Space of the Fuzzy Unions

Let T be the set of the t-conorms. We define on T the hyperoperation τ such
that, ∀a, b ∈ T , aτb is the set:

{c ∈ T : ∀x, y ∈ [0, 1],min{a(x, y), b(x, y)} ≤ c(x, y) ≤ max{a(x, y), b(x, y)}}.

By Theorem 7 we have:

Corollary 2. The pair (T, τ) is a geometric hypergroup, called the hypergroup
of the fuzzy unions.
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The Space of the Additive Generators

Let AG be the set of the additive generators of Archimedean t-conorms. We
define on AG the hyperoperation µ such that ∀f, g ∈ AG:

fµg = {h ∈ AG : ∀x ∈ [0, 1],min{f(x), g(x)} ≤ h(x) ≤ max{f(x), g(x)}.

By Theorem 7 we have:

Corollary 3. The pair (AG,µ) is a geometric hypergroup, called the hyper-
group of the additive generators.

5 Assessment of Consistent Measures to the Objectives

5.1 Conditions for a Consistent Assessment

The atoms with respect to the set Ω = {O1, O2, . . . , On} of objectives are
the logical possible intersections I1 ∩ I2 ∩ · · · ∩ In, with Ij , j ∈ {1, 2, . . . , n},
element of the set {Oj , Oj}. We can always assume that the objectives Oj are
subsets of a universal set U , and the contrary Oj of Oj is the complement of
Oj with respect to U . Let C = {C1, C2, . . . , Cs} be the set of atoms.

Suppose ⊕ is a nonstrictly Archimedean t-conorm and g is an additive
generator of ⊕. Assume m is a fuzzy ⊕-decomposable measure.

By Corollary 1, an assessment of evaluations

m(Ω) = {m(O1),m(O2), . . . ,m(On)} with m(Oj) < 1,∀j ∈ J

over the objectives is consistent if and only if there exist measures

m(Cr), r = 1, 2, . . . , s

of the atoms such that:

aj1g(m(C1)) + aj2g(m(C2)) + · · ·+ ajsg(m(Cs)) = g(m(Oj), j = 1, 2, · · · , n,
(8)

g(m(C1)) + g(m(C2)) + · · ·+ g(m(Cs)) ≥ g(1), (9)

with

ajr =
{

0, if Cr ⊆ Oj ;
1, if Cr ⊆ Oj .

We put

xr = g(m(Cr)), bj = m(Oj), b0 = g(1) = g(m(U))

and

x0 =
s∑

r=1

g(m(Cr))− g(1).
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Then (8) and (9) with the positivity constraints reduce to the system:

s∑

r=1

ajrxr = bj , j = 1, 2, . . . , J,

s∑

r=1

xr − x0 = b0, (10)

x0 ≥ 0, xr ≥ 0, r = 1, 2, . . . , s.

If we wish to have the solutions of the system (10) such that (9) is “nearest
to the equality” we have to consider the linear programming problem:

minimize the objective function

y = x0

with the system of constraints given by (10).

If we have a family ⊕λ, λ ∈ Λ, of nonstrictly Archimedean t-conorms and
gλ is the correspondent family of additive generators we have:

∀i ∈ J, bj = bj(λ) = gλ(m(Oj)), b0 = b0(λ) = gλ(m(U)).

Then we can find the subset ∆ of Λ such that the assessment of valuations
m on Ω is consistent with ⊕λ if and only if λ ∈ ∆.

5.2 The Case of Sugeno Measures

For λ > −1 , the function Uλ(a, b) = min(a + b + λab, 1) with a, b ∈ [0, 1],
defines a nonstrictly Archimedean t-conorm Uλ with additive generator

gλ(x) =
ln(1 + λx)

x
.

In particular:

– For λ = 0, we have the bounded sum U0(a, b) = min(a+ b, 1), with gener-
ator g0(x) = x

– For λ → −1, we have the strictly Archimedean sum-product U−1(a, b) =
a+ b− ab, with generator g−1(x) = −ln(1− x)

– For λ→ +∞ we have the drastic fuzzy union

For further details see [13–15].
The Uλ-decomposable measures are called λ-additive measures (see [15]).
Banon [1] and Berres proved that λ-additive measures are plausibility mea-

sures if −1 < λ < 0, and belief measures if λ > 0.
For λ = 0 the λ-additive measures are probability measures.
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6 An Algorithm to Compare the Alternatives

We are now able to exhibit the following algorithm to compare the alternatives
Ai, i ∈ I.
1. Any decision maker dk assigns the score aijk to the alternative Ai with

respect to the objective Oj .
2. By considering a mean or an agreement among the decision makers, we

obtain, for every alternative Ai and objective Oj an overall score bij .
3. We assign a class of nonstrict Archimedean t-conorms ⊕λ, λ ∈ Λ and we

calculate the corresponding class of additive generators gλ, λ ∈ Λ.
4. For every i ∈ I we find the set ∆i of all the λ ∈ Λ such that the set of eval-

uations bij , j ∈ J is consistent, i.e., there exists a fuzzy ⊕λ-decomposable
measure mi such that bij = mi(Oj),∀j ∈ J .

5. Put ∆ = ∩i∈I∆i. If ∆ = ∅ we return to step 1 in order to updating scores
or to 3 to consider a different class of nonstrict Archimedean t-conorms.
If ∆ �= ∅ we go to step 6.

6. For every i ∈ I we aggregate the evaluations bij , j ∈ J with respect to a
chosen ⊕λ with λ ∈ ∆ and we obtain the overall score ci = bi1 ⊕λ bi2 ⊕λ

...⊕λ bin of the alternative Ai.
7. We order alternatives by considering as the preferable the alternative Ai

with the maximum score ci.

7 An Extension to the Fuzzy Measures of Type 2

We assume that, because of some elements of uncertainty are involved into
the assessment of scores or the scores are values of linguistic variables, the
real numbers aijk are replaced by triangular fuzzy numbers a∗ijk with support
in the interval [0, 1] and core aijk (see, e.g., [7]).

For every pair α = (a, c, b) and β = (a′, c′, b′) of triangular fuzzy numbers
with {a, a′, b, b′} ⊆ [0, 1] and for every t-conorm ⊕ we put:

α⊕ β = (a⊕ a′, c⊕ c′, b⊕ b′).

The algorithm of Sect. 6 is modified as follows.

1. Any decision maker dk assigns as a score a triangular fuzzy number a∗ijk

with support contained in [0, 1] and with core aijk to the alternative Ai

with respect to the objective Oj .
2. By considering a mean or an agreement among the decision makers, we

obtain, for every alternative Ai and objective Oj as overall score with
respect to all the decision makers a triangular fuzzy number b∗ij with
support contained in [0, 1] and with core bij .

3. We assign a class of nonstrict Archimedean t-conorms ⊕λ, λ ∈ Λ and we
calculate the corresponding class of additive generators gλ, λ ∈ Λ.
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4. For every i ∈ I we find the set ∆i of all the λ ∈ Λ such that the set of
evaluations {bij , j ∈ J} is consistent, i.e., there exists a fuzzy measure mi

⊕λ-decomposable such that bij = mi(Oj),∀j ∈ J .
5. Put ∆ = ∩i∈I∆i. If ∆ = ∅ we return to step 1 in order to updating scores

or to 3 to consider a different class of nonstrict Archimedean t-conorms.
If ∆ �= ∅ we go to step 6.

6. For every i ∈ I we aggregate the fuzzy evaluations b∗ij , j ∈ J with respect
to a chosen ⊕λ with λ ∈ ∆ and we obtain the overall score c∗i = b∗i1 ⊕λ

b∗i2 ⊕λ ...⊕λ b
∗
in of the alternative Ai.

7. We order alternatives by considering some criteria to have a preference
relation � among triangular fuzzy numbers.
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Neuro-Fuzzy Kolmogorov’s Network with
a Modified Perceptron Learning Rule for
Classification Problems

Vitaliy Kolodyazhniy, Yevgeniy Bodyanskiy, Valeriya Poyedyntseva, and
Andreas Stephan

Summary. A novel Neuro-Fuzzy Kolmogorov’s Network (NFKN) is considered. The
NFKN is based on the famous Kolmogorov’s superposition theorem (KST) and is
the development of the previously proposed Fuzzy Kolmogorov’s Network (FKN).
Modifications of the FKN architecture include multiple outputs as required for clas-
sification problems with more than two classes, as well as the possibility of defining
different number of membership functions at each input. A new learning algorithm,
based on the modified perceptron learning rule and designed for classification prob-
lems, is proposed. The validity of theoretical results and the advantages of the new
NFKN are confirmed by experiments in data classification and visualization.

Key words: Kolmogorov’s superposition theorem, Neo-fuzzy neuron, Mem-
bership function, Fuzzy inference, Classification, Perception learning rule,
Batch training.

1 Introduction

A universal approximator called Fuzzy Kolmogorov’s Network (FKN) with
simple structure based on the Kolmogorov’s Superposition Theorem [5], and
its training procedure with high rate of convergence were proposed in [6, 7].
It was demonstrated that the FKN can be successfully used for time series
prediction problems, such as the Mackey–Glass time series prediction and elec-
tric load forecasting, as well as for data classification like separation of two
intertwined spirals and solving the XOR problem. However, the FKN train-
ing algorithm may require a large number of computations in the problems
of high dimension, because it is based on the least squares technique, which
requires inversion of matrices. This problem is alleviated in the Neuro-Fuzzy
Kolmogorov’s Network (NFKN) [1, 8], which is trained with a hybrid algo-
rithm, where the least squares method is used only for the output layer, and
the hidden layer is trained with a gradient descent-based procedure.

Although the FKN [6, 7] and especially the NFKN with the hybrid algo-
rithm [1,8] demonstrated very promising results in classification problems (e.g.
the NFKN was demonstrated to solve the N-parity problem for N=18 after
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only two training epochs in [8]), their training algorithms are based on the
quadratic error function and thus are better suited for regression rather than
for classification problems, because minimization of the sum of squared errors
does not necessarily lead to the reduction in the number of misclassifications.

In this paper, we propose an efficient and computationally simple learning
algorithm, whose complexity depends linearly on both the dimension of the
input space and the number of neurons. The proposed algorithm is a batch
multioutput modification of the perceptron learning rule [9] with improved
convergence, and is designed for classification problems. We use the modified
NFKN architecture [8], which is suitable for classification problems with large
number of inputs and two or more classes. The efficiency of the new algorithm
is confirmed by experiments, in which improved accuracy and the reduction
in network size are achieved.

2 Network Architecture

The original FKN architecture [6, 7] is comprised of two layers of neo-fuzzy
neurons (NFNs) [11] and is described by the following equations:

f̂(x1, . . . , xd) =
n∑

l=1

f
[2]
l (o[1,l]), o[1,l] =

d∑

i=1

f
[1,l]
i (xi), l = 1, . . . , n, (1)

where n is the number of hidden layer neurons, f [2]
l (o[1,l]) is the lth nonlinear

synapse in the output layer, o[1,l] is the output of the lth NFN in the hidden
layer, f [1,l]

i (xi) is the ith nonlinear synapse of the lth NFN in the hidden layer.
The universality of internal functions in the KST [4] suggests that we can

introduce an extended version of the FKN, called NFKN, with Q outputs [8],
having the same hidden layer for all the output neurons:

f̂q(x1, . . . , xd) =
n∑

l=1

f
[2,q]
l (o[1,l]), o[1,l] =

d∑

i=1

f
[1,l]
i (xi), (2)

l = 1, . . . , n, q = 1, . . . , Q,

where Q is the number of output layer neurons, f [2,q]
l (o[1,l]) is the lth nonlinear

synapse of the qth NFN in the output layer.
The equations for the hidden and output layer synapses are

f
[1,l]
i (xi) =

m1,i∑

h=1

µ
[1]
i,h(xi)w

[1,l]
i,h , f

[2,q]
l (o[1,l]) =

m2,l∑

j=1

µ
[2]
l,j(o

[1,l])w[2,q]
l,j , (3)

l = 1, . . . , n, i = 1, . . . , d, q = 1, . . . , Q,

where m1,i andm2,l are the number of membership functions (MFs) per input
in the hidden and output layers, respectively, µ[1]

i,h(xi) and µ[2]
l,j(o

[1,l]) are the
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MFs, w[1,l]
i,h and w[2,q]

l,j are the tunable weights. We assume that the MFs are
fixed, triangular (piecewise-linear), and equidistantly spaced over the range of
each NFN input. The parameters (centers) of the MFs are not tuned.

As in the FKN, the MFs in the NFKN at each input in the hidden and
output layers are shared between all neurons. However, in the NFKN archi-
tecture we allow for different number of MFs at each input. This property is
essential for the processing of data sets with mixed numerical and categorical
inputs, such that each category value of a categorical input corresponds to
one MF and is encoded with a numerical value corresponding to the center
of that MF. This is a more parsimonious and convenient approach than con-
ventional binary coding of categories, because we do not have to introduce
additional inputs to the classifier. When a missing input is encountered, no
membership function for that input is activated, and the corresponding input
synapse produces zero value. The NFKN architecture is shown in Fig. 1.

The outputs of the NFKN are computed via the following two-stage fuzzy
inference procedure:

ŷq =
n∑

l=1

m2,l∑

j=1

µ
[2]
l,j

[
d∑

i=1

m1,i∑

h=1

µ
[1]
i,h(xi)w

[1,l]
i,h

]
w

[2,q]
l,j , q = 1, . . . , Q. (4)

The description 4 corresponds to the following two-level fuzzy rule base:

IFxi IS Xi,h THEN o[1,1] = w[1,1]
i,h d AND . . .AND o1,n = w[1,n]

i,h d,

i = 1, . . . , d, h = 1, . . . ,m1,i,
(5)

IF o[1,l] IS Ol,j THEN ŷ1 = w[2,1]
l,j n AND . . .AND ŷQ = w[2,Q]

l,j n,

l = 1, . . . , n, j = 1, . . . ,m2,l,
(6)

where Xi,h and Ol,j are the antecedent fuzzy sets in the first and second level
rules, respectively.

Total number of rules is

NNFKN
R =

d∑

i=1

m1,i +
n∑

l=1

m2,l, (7)

i.e., it depends linearly on the number of inputs d. Straightforward grid-

partitioning approach would produce
d∏

i=1

m1,i fuzzy rules, leading to com-

binatorial explosion and being practically not feasible for d > 4.

3 Learning Algorithm

The number of tunable weights in an NFKN is S = S1 + S2, where S1 =
d∑

i=1

m1,i·n is the number of parameters in the hidden layer, and S2 =
n∑

l=1

m2,l·Q
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Fig. 1. NFKN with d inputs, n hidden layer neurons, and Q output layer neurons

is the number of parameters in the output layer. The weights of the NFKN here
are determined by means of a batch-training algorithm as described below.

A training set containing N samples is used. The minimized error function
is a batch Q-output modification of the function investigated in [9]:

E(t) =
Q∑

q=1

N∑

k=1

[ |ŷq(t, k)| − yq(k)ŷq(t, k)] (8)

=
Q∑

q=1

N∑

k=1

[(sign ŷq(t, k)− yq(k))ŷq(t, k)] = Tr
[
(signŶ (t)− Y )T Ŷ (t)

]
,

Y = (Y1, Y2, . . . , YQ), Ŷ (t) = (Ŷ1(t), Ŷ2(t), . . . , ŶQ(t)),

Yq = [yq(1), . . . , yq(N)]T
, Ŷq(t) = [ŷq(t, 1), . . . , ŷq(t,N)]T

, q = 1, . . . , Q,

where Y is the matrix (N ×Q) of target values, Ŷ (t) is the matrix (N ×Q)
of network outputs at epoch t. Target values in Y are encoded as –1 or +1.

It is only the sign of the output rather than the output value itself that is
important for the determination of classification error, and this is explicitly
reflected in (8). So the error function (8) would be a potentially better choice
for classification problems compared to the sum of squared errors as in [6, 7]
or [1, 8].
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The error function (8) can be minimized through recursive gradient-based
optimization of the synaptic weights. To derive such a procedure for the output
layer in a compact matrix–vector notation, re–write ( 4) as follows:

ŷ = W [2]Tϕ[2](o[1]), W [2] =

⎡

⎢⎢⎣

w
[2,1]
1,1 , w

[2,1]
1,2 , . . . , w

[2,1]
n,m2,n

...
w

[2,Q]
1,1 , w

[2,Q]
1,2 , . . . , w

[2,Q]
n,m2,n

⎤

⎥⎥⎦

T

, (9)

ϕ[2](o[1]) =
[
µ

[2]
1,1(o

[1,1]), µ[2]
1,2(o

[1,1]), . . . , µ[2]
n,m2,n

(o[1,n])
]T

,

where W [2] is the matrix (
n∑

l=1

m2,l ×Q) of the output layer weights.

The update procedure for the output layer weights will be

W [2](t+ 1) =W [2](t)− γ ∂E(t)/∂W [2]

∥∥Φ[2]
∥∥ =W [2](t) + γ

Φ[2]T (Y − signŶ (t))∥∥Φ[2]
∥∥ ,

Φ[2] =
[
ϕ[2](o[1](1)), . . . , ϕ[2](o[1](N))

]T

,
∥∥∥Φ[2]

∥∥∥ =

√√√√√√√
N∑

i=1

n∑
l=1

m2,l

∑

j=1

(Φ[2])2i,j ,

(10)

where γ is the learning rate, and Φ[2] is the regressor matrix (N ×
n∑

l=1

m2,l)

for the linear output layer. The norm
∥∥Φ[2]

∥∥ in the denominator of (10) is
present to speed up convergence.

We can derive a similar gradient descent-based learning rule for the hidden
layer as well. To do this, let us introduce the vector (S1 × 1) of the hidden

layer weights W [1] =
[
w

[1,1]
1,1 , w

[1,1]
1,2 , . . . , w

[1,1]
d,m1,d

, . . . , w
[1,n]
d,m1,d

]T

and the Jacobian

matrix Φ[1] =
[
ϕ[1](x(1), 1), . . . , ϕ[1](x(N), 1), . . . , ϕ[1](x(1), Q), . . . ,

ϕ[1](x(N), Q)
]T

of size (NQ×S1), where

Φ[1] =
[
ϕ[1](x(1), 1), . . . , ϕ[1](x(N), 1), . . . , ϕ[1](x(1), Q), . . . , ϕ[1](x(N), Q)

]T
,

ϕ[1](x, q)=
[
ϕ

[1,1]
1,1 (x1, q), ϕ

[1,1]
1,2 (x1, q), . . . , ϕ

[1,1]
d,m1,d

(xd, q), . . . , ϕ
[1,n]
d,m1,d

(xd, q)
]T

,

ϕ
[1,l]
i,h (xi, q) = a[2,q]

l (o[1,l]) · µ[1]
i,h(xi), i = 1, . . . , d,

h = 1, . . . ,m1,i, l = 1, . . . , n, q = 1, . . . , Q,
(11)

and a[2,q]
l (o[1,l]) are determined as in [8]:

a
[2,q]
l (o[1,l]) =

w
[2,q]
l,p+1 − w

[2,q]
l,p

c
[2]
l,p+1 − c

[2]
l,p

, (12)
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where w[2,q]
l,p and c[2]l,p are the weight and center of the pth MF in the lth synapse

of the qth output layer neuron, respectively. The MFs in an NFN are always
chosen such that only two adjacent MFs p and p+1 fire at a time [11].

Now we can obtain the gradient-based update procedure for the hidden
layer weights:

W [1](t+ 1) =W [1](t)− γ∇
W [1]E(t)

‖Φ[1]‖ =W [1](t) + γ Φ[1]T (
−→
Y −sign

−→̂
Y (t))

‖Φ[1]‖ ,

−→
Y = (Y T

1 , Y
T
2 , . . . , Y

T
Q )T ,

−→̂
Y (t) = (Ŷ T

1 (t), Ŷ T
2 (t), . . . , Ŷ T

Q (t))T ,

∥∥Φ[1]
∥∥ =

√
NQ∑
i=1

S1∑
j=1

(Φ[1])2i,j ,

(13)

where
−→
Y and

−→̂
Y (t) are vectors (NQ× 1).

Since no matrix inversions are involved, the considered training algorithm
is less computationally intensive that both the original algorithm for the FKN
[6, 7] and its hybrid modifications [1, 8]. The number of computations in (10)
for both layers at each epoch depends linearly on both the dimension of the
input space d and the number of neurons n.

For the processing of very large data sets when the storage of matrices for
the complete data set is impossible because of memory limitations, the most
memory-consuming calculations of the gradient ∇W [1]E(t) = −Φ[1]T (

−→
Y −

sign
−→̂
Y (t)) and the norm

∥∥Φ[1]
∥∥ can be performed cumulatively sample by

sample.

4 Experiments

To verify the theoretical results and compare the performance of the proposed
network to the known approaches, we carried out experiments using the data
from the well-known UCI repository [10]: Iris, Wisconsin Breast Cancer, Aus-
tralian Credit, and German Credit. The parameters of the data sets are listed
in Table 1. Note that two data sets, “Australian” and “German”, have several
categorical inputs, and the “Wisconsin” data set has 16 samples with missing
values.

Table 1. Data sets used in experiments

Data set Number of
samples

Samples with
missing values

Numerical
attributes

Categorical
attributes

Classes

Iris 150 0 4 0 3
Wisconsin 699 16 9 0 2
Australian 690 0 6 8 2
German 1000 0 7 13 2
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The results of the experiments with the NFKN and the proposed training
algorithm are summarized in Table 2. The column “neurons” describes the
NFKN architectures: the numbers separated by “+” indicate the number of
the hidden and output neurons, respectively. The column “weights” shows the
number of tunable parameters. The next column shows the average number of
epochs required for the learning algorithm to converge. The last two columns
show the classification error rates. All the results in Table 2 were obtained
with the learning rate γ = 0.05 in the procedures ( 10) and ( 13).

The most important advantages of the NFKN classifier are its simple archi-
tecture, which is not affected by the curse of dimensionality, and fast training
procedures providing at the same time high accuracy of classification. All the
results are at the level of accuracy achieved with the best classification tech-
niques, e.g. the support vector machines [2]. For comparison, the best results
obtained with the NFKN and the hybrid training algorithm from [8] are shown
in Table 3.

Note that for the “Wisconsin” and “Iris” data the accuracy on the checking
set in Tables 2 and 3 is the same, and for the “Australian” and “German”
data sets the new training algorithm yields better results, which can be seen
from the comparison of checking set errors in Tables 2 and 3. In addition,
for the “Wisconsin” and “German” data best results are achieved with fewer
neurons and weights.

Since all the best results from Table 2 are achieved with only two neu-
rons in the hidden layer, visualization of multidimensional data in the two-
dimensional space, formed by the outputs of the hidden layer neurons, is
possible (an example is shown in Fig. 2).

Table 2. Results of experiments for NFKN with the proposed modified perceptron
learning rule (tenfold cross-validation)

Data set Neurons Weights Epochs Training
set
errors(%)

Checking
set
errors(%)

Iris 2+3 54 9.9 1.33 4
Wisconsin 2+1 78 9.1 2.23 3.01
Australian 2+1 116 10.8 11.18 13.48
German 2+1 160 11.6 21.04 24.1

Table 3. Results of experiments for NFKN with the hybrid training algorithm
(tenfold cross-validation)

Data set Neurons Weights Epochs Training set
errors(%)

Checking
set
errors(%)

Iris 2+3 54 4 1.04 4
Wisconsin 4+1 176 11.9 0.54 3.01
Australian 2+1 116 11.7 10.42 14.2
German 3+1 240 29 14.32 24.8
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Fig. 2. Australian credit data projected by the hidden layer of the NFKN trained
with the proposed algorithm (10), (13)

5 Conclusion

A simple and practical approach to the construction of neuro-fuzzy classifiers
was considered. The described NFKN architecture is not affected by the curse
of dimensionality because of its two-level structure according to the KST, and
is suitable for classification problems with multiple classes and both continu-
ous and discrete (categorical) input variables.

The use of the neo-fuzzy neurons enabled us to develop fast and simple
training procedures for both the hidden and output layer parameters, based
on the perceptron learning rule. A new batch multioutput modification of this
learning rule was proposed.

We expect that the NFKN with the new learning algorithm can find ap-
plications in decision support and data mining [3], where classification and
visualization of high-dimensional data are the key problems.

An important issue that needs to be further investigated is the inter-
pretability improvement of the fuzzy rules in the NFKN, because the two-level
rule base (5), (6) lacks transparency and differs from the rule format used in
most of fuzzy modeling approaches.
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A Self-Tuning Controller for Teleoperation
System using Evolutionary Learning
Algorithms in Neural Networks

Habib Allah Talavatifard, Kamran Razi, and Mohammad Bagher Menhaj

Summary. Using an evolutionary learning algorithm, a self-tuning neural network
based controller for teleoperation system has been presented. The proposed control
scheme comprises a PID controller, and a neural network which updates the PID
controller gains in both master and slave sides assuming that the environmental con-
ditions are given. To do so, this technique uses the least information possible (master
and slave positions), thus no force feedback signal is required. To meet the desired
solution, a well-defined fitness function is introduced. The proposed controller is im-
plemented in a one degree-of-freedom teleoperatory system. The simulation results
showed that the designed controller provides satisfactory telepresence in different
environmental impedances.

Key words: Teleoperation system, Neural networks, Evolutionary computa-
tion, Evolutionary programming, Self-tuning controller.

1 Introduction

Teleoperation systems have been widely used in areas such as hazardous envi-
ronments and surgical operations. The term – teleoperation system – refers to
a robotic system in which the master controller, typically a human interface,
and the slave robot, which manipulate the remote task, are at different lo-
cations. Like any other robotic system, teleoperatory systems have two main
objectives: accuracy and safety. These systems have also limited flexibility in
adapting environment changes in the presence of the frequently experienced
stability problems.

To have a performance index for these systems, telepresence is introduced.
Telepresence is a measure of how accurate an operator working with a teleop-
eratory system feels the remote task. Ideal telepresence means the operator
has a sense of performing the task directly. Figure 1 shows a general structure
for teleoperation systems.

To achieve a high degree of telepresence, several methods have been pro-
posed. Brooks [1] suggested response requirements for teleoperation systems,
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Fig. 1. A teleoperatory system general structure

which resulted in finding an appropriate bandwidth for position and force sig-
nals. The force signal was a measure of environment stiffness. Lawrence [2]
used four-channel architecture for the system and introduced mathematical
definition for ideal transparency. Hannaford [3,4] suggested a popular two-port
hybrid network model for teleoperation system which is now frequently used.
Using this model, we can easily calculate the transferred impedance to the
operator. Figure 2 shows a two port hybrid network. Transferred impedance
to the operator with respects to environment impedance is derived in 1.

[
Fh(s)
Xm(s)

]
=

[
H11(s) H12(s)
H21(s) H22(s)

]
×

[
Xs(s)
−Fe(s)

]

Zt = (H11 −H12Ze)(H21 −H22Ze)−1

(1)

If the hybrid parameters are not functions of Zh and Ze, impedance match-
ing is obtained if and only if these conditions are satisfied:

{
H22 = H11 = 0,
H21H12 = −1 (2)

To achieve the ideal telepresence, Lawrence [2] proposed a time invariant
controller using force, position, and velocity signals at both sides. Using four
different signals means that additional measurement noise can permeate into
the system and possibly decrease the system stability. However, this paper try
to suggest that a self-tuned controller is able to satisfy conditions stated in 2
knowing just positions, and their derivatives.

Cavusoglu et al. [5] introduced a task based optimization framework in-
stead of seeking a generic ideal teleoperation. They proposed a fidelity mea-
sure which quantifies the teleoperation system’s ability to transmit changes
in the compliance of the environment. Niemeyer et al. [6] suggested a hybrid
control by employing an adaptive scheme for slave free motion. Their control
scheme enables system to attain a stable interaction with any passive envi-
ronment. Alternatively, Hashtrudi Zaad et al. [7] proposed another adaptive
method that generates the force signal through an estimation of environ-
ment impedance. In order to prove their method’s efficiency, they presented
some numerical solutions and left further experiments to future. Hannaford [8]
studied teleoperation system’s stability in terms of time domain passivity and
designed a passivity controller to achieve a stable condition.

Two significant notions must be reminded about above methods: first,
some methods are model-based [2, 7] and hence sensitive to model varia-
tions, therefore the resulting controller shows small stability margins and lacks
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Fig. 2. A two port hybrid network: Xm, Xs, Fh and Fe are the laplace transforms
of the master and slave positions, the force applied by the operator in the master
side, and the force exerted by the slave on the remote environment, respectively

robustness. Besides, passivity is a conservative index and can degrade telep-
resence. As a result, all above methods are reduced to a stability-performance
trade-offs [2]. Second, methods that use force signal [2], add additional noise
to system and increase its cost dramatically. In fact, a control architecture
without a force feedback signal is much more desirable today.

Traditional control methods such as PID controllers can be used to control
slave robot to follow the motion of the master. These methods are easy to
implement and inexpensive but they have one big deficiency: they cannot
track the environment changes; hence, they fail to achieve a good sense of
telepresence. Anyway, there is an important point to cite here, for a time
invariant environment the performance of a well-tuned PID controller (in both
master and slave) is quite acceptable [9].

To provide a PID controller which is able to adapt itself to model changes,
we use a self-tuning control scheme. Our design includes an artificial neural
network updating the PID controller gains according to model changes. In the
training stage, neural network learns the nonlinear mapping from environment
impedances to proper PID gains. This mapping contains the system model
implicitly, and the goal is ideal transparency as described above.

Neural Networks are commonly used due to their intrinsic robustness and
model independence. Since in most teleoperation applications it is not possible
to predict the environment model, a neural network based controller is an apt
choice.

Choosing a particular neural network for an application concerns two con-
siderations: first, the neural network architecture, and second, its learning
algorithm. Taking into account that our goal is to learn a nonlinear mapping,
a feed-forward multilayer architecture seems to be suitable. Besides, although
gradient based learning algorithms are common (Back-Propagation for exam-
ple), they cannot be applied to this problem because they do need the error
in network outputs as a supervisory signal and here, network target outputs –
the PID gains – are not known.

Evolutionary computation is a powerful model-free method in optimization
problems. It can be used in our problem to adjust network parameters [10]
due to the fact that it does not require any error signal [11]. In this method,
instead of error, a carefully selected fitness function will be used as a measure
of how well the neural network has learned its task.



54 H.A. Talavatifard et al.

2 Neural Controller and Evolutionary Programming

As mentioned above, traditional PID controller performs satisfactorily if there
are no changes in environment impedance. It is apparent that in terms of any
environmental changes an adaptive controller is necessary [7, 9, 12]. Recently
designed adaptive controllers for teleoperation system are model-based: [2,7],
and lack a key element: robustness. Providing both adaptively and robustness,
neural network-based controllers can be excellent alternatives in this problem.
With the force sensors eliminated, the neural network should be able to ap-
proximate external impedance knowing barely master and slave positions.
However, first and even higher order position derivatives should also appear
in the inputs to allow the neural network to track the environment impedance
dynamical behavior. These derivatives can be substituted by position values
in past sampling times.

There exist two ways for constructing a controller: first, the neural network
directly produces output control signal for both master and slave. In this
method an evolutionary real-time algorithm was in charge of learning process
[9]. Second, the neural network is used to adjust PID gains in a classical
control scheme.

Since a traditional PID controller performs satisfactorily if the environ-
mental conditions are known [9], a PID controller which is being tuned by
a neural network according to environmental changes can lead to very good
results. In this way, the simple but efficient classical control framework is al-
lowed to adapt itself to environmental changes. Use of the second method
reduces the neural network complexity which is crucial for quick and efficient
learning, and the neural network does not need to select control framework
by itself. Combining this control scheme with an offline and “in depth” evolu-
tionary learning process can boost the system ability to handle any possible
impedance.

To update neural network weights in training phase, we need an error in-
dependent learning algorithm in the view of the fact that the neural network
target output, and consequently output error is not known. Evolutionary com-
putation methods are ideal for this purpose [11]. A good fitness function can
omit the error from the training phase. The fitness will be a measure of how
well our neural network has learned its task, and network parameters can be
updated until the fitness reaches a reasonable predefined value.

Having chosen an evolutionary approach, it is essential that we select one
of Genetic Algorithm [13], Evolutionary Programming [14], and Evolutionary
Strategy [15]. Evolutionary programming is well suited for our work, as it
involves real coded entities, and we prefer not to enter number of bits-accuracy
trade-off that exists in Genetic Algorithm [16].

The evolutionary algorithm, which is the basic model of the evolution-
ary process of nature, can be divided into the process of generating some
new populations from the mutation of both parents and the natural selec-
tion of superior parameters through the competition among the parents and
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generated offsprings [17]. The evolutionary algorithm is composed of struc-
tures that perform the natural adjustment of a search region, evolution, and
selection from the competition between parents and offspring.

The evolutionary programming can be performed through the algorithm
described below [10]:

1. Generate an initial population of individuals at random: each individual
is a pair of real-valued vectors (η and w). The w is neural network weights
and biases vector and η is indicating each individual variance. In fact each
individual is a possible solution.

2. Create an offspring for each individual: use the mutation operator which
is defined below:

η′i(j) = ηi(j) exp [τ ′N(0, 1) + τNj(0, 1)]

i = {1, 2, · · · , µ}
j = {1, 2, · · · , n}

(3)

n is the length of η and w vectors, and µ is the number of individuals. The
parameters τ and τ ′ are commonly set to (

√
2
√
n)−1 and (

√
2n)−1 [15].

3. Determine the fitness of every individual, including all parents and off-
spring.

4. Conduct a tournament scheme over the union of parents and offspring.
For each individual, opponents are chosen uniformly at random from all
the parents and offspring. For each comparison, if the individual’s fitness
is no smaller than the opponent’s, it receives a “win.” Select individuals
that have most wins to form the next generation.

5. Stop if the fitness halting criterion is satisfied; otherwise, and go to step 2.

For every solution (every w vector) produced by, the evolutionary learning
algorithm during training stage, a prolonged simulation is carried out. At the
end of each epoch, the fitness for each possible solution is calculated based
on the system performance and new solutions are generated until the desired
fitness is reached.

Since the design objective is an adaptive controller, the neural network
training data should contain sufficient information about any condition that
the teleoperatory system may encounter. To meet this goal the environment
changes during simulation. Thus, the system may experience two possibilities:
free motion and time variant impedance. This impedance consists of three
fundamental elements and can represent a wide range of possible physical
environments from a sponge to a hard barrier. To guarantee the neural network
will achieve the ability to generalize, the time variant impedance parameters,
in addition to system input (human operator external force signal) changes
dramatically during each simulation.

Since the training stage is an offline procedure, it is possible to substitute
numerous simulations with constant parameters with one prolong simulation
spanning a wide range of impedances.
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3 Fitness Function

Appropriate fitness function plays a key role in how efficiently and accurately
the problem is solved. An improper fitness function may cause the system to
completely malfunction, for example, if we only use 1

error as fitness function
the evolutionary algorithm tends to make neural network produce large PID
gains at the master side and small PID gains at the slave side. This gain setting
made the system operate in a bounded trajectory, and thus produces smaller
error. (Here, the error is the difference between master and slave positions, not
the difference between desired neural network output and its real output.) As
a matter of fact, with this fitness function the neural network does not learn
the rules governing the system to decrease error; it only learns to produce
smaller outputs. This problem can be overcome by normalizing the error. This
example depicts the fitness function impact on system performance. However,
we used a different fitness function as described in (4–6).

error = Xs −Xm

a =
[
errorT ×error

time

] 1
2 (4)

diff = Fe − Fh

b =
[
diffT ×diff

time

] 1
2 (5)

fitness =
1
ab

(6)

Our fitness function combines two factors: first, error minimization is a
general rule (4). Second, there must be a correlation between the force applied
by the human (Fh) and the environmental force (Fe) (5). In times of ideal
telepresence, Fh is equal to Fe.

Ze = Zt

Xs = Xm

}
⇒ Fe = Fh (7)

As a matter of fact, this factor represents the rule neural network should
learn.

In order to calculate fitness, it is essential to have the environment force
(Fe) in advance. This force is actually a criterion of the system environment –
it describes what kind of environment the slave robot is manipulating. (A
bigger environment force means a harder barrier.) Razi et al. [12] proposed
an environmental force estimation method based on the simplified inverse
dynamic model. By using this model, approximating Fe in training phase is
feasible. However, after training the neural network, there will be no need to
Fe in control scheme.
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4 Simulation Results

To test the designed controller, we ran a set of simulations. The simulated
teleoperatory system-based on a one degree-of-freedom master salve robot,
designed and implemented by Razi et al. [12]. We integrated all important
factors in our simulated model such as nonlinearities, saturations, etc. We
modeled each DC motors with one mechanical time constant and one electrical
time constant. For simplicity, we used a PD controller instead of PID, which is
quite common in robotics. In addition, we assumed our nonlinear impedance
has a constant mass and parameters k and b (spring and damper parameters)
are time-varying. The neural network has 15 hidden neurons, and, receives
both master and slave position in past 20 sampling times as inputs. Figure 3
shows a block diagram of our system. (Fh

∗ and Fe
∗ are the human and the

environment external forces, respectively. While the former is considered as
system input, the latter is set zero for the sake of simplicity).

The simulation was divided into two stages: the training stage and the
test stage, in every learning epoch, for each possible solution (each w vector)
a prolonged simulation (more than 150 s) was carried out. The human exter-
nal force (Fh

∗), k, and b were changing dramatically during each simulation.
Changes in these parameters were chosen deliberately in order to cover all pos-
sible conditions that the system may encounter. Hard contact (environment
impedance) position was also time varying. At the end of each epoch, fitness
was evaluated based on system performance. Having known fitness values for
every possible solution, the evolutionary algorithm was able to find desired
weights for the neural network. After significant amount of training (more
than 500 epochs), the system was in the desired state and the learning stage
ended.

Figure 4 shows system response (master and salve positions), and force
signals (Fh and Fe), in addition to an arbitrary human external force in the
test stage. The environment impedance settings are also chosen haphazardly.

Fig. 3. System block diagram: Zm, Zs, Zh and Ze are modeling the master, slave,
human and environment dynamics
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Fig. 4. Illustrates system responses to an arbitrary human external force and hap-
hazard environment impedance setting. (a) Shows the human external force (Fh

∗).
This force makes the system move back and forth to the barrier (nonlinear im-
pedance). (b) Shows both master and slave positions. Double headed arrows shows
time spans that slave robot is in contact with nonlinear impedance. During these
time spans we used a time-variant nonlinear environment impedance. The fluctua-
tions in positions are reflecting this fact – in different loading conditions, different
displacements are expected with a specific human external force. The nonlinear im-
pedance is positioned at 5 cm. (c) Shows the force applied by the human with a
negative sign, −Fh, and the force exerted to the environment, Fe (the negative sign
is used for better illustration). Environment force is a criterion of what slave robot is
interacting with. The fluctuations in force signals is a mirror of nonlinear impedance
changes. Impulse functions observed in force signals are a result of step changes in
nonlinear impedance parameters and will not exist in reality
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As one may notice, master is following slave precisely while force applied by the
human is approximately equal to the force exerted to the environment. Exper-
iment with different kind of impedances shows that our system performance
is acceptable for both linear and nonlinear time variant impedances. While
previous methods can only deal with linear impedances [2,7], our system, due
to nonlinear nature of neural networks, is able to handle impedance nonlinear-
ities. Furthermore, this task cannot be accomplished by a traditionally tuned
PID, because this scheme is sensitive to environment changes and loses its
control ability dramatically when the environment impedance changes. This
is what expected of a teleoperatory system with ideal telepresence. Addition-
ally, the system tolerance against conspicuous changes in nonlinear impedance
parameters is confirming its robustness.

5 Conclusion

A key element in teleoperatory systems is to transfer various impedance con-
ditions accurately to the operator side. In this paper, we presented a new
self-tuning controller based on an evolutionary trained neural network. As a
matter of fact, what has been done is to allow the simple but efficient classi-
cal control framework to adapt for environmental changes. Since a traditional
PID controller is very good for position and force feedback signal following
if we know the impedance of slave system and the environmental conditions,
our goal was to tune the PID controller using an adaptive method – a neural
network – based on environmental conditions. We approved high performance
of proposed controller by running a set of simulations which indicated that
under any possible impedance condition the controller was able to maintain
telepresence satisfactorily.

In future work we plan to examine our controller in a real world application
and also to apply our method to more difficult teleoperatory problems, such
as dynamically changing manipulators and delayed cases.
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A Neural-Based Method for Choosing
Embedding Dimension in Chaotic Time Series
Analysis

Sepideh J. Rastin and Mohammad Bagher Menhaj

Summary. This paper introduces applying a neural-based method for determining
minimum embedding dimension for chaotic time series analysis. Many methods have
been proposed on selecting optimal values for delay embedding parameters. Some
frequently used methods are investigated and practically implemented, and then by
using artificial neural networks (ANN) as one of components of the computational
intelligence (CI) an approach was proposed to determine the minimum embedding
dimension. This approach benefits from the multilayer feedforward neural networks
ability in function approximation. The advantage of this method is that it gives a
global nonlinear model for the system that can be used for many purposes such
as prediction, noise reduction and control. Based on the achieved neural model an
indirect algorithm for maximal Lyapunov estimation was suggested.

Key words: Neural networks, Chaos, Embedding, Time series.

1 Introduction

Analysis of time series derived from successive measurements of the underly-
ing system is the most straightforward way to understand the nature of the
underlying system. Chaotic systems that show extremely complex behavior
and amazing structures are of the great interest for researchers because the
time series data arise from such systems seem to be originated from the in-
trinsically random phenomena, but they come from deterministic nonlinear
dynamical systems [3]. When we are encountered with a nonlinear system
which behaves chaotically in some parts of its parameter space, linear data
analysis fails and despite of the determinism leads to the false conclusion that
the system is stochastic [1, 3]. This was a strong reason for developing some
nonlinear techniques to uncover the deterministic structures. Chaotic behav-
ior has appeared in economics, astrophysics, meteorology, biology, chemical
processes and so many other real life events [1, 3].

The nonlinear time series methods studied here are based on the theory
of dynamical systems which are defined by an m-dimensional map or an
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m-dimensional flow in the forms presented in (1) and (2):

xn+1 = F (xn) (1)

ẋ(t) = f(x(t)) (2)
Moreover, we are interested in dissipative systems for which the volume is
contracted by the time evolution if the phase space is finite dimensional [2]. For
such systems, a set of initial conditions of positive measure will be attracted
to some invariant subspace of phase space called the attractor after some
transient time. The set of initial conditions leading to the same nontransient
behavior is referred to the basin of attraction [1].

Since the dynamics of such systems are defined in some phase space, it
is natural to reconstruct the phase space of the investigated system from the
observations taken from system’s output. There are two fundamental methods
for phase space reconstruction, Delay coordinates and Derivative coordinates
[3]. The last is not suitable for experimental data, because Derivatives are
susceptible to noise [1, 3]. Thus the Delay reconstruction is considered for
practical aspects. This method has two parameters, the delay embedding and
the delay time. The appropriate adjustment of these parameters is important
in practice [1, 3–5, 12]. This paper discusses various conventional methods to
select these parameter in an optimal manner, and then introduces a method for
determining minimum embedding dimension estimation. This method utilizes
the artificial neural networks (ANN) as one of the elements of computational
intelligence (CI) and has called the predictive method. Traditional methods
for embedding dimension estimation are usually exploiting from the fact that
the determinism should not be violated and the invariants should not be
changed due to the reconstruction process. Besides satisfying these conditions,
the proposed method processes more flexibly resulting in a global nonlinear
model for the underlying system.

The rest of the paper organized as follows. In Section 2 we first review the
eminent features of chaotic systems, then investigate some nonlinear tools in
order to distinguish chaotic time series from the others via quantifying these
characteristics. To do so, we present the Lyapunov exponents in Section 3.
The natural instability of a chaotic systems manifest itself in positive maximal
Lyapunov exponent. A robust direct algorithm was described to measure this
nonlinear statistics. Section 4 is devoted to the phase space reconstruction
from the given time series and its related theorems. Sections 5 and 6 present
various routines for time lag selection and embedding dimension determination
for delay reconstruction. Section 7 was dedicated to neural based predictive
approach and its procedure. Based on this proposed approach, an algorithm
was suggested to estimate the maximal Lyapunov exponent in Section 8. This
algorithm reduces the computation complexity with respect to the algorithm
described in Section 3. The given methods are practically implemented and
applied to the measured data of Colpitts chaotic oscillator. Simulation results
are presented in Section 9. Finally Section 10 concludes the paper.
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2 Characteristics of Chaotic Systems

The first key feature of chaotic systems is their determinism. Chaos theory says
that the random variables are not the only possible sources of irregularity [1].
Irregularity can be seen in deterministic nonlinear dynamical systems’ outputs
in some part of their parameter space. Interesting attractors can occur in such
deterministic systems.

The hallmark of chaos is the exponential divergence of nearby trajectories
due to the instability of solutions. This property has been referred to sensitive
dependence on initial conditions, and makes the system unpredictable in spite
of the deterministic evolution. For dissipative systems exponential separation
happens in the stretching directions. Other directions are so much contracted
such that the dissipation condition satisfies [2].

This dynamical aspect of chaos has its corresponding side in the geometry
of the attractor [1]. The nonlinearity, the dissipation and the invariance of the
attractor together with the exponential divergence cause the attractor folded
in the phase space and mapped to itself. This process leads to some kind of
self-similarity known as statistical type [5]. If a piece of a strange attractor is
enlarged, it will resemble itself. Due to this reason the attractors of chaotic
systems have been called strange. Strange attractors show globally bounded
but locally instable behavior.

The last key property is related to the power spectrum of these systems.
Although their power spectra still may contain peaks, a noisy background of
broadband spectrum is present [1,3]. We cannot use this feature to distinguish
a noisy quasiperiodic signal from a chaotic one.

In order to verify the chaos, we can define some criteria for investigating
these properties.

3 Maximal Lyapunov Exponent

According to the sensitive dependence on initial conditions in chaotic sys-
tems, an initial infinitesimal perturbation will typically grow exponentially;
the averaged exponent of this growth rate is called the Lyapunov exponent
that quantifies the strength of chaos [1, 15].

The number of definable Lyapunov exponents is equal to the phase space
dimensions [1,15]. Such Lyapunov spectrum is denoted by (λ1, . . . , λm), where
subscript m denotes the phase space dimension. The maximal Lyapunov ex-
ponent, λ, is the most important element of the spectrum because it has
a dominant behavior, and its positiveness is a signature of exponential di-
vergence of nearby trajectories. The quantity λ is defined by the following
equation [3]:

λ = lim
∆n−→∞

lim
δ0−→∞

1
∆n

ln[
δ∆n

δ0
] (3)
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where δ0 is the initial distance between two points in phase space and δ∆n is
the distance between two trajectories deriving from these points at time n. If
δ0 is finite rather than infinitesimal, δ∆n cannot get larger than the diameter
of the attractor [2].

It should be noted that the Lyapunov spectrum and thus the maximal ex-
ponent are characteristic exponents for the system because they are invariant
under smooth transformations [1, 2, 8]. Oseledec (1967) studied on invariant
probability measures, and proved that the Lyapunov spectrum has the prop-
erty of ergodicity by means of his “Multiplicative Ergodic Theorem” [2,16].

In accorded with the importance of maximal Lyapunov exponent, it is
necessary to estimate it from a given data series. Various methods are classified
in direct and indirect approaches. Here, a direct approach is presented [7]:

1. Choose a point yn0 in the m-dimensional phase space.
2. Find all of its neighbors with distance smaller than ε.
3. Compute the average over the distances of all neighbors to the reference

part of the trajectory as a function of relative time.
4. Repeat the above steps for many values of n0.

Finally (4), has to be computed

S(∆n) =
1
N

N∑

n0=1

ln(
1

|Nε(yn0)|
∑

yn∈Nε

|sn0+∆n − sn+∆n|) (4)

where reference points yn0 are phase space vectors and Nε is the neighborhood
of yn0 with ε radius. If for some ranges of ∆n and for some choices of m
and ε, the function S(∆n) exhibits a linear increase, its slope would be an
estimation of the maximal Lyapunov exponent. This method was implemented
and applied to the time series of 2,000 data points obtained from observable
variable x of Henon chaotic map given with (5),

xn+1 = 1− axn
2 + yn

yn+1 = bxn
(5)

for values a = 1.4, b = 0.3 the system is chaotic [2]. We computed (4) for
different values of ε and m. The results for ε = 0.2 and m = 1, . . . , 5 are
plotted in Fig. 1. The parameter ε was choose so that the 500 reference points
have enough neighbors and the distances do not saturate for small ∆n. Using
linear regression for the linear parts of the curves, we can determine λ with a
tolerence of .01 as λ = 0.41± 0.01.

4 Phase Space Reconstruction, Embedding Theorems

Since we do not confront with a phase space object but a time series, we have
to convert it into state vectors such that the invariant characteristics of the
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Fig. 1. Maximal Lyapunov exponent estimation for the time series of 2,000 data
points obtained from observable variable x of Henon map given with (5) and choosing
ε = 0.2 and m = 1, . . . , 5

original unknown attractors are preserved. Thus, an embedding of a compact
smooth manifold A into Rm should be a map G that is a one to one and
immersion on A [1].

As we mentioned before one of the reconstruction method is the delay
coordinates established upon the Takens’ delay embedding theorem [1, 3, 8,
9]. Let us denote the measurement function with s. A sequence of scalar
measurements taken at multiples of a fixed sampling time can be shown as:

sn = s(x(n∆t)) (6)

then the delay reconstruction is formed by the vectors yn,

yn = (sn−(m−1)k, ..., sn)) (7)

In the above, k∆t is referred to the lag or delay time denoted by τ and m is
the dimension of delay reconstruction. Takens proved that for an infinite noise
free data series, a delay map of dimension m ≥ 2D + 1 is an embedding of a
D-dimensional compact manifold, i.e., it is a deffeomorphism [1, 9]. This the-
orem was generalized by Saur et al. called the fractal delay embedding preva-
lence theorem. They replaced the condition m ≥ 2D + 1 with m ≥ 2Df + 1,
where Df denotes the Capacity (Box Counting Dimension) of the attrac-
tor [11]. Moreover, it has been shown that an embedding dimension m > Df

suffices [1, 8, 10].
The delay reconstruction is consisted of two parameters adjustment: the

embedding dimension m and the lag τ . It is easy to show that in reality with
a finite number of noisy data, the estimates of the invariants depend on both
m and τ [3]. Therefore, their optimal selection is of practical importance.

5 Choosing the Delay Time

Except for the fact that in fractal delay embedding prevalence theorem certain
values for ∆t and τ are not allowed to be chosen, these values are not the topic
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of embedding theorem under its ideal conditions [1, 3]. Different τs result in
diffeomorphically equivalent attractors. If τ is selected small compared to the
time scales of the system, components of the delay vectors are strongly corre-
lated. In such cases, all reconstructed vectors are collected around the bisectrix
of Rm, unless m is very large [1, 12]. This situation gets better when τ is in-
creased. In these cases, the attractor unfolds and its structure becomes visible
on larger scales. If τ is increased to very large amounts, the successive elements
get independent which may lead to self-intersection in reconstructed trajecto-
ries [8]. The most conventional method is the minimization of the redundancy
of the coordinates of the reconstructed space [8]. To do so, we can choose
the time at which the autocorrelation function reaches 1/e = 1/2.7183 as
the lag time. Since the autocorrelation is a linear statistical quantity, it is
more sophisticated to choose the time corresponding to the first minimum of
the mutual information function as the delay time. The mutual information
for time delay τ is:

I(τ) =
∑

i,j

pij ln pij(τ)− 2
∑

i

pi ln pi (8)

where pi is the probability to find a time series in the ith bin of the histogram
created for the probability distributions of the data pij is the joint probability.
Note that there is no assurance that I(τ) has an apparent minimum [1,3].

6 Embedding Dimension Estimation

Embedding theorem says that the choice of m needs a priori knowledge of Df

of the original attractor which is unrealistic for experimental data [1, 3, 10].
Thus several methods have been proposed on embedding dimension estimation
[3, 4, 13]. The main classical method can be classified into three types [4].

The first method is the computation of some invariant quantity like the
maximal Lyapunov exponent while increasing the parameter m from low val-
ues to high values. When the estimated value for the invariant stops changing,
the adequate m is achieved. This method is very data intensive and time con-
suming [4].

The second method is the singular value decomposition based approach.
This method is very subjective and also the resultant reconstruction is not
always optimal [3].

The last conventional method is a geometrical approach based on finding
false nearest neighbors [4, 6]. As m increases in the reconstruction of a data
series, the attractor unfolds and when it gets completely unfolded, a trajectory
will never cross itself. The method of false nearest neighbors (FNN) recognizes
that where the trajectory has some self-intersections, two neighboring points
actually will be far away in the true embedding space. Based on this approach,
Kennel (1992) was proposed an algorithm to determine the minimum m [6].
This algorithm was subjective in determining whether a neighbor is false.
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To avoid this problem, Cao (1997) introduced a modified version of the Kennel
algorithm that has been presented below [4]:
Let

E1(m) =
E(m+ 1)
E(m)

(9)

with

E(m) =
1

N −mτ

N−mτ−1∑

t=0

‖ym+1(t)− yNN
m+1(t)‖

‖ym(t)− yNN
m (t)‖ (10)

and
‖ym(t)− yNN

m (t)‖ = max
0≤j≤m−1

|s(t+ jτ)− sNN (t+ jτ)| (11)

where N is the length of the data series and m, τ denote the embedding
dimension and the lag, respectively. The superscript NN means the nearest
neighbor to the other vector as defined by the metric of (11). The optimal
embedding dimension is given by the value of m where E1(m) stops changing.
Cao also proposed a related method to distinguish deterministic signals from
the stochastic ones for practical conditions. He defined

E2(m) =
E∗(m+ 1)
E∗(m)

(12)

where

E∗(m) =
1

N −mτ

N−mτ−1∑

t=0

|s(t+mτ)− sNN (t+mτ)| (13)

for random data, E2(m) will be equal to one for any m. However, for deter-
ministic data the values of E2 (m) will not equal to 1 for any m.

7 Predictive Method for Minimum Embedding
Dimension Estimation

In this section, we propose a neuro based method for minimum embedding
dimension estimation. This method benefits from the multilayer feedforward
neural networks ability in function approximation. It has been shown that
a three layered feedforward net with sigmoid functions in hidden layer and
a linear function in output layer is able to approximate all of the squared
integrable function with any approximation order, provided that there are
enough number of neurons in the hidden layer. This fact has been called the
universal function approximation theorem [14]. However, this theorem has
some practical limitations.

For using this method, assume that the given system can be observed
through the measurement function

y = h(x), x ∈ Rk (14)
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where Rk denotes the original phase space. Let

Fm : R −→ RM (15)

where Fm is the delay map given below:

Y m(n) = Fm(x) = [y(n), y(n− τ), ..., y(n− (m− 1)τ)]T (16)

Furthermore, the time evolution of the dynamics of the underlying system can
be described by a deterministic map like F

x(n) = F (x(n− τ)) (17)

We want to find mE such that

Y mE
(n) ≈ x(n) (18)

This implies that the reconstruction attractor approximates the original one
such that the time evolution from Y mE

(n) to Y mE
(n + 1) follows the time

evolution from x(n) to x(n+ 1) in original attraction. From (16) we have

x(n) = F−1
m (Y m(n)) (19)

Besides, we have

y(n) = h(x(n))
= h◦F (x(n− τ) (20)
= g(x(n− τ))

Combination of (19) and (20) yields

y(n) = g◦F−1
m (Y m(n− τ))

= q(Y m(n− τ)) (21)
= q([y(n− τ), . . . , y(n−m)τ)])

therefore y(n) can be approximated in the form of:

y(n) = q̂(Y m(n− τ)) (22)

Function q̂ as an approximation of q can be obtained using a feedforward
net with error backpropagation (BP) training algorithm. To do so, the net
architecture is made of the input layer, the hidden layer and the output layer.
The input layer consists of m units, and the elements of delay vectors are
distributed to the neurons. In order to determine m = mE :

1. Start from m = 1.
2. Train the net and apply the test set to the trained net to obtain the ŷ(n).

Compare ŷ(n) with y(n). Compute the prediction error, e = ŷ − y.
3. Put m = m+ 1 and compute e again.
4. The routine will be finished when root mean squared prediction error,
e(rms), has no remarkable changes as m.

The value of m for which the e(rms) begins to be constant is equal to the
minimum embedding dimension mE . This approach is illustrated in Fig. 2.
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Fig. 2. The predictive approach for minimum embedding dimension estimation

8 Indirect Method for Maximal Lyapunov Estimation

The predictive method results in determination of mE and also gives a neural
model. Based on this model, an indirect algorithm for maximal Lyapunov
exponent estimation is suggested. This approach is summerized below:

1. Select an arbitrary vector Y m(n) in the delay reconstructed space. Then,
use the neural model to obtain y(n+ τ).

2. Compute Ỹ m(n) = Y m(n) + ε0, where ε0 is a perturbation vector in the
form of (ε0, 0, · · ·, 0) with a small ε0 tending to zero. Then, apply the
neural model to compute the ỹ(n+ τ).

3. Compute S(∆nτ) given by (23). Plot the graph S(∆nτ) versus ∆nτ and
compute its slope which gives an estimation of the quantity λ.

S(∆nτ) =
1
N

N−mτ∑

n0=1

{ln(|ỹm(n+∆nτ)− ym(n+∆nτ)|) (23)

This approach requires less computations than that of the direct one,
because there is no need of neighbor searching.

9 Simulation Results

The methods presented for choosing optimal values for m and τ were prac-
tically implemented and applied to the experimental data derived from the
Colpitts chaotic oscillator [17]. A schematic of Colpitts circuit is given in
Fig. 3. The given time series was made of 6,000 measured points. As men-
tioned before, mutual information is a powerful technique for selecting τ , the
mutual information function was computed for lag from 0 to 32 units. As
Fig. 4 shows, this function has an obvious minimum. Thus, we choose the
corresponding time of this minimum for τ = 4.

The next step is to determinem. We first computed the maximal Lyapunov
exponent by the presented direct method for m = 1 to m = 6. The results are
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Fig. 3. The Colpitts oscillator
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Fig. 4. Computed mutual information function for Colpitts time series

exhibited in Fig. 5. The estimated λ is independent of m for m ≥ 3. The
violations of linear growth in small scales may be due to the measurement noise
or due to the lack of neighboring points. Then, we applied the Cao geometrical
algorithm to the data series. The maximum value for m was set to 8. Figure 6
shows the resultant E1(m) and E2(m). Form the figure, it can be inferred that
m = 3 will give an appropriate selection for embedding dimension. Moreover,
one can figure out that the given time series is not stochastic.

As the last approach, the predictive method was implemented. A feedfor-
ward net was composed of three layers. Having tested different numbers for
neurons, we put 8 units in the hidden layer. The given time series was divided
into the training and test sets. We applied 5,500 data for training and 500
data for testing. The BP learning algorithm with the mean of squared errors
as the index function was used for the training procedure. The value of index
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function to stop the iteration was set to 10−8. The learning curves of the
utilized nets with m-inputs is presented in Fig. 7.

As we can see, in cases m = 1, 2 the learning curves did not reach to the
desired value, but by increasing m to m ≥ 3. The curves have come to the
desired predetermined value. Besides, from Fig. 8 it is obvious that for m ≥ 3
the prediction error has not remarkable changes. Thus we choosem = 3 again.
The reconstructed attractor with m = 3 and τ = 4 is shown in Fig. 9.
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Fig. 7. Learning curves corresponding to m-inputs neural nets
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10 Conclusion

Characteristics of chaotic time series were first studied. In order to investi-
gate these properties, some nonlinear analysis tools were reviewed. Since the
reconstruction of phase space is the basis of all nonlinear time series analysis,
delay reconstruction and its parameter adjustments were studied. In addi-
tion to classical method for choosing these parameters a neuro based method
known as predictive was presented. All methods were practically implemented
and applied to the experimental data of Colpitts chaotic oscillator. Among
methods described in the paper, the Cao geometrical approach and our sug-
gested method were very promising. Cao algorithm is better than the other
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Fig. 9. The reconstructed attractor with m = 3 and τ = 4

traditional methods, because it is not subjective and data intensive. The pre-
sented method gives a global nonlinear model for underlying system. This
model can be used for many purposes such as prediction, noise reduction and
control. Besides, based on the achieved neural model an indirect algorithm
for maximal Lyapunov exponent estimation was suggested. This algorithm
reduces remarkably the computational complexity.
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On Classification of Some Hopfield-Type
Learning Rules via Stability Measures

Mohammad Reza Rajati, Mohammad Bagher Menhaj

Summary. This paper first reviews several learning methods for training Hopfield-
type associative memories as well as a novel architecture with neurons of
nonmonotonic stimulus functions. These learning rules are classified into three
groups according to a measure of stability closely related to the storage capac-
ity. This measure helps us better study the ability of a network to store patterns
as stable states of its dynamics in case it is highly loaded. We then analyze the ex-
perimental data related to the stability measure and classify the previously studied
learning methods according to the measure. We also show that the behavior of those
learning rules converges to either the behavior of Hebbian learning or that of the
pseudo-inverse method.

Key words: Hopfield-type neural networks, Learning rules, Stability mea-
sures, Storage capacity, Equilibrium points.

1 Introduction

Hopfield-type neural networks are shown to be amenable to thorough analysis.
They have simple synthesis procedures and interesting aspects for scientific
investigations including those related to the content addressability [3], stor-
age capacity [8], robustness against noise and adaptability to the neurons’
malfunction [10]. Fundamentally, networks of Hopfield-type suffer from poor
capacity and performance. Many architectures are innovated to remedy the re-
strictions of the Hopfield associative memory, including those trying to modify
the connections and updating schemes (for example [12]) and those employing
new learning rules [2].

This paper tends to classify some architectures and learning rules accord-
ing to a stability condition related to the storage capacity of the network. Of
course, there are many other capacity and performance indices, which are open
to examine for Hopfield-like architectures, and we leave them to the forthcom-
ing articles. We first review the conventional Hopfield network model. Then we
discuss the capacity issues in recurrent associative memories. Some learning
methods for Hopfield networks are discussed in Sect. 3 and finally we classify
them according to a stability measure by experimental analysis.
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2 The Hopfield Model and Its Storage Capacity

The Hopfield network is a recurrent neural network governed by the difference
equation:

ai(0) = pi, ni(t+ 1) =
N∑
j

wijaj(t) + bi, ai(t+ 1) = f(ni(t+ 1))

f(u) = sgn(u)
(1)

where pi is the unknown pattern to be recognized, ai is the output of the
network, wij is the connection weight between neurons i, j, bi is the threshold
term and the stimulus function is f(u). This is a discrete version of the Hop-
field model. The connection weight matrix should be calculated to store the
required prototype patterns as fixed states of the network dynamics so that
patterns can be recalled from noisy or incomplete initial inputs.

2.1 Storage Capacity

The storage capacity of the Hopfield-like associative memories is of great
consideration in the neurocomputing literature. It is formulated by either big
O notation in terms of the number of neurons (Mc), or the relative capacity
αc defined as αc = L/N , where L is the number of patterns stored and N is
the number of neurons.

Although one can place any load upon a neural system, there is obviously
a value for α above which some of the vectors in the training set will not be
stored as stable states. We refer to this as the maximum permissible loading
(or just loading) and denote it by αmax. Both of the aforementioned formula-
tions are deeply discussed and it has been shown that for randomly realized
unbiased binary patterns, αmax ≈ 0.14 and Mc = N/ logN [8].

3 Some Learning Methods and Architectures

There are several methods to obtain a weight matrix with higher perfor-
mance for a recurrent associative memory. We consider here, Hebbian, pseudo-
inverse, Menhaj–Seifipour, and Li–Michel learning rules. Besides, we examine
the architecture proposed by Yanai and Amari [12] which uses nonmonotonous
stimulus functions for the neurons.

3.1 Hebbian Learning

This is the conventional learning rule for recurrent associative memories with:

wij =
L∑

l=1

pl
ip

l
j (2)
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3.2 The Pseudo-Inverse Method

The Pseudo-inverse rule is introduced by Personnaz et al. [11] and studied
deeply by Yen and Michel [13] to generate the weight matrix according to the
rule:

W = PP+ (3)

where P is the matrix whose columns are the pland P+ is its pseudo-inverse,
the matrix with the property that: P+P = I. It is notable that many modified
methods such as Perceptron-style methods are approximate versions of the
pseudo-inverse method [3–5].

3.3 Menhaj–Seifipour Algorithm

Menhaj and Seifipour propose a new algorithm, and state that it has a better
storage capacity and a higher speed of convergence [9]. They build the memory
matrix by:

rij =
1
2L

L∏

l=1

(pl
i + pl

j) (4)

W = RTR (5)

This network is proved to minimize the energy function:

E(t) = −
∑

i

∑

j

wij [ai(t) + aj(t)]2 − 4
∑

i

bi(t)ai(t) (6)

Additionally, the matrix built by the above rule is sparse and results in a
higher decrease of the energy function in each time-step than the classical
Hopfield network with Hebbian learning. The architecture of sparsely con-
nected networks is studied by Liu and Michel and the sparse nature of the
networks is proved to be beneficial [7].

3.4 Li–Michel Learning Rule

Li–Michel synthesis method relies on a vigorous mathematical foundation, i.e.,
analysis of linear systems operating on a hypercube [6]. For the sake of clarity,
we just present a brief algorithm, without thorough theoretical considerations.

To store L prototype patterns in a Hopfield-type memory as asymptotically
stable equilibrium points, let:

X = [x1, x2, . . . , xL−1], xi = pi − pL, i = 1, 2, 3, . . . , L− 1 (7)

Then obtain a Singular Value Decomposition of X:

X = USV T , U = [u1, u2, . . . , uN ] (8)
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Suppose that k is the rank of S, then k is the dimension of the space spanned
by xi’s. Then the weight matrix and the bias vector are obtained by:

W+ =
k∑

j=1

uju
T
j W− =

N∑

i=1

uiu
T
i (9)

W+ = αW+ − βW−b = αpL −WpL (10)

in which α, β are properly selected constants which satisfy: α > 1, β < 1.
This algorithm guarantees the system to have at most 3Nequilibrium

points. Additionally, at most 2Nof the equilibrium points are asymptotically
stable.

3.5 Yanai–Amari Architecture

Yanai and Amari [12] propose an associative memory with two stage nonlinear
dynamics:

a(k + 1) = sgn[W (a− f(Wa))] = sgn[Wa−Wf(Wa)] (11)

They use a nonmonotonic function for their network:

f(u) =

⎧
⎨

⎩

a(u+ h)− c
0
a(u− h) + c

u < −h
−h ≤ u ≤ h
u > h

(12)

where h and c are non-negative. We used a = 0.4, h = 0.1, c = 0 in this
paper.

4 Empirical Analysis of Storage Capacity

To obtain the relative capacity of the models examined, we trained Hopfield-
type networks of 100 neurons, with a set of random unbiased prototype pat-
terns. Loading was increased and the response of the network to an erratic
version of one of the stored patterns (with a Hamming distance of 10) is eval-
uated, and the normalized overlap (1−Hd/N) of the response and the stored
pattern is illustrated in Fig. 1. The absolute capacity is usually defined as the
maximum loading in which the network can recall a pattern more than 90%
(and sometimes exactly 100%) perfectly.

It is obvious from Fig. 1 that αmax is 0.15, 0.35, 0.25, and 0.05 for Hebbian,
pseudo-inverse, Li–Michel and Menhaj–Seifipour learning rules, respectively.
It is also notable that in high loadings, Hebbian learning is able to recall the
patterns with a 70% overlap, but other rules recall the patterns with more
than 94% overlap, although loaded highly. Yanai and Amari reported α = 0.3
for their architecture [12].
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Fig. 1. Pattern recall by (a) Hebbian learning (b) pseudo–inverse rule (c) Li–Michel
rule (d) Menhaj–Seifipour training method. Each network has 100 neurons and is
trained by random patterns. Every point on the plots is generated by averaging over
20 runs. N = 100

5 Classification of Hopfield Memories via a Stability
Measure

Abbott classified all Hopfield models into three groups. Any member of each
group may have a different behavior when the loading upon it is not near
αmax, but all members loaded near αmax have the same behavior [1].

From the dynamic equations of the network, it can be seen that a state a
will be stable if ni has the same sign as ai for all i. So, the parameter niai

should be non-negative for all i in order for the network to have a pattern p
as its stable equilibrium point. Furthermore, assume a network with a set of
stable states. The weight matrix could be scaled by any positive number, and
thereby the synaptic signals will increase (and obviously the niai’s) but the
domains of attraction of the stable states will not get wider. Thus, the follow-
ing stability measure is defined to characterize the nature of stable states:

γl
i =

nl
ip

l
i

‖Wi‖
‖Wi‖ =

√√√√
N∑

j=1

(wij)2 (13)

Considering the worst case analysis, the minimum value of γl
is is a parameter

for identification of the network’s basins of attraction [5].
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The global groups of recurrent networks are different in the distribution
of their γ values. The first group, known as Hopfield group, has a normal
distribution with a mean of 1/

√
α, α < 0.15. In this group of models, negative

values of γ could be present in the network, and this is a sign of the existence
of unstable patterns (Hopfield network with Hebbian learning is within this
group of models).

The second group has matrices of pseudo-inverse type. The γ values theo-
retically converge to the same value γ0 =

√
(1− α)/α. So we suppose a notch

distribution of γ values in our numerical results. The third group has a clipped
normal distribution, with positive γ values [4].

6 Classification of the Models via Experimental Analysis

In this section, we analyze the γ distributions of different algorithms in the
paper. Figure 2 depicts different γ distributions for the learning rules. The
distributions are plotted by training networks consisting 1,000 neurons with
a set of 500 unbiased random bipolar patterns.

It is easily observed that Hebbian learning causes a normal distribution of
γ’s. It is notable that many values of γ are negative, so in high loadings, some
of the patterns will not be stored as stable states.
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Fig. 2. Gamma distributions of (a) Hebbian learning (b) network with non-
monotonic neurons (c) pseudo-inverse rule (d) Li–Michel learning rule. Each network
is trained by 500 patterns and has 1,000 neurons
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The pseudo-inverse rule, as the canonical model of the second group, is
tested by γ values as well and a notch distribution is resulted. Li–Michel
learning rule results in a very notch distribution with no negative values.
Thereby, it could be concluded that this rule falls into the pseudo-inverse
class of models. It may be a cause of its high performance (this procedure was
performed many times and γ never became negative).

Yanai and Amari state that their proposed model is an approximation of
the pseudo-inverse rule. The γ distribution of this rule has negative values, so
it could not be classified into the pseudo-inverse group, although the γ values
are not distributed very widely, and it is less likely that the γ’s be negative (in
some cases, the authors encountered distributions without negative values).
The architecture is therefore classified into the first group.

About Menhaj–Seifipour learning rule, we inspected the convergence prop-
erties of the network’s γ distribution (Fig. 3). We plotted the γ distributions in
different loadings. In high loadings the γ values converge to the same amount
of γ0 = 1 and this fact helps us figure out that this rule could be classified
in the pseudo-inverse group of models. When the number of stored patterns
becomes large even though the loading is low, the matrix constructed by the
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Fig. 3. Gamma distributions of Menhaj rule with (a) L = 5 (b) L = 9 the network
is not loaded very highly and the distributions behavior is not similar to that in the
saturation. With (c) L = 11 (d) L = 15 the network’s distributions converge to a
notch distribution. The notch distribution is reached when the number of patterns
grows and it does not related to the number of neurons, because the resulting weight
matrix converges to the identity matrix. For biased data this convergence will be
slower. Here the number of neurons is N = 1,000
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Fig. 4. Gamma distributions for biased patterns. (a) Hebbian (b) pseudo-inverse
(c) Michel (d) Yanai–Amari N = 1000, L = 300

rule will converge to the identity matrix and all γ values become the same,
which is similar to the theoretically derived distribution for the pseudo-inverse
group of models.

We also analyzed the effect of bias on patterns in γ distributions. We
trained the networks with a set of random patterns in which the probability
of presence of 1 is 90%, in contrast to the case of unbiased patterns, in which
this probability is 50% (Fig. 4). It is obvious that Hebbian learning and Yanai
model are not tolerant to biased data, in contrast to Michel and pseudo-inverse
rules which maintain their notch distribution.

7 Conclusion

In this article, we classified different algorithms of learning via stability mea-
sures proposed by Abbott. We showed that Li–Michel and Seifipour–Menhaj
rules’ behaviors converge to that of the pseudo-inverse method. The behavior
of the Yanai–Amari network model converges to that of the Hopfield model,
although because of its nature, it has a similarity with the pseudo-inverse
group of models. We leave deeper discussions about the information theo-
retical aspects of Menhaj–Seifipour rule, finding the shape and size of the
attraction basins of the discussed rules and the convergence properties of the
networks trained by them to future contributions.
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A New Genetic Based Algorithm for Channel
Assignment Problems

Seyed Alireza Ghasempour Shirazi and Mohammad Bagher Menhaj

Summary. In the channel assignment problem, frequencies are assigned to the
requested calls in a cellular mobile network subject to cochannels, adjacent channels
and cosite constraints such that a required bandwidth is minimized. In this paper,
a new method based on genetic algorithm is proposed to solve these problems. The
performance of the proposed method is evaluated by solving three channel assign-
ment problems. Results show that this method can find solutions with a minimum
required bandwidth in comparison with the other algorithms investigated in the
paper.

Key words: Genetic algorithm, Channel assignment problem.

1 Introduction

By the emerging of cellular mobile systems and their rapid growth due to
the portability and the availability of these systems provided an important
alternative in the field of wireless mobile communications. The increasing
demand of new services in this field, however, is in contrast to the capacity
constraints inherent in the current communication systems. Hence, the use
of techniques, which are capable of ensuring that the frequency spectrum
assigned for use in mobile communications will be better utilized, is gaining
an ever-increasing importance.

The channel assignment problem (CAP) in this paper is based on a com-
mon model. The service area of the system is divided into a number of hexag-
onal cells. Every user is located in one cell. When a user requests a call in
this system, a channel is assigned to that user to provide the communication
service. This channel must satisfy the electromagnetic compatibility (EMC)
constraints to avoid the radio interference between channels. Three types of
EMC constraints that are considered in this paper are cochannel, adjacent
and cosite constraints.

In the simplest form of the CAP, the cochannel constraint only is con-
sidered, and the problem is known to be equivalent to a graph-coloring
problem [1]. Since the graph-coloring problem is known to be nondeter-
ministic polynomial-complete (NP-complete) [2], therefore, the CAP is also
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NP-complete. Therefore, the calculation time and the computation complexity
of searching for the optimum solution in the CAP grow exponentially with
the problem size.

The rest of the paper is organized as follows. In Sect. 2, we formulate the
CAP. In Sect. 3, we briefly discuss conventional genetic algorithm. In Sect. 4,
we introduce a new method based on genetic algorithm. In Sect. 5, we assess
the quality of proposed method by using it to solve three CAPs and then
compare the results with two of the existing channel assignment algorithms.
Finally, we conclude our work in Sect. 6.

2 Channel Assignment Problem Formulation

CAP in this paper follows the problem formulation by Gamst and Rave [3].
In 1982, Gamst and Rave [3] defined the general form of the CAP in an
arbitrary inhomogeneous cellular radio network. In their definition, the EMC
constraints in an n-cell network are described by a n × n symmetric matrix
which is called constraint matrix C [3]. Each nondiagonal element cij in C
represents the minimum separation distance between a frequency assigned to
a call in cell #i and a frequency assigned to call in cell #j. The cochannel
constraint is represented by cij = 1, and the adjacent channel constraint is
represented by cij = 2. cij = 0 indicates that calls in cell #i and cell #j are
allowed to use the same frequency. Each diagonal element cii in C represents
the minimum separation distance between any two frequencies assigned to
calls in cell #i, which is called cosite constraint, where cii ≥ 1 is always
satisfied.

The number of required frequencies for each cell in an n-cell network are
described by an n-element vector, which is called demand vector D. Each
element di in D represents the number of frequencies that must be assigned
to calls in cell #i. If fik denotes kth frequency in cell #i that is assigned to
aik, the kth call in cell #i, then the EMC constraints are represented by:

|fik − fj�| ≥ cij , i, j = 1, · · · , n, k = 1, · · · , di, � = 1, · · · , dj ,
if i = j ⇒ k �= �, if k = �⇒ i �= j. (1)

Each fik is represented by a positive integer. The CAP is to assign a set
of frequencies fik to the set of calls aik such that the bandwidth required by
the system, i.e., max fik, is minimized, subject to EMC constraints.

In addition to the constraint matrix C and the demand vector D, we con-
sider another important parameter called lower bound (lb) in the formulation
of CAP. Parameter lb determines minimum value of the maximum fik for
all i and k, so that no interference is caused (i.e. lb = min{maxi,k{fik}}).
This means if fiks can take values between 1 to lb, the values of fiks will
not violate any constraints and a conflict-free channel assignment will be ob-
tained. In fact, lb indicates the minimum required bandwidth for the CAP
and if any smaller bandwidth is used, interference will be unavoidable and
some constraints will be violated.
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3 Conventional Genetic Algorithm

Genetic algorithm has been proposed by Holland [4,5]. He introduced a novel
optimization algorithm that is in-depth different from the two major classes
of classical calculus-based and enumerative techniques [6]. In solving a given
optimization task, the GA starts with a collection of solutions (i.e. parameter
estimates) called by chromosomes. Each individual (chromosome) is evaluated
for its fitness. In each iteration of the GA, the fittest chromosomes (parents)
are allowed to mate and bear offspring (produce new individuals). These indi-
viduals (children) or new parameter estimates provide the basis for the next
generation. The conventional GA may be completely described by the follow-
ing steps [7]:

1. Initialization
2. Generate a random population
3. Apply the selected crossover operator to the individuals
4. Apply the selected mutation operator to the individuals
5. Replace the old population with the resulting individuals
6. Repeat steps 3–5 until the termination criterion is satisfied

4 Our New Method Based on Genetic Algorithm

Our new method that is based on genetic algorithm is inspired by recombina-
tion accomplished by some insects such as bees [8]. To make it more clearly, we
proceed as follows. Consider a conventional GA in which the recombination is
done in a way that one chromosome is recombined with the best chromosome
that exists in the present population. In other words, all selected chromosomes
are recombined with the best chromosome of the current population called as
the queen chromosome. The recombination procedure can be better observed
from Fig. 1.

With a deep look at Fig. 1, it becomes clear that the produced chromo-
somes are indeed the queen with some changes. In other words, the new
chromosomes may represent new queens who inherit some parent queen
characteristics. Therefore, instead of employing the procedure given in Fig. 1,
we use recombination procedure as shown in Fig. 2. This represents the core
of our method.

Fig. 1. Recombination procedure by applying crossover operator at crossover points
a and b
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Fig. 2. Recombination procedure by applying mutation operator

As observed in Fig. 2, some portions of the queen are randomly mutated
to generate a new chromosome. This results in new queen candidates. Each
queen candidate becomes a queen and replaces the original queen if it has
a better performance with respect to the previous queen. If the performance
of the queen candidate gets worse than the current queen’s performance, the
new chromosome (queen candidate) is disregarded and a part of the original
queen is again selected and mutated randomly. Our proposed Algorithm is
summarized as follows:

1. Select a coding scheme to represent adjustable parameters.
2. Generate randomly a chromosome as a queen and evaluate its perfor-

mance.
3. Make an exact copy of the queen chromosome and name it queen candidate

chromosome.
4. Apply the mutation operator to the queen candidate chromosome and

evaluate its performance. If the performance of the queen candidate is
better than the performance of the queen then replace the queen chromo-
some by the queen candidate chromosome, otherwise, go to step 3.

5. Repeat steps 3 and 4 until termination criterion is satisfied.

Coding scheme used in this paper is a sequence of binary numbers. The
value of each gene on the queen chromosome is zero or one. A certain number
of adjacent genes show the binary value of variables aik, e.g., if the range of
values for aiks is from 1 to 15, to show the value of each aik, we consider four
genes ((15)10 = (1111)2) and if we have five calls then the queen chromosome
should have 20 genes. The necessary number of genes for showing the value
of aik in base 2 is equal to the required number of bits to show the value of
lower bound (l). Actually, we use binary representation for chromosome. For
example, consider a four-cell network whose constraint matrix (C), demand
vector (D), and lower bound (lb) are:

C =

⎡

⎢⎢⎣

5 4 0 0
4 5 0 1
0 0 5 2
0 1 2 5

⎤

⎥⎥⎦ , D =

⎡

⎢⎢⎣

1
1
1
3

⎤

⎥⎥⎦ , lb = 11.

According to Sect. 2, the term
∑n

i=1 di shows the total number of the
required calls in this network. Hence, we have six calls, which are shown by
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a11, a21, a31, a41, a42, and a43. Thus, queen is considered as (a11, a21, a31,
a41, a42, a43).

The performance of queen or queen candidate is evaluated by (2).

performance =

(
lb ·

(
n∑

i=1

di

)
· b

)
+

n∑

i=1

di∑

k=1

fik (2)

where b shows the number of blocked calls (block calls are calls that their
frequencies interfere with frequencies of other calls), n is the number of cells
in the network, di is the ith element of the demand vector (D), and fik is the
frequency assigned to aik that its value is obtained by converting binary value
of aik to an integer value.

Mutation is done by choosing randomly some genes of the queen and
changing them from 0 to 1 or 1 to 0.

The termination criterion is that the values of aiks (fiks) satisfy (1) and
the maximum value of aiks is equal to the value of lower bound (lb).

5 Simulation Results

To test the proposed algorithm and compare its performance with the two
existing approaches (Heuristic method proposed by Sivarajan et al. [9] and
Adaptive Local Search algorithm proposed by Wang and Rushforth [10]), we
used three CAPs that their constraint matrix (C), demand vector (D), and
lower bound (lb) are as follows:

C1 =

⎡

⎢⎢⎢⎢⎣

4 3 4 3 4
3 4 3 2 2
4 3 4 2 4
3 2 2 4 2
4 2 4 2 4

⎤

⎥⎥⎥⎥⎦
, D1 =

⎡

⎢⎢⎢⎢⎣

2
4
4
1
4

⎤

⎥⎥⎥⎥⎦
, lb1 = 38.

C2 =

⎡

⎢⎢⎢⎢⎣

4 3 3 5 4
3 4 4 4 4
3 4 4 2 2
5 4 2 4 2
4 4 2 2 4

⎤

⎥⎥⎥⎥⎦
, D2 =

⎡

⎢⎢⎢⎢⎣

5
5
5
5
5

⎤

⎥⎥⎥⎥⎦
, lb2 = 59.

C3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 3 6 1 6 7 7
3 7 6 4 4 2 5
6 6 7 3 7 5 3
1 4 3 7 5 3 4
6 4 7 5 7 7 5
7 2 5 3 7 7 2
7 5 3 4 5 2 7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
4
6
1
5
1
3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, lb3 = 101.
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We have implemented our algorithm in C. This program was run on a
PC with a Pentium 4 (3.2 GHz) CPU. Table 1 shows results produced by
our method and the two existing approaches for the three stated problems.
First column of this table indicates the problem number. Constraint matrix
(C), demand vector (D) and lower bound (lb) for each problem are given in
the second, third and fourth column, respectively. The fifth, sixth, seventh
and eighth column show no. of calls, the maximum frequency obtained by
our algorithm, heuristic method [9], and adaptive local search algorithm [10],
respectively.

As shown in Table 1, the maximum frequency (required bandwidth) ob-
tained by our algorithm in each problem is equal or less than the maximum
frequency obtained by the other two methods. Consequently, we can conclude
that our new method has a good performance in solving CAPs in cellular
radio networks.

Table 2 contains derived channel assignment for problems 2.

6 Conclusion

In this paper, we proposed a new method based on genetic algorithm to
solve CAPs in cellular radio networks. We compared the performance of the
proposed algorithm with the other two methods used in CAPs and showed
through simulations that our method can find solutions with the least neces-
sary bandwidth that does not violate any EMC constraints.

Table 1. Results obtained by two channel assignment methods and our algorithm
for 3 CAPs

Problem Constraint Demand Lower No. of Genetic Sivarajan Wang
number matrix (C) vector (D) bound (lb) calls based algorithm et al. [9] et al. [10]

1 C1 D1 38 16 38 38 38
2 C2 D2 59 25 59 59 59
3 C3 D3 101 24 101 101 102

Table 2. Derived channel assignment for problem 2

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

56 59 29 25 27
50 53 23 21 19
44 47 13 17 15
38 41 7 11 9
32 35 3 5 1
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Max-Product Fuzzy Relational Equations
as Inference Engine for Prediction of Textile
Yarn Properties

Yordan Kyosev, Ketty Peeva, Ingo Reinbach, and Thomas Gries

Summary. This work presents first practical implementation of a new algorithm
for solving max-product fuzzy relational equations as inference engine. The original,
analytical provided procedure computes the greatest solution and the set of all
minimal solutions, in case of consistency. In case of inconsistency, which presents
not adequate knowledge base or not adequate case for solution, the equations, that
correspond to the unsatisfied rules, are obtained. The algorithm is implemented for
solving max-product fuzzy linear system for predicting properties of textile yarns,
but these systems as inference engine are applicable in wide range of areas. Several
methodology problems of the practical implementation like the type of membership
functions, relation coefficients, dealing with multiple interactions are presented.

Key words: Inference engine, Inverse problem resolution, Max-prod com-
position, Textile yarn.

1 Introduction

There are several approaches for building the inference engine. Those of them,
which follow directly programmed “if-then” rules are suitable for the diagnosis
problems, but not for engineering applications for prediction of certain prod-
uct properties as function of the technological process. Most popular are the
neuronal networks, often combined with fuzzy input and/or output. They are
very powerful because of their multilayer nonlinear approximation nature, but
they do not present clearly and user-friendly the knowledge base. The most
important disadvantage for the current case is the impossibility to work in
inverse direction, for backward reasoning. The fuzzy linear equations present
clear definitions of the relations between output and input for a given system.
Due to further development of the theory, they can be successfully used in
both the directions: for forward reasoning – for calculating the outputs when
the inputs and the relation matrix are given, and for backward reasoning – to
calculate which input has to be provided in order to receive certain output.

There are several applications of fuzzy relational equations in the textile
engineering. Some of them use fuzzy max–min linear systems for diagnos-
tics [1–4]. The max–min composition is suitable for a specific kind of reasoning,
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if the main task is to establish whether some events are present or not, tak-
ing into account the fuzziness of the used data. For predicting the properties
of the materials or for similar engineering applications, often proportionality
between the variables has to be present. In this case max-product law of com-
position provides a suitable mathematical description of the relations among
the physical parameters. The direct problem (calculation of the max-product
composition between the input vector X and the weight matrix A) is trivial,
but for solving inverse problem there are still open fields for researching. Here
we present first practical implementations of the algorithm presented in [5].
It uses algebraic-logical approach by using objects for representing the way
of thinking of the man by solving fuzzy equations and is based on universal
algorithm [6], developed as an extension of the theory and software in [7]. In
Sect. 2 is explained basically how to use the fuzzy linear systems as inference
engine. After that, in Sect. 3 are described some methodology problems, which
we had to solve during the practical implementation of the fuzzy linear system
as inference engine. At the end is presented a short example.

2 Max-Prod Fuzzy Linear Equations as Inference Engine

2.1 Mathematical Model

The properties of the textile yarns depend on a large number of parame-
ters. Detailed experimental investigations over influence of some preparation
processes over the parameters of the fibers sliver [8], some machine construc-
tion and adjustments [9,10], as well as the complex numerical and experimen-
tal investigations of the drafting process [11] prove, that predicting the yarn
properties requires a complex mathematical model.

Formalized description of the process of prediction of yarn properties is
presented in Fig. 1, where are mentioned only the most important input and
output parameters. Let us present the process of prediction as a general sys-
tem with N inputs xi and M outputs bj , where i = 1 · · ·N and j = 1 · · ·M . In
the yarn production is important to have estimation of the maximum possible
strength of the yarn for a certain material. At the same time, the yarn irreg-
ularity CV , as well as the yarn hairiness have to remain in certain limits. All
these requirements are output parameters. They depend on a set of input pa-
rameters, like machine adjustment, working speed, material preparation, tem-
perature and humidity in the rooms etc. The relations between all inputs and
outputs are usually nonlinear and they include complex interactions among
several single inputs. One full experimental investigation of these relations
by using design of experiments requires a large number of tests, which is not
usually possible in industrial conditions and is time and resources consuming.
On the other side, the complexity and multiscaling of the real problems par-
ticularly for spinning and for other textile processes, complicates building of
phenomenological models, which represent the physics of all interactions. Our
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Fig. 1. Inputs, relation matrix and outputs when building a system for prediction
of the properties of textile yarns

goal is to create a simple, fast and user friendly model, which consists of the
main important relations between single inputs and outputs, and allows both
forward and backward reasoning. The fuzzy linear system of equations fulfill
these requirements, as for the case most appropriate is the use of max-product
composition.

Let the relation between all inputs X = xi and the output bj is presented
with the equation

(aj1. x1)∨ · · · ∨(aj n−1. xn−1) ∨ (aj n. xn) = bj , (1)

where ∨ denotes max operator and . – multiplication. The complete system
for all outputs is

∣∣∣∣∣∣

(a11. x1) ∨ · · · ∨ (a1 n. xn) = b1
· · · · · · · · · · · · · · ·

(am 1. x1) ∨ · · · ∨ (am n. xn) = bm

, (2)

written in the following equivalent matrix form

A�X = B,

where A = (aij)m×n stands for the matrix of coefficients,X = (xj)n×1 stands
for the matrix of unknowns, B = (bi)m×1 is the right side of the system. For
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each i, 1 ≤ i ≤ m and for each j, 1 ≤ j ≤ n, we have aij , bi, xj ∈ [ 0, 1 ] and
the max-prod composition is written as �.

The coefficients aij matematically represent the influence (weight) of the
input xi over the output bj . In industry, the experts are looking for the best
performance, quality or seek the reasons for the worst cases. The best and
worst cases of one output bj correspond to its maximal and minimal value.
Looking for minimum can be inverted to looking for maximum [7], thus we
will work furtherly only with the maximal value.

2.2 Forward and Backward Schemes of Reasoning

We suppose that the relations’ matrix A and one vector X with input pa-
rameters, for example raw material, equipment and process data are given.
The estimation of the output parameters requires only computing of the com-
position of the left side of (1). This corresponds to the forward scheme of
reasoning, or to the so called direct problem. This way of calculation is fast,
because is connected to one matrix composition. It is useful for predicting of
the properties of the yarn, when the different materials, process parameters
or machine equipment are used. One can define goal function for some ele-
ments of the vector B and to start optimization problem, looking for the most
suitable inputs X. Such optimization is often not effective, because the sys-
tem (1) can have a large number of solutions and the standard optimization
algorithms will find only a local solution. More effective is the optimization,
when is used backward scheme of reasoning.

In this case, used also for diagnosis problems, we have to solve the inverse
problem, finding all solutions of (1) for given outputs B and relations A. If
the system (1) has solutions, it has one greatest and one or lots of lower solu-
tions. The lower solutions can be interpretated as the cheapest and the worst
material, which can be used for production of the yarn with the required in B
quality and properties. The greatest solution gives the best (and expensive)
material, which still will lead to producing the yarn with the same properties.
The interval solutions of the system build the range of variations of the input
parameters, where the output will remain unchanged. The interval solutions
are of great importance for the application engineers, as they show which
input parameters can be changed without loss of quality.

The application of the backward scheme of reasoning for optimization is
a little bit different from the optimization with forward scheme. Here the
required (maximum) values in B have to be given initially. Then, solving the
system (1), all interval solutions can be calculated. For the experts remains
the task to select this or these from the solutions X, which are more effective.

2.3 Solution Notes

If A � X = B is consistent, it has unique greatest solution Xgr = At � B
[5, 13–15].
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The �-product of matrices A and B is in general defined as matrix C =
(cij)m×n = A � B, if

cij =
p

min
k=1

(aik � bkj),when 1 ≤ i ≤ m, 1 ≤ j ≤ n.

In our case B is a vector and C becomes vector too, and the At denotes
transpose matrix of the A, where At = (at

ij) = aji.
A program implementation of exact method and an algorithm for solving

the system A � X = B for the unknown X is explained in [5, 7]. As much
as possible improvements over the straightforward exhaustive depth search
of this NP-hard problem are obtained. Rather than work with the system
A � X = B, is used a matrix, whose elements capture all the properties of
the equations. In depth first search, it is proposed how to drop branches that
do not lead to minimal solutions. A sequence of simplification rules is defined,
which brings the matrix into a new form. Once in this form, dominance is
applied to remove redundancy. In this manner the time complexity of an
exhaustive search is reduced merely by making a more clever choice of the
objects over which the search is performed. This provides an easy finding of
the complete solution of the original system.

3 Implementation Methodology

3.1 Membership Functions

The selection of the membership functions depends on the specificity of the
problem.

For instance the yarn strength depends on the yarn twist nearly quadrat-
ically, as the type of the real function is presented in Fig. 2. In this case, we
split the single input variable twist into new four input variables, which can be
named like “very low”,“low”,“normal”, and “high” twist, and which have also
a unique range. Furtherly, we input four output variables for yarn strength,
no matter that, for the forward reasoning this is not obligatory. These four
output variables in this case are required, because some of the physical value
of the yarn strength can be obtained for two different values of the variable
“twist” – one before the maximum and one after the maximum. With the
additional new output variables can be exactly specified, if the value is “high
strength, but under the critical twist” or “high strength, but above the critical
twist.”

The next not typically used is the type of certain membership functions.
For the above mentioned case (Fig. 2) the physical input variable increases
monotonously and there is no overlapping between the local areas. For such
type of parameters we used “saw” – like membership functions for normaliza-
tion of the input variables (Fig. 3, left). Of course a lot of parameters work
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Fig. 2. Local approximation and setting up of new variables for the nonlinear
relationships between input and output. The presented curve is typical for the rela-
tionship between yarn twist and yarn strength

Fig. 3. Membership functions for continuous input variable without overlapping
(left) and triangular membership functions for uncertain variables, like “state of the
machine,” connected with not exact definition of the state of working parts, gears,
dirtiness level etc. (right)

well with the standard type functions (Fig. 3, right), for which more explana-
tion can be found in almost all introductional literature about fuzzy logic, as
for instance [12].

3.2 Coefficients of the Relation Matrix

The most important key point for expert system building is the selection of
the proper structure of the relation matrix A. Its coefficients aij are obtained
from experts, using mechanical models of the system for some of the relations
or experimental results for the more complicated ones. They are divided into
three groups, depending on the type of the relation between the input and
output variables in the system (2):

– Physical (deterministic) relation between the inputs and outputs. Exam-
ple: during the drafting process the fiber sliver becomes longer and finer.
The drafting ratio I connects the input Tinp and output Tout fineness, as
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Tout = Tin · I. For this case, the corresponding coefficient in the system
(1) has value aij = I, if the finenesses Tout and Tin are normalized.

– Stochastic correlation between the input and output parameters. Exam-
ple: at higher working speed of the machine V the irregularity of the sliver
CV becomes higher, too. This relation is not well (jet) deterministically
described, but exists enough statistical data as a proof of its significance
(Fig. 4, left). At the same time the speed of the machine does not influ-
ence significantly the mean fiber length L50%, and in this case we will set
correspondent aij = 0.

– Relation between the variances of the input and output parameters. This
can be the case not only for the stochastic relation between parameters,
but also for the deterministic ones. The models usually do not describe
all the influences, like the humidity and temperature of the room, some
defects in the gears, sticking of the dust, which is usual for the textile pro-
duction. We use the variances of all input and output variables, and input
their relation in the corresponding coefficient aij . Here, in general can be
assumed that aij = 1 − r2ij , where rij is the correlation coefficient of the
regression equation for the connection between input xi and output bj .
In this system all the input and output parameters are analyzed as pairs
“parameter–variance”: xi−xK+i, where K is the number of the indepen-
dent input variables, 2K ≤ N . The use of the additional variables for the
variances per input and output parameters makes the fuzzy linear system
two times larger (actually four, but the half of the coefficients are zeros),
but the variances are required for proper description of the processes. Ex-
ample of confidential area of the influence between input “machine speed”
and output “yarn mass irregularity” is presented on the Fig. 4 (right).

3.3 Significant Multiple Interactions

In some cases the interactions between two or more input parameters are
very important. They can not be properly modeled by the system (2) and for

Fig. 4. Variation coefficient of the sliver (intermediate half-finished product), left,
depending nonlinear on the machine velocity with very high degree of correlation.
The same coefficient for the final product – yarn on the right figure, has the same
trend, but with quite large confidence interval
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this reason we used the idea for the multilayers from the neural networks. If
the interaction between variables xi and xk is significant, we build new one,
composite variable, xl = xi · xk. We use such composite variables during the
solution of (1) formally as independent variables, but after that, during the
decoding of the results, these variables require some additional operations and
checks about possible logical contradictions.

4 Numerical Example

The relation matrix when working with industrial problems is usually bigger
than 15 × 10, which is not convenient for printing. Because of this, the re-
alization of forward and backward reasoning in the MATLAB environment
are presented here as an example with highly reduced size. Let the relation
matrix A is given as

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.0 0.9 1.0 0.0 0.0 0.0
0.1 0.6 0.3 0.0 0.0 0.0
0.8 0.4 0.2 0.0 0.0 0.0
0.0 0.0 0.0 0.4 0.8 0.1
0.0 0.0 0.0 0.2 0.1 1.0
0.0 0.0 0.0 0.4 0.1 0.8

⎞

⎟⎟⎟⎟⎟⎟⎠

Here is demonstrated the block-architecture of this matrix, where the upper
left block represents the coefficients of the relation between the input and
output variables, the bottom right block – the coefficient for the variances
between these variables. For forward scheme of reasoning, we need the outputs
B, if the inputs X are given. For instance X =

(
0.3 0.9 1.0 0.2 0.0 0.6

)t. Here
we have to compute the max-prod composition B = A � X, which in the
MATLAB environment using the library, described in [5] is simple:

>> B=fuzzy_maxprod(A,X’)

B =

1.0000
0.5400
0.3600
0.0800
0.6000
0.4800

Let us solve the inverse example, typical for the backward reasoning, asking –
which inputs X have to be used, in order to receive the presented output B?
The solver calculates the greatest and finds two lower solutions
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>> s=solvedot(A,B)
greatest solution - transposed

0.4500 0.9000 1.0000 0.2000 0.1000 0.6000

lower solutions - transposed
0 0.9000 1.0000 0.2000 0 0.6000
0 0.9000 1.0000 0 0.1000 0.6000

which builds two interval solutions of the problem

X1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

[0, 0.45]
0.9
1

0.2
[ 0, 0.1]

0.6

⎞

⎟⎟⎟⎟⎟⎟⎠
, X2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

[0, 0.45]
0.9
1

[ 0, 0.2]
0.1
0.6

⎞

⎟⎟⎟⎟⎟⎟⎠
.

This example demonstrates, that for certain relation matrix A there are three
inputs variables, which value can be changed and despite of this to receive the
same outputs B. The variable x1 has to be between 0 and 0.45, which means,
that it has no significant influence over the outputs in this case. The variables
x4 and x5 are connected – one of them can vary in some limits if the other one
is fixed. On the language of the application engineers this solution set means,
that we can obtain the same yarn properties, by relative large variation of the
input parameters x1 and careful choice between the variation of one of the
inputs x4 or x5.

5 Discussion

In order to take into account the spread of the parameters, that is usually
for the textile products, we use the variances for almost all input and output
quantities as variables in the system, too. This increases the size of the system
and worsens the clarity of the knowledge presentation. Better approach can
be realization of the system by the means of logic [2, 7], where probably by
using membership and nonmembership degrees, can be modeled the spread of
the investigated variables as well. The use of intuitionistic approach formally
would lead to saving the number of variables, but the amount of the data and
calculations will be again almost identical with the presented here. The use of
the intuitionistic approach still requires some additional development in the
theory and software, which did not allow us to implement it.
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6 Conclusions

The use of the max-prod fuzzy linear systems of equation as inference engine is
explained. The practical implementation of these systems requires additional
knowledge about the selection of the membership functions, presenting the
highly nonlinear relations, spread of the variables, as well as the ways for
filling the relation matrix. Interpretations of the mathematical model, from
the point of view of the prediction of textile yarn properties are given, but
the model is applicable in a wide range of areas.
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Automatic Defects Classification and Feature
Extraction Optimization

Bernd Kuhlenkötter, Carsten Krewet, and Xiang Zhang

Summary. This paper introduces an automatic classification system that can iden-
tify defects on product surfaces in manufacturing, especially in processes like grind-
ing and polishing. The identification process is based on grayscale images taken by
a vision system. Some technologies that extract features from digital images are
discussed. The support vector machine (SVM) is used in this paper as a multiclass
classifier. It is shown that the overall classification rate can be close to the level
that a skilled operator can obtain. The issues concerning the optimization of feature
extraction are also covered in this paper.

Key words: Defect classification, Feature extraction, Support vector
machine, Optimization.

1 Motivation

Nowadays the manufacturing process is tending to high automation level, as
much as possible relieving workers from the laborious tasks and unpleasant
working environment [1,2]. Nevertheless, many inspection tasks are still done
manually due to the difficulty of automatic execution. One example is that
the flaw inspection and identification on the surface of fittings, e.g., water
tap heads, have long been done by human operators in sanitary industries. It
is very beneficial to automate this process. First of all, the efficiency of this
process will be dramatically increased. Second, the job is monotonous and
tedious, leading to less concentration of operators over the time, which causes
classification errors. Third, operators have their own standards of inspecting
and classifying the defects. It is possible that one defect, which is identified
by one operator to class A, is classified by another operator into class B. It
is also possible that one operator might make different judgments at different
times.

The work in this paper is aimed, but not limited, to automatically classify
defects on water tap heads after grinding and polishing processes. From man-
ufacturing practice, possible defects are defined into 15 categories in advance.
Figure 1 shows samples of seven kinds of defects. From practical experience, an
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Fig. 1. Defect samples (from left to right: casting peel, pore, lined mark, crack,
burned residues, grease residues, polishing shade)

operator reaches a classification rate in the range from 60% to 90% depending
on their experience and on their concentration level. The wrong inspections
come from the lack of concentration and subjective errors. In comparison, an
automatic inspection and classification system can evaluate the defects us-
ing a constant criterion and overcome the varied standards among different
operators.

2 Automatic Classification System

The vision system consists of a carrier, a camera system, a lighting system,
other accessories and the software. The system hardware is responsible to pro-
vide a constant lighting environment and obtain the digital images of surfaces
under this constant circumstance. The software provides the solution to ex-
amine the images from the camera system, locating and classifying the defects
on workpiece surfaces.

Two steps are included in the software implementation, the feature extrac-
tion and the classifier design. The feature extraction is the most important
part in the system. It defines the rules to describe and express the defects
inside an image in a form that the classifier can understand and utilize to
distinguish one class from others. Generally, feature extraction digitizes the
defect images in a way that enlarges the distinctions among categories and
discards the similarities at the same time. After that, the features are applied
as the training data to the classifier. Support vector machine (SVM) [3] is an
effective artificial method to solve both regression and classification problem,
especially when the input dimension is very high. It has been successfully ap-
plied in many research and industrial classification tasks [4, 5]. Therefore it
is also used as the classifier in this project described in this paper. The one-
against-one scheme is used to combine a group of two-class classifier into a
multiclass classifier. In most cases, the one-against-one scheme yields a better
result than the one-against-all scheme [6].

3 Feature Extraction Technologies

The feature extraction is the most crucial step to the final accuracy of the
classification. However, no single feature extraction method is consistently
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superior to other methods [7] because the result of a method highly depends
on the task to be solved. Therefore, several feature extraction technologies
are implemented and tested, including shape features, statistical features, the
local energy of some filtering channels and grayscale information.

3.1 Shape Features

Shape features indicate some values that represent the size related to the
object contour. Some of the shape features are illustrated in Fig. 2, in which
C is the contour of the detected defect, Ccon is the convex hull of C and fmax

is the maximal Feret diameter. The Feret diameter is defined as the projection
length of the convex envelope of an object in a given direction. Besides fmax,
seven shape features are used in this paper, area S, length la, breadth lb,
elongation e, compactness c, roughness r and area ratio sr. The features are
either shown in Fig. 2 or can be computed by following formulas

Length la + lb = P
2 Breadth la ∗ lb = S

Elongation e = la
lb

Compactness c = P 2

4πS

Roughness r = P
Pcon

Area ratio sr = S
Scon

where P is the perimeter of the contour C, Pcon and Scon are the perimeter
and area of its convex hull Ccon, respectively.

The length la and breadth lb are the logical length and breadth that can
be calculated by the area and the perimeter. Elongation is the quotient of
the length divided by the breadth, thus always greater than 1. Compactness
is the square of the ratio of the perimeter of the original contour and the
perimeter of a circle that has an equal area as the original contour. Ideally
the compactness is 1 when the contour is a circle, otherwise it is greater than
1. Roughness and area ratio are two measures to indicate the convexity of the
contour. A convex contour has the value 1 for the both measures. These eight
shape features are not all independent.

convex hull Ccon

contour C

perimeter  P
area  S

fmax

Fig. 2. Shape features
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3.2 Filter Bank

Another technology to extract features from the texture image is the filter
bank. The filter bank is also called multichannel spatial filtering method.
The idea is to apply a sequence of filters on the image and take the local
energy of the filtered images as features. The inspiration for this method
comes from neurological studies. These research works suggest that the pre-
processing stages in the human vision system involve a set of parallel and
quasi-independent mechanisms or channels which resemble band-pass filters.
Each filter in the filter bank contains intensity variations over a narrow range
of frequency and orientation, specifying the regularity, coarseness and direc-
tionality of the original image [8]. One filtering transaction is computed by
applying a convolution kernel to the original image and the local energy is
calculated from the filtered image in a specified window. The general process-
ing flow is shown in Fig. 3. The kernel or unit impulse response of the filter
� is given by a square matrix f�. The filtered image y�(i, j) is obtained by
centrally convoluting the original image x(i, j) with the filter f�, which can
be written as

y�(i, j) = x(i, j) ∗ f�(i, j) (1)

Then the �th feature is specified by the local variance of the filtered image
y�(i, j) in a W ×W window and can be expressed as

FEA� =
1
W 2

W∑

m,n=0

{
y�(
W

2
−m, W

2
− n)− u�(i, j)

}2

(2)

where u�(i, j) is the mean value of the filtered image y�(i, j) in the W ×W
window and W is the window size which is specified by users. The different
filter banks differ from each other mainly in the formulating of the filters f�.

Two kinds of filter banks are used: Laws filters [9, 10] and Gabor fil-
ters [11, 12]. Refer to our previous paper [13] for formulation and parameter
configuration of these filters.

f1

fl

fp

x(i,j)

y (i,j)1

y (i,j)l

y (i,j)p

local
energy

local
energy

local
energy

FEA1

FEAl

FEAp

filtering feature
extraction

Fig. 3. Processing flow of filter bank
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3.3 Statistical Features

The gray level co-occurrence matrix [14,15] is a well-known statistical tool for
extracting second-order texture information from images. The co-occurrence
matrix Pd is a Ng ×Ng square matrix defined on a given displacement vector
−→
d = {dx, dy} where Ng is the grayscale level of the image. The entry (i, j)
of the matrix Pd is the number of occurrences of the pair of gray level i and
j which is a distance

−→
d apart. An example is given in Fig. 4 to demonstrate

how to compute the co-occurrence matrix of a grayscale image. The left side
of Fig. 4 shows an image of three grayscale levels, in which numbers denotes
the pixel grayscales. The right side is the corresponding co-occurrence matrix
Pd, which is a 3 × 3 square matrix, with respect to the displacement vector−→
d = (1, 1). After that the co-occurrence matrix is calculated and a large range
of features can be computed from this co-occurrence matrix. Five of them are
used in this paper.

Energy f1
∑

i

∑
j P

2(i, j)
Entropy f2

∑
i

∑
j P (i, j) log2[P (i, j)]

Contrast f3
∑

i

∑
j(i− j)2P (i, j)

Homogeneity f4
∑

i

∑
j P (i, j)/(1 + |i− j|)

Correlation f5
∑

i

∑
j(i− µx)(j − µy)P (i, j)/σxσy

where µ is the mean value of the co-occurrence matrix P , µx, µy, σx and σy

are the means and the standard deviations corresponding to the vectors px, py

that are expressed by

px =
∑

j

P (i, j) and py =
∑

i

P (i, j)

3.4 Grayscale Information

Besides the features introduced above, we use additionally the average and
standard deviation of grayscale values of the defect image as grayscale fea-
tures. The grayscale features should be localized considering different size of
the various defects. The grayscale information are obtained in four areas in
the defect image, respectively, see Fig. 5. In this case, the number of grayscale
features is eight, two of each area.

1 1 0 0 1

20011

0 0 2

1 1

1

2 0

0 0 2 2

2 2

13 4

1 12

0 2 2

2

d=(1,1)PdP (0,0)++d

P (0,0)++d

P (0,0)++
d

Fig. 4. Get the co-occurrence matrix of the grayscale image
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area 1

area 2

area 3

area 4

Fig. 5. Grayscale information

Table 1. Training and testing classification rate of varied features

Fea. Fea. Num. Tr. cl. rate(%) Te. cl. rate(%)

Shape 8 87.5 59.5
Laws 25 99.5 69.4
Gabor 16 98.5 70.1
Statistical 15 98.0 75.2
Grayscale 8 98.5 72.3

4 Classification Results

Table 1 shows the classification results using only one kind of features. It
can be concluded from the table that the shape feature is not suitable for this
application. There are two reasons for that. First, there are no clear differences
in the shape between some defects. The second reason is that the geometric
information of some kinds of defects cannot be exactly defined. For example,
it is not easy to describe the shape of a burned residues and a polishing
shade. The pattern information is more effective than the simple geometric
information in this sense.

The best result is obtained by using statistical features based on co-
occurrence matrix, a 75.2% overall classification rate. The classification effi-
ciency of grayscale information, Gabor features and Laws features are slightly
lower than that of statistical features.

The performance of the classification system is improved when features
from different technologies are combined. Table 2 shows the classification re-
sults of the combined features. The overall classification rate reaches a rate
of 81.1% when the statistical features are combined with Gabor features and
grayscale information.

5 Optimization of Feature Extraction

Many approaches are available to extract pattern features and many parame-
ters can be adjusted in each approach. Thus, it is usually a troublesome task
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Table 2. Training and testing classification rate of combined features

Gabor Statistical Grayscale Num. Tr. cl. rate(%) Te. cl. rate(%)

X X 21 100 77.2
X X 24 100 78.4

X X 13 98.0 77.4
X X X 29 98.2 81.1

to select the most appropriate methods and parameters to obtain features
that can best separate the samples. Sometimes it can be done by a lot of
experiments and then by evaluation of the results of classification. However,
there are often demands to have a standard for evaluating features, which
does not depend on the classifier that is in use. In fact, features extraction
and classification are two separate procedures though they are closely related
to each other. Feature extraction is a way to represent the characteristics of
a subject, while classification determines how to separate the samples based
on the subject representation. The feature extraction should fulfill two princi-
ples. One is an indispensable condition of the classification task that a feature
should exhibit enough differences among diverse categories to be classified.
Otherwise, samples would be impossible to be separated effectively no matter
which kind of classifier is applied. The other is a supplementary condition
requiring that those features, which do not meet the first principle, are not
used. The second principle is to optimize the input to the classifier and ensure
the generalization of the model. However, the principles are quite descriptive.
They make sense to select suitable features only if we can find an effective
way to evaluate the quality and goodness of the features.

5.1 Bhattacharyya Distance

Suppose that we have two classes of samples that need to be separated. The
feature values for m samples of the first class A are as follows

fA1, fA2, fA3, ..., fAm︸ ︷︷ ︸
m

(3)

and the feature values for n samples of the class B are

fB1, fB2, fB3, ..., fBn︸ ︷︷ ︸
n

(4)

We also suppose that the feature values are normally distributed. Figure 6
illustrates two different situations of relative distributions of features fAi and
features fBi. In this first case (left side), the class A can be easily separated
from the class B because they are clearly different from each other that there
is no overlap between features. In the second example, class A is theoretically
hard to be discriminated from class B because the average value of features
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A B A B

Fig. 6. Separability of two classes

are too close to each other. A good feature drags one class apart from another
and the variance of this good feature should be small at the same time. An
ideal situation is that the mean error |µa−µb| is very large and two variances
σa, σb are very small. Thus, the separability of a feature relates not only to
the difference of the means but also to the deviation of features of each class.

The Bhattacharyya distance (BH distance) [16] is a method to statistically
quantify the separability of two classes using a feature which can be written
as

Bdis(A,B) =
1
4

{
(µA − µB)2

σ2
A + σ2

B

}
+

1
2

ln
{

1
2

(
σB

σA
+
σA

σB

)}
(5)

where µA, µB , σA, σB are the features’ means and standard deviations of the
class A and the class B, which can be written as

µA =
1
m

m∑

k=1

fAk (6)

µB =
1
n

n∑

k=1

fBk (7)

σA =

√∑m
k=1 (fAk − µA)2

m
(8)

σB =

√∑n
k=1 (fBk − µB)2

n
(9)

For simplicity, the first part (Fisher ratio) in (5) can be used instead of BH
distance as the measure of separability of two classes with respect to one
feature. In the ideal situation, namely a large mean difference and small varia-
nces of each class, the BH distance and the Fisher ratio are both large scalars.
The smaller the distance, the less separable are the two classes. Therefore, the
BH distance or the Fisher ratio can be a criterion for evaluating the goodness
of a feature.
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5.2 Optimize Features Based on Co-Occurrence Matrix

The statistical features based on the co-occurrence matrix have given good
results in the experiments above. In addition, they are flexible to be config-
ured. The statistical features can be thought of as an weighted sum of the
co-occurrence matrix elements. The features in (3) and (4) are calculated by

fA(B)k =
Ng∑

i=1

Ng∑

j=1

W (i, j) · PA(B)k(i, j) = w.pA(B)k (10)

where W (i, j) is the weight matrix, PAk and PBk are the co-occurrence
matrixes, w, pAk, pBk are vectors that are formulated from the matrixes W ,
PAk and PBk. The PAk and PBk are known. Thus, once the weight matrix
W (i, j) is determined, the feature extraction process is sequentially deter-
mined. A weight matrix corresponds with a feature extraction strategy.

In the experiments above, we used only some standard features, e.g., en-
ergy, contrast, homogeneity that are general to all applications. The weight
matrix of each standard feature is decided beforehand and does not depend on
the problem that is being worked on. The idea of the feature extraction opti-
mization is to find the best feature for a specific application, or at least one
that is superior to the standard features. As mentioned above, the form of
weight matrix defines the final feature. Therefore, obtaining the optimal fea-
ture for two classes A and B is equivalent to find a specific weight matrix
W (i, j) that can maximize the BH distance or the Fischer ratio between fAk

and fBk.
This is a nonlinear optimization problem with N2

g unknowns. Most of the
in-use iteration algorithms, like conjugate gradient method, need not only
the function values but also function gradients for a fast convergence rate.
The gradients of the objective function (5) with respect to w can be indirectly
calculated by gradients of µA, µB , σA, σB with respect to the same w, which
can be written as

∇µA =
∂µA

∂w
=

1
m

m∑

k=1

pAk (11)

∇µB =
∂µB

∂w
=

1
n

n∑

k=1

pBk (12)

∇σA =
∂σA

∂w
=

∑m
k=1(w · pAk − µA)(pAk −∇µA)

mσA
(13)

∇σB =
∂σB

∂w
=

∑n
k=1(w · pBk − µB)(pBk −∇µB)

nσB
(14)

with (5–9), (11–14), the optimization problem can be solved.
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However, the problem is not as simple as what has been introduced so far.
Suppose 256 grayscale levels are used to generate the co-occurrence matrix,
i.e., Ng = 256. In this case 65,536 unknowns exist in the optimization problem.
Even taking the symmetry into consideration, there are still 32,896 unknowns,
which means an extremely large optimization problem. The weight matrix W
is too flexible to ensure the generalization of the final solution. Even though
we obtain a weight matrix, with which the BH distance is a large number for
training samples, it cannot be proven that this matrix will also bring a large
distance for testing samples. Figure 7 shows a weight matrix that is calculated
by maximizing BH distance between pores and polishing shades in the training
set with a grayscale level of 32. The BH distance of training set is about 2,347
with this weight matrix, but only about 0.22 for the testing set. It goes back to
the generalization problem in the learning theory. The solution of this kind of
problems is normally to apply constraints on the over-flexible weight matrix,
for example, requiring that the weight matrix surface is smooth and not so
chaotic as that in Fig. 7.

Walker et al. [17] presented a strategy to construct a weight matrix. They
started with a standard feature, e.g., energy or contrast, and considered every
weighted elements in the co-occurrence matrix as a feature. Then the BH
distances for each elements were calculated consequently. Therefore another
matrix, which was called by them as a discrimination matrix, can be obtained.
The discrimination matrix is also disturbed and fragmentary. After that, they
used a second order polynomial surface to approximate the discrimination
matrix. The polynomial surface was then used as the weight matrix finally.
It was reported that the optimized features obtained in this way performs
normally a bit better than the original standard features, but not always.

This method depends on standard features because the standard weight
matrix is needed to calculate the discrimination matrix. In contrast, the con-
strained weight matrix strategy we introduced above is more general and
more configurable. The problem now is what kinds of constraints should be
imposed on the weight matrix in advance. We suggest two options. One is
adopting polynomials as the form of the weight matrix. In this case, Walker’s
method can be considered a special implementation of the strategy we put

Fig. 7. Nonconstrained weight matrix
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forward here. Another is using B-Spline surface representation. The optimiza-
tion unknowns are the coefficients of the polynomials for the first case, while
the coordinates of control points become the optimization objective when the
B-Spline representation is adopted. Apparently, the B-Spline is a more adapt-
able representation because both the continuity of the surface and the number
of control points are configurable. However, the optimization problem is much
more complicated than polynomial representation because it is not easy to
calculate the gradients of the control points coordinates with respect to the
unknowns w.

6 Summary

In this paper, an industrial vision system is introduced to identify and classify
defects on free-form surfaces during grinding and polishing processes. The clas-
sification is based on grayscale images taken by a vision system. Some features,
shape features, filter banks, statistical features and grayscale information are
adopted for the classification task. SVM is served as a multiclass classifier,
receiving the features as input and determine the category of the defect. In
this application, the statistical features, grayscale features, and Gabor filter
bank have shown better results than other kinds of features. The result is
even better when these three kinds of features are combined together. With
the combined features, an overall classification rate 81.1% can be reached,
which is comparable to a trained operator. In addition, the optimization of
the statistical features based on the co-occurrence matrix is also discussed in
this paper. The statistical features based on the co-occurrence matrix can be
considered as a weighted sum of the elements of the co-occurrence matrix.
A general weight matrix can be adopted instead of the standard matrixes
to construct a new feature. An optimized weight matrix should generate a
feature, with respect to which the BH distance among defects is as large as
possible. Constraints must be imposed on the weight matrix to guarantee the
generalization of the weight matrix which is generated through the optimiza-
tion process.
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Short-Term Load Forecasting in Power System
Using Least Squares Support Vector Machine

Ganyun LV, Xiaodong Wang and Yuanyuan Jin

Summary. Short-term load forecasting is an important subject for power systems
and has been studied from different points of view. Least squares support vector ma-
chine (LS-SVM) has a good generalization ability and capability of tolerating noise
in nonlinear modeling. An approach based on LS-SVM is proposed for daily peak
load forecasting in power distribution systems. The LS-SVM is used to learn the
relationships among past, current and future temperatures and loads. The LS-SVM
was trained to recognize the peak load of the day. The suitability of the proposed ap-
proach is illustrated through an application to real load shapes from Hefei Electricity
Distribution Corporation in Anhui. Peak load forecasts with satisfying accuracy are
reported from the testing data.

Key words: Short-term load forecasting, LS-SVM, Daily peak load forecas-
ting, Power distribution systems, Accuracy.

1 Introduction

Short-term electric load forecasting is an important requirement for electric
system operation. In general, load forecasts should be performed over a broad
spectrum of time intervals, which could be classified into short term, medium
term and long term forecast. Short-term load forecasting (STLF) aims at
predicting electric loads for a period of minutes, hours, days, or weeks. STLF
plays an important role in the real-time control and the security functions
of an energy management system. Daily peak load is one important task in
STLF. Moreover, an accurate peak load forecast can be helpful in developing a
power supply strategy, financing planning, electricity management and market
search.

Many techniques have been proposed during the last few decades regard-
ing STLF. Traditional techniques applied to STLF include Kalman filtering,
regression models, the autoregressive (AR) model [1, 2]. Time-series models
employ extrapolation of historical data for the estimation of future hourly
loads. A disadvantage of this type of models is that weather information or
any other factors that contribute to the load behavior can not be fully utilized.
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Regression models analyzed the relationship among loads and other influential
factors, such as weather conditions and consumers behavior. The main disad-
vantage of this kind of models is that complex modeling techniques and heavy
computational efforts are required to produce reasonably accurate results [3].

An enormous upwelling of interest has grown in recent years in application
of artificial intelligence (AI) techniques to industrial processes. Their advan-
tage is that no complex mathematical formulation or quantitative correlation
between inputs and outputs is required. Expert systems (ES) [4,5], fuzzy logic
(FL) [6] and neural networks [7–9] have been proposed for electric load fore-
casting. Expert system based methods capture the expert knowledge into a
comprehensive database, which is then used for predicting the future load.
These models exploit knowledge of human experts for the development of
rules for forecasting. However, transformation of an expert knowledge to a set
of mathematical rules is often a very difficult task. Fuzzy theory has similar
problem. Traditional ANN method can directly acquire experience from the
training data, and overcome some of the shortcomings of the expert system.
However, it suffers from a number of weaknesses, including the need for a large
number of controlling parameters, difficulty in obtaining a stable solution and
the danger of over-fitting. As ANN, ES and FL approaches have their ad-
vantages and disadvantages, hybrid artificial intelligence approaches are also
under consideration. Their disadvantages could be overcome by connecting
ES, FL, and ANN as a whole [10,11].

With an emerging technique of support vector machines (SVM) [12–14],
combining the advantages of neural networks (handling large amount of highly
nonlinear data) and nonlinear regression (high generalization), the issues of
high dimensionality as well as the previous drawbacks from neural networks
are overcome. Because of the above reason, SVM is employed to short-term
load forecasting. For the first time, this paper presents a method for daily
peak load forecasting using least squares support vector machine (LS-SVM).

2 Review of LS-SVM

The basic idea of the SVM regression is to map the input data into a feature
space via a nonlinear map. In the feature space, a linear decision function is
constructed. The SRM principle is employed in constructing optimum decision
function. Then SVM nonlinearly maps the inner product of the feature space
to the original space via kernels. The SVM nonlinear regression algorithms
are reviewed in this section.

Given a set of training data

D = {(x1, y1), · · · , (xi, yi), · · · (xl, yl)} ∈ Rn ×R. (1)

The nonlinear function φ(.) was employed to map original input space
Rn to higher dimensional feature space Rk: φ(x) = (ϕ(x1), · · · , ϕ(xl)), where
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k(k � n) represents the dimension of feature space. Then an optimum decision
function f(xi) = wϕ(xi) + b is constructed in this higher dimensional feature
space, where w = (w1, · · · , wk) is a vector of weights in this feature space.
Nonlinear function estimation in the original space becomes a linear function
estimation in feature space. Thus, according to principle of structural risk
minimization (SRM), when the quadratic ε-insensitive loss function is selected
in the LS-SVM. The optimal problem can be formulated as minimization of
the following objective function J :

minJ(w, ξ) =
1
2
‖w2‖+

1
2
c

l∑

i=1

ξ2. (2)

Subject to the equality constraints

yi = wϕ(xi) + b+ ξi, i = 1, 2, · · · , l. (3)

We define the Lagrangian as

L(w, b, ξ, a) =
1
2
ww +

1
2
c

l∑

i=1

ξ2 −
l∑

i=1

ai(wϕ(xi) + b+ ξ) (4)

where ai(i = 1, · · · , l) are Lagrange multipliers.
By the optimality conditions

∂L

∂w
= 0,

∂L

∂b
= 0,

∂L

∂ξ
= 0,

∂L

∂a
= 0. (5)

We have
l∑

i=1

ai = 0, w =
l∑

i=1

aiϕ(xi), ai = cξi, wϕ(xi) + b+ ϕ(xi) = yi. (6)

By (2) and (6), the optimization problem can be rewritten as following,
⎛

⎜⎜⎜⎝

0 1 · · · 1
1 K(x1, x1) + 1

c · · · K(x1, xl)
...

...
. . .

...
1 K(xl, x1) + 1

c · · · K(xl, xl)

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

b
a1
...
al

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

0
y1
...
yl

⎞

⎟⎟⎟⎠ (7)

where K(xi, xj) is a symmetric positive definite function in original input
space, called kernel function:

K(xi, xj) = (ϕ(xi), ϕ(xj)). (8)

Finally, the nonlinear function takes the form:

f(x) =
l∑

i=1

aiK(x, xi) + b. (9)

This nonlinear function is the so-called SVM.
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Fig. 1. Historical daily peak temperature of corresponding month

3 Short-Term Forecasting Using LS-SVM

A new method based on LS-SVM is proposed for daily peak load forecasting
in the paper. Figure 1 depicted a simplified block diagram for daily peak fore-
casting with LS-SVM. The procedure includes three steps: data preprocessing,
training of LS-SVM, and forecasting with the trained LS-SVM.

3.1 Data Preprocessing

The structure for the daily peak load forecasting with LS-SVM is given in
Fig. 1. The number of input neurons of the NN structures is selected to be
nine. The inputs of SVM are selected includes as follows:

(1) The peak loads of the previous seven days, as Pi−1, Pi−2, Pi−3, Pi−4,
Pi−5, Pi−6 and Pi−7.

(2) The peak temperatures of the previous seven days, as Ti−1, Ti−2, Ti−3,
Ti−4, Ti−5, Ti−6 and Ti−7.

(3) The average peak loads of the previous seven days,

−
P =

1
7

7∑

k=1

Pi−k

(4) The average temperature of the previous three days,

−
T =

1
3

3∑

k=1

Ti−k

(5) The forecasted peak temperature of the forecasted day, Ti.

Thus 17 input data were obtained by data preprocessing program from
historical load database. Training and testing samples were obtained with
the preprocessing program. The output of LS-SVM is daily peak load of the
forecasted day.
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3.2 Training Networks of SVM and Forecasting

Short-term load forecasting is a predicting problem with multivariables, which
could be taken as a regression problem too. Forecasted peak load is output of
the regression function, while history load data and weather information etc.
is input X of the function. LS-SVM extracts the implicit nonlinear relation-
ship among input variables and output forecasted peak load by learning from
training data. With the trained LS-SVM network, LS-SVM output forecasted
peak load by inputting the testing data. Thus the LS-SVM realized the load
forecasting.

3.3 Choosing of Kernel Function

In this paper Gaussian RBF function is chosen to be the kernel function of
SVM, as follows:

K(xi, x) = exp(−‖x− xi‖2
2σ2

)(i = 1, 2, · · · , l), (10)

where σ is bandwidth of the kernel function.

3.4 Evaluating Indexes

Several indexes are adopted in this paper for evaluating the forecasting per-
formance of proposed method. There are shown as following. Relative error
of forecasting is:

REk =
P ′

i+k − Pi+k

Pi+ k
× 100%, k = 0, 1, 2, · · · . (11)

Maxim relative error of forecasting is:

REmax = max
∑

k

REk. (12)

Mean error of forecasting is:

MRE =
1
n

n−1∑

k=0

REi+k. (13)

Root mean square error (RMSE) is:

RMSE =

√√√√ 1
n

n∑

k=1

‖P ′
i+k−1 − Pi+k−1‖2. (14)
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4 Examples

This paper presents daily peak load forecasting method applied to the elec-
tricity consumption in the Hefei region. The training data for the proposed
approach is obtained from Hefei Electricity Distribution Corporation in Anhui
Province. Daily peak load data from 1 March 2002 to 31 June 2002 is used as
training data. Daily peak load data from 1 July 2002 to 7 July 2002 were used
as testing data. With these data, training and testing samples are obtained by
the above data preprocessing program. For evaluating the effect of proposed
method, daily peak load forecasting with LS-SVM are compared with fore-
casting results by a BP neural network. Historical daily peak load of a typical
month, and temperatures information in that month are shown as Figs. 2 and
3. From Fig. 2, it is shown that the peak load is much less in weekend than in
working day, and the peak load grows with growth of temperature.

In this paper, Gaussian RBF function is selected as the kernel function,
and bandwidth of the function is set to be 10. The regularization parameter
of SVM c is set to be 75. The number of hidden layer neural of ANN is 30.
The same training and testing samples are used for LS-SVM and BP Neural
Network. The actual daily peak load at July 1 2002 to 7 July 2002, forecasted
peak load by RBF neural networks and LS-SVM were shown as Table 1.

From Table 1, the forecasting error of LS-SVM is from 1.32% to 3.79%,
while the forecasting error of BP neural network is from 0.74% to 6.74%. The

Fig. 2. Historical daily peak load of a typical month
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Fig. 3. Historical daily peak temperature of corresponding month

Table 1. Actual daily peak load, forecasted peak load by BP neural network and
LS-SVM

July Actual daily Forecasted by REk(%) Forecasted by REk(%)
peak load(MW) BP network(MW) LS-SVM(MW)

1(Mon) 687 665.0 3.20 670.9 2.43
2(Tue) 721 705.8 2.11 730.5 1.32
3(Wed) 731 725.6 0.74 741.4 1.42
4(Thu) 746 759.3 1.79 762.4 2.15
5(Fri) 702 749.3 6.74 728.6 3.79
6(Sat) 654 679.2 3.86 670.7 2.56
7(Sun) 649 672.1 3.54 661.0 1.85

SVM produces less error than BP neural network method as a whole. Max and
mean relative error, RMSE of forecasting by two methods are list in Table 2.

From Table 2, max relative error of forecasting (REmax) by LS-SVM
method is much less than by BP neural network method. REmax by LS-
SVM method reached 3.79%, while the data is 6.74% by BP neural network
method. The mean relative error and RMSE of forecasting by LS-SVM is
much less than by BP neural network method. It was shown that LS-SVM
produces better generalization, due to the regularization factor. From above
testing results, it could be conclude that the proposed method is very ef-
fective in daily peak load forecasting. From Table 2, max relative error of
forecasting (REmax) by LS-SVM method is much less than by BP neural
network method. REmax by LS-SVM method reached 3.79%, while the data
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Table 2. Comparison of forecasting error with two methods

Forecasting Error of Forecasted by Forecasted by
peak load BP network LS-SVM

MRE 3.14% 2.22%
REmax 6.74% 3.79%
MRSE 24.86 16.29

is 6.74% by BP neural network method. The mean relative error and RMSE
of forecasting by LS-SVM is much less than by BP neural network method.
It was shown that LS-SVM produces better generalization, due to the reg-
ularization factor. From above testing results, it could be conclude that the
proposed method is very effective in daily peak load forecasting.

5 Conclusions

The electricity distribution utilities need accurate load data and load forecast-
ing results for distribution network planning and operation, power production
planning, load management, and customer service. LS-SVM has a good gen-
eralization ability and capability of tolerating noise in nonlinear modeling. In
this paper, an approach based on LS-SVM is proposed for daily peak load fore-
casting in power distribution systems. For evaluating the effect of proposed
method, daily peak load forecasting with LS-SVM are compared with fore-
casting results by BP Neural Network. The training and testing data for the
ANN and LS-SVM has been obtained from Hefei Electricity Distribution Cor-
poration in Anhui Province. To demonstrate the effectiveness of the method,
four evaluating indexes, including relative error of forecasting, max and mean
relative error, root mean square error of forecasting, are investigated in the
paper. The proposed method has a very good performance in these evaluat-
ing indexes. Comparing with BP neural network, the LS-SVM has a better
performance as whole because of its good generalization ability. It is conclude
from the testing results that the proposed method is very effective in daily
peak load forecasting. The proposed forecasting method could be generally
applicable to most distribution utilities.
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R. Mesiar and Vilém Novák

Summary. Fuzzy logic research in Dortmund since 1991 is described and evaluated.
The main stress is paid to the basic operations, fuzzy logic in the narrow sense,
inference methods (mainly IF-THEN rules), fuzzy relations, fuzzy sets with related
concepts and applications. Information about some related project activities and
cooperation with industrial subject is also included.

Key words: Fuzzy logic, Fuzzy relation, Fuzzy set, IF-THEN rules, Inference
rules, Quantifer.

1 Introduction

The history of fuzzy sets and fuzzy logic started in 1965 by the seminal Zadeh
paper [59]. Some 20 years after, fuzzy logic became popular also in Dortmund.
Especially, Reusch and Moraga studied and taught fuzzy logic and in 1991
they invited Thiele to join their research group in Dortmund. Observe that
though Thiele started a deep research in algebraic foundations of fuzzy logic in
the former GDR, his scientific activities in this field exploded after coming to
Dortmund. An important step forward not only in spreading the own results in
fuzzy logic and providing a forum for the exchange of latest ideas in the field,
but also in establishing contacts with several German and foreign researchers
in fuzzy logic and its application was the launching of Fuzzy Days conference.
Fuzzy Days in Dortmund were held for the first time in 1991 – and though the
first contacts of Dortmund researchers with the fuzzy set and fuzzy logic area
can be traced also to earlier periods, this moment 15 years ago can be taken
as a real beginning of fuzzy logic research in Dortmund. Initially, the confer-
ence was intended for scientists and practitioners as a platform for discussions
on the theory and applications of fuzzy logic. Early on, synergic links with
neural networks and evolutionary algorithms were included and the conference
evolved gradually to embrace the full spectrum of Computational Intelligence.
Therefore, starting with the fourth Fuzzy Days in 1994, this conference was
launched as a conference for Computational Intelligence – one of the world’s
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first conferences featuring fuzzy logic, neural networks and evolutionary
algorithms in one event. Following this highly successful tradition, Fuzzy Days
provide also now an international forum for reporting significant results on
the theory and applications of Computational Intelligence theory, including
the hot topics like the Internet or the robotics.

Note that Fuzzy Days were in nineties competing with EUFIT conference
held in Aachen since 1993. It is a great success of the Dortmund group that
Fuzzy Days are alive also in 2006 and after EUFIT was abolished, it remained
the only important international event in the field of fuzzy logic held in West
Germany. Moreover, since the sixth Fuzzy Days in 1999 the proceedings edited
by Reusch were published by Springer Verlag [24–26] and thus available to a
wider audience.

Another important international activity of the Dortmund group was the
seminar organized to the 25th anniversary of the Department of Computer
Science, chair I, in the fall of 1997. About 20 distinguished scientists from the
area of fuzzy logic and other branches of Computational Intelligence have not
only presented the state-of-art of discussed areas, but they have prepared their
presentations also in the written form. Collection of these works was summa-
rized and edited by Reusch and Temme in an edited volume “Computational
Intelligence in Theory and Practice” [27].

The aim of this contribution is to recall some of the most important results
of the group of researchers at the Department of Computer Science, chair
I, University of Dortmund, in the fuzzy logic and related areas. The next
section is devoted to the basic operations. Section 3 presents some important
results in the fuzzy logic. Section 4 deals with IF-THEN rules and other
inference methods while in Section 5 we discuss fuzzy relations. Section 6
contains several results from fuzzy sets and related concepts, including some
applications. Finally, some conclusions are given.

2 Basic Operations

Among several other works dealing with basic operations with fuzzy sets, we
mention [15,34,42,53] due to Thiele and Vetterlein.

In [34], Mostowski’s concept of generalized quantifiers was translated into
fuzzy logic and it was compared with the concept of fuzzy quantifiers origi-
nally introduced by Zadeh [60] and further developed and discussed by him,
Yager, Mareš and others. Based on t-norms and t-conorms, a new class of
fuzzy universal and existential quantifiers was presented. Using the quantifier
“almost-all” as a basic quantifier, new approaches for defining fuzzy quanti-
fiers like “most” or “many” in arbitrary universes were proposed. Note that
fuzzy linguistic quantifiers and their semantics were discussed in details in the
next Thiele’s work [42].

Continuation of these works in [15] is focused on the discussion of gener-
alized “ALL” and “EXISTS” quantifiers. If the universe of discourse is finite
then these quantifiers coincide with the corresponding finite extensions of the
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relevant t-norm T and t-conorm S, respectively. However, this situation is dif-
ferent when the universe is infinite, and in such case different types of general-
ized “ALL” and “EXISTS” quantifiers are introduced and discussed. Observe
that we meet a similar situation by infinite series (and even by uncountable
series) when generalizing the standard sum of reals.

It is well known that T -fuzzy equivalences are linked to pseudo-metrics
[2–4], where T is a given (continuous Archimedean) triangular norm. In [53],
Vetterlein brings an interesting reverse approach. Namely, he shows how to
relate a t-norm to a (pseudo-) metric by means of fuzzy equivalences. This
fresh result is promissing for the further research and applications in decision-
making.

3 Fuzzy Logic

Fuzzy logic in the narrow sense was developed in Dortmund mostly by Lehmke
and later by Vetterlein.

Lehmke in [12] opened the problem of a gap between the automated theo-
rem proving and logic programming in many-valued and fuzzy logics. In that
paper, he closed that gap with respect to resolution theory for fuzzy logic pre-
senting a resolution calculus for a generalization of �Lukasiewicz many-valued
propositional logic. Moreover, he sketched the development of a structure-
preserving clausal form for this logic, he defined resolution-based rules of
inference and gave some hints on how to prove the soundness and complete-
ness of these rules with respect to the semantic consequence operator. As
an important practical output of his theoretical investigations, Lehmke has
designed an automatic prover for the fuzzy logic systems. As an example of
its efficiency recall that this prover has shown the redundance of axiom BL3
(commutativity) in the axiomatic system for BL-logics proposed by Hájek [6]
(this result was independently shown by Cintula using theoretical arguments
only).

A deep research of BL-logics and BL-algebras from axiomatic point of view
is due to Vetterlein. In [51] he studied partial algebras for Lukasiewicz logics
and their extensions. Adding further connectives to Lukasiewicz logics, several
new types of fuzzy logics are investigated, paying attention especially to the
corresponding algebraic counterparts. In [50, 52], Vetterlein clarifies mutual
relation of BL-algebras and effect algebras and compares BL-algebras with
some algebras known from the theories of fuzzy logic and of quantum logic
(e.g., MV-algebras, PL-algebras, G-algebras, BCK-algebras). Moreover, prop-
erties well known from the quantum structure theory, such as the Riesz decom-
position property, compability or relative cancellation property, are studied
on BL-algebras or on dual BL-algebras. Among the latest fuzzy logic results
of Vetterlein, we mention only the discussion of the fuzzy logic L based on
rules, see [54], and the study of MTL-algebras arising from partially ordered
groups in [55].
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4 Inference Methods

One of the first topics of Dortmund’s research in fuzzy logic area was the
study and development of various inference methods. One of its roots was the
chapter [32] of Thiele dealing with the question how a cumulative inference op-
erator can be generated by default deduction rules. The proposed codiagonal
generation gave the possibility to generalize the abstract theory of monotonic
inference operators developed by Tarski, Birkhoff, Hall and Schmidt. In par-
ticular, it has allowed formulating simple conditions on the given system of
default deduction rules so that the generated inference operator was cumula-
tive.

Fix-points and fix-mundis when interpreting fuzzy IF-THEN rules and rule
bases by the standard Compositional Rule of Inference are discussed in [30].
In continuation of this paper [31], Temme and Fathi extended this research
to the t-norm based Compositional Rule of Inference. Aggregating by Max
operator, they showed that the solution for a fix-point of a single rule could
be canonically extended to fix-mundis of rule base.

Moraga and Temme discussed functional equivalence between S-neural net-
works and fuzzy models in [19]. They introduced and characterized a family of
S-functions in neural networks and allowed the interpretation of the activity
of the artificial neurons as fuzzy IF-THEN rules.

When considering a fuzzy IF-THEN rule base as a system of equations for a
functional, the crucial task is to ensure the solvability. This problem, including
the uniqueness discussion, was performed by Thiele in [45]. Several versions
of compactness inspired by the compactness of consequence operators used in
the theory of formal systems from mathematical logic played a fundamental
role in formulating solvability and uniqueness conditions.

Summarization of 10 years research of inference methods resulted in 2003
into a nice chapter [13] describing the mathematical foundations of fuzzy
inference. Lehmke et al. brought here a comprehensive overview of several
types of compositional rules of inference and processing of IF-THEN rule
bases.

From recent results in this area we recall the proposal of methods for data-
driven reshaping or designing the uncertainty transition of piecewise linear
fuzzy sets representing the linguistic terms of the fuzzy rules. This optimiza-
tion of fuzzy IF-THEN rules is presented by Moraga and Sales in [18].

New approach to extract fuzzy IF-THEN rules from data including noise
by using the information matrix technique is due to Moraga and Huang in [7].
Vetterlein with Štěpnička in [58] discuss completion of fuzzy IF-THEN rule
base using smoothing splines.

Interesting recent contribution to the relational model of fuzzy IF-THEN
rules that relates also to results described in Section 5, is the paper [23]. Two
new notions are introduced in it, namely a model of fuzzy IF-THEN rules in
a structure and a continuous model of fuzzy IF-THEN rules with respect to
given data. The second problem is connected with the problem of solvability
of the respective system of fuzzy relation equations. It is shown the solvability
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degree stands as a coefficient in the characteristic continuity inequality. If the
system is solvable then the continuity of the respective model is guaranteed.

A complex view on the theory of fuzzy IF-THEN rules that encompasses
not only traditional relational view on them but also their possible interpre-
tation as special sentences of natural language is presented in [21]. This work
has been inspired by works of Thiele who proposed to use tools of formal
fuzzy logic for characterization of fuzzy IF-THEN rules. The theory has been
formulated using the recently developed fuzzy type theory [22].

5 Fuzzy Relations

Though we have already mentioned fuzzy relations also in Section 2 in work
of Vetterlein, major contributions in this field in Dortmund were done by
Reusch, Moraga, Schmechel, and especially by Thiele.

A deep discussion of relationships of fuzzy equivalence relations and fuzzy
partitions started in contributions [29, 33, 39, 48]. It was closed in [14] by a
paper finished by Reusch and Mesiar after Thiele passed away. Recall that
the transitivity of a fuzzy relation R on a given universe X is defined by

C(R(x, y), R(y, z)) ≤ R(x, z)

for all x, y, z ∈ X, where C : [0, 1]2 → [0, 1] is some extension of boolean
conjunction.

Duality of fuzzy equivalence relations and fuzzy partitions leads to intro-
duction of duality fitting conjunctors, i.e., commutative nondecreasing map-
pings C : [0, 1]2 → [0, 1] with neutral element 1 (observe that duality fitting
conjunctors are also called symmetric semicopulas in [1]).

Among other Thiele’s results in the area of fuzzy relations we recall tol-
erance relations and fuzzy clustering discussed in [35–37, 41] and different
characterizations of Ruspini partitions [28] presented in [38,40].

Inconditionality of fuzzy relations was studied by Moraga et al. in [5].
To measure such inconditionality related to a given continuous t-norm T,
two different methods were proposed. Moreover, the conditions when both
methods result to be equivalent are given.

6 Fuzzy Sets, Related Concepts, and Applications

Since the beginning of the work of Dortmund group in fuzzy logic till now, a
great attention was paid to several specific problems of the fuzzy set theory,
but also to the philosophy of fuzzy sets and related concepts, as well as to the
applications.

As an example for the first ring recall the recent results of Vetterlein on
spline interpretation between hyperspaces of convex or fuzzy sets in [56] and a
proposal of an interesting defuzzification method using Steiner points in [57]
(with Navara).
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The important issue of fuzzy control is treated by Moraga et al. in [20]. Mo-
tivated by an experimental scenario, basic cases of fuzzy control are presented
and formally analyzed, their capabilities are discussed and their constraints
are explained. Moreover, it is shown that parameterization of, either fuzzy sets
or connectives used to express the rules governing a fuzzy controller allows
the use of new optimization methods to improve the overall performance.

Concepts related to fuzzy sets are discussed in numerous contributions of
the Dortmund group. For example, algebraic foundations of information gran-
ulation are deeply discussed by Thiele in [47]. This paper considers generation
of granulations by means of equivalence relations, tolerance relations, partial
order and linear order crisp and fuzzy relations.

In [43], Thiele investigated conditions under which a closure operator on
the power set of a given universe may be represented by an upper approxi-
mation operator within the rough set framework, and by a modal diamond
operator. Similar questions were considered in the cases of a lower approxima-
tion operator and a modal box operator, rough fuzzy sets, fuzzy rough sets,
and fuzzy diamond and box operators. In a continuation of this paper [44],
Thiele developed an axiomatic characterization of approximation operators
that are defined using the concepts of fuzzy rough sets.

Rough sets are discussed also in another work of Thiele [46], where the
explicit concept of rough set on the basis of modal logic is elaborated. The
main attention is paid to the generation of lower and upper approximations
and their processing exploiting readability relations modeled by equivalence
relations.

Concerning the applications, we give only few examples. Moraga and
Heider have reviewed in [17] the contributions to multiple-valued logic at the
light of development in the area of artificial neural networks. It is shown there
that it is possible to adapt methods of design of feedforward neural networks
to generate networks of multiple-valued neurons to realize any multiple-valued
function (compare also [16]).

In [9], Moraga et al. brought a tutorial review of spectral methods in
switching and multiple-valued logic theory and the design of digital systems
developed from 1991 until 2000.

Another application of Moraga et al. in [8] concerns calculation versus sub-
jective assessment with respect to fuzzy probability. Recall that for an infinite
population it is impossible to get precisely its probability distribution from the
sample. Particularly, if the size of the sample is small then estimated values
of the probabilities need not be so precise and so, they can be represented by
some fuzzy numbers. In that case, it is possible to use the interior–outer-set
model to calculate a fuzzy probability distribution, or invite some experts to
review the sample and to subjective by assess. In this paper, authors, with
simulation experiments and inquiring experts, have proved that the results
from the calculation and the subjective assessment are very near in terms of
the fuzzy expected value and the standard deviation. Thus they showed that
the interior–outer-set model can replace experts to give fuzzy probabilities.
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Identification of some optimal fuzzy model by means of search technique
based on evolationary algorithms was considered by Moraga and Vergara
in [49]. The authors considered fuzzy multiple input single output (MISO)
models to identification problems and parameter estimation methods, and
they have expanded the theoretical results to MIMO (multiple output) fuzzy
models.

Medical applications were presented by Kiseliova, Moraga and Wagner
in [10,11]. In [10], various ways of incorporation of time in an inference mech-
anism within the formalism of fuzzy logic was introduced. In [11], a rather
expressive fuzzy temporal logic for linear time is introduced. This logic is a
multivalued generalization (in �Lukasiewicz style) of a two-valued linear-time
temporal logic. For example, the “until” quantifier is exploited. Furthermore,
this logic is obtained by introducing a generalized time quantifier applied to
fuzzy time sets. In the introduced fuzzy temporal logic, generalized compu-
tational rules of inference, suitable for approximate reasoning in a temporal
setting, are presented as valid formulas. Moreover, the presented approach is
illustrated by some medical examples.

7 Concluding Remarks

Though our description of results of the Dortmund researchers in the fuzzy
logic area is not completely exhaustive, it sufficiently illustrates the richness,
depth and importance of 15 years of fuzzy logic research in Dortmund. Not
only these results have formed Dortmund to become a real center of fuzzy logic
based foundations of Intelligent Computing. Up to Fuzzy Days Conferences
and the 25th Anniversary seminar, “Dortmunders” have succeeded to create
a rich international research visiting program, inviting several distinguished
scientists to collaborate with them and their students. One of its outputs is
also a recent special issue of Journal of MultiValued Logic & Soft Computing
dedicated to Thiele with Gottwald and Moraga as the guest editors.

Scientific activities of the Dortmund researchers in the fuzzy logic area were
realized in the framework of several projects and applied in cooperation with
some industry units. We mention only some of these application activities.
They can be roughly splitted into the following areas:

1. Expert systems using fuzzy logic rules (in cooperation with the mechanical
engineering departments of the Universities of Dortmund and Bochum, as
well as with the chemical engineering department of the University of
Dortmund)

– Applications in the design of composite materials
– Special composites made of metal and ceramics

2. Optimization of fuzzy expert systems
– Modeling of 1D and 2D functions using fuzzy controllers
– Improvement of the rule set
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– Evolutionary concepts for the improvement of the performance
3. Fuzzy Logic in industrial image processing (in cooperation with industry

partners Mannesmann, Demag)
– Development of operators for image processing tasks
– Evolutionary optimization of digital filter kernels
– Development of a new way of describing colors: Fuzzy color processing
– Estimation of 3D features using stereo camera systems

4. Evolution strategies for the optimization of fuzzy systems (in cooperation
with Mannesmann, Degussa)

– Optimization of the fuzzy rules
– Optimization of membership functions
– Applications in industry

5. Fuzzy Logic and robot soccer
– Embedded in the FIRA robot systems
– Development of robots
– Fuzzy logic for the control of the robots and the estimation of the

current situation on the playfield
6. Fuzzy Logic and medicine (in cooperation with the University of Essen

and University of Witten/Herdecke and University of Bochum)
– Fuzzy logic based descriptions of human tissues
– Fuzzy image segmentation
– Fuzzy based diagnosis

Concerning the research projects, recall (using the original titles in German
whenever was the case):

1. Special research projects
– SFB 531 “Design und Management komplexer technischer Prozesse

und Systeme mit Methoden der Computational Intelligence” founded
by B. Reusch

– SFB 531 “Design und Management komplexer technischer Prozesse
und Systeme mit Methoden der Computational Intelligence”, Sub-
project A1: “Mathematische Grundlagenuntersuchungen zur Theorie
der Fuzzy-IF-THEN-Regelbasen”

– SFB 531 “Design und Management komplexer technischer Prozesse
und Systeme mit Methoden der Computational Intelligence”, Sub-
project C1: “Unscharfe Modellierung von grosstechnischen Anlagen
der Chemietechnik zur Verbesserung der Zuverlässigkeit”

– SFB 559 “Modellierung groer Netze in der Logistik”, Subproject M12
“Multikriterielle Entscheidungsfindung”

2. Projects funded by the EC
– “GDOES Expert System for at-the-line-control of Coated Steel Prod-

ucts”, Cooperation between Lehrstuhl I, Fachbereich Informatik, Uni-
versität, Dortmund, Thyssen Krupp Stahl AG, Duisburg, Voest-Alpine
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Stahl Linz GmbH, Linz, Centre de Recherches Metallurgiques (CMR)
Liège, Institutet för Metallforskning, Stockholm

– “RapCoat-Rapid Prototyping for Coatings” Cooperation between
Lehrstuhl I, Fachbereich Informatik, Universität Dortmund, Institut
für Spektrochemie und angewandte Spektroskopie, Dortmund, Voest-
Alpine Stahl Linz GmbH, Linz, Centre de Recherches Metallurgiques
(CMR), Liège, Institutet för Metallforskning, Stockholm

Concerning the cooperation with industry partners, it was realized with
the next partners:

1. Mannesmann Dematic Engineering GmbH, “Analysis of welding points
using fuzzy logic and fuzzy color processing”

2. ThyssenKrupp Stahl AG, “Quality analysis of coated steel sheets using
fuzzy image processing”

3. BMW AG, “Forecasting of car faults for improved reliability, application
of fuzzy based time series predicition, modeling of expert knowledge using
fuzzy logic”

4. Degussa AG, Oxeno GmbH, “Prediction of pump faults using signal
processing and fuzzy classification”
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Intuitionistic Fuzzy Graphs

R. Parvathi and M.G. Karunambigai

Summary. A new definition for intuitionistic fuzzy graph is given. Some properties
of intuitionistic fuzzy graphs are considered and the authors introduced the notions
of various concepts. These concepts are analyzed through suitable illustrations.

Key words: Intuitionistic fuzzy graph, Semi-µ strong path, Semi-γ strong
path, Bridge, Composition.

1 Introduction

Fuzzy set [4] has emerged as a potential area of interdisciplinary research
and fuzzy graph theory is of recent interest. The concept of a fuzzy relation
was defined by Zadeh [9] and it has found applications in the analysis of
cluster patterns [3]. Rosenfeld [6] considered fuzzy relations on fuzzy sets
and developed the structure of fuzzy graphs, obtaining analogs of several
graph theoretical concepts. Then Bhattacharya [2] introduced some remarks
on fuzzy graphs. Later, complement of fuzzy graphs and some operations on
fuzzy graphs are introduced by Mordeson and Peng [5]. Further, Sunitha and
Vijayakumar [7] defined the complement of a fuzzy graph in a different way
and studied some operations on it. Yeh and Banh [8] have also introduced
various connectedness concepts in fuzzy graphs. After the pioneering work
of Rosenfeld [6], Yeh and Banh [8] in 1975, when some basic fuzzy graph
theoretic concepts and applications have been indicated.

Atanassov [1] introduced the concept of intuitionistic fuzzy (IF) relations
and intuitionistic fuzzy graphs (IFGs). Research on the theory of intuitionistic
fuzzy sets (IFSs) has been witnessing an exponential growth in Mathematics
and its applications. This ranges from traditional Mathematics to Information
Sciences.

This leads to consider IFGs and their applications. In this paper, we in-
troduced IFG and analyzed its components. It is further proposed by the
authors that these concepts can be extended to other types of IFSs and ana-
lyzing various components.
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2 Preliminaries

Definition 1. An IFG is of the form G = 〈V,E〉 where

(i) V = {v1, v2, ..., vn} such that µ1 : V −→ [0, 1] and γ1 : V −→ [0, 1] denote
the degree of membership and nonmembership of the element vi ∈ V,
respectively, and

0 ≤ µ1(vi) + γ1(vi) ≤ 1, . . . . . . (1)

for every vi ∈ V, (i = 1, 2, . . . n),
(ii) E ⊆ V × V where µ2 : V × V −→ [0, 1] and γ2 : V × V −→ [0, 1] are such

that

µ2(vi, vj) ≤ min[µ1(vi), µ1(vj)], . . . . . . (2)
γ2(vi, vj) ≤ max[γ1(vi), γ1(vj)] . . . . . . (3)

and 0 ≤ µ2(vi, vj) + γ2(vi, vj) ≤ 1 . . . . . . (4)

for every (vi, vj) ∈ E, (i, j = 1, 2, . . . n).

Notations

The triple 〈vi, µ1i, γ1i〉 denotes the degree of membership and nonmembership
of the vertex vi. The triple 〈eij , µ2ij , γ2ij〉 denotes the degree of membership
and nonmembership of the edge relation eij = (vi, vj) on V.

Note 1.

(i) When µ2ij = γ2ij = 0, for some i and j, then there is no edge between vi
and vj .

(ii) When either one of the following is true, then there is an edge relation
between vi and vj .
– µ2ij > 0 or γ2ij > 0.
– µ2ij = 0 or γ2ij > 0.
– µ2ij > 0 or γ2ij = 0.

(iii) If one of the inequalities (1) or (2) or (3) or (4) is not satisfied, then G is
not an IFG.

Example 1. Consider G =〈V,E〉 where V ={v1, v2, v3, v4, v5}. (refer Fig. 1)

Example 2. Consider G =〈V,E〉 where V = {v1, v2, v3, v4, v5, v6}. (refer Fig. 2)

Definition 2. An IFG H = 〈V′,E′〉 is said to be an IF subgraph (IFSG) of
the IFG, G = 〈V,E〉 if V′ ⊆ V and E′ ⊆ E.

In other words, if µ′1i ≤ µ1i ; γ′1i ≥ γ1i and µ2ij
′ ≤ µ2ij ; γ2ij

′ ≥ γ2ij for
every i, j = 1, 2, . . . ,n.
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(0.9, 0.0) v4 

(0.7, 0.3) v5 

v3 (0.0, 1.0) 

v2 (0.7, 0.2) 

v1 (0.3, 0.6) 

Fig. 1. Intuitionistic fuzzy graph

(1.0, 0.0) v5 

(0.3, 0.6) v6 

v4 (0.8, 0.2)

v2(0.0,0.9) 

v1 (0.6, 0.2) 

v3 (0.4, 0.6)

Fig. 2. G is not an intuitionistic fuzzy graph

Definition 3. An IFG , G = 〈V,E〉 is said to be a semi-µ strong IFG if

µ2ij = min (µ1i, µ1j), for every (vi, vj) ∈ E.

Definition 4. An IFG , G = 〈V,E〉 is said to be a semi-γ strong IFG if

γ2ij = max (γ1i, γ1j), for every (vi, vj) ∈ E.

Definition 5. An IFG, G = 〈V,E〉 is said to be a strong IFG if

µ2ij = min (µ1i, µ1j) and γ2ij = max (γ1i, γ1j) for all (vi, vj) ∈ E.

Example 3. Let V = {v1, v2, v3, v4, v5}. (refer Fig. 3)
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(0.8, 0.2) v4

0.7),3.0(1v

(0.1, 0.7) v5 

v3 (0.7, 0.1) 

v2 (0.5, 0.4) 

Fig. 3. Semi-µ strong IFG

(0.7, 0.1) v3 v2 (0.3, 0.6) 

v1 (0.5, 0.5) 

Fig. 4. Semi-γ strong IFG

Example 4. Let V = {v1, v2, v3}. (refer Fig. 4)

Definition 6. A path P in an IFG is a sequence of distinct vertices v1,
v2 . . . vn such that either one of the following conditions is satisfied:

(a) µ2ij > 0 and γ2ij = 0 for some i and j,
(b) µ2ij = 0 and γ2ij > 0 for some i and j,
(c) µ2ij > 0 and γ2ij > 0 for some i and j (i, j = 1, 2, . . . n).

Example 5. Let V = {v1, v2, v3, v4, v5}. (refer Fig. 5)
Here v1v4v3v2 is a path.

Definition 7. The length of a path P = v1v2 . . . vn+1 (n > 0) is n.

Definition 8. A path P = v1v2 . . . vn+1 is called a cycle if v1 = vn+1, and
n ≥ 3.

Definition 9. Two vertices that are joined by a path are said to be connected.

Definition 10. The µ-strength of a path P = v1v2 . . . vn is defined as

min
i,j
{µ2ij} . . . . . . (5)
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(0.7, 0.3) v5

(0.5, 0.2) v4
v3 (0.7, 0.0) 

v2 (0.3, 0.0) 

v1 (0.5, 0.0) 

Fig. 5. A path in an IFG

and is denoted by Sµ.
The γ-strength of a path P = v1v2 . . . vn is defined as

max
i,j
{γ2ij} . . . . . . (6)

and is denoted as Sγ.

Note 2.

If an edge possesses both the values (5) and (6), then it is the strength of the
path P and is denoted by SP.

Definition 11. For any t, 0≤ t ≤ 1, the set of triples 〈Vt, µ1t, γ1t〉, where

µ1t = {vi ∈ V : µ1i ≥ t} . . . . . . (7)
or γ1t = {vi ∈ V : γ1i ≤ t} . . . . . . (8)

for some i = 1, 2, . . . n, is a subset of V
and the set of triples 〈Et, µ2t, γ2t〉, where

µ2t = {(vi, vj) ∈ V ×V : µ2ij ≥ t} . . . . . . (9)
or γ2t = {(vi, vj) ∈ V ×V : γ2ij ≤ t} . . . . . . (10)

for some i, j = 1, 2, . . . n, is a subset of E.

Example 6. Let V = {v1, v2, v3, v4, v5}. (refer Fig. 6)
Here, V0.6 = {v1, v2, v4, v5},
E0.6 = {v1v2, v2v5, v4v5, v5v1}.

3 Properties

Theorem 1. If 0 ≤ x ≤ y ≤ 1, then (Vx,Ex) is a subgraph of (Vy,Ey).

Proof. Let G = 〈Vy,Ey〉 and H = 〈Vx,Ex〉.
To prove H is a subgraph of G, it is enough to prove that Vx ⊆ Vy and

Ex ⊆ Ey.
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(0.9, 0.1) v5 
v4 (0.3, 0.6) 

v3 (0.2, 0.8) 

v2 (1.0, 0.0) 
(0.7, 0.2) v1 

Fig. 6. V0.6 and E0.6

Let vi ∈ Vx. Therefore, γ1i ≤ x

≤ y, since x ≤ y.
⇒ vi ∈ Vy. Hence Vx ⊆ Vy.

Let (vi, vj) ∈ Ex. Therefore, γ2ij ≤ x

≤ y, since x ≤ y.

Thus, we have (vi, vj) ∈ Ey. Hence, Ex ⊆ Ey.
Hence, ( Vx,Ex) is a subgraph of ( Vy,Ey ). �

Theorem 2. If H = 〈V′,E′〉 is an IF subgraph of G = 〈V,E〉, then for any
0 ≤ x ≤ 1, 〈V ′

x,E
′
x〉 is an IF subgraph of 〈Vx,Ex〉.

Proof. Given V′ ⊆ V and E′ ⊆ E .
To prove V′

x ⊆ Vx ; E′
x ⊆ Ex, it is enough to prove (7)–(10) for µ or γ.

Let vi ∈ V′
x

⇒ µ′1i ≥ x
⇒ µ1i ≥ x, since µ′1 ≤ µ1

⇒ vi ∈ Vx

⇒ V′
x ⊆ Vx

Let (vi, vj) ∈ E′
x

Therefore, µ′2ij ≥ x

⇒ µ2ij ≥ x, since µ′2 ≤ µ2

⇒ (vi, vj) ∈ Ex

Hence, E′
x ⊆ Ex.

Therefore, 〈V ′
x,E

′
x〉 is an IF subgraph of 〈Vx,Ex〉. �
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Definition 12. Let 〈eij , µ2ij , γ2ij〉 and 〈ejk, µ2jk, γ2jk〉 be two edge relations
on V. The composition of these two edge relations is an IFS, denoted by
eij • ejk, is of the form 〈eik, µ2ik, γ2ik〉 where

µ2ik = max {min
j

[µ2ij , µ2jk]} and

γ2ik = min {max
j

[γ2ij , γ2jk]}, for all vi, vk ∈ V.

Definition 13. Let 〈eij , µ2ij , γ2ij〉 be an edge relation on V. Then it is said
to be

(i) reflexive if 〈eii,µ2ii,γ2ii〉 = 〈vi, µ1i, γ1i〉 for all vi ∈ V.
(ii) symmetric if 〈eij , µ2ij , γ2ij〉 = 〈eji, µ2ji, γ2ji〉, for all vi, vj ∈ V.
(iii) transitive if the edge relations (vi, vj) and (vj , vk) imply the edge relation

(vi, vk).

Definition 14. The powers of edge relation eij are defined as

e1
ij = eij = 〈eij , µ2ij , γ2ij〉

e2
ij = eij • eij =

〈
eij ,µ

2
2ij , γ

2
2ij

〉

e3
ij = eij • eij • eij =

〈
eij , µ

3
2ij , γ

3
2ij

〉
and so on.

Also,
e∞ij =

〈
eij , µ

∞
2ij , γ

∞
2ij

〉

where µ∞2ij = max
k=1,2,...n

{µk
2ij} and γ∞2ij = min

k=1,2,...n
{γk

2ij} are the µ-strength and

γ-strength of connectedness between any two vertices vi and vj.

Also,

e0ij =
{

0, if vi �= vj ,
〈vi, µ1i, γ1i〉 , if vi = vj .

Theorem 3. If H = 〈V ′,E′〉 is an IF subgraph of G = 〈V,E〉, then for some
(vi, vj) ∈ E, µ

′∞
2ij ≤ µ∞2ij and γ

′∞
2ij ≥ γ∞2ij.

Proof. By given, V′ ⊆ V and E′ ⊆ E.

⇒ µ′1i ≤ µ1i; γ′1i ≥ γ1i, for every vi ∈ V . . . . . . (11)
and µ′2ij ≤ µ2ij ; . . . . . . (12)

γ′2ij ≥ γ2ij . . . . . . (13)

for every vi, vj ∈ V.
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Consider a path v1v2 . . . vn of H.
Here,

µ
′∞
2ij = min

k=1,2,...n

{
(µ′2ij)

k
}

. . . . . . (14)

γ
′∞
2ij = max

k=1,2,...n

{
(γ′2ij)

k
}

. . . . . . (15)

and

µ∞2ij = min
k=1,2,...n

{
(µ2ij)k

}
. . . . . . (16)

γ∞2ij = max
k=1,2,...n

{
(γ2ij)k

}
. . . . . . (17)

Therefore, we have

µ
′∞
2ij = min

k=1,2,...n

{
(µ′2ij)

k
}

≤ min
k=1,2,...n

{
(µ2ij)k

}
, by (12)

= µ∞2ij .

Also,

γ
′∞
2ij = max

k=1,2,...n

{
(γ′2ij)

k
}

≥ max
k=1,2,...n

{
(γ2ij)k

}
,by (13)

= γ∞2ij .

Hence proved. �

Definition 15. Let G = 〈V,E〉 be an IFG. Let vi, vj be any two distinct
vertices and H = 〈V′,E′〉 be an IF subgraph of G obtained by deleting the edge
(vi, vj).

That is, H = 〈V′,E′〉, where

µ′2ij = 0 and γ′2ij = 0
and µ′2 = µ2

γ′2 = γ2 for all other edges.

Now, (vi, vj) is said to be a bridge in G, if either µ
′∞
2xy < µ

∞
2xy and γ

′∞
2xy ≥ γ∞2xy

or µ
′∞
2xy ≤ µ∞2xy and γ

′∞
2xy > γ

∞
2xy, for some vx, vy ∈ V.

In other words, deleting an edge (vi, vj) reduces the strength of connect-
edness between some pair of vertices (or) (vi, vj) is a bridge if, there exists
vx, vy such that, (vi, vj) is an edge of every strongest path from vx to vy.
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v1 (0.3, 0.7) 

(0.6, 0.4) v4
v2 (0.7, 0.0) 

v3 (1.0, 0.0) 

Fig. 7. (v1, v4) is a bridge

Example 7. Let V = {v1, v2, v3, v4}.

In Fig. 7, the strength of P = v1v4 in G is (0.3, 0.2). Also, the strength of
P′ = v1v2v4 is (0.2, 0.3). Here, (v1, v4) is a bridge, because if we delete (v1,v4)
from G, the strength of the connectedness between v1 and v4 in G− (v1, v4)
is decreased.

Theorem 4. Let G = 〈V,E〉be an IFG. For any two vertices vi, vj in G, the
following conditions are equivalent:

(i) (vi,vj) is a bridge.
(ii) µ

′∞

2ij < µ2ij and γ
′∞
2ij > γ2ij.

(iii) (vi ,vj) is not an edge of any cycle.

Proof. (ii) ⇒ (i).

Assume µ
′∞

2ij < µ2ij and γ
′∞
2ij > γ2ij .

To prove (vi ,vj) is a bridge. If (vi , vj) is not a bridge, then

µ
′∞

2ij = µ∞2ij ≥ µ2ij , and γ
′∞
2ij = γ∞2ij ≤ γ2ij

which implies µ
′∞

2ij ≥ µ2ij and γ
′∞
2ij ≤ γ2ij , a contradiction.

Hence, (vi, vj) is a bridge.
(i) ⇒ (iii)
Assume (vi, vj) is a bridge. To prove (vi, vj) is not an edge of any cycle.
If (vi, vj) is an edge of a cycle, then any path involving the edge (vi, vj)

can be converted into a path not involving (vi, vj) by using the rest of the
cycle as a path from vi to vj . This implies (vi, vj) cannot be a bridge which
is a contradiction to our assumption. Therefore, (vi, vj) is not an edge of any
cycle.

(iii) ⇒ (ii)
Assume (vi, vj) is not an edge of any cycle.
To prove µ

′∞

2ij < µ2ij and γ
′∞
2ij > γ2ij .
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Assume that µ
′∞
2ij ≥ µ2ij and γ

′∞
2ij ≤ γ2ij . Then, there is a path from vi to

vj not involving (vi, vj) that has strength greater than or equal to µ2ij and
less than or equal to γ2ij and this path together with (vi, vj) forms a cycle
which is a contradiction. Hence, µ

′∞

2ij < µ2ij and γ
′∞
2ij > γ2ij . Therefore, the

statements (i), (ii) and (iii) are equivalent. �

Theorem 5. Let G = 〈V,E〉 be an IFG with the set of vertices V. Then

(i) If µ2ij and γ2ij are constants for all vi , vj ∈ V, then G has no bridge.
(ii) If µ2ij and γ2ij are not constants for all (vi, vj) ∈ E, then G has at least

one bridge.

Proof. (i) Let µ2ij and γ2ij are constants for all vi , vj ∈ V.
Let µ2ij = c1 and γ2ij = c2 for all vi , vj ∈ V, where 0≤ c1 ≤ 1 and

0 ≤ c2 ≤ 1.
In this IFG, since each edge has the same weight (the degree of membership

and nonmembership values of an edge), deleting any edge does not reduce
the strength of connectedness between any pair of vertices. Hence, G has no
bridge.

(ii) Assume that µ2ij and γ2ij are not constants for all (vi, vj) ∈ E.

Choose an edge (vx, vy) ∈ E such that

µ2xy = max{µ2ij}
γ2xy = min{γ2ij}, for all vi, vj ∈ V.
Therefore, µ2xy > 0 and γ2xy < 1.

There exists at least one edge (vs, vt) distinct from (vx, vy) such that

µ2st < µ2xy and γ2st > γ2xy.

We claim that (vx, vy) is a bridge of G. For, if we delete the edge (vx, vy),
then the strength of connectedness between vx and vy in the IF subgraph thus
obtained is decreased. In other words, µ′∞2xy < µ2xy and γ′∞2xy > γ2xy.

Therefore, by Theorem 4, (vx, vy) is a bridge of G. �

Corollary 1. In an IFG, G = 〈V,E〉 for which µ2 : V × V −→ [0, 1] and
γ2 : V×V −→ [0, 1] are not constant mapping, an edge (vi, vj) for which µ2ij

is maximum and γ2ij is minimum . Therefore it is a bridge of G.

Definition 16. A vertex vi is said to be a cut-vertex in G if deleting a vertex
vi reduces the strength of connectedness between some pair of vertices or vi is
a cut vertex if and only if there exists vx, vy such that vi is a vertex of every
strongest path from vx to vy.

In other words, µ′∞2xy ≤ µ2xy and γ′∞2xy < γ2xy (or) µ′∞2xy < µ2xy and γ′∞2xy ≤
γ2xy for some vx, vy ∈ V.

Example 8. Let V = {v1, v2, v3, v4, v5}.
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(0.7, 0.2) v5
v4 (0.2, 0.8) 

v3 (0.8, 0.0) 

v2 (0.5, 0.4) 
(0.2, 0.8) v1

Fig. 8. v1 is a cut-vertex

4 Conclusion

In this paper, the intuitionistic fuzzy extension of some known concepts of
fuzzy graphs has been investigated. Much more work could be done to inves-
tigate the structure of IFG. It would be useful, since IFGs have applications
in pattern clustering and network analysis which in turn would have applica-
tions in telecommunications. In this work, we have restricted our discussion
to the first type IFS. It is also proposed to extend these concepts on the other
extensions of IFSs.
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On Some Intuitionistic Properties of
Intuitionistic Fuzzy Implications and Negations

Trifon A. Trifonov and Krassimir T. Atanassov

Summary. In a series of papers 23 different intuitionistic fuzzy implications were
constructed. They generate five intuitionistic fuzzy negations. In our current work we
summarize the properties of these operations by checking a list of axioms, including
those of intuitionistic logic.

1 Introduction: on Some Previous Results

A series of 23 different intuitionistic fuzzy implications were constructed in
[3–7, 11] and some of their properties were noted. Here we shall study the
properties of these implications systematically and extensively.

In intuitionistic fuzzy logic if x is a variable then its truth value is repre-
sented by the ordered couple

V (x) = 〈a, b〉, (1)

so that a, b, a+ b ∈ [0, 1], where a and b are degrees of validity and of nonva-
lidity of x. For simplicity of presentation we shall use the following three vari-
ables x, y and z with their corresponding truth values: V (x) = 〈a, b〉, V (y) =
〈c, d〉, V (z) = 〈e, f〉 (a, b, c, d, e, f, a+ b, c+d, e+f ∈ [0, 1]). We shall also con-
sider connectives of propositional logic over variables instead of connectives
over well-formed propositional formulas. It is clear that the former approach
can be easily extended to the latter.

For the needs of the discussion below we shall define the notion of Intu-
itionistic Fuzzy Tautology (IFT, see [1, 2]) by:

x is an IFT if and only if a ≥ b, (2)

while x will be a (classical) tautology iff a = 1 and b = 0.
Obviously, the notion of IFT is weaker than the notion of tautology. Sub-

sequently, any formula, which is a tautology is also an IFT.
Let us also consider the standard partial ordering of IF truth values:

V (x) ≤ V (y) if a ≤ c and b ≥ d. (3)
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The operations “conjunction” (&) and “disjunction” (∨) are defined (see
[1, 2] by:

V (x& y) = 〈min(a, c),max(b, d)〉, V (x ∨ y) = 〈max(a, c),min(b, d)〉. (4)

In some definitions we shall use functions sg and sg:

sg(x) =

⎧
⎨

⎩

1 if x > 0

0 if x ≤ 0
, sg(x) =

⎧
⎨

⎩

0 if x > 0

1 if x ≤ 0
(5)

We will consider 23 possible definitions of the “implication” operation,
listed in Table 1.

Each implication operation I(x, y) can define a negation operation N(x)
by the following equality:

N(x) = I(x, F ), where V (F ) = 〈0, 1〉. (6)

The negations, generated by the implication operations are given in
Table 1.

2 Main Results

2.1 Klir and Yuan’s Axioms

In a book by Georg Klir and Bo Yuan [8] nine axioms for fuzzy implications
are introduced. They are the following:
Axiom 1 (∀x, y)(x ≤ y → (∀z)(I(x, z) ≥ I(y, z)).
Axiom 2 (∀x, y)(x ≤ y → (∀z)(I(z, x) ≤ I(z, y)).
Axiom 3 (∀y)(I(0, y) = 1).
Axiom 4 (∀y)(I(1, y) = y).
Axiom 5 (∀x)(I(x, x) = 1).
Axiom 6 (∀x, y, z)(I(x, I(y, z)) = I(y, I(x, z))).
Axiom 7 (∀x, y)(I(x, y) = 1 iff x ≤ y).
Axiom 8 (∀x, y)(I(x, y) = I(N(y), N(x))), where N is a negation.
Axiom 9 I is a continuous function.

Table 3 summarizes which of Klir and Yuan’s axioms are satisfied by the 23
implications. The condition “= 1” should be interpreted as “is a tautology.”
If the axiom is valid using an interpretation “is an IFT” instead, the number
of the axiom is marked by an asterisk (∗). We should note that the validity of
Axiom 7 does not imply the validity of Axiom 7*. We should also note that
Axiom 8 is checked using the classical intuitionistic fuzzy negation (¬1); if it
is valid using the respective implication-generated negation as N(x), then the
axiom is listed as 8N .

The validity of each of these assertions can be checked directly. In some
cases this is a long and tedious procedure, which can be automatically per-
formed by a proof-checking program as the one suggested in [10].
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Table 1. List of intuitionistic fuzzy implications

Notation Name Form of implication

→1 Zadeh 〈max(b, min(a, c)), min(a, d))
→2 Gaines-Rescher 〈1 − sg(a − c), d.sg(a − c)〉
→3 Gödel 〈1 − (1 − c).sg(a − c), d.sg(a − c)〉
→4 Kleene-Dienes 〈max(b, c), min(a, d)〉
→5 Lukasiewicz 〈min(1, b + c), max(0, a + d − 1)〉
→6 Reichenbach 〈b + ac, ad〉
→7 Willmott 〈min(max(b, c), max(a, b), max(c, d)),

max(min(a, d), min(a, b), min(c, d))〉
→8 Wu 〈1 − (1 − min(b, c)).sg(a − c),

max(a, d).sg(a − c).sg(d − b)〉
→9 Klir and Yuan 1 〈b + a2c, ab + a2d〉
→10 Klir and Yuan 2 〈c.sg(1 − a) + sg(1 − a),

(sg(1 − c) + b.sg(1 − c))
d.sg(1 − a) + a.sg(1 − a).sg(1 − c)〉

→11 Atanassov 1 〈1 − (1 − c).sg(a − c), d.sg(a − c).sg(d − b)〉
→12 Atanassov 2 〈max(b, c), 1 − max(b, c)〉
→13 Atanassov and Kolev 〈b + c − b.c, a.d〉
→14 Atanassov and Trifonov 〈1 − (1 − c).sg(a − c) − d.sg(a − c).sg(d − b),

d.sg(d − b)〉
→15 Atanassov 3 〈1 − (1 − min(b, c)).sg(sg(a − c) + sg(d − b))

−min(b, c).sg(a − c).sg(d − b),
1 − (1 − max(a, d)).sg(sg(a − c) + sg(d − b))
−max(a, d).sg(a − c).sg(d − b)〉

→16 〈max(1 − sg(a), c), min(sg(a), d)〉
→17 〈max(b, c), min(a.b + a2, d)〉
→18 〈max(b, c), min(1 − b, d)〉
→19 〈max(1 − sg(sg(a) + sg(1 − b)), c),

min(sg(1 − b), d)〉
→20 〈max(1 − sg(a), 1 − sg(1 − sg(c))), min(sg(a),

sg(1 − sg(c)))〉
→21 〈max(b, c(c + d)), min(a(a + b), d(c2 + d + cd))〉
→22 〈max(b, 1 − d), min(1 − b, d)〉
→23 〈max(1 − sg(sg(a) + sg(1 − b)),

1 − sg(sg(1 − sg(sg(c) + sg(1 − d)))
+sg(1 − sg(1 − d)))),
min(sg(1 − b), sg(1 − sg(1 − d)))〉

2.2 Intuitionistic Logic Axioms

The next and more important question is which of the introduced implications
satisfy all the axioms of Propositional Intuitionistic Logic (IL) (see for example
[9]).

The validity of the IL axioms was already checked for some implications
in [6]. Here we shall give an full list of valid axioms for each one of the
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Table 2. List of intuitionistic fuzzy negations

Name Form of negation

→1 ¬1 Zadeh 〈b, a〉
→2 ¬2 Gaines-Rescher 〈1 − sg(a), sg(a)〉
→3 ¬2 Gödel 〈1 − sg(a), sg(a)〉
→4 ¬1 Kleene-Dienes 〈b, a〉
→5 ¬1 Lukasiewicz 〈b, a〉
→6 ¬1 Reichenbach 〈b, a〉
→7 ¬1 Willmott 〈b, a〉
→8 ¬2 Wu 〈1 − sg(a), sg(a).sg(1 − b)〉
→9 ¬3 Klir and Yuan 1 〈b, a.b + a2〉
→10 ¬1 Klir and Yuan 2 〈sg(1 − a).b, sg(1 − a) + a.sg(1 − a)〉
→11 ¬2 Atanassov 1 〈1 − sg(a), sg(a).sg(1 − b)〉
→12 ¬4 Atanassov 2 〈b, 1 − b〉
→13 ¬1 Atanassov and Kolev 〈b, a〉
→14 ¬5 Atanassov and Trifonov 〈1 − sg(a) − sg(a).sg(1 − b), sg(1 − b)〉
→15 ¬5 Atanassov 3 〈1 − sg(sg(a) + sg(1 − b)), 1 − sg(a).sg(1 − b)〉
→16 ¬2 〈1 − sg(a), sg(a)〉
→17 ¬3 〈b, a.b + a2〉
→18 ¬4 〈b, 1 − b〉
→19 ¬5 〈1 − sg(sg(a) + sg(1 − b)), sg(1 − b)〉
→20 ¬2 〈1 − sg(a), sg(a)〉
→21 ¬3 〈b, a.b + a2〉
→22 ¬4 〈b, 1 − b〉
→23 ¬5 〈1 − sg(sg(a) + sg(1 − b)), sg(1 − b)〉

23 implications. We will again verify the validity axioms in two variants –
tautological validity (Table 4) and IFT validity (Table 5).

We use the following list of axioms for propositional intuitionistic logic:
(a) A→ A,
(b) A→ (B → A),
(c) A→ (B → (A&B)),
(d) (A→ (B → C)) → (B → (A→ C)),
(e) (A→ (B → C)) → ((A→ B)→ (A→ C)),
(f) A→ ¬¬A,
(g) ¬(A&¬A),
(h) (¬A ∨B)→ (A→ B),
(i) ¬(A ∨B)→ (¬A&¬B),
(j) (¬A&¬B) → ¬(A ∨B),
(k) (¬A ∨ ¬B)→ ¬(A&B),
(l) (A→ B)→ (¬B → ¬A),
(m) (A→ ¬B)→ (B → ¬A),
(n) ¬¬¬A→ ¬A,
(o) ¬A→ ¬¬¬A,
(p) ¬¬(A→ B)→ (A→ ¬¬B),
(q) (C → A) → ((C → (A→ B))→ (C → B)).
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Table 3. List of axioms of Klir and Yuan that are satisfied by intuitionistic fuzzy
implications

Notation

→1 2,3,4,5∗,9
→2 1,2,3,5
→3 1,2,3,4,5,6
→4 1,2,3,4,5∗,6,8,9
→5 1,2,3,4,5∗,6,8,9
→6 2,3,4,5∗,9
→7 3∗,4,5∗,8,9
→8 1,2,3,5
→9 2,3,4,5∗

→10 2,3,4
→11 1,2,3,4,5,6
→12 1,2,3,6,8,9
→13 1,2,3,4,5∗,6,8,9
→14 1,2,3,4,5,6,7
→15 1,2,3,5,7,7∗,8
→16 1,2,3,4,6
→17 2,3,4,5∗,6,9
→18 1,2,3,4,5∗,6,9
→19 1,2,3,4,6
→20 1,2,3,5,6,8N

→21 ?
→22 1,2,3,5∗,6,8N ,9
→23 1,2,3,5,6,8N

The most important of the results collected in Table 4 can be formulated
as the following:

Theorem 1. Implications →3, →11, →14, →20, →23 satisfy all intuitionistic
logic axioms as tautologies.

The validity of axioms for cells marked by a question mark (?) in Table 5
and in the tables below is not yet clear and is an open problem.

The most important of the results collected in Table 5 can be formulated
as following

Theorem 2. Implications→1,→3,→4,→5,→11,→14,→18,→20,→22,→23

satisfy all intuitionistic logic as IFTs.

Finally, let us consider the Modus Ponens rule in the following two forms

I(x& I(x, y), y) (7)

x, I(x, y)
y

, (8)
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Table 4. List of axioms of the intuitionistic logic that are satisfied by intuitionistic
fuzzy implications as tautologies

a b c d e f g h i j k l m n o p q M1 M2

→1 − − − − − − − − − − − − − − − − − + −
→2 + − − − + + + − + + + + + + + + + + +
→3 + + + + + + + + + + + + + + + + + + +
→4 − − − − − − − − − − − − − − − − − + −
→5 − − − − − − − − − − − − − − − − − + −
→6 − − − − − − − − − − − − − − − − − + −
→7 − − − − − − − − − − − − − − − − − + −
→8 + − − − − + + − + + + + + + + + − + +
→9 − − − − − − − − − − − − − − − − − + −
→10 − − − − − − − − − − − − − − − − − + −
→11 + + + + + + + + + + + + + + + + + + +
→12 − − − − − − − − − − − − − − − − − + −
→13 − − − − − − − − − − − − − − − − − + −
→14 + + + + + + + + + + + + + + + + + + +
→15 + − − − − + + − + + + + + + + + − + +
→16 − − − − − + + − + + + + + + + + − + −
→17 − − − − − − − − − − − − − − − − − + −
→18 − − − − − − − − − − − − − − − − − + −
→19 − − − − − + + − + + + + + + + + − + −
→20 + + + + + + + + + + + + + + + + + − +
→22 − − − − − − − − − − − − − − − − − − −
→23 + + + + + + + + + + + + + + + + + − +

marked in Tables 4 and 5 by M1 and M2, respectively. In Table 4, M1 and
M2 are checked for tautological validity, while in Table 5 they are checked for
IFT validity.

The following assertions can be proved:

Theorem 3. (a) Implications→1,→2,→3,→4,→5,→6,→7,→8,→9,→10,
→11, →12, →13, →14, →15, →16, →17, →18, →19 satisfy M1 (7) as a
tautology.

(b) Implications →2,→3,→8,→11,→14,→15,→20,→23 satisfy M2 (8) as a
rule with tautologies.

Theorem 4. (a) Implications →15,→19 satisfy M1 (7) as an IFT.
(b) Implications→1,→2,→3,→4,→5,→8,→11,→12,→13,→14,→15,→18,

→20, →22, →23 satisfy M2 (8) as a rule with IFTs.

3 Conclusion

Some months ago the concept of intuitionistic fuzzy set was criticized to be not
related to intuitionism. Truly, for a long time all researchers in this area used
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Table 5. List of axioms of the intuitionistic logic that are satisfied by intuitionistic
fuzzy implications as IFTs as tautologies

a b c d e f g h i j k l m n o p q M1 M2

→1 + + + + + + + + + + + + + + + + + − +
→2 + − − − + + + − + + + + + + + + + − +
→3 + + + + + + + + + + + + + + + + + − +
→4 + + + + + + + + + + + + + + + + + − +
→5 + + + + + + + + + + + + + + + + + − +
→6 + + + ? − + + + + + + + + + + + ? − −
→7 + − − − − + + − + + + ? ? + + ? − − ?
→8 + − − ? ? + + − + + + + + + + + + − +
→9 + + + ? ? + + ? ? ? ? ? ? + + ? ? − ?
→10 − − − − − − + − − − − − − − − − − − −
→11 + + + + + + + + + + + + + + + + + − +
→12 − − − + + + + − + + + + + + + + + − +
→13 + + + ? ? + + ? + + + + + + + + ? − +
→14 + + + + + + + + + + + + + + + + + − +
→15 + − − − − + + − + + + + + + + + − + +
→16 − − − − − + + − + + + + + + + + − − −
→17 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
→18 + + + + + + + + + + + + + + + + + − +
→19 − − − − − + + − + + + + + + + + − + −
→20 + + + + + + + + + + + + + + + + + − +
→21 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
→22 + + + + + + + + + + + + + + + + + − +
→23 + + + + + + + + + + + + + + + + + − +

only the classical negation (¬1). Currently we have a more comprehensive list
of intuitionistic fuzzy negations and implications. Some of them, as we saw
above, do satisfy the axioms of intuitionistic logic.

The new operations open a very large field for future research. We hope
that soon many other properties will be clarified and new results will be
obtained. There are some possible directions:

1. Study the relationships between the different implications and order them
as vertices of an oriented graph with respect to the ordering “≤”.

2. Study the relationships between the different negations and order them as
vertices of an oriented graph with respect to the ordering “≤”.

3. Study all couples (→i,¬j) and determine which of them have nice proper-
ties, e.g., satisfy all axioms of intuitionistic logic.

4. Construct two new sets of variations of the above 23 implications using the
schemes:

P →23+i Q = P →i ♦Q, P →46+i Q = ♦P →i Q (9)

and study their properties.
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On Intuitionistic Fuzzy Negations

Krassimir T. Atanassov

Summary. Up to now four intuitionistic fuzzy negations were constructed. In the
present paper one new negation is described and its specific properties are discussed.
The relations between it and the other negations are studied. The standard and
modified Laws for Excluded Middle, the standard and modified De Morgan’s Laws
are checked for the new negation.

1 Introduction: on Some Previous Results

Variants of intuitionistic fuzzy implications are discussed in [3, 7–9, 11–13].
The implications from [7] are intuitionistic fuzzy versions of the fuzzy impli-
cations defined in [1]. In [8,9] the introduced implications are used as basis for
obtaining of intuitionistic fuzzy negations. Here we will introduce for a new
negation. Below we will study some properties of all negations and will show
that they satisfy the properties of the intuitionistic negation.

Let x be a variable. Then its intuitionistic fuzzy truth-value is represented
by the ordered couple

V (x) = 〈a, b〉, (1)

so that a, b, a+ b ∈ [0, 1], where a and b are degrees of validity and of nonva-
lidity of x. Any other formula is estimated by analogy. Obviously, when V is
ordinary fuzzy truth-value estimation, for it b = 1− a.

Everywhere below we shall assume that for the three variables x, y and z
equalities: V (x) = 〈a, b〉, V (y) = 〈c, d〉, V (z) = 〈e, f〉 (a, b, c, d, e, f, a + b, c +
d, e+ f ∈ [0, 1]) hold.

For the needs of the discussion below we shall define the notion of intu-
itionistic fuzzy tautology (IFT, see, [1, 3] ) by:

x is an IFT if and only if a ≥ b, (2)

while x will be a (classical) tautology if a = 1 and b = 0.
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In some definitions we shall use functions sg and sg:

sg(x) =

⎧
⎨

⎩

1 if x > 0

0 if x ≤ 0
, sg(x) =

⎧
⎨

⎩

0 if x > 0

1 if x ≤ 0
(3)

In ordinary intuitionistic fuzzy logic (see [1, 3]) the negation of variable x
is N(x) such that

V (N(x)) = 〈b, a〉.
The operations “conjunction” (&) and “disjunction” (∨) are defined (see

[1, 3] by:

V (x& y) = 〈min(a, c),max(b, d)〉, V (x ∨ y) = 〈max(a, c),min(b, d)〉. (4)

In [11] (see also [15]) the explicit forms of all 23 implication are given and
their 23 corresponding negations are obtained, using as a basis equality

N(x) = I(x, F ), where V (F ) = 〈0, 1〉. (5)

The negations, generated by the implication operations are given in
Table 1.

For these negations and for their corresponding implications the following
three properties are checked in [8, 9, 9]:

Property P1: A→ ¬¬A,
Property P2: ¬¬A→ A,
Property P3: ¬¬¬A = ¬A.

Obviously, negation ¬1 is a classical negation (it satisfies simultaneously
properties P1 and P2), while for the four other ones it is shown that they have
intuitionistic behavior (they satisfy property P1 and do not satisfy property
P2). All negations satisfy property P3.

In [10] the validity of the Law for Excluded Middle (LEM) in the following
forms is studied:

〈a, b〉 ∨ ¬〈a, b〉 = 〈1, 0〉 (tautology form) (6)

and
〈a, b〉 ∨ ¬〈a, b〉 = 〈p, q〉, (IFT form) (7)

and a Modified LEM in the forms:

¬¬〈a, b〉 ∨ ¬〈a, b〉 = 〈1, 0〉 (tautology form) (8)

and
¬¬〈a, b〉 ∨ ¬〈a, b〉 = 〈p, q〉, (IFT form) (9)

where 1 ≥ p ≥ q ≥ 0.
Usually, De Morgan’s Laws have the forms:

¬x ∧ ¬y = ¬(x ∨ y), ¬x ∨ ¬y = ¬(x ∧ y). (10)
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Table 1. List of intuitionistic fuzzy negations

Name Form of negation

→1 ¬1 Zadeh 〈b, a〉
→2 ¬2 Gaines-Rescher 〈1 − sg(a), sg(a)〉
→3 ¬2 Gödel 〈1 − sg(a), sg(a)〉
→4 ¬1 Kleene-Dienes 〈b, a〉
→5 ¬1 Lukasiewicz 〈b, a〉
→6 ¬1 Reichenbach 〈b, a〉
→7 ¬1 Willmott 〈b, a〉
→8 ¬2 Wu 〈1 − sg(a), sg(a).sg(1 − b)〉
→9 ¬3 Klir and Yuan 1 〈b, a.b + a2〉
→10 ¬1 Klir and Yuan 2 〈sg(1 − a).b, sg(1 − a) + a.sg(1 − a)〉
→11 ¬2 Atanassov 1 〈1 − sg(a), sg(a).sg(1 − b)〉
→12 ¬4 Atanassov 2 〈b, 1 − b〉
→13 ¬1 Atanassov and Kolev 〈b, a〉
→14 ¬5 Atanassov and Trifonov 〈1 − sg(a) − sg(a).sg(1 − b), sg(1 − b)〉
→15 ¬5 Atanassov 3 〈1 − sg(sg(a) + sg(1 − b)), 1 − sg(a).sg(1 − b)〉
→16 ¬2 〈1 − sg(a), sg(a)〉
→17 ¬3 〈b, a.b + a2〉
→18 ¬4 〈b, 1 − b〉
→19 ¬5 〈1 − sg(sg(a) + sg(1 − b)), sg(1 − b)〉
→20 ¬2 〈1 − sg(a), sg(a)〉
→21 ¬3 〈b, a.b + a2〉
→22 ¬4 〈b, 1 − b〉
→23 ¬5 〈1 − sg(sg(a) + sg(1 − b)), sg(1 − b)〉

The above mentioned change of the LEM inspired the idea from [11] to study
the validity of De Morgan’s Laws that the classical negation ¬ (here it is
negation ¬1) satisfies. Really, easy it can be proved that the expressions

¬1(¬1x ∨ ¬1y) = x ∧ y, ¬1(¬1x ∧ ¬1y) = x ∨ y (11)

are IFTs, but the other negations do not satisfy these equalities. For them the
following assertions are valid for every two propositional forms x and y:

¬i(¬ix ∨ ¬iy) = ¬i¬ix ∧ ¬i¬iy, ¬i(¬ix ∧ ¬iy) = ¬i¬ix ∨ ¬i¬iy (12)

for i = 2, 4, 5, while negation ¬3 does not satisfy these equalities.

2 Main Results

Here we shall introduce a set of new negations. They are not connected with
the previous ones. They will generalize the classical negation, but on the
other hand, they will have some nonclassical properties. The set will have the
form

N = {¬ε | 0 ≤ ε < 1}. (13)
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Below we shall study some basic properties of an arbitrary element of N .
Let everywhere below 0 ≤ ε < 1 be fixed. We define:

¬ε〈a, b〉 = 〈min(1, b+ ε),max(0, a− ε)〉. (14)

Obviously, ¬1 = ¬0 ∈ N , i.e., N contains at least one element.
Figure 1 shows x and ¬1x, while Figs. 2 and 3 show y and ¬εy and z and

¬εz, respectively.
We show that the couple 〈min(1, b+ ε),max(0, a− ε)〉 is an intuitionistic

fuzzy one. Indeed, if a− ε ≤ 0, then

min(1, b+ ε) + max(0, a− ε) = min(1, b+ ε) ≤ 1. (15)

If a− ε > 0, i.e., a > ε, then b+ ε < a+ b ≤ 1 and

min(1, b+ ε) + max(0, a− ε) = b+ ε+ a− ε = a+ b ≤ 1. (16)
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(0,0) (1,0)

•
x

a

b

• 
¬x

b

a

Fig. 1. Classical IFS Negation (¬1)

(0,1)

(0,0) (1,0)

•

c

d

8

d

c
•¬y

y

d + ε

c − ε

Fig. 2. ε-negation
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(0,1)

(0,0)

(1,0)

8¬1z

z

f

e

•

e

f

•
¬z

f + ε
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By analogy with above, we can construct two new implications, generated
by the new negation. The first of them is based on x→ y = ¬x ∨ y or

V (x→ y) = ¬〈a, b〉 ∨ 〈c, d〉 (17)

and has the form:

〈a, b〉 →ε 〈c, d〉 = 〈max(c,min(1, b+ ε)),min(d,max(0, a− ε))〉 (18)
= 〈min(1,max(c, b+ ε)),max(0,min(d, a− ε))〉.

Now, we see that

〈a, b〉 →ε 〈0, 1〉 = 〈min(1, b+ ε),max(0, a− ε)〉, (19)

i.e., the negation generated by implication →ε coincides with negation ¬ε.
The second implication that we can construct with negation ¬ε is based

on x→ y = ¬x ∨ ¬¬y or

V (x→ y) = ¬〈a, b〉 ∨ ¬¬〈c, d〉 (20)

and has the form:

〈a, b〉 →ε 〈c, d〉 = ¬ε〈a, b〉 ∨ ¬ε¬ε〈c, d〉 (21)
= 〈min(1, b+ ε),max(0, a− ε)〉 ∨ ¬ε〈min(1, d+ ε),max(0, c− ε)〉
= 〈min(1, b+ ε),max(0, a− ε)〉 ∨
〈min(1,max(0, c− ε) + ε),max(0,min(1, d+ ε)− ε)〉

= 〈min(1, b+ ε),max(0, a− ε)〉 ∨ 〈max(ε, c),min(1− ε, d))〉
= 〈max(min(1, b+ ε), ε, c)),min(1− ε, d,max(0, a− ε)〉
= 〈min(max(1, ε, c),max(b+ ε, ε, c)),

max(min(0, 1− ε, d),min(1− ε, d, a− ε)〉
= 〈min(1,max(b+ ε, c)),max(0,min(a− ε, d)〉.
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Therefore, the two implications generated by negation ¬ε coincide.
By direct checking we see that the new negation is different than the other

five and by this reason already we have six intuitionistic fuzzy negations. Also,
we see that the new implication is different with the other 23 ones.

Now, we shall formulate similar assertions as in [8], but for the new
negation.

Theorem 1. Negation ¬ε satisfies Property 1 for its generated implication in
as an IFT, but not as a tautology.

Proof. Let x be a given propositional form.

〈a, b〉 →ε ¬ε¬ε〈a, b〉 = 〈a, b〉 →ε 〈max(ε, a),min(1− ε, b)〉 (22)

= 〈min(1,max(ε, a, b+ ε)),max(0,min(1− ε, b, a− ε))〉
= 〈min(1,max(a, b+ ε)),max(0,min(b, a− ε))〉.
= 〈max(a,min(1, b+ ε)),min(b,max(1, a− ε))〉.

Obviously, the latter expression cannot be a tautology. On the other hand

max(a,min(1, b+ ε))−min(b,max(1, a− ε)) ≥ min(1, b+ ε)− b ≥ 0, (23)

i.e., Property 1 is an IFT. ��

Theorem 2. Negation ¬ε satisfies Property 2 for its generated implication as
an IFT, but not as a tautology.

Proof. Let x be a given propositional form.

¬ε¬ε〈a, b〉 →ε 〈a, b〉 = 〈max(ε, a),min(1− ε, b)〉 →ε 〈a, b〉 (24)

= 〈min(1,max(a,min(1− ε, b) + ε),max(0,min(b,max(ε, a)− ε))〉
= 〈min(1,max(a,min(1, b+ ε))),max(0,min(b,max(0, a− ε))〉
= 〈max(a,min(1, b+ ε)),min(b,max(0, a− ε))〉.

Obviously, the latter expression cannot be a tautology. On the other hand

max(a,min(1, b+ ε))−min(b,max(0, a− ε)) ≥ a−max(0, a− ε) ≥ 0, (25)

i.e., Property 2 is an IFT. ��

Therefore, we have constructed an example of a couple of a negation and an
implication for which both properties P1 and P2 are IFTs for arbitrary propo-
sitional form x, but from this fact does not follow that x coincide with ¬ε¬εx.
This is the third example for such a couple along with couples (¬2,→20) and
(¬5,→23), described in [11].
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Theorem 3. Negation ¬ε satisfies Property 3.

Proof. We shall use the above results:

¬ε¬ε¬ε〈a, b〉 = ¬ε〈max(ε, a),min(1− ε, b)〉 (26)
= 〈min(1,min(1− ε, b) + ε),max(0,max(ε, a)− ε)〉
= 〈min(1,min(1, b+ ε),max(0,max(0, a− ε)〉
= 〈min(1, b+ ε),max(0, a− ε)〉 = ¬〈a, b〉.

Therefore Property 3 is valid. ��

Now, we can classify each couple (¬,→) as:

– Classical – it satisfies properties P1, P2, P3 and for each x: V (x) =
V (¬¬x);

– Intuitionistic – it satisfies properties P1, P3 and does not satisfy property
P2;

– Nonstandard – it satisfies properties P1, P2, P3 and there is x: V (x) �=
V (¬¬x).

Open problem 1 Classify all different couples (¬,→) to the three groups.

Now we shall study the validity of the LEM and the De Morgan’s Laws in
the different forms, described above.

Theorem 4. Negation ¬ε satisfies the LEM in its IFT form (7), but not in
its tautological form (6).

Theorem 5. Negation ¬ε satisfies the Modified LEM in its IFT form (9), but
not in its tautological form (8).

Theorem 6. Negation ¬ε:

(a) Does not satisfy the De Morgan’s Laws in the form (10);
(b) Satisfies the De Morgan’s Laws in the form (11);
(c) Satisfies the De Morgan’s Laws in the form (12).

Finally, we shall study the relations between the different negations. By
direct checks we can see the validity of the following Table 2.

The lack of relation between two implications is noted in Table 2 by “ ∗ ”.
The values from Table 3 are also interesting.

3 Conclusion: a New Argument that the Intuitionistic
Fuzzy Sets Have Intuitionistic Nature

The above assertions show that all negations but the first one satisfy prop-
erties conditions of the intuitionistic logic not of the classical logic. A part
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Table 2. List of the relations between the different intuitionistic fuzzy negations

¬1 ¬2 ¬3 ¬4 ¬5 ¬ε

¬1 = ∗ ≤ ≥ ≥ ≤
¬2 ∗ = ∗ ∗ ≥ ∗
¬3 ≥ ∗ = ≥ ≥ ∗
¬4 ≤ ∗ ≤ = ≥ ≤
¬5 ≤ ≤ ≤ ≤ = ≤
¬ε ≥ ∗ ∗ ≥ ≥ =

Table 3. List of the values of some special constants for the different intuitionistic
fuzzy negations

V (x) ¬1V (x) ¬2V (x) ¬3V (x) ¬4V (x) ¬5V (x) ¬εV (x)

〈1, 0〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈ε, 1 − ε〉
〈0, 1〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉
〈0, 0〉 〈0, 0〉 〈1, 0〉 〈0, 0〉 〈0, 1〉 〈0, 1〉 〈ε, 0〉

Table 4. List of the fuzzy negations, generated by intuitionistic fuzzy negations

Notation Form of the intuitionistic fuzzy negation Form of the fuzzy negation

¬1 〈b, a〉 1 − a
¬2 〈1 − sg(a), sg(a)〉 1 − sg(a)
¬3 〈b, a.b + a2〉 1 − a
¬4 〈b, 1 − b〉 1 − a
¬5 〈1 − sg(sg(a) + sg(1 − b)), sg(1 − b)〉 1 − sg(a)
¬ε 〈min(1, b + ε), max(0, a − ε)〉 1 − max(0, a − ε)

of these negations were generated by implications, that were generated by
fuzzy implications. Now, let us return from the intuitionistic fuzzy negations
to ordinary fuzzy negations. The result is shown on Table 4, where b = 1− a.

Therefore, from the intuitionistic fuzzy negations we can generate fuzzy
negations, so that two of them (¬3 and ¬4) coincide with the standard fuzzy
negation (¬1). Therefore, there are intuitionistic fuzzy negations that lose
their properties when they are restricted to the ordinary fuzzy case. In other
words, the construction of the intuitionistic fuzzy estimation

〈degree of membership/validity, (27)
degree of nonmembership/nonvalidity〉

that is specific for the intuitionistic fuzzy sets, is the reason for the intuition-
istic behavior of these sets. Over them we can define intuitionistic as well as
classical negations.
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In the fuzzy case the negations ¬2 and ¬5 coincide, generating a fuzzy
negation that satisfies Properties 1 and 3 and does not satisfy Property 2,
i.e., it has intuitionistic character. As we see above, the new negation ¬ε has
more strange behavior.

In [4] two other classes of negations are introduced. We will formulate the
following interesting

Open problem 2 What are the relation betweens these three sets of nega-
tions?
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A Simulation Model for Trust and Reputation
System Evaluation in a P2P Network

Roberto Aringhieri and Daniele Bonomi

Summary. A peer-to-peer (P2P) network is an exchange community of anonymous
peers or individuals. The evolution of P2P network has determined the need of trust
and reputation systems (TRS) in order to improve the reliability of local interactions:
collecting in some way the local experiences, the TRS assesses the possibility that
an individual has a malicious behavior, i.e., he cheats other individuals.

In this paper we present an agent-based simulation model for the evaluation
of a generic TRS within a decentralized P2P network. We describe some minimal
requirements that, in our opinion, every P2P simulators should have. Moreover, we
propose a complete model of peers in which the behavior of both good and malicious
peers is accurately defined.

Key words: Agent-based simulation, Trust and reputation system, P2P
network.

A peer-to-peer (P2P) network is an exchange community of anonymous
peers or individuals. Each individual can join or leave the community freely.
When joined, it plays the role of client and server at the same time. Such a
community is characterized by the absence of a central authority (decentral-
ized environment) and by the fact that each individual has a local view of the
whole community. A global behavior can emerge from local interactions, i.e.,
exchanges between pairs of individuals.

The evolution of P2P network has determined the need of trust and repu-
tation systems (TRS) in order to improve the reliability of local interactions:
collecting in some way the local experiences, the TRS assesses the possibility
that an individual has a malicious behavior, i.e., he cheats other individuals.
The way of collecting or aggregating the local experiences defines different
TRS (see e.g. [5, 9, 11,14,18]).

In this paper we present a simulation model for the evaluation of a generic
TRS within a decentralized P2P network. In Sect. 1 we review four different
TRSs, for which a simulation model or a numerical evaluation is reported,
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in order to define some minimal requirements for a generic simulation model.
From this review, three main components of a simulation model are high-
lighted, that is the network model, the content distribution model and the
peer behavior model. The latter is discussed in Sect. 2. The simulation model
is described in Sect. 3. Conclusions are discussed in Sect. 4.

1 Model Requirements

Reputation has been extensively studied in economics especially using game
theory to model the behavior of economic agents acting in a market to maxi-
mize their utilities. Usually, the agents work under the incomplete information
and the “looking forward” assumptions. The latter consists in maximizing the
agent utility considering a long time period using past events to predict the
future needs of the agent thus modifying the current utility.

The need of improving the reliability of local interactions among peers
determines the increasing relevance of trust and reputation topic in the field
of P2P research. A typical successful example is the “Feedback Forum”, the
eBay reputation mechanism [1], which is deeply analyzed in literature [16,18].

The problem of managing trust in a decentralized environment is formally
described in [2]. Here, we simply describe the basic TRS environment. Each
peer stores its local reputations, i.e., the result of the interactions with other
peers. These reputations are usually represented by values in [0, 1], where 0
and 1 represent, respectively, the worst and the best reputation. To decide if an
offerer peer j is trustworthy or not, the peer i uses its local reputation about
j or, when i has not previous experience with j or the local reputation is
still considered not reliable enough, it tries to obtain the global reputation of
j from the community. The global reputation is usually a value obtained by
aggregating the local reputation of other peers about j.

In [10], the authors review and describe several tools to manage TRS.
They identify three broad classes of tools: social network formation, proba-
bilistic estimation techniques and game-theoretic reputation models. For each
tools they analyze, when possible, the “trust related model semantics” and
the “incurred implementation costs.” In particular, the latter concerns the
performance analysis and the implementation overhead.

In our review, we consider the “EigenTrust” algorithm [14], the “Max-
imum Likelihood Estimation” method [9, 11], the “P2PRep” protocol with
fuzzy aggregation [4, 5] and the method based on fuzzy logic inference pro-
posed in [18]. All these papers report numerical results to evaluate the good-
ness of the proposed method. These results are usually obtained by running
a simulation model. For each paper, we briefly describe the method and then
we analyze the main characteristic of the simulation model. Our concern is
to define some minimal requirements of a generic simulation model for the
evaluation of a TRS.
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1.1 EigenTrust Algorithm

In EigenTrust, each peer i rates another peer j from which it tries to download
a file by keeping track of the numbers of successful sat(i,j) and unsuccessful
unsat(i,j) downloads. A local trust value sij is then defined as the difference
between sat(i,j) and unsat(i,j). To aggregate these local trust values around
the P2P network, they are normalized so that malicious peers will not be able
to assign arbitrarily high trust values to other malicious peers and subvert
the EigenTrust algorithm. The normalized local trust value cij is defined as:

cij =
max(sij , 0)∑
j max(sij , 0)

The normalized trust values are aggregated using the concept of transitive
trust : peer i can know about the trust of peer k by asking all peers j with
which peer i has interacted. However, since not all peers j are trustworthy,
their opinions is weighed with the trust peer i places in them:

tik =
∑

j

cijcjk

To compute the trust value, the authors proposed the distributed EigenTrust
algorithm which works as follows.

Foreach peer i do:
1. Query all peers j who have downloaded files from i for their opinions

about him (t(0)j = pj)
2. Repeat

2a. Compute i’s current global trust value t(k+1)
i

2b. Send opinion cijt
(k+1)
i to j from which i has downloaded files

2c. Wait for all j to send their updated trust values cjit
(k+1)
j

until | t(k+1)
i − t(k)

i |< ε.

In order to evaluate the EigenTrust method, the authors proposed the
following simulation model. They consider a typical P2P network in which
a query is propagated by broadcast with hop-count horizon throughout the
network as done in a Gnutella network [17].

For each malicious node, the authors proposed several threat model in
which several aspects are taken into account, i.e., individual malicious or col-
lectives malicious, camouflage behavior, malicious spies and so on. Note that
malicious peers connect to the most highly connected peers and they are sup-
posed to have a large bandwidth allowing them to answer to the top 20% of
queries received. In order to guarantee the convergence of the method, the
authors introduce the concept of pretrusted peers, i.e., peers that are known
to be trustworthy.
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The author also provide a content distribution model in which each peer
shares a subset of content types (categories) in which the popularity of single
content is governed by a Zipf distribution. An experiment consists of a certain
number of repeated query cycles; each cycle terminates when the peer retrieves
the required content, otherwise it continues to query the network. A simulation
is composed of a number of repeated experiments depending on the scenario
evaluated.

1.2 Maximum Likelihood Estimation

The “Maximum Likelihood Estimation” is a probabilistic technique whose
main concern is to reduce the implementation overhead. The authors assumes
to consider a P2P network composed of peers having high probabilities of
performing honestly during their transactions.

Let θj be the probability of peer j to act honestly. A peer j interacts with
peers p1, p2, . . . , pn and the variables x1, x2, . . . , xn ∈ {0, 1} denote the honest
performance (xj = 1) and the dishonest one (xj = 0). Assuming that peers
p1, p2, . . . , pn can lie with specific probability �k for peer pk, the probability
of observing report yk from peer pk can be calculated as:

P[Yk = yk] =

{
�k(1− θj) + (1− �k)θj if yk = 1
�kθj + (1− �k)(1− θj) if yk = 0

.

Given a random sample of independent reports y1, y2, . . . , yn, the likelihood
function of this sample is

L(θj) = P[Y1 = y1] P[Y2 = y2] . . .P[Yn = yn].

The maximum likelihood estimation procedure requires to find the value of
θj maximizing L(θj).

In [9], the authors reports the results obtained by some simulation exper-
iments. First of all, note that the function L(θj) implies the independence
of reports Y1, . . . , Yn. Thus in their simulation they assumed a noncollusive
behavior of peers. They do not consider any particular structure of the net-
work in which the interactions among peers were generated at random. Other
settings are the constant number of peers (128), the number of interaction
per peer varying in {20, 40, 60, 80, 100} and the fraction of liars varying in
{0.1, 0.2, 0.3, 0.4, 0.5}. All the results is the average value of 20 repeated
experiments.

1.3 P2PRep and Fuzzy Aggregation

P2PRep is a reputation-based protocol which formalizes the way of each peer
stores and shares with the community the reputation of other peers [6, 8, 12].
It runs in a fully anonymous and decentralized P2P environment. A more
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detailed description of the protocol is given in [5]. Here, we report only the
reputation model.

Let ri,j be the local reputation resulting from direct interactions between
peer i and peer j. A fuzzy value expresses local reputations to take into
consideration the fact that transactions can be heterogeneous for importance,
resource value, and so on. At any time n > 1, based on the outcome of the
nth transaction (t(n)

i,j = 1 if the outcome was satisfactory, t(n)
i,j = 0 otherwise),

the local reputation is updated as follows

r
(n)
i,j = α(n)r

(n−1)
i,j + (1− α(n))t(n)

i,j and r
(1)
i,j = t(1)i,j .

The value of α(n) ∈ [0, 1] is a feedback measure varying during the time
following a well-known technique for feedback control, that quickly stabilizes
to a fair and efficient setting [13].

The global reputation of peer j can be computed as follows. The peer
i runs a poll by using P2PRep and inquires other peers for collecting their
local reputation rk,j of j. Under the assumption of unanimity [3], the global
reputation can be computed aggregating all rk,j values using the ordered
weighted average (OWA) operator [20] which allows the decision maker to
give different importance to the values of a criteria. Technically, an OWA
operator is a weighted average that acts on an ordered list of arguments and
applies a set of weights to tune their impact on the final result. Namely, in
their setting, the authors get

λOWA =
∑n

k=1 wkrtk,j∑n
k=1 wk

where n is the number of reputations to be aggregated considered in decreasing
order, that is, assuming rt1,j ≥ rt2,j ≥ ... ≥ rtn,j and [w1 w2 . . . wn] is a
weighting vector.

The authors set the OWA weights asymmetrically , since the aggregation
operator needs to be biased toward the lower end of the interval, increasing
the impact of low local reputations on the overall result. The reason is that
the authors assume that peers are usually trustworthiness and a malicious
behavior is the exception.

Especially in [4], the authors proposed an extensive numerical evaluation
of P2PRep. The underlying P2P network is such that each peer is reachable
from all others and in which delays due to message routing are not take into
account. Over this broadcast network, a set of queries are simulated, each
asking for a randomly chosen resource. For each query, the peer querying the
network is randomly chosen (with a uniform probability distribution) over
all available peers. Then, a preferred offerer o is selected in two different
ways: the first one, the random policy, selects o randomly choosing some peers
among those having the resource required whilst the second one selects o using
P2PRep.
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The authors model the behavior of both well-behaved and malicious peers.
They assume that (1) malicious peers provide only malicious resources; (2)
malicious peers respond to the polling on a peer o by always providing a (ma-
licious) 1 reputation if o ∈M , and by providing a genuine opinion, otherwise.
On the other side, all well-behaved peers i participate in a poll on offerer o by
returning their local reputation ri,o if such a value is recorded; no response is
returned otherwise.

The main settings of this simulation model are the following: the number
of peers P in the network is uniformly distributed in [300, 400]; the num-
ber of malicious peers M , M ⊂ P is the 40% of |P |; the number of different
kinds of resources is 20; the max poll cardinality is uniformly distributed
in [5, 15]. A simulation consists of 50 repeated experiments, each one eval-
uating a different and randomly generated scenario in which the number of
queries for each experiment ranges from 1, 000 to 10, 000 with an increment
of 1, 000.

1.4 Method Based on Fuzzy Logic Inference

The authors proposed a method based on fuzzy logic inferences, which can
handle uncertainty, fuzziness and incomplete information in peer trust reports.
Moreover, this method aggregates peer reputations with affordable message
overhead. The authors start their development from an accurate analysis of
eBay transaction. Thus, their method is well-suited for a centralized commu-
nity, which is not the target of our simulation. On the other side, the relevance
of this method depends on two facts. The first one is the definition of a set
of rules to determine the weights of the fuzzy aggregator; from this point of
view, this method can be viewed as a variant of P2PRep. The second one is to
populate the simulation using data concerning real transaction obtained by
the analysis of eBay transactions.

1.5 Remarks from the Literature

Looking at this review, we can define some minimal requirements to be consid-
ered when devising a simulation model for a TRS, i.e., a trust and reputation
systems. Three major components can be identified: the network model, the
content distribution model, the peer behavior model.

A good model representing the network connecting the P2P community
become necessary when the dissemination of contents and local reputations
is a crucial point to evaluate the performance of a TRS. To correctly model
the dissemination is needed to identify the neighbors of a given peer. From
our review, the most sophisticated network model is the one proposed for
EigenTrust evaluation. The minimal requirement is that of the network model
should allow the concept of neighborhood based on a given measure of distance
between peers, e.g., hop-count distance.
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The TRS evolves analyzing the positive or negative result of the transac-
tions among peers. Each transaction is composed of a peer requiring a content
to its neighborhood. It can be assumed that peers are interested in sharing
and asking a subset of the total available contents in the network. From this
point of view, the description given in [14] should be considered as the minimal
requirement.

The peer behavior model is the crucial component of any TRS simulator.
From this point of view, our review highlights several attempts for modeling
the behavior of peers. The model should take into account several aspects of
malicious peer behavior. Most of them (collusive or not, camouflage, mali-
cious spies and so on) are highlighted in our review. We observe that there
is no effort to model the behavior of well-behaving peers. The definition of a
complete model of peer behavior is a challenging topic and it is approached
in Sect. 2.

2 The Peer Behavior Model

In this section, we discuss the main assumptions modeling the behavior of
peers. We assume that peers belong to two distinct classes: the class of mali-
cious peers M and the class of well-behaved or good peers G.

2.1 Malicious Peers

A malicious peer p ∈ M tries to distribute dangerous contents such as virus,
worms, and so on. Its main objective is to distribute the maximum number
of malicious contents. To reach it, the peer can follow the following phases:

distribution: p continues to distribute malicious contents until it reach a given
number Fp of distributed content or its reputation is greater than a given
threshold θp;

camouflage or disconnection: if the reputation of p is considered acceptable,
the peer can hide temporarily its maliciousness acting for a certain time
as a good peer in order to improve its reputation; otherwise p abandons
the community.

Finally, after exiting, the peer p can connect again using the same identifier
or to use a new one.

We observe that malicious peers can operate in a group. So we assume that
small cliques CM ⊂ M of malicious peers can adopt a common strategy in
order to cheat the reputation system. For instance, in a system using P2PRep
protocol, they can give highest vote to peers belonging to CM and neutral
vote to the others. More formally, the clique contains both malicious peers
and spies: a spy provides not malicious contents when selected as offerer but
returns highest local reputations to all peers belonging to CM .
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2.2 Good Peers

A good peer g ∈ G joins the community in order to find and to retrieve a
list of required contents. For each contents, the peer g queries the community
obtaining a list of offering peers O from which the offerer o ∈ O having the
best reputation is selected. Then, the peer g starts the file download from the
offerer o.

After each download, the peer g checks the file to verify its integrity in
terms of correctness – is it the required content? – and security – is it a mali-
cious file? A fast and accurate check depends on the fanatic level associated
to each peer: the probability of a peer g ∈ G to identify malicious contents is
proportional to its fanatic level. In other words, the fanatic level models the
ability of a peer to recognize malicious contents after each download.

We observe that peer g becomes distributor of malicious contents every
time the check fails. This situation can be interrupted when a periodic and
more accurate check will be performed.

Finally, after obtaining all required contents, the good peer g temporarily
exit from the community.

2.3 Peer Dynamics

The P2P community is not fixed: new peers arrive, existing peers can tempo-
rary disconnect or definitively abandon the community. Therefore, we need to
model the community dynamics.

We introduce some parameters to model the rate of arrivals and the rate of
abandons in such a way to allow different dynamics for peers belonging to M
and G, respectively. For instance, we can have malicious peers more dynamic
than the good ones, or vice versa.

3 The Simulation Model

Our model has been developed using the AnyLogic platform which allows
to create models using several methodologies such as discrete event, agent-
based and many others [15]. Moreover, it provides the optimization engine
OptQuest [12] which can be used to optimize the model parameters.

The agent-based simulation seems well-suited to implement a decentralized
community composed of autonomous individuals such as that populating a
P2P network. Moreover, the statechart (see Fig. 1), which is the basic tool to
define an agent, is the proper instruments to describe the behavior of a peer
during the simulation.

The minimal requirements, described in Sect. 1.5, are implemented in our
simulation model. The network model allows to define the neighborhoods of
a given peer by using an hop-count distance over a grid network. The content
distribution model assigns to each peer a small amount of content categories



A Simulation Model for Trust and Reputation System Evaluation 177

Fig. 1. The statechart modeling the good peer behavior

and the contents belonging to each category is distributed by using a Zipf
function. For each content, the corresponding dimension is also randomly
generated.

The main component of our agent-simulation model is the description
of the agent implementing a generic peer: a peer is an autonomous agent
described by a Java class which contains attributes and statecharts. The at-
tributes model the parameters determining the peer characteristics whilst the
statecharts model the peer behavior such as described in Sect. 2.

For instance, the statechart reported in Fig. 1 describes the behavior of
the agent modeling a good peer: the agent leaves the Standby state when it
decides to retrieve a content; then, it selects a list of offerers belonging to its
neighborhood (Neighbors and AskForOfferer states); if this list is empty, the
agent returns in the Standby state, otherwise it proceeds with the download;
in the following two states, i.e., Poll and SelectOfferer, the agent tries to
form an opinion about all the offerer peers taking into account local and global
reputations; finally, the agent starts the download from the offerer having the
best reputation; the download is an independent task thus the agent comes
back to the Standby state immediately after the download starts.

The simulation experiment starts creating and arranging Np peers over the
network as depicted in Fig. 2: circles and squares represent, respectively, good
and malicious peers while thin and large arrows represent, respectively, a good
and a malicious content exchange among peers. The Np peers are replicated
with different attributes determining its basic characteristics. For instance,
the fact of a peer is malicious or not is defined by the boolean attribute
isMalicious.
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Fig. 2. The P2P network and some downloads among peers

Fig. 3. Download details and distribution of malicious contents

To model the fact that each peer can have a different bandwidth, a maxi-
mum number of parallel downloads is allowed. Each download has a duration
proportional to the content dimension. When a download finishes, as described
in Sect. 2.2, the peer checks the content retrieved. If the content is malicious
and the check fails, the peer can distribute this malicious content until the
periodic and more accurate check discovers it.

Figure 3 details two possible download situation. On the left, a good peer
distributes two contents to its neighbors whilst a malicious peer tries to dis-
tribute three malicious contents. If one of the receiving peer fails its check,
it becomes a distributor of malicious content as depicted on the right part of
the figure.

The TRS is implemented as external Java library in order to allow an
independent development both to improve the existing TRSs or to add new
ones. The interface between model and library is implemented in such a way
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to allow changes in the library without modifying anything in the model. In
particular, the interface is used within Poll and SelectOfferer states (see
Fig. 1). Currently, the library implements the P2PRep protocol using two
different aggregator for computing the global reputation: the OWA operator
described in Sect. 1.3 and its weighted version [19].

The main quality index is defined as the number of malicious transactions
executed during the simulation by the whole community. The model also
collects several statistics both a local level (statistic about a single peer) and
a global level. Moreover, the model compares the TRS results with those
obtained by a basic random policy in which the peer chooses randomly a peer
belonging to the offerer list O.

A preliminary validation of our model has been performed comparing the
simulation outcomes with those reported in [4] obtaining a positive results.

4 Conclusions

In this paper we have discussed a simulation model for the evaluation of a
generic TRS within a decentralized P2P network. From the literature review,
restricted to the papers in which a simulator is proposed, we have devised
some minimal requirements that, in our opinion, every P2P simulators should
have. Moreover, we have observed that no efforts have been made in literature
to model the behavior of well-behaved peers while several considerations con-
cerning the malicious peers behavior have been discussed. We have proposed
a complete model of peers in which the behavior of both good and malicious
peers is accurately defined. We have presented our agent-based simulation
model having the minimal requirements discussed above and implementing
the complete model of peer behavior. A Java library provides the TRS in a
transparent way for the model user.
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A Fuzzy Trust Model Proposal to Ensure the
Identity of a User in Time

Antonia Azzini and Stefania Marrara

Summary. Access controls ensure that all direct accesses to objects are authorized
by means of user identification. However, in some scenarios it is also necessary to
continuously check the identity of the user in order to avoid malicious behaviors
such as person exchanges immediately after the initial authentication phase.

Aim of this work is to propose a methodology based on a balanced mix of strong
and weak authentication techniques studied to guarantee a high and prolonged in
time level of security combining the advantages of each authenticator.

1 Introduction

Access controls ensure that all direct accesses to objects are authorized. By
regulating the reading, changing, and deletion of data and programs, access
controls protect against accidental and malicious threats to secrecy, authen-
ticity, and system availability. The effectiveness of access controls rests on one
important premise, the proper user identification [3]: no one should be able
to acquire the access rights of another. Traditionally, access control relies on
profile information associated to users and resources in a given domain. How-
ever, in some scenarios it is also necessary to continuously check the identity
of the user in order to avoid malicious behaviors such as person exchanges
immediately after the authentication phase used for accessing the system. An
example can be a system for university course examinations from remotely
connected pc stations: in this situation we can be interested in being sure
that the authenticated student is not substituted by another person just after
the initial identification process, but she is the one that compiles the entire
course test.

Aim of this work is to propose a methodology based on a balanced mix of
strong and weak authentication techniques studied to guarantee a high and
prolonged in time level of security avoiding the excessive cost of using only
biometric devices.

For this reason, remote access is initially provided by means of biomet-
ric devices but then it is granted in time by means of other authentication
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methods. In such a scenario, the system must distinguish between the initial
authentication phase, in which it recognizes the user profile and allows the
access, and the following authentication steps in which the system decides
if its trust in user’s identity is enough high to allow the user to continue to
perform the activity she is doing. Focus of this paper is not the semantics
used to describe the users profile, but the description of the fuzzy logic based
methodology used by a system to continuously check and confirm its trust in
the identity of a user.

The structure of the paper is as follows. Section 2 presents a brief overview
of the authentication devices used to ensure the identity of a user and com-
pares advantages and drawbacks of the different techniques, Sect. 3 describes
the general architecture of the fuzzy methodology used to ensure the user
identity during time, Sect. 4 presents the fuzzy rules used by the methodol-
ogy engines to compute the user identity trust level during time and, finally,
Sect. 5 reviews the conclusions of this work and propose some future work and
open issues.

2 User Authentication Systems and Their Trustfulness

User authentication is the process of positively verifying the identity of an
user, often as a prerequisite to allowing access to resources in a system. User
authentication is then essential for reliable access control and rights manage-
ment systems determine a user authorization to access the content [3].

2.1 Traditional Systems

Traditional cryptosystems do not identify the user as such. The authentication
is knowledge-based, answering the question: ‘What you know’ such as a pass-
word, or token-based, answering the question: ‘What you have’ such as a key,
magnetic or chip card.

A password includes single words, phrases, and personal identification
numbers (PINs) that are closely kept secrets used for authentication. The
basic problem with this technique is that a memorable password can often be
guessed or searched by an attacker and a long, random, changing password is
difficult to remember. As result they are stored and released on some alter-
native authentication mechanism and they can be shared with other users.

An identity or security token is a physical device that can contain pass-
words, such as a bankcard, or smartcard, that includes tamper-resistant pack-
aging and special hardware that disables the token if it is tampered with or if
the number of failed authentication attempts exceeds a chosen threshold. The
main problem is that these devices can be lost, stolen, forgotten or disclosed.

Strong authentication methods are usually developed to solve the draw-
backs the traditional techniques. Biometric systems implement human authen-
tication and identification in rights management systems. They are defined as
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ID-based authenticators, answering the question: ‘Who you are’. They are
characterized by the uniqueness to one person. The main security defense is
that they are difficult to copy or forge.

2.2 Biometric Systems

Biometrics are automated methods of authentication based on measurable hu-
man physiological or behavioral characteristics. Common physical biometrics
include fingerprints, hand or palm geometry and retina, iris or facial character-
istics. Behavioral features include signature, voice (which has also a physical
component), keystroke pattern and gait.

Biometric technologies most commonly implemented are based on:

– Fingerprint, based on matching numeric information of finger minutia. It
is easy, fast of use and low cost and it has considered the higher authen-
tication form from the people.

– Hand Geometry, which involves analyzing and measuring the shape of
the hand. It offers a good balance of performance characteristics and is
relatively easy of use, the accuracy can be very high.

– Iris, which analyzes features found in the iris, uses a fairly conventional
camera element and requires no close contact between the user and the
reader. It has the potential for higher than average template-matching
performance, even though easy of use and system integration have not
traditionally been strong points with iris scanning devices.

– Face, which analyzes facial characteristics. It requires a digital camera to
develop a facial image of the user for authentication.

– Voice, which is not based on voice recognition, but on voice-to-print au-
thentication, where complex technology transforms voice into text.

– Signature, which analyzes the way a user signs her name. Signing features
such as speed and pressure are as important as the finished signature’s
static shape.

These methods are inherently more reliable than password-based authenti-
cation, as biometric features cannot be borrowed, stolen, or forgotten; fur-
thermore they are extremely difficult to copy, share and distribute. The main
issue in biometric authentication system is performance, defined considering
different factors, depending on critical issues in the data acquisition phase.

A comparison between different techniques is in [1] and briefly reported in
Table 1.

Once enrolled in a biometric system, a user can be successfully authenti-
cated. The overall process, presented in detail in [3, 4], is the same for each
different biometric approach, and it is represented with a first enrollment
phase and a second matching phase. The result is typically explained in terms
of a matching score; the higher the matching score, the better comparison
result is obtained.

In a such identification system, acceptance is determined considering two
types of biometric errors:
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Table 1. Biometric comparison

Characteristics Fingerprint Hand geometry Iris Face Voice Signature

Ease of use High High Medium Medium High High
Accuracy High High Very high Very high High High

Use acceptance Medium Medium Medium-low Medium Very high High
Required security level High Medium Very high Medium Medium Medium

Long term stability High Medium High Medium Medium Medium

– FAR – False Acceptance Rate – that defines the percentage of impostors
incorrectly matched to a valid user’s biometric.

– FRR – False Rejection Rate – that defines the percentage of incorrectly
rejected valid users.

There is a trade off between FAR and FRR in every biometric system, since
they are functions of the system threshold t: if t is decreased to make the
system more tolerant to input variations and noise, FAR increases. For each
biometric technology these rates are calculated by experimental tests. Phe-
notypic features do not set limits on the FAR, but clearly, over time the
phenotypic variation imposes a lower limit on the FRR.

2.3 Critical Issue

Some systems incorrectly assume that biometric measurements are secret and
grant access to any user presenting matching measurements. On the other
hand, as sensitive data, biometrics should be properly protected, but they
cannot be considered secret. The only way to secure a biometrics system
is to ensure that the characteristics presented come from a real person and
they are obtained and authenticated during verification from the person. For
this reason it should be defined a liveness test, in which, before granting
a user access, a system must make sure that the authentication device is
verifying a living person; this tests are usually performed by the core biometric
technology.

Another critical aspect is that a biometric system must believe that the
biometric measurements presented come from a trusted input device and they
have been captured at a certain time. If authentication is performed on-device,
the device should be trustworthy; otherwise, if it is performed off-device, the
software operating environment and the communication link between the soft-
ware and the device must be secure.

2.4 Advantages and Shortcomings

Biometric characteristics are essentially permanent and unchangeable and
users cannot pass them to other users as easily as they do with cards or
passwords. Furthermore these techniques are based on features that cannot
be lost or forgotten. A biometric authentication systems is also fast. The au-
thentication of an user in a fingerprint reader system can take under two
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seconds, whereas finding a key ring, locating the right key and using it can
take as long as 10s.

Some issues remain jet unresolved. In some cases, if the input sample
quality is not sufficient for further processing, the system must reacquire
data, and the resulting system might be more complicated or more expen-
sive. Furthermore some biometric sensors, particularly those having contact
with users, have a limited lifetime. The most important drawback is that
biometric systems could violate user privacy. Biometric characteristics are
sensitive data containing personal information: for example a DNA sample
contains the user’s susceptibility to disease. A biometric system can imply
loss of anonymity, and users may consider it intrusive or personally invasive.

2.5 Traditional Versus Strong Authentication Techniques

Different authentication categories may be appropriate for different applica-
tions, depending on perceived user profiles, the need to interface with other
systems or database, environmental conditions, and a host of other application
specific parameters. The attributes of the three categories of user authentica-
tion, described in the previous sections, are compared in Table 2.

The different authentication technologies are compared in detail in [2],
giving a number of some potential attacks against user authentication and
relative defenses by each technique; however, important issue for each of them
can be summarized as follows:

– Knowledge-based: its secrecy and high keyspace defend well against search
and host attacks. Its ability to participate in challenge–response protocols
protects against replay and transmission attacks, with nonexpensive costs.
The main problem is the difficult to remember passwords for the user.
This technique does not provide a compromise detection and does not
offer much defense against repudiation.

Table 2. Basic user authentication attributes

Attributes User authentication
Knowledge based Token based ID based

Identification Password, secret Token Biometric

Supports Secrecy or obscu-
rity

Possession Uniqueness and
personalization

Security defence Closely kept Closely held Forge resistant

Security drawback Less secret Lost, stolen Difficult to re-
place

Examples Combinational
lock, password

Metal key, smart
card

Fingerprint, face
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– Token-based: it can store or generate multiple passcodes (also if combined
with a password). It provides compromise detection and added protection
against denial-of-service attacks. The two main shortcomings are incon-
venience and cost, and vulnerability to theft. Equipment cost is higher
than a password and comparable to a much secure biometric that requires
a reader. A token with biometric combination has similar security char-
acteristics to a token plus password, however, the inconvenience of FRR
for a biometric, defined in Sect. 2.2, with respect to the inconvenience of
remembering a password is matter of user preference.

– Biometrics: one advantage of biometric is that it is less easily lent or stolen
than the other authenticators, so it provides a stronger defense against
reputation. The relative simplicity also improves a better security and
trustworthy authentication process. The stability of such system refers to
the fact that a good biometric maintains its distinctive features over time,
without compromising information. A problem is the limited lifetime for
particular biometrics, but the main drawback is the possible violation of
the user privacy.

An appropriate authentication solution depends upon the particular appli-
cation, each system has its strength and weakness and no a single technique
is expected to effectively meet all requirements of all the applications like
accuracy, security, trustworthy, and cost. Although, few combinations of au-
thenticators are recommended, in order to provide secure and trustworthy
authentication systems.

3 Architecture of the Model

This section introduces an access control model based on a balanced mix of
strong and weak authentication techniques studied to guarantee a high level of
security combining the advantages of each authenticator. The proposed model
describes a trust evaluation process implemented by a system which needs to
be continuously confirmed about the identity of the user who is performing
a certain activity. As an example, we can imagine an on-line degree system
which needs to be sure of the identity of the student who is making an exam-
ination, not only before the test takes place, but also during the test itself,
in order to avoid people replacements after the initial identification process.
Figure 1 shows the basic steps of our trust process: after an initial authentica-
tion, the server can require a second or third (or even more) step of authen-
tication based on two parameters, the level of trust previously computed and
the time passed from the last authentication. We suppose the first authentica-
tion acquired by strong techniques while the following steps can be acquired
by strong or weak techniques on the basis of the trust level we have in a
certain time.
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Fig. 1. Context for trust evaluation model

3.1 Trustworthiness Evaluation Parameters

After receiving an initial strong authentication, the server accepts or refuses
the user on the basis of the biometric value (BIO) which has to be higher than
a certain threshold (th) fixed for the application. Indeed, we suppose that our
strong acquisition techniques use an internal fuzzy matching function between
the actual enrollment and the template stored. In case the user is authenti-
cated, the system receives a fuzzy value (e.g., 0.85) which represents how
the biometric enrollment matches the user’s template. The timeliness func-
tion, which shows how the system’s trust in the identity of the user decays in
time, is shown in (1) where the value BIOmax represents the initial value
obtained at the initial authentication at time t0 and D is the rate of decay.

BIO(t) = BIOmax ∗ e−(t−t0)/D (1)

Additionally, the system takes into account another parameter TOK that
represents the boolean output (high/low or authenticated/denied) of the weak
authentication system which supports the evaluation of the trust in the user’s
identity during the activity. At the initial authentication step, the weak tech-
niques are not directly involved, and the parameter TOK is automatically set
to high. Prior to the processing of the inputs, it is necessary to create fuzzy
membership functions which define the degree of membership of each input
parameter in the context of the proposed model. Furthermore, sets of fuzzy
rules, based on linguistic variables, which combine the fuzzy sets, are defined
in order to characterize the output of the model.

After the preprocessing step, the information obtained by the biometric
engine and the parameter TOK are fed into a first fuzzy inference engine Start
in order to calculate a trustworthiness value trust that provides the level of
trust of the system in the user’s identity after the initial authentication at
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Fig. 2. Trust Model combining Strong and Weak Authentication Methods and
Fuzzy Systems

time t0. The output TRUST is then fed to another engine, Confirmation, that
checks if the user is active (us(t0) = OK) and in case decides if it is necessary
a new biometric or weak enrollment to enforce the trust of the system before
the user can continue his activity. The enrollments provide new parameters
BIOt0 or TOKt0 that are used by another engine, FinalStepTrust, to compute
the definitive level of trust at time t0. If the level of trust is higher then the
threshold value defined for the application the user is authenticated and can
start to work, otherwise she is refused by the system.

After a certain time interval ∆t, the system checks if the trust acquired
at time t0 has been affected by the decay rate of the initial biometric authen-
tication and then needs to be confirmed. The trust level achieved by the user
at time t0 and the new value of the parameter BIO at time t1 = t0 + ∆t
(BIO(t1)) are now fed to the last fuzzy inference engine TimeTrust, which
decides the trust level at time t1 which can cause the system to refuse the user
or to ask for trust enforcement by going back to the Confirmation engine.

The process, shown in Fig. 2, stops when the user is not more active or
the trust level decays dramatically to the value of very low.

4 Trust Model Rules

Each model previously described in Sect. 3, has been implemented with dif-
ferent fuzzy rules, in order to control the trustworthy value at each time
step t with respect to different evolved parameters. An example of fuzzy rules,
defined for each implemented model, is reported in Table 3.
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Table 3. Sample Fuzzy Rules defined for each Trust Model

Model Fuzzy rules

Start Model IF BIO is high AND TOK is high THEN TRUST is high
IF BIO is medium AND TOK is high THEN TRUST is
medium
...
IF BIO is low AND TOK is low THEN TRUST is very low

Confirmation IF USER is ok AND TRUST is high THEN TRUST is high
Model IF USER is ok AND TRUST is low THEN TRUST is medium

AND New BIO
...
IF USER is ok AND TRUST is medium THEN TRUST is
medium AND New TOK

Final-Step IF New BIO is high THEN TRUST is high
Model IF New TOK is high THEN TRUST is medium

...
IF New BIO is low THEN TRUST is very low

Time-Trust IF BIO is high AND TRUST(t0) is high THEN TRUST(t1)
is high

Model IF BIO is medium AND TRUST(t0) is high THEN
TRUST(t1) is medium
...
IF BIO is low AND TRUST(t0) is medium THEN TRUST(t1)
is low

The Start Model is carried out at first time, giving a trustworthy value
depending on biometric and token/knowledge based acceptance rates, that
have been acquired at the initial user login step.

The trust output is then carried out at each step in the other models, and
it will be checked: if its value is lower than a fixed threshold value, than the
system rejects further user authentication and stops the entire fuzzy model;
otherwise the trust value will become one of the inputs for the further models,
in order to obtain a new trustworthy value at the new step.

The trustworthy value will go into a loop in which timed checks will be
implemented in order to obtain, respectively, user rights and user status con-
nection.

5 Conclusions

In this work we propose a fuzzy logic based methodology based on a balanced
mix of strong and weak authentication techniques studied to guarantee a high
and prolonged in time level of security combining the advantages of each
authenticator.

In such a scenario, the system, after an initial authentication phase in
which it recognizes the user profile and allows the access, performs some other
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authentication steps in which it decides if its trust in user’s identity is enough
high to allow the user to continue to perform the activity she is doing. Focus
of this paper is the description of the fuzzy logic based methodology used to
continuously check and confirm the trust level in the identity of a user.

Future work will include research studies in order to avoid biometric at-
tacks and weak malicious authentication at first access and during the overall
examination time.
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Quantification of the Effectiveness of the
Markov Model for Trustworthiness Prediction

Farookh Khadeer Hussain, Elizabeth Chang, and Tharam S. Dillon

Summary. In this paper we propose a method for determining the effectiveness of
the Markov Model for predicting the future trustworthiness value of a given agent by
utilizing simulation methods. This paper presents in detail the simulation method
that we employed in order to determine the effectiveness of the Markov Model.
Additionally the paper presents the results that we obtained form the simulation
experiments.

1 Introduction

In order determine the effectiveness of the Markov Model that we had pro-
posed in an earlier publication [2] for predicting the future trustworthiness
value of a given agent, we created a prototype application. The application
itself was programmed as a GUI, for clarity and ease of use, using Net Beans
IDE with Java SE 1.5.0 03 as programming technology.

The prototype application is designed to simulate the process of a trusting
agent, making a trusted based decision of whether or not to make an interac-
tion or transaction with the trusted agent. A number of steps are involved in
order to reach the stage of the trusting agent making a trust based decision
of whether or not to make a trust based decision about the trusted agent.
In this section, we will enumerate and discuss the steps involved in a given
simulation cycle:

1. The trusting agent issues a resource query, containing the context in which
the trusting agent wishes to carry out the transaction.

2. The other agents present in the network, who feel that they can satisfy
the request from the trusting agent reply to the resource query.

At the beginning of the simulation, each agent present in the network
is assigned a set of contexts by the application, in which it is the expert.
Similarly when the application starts, each agent in the network is assigned
a trustworthiness value in the range of [1,6]. We intend to make use of the
trustworthiness scale proposed in our earlier publications [1].
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When ever an agent, which has been assigned a trustworthiness value
of either “5” or “6” gets a resource query from another agent, requesting for
interaction in a given context, it checks whether it is an expert in that context.
If it is an expert in that context then it replies to the resource querying agent,
registering/expressing its interest in interacting with the resource requesting
agent in the specified context. However, if is not an expert in the specified
context then the agent does not reply.

When ever an agent, which has been assigned a trustworthiness value
of either “3” or “4” gets a resource query from another agent, requesting for
interaction in a given context, it checks whether it is an expert in that context.
If it is an expert in that context then it replies to the resource querying agent,
registering/expressing its interest in interacting with the resource requesting
agent in the specified context. However, if is not an expert in the specified
context then the agent replies 50% of the times, i.e., it replies to every second
resource query stating and expressing its interest in interacting with a trusting
agent in the context specified by the trusting agent in the resource query, even
though the context does not fall in its expertise.

When ever an agent, which has been assigned a trustworthiness value of
either “1” or “2” gets a resource query from another agent, requesting for in-
teraction in a given context, it checks whether it is an expert in that context.
If it is an expert in that context then it replies to the resource querying agent,
registering/expressing its interest in interacting with the resource requesting
agent in the specified context. However, unlike agents assigned with trustwor-
thiness value of “5” and “6” or “3” and “4”, the agent which has been assigned
a trustworthiness value of its interest in interacting with a trusting agent in
the context specified by the trusting agent in the resource query, even though
the context does not fall in its expertise.

3. The trusting agent then chooses an agent from the set of agents who have
replied to the resource query. The trusting agent makes use of the Markov
Model to choose an agent from among the set of agents who may have
possible replied to his resource query. The rest of this paper, explain the
working and the way in which the Markov Model has been implemented in
detail and quantifies using the metrics defined in this paper the effectives
of the Markov Model.

4. The trusting agent then notifies the prototype simulation set up about
the agent that it has chosen for interaction. Based on the information
communicated by the trusting agent to the prototype simulation set up,
it can then determine the correctness of a decision made by the trusting
agent.

This process (Step 1–Step 4) could be repeated as many times as desired
by the user. The effectiveness of the Markov Model in making a trust based
decision by predicting the future trustworthiness value of an agent is de-
termined based on the effectiveness or accuracy of the decisions made in
Step 4.
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This paper is organised as follows, In Sect. 2, we explain in detail the
exogenous parameters used in the simulation set up. Sections 3 and 4 sum-
marize and explain each of the phases in the simulation set briefly. Finally
the results are presented in Sec. 4. Section 5 concludes the paper along with
future work.

2 Exogenous Parameters Used in the Simulation

Table 1 presents to the user the exogenous parameters that have been used in
the application. Exogenous parameters are parameters controlled by the user
of the system. They allow the user to set up a custom test environment for
which to perform the required simulations.

3 Behaviors of the Agents in the Prototype Simulation

The simulation is set up in such a way that agents with different trustwor-
thiness values would exhibit different behaviors. As mentioned before, the
total number of agents that the user wants or desires in the simulation set is
specified by the user. The prototype simulation set up then assigns a trust-
worthiness value to each agent in the simulation set up. Agents are classified
according to their behavior. We define the behavior of an agent as “the way in
which it conducts it self in a given situation or circumstance.” The behavior
of an agent in turn depends directly on the trustworthiness value assigned
to it by the simulation set up. We have three different classes of behavior
and each class of behavior varies form the others in terms of how an agents
responds or reacts to a given situation. Agents who have been assigned a trust-
worthiness value of either “5” or “6” would take the behavior of Trustworthy
Agents of Good Agents. On the other hand agents who have been assigned a
trustworthiness value of either “3”or “4” would take up the behavior of Neu-
trally Trustworthy Agents. On the other hand agents who have been assigned
a trustworthiness value of either “1”or “2” would take up the behavior of
Malicious Agents or Bad Agents or Untrustworthy Agents. The behavior of
each agent is a collection of activities that that agents performs in a given
situation.

An important point to be noted here that, the objective of this simulation
is to measure or quantify the effectiveness of the Markov Model in making a
correct trust based decision and not to determine the effectiveness in which the
behavior of an agent can be modeled. Hence it is not necessary that we have
six different kinds of behaviors corresponding to six different trustworthiness
values, in order to determine the effectiveness of the Markov Model. In order
to determine the effectiveness of the proposed Markov Model, all we need is
a means by which the prototype simulation system can assign a particular
class of behavior to a given agent (trusted agent) (as mentioned before each
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Table 1. Exogenous parameters

Parameter Description Possible values

# Network
agents

Sets the total number of agents to
be used in the system

0<x<100000

% Malicious
agents

Sets the percentage of total agents
to be regarded as untrustworthy

−1 < x < 100

# Neutral Sets the number of total peers to be
regarded as neutrally trustworthy

−1 < x < Total Peers

# Number of
simulations

Sets the number of iterations that
the simulation will do before
stopping

0 < x < 100000

# Simulation
increment

Sets an interval for the number of
times the results will be compiled
while the simulation is running

0 < x < #Number of
simulations

# Network
agents:

The total number of agents with which the user wishes to run the
simulation. This value must be greater than 0 and less than 100,000.

% Malicious: This field corresponds to the percentage of Network Agents that
would be assigned a trustworthiness value of either “1” or “2” in
the simulation. These agents would hence exhibit and display a be-
havior that corresponds to the trustworthiness of “1” and “2”. The
simulation set up can have zero or more malicious peers but there
can never be more than 99% of the total agents in the simulation
set up.

# Neutral : This field corresponds to the number of agents that would be as-
signed a trustworthiness value of either “3” or “4” in the simulation.
These agents would hence exhibit and display a behavior that cor-
responds to the trustworthiness of “3” and “4”. A simulation set
up can have zero or more neutral peers and no more than the total
peers in the system.

# Number of
simulations:

This is the total number of simulations cycles in the whole simu-
lation. A simulation consists of a candidate agent being selected,
soliciting a resource request and gathering replies, and then process-
ing reputation replies. A Markov model is then used to determine
the agent which the trusting agent (or selected agent) should choose
to interact with Results are gathered at the end of each simulation
cycle. The application only allows for 99,999 as the maximum num-
ber of simulations.

# Simulation
increment :

This is the interval of simulation cycles that are run, during the
simulation, which the simulation time will increment and results
will be processed for that set of simulations, in the interval. Since
the Markov model is dynamic and has a time aspect, this is used
to increment the fictional time element of the Markov model. At
the end of each cycle, misrepresentation and transaction results are
processed and calculated for number of simulations in the given
interval.
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class of behavior is associated with a unique trustworthiness value/s) and then
as the simulation progress we need to find out whether or using the Markov
Model the trusting agent can determine the trustworthiness value or the class
of behavior of the trusted agent. If using the Markov Model the trusting
agent has been able to successfully determine the trustworthiness value of the
trusted agent then the prediction process is said to be accurate. Additionally,
if using the Markov Model the trusting agent has not been able to successfully
determine the trustworthiness value of the trusted agent then the prediction
process is said to be inaccurate.

We have defined three classes of behaviors based on how an agent responds
in the following three situations:

1. When it is presented with a resource query.
2. When it is presented with a reputation query.
3. When it has been chosen to carry out a transaction.

We classify and derive the three kinds of behavior based the different responses
to the above three situations.

As can be seen from above, we have defined ONLY those behaviors for the
agents to which they have to respond to during the simulation of the Markov
Model. As has been explained in Sec. 1, once the simulation set up has chosen
a trusting agent, it then issues a resource query. So the behavior an agent ex-
hibits on receiving this resource would vary and various sorts of behaviors can
be seen in Table 2. Once the trusting agents compiles a list of all the agents who
are willing to provide it with the requested resource, then it issues a reputation
query for each of them. The way in which an agent replies to a given repu-
tation query varies and depends on its behaviors. Finally once an agent has
been chosen by the trusting agent for interacting the way in which it interacts
again depends on its behavior. As can be seen there are only three situations
or circumstances in which the behavior of a given agent could vary during
the running of the Markov Model. We have defined three different for each
circumstance or situation corresponding to the three different types of agents.

During simulation we have to consider the behavior at a certain level
of abstraction. Our level of abstraction is composed of the three situations
mentioned above. In reality however, the behavior of an agent in the real world
would be an exhaustive list of activities which correspond to the ways in which
an agent responds to different situations. Since we are building a simulation
set up for the Markov Model we have considered only those situations which
an agent may face during the Markov Model.

4 Effectiveness of Markov Model on Trust Based
Decision Making

This section presents the effectiveness of the Markov Model in predicting
future trustworthiness value of a given agent and walks through an example
scenario by taking a set of inputs and outputs. As listed in Sect. 2 the user
needs to specify the exogenous parameters in order to start the simulation.
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Fig. 1. Figure showing the parameters that the user needs to specify

From this screen (see Fig. 1), it can be seen that there are 50 network
agents, which is the total number of agents in the prototype simulation set
up. The user wishes 50% of these total agents to take up the behavior of
malicious agents (which is specified in the %Malicious textbox). Once the
percentage of the malicious agents and the number of neutral agents have
been specified by the user, the prototype system automatically updates the
number of agents in the network that should take up the behavior of the good
agents. The prototype simulation system is set up so the user cannot specify
the number of agents with malicious behavior or the number of agents with
neutral behavior more than the number of network agents. Additionally there
has to be at least one good agent in the system.

The last two parameters that the user needs to specify are the total number
of simulation transactions (specified in the #number of simulations textbox)
and the number of simulation transactions after which the results should be
updated (specified in the #simulation increment textbox). In this case the
user has specified the total of simulation transactions to be 100. This means
there will be 100 total simulations transactions and after every 20 simulation
transactions, a new time interval occurs and results for those 20 simulations
are compiled into a single reference point of data.

Using these parameters the simulation takes about 15 s to run through
and then all results are available. Note: more agents (in particular malicious
agents) and more simulations would mean a longer simulation time.

In order to determine the whether or not the Markov Model aids in the
process of making a correct decision, we have classified the transactions taking
place in the system into two classes, namely

– Good Transactions: those transactions in which a correct decision (the
resource querying agent ended up making a decision of interacting with
an agent of trustworthiness value of either “5” or “6”) was made by the
resource querying agent by making use of the proposed Markov Model.
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– Bad Transactions: those transactions in which a incorrect decision (the
resource querying agent ended up making a decision of interacting with
an agent whose trustworthiness value was neither “5” nor “6”) was made
by the resource querying agent by making use of the proposed Markov
Model.

The percentage of good transactions in a given interval is computed using
the following formulae

%Good Transactions =
(Transactions in which correct decision was made/Total Transactions)

*100
The first section is the results section of the prototype simulation setup, has

the results of the good and bad transactions which took place. When the user
clicks on the transaction correctness tab, he/she can see two subtabs appear
in the panel and you can choose between the percentage of good transactions
and the percentage of bad transactions.

The Good Transactions (Fig. 2) graph’s x-axis is represented as the num-
ber of transactions and goes from 1 to 5. As you recall from the parameters
we entered 100 simulations with an increment of 20. This means every 20
simulations a new data point is formed to represent the previous collection of
20 simulations. Therefore five data points form to represent the results of the
simulation. In this case, for all sets of 20 simulations it showed the percent-
age of good transactions in each lot was 100% which means overall a good
transaction was made 100% of the time, which means the Markov model is
working accordingly.

Fig. 2. Graph showing the percentage of correct (good) transactions
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Fig. 3. Graph showing the percentage of bad transactions

On the flipside is the percentage of bad transactions which is shown in
Fig. 3.

%Bad Transactions =
(Transactions in which incorrect decision was made/Total Transactions)

*100
As you can see from the picture, at all of the five sets of data points no

bad transactions (i.e., 0%) were made, which complies with the 100% success
rate of the agent.

5 Conclusions and Future Work

In this paper we presented a simulation based method in order to test the
effectiveness of the Markov Model for determining the effectiveness of the
Markov Model. We presented and explained in detail the various steps involved
as well. We presented the three different classes of agents based on their
trustworthiness values and their behaviors as well.

Finally, we presented the results that we got form the simulation set up.
We found that the Markov Model is very effective to the extent of 100%
determining the future trustworthiness of an agent assuming that the system
is stationary. We intend to do future work along several directions. We intend
to explore how the effectiveness of the system in case it is nonstationary.
Additionally we intend to find out the effectiveness of the Markov Model
in determining the witness trustworthiness value of the agents accurately.
Additionally we intend to explore as future work the accuracy of the trust
based decisions made by an agent by employing the Markov Model, when the
trustworthiness value of the reputation queried agent or the trusted agent
tends to be dynamic over different time slots.
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Fuzzy-Genetic Methodology for Web-based
Computed-Aided Diagnosis in Medical
Applications

F. de Toro, J. Aroba, J.M. Lopez

Summary. This paper presents an integrated fuzzy-genetic methodology to address
web-based computed-aided diagnosis by using bio-signal processing in medical
applications. A deterministic crowding genetic algorithm is used for obtaining differ-
ent subsets of features that provide high performance classification in a K-Nearest
Neighbor classifier. These subsets of features are then used as training data in a
rule generator based on fuzzy clustering to obtain a performance qualitative model
that can give information about the more suitable features to use in the diagno-
sis. This model can also be used to assess the (performance) accuracy that will be
reached by using a given set of features – possible those ones available at a specific
medical centre. The overall methodology is applied to Paroxysmal Atrial Fibril-
lation (PAF) – the heart arrhythmia that causes more frequently cerebrovascular
incidents – Diagnosis based on analysis of nonfibrillation ECGs

Key words: Computer-aided diagnosis, Evolutionary algorithms, Machine
learning, Fuzzy clustering, Decision making.

1 Introduction

We can define computed-aided diagnosis (CAD) as the diagnosis a physician
makes using output from a computerized analysis of medical data. Multiple
features are used to classify an observation as normal or abnormal. A ra-
diologist may, for example, note the size, shape, and margin sharpness of a
potential breast in a mammogram and somehow use this information to deter-
mine whether a cancer is present. The goal in training a diagnostic classifier
is to employ a limited dataset including normal (without disease) and ab-
normal (with disease) cases to determine the classifier parameter values so
that it correctly classifies other datasets of unknown pathology. The training
of a classifier can be viewed as an optimization problem where the quantity
to be maximized is the performance of the classification on an independent
dataset. Binary classifiers [1] separate two classes of observations and assigns
new observations to one of the two classes: the normal (no disease evident) and
abnormal (indicative of disease) class. As mentioned, certain characteristics



202 F. de Toro et al.

of the observations, called features, are used in making the classification deci-
sion. The process of choosing the characteristics used in a diagnostic classifier
takes place in the so-called feature selection stage [2]. Evolutionary algorithms
(EAs) [3] and, above all, one of its most-applied paradigms – genetic algo-
rithms [3,4] – have been applied successfully for feature selection [5] and also
for determining the classifier parameters values in medical diagnostic appli-
cations: e.g., weights of an artificial neural network [6] or thresholds in rule-
based detection schemes [7]. The ability to find multiple solutions in a single
iteration gives EAs a privileged position to address multimodal optimization
problems [8]. There are two good, practical reasons which may prompt the
location of multiple optima in such types of problems. First, by encouraging
the location of multiple optima, the chances of situating the global optimum
are increased. Secondly, in a design context, identifying a diverse set of high-
quality solutions (global and local optima) will provide an insight into the
nature of the design space and suggest alternative solutions. This second pos-
sibility has been poorly exploited so far [8]. Nevertheless, in [9] we addressed
the utilization of a genetic (evolutionary) algorithm in the feature selection
stage of a classifier for Paroxysmal Atrial Fibrillation (PAF) diagnosis, the
heart arrhythmia that causes more frequently cerebrovascular incidents [10].
A deterministic crowding [11, 12] technique was embodied in the design of
the genetic algorithm in order to improve the chances of obtaining diversi-
fied solutions (different subsets of solutions) from this natural multimodal
optimisation problem. Here, a solution to the problem is a subset of features
that provides good performance classification (so high-quality local optima
can also be considered for this purpose). This enables specialists to make a
diagnosis based on different subsets of features. This is of great interest, since
some characteristics may be unreliable due to the interference of other medical
disorders that the patient may have. It also allows specialists from different
centers to adopt a concrete subset of characteristic criteria depending on the
equipment available at a particular center. Sometimes, the specialist may not
have access to the instrument required to measure a certain characteristic
so some of the solutions cannot be used. After the multimodal optimization
process, the diagnostic performance based on different subsets of characteris-
tics is known. In this paper, we step forward from our previous work presented
in [9] by using a fuzzy-clustering tool that inferences qualitative knowledge
from the population of solutions (different subsets of features) obtained from
the optimization process carried out during the training of the classifier. In
a more specific way, the fuzzy rule generator integrated in the methodology
diagnosis, called PREFURGE [13], provides some qualitative rules regarding
the performance accuracy that can be reached in the diagnostic classification.
Each rule obtains information about the performance accuracy as a function
of the degree of participation of every feature in the classification process. The
information contained in these rules can be useful in different ways: (1) to ex-
tract some conclusions about which are the more important features in order
to get a good performance classification; (2) to predict which performance
classification can be obtained by using a given subset of features available at
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a specific medical center. In the following section, the overall PAF computer-
aided diagnosis methodology presented in this paper is explained. First of all,
Sect. 2.1 summarizes some previous work concerning the automatic diagnosis
of the PAF by using nonfibrillating ECGs. Then Sect. 2.2 revisits the fuzzy rule
generator PREFURGE and shows how it is integrated in the aforementioned
methodology. Section 2.3 discusses a prospective web-based implementation
of the methodology described in Sect. 2.2. In the last section, experimental
work addressing the extraction of fuzzy rules in a PAF diagnosis application
is given. We finalize this work with a summary of the conclusions drawn from
this investigation.

2 Materials and Methods

In many situations, the medical diagnosis of health disorders (e.g., heart dis-
ease) can be addressed through the extraction of characteristic parameters
from bio-signals such as ECGs. In many cases, this kind of noninvasive diagno-
sis is more appropriate than other solutions involving surgery. The extracted
characteristics (also called features) are used in an algorithm for classifica-
tion to produce a computed-aided diagnosis. Computed-aided diagnosis can
be used with other diagnostic strategies, e.g., as a second reading or second
opinion in making diagnostic decisions [14]. Next section reviews our previous
work addressing PAF Diagnosis.

2.1 Previous Work in the Field of Automatic PAF Diagnosis

In [15,16], we addressed the diagnosis of the PAF by using a K-Nearest Neigh-
bor (KNN) algorithm to make the classification decision (healthy or ill pa-
tient). The features used for the classifier were selected from an initial group
of features extracted from ECGs noncontaining explicit fibrillation episodes
so a preventive diagnosis is addressed. A detailed explanation of the extracted
features is given in [16]. In [15], the feature selection process is performed us-
ing a forward stepwise search (FSS) algorithm . One method of FSS begins by
selecting the single best performing feature as a seed. It then steps through
each subsequent feature, adding it to the subset if it improves the classifica-
tion accuracy, and discarding it otherwise. Each feature has only one chance
to survive, which limits the possible combinations. In addition to this, from
the optimization process performed by the FSS algorithm only one solution
(subset of features) is obtained, so the medical specialist is restricted to use
only one subset of features to make the classification decision, furthermore the
FSS performs a one track process that easily discards a feature entirely after
a single consideration of its usefulness. In [9], the aforementioned approach
is improved by using an evolutionary algorithm in the feature selection stage
previous to the KNN classification algorithm (see Fig. 1). A Deterministic
Crowding [11, 12] technique was embodied in the design of the evolutionary
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Fig. 1. Methodology for PAF diagnosis using a multimodal evolutionary algorithm
for feature selection

algorithm in order to improve the chances of obtaining diversified solutions
(different subsets of solutions) from this natural multimodal optimization
problem. There are two main advantages of this approach regarding the FSS
algorithm used in [15]. (1) Different search paths are explored concurrently
and a feature is not discarded after a single consideration of its usefulness.
That way, the chances of being trapped in local optima are lowered. (2) After
the optimization process, different subsets of features that provided a good
performance classification are obtained, so the specialist can use those fea-
tures available at a specific medical center or those one more robust to the
interfering action of other heart diseases. This methodology (Fig. 1) involves a
first stage of the general parameter definition [16], followed by the extraction
of a set of characteristics (feature vector), which are used by the diagnostic
scheme (KNN classifier) to obtain the decision label (normal/abnormal case).
The characteristics are related to the physical properties of the biomedical
signal. Thus, the diagnostic decision is a label obtained as a function of cer-
tain input items or characteristics (Ci). The diagnostic scheme is applied to
the input items, after which the diagnosis (DL) is obtained for each subject.

This diagnostic methodology is modular so that different researchers are
able to easily add (or remove) new features to the vector. After this para-
meter analysis, the basic feature vector containing all defined parameters is
multiplied by a weight vector. A value ranging between 0 and 1 is assigned
to each component of the weight vector, according to the degree of influence
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that each component of the parameter vector has on the diagnostic scheme.
To optimize the performance accuracy, the values of the weights are itera-
tively adjusted by an evolutionary algorithm. Moreover, we are able to decide
whether the components of the weight vector will take real values (ranging
from 0 to 1) or binary values (0 or 1). In the first case, each solution (weight
vector) shows the importance of each component of the characteristic vector.
In the second case, each solution indicates which components of the char-
acteristic vector should be considered in the diagnosis. Due to the fact that
EAs work with a population of candidate solutions, different choices of weight
vectors can be explored in a single iteration of the algorithm. If the necessary
diversity mechanism [17] is incorporated into the EAs, at the end of the con-
vergence, the set of solutions obtained (each solution is a different subset of
weights) is diverse and provides the specialist with the necessary flexibility.
Deterministic crowding is chosen as diversity maintaining technique for two
main reasons: (1) it shows a good performance in several comparative studies
regarding other methods [12,17]; and (2) in contrast with other techniques like
clearing [18] or fitness sharing [4], there is no need to determine any user para-
meter. Distance metric is defined in the parameter space (genotype distance)
to encourage dissimilarity between features contained in the solutions.

2.2 Fuzzy-Genetic Methodology for PAF Diagnosis

In this work, we step forward from this previous work by adding a final fuzzy
rule generation stage that enables to extract qualitative information from the
set of solutions obtained from the training of the classifier. In a more specific
way, the fuzzy rules obtain the performance classification as a function of the
degree of importance given to each feature in the diagnostic scheme-measured
with the weight vector. The fuzzy rule generator explores all possible infor-
mation contained in the set of solutions obtained from the training of the
classifier. This information can be used to determine which are the features
more suitable in order to get a good performance classification. These rules
could also be used to predict the performance classification that can be ob-
tained by using the features available at a specific medical center. Lastly, the
information found by the PREFURGE tool can be used to speedup the train-
ing of the classifier by providing a good guess for the initial population of
the evolutionary algorithm. The overall methodology is depicted in Fig. 2. In
what follows we review PREFURGE [13] used as a fuzzy rule generator in
this methodology.

PREFURGE (Predictive Fuzzy Rules Generator)

Classical clustering algorithms generate a partition of the population in a way
that each case is assigned to a cluster c. These algorithms use the so-called
“rigid partition” derived from the classical sets theory: the elements of the
partition matrix obtained from the data matrix (with n elements) can only
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Fig. 2. Methodology for the Paroxysmal Atrial Fibrillation diagnosis by using an
integrated Fuzzy-evolutionary approach

contain values 0 or 1; with zero indicating null membership and one indicating
whole membership to each one of the c partitions. That is, the elements must
fulfill:

(a) µik ∈ {0, 1}, 1 ≤ i ≤ c, 1 ≤ k ≤ n,

(b)
c∑

i=1

µik = 1, 1 ≤ k ≤ n,

(c) 0 ≤
n∑

k=1

µik ≤ n, 1 ≤ i ≤ c. (1)

Fuzzy partition is a generalization of the previous one, so that it holds the
same conditions and restraints for its elements, except that in this case real
values between 0 and 1 are allowed (partial membership grade). Therefore,
samples may belong to more than one group, so that the selecting and clus-
tering capacity of the samples increases. From this we can deduce that the
elements of a fuzzy partition fulfill the conditions given in (1), except that
now condition (a) will be written as:

µjk ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ n. (2)

The best known general-purpose fuzzy clustering algorithm is the so-called
Fuzzy C-Means (FCM) [19]. It is based on the minimization of distances
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between two points (data) and the prototypes of cluster centers (c-means).
For this purpose, the following cost function is used

J(x, u, v) =
c∑

i=1

n∑

k=1

(µik)m | xk − vj |2A, (3)

where U is a fuzzy partition matrix of X, V = (v1, v2, ..., vn) is a vector of
cluster center prototypes which must be determined and m ∈ [1,∞] is a
weighting exponent which determines the degree of fuzziness of the resulting
clusters. Finally,

D2
ikA =| xk − vi |2A= (xk − vj)TA(xk − vi) (4)

is the norm used for measuring distances (matrix A induces the rule to be
used – provided that it is the unit matrix, which is very frequent – i.e., the
Euclidean norm). The described algorithm was used [20] to build a fuzzy
model based on rules of the form

R′ : IF x ∈ A′ THEN y ∈ B′, (5)

where x = (x1, x2, ..., xn) ∈ R are input variables, A = (A1, A2, ..., An) are
n fuzzy sets, y ∈ R is the output variable and B is the fuzzy set for this
variable. The fuzzy clustering tool used in this work, PREFURGE [13], uses
the algorithm described in [20] improved in the following aspects:

– It allows working with quantitative databases, with n input and m output
parameters.

– The different variables object of study can be weighted by assigning them
weights for the calculation of distances between points of the space being
partitioned.

– The achieved fuzzy clusters are processed by another algorithm to obtain
graphic rules trapeziums (Fig. 3).

– An algorithm processes and solves cases of multiple projections in the
input space (mounds).

– The output provided in the original method has been improved with a
graphic interface showing the graphic of the achieved rules.

– An algorithm provides automatically the interpretation of the fuzzy
graphic rules in natural language.

Furthermore, it is important to note that the graphic output provided
by PREFURGE enable an easy interpretation of the fuzzy rules in a natural
language. As an example, Fig. 4 shows two rules generated by PREFURGE.
In the rule of Fig. 4a, the fuzzy set assigned to each parameter is represented
by a polyhedron. The parameter values are represented on the x-axis of each
fuzzy set, and the value of membership to a cluster on the y-axis. This fuzzy
rule would be interpreted as follows:
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Fig. 3. Approach by trapezes carried out by PREFURGE

Fig. 4. Two examples of fuzzy rules generated by PREFURGE

“IF P1 is small and P2 is bigger or equal to average THEN S is very small.”
When applying the fuzzy clustering algorithm [13] to the generated data-

bases, it is possible to obtain multiple projections in the input parameters. In
the fuzzy rule of Fig. 4b, a multiple projection is represented in the input pa-
rameter A1. In this case we observe how the parameter A1 can take different
types of values for a certain kind of output. This fuzzy rule can be interpreted
as follows:

“IF A1 is small or big and A2 is average THEN O is very small.”

2.3 Web-Based Implementation

The immense possibilities that the Internet provides for information remote
access and global connectivity has led to an increasing effort in applying
the so-called new technologies in the field of health care as well as others.
In this context, telemedicine is defined in [23] as “the combined use of
telecommunications and computer technologies to improve the efficiency and
effectiveness of healthcare services by liberating caregivers from traditional
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constraints of place and time and by empowering consumers to make informed
choices in a competitive marketplace.” Finally, new technologies enable the
easy sharing of resources and databases for medical investigation purposes.
All this reasons justify the increasing effort in exploring the benefits that the
Internet can bring to both the medical specialist and health care researchers.

In this sense, we can see that a web-based implementation of the method-
ology presented in Sect. 2.2 remotely accessible through the Internet is very
beneficial. Final users, such as medical specialists can extract the features
from the patient bio-signal data and send the extracted features via on-line
towards the web diagnostic applications which would deliver the computed di-
agnosis within a relatively small response time. Furthermore, this centralized
approach for the implementation of the discussed methodology of this paper
enables an easy upgrade of the features used in the diagnostic. Researchers can
find new features improving the current classification accuracy on test data,
these new features could be also send on-line to the remote web-application
for an immediate upgrade.

3 Case Study

As an example of the application of the diagnostic methodology described in
this work, a public database provided by Physiobank [21] and used in our
previous works related to PAF diagnosis [9] has been used. It comprises the
ECG records of 25 healthy individuals (n files) and 25 patients diagnosed
with PAF (p files). The records are labeled (healthy or ill). We have used
14 definable characteristics from the ECG records. Real coded weight vector
(each component is a real number between 0 and 1) has been considered
instead of the binary representation used in [9]. This way, the weight vector
gives information of how important is each feature in order to obtain a good
performance classification. For biomedical diagnostic applications, the final
diagnosis is that either a patient is ill (suffering a certain pathology) or healthy
(free from this particular pathology). This means that the classification result
can be one of the following cases: (1) the algorithm classifies the subject as ill
and the subject is in fact ill (true positive, TP); (2) the algorithm classifies
the subject as healthy and the subject is in fact healthy (true negative, TN);
(3) the algorithm classifies the subject as ill but the subject is healthy (false
positive, FP); and (4) the algorithm classifies the subject as healthy but the
subject is ill (false negative, FN). Within these cases, different functions have
been considered as performance criteria in the fuzzy rule generator.

Classification accuracy:

C =
TP + TN

TP + TN + FP + FN
. (6)

Sensitivity: it represents the ratio between the detected ill patients and
the total ill patients.
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SENSI =
TP

TP + FN
. (7)

Specificity: it represents the ratio between the detected healthy subjects
and the total healthy subjects

SPECI =
TN

TN + FP
. (8)

Due to the small size of the test database (25 PAF patients and 25 nonPAF
subjects), the evaluation of the classification accuracy (and sensitivity) is cal-
culated in 50 cycles by the leaving one out method [21], i.e., in each cycle,
one vector is selected from the database as the test element. This vector is
classified according to the scheme described above, with the other 49 labeled
vectors serving as classification references. In each cycle the classification re-
sults are updated in four counters: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). Finally the Classification accu-
racy, sensitivity, and specificity are calculated following the equations (6)–
(8). The crossover operator used in the deterministic crowding procedure is
a single-point real-coded operator [22]. Two different types of mutation have
been considered: uniform mutation (9) and Gaussian mutation (10). Then, the
mutated weigh components are obtained from a uniform distribution function
and a normal distribution function, respectively. Each type of mutation is used
with a probability of 0.5. The mutation rate probability has been set to 0.6.

w′
j = U(0, 1), (9)
µ = wj ,

σ =
√

min((1− wj), wj),

w′
j = N(µ, σ). (10)

For the training of the classifier, the deterministic crowding algorithm has
been run during 1014 weight vector fitness evaluations. After this optimization
period more than 200 different subsets of features providing a performance
classification above 80% were obtained. These solutions were used as training
data in PREFURGE, and six different rules were discovered (Figs. 5, 6). For a
better visualization of the results, the rules appear splitted into two figures in-
volving parameters P1–P7 and P8–P14, respectively. Each rule contains fuzzy
input weight vector information of each of the 14 definable weight components
and three fuzzy output performance indicators: classification accuracy (label
S1), sensitivity (label S2), and specificity (label S3). From a medical point
of view, information concerning to parameters that lead to a “high classifi-
cation accuracy” and “high sensitivity” – first rule in Figs. 5 and 6 – is of
interest. The sensitivity gives information about how accurate the classifier
diagnoses ill patients. From the observation of the first rule in Figs. 5 and 6
in our experiment, we can conclude that the presence of P8 and P12 features
and the absence of P1 and P2 features lead to a high classification accuracy
and a high sensitivity.
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Fig. 5. The discovered six-rules for PAF application with the seven definable para-
meters (P1–P7) and 3 output variables: classification accuracy (S1), sensitivity (S2),
and specificity (S3)

Fig. 6. The discovered six-rules for PAF application with the seven definable para-
meters (P8–P14) and three output variables: classification accuracy (S1), sensitivity
(S2), and specificity (S3)
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4 Concluding Remarks

This work presents a methodology to address computed-aided diagnosis. This
methodology consist of an initial training of a KNN classifier by using a de-
terministic crowding genetic algorithm in order to obtain a set of solutions to
adjust the classifier. A solution is compound by a set of features to base the
diagnostic classification on. Then, the set of solutions is used as an input of
a fuzzy clustering algorithm in order to obtain a model based on IF–THEN
rules. These rules can be used to predict the performance classification than
will be obtained by using a specific set of features and also to extract in-
formation about possible patterns in the set of found solutions such as rele-
vant/indifferent features for the diagnosis. The methodology has been applied
to a PAF diagnosis experiment.
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Weight Optimization for Loan Risk Estimation
with Genetic Algorithm

Irina Lovtsova

Summary. This paper considers an application of genetic algorithm for finding
some weight values for loan risk estimation, used for objective principles analyzing
the creditworthiness and payment ability of private individuals. To provide genetic
algorithm working in this kind of task, some modifications were made in genetic op-
erators, fitness function calculation, and data representation. During optimal weight
values finding process, statistical data are divided in two parts – training and test-
ing data sets. The generated population consists of possible weight values. Crossover
and mutation operators work only with the generated data. Fitness calculation is
provided for generated data of the individuals, respectively, statistical data. The
increase of fitness function value depends on successful choice of weight values com-
bination, respectively, the statistical data set. For the search progress it was decided
to provide the insert and further keep the individuals with worse fitness in the special
table during the algorithm run.

Key words: Genetic algorithm, Fitness function, Crossover, Mutation.

1 Introduction

This paper presents genetic algorithm (GA) application for weights finding to
estimate the possible risk to give a loan – is it acceptable or not [1, 4]. The
decision has the relative importance for the statistical data that are repre-
sented with nine criteria. If all criteria were to receive the same weight, then
all criteria are equally important. So, this is not the fact and some different
weighting scheme would be chosen as a common method for the loan risk
suggestion.

The use of genetic algorithm to solve this kind of task requires some
modification in genetic operators, fitness function calculation and data rep-
resentation, particularly, if statistical data have continuous and numerical
representation [3], and it is stored in database. To solve data representation
problem it was decided to describe the statistical data with points that esti-
mate each criteria value.

Crossover and mutation operators work only with the generated data. To
provide the ability to get 100% after generated weights sum calculation, some
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modifications in crossover operator were used. Modified mutation can provide
only good solutions – in case if a better solution is not generated, mutation
will never be accepted. The knowledge about weakness individuals is kept in
the table of weak individuals and any generation of the same individual is
restricted – it will be replaced by the fittest one. The crossover operator uses
the aforementioned table too – in case if the obtained offspring is the same as
the individual’s from the table of weak individuals, then crossover results must
be rejected and operator will run one more time. It will increase the search
efficiency because the individuals with worse fit will not be reviewed in the
further generations.

To make the calculation of fitness easy all possible computations concern-
ing the statistical data were used before. The database represents the statis-
tical data that are represented by estimation points and decision regarding
the loan risk. The decision concerning the loan risk acceptability is based on
knowledge that is obtained from the statistics.

2 GA in Weight Optimization Task

This task provides common principles as objective as possible for analyzing the
loan worthiness and payment ability of private individuals that are clients of
the bank that gives loans. The statistical data have continuous and numerical
representation [3]. So, to make the data representation easy it was decided
to describe the statistical data with points that estimate each criteria value.
Some of the represented criteria values, such as net incoming margin, are
calculated using some formulas and only then estimated by point system (0–5)
(See Table 1).

Statistical data are represented with estimation points (minimum point
value is 0 and maximum is 5) and loan risk estimation (acceptable or not
acceptable risk)

p1, p2, . . . , p9, y.

In the weight optimization task, the independent variables are represented
as a set of point values and the dependent variable y is the decision regarding
the loan risk (to give the loan or not).

Initial population is generated by random and represented as a set of nine
weight values [1] with precision 2 signs after comma that in the sum will give
100%

w1, w2, . . . , w9.

After the obtained weights multiplication by respective point values

w∗
1p1 + w∗

2p2, . . . , w
∗
9p9,

the decision about loan risk acceptability would be provided using threshold
criteria (that is determined by loan keeper).

The algorithm activity is divided in two steps – the training and the testing
processes. During the training process the fittest weight values combination
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Table 1. The name of criteria, criteria values, points values, and weights

Criteria Criteria values Points Weights

Age of the borrower <18, 18–24, 25–35, 36–65, >65 0–5 w1

Education University (degree), university
(student), special, secondary
school, lower

0–5 w2

Marital status Married, living together, single,
divorced, widow (-er)

0/5 w3

Saving/investment products Yes/no 0/5 w4

Net income margin <0%, 0–5%, 5–10%, 10–15%,
15–20%, >20%

0–5 w5

Employment High, acceptable, medium, low 0–5 w6

Estate Significant, insignificant, not
holder

0–5 w7

Internal loan history Past loan overdue 0–5 w8

External loan history No any overdue, paid-up
overdue, no information,
existing overdue

0–5 w9

will be found to estimate the loan risk with high accuracy. This process pro-
vides the detection of fitted weight values. The testing process is used to prove
the fitness of training results. In case if the found weight values cannot provide
the respective results during the testing process the training process will be
repeated.

The next modification that was applied solving this task is a table of
weak individuals, in which the information about weak individuals, obtained
during mutation and also crossover, is kept during the algorithm run. This
table contains the following individuals:

– An individual, that was selected for mutation, but the mutated individual
has better fitness

– Offspring value, that is generated during crossover and whose values are
the same as the individual’s from the table of weak individuals

3 An Individual Fitness

Fitness function is a criterion that determines the fitness of each individual of
the population regarding the database of statistics. The fitness of each indi-
vidual was calculated by running through all the data of statistical database
that is divided into training and testing parts.

The fitness function calculation for training process has simple structure
due to the database data representation (in the database all the data are
represented using the points that estimate each statistical date for loan):

Fitness =
MNP

CNP
. (1)
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The condensation MNP means the maximal number of points that may be
collected after comparison of the individual with each loan risk data from the
database before and after applying weights in case of they all are true. Second
condensation CNP describes the number of collected points after comparison
of the individual with each loan risk data from the database before and after
applying weights.

The number of collected points is evaluated, respectively, percentage to
the number of maximum number of points that are possible to collect.

The fitness during the testing process will be calculated in the same way
reposing on the testing statistical database. The main criteria, on which the
result of weights accuracy will be based, is the possible error value. So, if the
difference between training and testing fitness of the obtained weight values
would be wide (>10%), then the obtained result cannot be accepted. It means
that the training process will be run one more time.

4 Crossover

The basic operator for producing new individuals in the GA is crossover [2].
Weight optimization task has a particular point – the sum of weight will
be equal to 100%. So, after individuals crossing this sum may be changed.
To keep the sum of weight values the crossover operator has the following
modifications:

– Take a pair of two individuals chosen by selection
– Randomly choose the crossover point
– Calculate a sum of weight variables from the individuals that are located

before and after crossover point
– Shift vice verse the respective parts of the pair of individuals in the rough

guide of the crossover point
– Compare a sum of weight values that are located in the shifted individual

part before and after crossover. In case if these sums are different, the
part which belongs to the individual with the worst fitness will have some
correction (after crossover the difference value will be subtracted or added
to the part of weakness individual that is located before/after crossover
point)

– In case one or both of the obtained offspring is the same as the individual’s
from the table of weak individuals, then crossover results must be rejected
and operator will run one more time

5 Mutation

Mutation operator is used for finding new points in the search space under
evaluation. However, the mutation operator may also cause a loss of a very
good solution. To solve this problem, the mutation operator was modified to
help to generate only a good solution [5].
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The new individual creation process applying the modified mutation has
the following steps:

– Randomly choose an individual
– Randomly choose some weight values from the individual. The number of

chosen weight values is generated by random
– Calculate a sum of all chosen weight values from the individual and then

randomly generate the same number to the chosen weight values. The sum
of generated weighs will not be changed

– Calculate the fitness value for the obtained individual
– Compare the chosen and the obtained individuals fitness function values
– Check the individual with worse fitness in the table of weak individuals
– In case if the obtained individual is fitter than the chosen one, mutation

will be continued. The next mutation happens in the obtained individual.
This operator will mutate until the obtained individual fitness does not
cause a loss of fitness.

6 Experimental Results

The accomplished experiments have been carried out in order to observe the
behavior of GA in the aforementioned weight optimization task. The results
of all experiments produced by the GA were evaluated together.

The weight value combinations that were obtained during the experiments
are very similar each other to, respectively, of its content (w1 of one experiment
is similar to the w1 from the other one). One of the experimental results is
represented graphically in the Fig. 1.

Fig. 1. Obtained weight value deviation
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All obtained experimental results are located around weight values that
are represented in the figure (see Fig. 1).

7 Conclusions

This paper reviews the weight optimization task solving with GA. The first
step in development of the statistical data was to decide the number assign-
ment for each of nine criteria. The methodology chosen for estimation point
values assignment is based on statistic data analysis. So, the values of the
criteria were ranged according to possible estimation point values from 0 to 5.

To make the population individuals much easier and more convenient for
fitness calculation the individuals consist only from weight values. Hence,
the crossover and mutation operators only work with the generated data,
respectively.

During this work some modification was applied to the generated individ-
uals – it is a table of weak individuals, in which the information about weak
individuals, obtained during mutation and also crossover, is kept during the
algorithm run.

To provide the accuracy of the results carried out from the experiments
the testing process was applied on the special scheduled database data. The
increase of fitness function value depends on successful choice of weight values
combination.

The results that are carried out from the experiments have similar com-
bination of weight values. During the experiments statistical data were used
only about the borrowers that are clients of the bank that loans can poten-
tially be given to. To estimate the credit risk of new borrowers it is necessary
to find another kind of weights when the importance for the statistical data
that are represented with nine criteria is different.
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A Fuzzy Feature Extractor Neural Network
and its Application in License Plate
Recognition

Modjtaba Rouhani

Summary. This paper presents a fuzzy neural network model to extract and clas-
sify selected features in subregions of a two-dimensional signal (e.g., image signal).
As a representative example, we applied this model to the problem of Iranian auto-
mobiles license plate recognition (LPR).

Key words: Fuzzy neural networks, Feature extractor, License plate recog-
nition.

1 Introduction

Fuzzy neural networks are hybrid systems that possess the advantages of
both neural networks and fuzzy systems. The integration of fuzzy systems
and neural networks combines the human inference style and natural lan-
guage description of fuzzy systems with the learning and parallel processing
of neural networks. There are numerous approaches to integrate fuzzy systems
and neural networks. Extensive bibliography on fuzzy neural network and an
introduction to it can be found in [1].

We propose a new fuzzy neural network model that performs excellent
in noisy environment and is more robust for distorted or shifted patterns.
The model aims to preserve the advantages and capabilities of Neocognitron,
proposed by Fukushima et al. [2,3], in a mush simpler structure, by introducing
fuzzy logic concepts. The main concept of fuzzy neurons (FNs) is introduced
in [4]. This model has been successfully used for recognition of handwritten
Persian characters [5]. The proposed model extracts prespecified features in
subregions of the two-dimensional input signal and compares them to those
of stored patterns in a fuzzy manner.

The paper is organized as follow: Sect. 2 describes the proposed fuzzy
neural network in detail. The third section is dedicated to license plate recog-
nition and more especially Iranian license plate type recognition. Sect. 4 illus-
trates the results.
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2 Feature Extractor Fuzzy Neural Network

The structure of the fuzzy neural network (FNN) is depicted in Fig. 1. The
proposed FNN model is a feed forward neural network with four processing
layers. The first layer containing fuzzy neurons arranged and indexed in two
dimensions. Each FN in the first layer represents a subregion of the input
pattern and extracts prespecified features in it. The second layer has the same
dimensions as the first layer and computes the membership of every feature in
every first layer FN to stored classes in a fuzzy manner. In other words, this
layer determines how close the input pattern is to the prototype patterns. In
the third layer, the overall similarity of input pattern to each stored pattern is
computed by fuzzy max–min composition. As visualized in Fig. 1, third layer
is arranged in one dimension and has as many FNs as stored patterns. The
output of third layer neurons is the fuzzy membership of input pattern to
each stored classes. The forth layer, i.e., output layer, determines the input
class as ones with the maximum membership in the third layer. To prevent
misclassifying of input patterns which do not belong to any stored classes, the
outputs of forth layer are all zero, if the maximum output of the third layer
is below a threshold level.

Assume that the input layer has n10×n20 pixels and the first layer contains
n11 × n21fuzzy neurons (FNs). Each FN in layer 1 represent a region of size
L× L in the input space and has K fuzzy outputs. The kth output of neuron
(i,j) in layer 1,

a1i,j(k), i = 1, . . . ,n11, j = 1, . . . , n21, l = 1, . . . ,K

measures the kth feature in the L × L region in input layer. These features
have to be selected, based on the problem must be solved by FNN, such that
FNN be able to distinguish among output classes. Selected features for the
problem of Iranian license plate type recognition will be discussed in the next
section. Layer 1 has no adjustable parameter.

Layer 2 determines the amount of similarities between the outputs of layer
1 and the basic shapes corresponding to that region of the prototype patterns.

Fig. 1. The schematic diagram of FNN
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Each neuron in this layer corresponds to a region in the input layer. The
outputs of layer 2 calculate the similarities between the basic shapes located
in the given region and those of the M prototype patterns. These outputs are
governed by the following equations:

a2i,j(m) = min
k
f(a1i,j(k), β

m
i,j(k), α

m
i,j(k)) k = 1, . . . ,K, m = 1, . . . ,M, (1)

f(a, β, α) = exp

(
−

(
a− β
α

)2
)
. (2)

Four-dimensional matrices α and β are the only adjustable parameters of
FNN and are determined by the algorithm given below.

The outputs of the third layer are described by following equation and give
the overall similarity of input pattern to mth prototype pattern:

a3m = min
i,j

(a2i,j(m)). (3)

The single output of the forth layer determines the most likely prototype
in the input layer as:

a4 = arg max
m

(a3m). (4)

The proposed FNN model has a straightforward supervised learning rule.
The only adjustable parameters are the center and the variance of Gaussian
like membership functions (2) in the second layer. Once all learning pat-
terns p = 1,. . . ,P are applied to FNN and output activities of first layer FNs,
a1
i,j(k; p), computed for patterns belong to each class m = 1,. . . ,M, these pa-

rameters are adjusted in a single iteration:

βm
i,j(k) = meanp(a1i,j(k; p)), pattern p belongs to class m, (5)

αm
i,j(k) = max

p
(− log(Tr)
a1i,j(k; p)

), pattern p belongs to class m. (6)

Tr in last equation is a threshold parameter, determines minimum output of
layer 2 for patterns belong to each class.

3 License Plate Type Recognition

To demonstrate the capabilities of the proposed FNN, it has been used to
classify Iranian license plates. License plate recognition (LPR) systems are
usually composed of plate locator, plate segmentation, and character recog-
nition (OCR) [6]. However, Iranian license plates vary widely in their size,
color, and number of rows and characters as shown in Fig. 2 and summarized
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Fig. 2. Iranian license plate types

Table 1. Iranian license plate types summary (see Fig. 2)

Type Size Number Number Background Text
(cm) of rows of columns color(s) color

1 55 × 15 1 2 White Black
2 55 × 15 1 2 Red White
3 55 × 15 1 2 Yellow Black
4 40 × 20 2 1 White Black
5 40 × 20 2 1 Yello/white Black
6 40 × 20 2 2 Yellow/white Black

in Table 1. These variations made the process of plate recognition much more
complicated. To overcome this problem, a plate type recognition subsystem is
implemented using the proposed FNN. The plate type recognition subsystem
receives a license plate candidate (which has a fixed size) from plate locator
subsystem and determines the license plate type, if it really contains a license
plate. To recognize different Iranian plate types, a number of features have to
be considered, namely: contrast between hi-level and low-level pixels, horizon-
tal gradients, vertical gradients, colors, and the number of passes from hi-level
pixels to low-level pixels in prespecified subregions of license plate candidate.

The input pattern to layer 0 (input layer) of FNN is a RGB image and
has three values at each pixel, a0

I,j(r, g,b). Every neuron in layer 1 calculates
K=7 different features in subregions of input image. These seven features are
carefully selected to represent different aspects of M=6 license plate types.

4 Results

To demonstrate the ability of propose FNN, over hundred of automobile im-
ages are presented to Iranian license plate recognition software developed. A
plate locator subsystem locates candidate regions may contain license plate.
This is done basically, by bi-levelizing input image and searching for rectangle
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Fig. 3. Iranian license plate recognition software

like regions using Hough transform techniques. Then, these candidate regions
are presented to FNN to determine if it really contains a license plate and if
so, of what type. Based on recognized plate type, an appropriate segmenta-
tion algorithm is called and each character is passed to OCR subsytem (see
Fig. 3).

Input images have approximately 600 × 400 pixels so that license plate
candidates are 180 × 60 pixel regions. Layer 1 has 8 × 3 fuzzy neurons, each
corresponding to a 100× 40 region of input layer.

To learn FNN, license plate candidates from plate locator together with
shifted candidates are applied to learning algorithm as mentioned by (5)
and (6).

The accuracy of proposed FNN license plate type recognizer was 100%
for main patterns and over 98% for shifted patterns. We conclude that the
performance of FNN has been evaluated to be excellent in recognition of
Iranian license plate types.
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Nearest Interval Approximation
of an Intuitionistic Fuzzy Number

Adrian I. Ban

Summary. The problem of approximation of a fuzzy number by a real number or
real interval was studied mainly to introduce defuzzifying methods and to define
ranking procedures between fuzzy numbers. The study of the problem in the intu-
itionistic fuzzy case is justified in the same way. In this paper we suggest a natural
method of approximation of the intuitionistic numbers by real intervals with respect
to Euclidean and Tran–Duckstein distances. Sometimes it is useful to obtain crisp
solutions even if the initial data and the used methods are intuitionistic fuzzy.

1 Intuitionistic Fuzzy Numbers

We consider the following description of a fuzzy number u

u (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if x ≤ a1,
lu (x) , if a1 ≤ x ≤ a2,
1, if a2 ≤ x ≤ a3
ru (x) , if a3 ≤ x ≤ a4,
0, if a4 ≤ x,

where a1, a2, a3, a4 ∈ R, lu : R → [0, 1] is a nondecreasing continuous function,
lu (a1) = 0, lu (a2) = 1, called the left side of the fuzzy number and ru : R →
[0, 1] is a nonincreasing continuous function, ru (a3) = 1, ru (a4) = 0, called
the right side of the fuzzy number. The α-cut, α ∈ ]0, 1], of a fuzzy number u
(in fact it can be introduced for any fuzzy set) is a crisp set defined as

uα = {x ∈ R : u (x) ≥ α} .

Every α-cut of a fuzzy number is a closed interval uα = [uL (α) , uU (α)], where

uL (α) = inf {x ∈ R : u (x) ≥ α} ,
uU (α) = sup {x ∈ R : u (x) ≥ α} .
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If the sides of the fuzzy number u are strictly monotone then one can
see easily that uL and uU are inverse functions of lu and ru, respectively.
Throughout in this paper we consider fuzzy numbers with strictly monotone
sides.

Definition 1. An intuitionistic fuzzy set A = {〈x, µA (x) , νA (x)〉 ;x ∈ X}
such that µA and 1 − νA are fuzzy numbers is called an intuitionistic fuzzy
number.

We denote by A = 〈µA, νA〉 an intuitionistic fuzzy number and by IF (R)
the space of all intuitionistic fuzzy numbers.

Remark 1. With respect to the α-cuts of the fuzzy number 1− νA are imme-
diate the equalities

(1− νA)L (α) = νAL
(1− α)

and

(1− νA)U (α) = νAU
(1− α) ,

for every α ∈ ]0, 1] .

If A = 〈µA, νA〉 , B = 〈µB , νB〉 are intuitionistic fuzzy numbers it is natural
to define the addition by

A+B = 〈µA+B, νA+B〉 ,

where µA+B = µA + µB and νA+B such that

(1− νA+B)L (α) = (1− νA)L (α) + (1− νB)L (α) ,

(1− νA+B)U (α) = (1− νA)U (α) + (1− νB)U (α) ,

for every α ∈ ]0, 1]. In fact,

(νA+B)L (α) = (1− νA+B)L (1− α)

= (1− νA)L (1− α) + (1− νB)L (1− α)

= νAL
(α) + νBL

(α)

and, analogously,

(νA+B)U (α) = νAU
(α) + νBU

(α) ,

for every α ∈ [0, 1[.
We obtain the scalar multiplication of intuitionistic fuzzy numbers in a

similar way.
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2 Distances between Intuitionistic Fuzzy Numbers

For two arbitrary fuzzy numbers u and v with α-cuts [uL (α) , uU (α)] and
[vL (α) , vU (α)] we define the quantities

d2E (u, v) =
∫ 1

0

(uL (α)− vL (α))2 dα+
∫ 1

0

(uU (α)− vU (α))2 dα

and

d2TD (u, v) =
∫ 1

0

(
uL (α) + uU (α)

2
− vL (α) + vU (α)

2

)2

dα+

1
3

∫ 1

0

[(
uU (α)− uL (α)

2

)2

+
(
vU (α)− vL (α)

2

)2
]
dα.

Then dE (u, v) and dTD (u, v) are distances between the fuzzy numbers u and
v and dE , dTD define metrics on the set of fuzzy numbers. The metric dE is
well known in fuzzy set theory, it is an extension of the Euclidean distance.
The metric dTD was introduced in [3] by Tran and Duckstein for ranking fuzzy
numbers.

The following result helps us to obtain metrics on the set of intuitionistic
fuzzy numbers.

Theorem 1. If d is a metric on the set of fuzzy numbers then d̃ defined by

d̃ (A,B) =

√
1
2
d2 (µA, µB) +

1
2
d2 (1− νA, 1− νB),

where A = 〈µA, νA〉 and B = 〈µB , νB〉 is a metric on the set of intuitionistic
fuzzy numbers.

Proof. The triangle inequality is equivalent to
√
d2 (µA, µB) + d2 (1− νA, 1− νB) ≤

√
d2 (µA, µC) + d2 (1− νA, 1− νC)

+
√
d2 (µC , µB) + d2 (1− νC , 1− νB),

for every intuitionistic fuzzy numbers A = 〈µA, νA〉 , B = 〈µB , νB〉, and C =
〈µC , νC〉. The inequality is, in fact,

√
a21 + b21 ≤

√
a22 + b22 +

√
a23 + b23,

for any positive real numbers a1, b1, a2, b2, a3, b3 under the restrictions a1 ≤
a2 + a3 and b1 ≤ b2 + b3. Because

√
(a2 + a3)

2 + (b2 + b3)
2 ≤

√
a22 + b22 +

√
a23 + b23

for every real numbers a2, b2, a3, b3, the theorem is proved. �
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Remark 2. To obtain objects consistent with the fuzzy case the constant 1
2 is

added.

According to Theorem 1 and Remark 1 in the intuitionistic fuzzy case the
metrics dE and dTD become

d̃2E (A,B) =
1
2

∫ 1

0

(µAL
(α)− µBL

(α))2 dα+
1
2

∫ 1

0

(µAU
(α)− µBU

(α))2 dα

+
1
2

∫ 1

0

(νAL
(α)− νBL

(α))2 dα+
1
2

∫ 1

0

(νAU
(α)− νBU

(α))2 dα

and

d̃2TD (A,B) =
1
2

∫ 1

0

(
µAL

(α) + µAU
(α)

2
− µBL

(α) + µBU
(α)

2

)2

dα

+
1
6

∫ 1

0

[(
µAU

(α)− µAL
(α)

2

)2

+
(
µBU

(α)− µBL
(α)

2

)2
]
dα

+
1
2

∫ 1

0

(
νAL

(α) + νAU
(α)

2
− νBL

(α) + νBU
(α)

2

)2

dα

+
1
6

∫ 1

0

[(
νAU

(α)− νAL
(α)

2

)2

+
(
νBU

(α)− νBL
(α)

2

)2
]
dα.

3 Nearest Interval Approximation of Intuitionistic
Fuzzy Numbers

In the paper [2] the nearest interval approximation of a fuzzy number with
respect to metric dE was introduced. In the following we use the same idea to
determine the nearest interval approximation of an intuitionistic fuzzy number
with respect to the metrics d̃E and d̃TD. As a consequence, the nearest interval
approximation of a fuzzy number with respect to the metric dTD is obtained.

Let us suppose A = 〈µA, νA〉 is an intuitionistic fuzzy number and

[µAL
(α) , µAU

(α)] , α ∈ ]0, 1] ,

[νAL
(α) , νAU

(α)] , α ∈ [0, 1[ ,

where

νAL
(α) = (1− νA)L (1− α)

and

νAU
(α) = (1− νA)U (1− α) ,
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are its α-cuts. We try to find a closed interval C
d̃E

(A) = [CL, CU ] which is

the nearest to A with respect to the metric d̃E . It is obvious that each real
interval can also be considered as an intuitionistic fuzzy number with constant
α-cuts [CL, CU ], for all α ∈ ]0, 1[.

Now we have to minimize

d̃E

(
A,C

d̃E
(A)

)

with respect to CL and CU , that is to minimize

F1 (CL, CU ) =
∫ 1

0

(µAL
(α)− CL)2 dα+

∫ 1

0

(µAU
(α)− CU )2 dα

+
∫ 1

0

(νAL
(α)− CL)2 dα+

∫ 1

0

(νAU
(α)− CU )2 dα

with respect to CL and CU . We find the partial derivatives

∂F1 (CL, CU )
∂CL

= −2
∫ 1

0

(µAL
(α)− CL) dα− 2

∫ 1

0

(νAL
(α)− CL) dα

= −2
∫ 1

0

(µAL
(α) + νAL

(α)) dα+ 4CL,

∂F1 (CL, CU )
∂CU

= −2
∫ 1

0

(µAU
(α)− CU ) dα− 2

∫ 1

0

(νAU
(α)− CU ) dα

= −2
∫ 1

0

(µAU
(α) + νAU

(α)) dα+ 4CU ,

and then we solve the system
⎧
⎪⎪⎨

⎪⎪⎩

∂F1 (CL, CU )
∂CL

= 0,

∂F1 (CL, CU )
∂CU

= 0.

The solution is

CL =
∫ 1

0

µAL
(α) + νAL

(α)
2

dα,

CU =
∫ 1

0

µAU
(α) + νAU

(α)
2

dα.

Since

det

⎛

⎜⎜⎜⎝

∂2F1 (CL, CU )
∂C2

L

∂2F1 (CL, CU )
∂CL∂CU

∂2F1 (CL, CU )
∂CU∂CL

∂2F1 (CL, CU )
∂C2

U

⎞

⎟⎟⎟⎠ = det
(

4 0
0 4

)
= 16 > 0



234 A.I. Ban

and
∂2F1 (CL, CU )

∂C2
L

= 4 > 0,

then CL and CU given above minimize F1 (CL, CU ).
We have

Theorem 2. The nearest interval of the intuitionistic fuzzy number A =
〈µA, νA〉 with respect to the metric d̃E is

C
d̃E

(A) =
[∫ 1

0

µAL
(α) + νAL

(α)
2

dα,

∫ 1

0

µAU
(α) + νAU

(α)
2

dα

]
. (1)

Remark 3. Because µA (x) + νA (x) = 1 for every x ∈ X implies

νAL
(α) = µAL

(1− α)

and
νAU

(α) = µAU
(1− α) ,

for any α ∈ [0, 1[, from the above theorem we obtain the nearest interval of a
fuzzy number u with respect to metric dE (see [2])

[∫ 1

0

uL (α) dα,
∫ 1

0

uU (α) dα
]
.

Passing to the second metric d̃TD we have to minimize the mapping

F2 (CL, CU ) =
∫ 1

0

(
µAL

(α) + µAU
(α)

2
− CL + CU

2

)2

dα

+
1
3

∫ 1

0

[(
µAU

(α)− µAL
(α)

2

)2

+
(
CU − CL

2

)2
]
dα

+
∫ 1

0

(
νAL

(α) + νAU
(α)

2
− CL + CU

2

)2

dα

+
1
3

∫ 1

0

[(
νAU

(α)− νAL
(α)

2

)2

+
(
CU − CL

2

)2
]
dα,

with respect to CL and CU . We find the partial derivatives

∂F2 (CL, CU )
∂CL

=−
∫ 1

0

µAL
(α) + µAU

(α) + νAL
(α) + νAU

(α)
2

dα

+
4CL + 2CU

3
,
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∂F2 (CL, CU )
∂CU

=−
∫ 1

0

µAL
(α) + µAU

(α) + νAL
(α) + νAU

(α)
2

dα

+
4CU + 2CL

3
and then we solve the system

⎧
⎪⎪⎨

⎪⎪⎩

∂F2 (CL, CU )
∂CL

= 0,

∂F2 (CL, CU )
∂CU

= 0.

The solution is

CL = CU =
∫ 1

0

µAL
(α) + µAU

(α) + νAL
(α) + νAU

(α)
4

dα.

Since

det

⎛

⎜⎜⎜⎝

∂2F2 (CL, CU )
∂C2

L

∂2F2 (CL, CU )
∂CL∂CU

∂2F2 (CL, CU )
∂CU∂CL

∂2F2 (CL, CU )
∂C2

U

⎞

⎟⎟⎟⎠ = det

⎛

⎜⎜⎝

4
3

2
3

2
3

4
3

⎞

⎟⎟⎠ =
4
3
> 0

and
∂2F2 (CL, CU )

∂C2
L

=
4
3
> 0

then CL and CU given above minimize F2 (CL, CU ).
We obtain

Theorem 3. The nearest interval of the intuitionistic fuzzy number A =
〈µA, νA〉 with respect to the metric d̃TD reduces to a point, namely

C
d̃T D

(A) =
∫ 1

0

µAL
(α) + µAU

(α) + νAL
(α) + νAU

(α)
4

dα. (2)

Remark 3 and Theorem 3 imply the following new result of interval ap-
proximation of the fuzzy numbers.

Corollary 1. The nearest interval of the fuzzy number u, [uL (α) , uU (α)] , α ∈
]0, 1] with respect to the metric dTD reduces to a point, namely

∫ 1

0

uL (α) + uU (α)
2

dα.

Sometimes it is important to know the value of the distance between an
intuitionistic fuzzy number A and its nearest interval approximation with
respect to a metric d̃. We denote I

d̃
(A) this value which represents the lost of

information passing from the intuitionistic fuzzy number A to real intervals.
We have
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Theorem 4. 1.

I2

d̃E

(A) =
1

2

∫ 1

0

(
µ2

AL
(α) + µ2

AU
(α) + ν2

AL
(α) + ν2

AU
(α)

)
dα

− 1

4

(∫ 1

0

(
µAL

(α) + νAL
(α)

)
dα

)2

− 1

4

(∫ 1

0

(
µAU

(α) + νAU
(α)

)
dα

)2

;

2.

I2

d̃T D

(A) =
1

6

∫ 1

0

(
µ2

AL
(α) + µ2

AU
(α) + ν2

AL
(α) + ν2

AU
(α)

)
dα

+
1

6

∫ 1

0

(
µAL

(α) µAU
(α) + νAL

(α) νAU
(α)

)
dα

− 1

16

(∫ 1

0

(
µAL

(α) + µAU
(α) + νAL

(α) + νAU
(α)

)
dα

)2

.

Proof. It is immediate because with the above notations

I2
d̃E

(A) =
1
2
F1

(∫ 1

0

µAL
(α) + νAL

(α)
2

dα,

∫ 1

0

µAU
(α) + νAU

(α)
2

dα

)

and

I2
d̃T D

(A) =
1
2
F2

(∫ 1

0

µAL
(α) + µAU

(α) + νAL
(α) + νAU

(α)
4

dα,

∫ 1

0

µAL
(α) + µAU

(α) + νAL
(α) + νAU

(α)
4

dα

)
. ��

In the particular case of fuzzy numbers we obtain

Corollary 2. 1.

I2dE
(u) =

∫ 1

0

(
u2

L (α) + u2
U (α)

)
dα−

(∫ 1

0

uL (α) dα
)2

−
(∫ 1

0

uU (α) dα
)2

;

2.

I2dT D
(u) =

1
3

∫ 1

0

(
u2

L (α) + uL (α)uU (α) + u2
U (α)

)
dα

− 1
4

(∫ 1

0

(uL (α) + uU (α)) dα
)2

.

Proof. It is immediate because

νAL
(α) = µAL

(1− α) = uL (1− α)

and
νAU

(α) = µAU
(1− α) = uU (1− α) ,

for every α ∈ [0, 1[ . ��
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A fuzzy number u with the functions lu and ru (see Sect. 1) defined by

lu (x) =
(
x− a1
a2 − a1

)r

and

ru (x) =
(
a4 − x
a4 − a3

)r

,

respectively, where r > 0, will be denoted u = (a1, a2, a3, a4)r (see [1]). If
u = (a1, a2, a3, a4)r then

uα =
[
a1 + α1/r (a2 − a1) , a4 − α1/r (a4 − a3)

]
, α ∈ ]0, 1].

If r = 1 then u is a trapezoidal fuzzy number. An intuitionistic fuzzy number
A = 〈µA, νA〉 such that µA and 1−νA are trapezoidal fuzzy numbers is called
a trapezoidal intuitionistic fuzzy number.

We obtain

Corollary 3. Let A = 〈µA, νA〉 be an intuitionistic fuzzy number such that
µA = (a1, b1, c1, d1)r1

and 1− νA = (a2, b2, c2, d2)r2
. Then

1.

C
d̃E

(A) =
[
a1 + b1r1
2 (r1 + 1)

+
a2 + b2r2
2 (r2 + 1)

,
d1 + c1r1
2 (r1 + 1)

+
d2 + c2r2
2 (r2 + 1)

]
;

2.

C
d̃T D

(A) =
a1 + d1 + (b1 + c1) r1

4 (r1 + 1)
+
a2 + d2 + (b2 + c2) r2

4 (r2 + 1)
.

Proof. In (1) and (2) we put

µAL
(α) = a1 + α1/r1 (b1 − a1) ,

µAU
(α) = d1 − α1/r1 (d1 − c1) ,

νAL
(α) = (1− νA)L (1− α) = a2 + (1− α)1/r2 (b2 − a2) ,

and
νAU

(α) = (1− νA)U (1− α) = d2 − (1− α)1/r2 (d2 − c2) ,
for every α ∈ ]0, 1[ . ��
Corollary 4. Let A = 〈µA, νA〉 be a trapezoidal intuitionistic fuzzy number,
µA = (a1, b1, c1, d1) and 1− νA = (a2, b2, c2, d2). Then

1.

C
d̃E

(A) =
[
a1 + b1 + a2 + b2

4
,
c1 + d1 + c2 + d2

4

]
;

2.
C

d̃T D
(A) =

a1 + b1 + c1 + d1 + a2 + b2 + c2 + d2
8

.

Proof. r1 = r2 = 1 in the above formulas. ��
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4 Properties of the Nearest Intervals Approximation
of Intuitionistic Fuzzy Numbers

In this section we study the continuity and linearity of the nearest intervals
approximation introduced in the previous section.

Let us denote [R] the family of all closed intervals on the real line.

Definition 2. An interval approximation operator C : IF (R) → [R] satisfy-
ing

∀ε > 0,∃δ > 0 : d̃ (A,B) < δ ⇒ d̃ (C (A) , C (B)) < ε,

where d̃ is a metric in the family of all intuitionistic fuzzy numbers, is called
continuous with respect to d̃.

The above definition expresses, in fact, the natural requirement: if two
intuitionistic fuzzy numbers are close then their interval approximations are
also close.

Theorem 5. 1. The interval approximation operator C1 : IF (R) → [R] de-
fined by

C1 (A) = C
d̃E

(A)

is continuous with respect to the metric d̃E ;
2. The interval approximation operator C2 : IF (R) → [R] defined by

C2 (A) = C
d̃T D

(A)

is continuous with respect to the metric d̃TD.

Proof. 1. For any given two intuitionistic fuzzy numbers A = 〈µA, νA〉 and
B = 〈µB , νB〉 we have

d̃2E

(
C

d̃E
(A) , C

d̃E
(B)

)

=
(∫ 1

0

µAL
(α) + νAL

(α)
2

dα−
∫ 1

0

µBL
(α) + νBL

(α)
2

dα

)2

+
(∫ 1

0

µAU
(α) + νAU

(α)
2

dα−
∫ 1

0

µBU
(α) + νBU

(α)
2

dα

)2

=
1
4

(∫ 1

0

(µAL
(α)− µBL

(α) + νAL
(α)− νBL

(α)) dα
)2

+
1
4

(∫ 1

0

(µAU
(α)− µBU

(α) + νAU
(α)− νBU

(α)) dα
)2

≤ 1
4

∫ 1

0

(µAL
(α)− µBL

(α) + νAL
(α)− νBL

(α))2 dα

+
1
4

∫ 1

0

(µAU
(α)− µBU

(α) + νAU
(α)− νBU

(α))2 dα



Nearest Interval Approximation of an Intuitionistic Fuzzy Number 239

≤ 1
2

∫ 1

0

(µAL
(α)− µBL

(α))2 dα+
1
2

∫ 1

0

(νAL
(α)− νBL

(α))2 dα

+
1
2

∫ 1

0

(µAU
(α)− µBU

(α))2 dα+
1
2

∫ 1

0

(νAU
(α)− νBU

(α))2 dα

= d̃2E (A,B)

and the continuity is proved.
2. Let A = 〈µA, νA〉 and B = 〈µB , νB〉 be two intuitionistic fuzzy numbers.

We get

d̃2TD

(
C

d̃T D
(A) , C

d̃T D
(B)

)

=
(∫ 1

0

µAL
(α) + µAU

(α) + νAL
(α) + νAU

(α)
4

dα

−
∫ 1

0

µBL
(α) + µBU

(α) + νBL
(α) + νBU

(α)
4

dα

)2

≤ 1
4

∫ 1

0

(
µAL

(α) + µAU
(α)

2
− µBL

(α) + µBU
(α)

2

+
νAL

(α) + νAU
(α)

2
− νBL

(α) + νBU
(α)

2

)2

dα

≤ 1
2

∫ 1

0

(
µAL

(α) + µAU
(α)

2
− µBL

(α) + µBU
(α)

2

)2

dα

+
1
2

∫ 1

0

(
νAL

(α) + νAU
(α)

2
− νBL

(α) + νBU
(α)

2

)2

dα

≤ d̃2TD (A,B)

and the continuity is proved. ��

Theorem 6. The interval approximation operators Ci : IF (R) → [R] , i ∈
{1, 2}, defined above, are linear.

Proof. It is immediate. For example, the proof of the additivity of C1 is the
following

C
d̃E

(A+B)

=
[∫ 1

0

(µA+B)L (α) + (νA+B)L (α)
2

dα,

∫ 1

0

(µA+B)U (α) + (νA+B)U (α)
2

dα

]

=
[∫ 1

0

µAL
(α) + νAL

(α)
2

dα+
∫ 1

0

µBL
(α) + νBL

(α)
2

dα,

∫ 1

0

µAU
(α) + νAU

(α)
2

dα+
∫ 1

0

µBU
(α) + νBU

(α)
2

dα

]
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=
[∫ 1

0

µAL
(α) + νAL

(α)
2

dα,

∫ 1

0

µAU
(α) + νAU

(α)
2

dα

]

+
[∫ 1

0

µBL
(α) + νBL

(α)
2

dα,

∫ 1

0

µBU
(α) + νBU

(α)
2

dα

]

= C
d̃E

(A) + C
d̃E

(B) . ��

References

1. Bodjanova, S., Median value and median interval of a fuzzy number. Information
Sciences 172 (2005) 73–89

2. Grzegorzewski, P., Nearest interval approximation of a fuzzy number. Fuzzy Sets
and Systems 130 (2002) 321–330

3. Tran, L., Duckstein, L., Comparison of fuzzy numbers using a fuzzy distance
measure. Fuzzy Sets and Systems 130 (2002) 331–341



On Intuitionistic Fuzzy Expert Systems With
Temporal Parameters

Panagiotis Chountas, Evdokiya Sotirova, Boyan Kolev and Krassimir
Atanassov

Summary. An extension of the concept of an intuitionistic fuzzy expert system
with temporal components is constructed and some of its modifications are discussed.

Key words: Expert systems, Intuitionistic fuzzy set, Temporal logic.

1 Introduction

The ideas for putting together the concepts of fuzzy set and expert system
(ES) has been discussed in details in the research literature. In [1, 4] the
concepts of Intuitionistic Fuzzy Logic (IFL; see, e.g., [6,7,9,10]) and ES united,
defining a new object called Intuitionistic Fuzzy Expert System (IFES).

The main components of a production system are:

– A Data Base (DB) containing facts about the problem to be solved
– A Knowledge Base (KB) containing the rules that are to be used in the

reasoning process
– An inference engine which operates through the KB using the DB for

proving or rejecting hypotheses

Here we shall describe an ES with facts having simultaneously intuitionistic
fuzzy estimations and temporal parameters. So, these ES can answer temporal
questions concerning the existence-validity of the recorded facts in the DB(s)
and can estimate the facts validity or nonvalidity using intuitionistic fuzzy
estimations.

2 Short Remarks on IFL

Following [6, 7, 9] we define the basic elements of IFL.
Two real numbers, µ(p) and ν(p), are assigned to the proposition p with

the following constraint to hold:

µ(p) + ν(p) ≤ 1. (1)
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They correspond to the “truth degree” and to the “falsity degree” of p.
Let this assignment be provided by an evaluation function V , defined over

a set of propositions S in such a way that:

V (p) = 〈µ(p), ν(p)〉. (2)

When values V (p) and V (q) of the propositions p and q are known, the
evaluation function V can be also extended for the operations “negation” (now
there are six different types of negation, the simplest of which is the classical
one is ¬; another is ¬∗), “conjunction” (&), “disjunction” (∨), “implication”
(already there are 24 different implications, two of which are the classical one
⊃ and →) and others, e.g., through the definitions:

V (¬p) = ¬V (p) = 〈ν(p), µ(p)〉, (3)
V (¬∗p) = ¬∗V (p) = 〈1− sg(µ(p)), sg(µ(p))〉, (4)

V (p)&V (q) = V (p&q) = 〈min(µ(p), µ(q)),max(ν(p), ν(q))〉, (5)
V (p) ∨ V (q) = V (p ∨ q) = 〈max(µ(p), µ(q)),min(ν(p), ν(q))〉. (6)
V (p) ⊃ V (q) = V (p ⊃ q) = 〈max(ν(p), µ(q)),min(µ(p), ν(q))〉, (7)
V (p ⊃ q) = 〈1− (1− µ(q)).sg(µ(p)− µ(q)),

ν(q).sg(µ(p)− µ(q)).sg(ν(q)− ν(p))〉. (8)

We can define also:

〈µ(p), ν(p)〉 ≥ 〈µ(q), ν(q)〉 if and only if µ(p) ≥ µ(q) and ν(p) ≤ ν(q). (9)

Let for every proposition p, if it is a (standard) tautology then: V (p) =
〈µ(p), ν(p)〉 if and only if µ(p) = 1 and ν(p) = 0. It is an Intuitionistic Fuzzy
Tautology (IFT) if and only if µ(p) ≥ ν(p).

The evaluation function V can be extended also for the modal operators
“ ” and “♦” as follows

V ( p) = V (p) = 〈µ(p), 1− µ(p)〉, (10)
V (♦p) = ♦V (p) = 〈1− ν(p), ν(p)〉. (11)

It can be seen easily that for each proposition p such that V (p) = 〈µ(p),
1 − µ(p)〉, i.e., the estimation is fuzzy, but not intuitionistic fuzzy, then
V (♦p) = V (p) = V (p).

Let p be a fixed proposition and let α, β ∈ [0, 1]. Following [6, 7, 9], we
define operators Dα, Fα,β (for α + β ≤ 1), Gα,β , Hα,β , H∗

α,β , Jα,β , and J∗
α,β

by:

V (Dα(p)) = 〈µ(p) + α.(1− µ(p)− ν(p)), (12)
ν(p) + (1− α).(1− µ(p)− ν(p))〉,
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V (Fα,β(p)) = 〈µ(p) + α.(1− µ(p)− ν(p)), b+ β.(1− µ(p)− ν(p))〉, (13)
for α+ β ≤ 1,

V (Gα,β(p)) = 〈α.µ(p), β.ν(p)〉, (14)
V (Hα,β(p)) = 〈α.µ(p), b+ β.(1− µ(p)− ν(p))〉, (15)
V (H∗

α,β(p)) = 〈α.µ(p), b+ β.(1− α.µ(p)− ν(p))〉, (16)
V (Jα,β(p)) = 〈µ(p) + α.(1− µ(p)− ν(p)), β.ν(p)〉, (17)
V (J∗

α,β(p)) = 〈µ(p) + α.(1− µ(p)− β.ν(p)), β.ν(p)〉. (18)

Following [2], the main elements of temporal IFL will be introduced.
Let T be a fixed set of real numbers which we shall call “time scale” and

it is strictly oriented by the relation “<.”
Let p be a proposition and V be a truth-value function, which maps the

ordered pair:
V (p, t) = 〈µ(p, t), ν(p, t)〉 (19)

to the proposition p and to the time moment t ∈ T .
Let x ∈ E be a fixed proposition and A ⊂ E, where here and below E is

a set of propositions. Firstly, following [8] we shall introduce one new (for the
IFS theory) operator as follows:

τ(A(T ), x) = {t | µA(x, t) > νA(x, t) & t ∈ T}. (20)

Obviously, for all x ∈ E:

∅ ⊂ τ(A(T ), x) ⊂ T. (21)

For x we can assert that it is “Intuitionistic Fuzzy Valid” (IFV) in time
moment t, if and only if

µA(x, t) ≥ νA(x, t). (22)

Numbers µA(x, t) and νA(x, t) can be, respectively, interpreted as a “degree
of validity” and a “degree of nonvalidity.”

Let us assume that in E for each element x there exists an element ¬x
and let for it be valid:

τ(A(T ),¬x) = {t|νA(x, t) > µA(x, t) & t ∈ T}. (23)

Therefore, the predicate

ϕ(x) = “x has always been true” (24)

will be IFV, if (22) holds for all t ∈ T . Obviously, ϕ coincide with the above-
mentioned operator A.

By similarity, we can define the following predicates, too:

ψ(x) = “x has sometimes been true, but not always, ” (25)
χ(x) = “once x was true, ” (26)
ω(x) = “x has never been true.” (27)
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Obviously, χ coincide with the above-mentioned operator O. It can be
easily seen that

ϕ(x) = 1, if and only if τ(A(T ), x) = T, (28)
ψ(x) = 1, if and only if ∅ �= τ(A(T ), x) �= T, (29)

and (∃t1, t2 ∈ τ(A(T ), x))(∃t3 ∈ T − τ(A(T ), x))(t1 < t3 < t2),
χ(x) = 1, if and only if ∅ �= τ(A(T ), x) �= T, (30)

and (∀t1, t2 ∈ τ(A(T ), x))(¬∃t3 ∈ T − τ(A(T ), x))(t1 < t3 < t2),
ω(x) = 1, if and only if τ(A(T ), x) = ∅. (31)

All the above predicates ϕ,ψ, χ, ω have values in set {0, 1}. Now, we can
construct their IFVs.

Let below card(X) be the cardinality of set X. Therefore, for the fixed
elements x ∈ X we can define the couple

ρ(x) = 〈card(τ(A(X), x))
card(T )

,
card(τ(A(X),¬x))

card(T )
〉. (32)

It is an intuitionistic fuzzy couple, because

0 ≤ card(τ(A(X), x))
card(T )

+
card(τ(A(X),¬x))

card(T )
≤ 1. (33)

The second inequality will become an equality, if there was no time moment
when for x : µA(x, t) = νA(x, t). The set of all time moments for which the
latter equality is not valid (let us note it by ∆x) determines the “degree of
uncertainty” for x, and of course,

card(τ(A(X), x))
card(T )

+
card(τ(A(X),¬x))

card(T )
+

∆x

card(T )
= 1. (34)

We can define the following two new predicates:

ξ(x) = 1, if and only if ρ(x) is an IFT, (35)
σ(x) = 1, if and only if ρ(¬x) is an IFT. (36)

These predicates can be interpreted as follows:

ξ(x) = “x is often true, ” (37)
σ(x) = “x is rarely true.” (38)

These two predicates can be generalized. For example, we can use the two
real numbers λ, µ ∈ [0, 1] and we can define that 〈λ, µ〉 is (λ, µ)-IFT if and
only if a ≥ λ and b ≤ µ. Then

ξ∗(x) = “x is (λ, µ)-often true, ” (39)
σ∗(x) = “x is (λ, µ)-rarely true.” (40)
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For them there will hold

ξ∗(x) is (λ, µ)-often if and only if µ(ρ(x)) ≥ λ & ν(ρ(x)) ≤ µ, (41)
σ∗(x) is (λ, µ)-rarely if and only if µ(ρ(¬x)) ≥ λ & ν(ρ(¬x)) ≤ µ. (42)

In the present research we shall use the following important restriction: in
the expressions that we can construct and use, the temporal operators will be
the nearest to the variables. For example, the expression

(ξ(x))&Fα,β(ρ(y) ∨ χ(z)) (43)

is correct, while the expression

ξ( (x))&ρ(Fα,β(y) ∨Gγ,δ(z)) (44)

is not.

3 Main Results

Following the idea for an IFES from [5] we will introduce IFES with Temporal
Parameters (IFESTP).

To define the new concept, here we will base on one of the most general
types of ESs definitions.

Here, as [5], we will add new ESs’ components: priorities and the de-
grees µ and ν of truth and falsity (correctness and incorrectness) of the facts.
Therefore, every fact A of the DB will have the form: [A, pA, µA, νA] where
µA, νA ∈ [0, 1] and µA + νA ≤ 1 are the above-mentioned degrees, pA ∈ [0, 1]
is the priority of A and A is a standard ES fact.

Let a fact A with the three above components be included in the DB. Let a
new fact B be generated at a certain time moment of the ES functioning with
priority pB . If the two facts are not related, then the new fact enters the DB.
In an ordinary ES, the new fact B replaces the old fact A when B coincides
with, or contradicts A. Now the ES will function in another way, based on
the new component. When the facts A and B coincide, their representative
(in particular, A or B) remains in the DB, but with a new priority that can
be determined by different ways, e.g.,

1. It is equal to max(pA, pB)
2. It is equal to pA + pB − pA.pB

3. It is equal to f(pA, pB), where function f : [0, 1]2 → [0, 1] is defined so
that max(x, y) ≤ f(x, y) ≤ 1

On the other hand, the fact having the maximum priority among pA and pB

remains in the DB when the facts A and B are in a contradiction. The change
can be realized, e.g., by formulae:
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1. It is equal to min(pA, pB),
2. It is equal to pA.(1− pB),
3. It is equal to g(pA, pB), where function g : [0, 1]2 → [0, 1] is defined so

that min(x, y) ≥ f(x, y) ≥ 0.

The components µA, νA, and pA of the fact allow for an interpretation in
which they are independent. For example, when we describe different facts
and their estimations generated by a group of n experts, every one of which
estimates some information, the ith one can estimate the fact A by the values
µA,i and νA,i (1 ≤ i ≤ n), but every fact will have its priority pA.

The last ES parameter can depend not only on the priority of the corre-
sponding expert, but also on other factors. In the last case, the three parame-
ters will be independent. If every one of the experts estimates some fact, facts
[A,µA,1, νA,1, pA], [A,µA,2, νA,2, pA], . . . , [A,µA,n, νA,n, pA] will enter the DB.
After this, the DB can store the fact A with these (µ, ν)-parameters µi∗ and
νi∗ , for which

pi∗ = max
1≤i≤k

pi, (45)

or these (µ, ν)-parameters for which

µi∗ .pi∗ = max
1≤i≤k

µi.pi (46)

(if the maximum is reached at some values of i, then the value of i at which
νi is minimum among the other ν-values is determined).

Now, we shall extend the concept of an IFES, adding temporal compo-
nents.

Let T be a time scale. Let each fact keeps the first time moment in which
it starts being valid as its first temporal component. It will obtain the form

[A,µA,1, νA,1, pA, t1]. (47)

When (if) it loses its validity, it will obtain as a second parameter the
respective time moment and will obtain the form

[A,µA,1, νA,1, pA, t1, t2], (48)

etc. When the fact obtains for a sth time truth-value “true” (or, it obtains a
tautological or an IFT-value), it will have the form

[A,µA,1, νA,1, pA, t1, t2, ..., t2s−1], (49)

and when it again loses this value, it will obtain the form

[A,µA,1, νA,1, pA, t1, t2, ..., t2s−1, t2s]. (50)

Therefore, we can already apply over this fact each one of the temporal
operators from Sect. 2, having in mind the final remark from this section.

Now we return to the IFES. As we mentioned above, we call them IFESTC,
because over their variables we can apply some temporal operators.

The KB-rules in the IFESTC have either of the following forms.
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1.
[〈MH , NH〉 H : −e(τ1B1, τ2B2, . . . , τnBn) 〈MB , NB〉], (51)

where MH , NH ,MB , NB ⊂ [0, 1] and supMH + supNH ≤ 1 and supMB +
supNB ≤ 1, e(B1, B2, . . . , Bn) is a logical expression for the variables
(some of which can be ES facts) B1, B2, . . . , Bn and τ1, τ2, ..., τn are either
some temporal operator, or an empty symbol, i.e., over the respective
variable no temporal operator is applied.
The expression e(B1, B2, . . . , Bn) may contain operations “&,” “∨,” “⊂,”
“→,” “¬,” “¬∗,” standard modal (“ ,” “♦”), extended modal (Dα,
Fα,β , Hα,β , Jα,β , H∗

α,β , J∗
α,β), and level (Pα,β , Qα,β) operators. There-

fore, e(τ1B1, τ2B2,. . . , τnBn ) can have very complex form.
The intervals have the forms

MH = [µH
i , µ

H
s ], (52)

NH = [νH
i , ν

H
s ], (53)

MB = [µB
i , µ

B
s ], (54)

NB = [νB
i , ν

B
s ]. (55)

They can be given the following interpretation. For each assignment of
each variable occurring in the rule, if Bi are all true with degrees within
the intervals [µB

i , µ
B
s ] (for the degree of truth) and [νB

i , ν
B
s ] (for the degree

of falsity) the consequent H has values µH and νH within the intervals
[µH

i , µ
H
s ] and [νH

i , ν
H
s ], respectively. Naturally, the calculated degrees µH

and νH satisfy the constraint 0 ≤ µH + νH ≤ 1.
Let µB and νB be the already calculated truth and falsity degrees of the
rule. The degrees’ calculation of the consequent H,µH , and νH in terms
of the interval rule is the following

µH = µH
i + αµ.(µH

s − µH
i ), (56)

νH = νH
i + αν .(νH

s − νH
i ), (57)

where

αµ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

µB − µB
i

µB
s − µB

i
, if µB

s > µ
B
i ,

1
2
, otherwise ,

(58)

αν =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

νB − νB
i

νB
s − νB

i
, if νB

s < ν
B
i ,

1
2
, otherwise .

(59)
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2.
[〈MH , NH〉H : −e(τ1B1, τ2B2, . . . , τnBn)〈µB , νB〉], (60)

where MH , NH , µB , and νB are as above. The interpretation is again as
above, except that the truth and falsity degrees of B1, B2, . . . , Bn must
be greater than or equal to µB and less than or equal to νB , respectively.
The calculation is as follows

αµ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

µB − bµ
1− bµ

, if bµ < 1,

1
2
, otherwise,

(61)

αν =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

νB
bν
, if bν > 0,

1
2
, otherwise,

(62)

where degrees of e(B1, B2,. . . , Bn) are bµ and bν .
µH and νH are calculated in the same way.
The next two cases are modifications of the first ones:

3.
[Yα,β,...]H : −e(τ1B1, τ2B2, . . . , τnBn)〈MB , NB〉], (63)

4.
[Yα,β,...]H : −e(τ1B1, τ2B2, . . . , τnBn)〈µB , νB〉], (64)

where all but the last components are equal; the last components are the
same as above.

The meaning of the first components in both types of rules (the next com-
ponents are the same as their counterparts above) is as follows: Y is an oper-
ator identifier, i.e., Y ∈ { , ♦, Dα, Fα,β ,. . . } and α, β,. . . are its necessary
components (their number is 0, 1, 2, or 6, depending on the identifier).

For example, the calculation of the degrees of the clause head is based on
operator Fα,β , for 0 ≤ α+ β ≤ 1 and proceeds in the following way:

〈µH , νH〉 = Fα,β(µB , νB)
= 〈µB + α.πB , νB + β.πB〉, (65)

where πB = (1− µB − νB) can be interpreted as the uncertainty factor.
Thus we defined an ES capable of a more fine-grained process description

than the classical ESs.
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4 Conclusion

In [5] a series of nine Generalized Net (GN; extension of Petri net; see [3,11])
models of different types of ESs (already existing or possible in principle) are
described. The ordinary IFES is represented by the eight GN-model. In the
near future the defined ES will be simulated with the aid of GN topologies.
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Generalized Fuzzy Cardinalities of IF Sets

Pavol Krá́l

Summary. The paper by Casasnovas and Torrens (Fuzzy sets and systems 133:193–
209, 2003) presents the axiomatic theory of fuzzy cardinalities of finite fuzzy sets.
The aim of our contribution is to extend this axiomatic theory to the finite intuition-
istic fuzzy sets using t-norms on a lattice LI , the underlying lattice of interval-valued
fuzzy sets.

Key words: Fuzzy cardinality, Interval-valued fuzzy sets.

1 Introduction

The axiomatic theory of fuzzy cardinalities of finite intuitionistic fuzzy sets, as
a straightforward generalization of the axiomatic cardinality theory of finite
fuzzy sets (cf. [2]), can be found in [10]. There the cardinality is defined as
a mapping CI : FF

L∗(X) −→ FCF
LI (N), where FCF

LI (N) denotes the set of all
general convex interval-valued fuzzy number (icgnn), i.e., the finite convex
interval-valued fuzzy sets on N.

The aim of our contribution is to extend this axiomatic theory using the
t-sums based on generalized t-norms (t-norms on a lattice LI , the underly-
ing lattice of interval-valued fuzzy sets) and to study the properties of such
cardinalities.

2 Preliminaries

In this section we will summarize basic notions which will be needed in the
next discussion. Throughout, let X denotes the universal set.

Definition 1. (Goguen [7] An L-fuzzy (LF) set A on a universe X is a func-
tion A : X −→ L.
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Remark 1. The lattice L from the previous definition is usually a complete
distributive lattice equipped with the standard operations ∨,∧, bottom ele-
ment 0L, top element 1L, and a unary, involutive, order-reversing operator
NL.

Definition 2. [1]. An IF set on the universe X is a set of the form

A = {(x, µA(x), νA(x))| x ∈ X},

where µA, νA : X −→ [0, 1] satisfy the following condition

(∀x ∈ X)(µA(x) + νA(x) ≤ 1).

µA(x) ∈ [0, 1] and νA(x) ∈ [0, 1] are called the membership degree and the
nonmembership degree, respectively, of x ∈ A .

Definition 3. [11]. An interval-valued fuzzy (IVF) set in X is a set A given
by

A = {〈x,MA(x)〉| x ∈ X}, (1)

where the function MA : X −→ D[0, 1] (D[0, 1] is the set of all closed subin-
tervals on the interval [0, 1]) defines the degree of membership of an element
x to A.

It is obvious that
MA(x) = [MA(x)L,MA(x)U ],

where MA(x)L and MA(x)U are the lower and the upper bound of interval
MA(x).

Remark 2. An intuitionistic fuzzy set can be seen as an L-fuzzy set (see [5])
for the complete lattice L∗ = (L∗,≤L∗) defined by

L∗ = {(x1, x2) ∈ [0, 1]2| x1 ≤ 1− x2},
(x1, x2) ≤L∗ (y1, y2) ⇐⇒ (x1 ≤ y1 and x2 ≥ y2),
for all (x1, x2), (y1, y2) ∈ L∗.

The top and bottom element of L∗ we denote 1L∗ , 0L∗ , respectively. We will
write (x1, x2) ∈ L∗, x when no confusion can arise.
The mapping N s

L∗ : L∗ −→ L∗ defined by, for all x ∈ L∗,

N s
L∗(x) = (x2, x1)

is a negation on L∗ which is called the standard negation on L∗. Interval-
valued fuzzy sets can be seen as an L-fuzzy set [5] for the complete lattice
LI = (LI ,≤LI ) defined by
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LI = {[x1, x2] | (x1, x2) ∈ [0, 1]2 and x1 ≤ x2},
[x1, x2] ≤LI [y1, y2] iff (x1 ≤ y1 and x2 ≤ y2),
for all [x1, x2], [y1, y2] ∈ LI .

In the sequel, if x ∈ LI , then we denote its bounds by x1 and x2, i.e., x =
[x1, x2]. The top and bottom element of LI we denote 1LI , 0LI , respectively.

From now on, we will denote the class of IF sets FL∗(X) and the class of
IVF sets FLI (X). If no confusion can arise, we also use [0, 1] as an abbreviation
of the lattice ([0, 1],≤) and denote the class of ordinary fuzzy sets by F[0,1](X)
or shortly by F(X).

Let A ∈ FL(X), then we define for further usage the following sets.
Let 0L ≤L α ≤L 1L, α �= 0L. Then the α-cut of A is the set

Aα = {x | x ∈ X and A(x) ≥L α}.

Let 0L ≤L α ≤L 1L, α �= 0L, 1L. Then the strong α-cut of A is the set

Aα = {x | x ∈ X and A(x) >L α}.

The core of L-fuzzy set A is the set core(A) = A1. The support of L-fuzzy
set A is the set supp(A) = A0.

We will also use the following notation:

[A]i = sup{α ∈ L \ 0L | |Aα| ≥ i}, i ∈ N.

An L-fuzzy set A on X with finite support will be called a finite L-fuzzy set.
The class of all finite L-fuzzy sets (where L is L∗, LI or [0,1]) on X will be
denoted by FF

L (X).
We will use only L-fuzzy sets with finite supports in the rest of paper.
In the sequel we will sometimes denote, for an arbitrary x ∈ X and a ∈ L,

the L-fuzzy set A : X −→ L given by

A(y) =

{
a, if y = x,
0L, if y ∈ X \ {x},

shortly by a/x. From the context it will be clear whether this is a fuzzy set
or an IF set.

Deschrijver, et al. [5] have extended triangular norm, triangular conorm a
negation to the lattice L∗.

Definition 4.

– A t-norm on L∗ is a commutative, associative mapping T : (L∗)2 −→ L∗

which is increasing in both arguments and which satisfies T (1L∗ , x) = x,
for all x ∈ L∗.
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– A t-conorm on L∗ is a commutative, associative mapping S : (L∗)2 −→ L∗

which is increasing in both arguments and which satisfies S(0L∗ , x) = x,
for all x ∈ L∗.

– A negation on L∗ is a decreasing mapping N : L∗ −→ L∗ which satisfies
N (0L∗) = 1L∗ and N (1L∗) = 0L∗ . If N (N (x)) = x, for all x ∈ L∗, then
N is called involutive.

Some triangular norms and conorms on L∗(LI) can be characterized using
t-norms T and t-conorms S on [0,1] which satisfy the condition T (x, y) ≤
1− S(x, y), for all x, y ∈ [0, 1].

Definition 5 [5]. A t-norm T on L∗ is called t-representable iff there exist a
t-norm T and a t-conorm S on [0,1] such that, for all x, y ∈ L∗,

T (x, y) = (T (x1, y1), S(x2, y2)).

Definition 6. A t-conorm S on L∗ is called t-representable iff there exist a
t-norm T and a t-conorm S on [0,1] such that, for all x, y ∈ L∗,

S(x, y) = (S(x1, y1), T (x2, y2)).

The following example contains non-t-representable t-norms and t-conorms
on L∗.

Example 1 [5].

1. TW (x, y) = (max(0, x1 + y1 − 1),min(1, x2 + 1− y1, y2 + 1− x1))
SW (x, y) = (min(1, x2 + 1− y1, y2 + 1− x1),max(0, x2 + y2 − 1))

2. T1(x, y) = (max(0, x1 + y1 − x2y2 − 1),min(1, x2 + y2))
S1(x, y) = (min(1, x1 + y1),max(0, x2 + y2 − x1y1 − 1))

3. T2(x, y) = (max(0,min(x1 − y2, y1 − x2)),min(1, x2 + y2))
S2(x, y) = (min(1, x1 + y1),max(0,min(x2 − y1, y2 − x1)))

4. T3(x, y) = (max(0, x1 + y1 − 1),min(1, y2 + 2(1 − x1), x2 + 2(1 − y1),
1− x1 + 1− y1))
S3(x, y) = (min(1, y1+2(1−x2), x1+2(1−y2), 1−x2+1−y2),max(0, x2+
y2 − 1))

5. T4(x, y) = (max(0, x1 +y1−1),min(1, x2 +y2 + 1
2 , 1−x1 +y2, 1−y1 +x2))

S4(x, y) = (min(1, x1 +y1 + 1
2 , 1−x2 +y1, 1−y2 +x1),max(0, x2 +y2−1))

The previous definitions can be simple rewritten also for the lattice LI .
The intersection, union, and complement of two IF(IVF) sets A and B

can be modeled using these general t-norms, t-conorms, and negations in the
following way.

Definition 7 [4]. The generalized intersection ∩T , union ∪S and complement
coN of IF sets is defined as follows: for all A,B ∈ FL∗(X) (FLI (X)) and for
all x ∈ X,



Generalized Fuzzy Cardinalities of IF Sets 255

A ∩T B(x) = T (A(x), B(x)),
A ∪S B(x) = S(A(x), B(x)),
coN A(x) = N (A(x)).

If no confusion can arise, the intersection and union of IF sets modeled
using T = (TM , SM ),S = (SM , TM ) we denote simply ∪ and ∩.

A generalized natural number (gnn) n is a fuzzy set on N, n : N −→ [0, 1].
The gnn is convex if n(k) ≥ min(n(i), n(j)) whenever i ≤ k ≤ j. The set of all
gnn we denote F(N). The set of all convex finite gnn we denote by FCF (N).
Let n, m be gnn. The following operation is called the extended addition
(see [17]):

(n⊕m)(k) = sup{min(n(i),m(j)); i+ j = k}.
A generalized interval-valued fuzzy number (ignn) nI is an interval-valued

fuzzy set on N, nI : N −→ LI . The ignn will be called convex if nI1 and nI2

are convex gnn. The set of all ignn we denote FLI (N). The set of all convex
finite ignn we denote by FCF

LI (N). Let nI , mI be ignn. The extended addition
of ignn is defined componentwise (see [10]):

(nI ⊕I mI)(k) = [(nI1 ⊕mI1)(k), (nI2 ⊕mI2)(k)].

We can also define the t-norm-based extended addition of ignn in the
following way:

(nI ⊕I
T mI)(k) = sup{T (nI(i),mI(j)); i+ j = k}.

The fuzzy cardinality of a fuzzy set A will be denoted by C(A). The fuzzy
cardinality of an IF set A will be denoted by CI(A).

3 Fuzzy Cardinality of Fuzzy Sets

The well-known (convex) fuzzy cardinalities of fuzzy sets are FGCount,
FLCount, and FECount which can be expressed as follows [18]:

FGCount(A)(k) = [A]k,

FLCount(A)(k) = 1− [A]k+1,

FECount(A)(k) = min([A]k, 1− [A]k+1),

where k ∈ N.
FGCount(A)(k) can be interpreted as the possibility that the cardinality

of A is at least k, FLCount(A)(k) can be interpreted as the possibility that
the cardinality of A is at most k and FECount(A)(k) can be interpreted as
the possibility that the cardinality of A is exactly k.

In works [16,18] we can find the generalization of FGCount, FLCount, and
FECount for finite fuzzy sets defined using t-norms and negations.

The axiomatic theory of fuzzy cardinality of finite fuzzy sets was proposed
by Casasnovas and Torrens [2] in the following way:
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Definition 8 [2]. A mapping C : FF (X) −→ FCF (N) is a fuzzy cardinality
iff it satisfies the following conditions:

1. Additivity: if A and B are finite fuzzy sets defined on the universe X and
supp(A) ∩ supp(B) = ∅, then C(A ∪B) = C(A)⊕ C(B).

2. Variability: if A and B are finite fuzzy sets defined on the universe Xand
i > | suppA|, j > | suppB|, then C(A)(i) = C(B)(j).

3. Consistency: if A is a crisp subset of X, then C(A)(i) ∈ {0, 1}, for all
i ∈ N and if n = | suppA|, C(A)(n) = 1.

4. Monotonicity: if x ∈ X, y ∈ X, a ∈ [0, 1], b ∈ [0, 1] and a ≤ b, then:

C(a/x)(0) ≥ C(b/y)(0),

C(a/x)(1) ≤ C(b/y)(1).

It is easy to see that the FGCount satisfies the conditions of previous
definition.

The fuzzy cardinality has some interesting properties. The proofs of the
following propositions can be found in [2].

Proposition 1 [2]. (Valuation property) Let C : FF (X) −→ FCF (N) be a
fuzzy cardinality and let A, B ∈ FF (X). Then

C(A ∪B)⊕ C(A ∩B) = C(A)⊕ C(B).

Proposition 2 [2]. Let f, g : [0, 1] −→ [0, 1] be functions such that f|{0,1}
and g|{0,1} take values in {0, 1}, f(1) = 1, g(0) = 1, f is increasing and g is
decreasing.

Then the function Cf,g : FF (X) −→ F(N) defined on singletons by

Cf,g(a/x)(0) = g(a); Cf,g(a/x)(1) = f(a);

Cf,g(a/x)(i) = f(0) for all i > 1

for all a ∈ [0, 1] and extended to any finite fuzzy set A with supp(A) =
{x1, ..., xn} by

Cf,g(A) = ⊕
i=1,..,n

{Cf,g(A(xi)/xi)}

is a fuzzy cardinality.

Fuzzy cardinality from the previous proposition will be called the fuzzy
cardinality generated by f, g. Each fuzzy cardinality from Definition 8 is the
fuzzy cardinality generated by f, g.

Proposition 3 [2]. A function C : FF (X) −→ F(N) is a fuzzy cardinality
iff there exist functions f, g : [0, 1] −→ [0, 1] such that f|{0,1} and g|{0,1} take
values in {0, 1}, f(1) = 1, g(0) = 1, f is increasing, g is decreasing and such
that C = Cf,g.
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4 Fuzzy Cardinality of IF Sets

We generalize the previous definition to the case of IF sets.

Definition 9. A mapping CI : FF
L∗(X) −→ FCF

LI (N) is a fuzzy cardinality of
IF sets iff it satisfies the following conditions:

1. Additivity: if A and B are finite IF sets defined on the universe X and
supp(A) ∩ supp(B) = ∅, then CI(A ∪B) = CI(A)⊕I

T CI(B).
2. Variability: if A and B are finite IF sets defined on the universe X and
i > | suppA|, j > | suppB|, then CI(A)(i) = CI(B)(j).

3. Consistency: if A is a crisp subset of X, then CI(A)(i) ∈ {0LI , 1LI}, for
all i ∈ N and if n = | suppA|, CI(A)(n) = 1LI .

4. Monotonicity: if x ∈ X, y ∈ X, a ∈ L∗, b ∈ L∗, and a ≤L∗ b, then:

CI(a/x)(0) ≥LI CI(b/y)(0),

CI(a/x)(1) ≤LI CI(b/y)(1).

Example 2. The mapping CI1 : FF
L∗(X) −→ FCF

LI (N) given by

C(A)(k) = [A]k

is a fuzzy cardinality of IF sets.

Proposition 4. Let CI : FF
L∗(X) −→ FCF

LI (N) be a fuzzy cardinality of IF
sets and, let T be t-norm on LI , let A be a finite IF sets with supp(A) =
{x1, . . . , xn}. Then

1. we have for all k ∈ N,
CI(A)(k)

= sup{T (CI(A(x1)/x1)(i1), . . . , CI(A(xn)/xn)(in))| i1 + · · ·+ in = k},
where T (x1, . . . , xn) = T (x1, T (x2, . . . , xn)), for all xi ∈ LI .

2. if A is a crisp set, then we have, for all k < | supp(A)|,

CI(A)(k) = CI(1L∗/xi)(0).

The fuzzy cardinality of IF sets defined above has similar properties to
those of fuzzy sets.

Proposition 5. (Valuation property) Let CI : FF
L∗(X) −→ FCF

LI (N) be a fuzzy
cardinality of IF sets, let T be t-norm on LI represented by TM and let A,
B ∈ FF

L∗(X). Then

CI(A ∪B)⊕I
T CI(A ∩B) = C(A)I ⊕I

T CI(B).
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Proposition 6. Let fI , gI : L∗ −→ LI be mappings such that fI |{0L∗ ,1L∗}
and gI |{0L∗ ,1L∗} take values in {0LI , 1LI}, f(1L∗) = 1LI , g(0L∗) = 1LI , f is
increasing and g is decreasing. Then the function CIfI ,gI

: FF
L∗(X) −→ FLI (N)

defined on singletons by

CIfI ,gI
(a/x)(0) = gI(a); CIfI ,gI

(a/x)(1) = fI(a);

CIfI ,gI
(a/x)(i) = fI(0L∗) for all i > 1

for all a ∈ L∗ and extended to any finite IF set A with supp(A) = {x1, ..., xn}
by

CIfI ,gI
(A) = ⊕I

T
i=1,..,n

{
CIfI ,gI

(A(xi)/xi)
}

is a fuzzy cardinality of IF sets.

Fuzzy cardinality of IF sets from the previous proposition will be called
the fuzzy cardinality of IF sets generated by fI , gI . Each fuzzy cardinality of
IF sets from Definition 9 is the fuzzy cardinality generated by fI , gI .

Example 3. The mapping CI1 : FF
L∗(X) −→ FCF

LI (N) is generated by gI(a) =
[1, 1], fI(a) = [a1, a1], for all a ∈ L∗.

Proposition 7. A function CI : FF
L∗(X) −→ FLI (N) is a fuzzy cardinality of

IF sets iff there exist functions fI , gI : L∗ −→ LI such that fI |{0L∗ ,1L∗} and
gI |{0L∗ ,1L∗} take values in {0LI , 1LI}, fI(1L∗) = 1LI , gI(0L∗) = 1LI , fI is
increasing, gI is decreasing and such that CI = CIfI ,gI

.

Definition 10. The fuzzy cardinality of IF sets CI will be called representable
iff there exist fuzzy cardinalities of fuzzy sets C1, C2 such that, for all A ∈
FF

L∗(X), CI(A)(k) = [C1(A1)(k), C2(A2)(k)], for each k ∈ N, where A1, A2 ∈
FF

[0,1](X) are given by A1(x) = µA(x), A2(x) = 1− νA(x), for all x ∈ X. We
denote a representable cardinality by Cr

I .
The functions fI , gI are called representable iff there exist functions f1, f2

and g1, g2 such that, for all x ∈ L∗,

fI(x) = [f1(x1), f2(1− x2)],

gI(x) = [g1(x1), g2(1− x2)].

We denote representable functions fI , gI by fr
I , g

r
I .

The following proposition shows that a representable cardinality CI with
representants C1 and C2 is well defined iff C1 ≤ C2.
Proposition 8. Let C1, C2 : FF

[0,1](X) −→ FCF (N) be fuzzy cardinalities of
fuzzy sets. The mapping Cr

I : FF
L∗(X) −→ FCF

LI (N) defined by, for all A ∈
FF

L∗(X)
Cr

I (A) = [C1(A1), C2(A2)], (2)

where A1, A2 ∈ FF
[0,1](X) are given by A1(x) = (A(x))1 and A2(x) = 1 −

(A(x))2, for all x ∈ X, is a fuzzy cardinality of IF sets iff C1 ≤ C2.
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If C1 = C2 and T represented by TM , then Cr
I (A)(k) is an element of

D, for any IF set A for which A1 = A2. Hence, we obtain straightforward
and natural generalization of fuzzy cardinality of fuzzy set in the sense of
Definition 8, i.e., the fuzzy cardinality of IF sets applied to an arbitrary fuzzy
set is a generalized natural number.

Proposition 9. Let CI be a fuzzy cardinality of IF sets and let fI , gI be its
associated functions. Then CI is representable iff fI , gI are representable. Fur-
thermore, if CI = [C1, C2] and fI = [f1, f2], gI = [g1, g2], then f1, g1 and f2, g2
are the functions associated to C1 and C2, respectively.

Proposition 10. Function fI(gI) is representable iff

(fI(gI)((a1, a2)))1 = (fI(gI)((a1, a′2)))1

and

(fI(gI)((a1, a2))) = (fI(gI)((a′1, a2)))2,

for all (a1, a2), (a1, a′2), (a′1, a2) ∈ L∗.

The interesting question is whether the fuzzy cardinality of IF sets satis-
fies the valuation property and complementarity rule which are defined using
t-norms, t-conorms a negations on L∗. We formulate the generalized valuation
property and complementarity rule as follows.

T ,S-valuation property: for each A,B ∈ FF
L∗(X),

CI(A ∩T B)⊕I
T ′ CI(A ∪S B) = CI(A)⊕I

T ′ CI(B).

N -complementarity rule: for each A ∈ FF
L∗(X) and for a negation N on L∗,

CI(A)⊕I
T ′ CI(coN A) = CI(X).

For representable fuzzy cardinalities and the generalized sum defined using
minimum, we can give the partial characterization of T ,S,N , fr

I , g
r
I satisfying

the properties defined above.

Proposition 11. Let Cr
I : FF

L∗(X) −→ FCF
LI (N) be a representable fuzzy

cardinality of IF sets and let A, B ∈ FF
L∗(X) be IF sets. Let T , S be

t-representable t-norm and t-conorm. Then the T ,S-valuation property is sat-
isfied iff at least one from the following conditions holds:

1. T = (TM , SM ),S = (SM , TM ),
2. fr

I = [f1, f2],gr
I = [g1, g2], where gi(a) = 1 or gi(a) = 0 and fi(b) = 1 or

fi(b) = 0, for all i ∈ {1, 2}, a ∈]0, 1], b ∈ [0, 1[.

Proposition 12. The N -complementarity rule holds for a representable car-
dinality induced by functions fr

I , g
r
I , IF singleton a/x and a negation N (x) =

(1−N(x2), N(1− x1)) iff one from the following conditions is satisfied
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1. For i ∈ {1, 2}, gi(1) = 0 and for all a ∈ [0, 1[, fi(a) = 0, gi(a) = 1, and
N(a) = 0.

2. For i ∈ {1, 2}, fi(0) = 0, for all a ∈ [0, 1], gi(a) = 1 and for all a ∈]0, 1],
fi(a) = 1 and N(a) = 1.

3. For i ∈ {1, 2}, for all a ∈ [0, 1], gi(a) = 1 and for all a ∈ [0, 1[, fi(a) = 0
and N(a) = 0.

4. For i ∈ {1, 2}, for all a ∈ [0, 1], fi(a) = 1, gi(a) = 1.
5. For i ∈ {1, 2}, fi(0) = 1, gi(1) = 0 and for all a ∈ [0, 1[, gi(a) = 1, and
N(a) = 0.

For more general cardinalities, it is really difficult to find some similar condi-
tions. But using singletons, it is possible to find also some necessary conditions
for the T ,S-valuation property and the N -complementarity rule to be satis-
fied.

Proposition 13. Let CI : FF
L∗(X) −→ FCF

LI (N) be a fuzzy cardinality of IF
sets. Let T , S be a t-norm and a t-conorm on L∗, let T ′ be a t-norm on LI . If
cardinality satisfies the T ,S-valuation property then the following conditions
hold for all a, b ∈ L∗, a ≤L∗ b:

1. T ′(gI(T (a, b)), gI(S(a, b))) = T ′(gI(a), gI(b)),
2. T ′(gI(T (a, b)), fI(S(a, b))) = T ′(gI(a), fI(b)),
3.

max(T ′(fI(T (a, b))fI(S(a, b))), T ′(fI(0), gI(T (a, b))))

= max(T ′(fI(a), fI(b)), T ′(fI(0), gI(a))),

4. T ′(fI(0), gI(T (a, b))) = T ′(fI(0), gI(a)).

Proposition 14. Let T ′ be a t-norm on LI , let N be a negation on L∗. If
N -complementarity rule holds for a cardinality induced by functions fI , gI ,
then the following conditions are satisfied, for all a ∈ L∗:

1. T ′(gI(a), gI(N (a))) = gI(1),
2. max(T ′(gI(a), fI(N (a))), T ′(gI(N (a)), fI(a))) = fI(1).

Conclusion

In this paper we have extended the axiomatic theory of fuzzy cardinality to
the IF sets using t-norms on LI . We have studied the basic properties of
such cardinality (representability, valuation property, complementarity rule).
Further description of generalized fuzzy cardinalities of IF sets (especially the
construction of a corresponding equipotency relation) will be an object of
future research.

Acknowledgment. This paper was supported by Grant VEGA 1/2002/05.



Generalized Fuzzy Cardinalities of IF Sets 261

References

1. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20:87–96
2. Casasnovas M, Torrens J (2003) An axiomatic approach to fuzzy cardinalities

of finite fuzzy sets. Fuzzy Sets and Systems 133:193–209
3. De Luca A, Termini S (1972) A definition of non-probabilistic entropy in the

setting of fuzzy sets theory. Information and Control 20:301–312
4. Deschrijver G (2004) A thorough study of the basic operators in intuitionistic

fuzzy set theory. PhD Thesis, Ghent University, Belgium, in Dutch
5. Deschrijver G, Cornelis C, Kerre EE (2003) Intuitionistic fuzzy connectives

revisited. In: Proceedings of the 9th International Conference on Informa-
tion Processing and Management of Uncertainty in Knowledge-Based Systems,
pp 1839–1844

6. Dubois D, Prade D (1985) Fuzzy cardinality and the modeling of imprecise
quantification. Fuzzy Sets and Systems 16:199–230

7. Goguen JA (1967) L-fuzzy sets. Journal of Mathematical Analysis and Appli-
cations 18:145–174

8. Gottwald S (1980) A note on fuzzy cardinals. Kybernetika 16:156–158
9. Kaufmann A (1977) Introduction a la theorie des sous-ensembles flous.

Complement et Nouvelles Applications 4
10. Král’P (2006) (Interval-valued) Fuzzy cardinality of IF sets. IPMU (submitted)
11. Sambuc R (1975) Functions Φ-flous. Aplication a l’aide au diagnostic en

pathologie thyrodene. PhD. Thesis, University Marseille, in French
12. Schweizer B, Sklar A (1960) Statistical metric spaces. Pacific Journal of Math-

ematics 10:313–334
13. Schweizer B, Sklar A (1961) Associative functions and statistical triangle

inequalities. Publicationes Mathematical Debrecen 8:169–186
14. Wygralak M (2000) An axiomatic approach to scalar cardinalities of a fuzzy

set. Fuzzy Sets and Systems 110:175–176
15. Wygralak M (1997) Cardinalities of fuzzy sets evaluated by single cardinals.

In: Proceedings of IFSA Congress Praha, pp 73–77
16. Wygralak M (2001) Fuzzy sets with triangular norms and their cardinality

theory. Fuzzy Sets and Systems 124:1–24
17. Wygralak M (1993) Generalized cardinal numbers and operation on them.

Fuzzy Sets and Systems 53:49–85
18. Wygralak M (2003) Cardinalities of Fuzzy Sets. Studies in Fuzziness and Soft

Computing 118. Springer, Berlin Heidelberg New York
19. Zadeh LA (1965) Fuzzy sets. Information and Control 8:338–353



Towards Usage Policies for Fuzzy Inference
Methodologies for Trust and QoS Assessment

Stefan Schmidt, Robert Steele, Tharam Dillon

Summary. In this paper, we discuss the benefits of several fuzzy inference system
design methodologies and evaluate their characteristics in regard to our trustwor-
thiness and QoS measurement models. Our analysis shows that Mamdani–Assilian
or Larsen type and Takagi–Sugeno–Kang type fuzzy inference methods have their
merits in different situations. We propose to equip an autonomous agent which acts
on behalf of a human being with a policy table enabling the agent to dynamically
decide which fuzzy inference system it will select during the trustworthiness eval-
uation process. We argue that in most situations the Mamdani–Assilian or Larsen
type fuzzy inference system represents the preferred choice. However, in situations
where the fuzzy rulebase is large, the Takagi–Sugeno–Kang type fuzzy inference sys-
tem should be chosen due to its superior performance characteristics. This way the
agent can perform its tasks more efficiently by choosing the appropriate calculation
method depending on the given circumstances.

Key words: Fuzzy inference, Autonomous trustworthiness evaluation,
Quality of service.

The assessment of trust and credibility is part of our daily life – it happens
subconsciously and is based on recommendations, past experiences, and vague
feelings. Reliable and precise measurement of trust and credibility is especially
important if we want to achieve autonomous interactions of intelligent agents
in unsupervised distributed environments. However, the replication of such
social behavior in information systems represents a major challenge.

In an ideal scenario, a person, who wants to purchase goods or consume
a service, would instruct his intelligent agent to execute this time-consuming
task on his behalf. The agent’s duties and responsibilities would involve ser-
vice discovery, service selection, contract negotiations, service execution or
consumption, payments, and reviewing of the delivered service quality.

In previous work, we have proposed models for both, trustworthiness evalu-
ation in distributed environments to support selection of potential services [1],
as well as a quality of service (QoS) review model [2]. Both models are based
on fuzzy logic [3] which offers a mathematical concept to deal with uncer-
tainty for the calculation of outputs. This ability to offer reasoning capabilities
based on uncertain or incomplete information makes it suitable to simulate
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human reasoning which is based on similar principles. In both models, we
have chosen the Mamdani–Assilian (MA) [4] approach for the fuzzy inference
process of our models. In separate research, our group has also proposed a
fuzzy model based on the Takagi–Sugeno–Kang (TSK) [5] inference method
to determine the trustworthiness and credibility of peer agents in distributed
environments [6].

In this paper we discuss the benefits of these and other fuzzy inference
system (FIS) design methodologies and evaluate their characteristics in re-
gard to our trustworthiness and QoS measurement models. First, we briefly
introduce our fuzzy trust and QoS evaluation models to establish the context
for our suitability analysis. Second, we provide details on the fuzzy infer-
ence methods before comparing their benefits in the different situations that
the agent might encounter. Based on this analysis we will finally introduce a
policy-based model which assists the agent to select the appropriate FIS for
the specific situation the agent encounters.

1 Related Work

A number of researchers have proposed models based on fuzzy logic concepts
to offer solutions for the computation of trust, credibility, reputation, or QoS.
For example, Falcone et al. [7] use Fuzzy Cognitive Maps (FCM) [8] to model
the dynamic influence of measured attributes before and during the trust
calculation. A different approach is the Regret system [9] which integrates
fuzzy concepts into the analysis of social networks in electronic marketplaces.
Other fuzzy logic-based approaches for the calculation of trust in distributed
systems has been developed by [10, 11]. In previous research, we have also
proposed a fuzzy logic-based model to offer flexible and efficient approaches
for the computation of variables like trustworthiness, credibility, and QoS [2].

Manara et al. [12] have implemented different models in MATLAB to mea-
sure the performance between three different fuzzy controllers. They compared
their own approach named Conditionally Firing Rules, and the standard ap-
proaches Mamdani–Assilian, and Takagi–Sugeno–Kang. Their tests show that
the Takagi–Sugeno–Kang controller performs faster in most tests compared
to the MA controller. However, they limit their comparisons to response time
measurements and precision measurements. Youssef [13] compared MA, TSK,
Larsen [14], Singleton, and Tsukamoto type fuzzy controllers in a 1-input,
1-output power system relaying system and found the TSK type inference en-
gine preferable due to its computational efficiency resulting in faster response
times required for real-time systems.

Most of these fuzzy logic-based models are designed to suit a specific
environment or measure a set of model-specific variables. However, none of
these papers have so far investigated the suitability of different fuzzy inference
methodologies for the tasks of trust and credibility evaluation and QoS mea-
surement. In this paper, we compare the major approaches (MA or Larsen
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type and TSK type) used for the defuzzification during the inference process
and determine their suitability in different situations.

2 Fuzzy Trust and QoS Assessment

In this section, we will briefly discuss our model for trust evaluation and QoS
measurement to establish the context of our research.

2.1 Fuzzy Trust Evaluation

In an unsupervised multi-agent environment, the measurement of trust in
other agents plays a crucial role during the service selection process where an
agent needs to choose between a number of potential business partners which
it previously discovered. The selection of a future business partner or service
no longer only depends on matching the tangible criteria a service offers, but
also on the willingness and capability of a potential business partner to deliver
quality of service in a given context at a given timeslot. We use the notion
trustworthiness, as a measure, to quantify the trust level an agent has in a
potential business partner in a given context at a given timeslot. Our model
describes a trust evaluation process implemented by an agent to measure trust
in a future negotiation partner before the negotiation process takes place. In
our model, we define the service consumer as Trusting Agent, potential busi-
ness partners as Recommendation Queried Agents, peer agents who share their
opinions about Recommendation Queried Agents as Recommending Agents,
and the actually selected business partner as Trusted Agent.

Given that the Trusting Agent has no sufficient information about Rec-
ommendation Queried Agents, he asks Recommending Agents to deliver their
opinions about them within a given context and a given timeslot. These opin-
ions are composed of one or more datasets which contain a trustworthiness
value, context, timestamp, and a trustworthiness value range for each business
interaction which the Recommending Agent had with the Recommendation
Queried Agent in the past. The Trusting Agent creates a weighted average
according to the age of the records within a dataset before feeding this value
as one of three input variables into its fuzzy inference engine. The second
input for the fuzzy inference engine is the agent’s credibility value, and the
third input is the weight of this opinion resulting from the number of records
in the dataset which the Recommending Agent delivered.

In a next step, these inputs are fuzzified and mapped to the rulebase in
order to calculate a crisp output using either the MA or the TSK approach
during the fuzzy inference process. After having computed a crisp trustworthi-
ness output value from each opinion delivered, we calculate the average over-
all trustworthiness values for a particular Recommendation Queried Agent.
Furthermore, if the agent holds trustworthiness records about the Recom-
mendation Queried Agent in his individual database, he combines this value
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with the aggregated trustworthiness value from the delivered opinions using
weight factors for his own data and the externally delivered data. Through
this aggregation the Trusting Agent finally gains a trustworthiness value for
each Recommendation Queried Agent.

These final composite trustworthiness values for each Recommendation
Queried Agent are then used as support during the service selection process.
The agent representing the selected service is then called Trusted Agent.

2.2 Service Quality Review after a Business Interaction

The measurement of the QoS after a business interaction serves several pur-
poses. First and foremost, the Trusting Agent requires a QoS value to update
his trustworthiness value for the Trusting Agent. This trustworthiness value
can then be used for future trust evaluation processes. It is also useful for
providing opinions about the Trusted Agent to peer agents which might ask
for this value in future. Second, the QoS value will be used to adjust the credi-
bility value of Recommending Agents which have delivered their opinions on
the Trusting Agent within the context of this business interaction. If their
opinions were close to the calculated QoS value (within a predefined thresh-
old) then their credibility value will be increased and otherwise decreased. It is
noteworthy that our model reduces credibility values to a significantly higher
extend if the trustworthiness review calculations have a negative outcome than
vice versa.

The calculation of the QoS value is based on the extended fuzzy logic-based
model [2] of CCCI metrics introduced by Chang, et al. [6]. During the contract
negotiations between the Trusting Agent and the Trusted Agent a number of
quality assessment criteria are defined, communicated and agreed upon by
both parties in the contract. After the completion of the business interaction,
these criteria are used for the assessment of the contract fulfillment (QoS). The
CCCI metrics define three measurement variables for each quality assessment
criterion.

Commitment – The commitment variable measures the actual degree of ful-
fillment of every specified criterion. That is, the commitment to each cri-
terion (service condition), to which the Trusted Agent and the Trusting
Agent mutually agreed upon, before the business interaction.

Clarity – The clarity variable provides a measure to establish if each crite-
rion was clearly specified, commonly understood, and mutually agreed to
between the Trusting and the Trusted Agent.

Influence – The influence variable measures the impact of each criterion
on the overall investigated quality as perceived by the agent owner and
published in the service contract.

Similar to our fuzzy trust evaluation model, we use a fuzzy inference en-
gine to compute the desired output service quality value for each predefined
criterion. We fuzzify the predefined value for influence, the observed value for
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commitment, as well as the clarity value which can only be determined after
the business interaction took place and possible ambiguities in the service con-
tract become clear. The fuzzified inputs for each quality criterion will then be
mapped to the predefined rulebase before being inferred in order to gain the
service quality value. The two approaches for fuzzy inference are introduced in
Sect. 3 in greater detail. After having computed service quality values for each
quality assessment criterion, we calculate the average overall service quality
values for the assessed business interaction.

The overall service quality value represents the correlation between the
expected service quality (as defined in the contract) and the actually delivered
quality of the product or service. This value can then be used to adjust both,
the trustworthiness value for the Trusted Agent as well as the credibility values
for the Recommending Agents which supplied their opinions during the trust
evaluation process.

3 Fuzzy Rules and Inference Methodologies

In this section, we will discuss and compare the Mamdani–Assilian (MA) or
Larsen type and Takagi–Sugeno–Kang (TSK) type fuzzy inference method-
ologies. First, we must understand the nature of all rules expressed in FIS.
Fuzzy rules allow us to characterize imprecise dependencies between the input
variables in our trust and QoS assessment models using linguistic variables
rather then crisp sets.

The usage of linguistic variables allows the desired freedom for the agent
owner to apply his personal understanding and experience to model the sys-
tem behavior. Furthermore, the design of rules based on linguistic variables is
more suitable for agent owners which possess the required knowledge in the
domain or context in which the assessment takes place but they may not pos-
sess sufficient mathematical expertise to encode their knowledge in a complex
program or data structure. The imprecision involved in the usage of linguistic
variables which are represented by overlapping fuzzy sets allow a high level of
readability and comprehensibility for human beings.

3.1 MA and Larsen Type Fuzzy Inference Systems

An exemplary MA or Larsen type fuzzy rule which we have used in previous
work has the following form [15]

IF x1 IS A1j AND x2 IS A2j . . . AND xn IS Anj THEN y IS Bj, j = 1, 2, . . ., M,

where xi for i = 1, 2, ..., n are linguistic input variables, such as credibility or
clarity in the trust evaluation model and the QoS assessment model, respec-
tively; Ai j for i = 1, 2, ..., n are input fuzzy sets such as “high,” “medium,”
or “low;” y is the linguistic output variable such as trustworthiness or service
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quality; Bj is the output fuzzy set, and M is the number of fuzzy rules.
Noteworthy for MA and Larsen type inference engines is the fact that the
consequent of each rule is also composed of fuzzy sets which are represented
as linguistic variables. For each firing fuzzy rule the output of the rule infer-
ence (implication) will be mapped to its corresponding output fuzzy set, i.e.,
the result is described in terms of membership in fuzzy sets.

The main difference between Mamdani–Assilian and Larsen type meth-
ods lies in the implication of fuzzified variables within a antecedent part of
the fuzzy rule and the composition of the resulting membership functions
defined by fuzzy variables in the rule consequents. MA proposed a max–min
approach which uses the minimum operator for rule implication and the maxi-
mum operator for rule composition. Larsen proposed the max-product method
which uses the product operator for rule implication and the max operator for
rule composition. Apart from those different rule implication and membership
function composition methods both approaches have identical characteristics
and, therefore, they exhibit a similar performance.

In order to receive the desired crisp output value, a process called de-
fuzzification must be applied. Popular defuzzification approaches include the
“centre of area” method, the “centre of maxima” method, or the “mean of
maxima” approach [16].

3.2 Takagi–Sugeno Type Fuzzy Inference

The newer TSK fuzzy inference approach takes a somewhat different path.
While the antecedent block of each fuzzy rule remains the same, the conse-
quent block employs a simple equation which takes the input fuzzy variables
into account. This equation can be of linear or quadratic type and is referred
to as type-1 or type-2 TSK models [17], respectively. Fuzzy inference systems
can also be modeled using fuzzy rules with singleton consequents [18]. How-
ever, limited modeling capabilities [17] of singleton type FIS result in more
coarse grained results and thus affect the quality of the model.

An example fuzzy rule which represents a type-2 TSK model has the fol-
lowing form:

IF x1 IS A1j AND x2 IS A2j . . . AND xn IS Anj THEN y = fj(x1, x2, ..., xn),

for j = 1, 2, . . ., M.

The function fj accomplishes a direct mapping between the fuzzified input
variables to the output space y. Normally, each of the r rules of the fuzzy
system is assigned a weight factor w during the aggregation of all output
singletons resulting in the following weighted sum yoverall:

yoverall =
∑i=1

r wi · yi∑i=1
r wi

(1)
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The obvious difference to the MA or Larsen Fuzzy inference methods is that
the consequent of each rule is not a fuzzy set but instead a singleton.

3.3 Comparison Between MA or Larsen and TSK Fuzzy Inference

Now that we briefly discussed the foundation of fuzzy rules and the MA or
Larsen type and TSK type fuzzy inference methodologies, we need to compare
their respective advantages.

Clearly, the MA or Larsen approaches represent a more intuitive and in-
terpretable approach since the knowledge of the agent owner is applied using
linguistic variables rather than linear or quadratic equations which are harder
to extract from analyzing human experiences and feelings. However, when us-
ing linguistic variables within the consequent block of fuzzy rules it becomes
necessary to apply additional calculations in order to generate a crisp output.
These additional calculations (defuzzification) require more computational re-
sources and can thus result in slower system performance compared to TSK
inference systems. This is especially the case if the fuzzy inference engine is
used for a large number of calculations or contains a large set of rules. Fur-
thermore, the MA approach offers the flexibility to choose the defuzzification
method which the agent owner finds most suitable in a given context. How-
ever, one should always remember that this option might lead to inconsistent
calculation results. On the other hand, the TSK approach has a continuous
output surface and offers better performance which makes it more suitable for
real time (possibly self-adjusting) control applications.

In conclusion, we observe that MA or Larsen type fuzzy inference engines
are more suitable for analytic applications where agent owners can express
their existing knowledge without in depth mathematical knowledge whereas
the TSK type fuzzy inference engine is capable of processing a larger amount
of data and is thus more suitable for real time control applications.

4 Usage Policies for Fuzzy Inference Methodologies

In this section, we will discuss the suitability of the above-discussed method-
ologies for the different tasks within our models. Also we will highlight a
number of possible scenarios and analyze their impact on the performance
of the models. Our previously introduced fuzzy models for the evaluation of
trustworthiness and the measurement of service quality both have very dif-
ferent usage scenarios which need to be considered for the decision of the
appropriate fuzzy inference method.

4.1 Fuzzy Trust Evaluation Considerations

The Fuzzy Trust Evaluation model needs to consider a potentially large num-
ber of opinions during the trust calculation process. Each of the delivered
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opinions will be fed into the fuzzy inference engine in order to receive a
trustworthiness value for the Recommendation Queried Agent as perceived
by the Recommending Agent. Furthermore, the Trusting Agent will evaluate
the trustworthiness of several potential business partners during the service
selection process. Since the Trusting Agent performs the trustworthiness eval-
uations before the business interaction with the final business partner, the
performance of the fuzzy inference engine is a significant factor for the over-
all performance of the agent. Long delays caused by a slow performing trust
evaluation model may lead to problems during the business interaction, es-
pecially in real time environments. The fuzzy rulebase is unlikely to change
frequently since it is defined once before the agent is deployed. Apart from
minor adjustments the rulebase will not be altered during future activities of
the agent.

4.2 Service Quality Review Considerations

The service quality review process has a different purpose. This calculation
process takes place after the business interaction took place and, thus, system
performance is not of significant importance. Furthermore, the fuzzy-based
QoS review inference engine will only be used once and not several hundred
times as is the case during the trustworthiness evaluation process. However,
the fuzzy rulebase may be altered before each business interaction in order to
reflect and comply with the individual service agreement between the service
consumer (agent owner represented by the Trusting Agent) and the service
provider (selected service represented by the Trusted Agent).

4.3 Experimental Settings for Performance Tests

In order to evaluate the performance of the MA type, the Larsen type, the
TSK type, and the singleton type fuzzy inference engines, we have set up a test
environment using the Java-based jFuzzyLogic API [19]. We have designed the
following fuzzy inference systems:

1. A Mamdani–Assilian type FIS
2. A Larsen type f FIS.
3. A Takagi–Sugeno–Kang type FIS
4. A Singleton type FIS

All other settings are identical to ensure comparability. The underlying model
for our FIS performance tests is based on our fuzzy trustworthiness model
which has three input variables where two of the variables contain three fuzzy
sets and one variable contains six fuzzy sets. The output fuzzy variable is com-
posed of six fuzzy sets. All fuzzy sets are represented by overlapping Gaussian
functions, except for the TSK output variable which is represented by six first-
order TSK functions and the singleton output variable which is represented
by six (singleton) values.
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Fig. 1. Performance comparison of four FIS with a small rulebase and a large
rulebase

The output variable for the FIS is defined separately for the two method-
ologies. For the MA or Larsen type FIS we have defined one output fuzzy
variable which contains three fuzzy sets. For the TSK type fuzzy inference en-
gine we have represented the three linguistic terms (representing fuzzy sets)
for the output variable as a first-order TSK function. For all modeled FIS
we have chosen the center of gravity defuzzification method as depicted in
(Fig. 1).

Our main goal was to measure the performance of the different types of
fuzzy inference systems for a large number of cycles in the trust evaluation
model. We have chosen to simulate the calculation of trustworthiness values
for 15 potential business partners (Recommendation Queried Agents). We
furthermore assume that neighboring agents (Recommending Agents) deliver
70 opinions in average for each Recommendation Queried Agent. Therefore,
the FIS must process 1,050 opinions overall.

4.4 Policy Table

Our simulation results show that the number of rules play a significant role
for the performance of an FIS. The investigated FIS types exhibit a fast re-
sponse time of time of less than one second when only three fuzzy rules are
defined. For a larger rulebase of 30 rules we observe expected longer response
times for both systems. However, the TSK type FIS performs ∼16 times faster
compared to MA or Larsen type fuzzy inference engines. In all tests the sin-
gleton type FIS exhibits the best performance, however this type of FIS was
not considered during the design of the policy table. The limited modeling ca-
pabilities of singleton type FIS result in more coarse grained trustworthiness
and QoS values and thus affect the quality of our fuzzy models.

In situations where the tested fuzzy inference methodologies perform simi-
lar or where the response times are very high, we favor the MA or Larsen type
FIS because its set up requires less domain knowledge and allows consistent
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Table 1. Policy table for FIS methodologies

Fuzzy No. of Trustworthiness Quality of service
rulebase inference evaluation model review model

cycles

Large Many Takagi–Sugeno–Kang Mamdani–Assilian or Larsen
Large Few Mamdani–Assilian or Larsen Mamdani–Assilian or Larsen
Small Many Mamdani-Assilian or Larsen Mamdani–Assilian or Larsen
Small Few Mamdani–Assilian or Larsen Mamdani–Assilian or Larsen

usage of linguistic terms rather than mathematical functions. The set up of a
TSK type FIS requires the existence of experimental data or extensive domain
knowledge.

This analysis results in a policy table (Table 1) with which the agent will
be equipped. This policy table supports the selection of an appropriate FIS
for the different tasks the agent fulfills and the different situations the agent
finds itself in.

5 Conclusion

Our analysis shows that Mamdani–Assilian (MA) or Larsen type and Takagi–
Sugeno–Kang (TSK) type fuzzy inference methods have their merits in differ-
ent situations. The Trusting Agent is equipped with a policy table to support
dynamic decisions about which type of fuzzy inference system (FIS) it will
select during the trustworthiness evaluation and quality of service (QoS) mea-
surement process. Our tests show that in most situations the MA or Larsen
type FIS is represents the preferred choice.

To measure the QoS after a business interaction, an MA or Larsen type
FIS allows higher flexibility and a more intuitive approach for the agent owner
during his initial system set up. The increased level of flexibility is given
through a number of defuzzification methods from which the agent owner can
choose, according to his personal preferences. Furthermore, an MA or Larsen
type fuzzy inference system allows a linguistic modeling approach which offers
a more intuitive approach in situations where extensive domain knowledge
is absent. Also, since only a small set of data is processed during the QoS
measurement within our fuzzy model, computational efficiency is not a crucial
requirement.

In situations where the fuzzy rulebase is large and many inference cycles
are required, the TSK type FIS is used due to its superior performance char-
acteristics. The reduced computing efforts as a result of the more compact
TSK type fuzzy inference approach are especially suitable for the increased
number of calculations in our fuzzy trust evaluation model. This high volume
of calculations occurs if the agent operates in an information-rich environment
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where a large number of witness agents deliver their opinions about a potential
business partner. The TSK type fuzzy inference approach significantly reduces
the amount of computational power required to calculate overall trustworthi-
ness values for all potential business partners in a timely manner and, thus,
results in faster selection of business partners. We assume that in cases where
the agent owner wants to increase the precision of the FIS by deploying a
large rulebase, sufficient domain knowledge, or previously recorded data al-
ready exist in order to design appropriate TSK type functions.
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Simulating a Trust-Based Peer-to-Peer
Metadata Publication Center

Paolo Ceravolo, Alessio Curcio, Ernesto Damiani and Micol Pinelli

Summary. This paper introduces a distributed Trust Layer that can be super-
imposed to metadata generators. By means of a simulator of the Trust Layer we
developed an experimentation aimed at validating the role of a Trust Layer as a
technique for automatically screening high-quality metadata in a set of assertions
coming from sources with different level of trustworthiness.

1 Introduction

Nowadays, communication technologies have increased the opportunities to
cooperate and share information among parties. Communication technologies
cancel geographical distance, support self-organizing systems, and extend in-
teraction processes towards a distributed dynamics. According to [5], groups
of people sharing a common intent and spending time in achieving this intent
are called communities of practices. CoPs exist within businesses and across
business units and company boundaries. In order to manage interactions in
such kind of community it is crucial to define an organizational knowledge. In
ordinary communities this knowledge is spontaneously managed by means of
informal learning and mutual engagement. In a domain where interactions are
supported by communication technologies, organizational knowledge must be
formalized and memorized in a predefined format. Moreover, in current busi-
ness contexts and in distributed environment that require multidisciplinary
approaches and competencies, this stress the relevance of user’s role, reputa-
tion, and trust. For these reasons, generic knowledge management techniques
in CoPs have to be evolved towards a source oriented evaluation of the ac-
quired knowledge. The knowledge extracted during the analysis of the infor-
mation flow produced by the community must be filtered by the relevance
of the node producing it. Also the composition of nodes can evolve and the
knowledge is continuously under the evolution pressure.

Typically, knowledge management techniques use metadata in order to
specifying content, quality, type, creation, and spatial information of a data
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item. A number of specialized formats exist for the creation of metadata.
A typical example is the resource description framework (RDF). But metadata
can be stored in any format such as free text, extensible markup language
(XML), or database entries. All of these format must relay on a vocabulary
that can have different degree of formality. If this vocabulary is compliant to
a set of logical axioms it is called an ontology.

There are a number of well-known advantages in using information ex-
tracted from data instead of data themselves. On one hand, because of their
small size compared to the data they describe, metadata are more easily share-
able than data. Thanks to metadata sharing, information about data becomes
readily available to anyone seeking it. Thus, metadata make data discovery
easier and reduce data duplication. On the other hand, metadata can be cre-
ated by a number of sources (the data owner, other users, automatic tools)
and may or may not be digitally signed by their author.

The present paper briefly outlines our current research work (for a more
detailed description, see [2]) on how to validate such assertions by means of a
Trust Layer, including a Trust Manager able to collect votes from the different
nodes and to compute variations to trust values on metadata. In order to test
the validity of our algorithms tasked to the computation of trust values and
to the aggregation of different values from different sources, we developed
a Trust Layer simulator able to return the progression of system according
to different configuration of the community and according to different trust
aggregator functions. This paper is organized as follows: in Sect. 2 we outline
the architecture of our Trust Layer, while Sect. 3 we focus our attention on the
parameters allowed in order to set a simulations; finally in Sect. 4 we expose
the result of some simulations.

2 The Trust Layer Architecture

Before describing our proposed Trust Layer, let us make some short remarks
on related works. Current approaches distinguish between two main types
of trust management systems [1], namely Centralized Reputation Systems
and Distributed Reputation Systems. In centralized reputation systems, trust
information is collected from members in the community in the form of rat-
ings on resources. The central authority collects all the ratings and derives a
score for each resource. In a distributed reputation system there is no cen-
tral location for submitting ratings and obtaining resources reputation scores;
instead, there are distributed stores where ratings can be submitted. In our
approach trust is attached to metadata in the form of assertions rather than to
generic resources. While trust values are expressed by clients, our Trust Layer
includes a centralized Metadata Publication Center that acts as an index, col-
lecting and displaying metadata assertions, possibly in different formats and
coming from different sources. It is possible to assign different trust values
to assertions, depending on their origin: assertions manually provided by a
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domain expert are more reliable than automatically generated ones. Meta-
data in the Publication Center are indexed and clients interact with them by
navigating documents indexed by means of metadata. Users provide implicitly
(with their behavior) or explicitly (by means of an explicit vote) an evaluation
about metadata trustworthiness. This trust-related information is provided by
the Publication Center to the Trust Manager in the form of new assertions
expressing the trust of an assertions, which we call Trust Metadata. Trust
Metadata are built using the well-known technique of reification. This choice
allows our system to interact with heterogeneous sources of metadata: our
Trust Metadata are not dependent on the format of the original assertions.
Also, all software modules in our architecture can evolve separately; taken
together, they compose a complete Trust Layer, whose components commu-
nicate by means of web services interfaces. This makes it possible to test the
whole system despite the fact that single models can evolve with different
speeds. Summarizing our architecture, the Trust Manager is composed of two
functional modules:

– Trust evaluator: examines metadata and evaluates their reliability;
– Trust aggregator: aggregates all the inputs coming from the trust evalua-

tors by means of a suitable aggregation function.

This system allows to integrate large amount of assertions produced from
different sources. Trust aggregation algorithms provides a self-running mech-
anism allowing high-quality assertion to emerge in the whole set of produced
assertions. Figure 1 describes the architecture of our Trust Layer. More details
on Trust Manger can be found in [3].

Fig. 1. The Trust Layer architecture



278 P. Ceravolo et al.

3 Setting a Trust Layer Simulator

The scope of the simulation tests we implemented is testing various types
of trust aggregators used to compute the evolution of Trust Metadata. The
evolution of a metadata base is strictly dependent to the characteristics of the
community accessing the resources available in the Publication Center. Users
of the community can have different roles, with different levels of expertise
about the content expressed by the resources. Roles are also characterized
by different attitudes, for instance users can spend more time in producing
metadata or in navigating the metadata base. Also in the community we
can have different user groups grouping users with the same role. The logical
schema of the software simulating Trust Layer is the following (Fig. 2).

In order to execute a test we need to define all the elements of this
logical schema. The configuration of the whole system starts by instan-
tiating a Project. A Project must contain all the informations about
ConceptList, Usergroups, Role, StateMachine, Schema, and Resources en-
tities. A ConceptList represents a set of concepts composing the vocabulary
used to create the metadata on the resources of the system. UserGroups clus-
ter users with the same features, such as having a Role, a StateMachine of
the attitudes and other parameters. The UserGroup defines also the popula-
tion that interact in the system, setting a number of simulated users for each
Role. The Role maps an expertise value (in a range from 0 to 1) to each con-
cept of the ConceptList. The states in which users of a simulation can move
are represented by one or more StateMachine that differ one each other by

Fig. 2. The logical schema of the simulator
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the number and type of states. The probability to change state is defined in
the Schema. Resources are entities (documents or other kind of materials) on
which the population of users creates assertions. The last information needed
to configure a Project is to set the aggregator type and relative parameters.

4 Some Examples of Simulations

When we execute a simulation, each simulated user, moves from a state to
another, performing a defined behavior; for example the behavior can cause
the production of assertions (Metadata), or assessments on the assertion trust
(Trust Metadata). This way simulated users can provide inputs to both Trust
Evaluator and Trust Aggregator modules. Every simulated user has a fault
probability, depending on his role, to make wrong assessments on metadata
assertions. Trust values contained in the Trust Metadata produced by the
system depend to the expertise value associated to users’ role. These metadata
are produced by the Trust Evaluator that is a client module corresponding
to each single user. Every fixed time, Trust Evaluators send metadata to
the Trust Aggregator that is a service available on a central server. Trust
Aggregator collects Trust Metadata to obtain a final aggregated trust value
for each assertion.

As result of the simulation we can observe some trust trends for each
assertion associated to a single resource. We represent these trends by means
of three functions that show the overall system trend:

– Trustworthiness represents the overall truth level of the system obtained
as the ratio between the sum of correct metadata assertions and the sum
of all Trust Metadata with height trust values.

– Precision calculated as the ratio between number of Trust Metadata that
should be produced and the number of Trust Metadata that have been
produced.

– Recall is the ratio between the number of correct Trust Metadata that
should be produced and the number of correct Trust Metadata that have
been produced.

By means of these functions we have an objective quantification for eval-
uating the effectiveness of our aggregation algorithms.
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The Complex Facets of Reputation and Trust

Karl Aberer, Zoran Despotovic, Wojciech Galuba and Wolfgang Kellerer

Summary. Trust and reputation systems have proven to be essential to enforc-
ing cooperative behavior in peer-to-peer networks. We briefly describe the current
approaches to building reputation systems: social networks formation, probabilis-
tic estimation, and game theoretic models. We then observe that all of the current
models make a number of simplifying assumptions that may not necessarily hold in
real networks, such as either irrational (probabilistic) or completely rational behav-
ior, instant propagation of reputation information and homogeneity of interactions.
We argue that dropping those assumptions and allowing more degrees of freedom
is necessary in order to construct more realistic and richer reputation models. We
support our argument by citing reputation research done in economics, evolution-
ary psychology, biology, and sociology, and consider models that take into account
adaptive behavior changes, co-evolution of behaviors, bounded rationality, and vari-
able interaction patterns. We then outline how those complexities can be dealt with
and point out main directions for the future study of more realistic and less con-
strained reputation models that can potentially lead to construction of more secure,
responsive, and cooperative peer-to-peer systems.

1 Introduction

Reputation systems have proven to be essential to enforcing cooperative be-
havior in peer-to-peer networks. Many solutions have been proposed [3, 7, 13,
18, 22, 31], each employing a different model of computing trust, disseminat-
ing and storing reputation data, and responding to lack of cooperation in the
network [25]. In this paper we focus on the reputation and trust models them-
selves rather than practical considerations of implementing and deploying a
reputation system. We begin with the description of the basic concepts, then
survey the current approaches, examine the different assumptions commonly
made by the different reputation and trust models and propose ways in which
they can be relaxed or extended.
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2 Fundamentals

Assume a set of nodes continuously engaging in bilateral interactions. For sim-
plicity we assume that a single interaction always involves a pair of nodes and
that interactions involving a larger group of nodes can always be decomposed
into a set of binary interactions.

Each interaction has an associated benefit and cost. These two values are
normally such that nodes face a Prisoner’s Dilemma (PD) [12]. It is beneficial
for the node to cooperate only if the other node cooperates as well, otherwise
it is better to defect.

In this setting, when Alice interacts with Bob it can gain more if it is
able to predict that Bob will cooperate. The extent to which a node believes
the other will cooperate is the extent to which a node trusts the other node.
There are a number of ways this belief can be inferred and they are captured
by the different trust models. One of the inferences that can be made is:
if Alice cooperated with Bob then it implies Alice will also cooperate with
Carol. If this inference is applied universally, the collective actions of Alice
form a commonly shared belief among the other nodes of how likely Alice is
to cooperate. This belief is what is termed reputation. In the paper we will
focus on reputation-based models of trust, whose computation solely depends
on the actions of the peers instead of relying on other elements such as third
party guarantors of trust (e.g., PKI) or virtual currency for which trust can
be purchased, etc.

3 State-of-the-Art

In reputation-based models trust towards a given node A is determined based
on the past actions of A. Every node Vi only has information about the actions
of A that Vi itself experienced. To compute the reputation of A, nodes need
to exchange the information about the actions of A that they have observed.
This exchange and the subsequent computation of reputation can proceed in
many ways.

There are four classes of approaches [8]: social networks, probabilistic
estimation, game-theoretic models, and evolutionary approaches.

3.1 Social Networks

The social network approach assumes an existence of a digraph of social links
between nodes. The interactions between the nodes proceed along the links
and each link has a trust value associated with it. That value is updated based
on the interactions between the nodes at the two ends of the link. A node V
can compute the trust value for another non-neighbor node W by aggregating
trust values from other nodes in the following way:
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1. Enumerate (all) paths from W to V
2. Aggregate trust values along the paths
3. Merge the results of aggregation at V as the final trust value

The social network approaches vary in the details of the three above steps:
what domain is used to represent trust, what the selected paths are, what are
the aggregation and merging functions. Trust values are either computed on
demand between specific W and V or simultaneously for all nodes using some
form of iterative methods that converge on the eigenvector of trust values.

3.2 Probabilistic Estimation

The computations in social networks produce trust values that are hard to in-
terpret. In particular, given a trust value for the node A it is hard to translate
that value into the probability that A will cooperate. But this can be rectified
if the assumption about probabilistic behavior of the nodes is made explicit
and then well-known probabilistic estimation techniques such as Bayesian esti-
mation and maximum likelihood estimation are used to compute the trust of a
given peer. This is what probabilistic estimation methods do. As an example,
consider a network consisting of peers having associated innate probabilities
of cooperating. Denote by θj the probability of peer j. Assume that peer j
interacted with n other peers p1, . . . , pn and its performances in these interac-
tions were x1, . . . , xn, where xi ∈ {0, 1} (1 denoting the honest performance
and 0 the dishonest one). When asked to report on peer j’s performances
witnesses p1, p2, . . . , pn may lie and misreport. Assuming that they lie with
specific probabilities, say lk for peer pk, the probability of observing report yk
from peer pk can be calculated as:

P [Yk = yk] =

{
lk(1− θj) + (1− lk)θj if yk = 1,
lkθj + (1− lk)(1− θj) if yk = 0.

(1)

By definition, the likelihood function associated with a random sample of
reports y1, y2, . . . , yn is:

L(θj) = P [Y1 = y1]P [Y2 = y2] · · ·P [Yn = yn]. (2)

After collecting the reports on the peer it is about to interact with, the trust
computing peer just has to make this product and find θj that maximizes it.
This number is the maximum likelihood estimate of the unknown probability.
To do this, the computing peer must have good estimates of the parameters
l1, . . . , ln. They can be made by comparing own performances with reports
on them. Note also that the own experiences are seamlessly integrated into
this model – the trust computing source peer i just has to put pi = 1 for his
own experiences xi. As another advantage of the probabilistic methods, we
emphasize that, when compared to social networks, they bring a substantial
reduction of the communication overhead. The reason is that they deal only
with feedback on the target peer, while social networks essentially aggregate
all available feedback, i.e., opinions of all peers about all other peers.
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3.3 Game-Theoretic Approach

In game-theoretic approaches to reputation systems it is often assumed that
the players are perfectly rational in the sense that they are only interested in
maximizing their own payoffs. These assumptions allow the computation of
Nash equilibria as strategy profiles where peers have no incentive to deviate.
Normally, game-theoretic modeling of reputation effects requires repeated in-
teraction and uncertainties among the players with respect to their opponents’
payoffs [21]. More recently, there have been attempts to extend these mod-
els in order to more closely model real world settings. Most notably, the two
important models are: private and public monitoring games. In these games
players do not observe each other’s actions but only their signals. In private
monitoring games [20], the signals are different for different players, while in
public monitoring games [23], all peers observe the same signals about the
actions of other peers.

However, we see a number of problems with respect to the application of
game-theoretic reputation models. One is related to the behavior. There are
plenty of settings where the full rationality of the players cannot be expected.
Any setting with human players would be an example. The second is the diffi-
culty of introducing the rationality assumption into the reputation mechanism
implementation itself.

3.4 Evolutionary Approach

Game theorists have also approached the problem of cooperation in a popula-
tion of PD-players from a more experimental angle. Most notably, Axelrod [4]
has demonstrated the success of the tit-for-tat strategy in an Evolutionary
Prisoner’s Dilemma setting. In this setting pairs of players are involved in re-
peated PD games. Each player maintains a score, which is updated after every
game round according to the PD payoff matrix. The players with the highest
score are considered most fit and their strategies are replicated replacing other
unfit strategies. The winning tit-for-tat strategy follows three simple rules:

1. Initially cooperate – when interacting with an opponent for the first time,
always cooperate,

2. Punish – if the opponent defected in the previous round, punish him by
defecting, and

3. Forgive – if the opponent cooperated in the previous round, cooperate
even if there is a history of opponent’s defection.

The tit-for-tat strategy has been shown to be evolutionary stable, being able
to drive into extinction small populations of invading defectors, that try to
exploit cooperators. At the same time groups of tit-for-taters are always co-
operating within the group, which allows them to accumulate score surplus
which in turn can be used to fight against transient groups of defectors.

To be successful, the tit-for-tat strategy needs a setting in which the PD
interactions are repeated many times for the same pair of players, which allows
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punishment to occur. In a large population of infrequently interacting indi-
viduals this may not be possible (e.g., eBay and its transactions). This ob-
servation led to the definition of a new setting in which every pair of players
can only play one round of PD and never meet again. Building cooperation in
this setting relies on the rule: “If A cooperates with B then B can reciprocate
and cooperate with some other player C.” This rule is termed indirect reci-
procity, as opposed to the direct reciprocity rule followed by tit-for-tat. In this
case, to build cooperation players can no longer rely on private observation of
the actions of the opponent. Once an observation is made, remembering that
observation is pointless since all interactions are one-shot and such an obser-
vation can never be used to make cooperation decisions. Hence there arises the
need to exchange observations with other players. This can be implemented by
associating a public label with each player. All players can read the label, and
all players except the owner of the label are allowed to change it. It has been
shown that to enable sustainable cooperation only two states of the label are
sufficient [19]. The two states correspond to good and bad reputation. When
a pair of players interacts, their labels are modified according to their actions.
The behavior of the player can be succinctly described as two functions: the
action function and the assessment function. The action function takes the
label of self and the opponent and produces the decision to either cooperate
or defect. The assessment function is executed after the actions of both agents
have taken place. The assessment function takes the label of self, the label of
the opponent, and the action of the opponent, and produces the new value for
the opponent’s label. Since the outputs of the functions are binary, there is a
relatively small number of all possible functions. There are exactly 16 possible
action functions and 256 possible assessment functions, which together results
in 4,096 possible behaviors. Ohtsuki et al. [15] have performed a systematic
experimental study of all those 4,096 behaviors. Out of these they have found
eight evolutionary stable cooperative strategies, termed “the leading eight”
(Table 1).

A population of agents using one of these strategies is able to sustain co-
operation and drive out of existence any small population of defectors and/or
reputation liars (i.e., players that set the labels to “bad” value even though
their opponent cooperated).

There is a remarkable similarity between tit-for-tat and the leading eight
strategies. The leading eight strategies exhibit all the properties of tit-for-
tat: initial cooperation, forgiveness, and punishment for defection. Tit-for-tat
can be implemented with one bit of local state in the player, leading eight
strategies make this state public by storing it in the player’s label.

4 Propagation of Reputation Information

If we compare the two cases – direct reciprocity and indirect reciprocity – they
are two extremes in reputation information propagation. In the case of direct
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Table 1. The “leading eight” behaviors in the evolutionary indirect reciprocity
game

assessment function:
GG BG GB BB

C G * G *
D B G B *

action function:
GG GB BG BB
C D C *

G and B stand for good and bad reputation labels, respectively. C and D stand for co-

operation and defection. The GG, GB, BG, BB encode four possible states of the labels.

The first letter is the label of self and the second letter is the label of the opponent. The

three asterisks in the fields of the assessment function can take any value, hence eight pos-

sible assessment functions are possible. The value at the asterisk in the action function

is uniquely determined based on the choice of one of the eight assessment functions (for

details refer to [14]). As can be seen from the tables, the leading eight behaviors are similar

to tit-for-tat, bad behavior is forgiven after it is punished. In addition to that, punishment

of bad behavior is justified, a good player defecting with a bad player is assessed as good

reciprocity it is sufficient to rely on privately gathered history of interactions
with players, no propagation of reputation is necessary. On the other hand,
in the case of indirect reciprocity, once two players interact, their reputation
labels are updated and immediately available to all other players, the repu-
tation information propagates instantaneously. When a reputation system is
implemented in a peer-to-peer setting the assumptions about the propaga-
tion of reputation no longer hold. The character of reputation propagation is
determined by the implementation. The question that arises is whether the
delayed reputation propagation influences the performance of the reputation
system. There is at least one piece of evidence [5] which suggests that delaying
the communication of reputation in games with imperfect private monitoring
leads to more efficient equilibria. Taking the propagation of reputation infor-
mation into account might lead to the discovery of entirely new phenomena.

Question 1 How do the reputation propagation dynamics influence the
performance of the reputation system?

The propagation of reputation cannot only be delayed, it may also be
possible to propagate it partially while still maintaining the reputation system
performance at an acceptable level. Participating in a reputation system incurs
a cost to the peers, the smaller the fraction of nodes that need to participate in
each reputation update the smaller the load on the system. We have performed
simulations to test the impact of limited reputation information propagation
on the performance of the reputation system described in Sect. 3.4 (Fig. 1).
Experiments indicate that it is sufficient to make the reputation information
available to 30% of the agents to obtain performance that is close to the
performance of the system with full propagation. This suggests that there
are substantial communication savings to be gained by simply limiting the
propagation of the reputation information.
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Fig. 1. A population of honest agents using one of the leading eight strategies (see
Sect. 3.4) is pitted against a population of defectors, who always defect and propa-
gate negative reputation information about others. We vary the number of defectors
in the population and observe the level of cooperation in the system measured by
the fraction of interactions amongst the honest agents in which both agents cooper-
ate. Every reputation update is propagated to a fraction α of the whole population
chosen uniformly at random. We repeat the experiment for different values of α.
We can observe that if the reputation updates are propagated to a few agents only
(2%) even a small number of badmouthing defectors can subvert cooperation. On
the other hand, the reputation propagation rate set to 30% is sufficient to allow
practically linear graceful decrease in cooperation level as the number of defectors
increases

Question 2 Is it necessary to propagate the reputation information to all the
nodes to have a robust reputation system?

Question 3 How does the fraction of nodes to which reputation information
is propagated influence the performance of the system?

Question 4 How to choose the fraction of nodes to which the reputation
information is propagated?

5 Bounded Rationality

Game theorists have considered imperfect monitoring games in which noise is
allowed to occur in the system: imperfect observation of other players’ actions,
imperfect action execution, error-prone reputation information exchange, etc.
While considering limitations of perception of the players, game theory still
usually assumes that the players are absolutely rational. However, they may
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have limited resources available to compute their behavior. Nash equilibria
have been shown to be NP-hard to compute [11]. In the extreme, being unable
to compute their behavior peers can behave entirely irrationally (randomly).
This set of limitations is commonly termed bounded rationality. Conlisk [6]
provides a plethora of empirical evidence from economics and experimental
psychology in support of bounded rationality. The key observations are that:

– Bounded rationality can explain a number of empirical anomalies in eco-
nomics for which unbounded rationality models fail

– Rationality is scarce, good decisions, are costly, they require both reliable
information, which is difficult to obtain and computational power

– Bounded rationally leads people to imitate behaviors of others, which is
cheaper than computing the behavior on their own

Given the predictive success of bounded rationality models, questions arise:

Question 5 How can we incorporate bounded rationality into reputation
models?

Question 6 What are the bounds on rationality in peer-to-peer systems and
how can they influence the dynamics of cooperation and reputation?

6 Behavioral Evolution

In the previous section we have already mentioned how imitation plays a role
in selection of behaviors by agents. When a behavior is replicated its utility
is locally evaluated by the agent. If the utility of the behavior is low it is
promptly replaced by another behavior. This creates an evolutionary setting
in which behaviors are replicated by imitation and selected by the agents for
utility. An agent might use a set of behaviors (rules of behavior) and each
of them can be individually imitated, creating a setting in which groups of
mutually dependent behaviors co-evolve. The two main mechanisms of behav-
ioral imitation in human societies are: payoff-biased transmission – imitating
the behavior of the most successful individuals and conformist transmission –
imitating the most frequent behavior [15].

How can we relate the above facts about behavioral evolution to interact-
ing populations of selfish peers in peer-to-peer systems? First, we must clarify
that it is not the peers that are selfish, but the human users of the peer-to-peer
software. It is the users themselves who decide how their peers should behave.
Hence, we could conjecture that a lot of the social mechanisms described
above are driving the evolution of peer behaviors. This conjecture is con-
firmed by the following empirical evidence. Peer-to-peer file sharing software
called eMule [2] is open source, which allows anyone to make modifications to
it and distribute them. This has given rise to a number of mutated versions
of the base eMule client, the so-called “mods” [1]. There are mods that pro-
tect the user privacy by encrypting downloaded data, there are mods which
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implement various bandwidth saving heuristics, there are extremely uncoop-
erative mods that cut off uploads to other peers to conserve bandwidth, there
are mods that detect uncooperative mods and disconnect from them, there
are even mods that detect those policing mods and use stealth techniques to
hide their defection, etc. These mods are constantly created and propagated
via numerous websites and evaluated by users on various electronic forums.
The social network of peer-to-peer system users selecting behaviors for their
peers is tightly interrelated with the overlay network providing an arena for
the execution of those behaviors selected by the users. Up to our knowledge
there have been no attempts to study these two networks as one entity with
all their dependencies.

Question 7 How can we model behavioral evolution in peer-to-peer systems?

Question 8 How can we model the peer-to-peer software choices and modi-
fications made by humans and how do they affect the performance of the sys-
tem?

7 Second-Order Defection Problem

In an indirect reciprocity setting with cooperation being sustained by the
means of reputation, there exists the following problem: in order for the rep-
utation system to work, agents need to cooperate on exchanging reputation
information and the information about the actions of other agents they have
observed. Moreover, for the reputation system to be effective agents need to
punish defectors which incurs additional costs. This creates a second-order
cooperation problem, which could be solved by adding yet another reputation
system on top of the existing one, but this in turn would lead to a third-order
cooperation problem.

In peer-to-peer reputation systems research the problem is rarely explicitly
addressed. The usual practice is to test the robustness of the system by intro-
ducing subpopulations of second-order defectors, i.e., peers that withhold or
provide false reputation information. These evaluations only show that first-
order cooperation can be sustained under a second-order defector invasion but
it does not show that second-order cooperation is sustainable.

One of the game-theoretic solutions to this problem is the introduction
of incentives [17] to motivate agents to share their reputation information
truthfully. However the solution relies on a third party to handle the payments.
This and many other similar approaches simply reformulate the problem of
second-order defection and delegate it to another, normally centralized system
component. Up to now there has been no self-contained distributed reputation
system proposed that is free from the second-order defection problem.

There is, however, a natural system that appears to have solved that prob-
lem – human society. Biologists and psychologists studying indirect reciprocity
among humans have been trying to find the exact reasons for the remarkable
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stability of reputation and how it evolved [26,30]. Many hypotheses have been
proposed, most notably:

– Group selection – Boyd et al. [27] suggest that cooperation can evolve by
natural selection at the level of groups. Those groups that use reputation
are more cooperative and hence more fit.

– Conformist transmission – Heinrich et al. [15] show how weak conformity
in populations can lead to the stabilization of reputation exchange and
cooperation.

– Costly signaling – Gintis et al. [29] show how using costly signals agents
can advertise their quality as cooperators and in this way increase their
reproductive success.

These mechanisms could be implemented and studied in artificial repu-
tation systems potentially leading to increased performance and stability of
second-order cooperation.

Question 9 How can we apply the known reputation stability mechanisms
from natural systems to engineering peer-to-peer systems free from the second-
order defection problem?

8 Inhomogeneous Interactions

In models of reputation systems it is frequently assumed that the structure of
interactions between agents is homogeneous, i.e., each agent is equally likely
to interact with any other agent. This assumption allows the construction of
tractable analytical models. However, in practice the pattern of interactions
in the system may not be homogeneous, which may produce large deviations
from the predictions of the models. For example nodes that interact with a
large number of other nodes may need to rely more on reputation informa-
tion exchange and nodes that frequently interact with a small subset of nodes
may rely more on bilateral tit-for-tat strategies and may have no incentive to
share the reputation. These two types might need to coexist in the same net-
work. More complex behaviors are possible. A group of nodes that are highly
interacting with each other may choose to collude by artificially increasing
each other’s reputations but defecting with other nodes that are not part of
the group. Once nonhomogeneous interactions are allowed there is no single
winning behavior, such as Ohtsuka’s leading eight or Axelrod’s tit-for-tat.
A complex set of mutually dependent behaviors can successfully coexist.

In overlay routing substrates the structure of interactions is normally de-
termined by the underlying overlay maintenance algorithm – the interactions
are packets forwarded by the nodes to their neighbors. In the case of DHTs
the interactions are the key access and insertion requests, which are deter-
mined by the particular data placement strategy, normally a hash function.
The inhomogeneities in the structure of interactions in any of those cases may
warrant the existence of different equilibrium behaviors for different nodes.
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Question 10 What is the character of interaction inhomogeneities in peer-
to-peer networks?

Question 11 How can those inhomogeneities influence the behavior of the
selfish peers exchanging reputation information?

So far, we have assumed that inhomogeneities arise from some external
mechanism outside the peer’s control. In general, however, a peer might decide
what peers it interacts with based on its selfish choice. For example, a peer may
choose to interact less frequently with low reputation peers. Selection of who
to interact with becomes part of the peer behavior, which leads to a recursive
problem: the structure of interactions determines the optimal behaviors at
every node and the behaviors of nodes determine the structure of interactions.

A number of studies have looked at network formation by selfish peers
[10,16,28]. However, all of the studies assume behavioral homogeneity of peers,
i.e., all peers having the same utility function. Also, none of the studies con-
sider both network formation and cooperation building via reputation as a
single problem.

Question 12 How can peers use the reputation information to choose what
peers they want to interact with? What is the structure and dynamics of the
resulting interaction network?

9 Identity Stability

Most reputation systems rely on the assumption that identities of the agents
are stable and can be reliably used. However, in contrast to human societies,
identities in a peer-to-peer system are low cost and easy to change. A malicious
peer whose reputation is low can leave the system and rejoin under a different
identity thus clearing the whole history of its defections. A malicious peer
can also assume a number of identities to have significant presence in the
network [9]. Identity can also be stolen to take advantage of the reputation of
the previous owner.

A well-known solution to the problem of identities is public key infrastruc-
ture. However, maintaining a hierarchy of trusted third parties creates scala-
bility problems as well as introduces a single point of failure. Another widely
employed solution is increasing the cost of identities by initializing the repu-
tation of newly coming peers to a low value and making the peers gradually
build their reputation. This, however, creates a disadvantage for short-lived
peers who loose their identity every time they depart from the system and
during their short lifetime are not able to accumulate enough reputation to
gain any benefit from participation in the system.

When considering identity, researchers commonly assume one of the two
extremes: either cheap, easy to change identities, or expensive, reliable ones.
However, there exist cases which lie in between. For example, when two peers
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open a TCP connection to communicate through it, the stability of the iden-
tities at both ends of the TCP link is guaranteed. This concept of pairwise
identity stability can be extended to arbitrary groups of communicating peers
within which peer identities are stable. Identity stability needs to be associ-
ated with a particular scope.

We may also add assumptions about partial perception of identity, i.e.,
a peer might only be able to determine that a node belongs to some larger
group but not pinpoint exactly which node it is. For example, a node might
be identified as belonging to a university campus, but the individual identity
of the peer might be unknown. This creates new challenges and adds more
complexity to the already wide range of possible behaviors in a reputation
system. Up to our knowledge, partial perception of identities has not been
considered in the context of reputation systems.

Question 13 What are the minimal assumptions on the stability and percep-
tion of identity needed to construct a robust reputation system?

Identity is inextricably linked with anonymity and privacy in peer-to-peer
networks. Having accurate identity models might enable the designers to make
more precise statements about the anonymity guarantees in their peer-to-peer
systems [24].

Question 14 Can cooperation be sustained while maintaining anonymity in
a peer-to-peer system? What are the tradeoffs?

10 Conclusions

Each of state-of-the-art approaches to reputation systems for peer-to-peer
networks is based on a set of assumptions about the target deployment
environment. We have demonstrated how breaking some of these fundamental
assumptions leads to unexpected phenomena and complex peer behavior.
Clearly, there exists no single universal solution that can work well in all
distributed environments. Instead the properties of the environment should
be precisely determined before designing a reputation system. We have iden-
tified the main dimensions along which these environment properties can be
categorized:

– Communication model – how information propagates in the environment,
how costly the propagation is. This influences the speed at which reputa-
tion information can be disseminated and how many peers it may reach.

– Computational constraints – how costly computation and local storage
are. These assumptions determine the degree to which peers’ rationality
is bounded.

– Peer software dynamics – how selfish users deploy new software, how soft-
ware is modified. These processes drive the behavioral evolution of the
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system and put constraints on how fast new behaviors can be deployed or
enforced in an existing system.

– Interaction model – how peers interact, to what degree they can choose
their interaction partners. These properties of the system can strongly
influence the reputation dynamics and the choice of the optimal behavior.

– Identity model – whether identity might change, how identity is created
and represented and to what degree it can be accessed by other peers. This
determines the level of privacy and anonymity and the precision at which
statements about the reputation of individual peers can be made.

– Peer goal dynamics – what the goals of the peers are, how they change
over time. This describes the behavioral heterogeneity of the population
and at the same time groups of peers with malicious goals can be used to
model many forms of attacks on the system.

All of these environment properties strongly influence the design choices
that need to be made when constructing a reputation system. How do the envi-
ronment properties constrain the performance of the reputation system? What
are the combinations of environment properties that fundamentally prevent
from building any cooperation in the system? What is the best formal model
of the distributed target environment which allows to make precise statements
about all of its properties? These and many other problems constitute a new
and exciting agenda for trust and reputation research in peer-to-peer systems.
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Fuzzy Covering Relation and Ordering:
An Abstract Approach

Branimir S̆es̆elja

Summary. The aim of the paper is to introduce an abstract fuzzy relation gener-
alizing “covering.” These types of relations frequently appear in human activities
and can be used for the construction of a fuzzy order. We start with the known
connection between a crisp ordering relation and a corresponding covering relation
on a same set. We also establish some new, less known connections among these.

Our aim is to define a fuzzy covering relation independently, as it appears in
applications, and then to define the corresponding fuzzy ordering.

We consider fuzzy sets in a general way, as mappings from a set to a complete
lattice. Then we define a fuzzy covering relation on a set deduced from the given
partial order on the same set. We prove some properties of these. Next we start
other way around: we take an abstract fuzzy (binary) relation θ, satisfying some of
the mentioned properties. We prove that a fuzzy ordering relation can be defined,
so that θ is precisely its fuzzy covering relation, provided that the underlying set is
finite and the lattice is distributive.

Key words: Fuzzy order, Fuzzy covering.

1 Covering and Order in Crisp Case

As it is known, a crisp ordering relation � on a set X is a subset of X2

satisfying
reflexivity : for all x ∈ X, x � x;
antisymmetry : for all x, y ∈ X, x � y and y � x imply x = y (or equiva-

lently x �= y and x � y imply y �� x;
transitivity : for all x, y, z ∈ X, x � y i y � z imply x � z.
The relation < is deduced from the ordering as usual:
x < y if and only if x �= y and there is no z, such that z �∈ {x, y} and

x � z � y.
If � is a crisp ordering relation on a set X, then the covering relation ≺

on the same set is defined as follows:
x ≺ y if and only if x < y and there is no z, such that x < z < y.
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Connection of a covering relation and the order from which it is deduced
is usually given by the following lemma.

Lemma 1. If a and b are distinct elements of a finite ordered set (P,�), then
a � b if and only if either a ≺ b, or a ≺ c1 ≺ · · · ≺ cn ≺ b, for some
c1, . . . , cn ∈ P .

The following property of the covering relation deduced from the given
order is needed in the sequel. It is not common in the literature, therefore we
prove it here.

Lemma 2. Let R be a crisp ordering relation on a set X, and ≺ the corre-
sponding covering relation. Then, the following holds.

For all x, y1, y2, . . . , yn ∈ P
if x ≺ y1 ≺ y2 ≺ · · · ≺ yn then (∗)
x �= yi for i = 1, 2, . . . , n and x �≺ yi, for i = 2, 3, . . . , n.

Proof. The first part is proved by induction on i. We prove that x < yi for
all i = 1, . . . , n, whence, by the definition of the relation < it follows that
x �= yi. Indeed, by x ≺ y1 it follows that x < y1. Assume that x < yi.
Then yi ≺ yi+1 implies yi < yi+1, whence, by transitivity of the relation <,
x < yi+1. Therefore x < yi, then also x �= yi for all i = 1, . . . , n.

Since x < y1 and y1 < yi (for i > 1) (by the previously proven part), it is
not true that x ≺ yi, proving the proposition. �

For the converse, we define a particular (crisp) binary relation on a set X,
and we prove that it is possible to use it for the definition of an order on X,
in the same way as it is done in Lemma 1 for the covering relation deduced
from the given order.

Theorem 1. Let ≺ be a binary relation on a set X, satisfying the property
(∗) (preceding lemma). Then it is possible to define an ordering relation on X
which for finite X coincides with the order whose covering relation is ≺.

Proof. Let ≺ be a relation on a nonempty set X satisfying the property (∗).
Define the relation � on X as it is done in Lemma 1: for a, b ∈ X
a � b if and only if either a ≺ b, or a ≺ c1 ≺ · · · ≺ cn ≺ b, for some

c1, . . . , cn ∈ X.
Now � is obviously reflexive. It is antisymmetric since by the definition

(∗), x � y and y � x holds if and only if x = y. Transitivity holds since two
chains of elements appearing in x � y and y � z can be connected in a single
chain from x to z.

If � is the order constructed above by means of the relation ≺, then it is
straightforward to check that the covering relation deduced from � coincides
with ≺ . �
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2 Lattice-Valued Fuzzy Order and Covering

If (P,�) is a partially ordered set, poset, then infimum and supremum of
a, b ∈ P (if they exist) are denoted, respectively, by a ∧ b and a ∨ b. For
infimum or supremum of a subset or a family of elements of P , we use the
notation

∧
Q,

∨
xi, and so on. A poset in which every two-element subset has

infimum and supremum is a lattice. A lattice L is complete if infimum and
supremum exist for every subset of L. A complete lattice has the top and the
bottom element, denoted, respectively, by 1 and 0. In particular, in a complete
lattice

∨
∅ = 0.

In this paper fuzzy sets are considered to be mappings from a finite or
denumerable nonempty set X (domain) into a lattice L (co-domain). Con-
sequently, fuzzy (binary) relations on a set X are mappings from X2 to L.
For more details about lattice-valued fuzzy sets as used in the present paper,
see [3, 4].

A fuzzy ordering relation on a set X (there are several definitions, see,
e.g., [1, 2], we adopt this one) is a mapping ρ from X2 to L satisfying

reflexivity : for all x ∈ L, ρ(x, x) = 1;
antisymmetry : for all x, y ∈ X, if x �= y, then ρ(x, y) ∧ ρ(y, x) = 0;
transitivity : for all x, y, z ∈ X, ρ(x, y) � ρ(x, z) ∧ ρ(z, y).

In the following we define and investigate fuzzy covering relation deduced
from a given fuzzy order.

Definition 1. Let ρ : X2 → L be a fuzzy ordering relation on the set X.
Define a fuzzy relation θρ : X2 → L, as a subrelation of ρ, as follows:

θρ(x, y) :=
{

0, if x = y or ρ(x, z) ∧ ρ(z, y) > 0 for some z �∈ {x, y};
ρ(x, y), if ρ(x, z) ∧ ρ(z, y) = 0 for all z �∈ {x, y}.

We call the relation θρ the fuzzy covering relation induced by the fuzzy
ordering ρ.

Theorem 2. Fuzzy covering relation θρ induced by a fuzzy relation ρ as
defined above, fulfils the following.

For every n ∈ N,
if θρ(x1, x2) ∧ θρ(x2, x3) ∧ · · · ∧ θρ(xn−1, xn) > 0, then (∗∗)
x1 �= xi, for all i = 2, . . . , n and
θρ(x1, xi) = 0, for all i = 3, . . . , n.

Proof. If
θρ(x1, x2) ∧ θρ(x2, x3) ∧ · · · ∧ θρ(xn−1, xn) > 0,

then obviously we have that θρ(xi, xi+1) > 0 for every i = 1, . . . , n − 1, and
hence θρ(xi, xi+1) = ρ(xi, xi+1) > 0 for each i. Therefore, since ρ is transitive,
if x = xi for some i ∈ {2, . . . , n}, we would have ρ(x1, xi−1) ∧ ρ(xi−1, x) > 0,
contradicting the antisymmetry of ρ. Thus, x1 �= xi, for all i = 2, . . . , n.
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Suppose now that θρ(x1, xi) > 0, for some i ∈ {3, . . . , n}. Then, as before,
θρ(x1, xi) = ρ(x1, xi) > 0. Again by the transitivity of ρ, we have that

ρ(x1, xi) � ρ(x1, xi−1) ∧ ρ(xi−1, xi)
� · · · � ρ(x1, x2) ∧ ρ(x2, x3) ∧ · · · ∧ ρ(xi−1, xi) > 0.

But then, θρ(x1, xi) = 0, by the definition of θρ. Therefore, the assumption
θρ(x1, xi) > 0 leads to a contradiction, which proves the theorem. �

An abstract approach to covering, without referring to any order, is the fol-
lowing. Observe that we were able to formulate it under particular conditions
on L.

Theorem 3. Let X be a nonempty set, L a complete infinitely distributive
lattice and θ a fuzzy relation on X satisfying the property (∗∗) above. Then
there exists a fuzzy ordering relation ρθ defined by relation θ so that its fuzzy
covering relation is θ.

Proof. Let X be a finite set, L a complete distributive lattice, and
θ : X2 → L an L-fuzzy relation on X, satisfying the condition (∗∗). Define
the fuzzy relation ρθ : X2 → L in the following way: for all x, y ∈ X

ρθ(x, x) := 1, and if x �= y, then

ρθ(x, y) :=
∨

n∈N,xi∈X

(θ(x, x1) ∧ θ(x1, x2) ∧ · · · ∧ θ(xn−1, xn) ∧ θ(xn, y)),

where
∨

runs over all finite sequences x1, . . . , xn ∈ X, for each n ∈ N; we
allow also the empty sequence in which case there is only θ(x, y) on the right
side.

By the definition ρθ is reflexive.
It is antisymmetric: if x �= y, then, since L is distributive,

ρθ(x, y) ∧ ρθ(y, x) =

=
∨

(θ(x, x1) ∧ · · · ∧ θ(xn, y)) ∧
∨

(θ(y, y1) ∧ · · · ∧ θ(ym, x))

=
∨

(θ(x, z1) ∧ · · · ∧ θ(zp, y) ∧ θ(y, zp+1) ∧ · · · ∧ θ(zq, x)) = 0,

by the condition (∗∗) (supremum is taken over all corresponding sequences).
Transitivity: Observe first that

ρθ(x, y) =
∨

(θ(x, x1) ∧ · · · ∧ θ(xn, y)).

On the other hand, applying distributivity of L, similarly as in the proof
of antisymmetry, we get

ρθ(x, z)∧ρθ(z, y) =
∨

(θ(x, z1)∧· · ·∧θ(zp, z)∧θ(z, zp+1)∧· · ·∧θ(zq, y)). (1)
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Obviously,
ρθ(x, y) � ρθ(x, z) ∧ ρθ(z, y).

Next we prove that the fuzzy covering relation deduced from ρθ, denoted
by θρθ

, is θ. Indeed, by Definition 1, θρθ
(x, x) = 0, but also θ(x, x) = 0 (this is

implicit in (∗∗)). If x �= y and ρθ(x, z)∧ ρθ(z, y) > 0 for some z �∈ {x, y}, then
also θρθ

(x, y) = 0. On the other hand, since ρθ(x, z)∧ρθ(z, y) > 0, then by (1)
and by (∗∗), θ(x, y) = 0, equally as θρθ

. Finally, if ρθ(x, z)∧ρθ(z, y) = 0 for all
z �∈ {x, y}, then θρθ

(x, y) = ρθ(x, y). But ρθ(x, z)∧ρθ(z, y) = 0 means that the
join on the right-hand side of (1) equals 0 whenever there is a corresponding
chain from x to y. Therefore, ρθ(x, y) = θ(x, y), proving that in this final case
also θρθ

(x, y) = θ(x, y). Hence, we have θρθ
= θ. �

3 Examples

Example 1. Let X = {x, y, z, u, v}, and let the lattice L be the unit interval
[0, 1]. A fuzzy ordering relation ρ and the corresponding fuzzy covering are
given by the tables.

ρ x y z u v

x 1 0.2 0.2 0.2 0
y 0 1 0 0.5 0
z 0 0 1 0.5 0
u 0 0 0 1 0
v 0 0 0.1 0.4 1

θρ x y z u v

x 0 0.2 0.2 0 0
y 0 0 0 0.5 0
z 0 0 0 0.5 0
u 0 0 0 0 0
v 0 0 0.1 0 0

Example 2. Let X = {x, y, z, u, v} as above, and let L be the distributive
lattice presented by its diagram in Fig. 1.

An L-fuzzy relation θ : X2 → L, satisfying condition (∗∗) is given in the
first table; the second is the table of the corresponding ordering relation ρθ.

It is easy to check that the covering relation θρθ
, induced by the fuzzy

order ρθ, equals θ.

1

p q

r

0

Fig. 1. Distributive lattice L
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θ x y z u v

x 0 p q 0 0
y 0 0 0 0 q
z 0 0 0 p q
u 0 0 0 0 0
v 0 0 0 0 0

ρθ x y z u v

x 1 p q r q
y 0 1 0 0 q
z 0 0 1 p q
u 0 0 0 1 0
v 0 0 0 0 1

4 Conclusion

It is known that the covering relation induced by an order gives some local
properties of the order (e.g., being a parent in the ordered tree of someone’s
ancestors). Fuzzy orders and hence also the corresponding coverings are even
more connected with applications. Therefore, the approach presented here
might give a new insight into this important part of fuzzy relational calculus:
construction of a fuzzy order by means of an abstract relation which turns
out to be the corresponding cover.
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Measures of Differentiability

Martin Kalina and Alexander S̆ostak

Summary. In this paper measures of differentiability, based on nearness relations,
are defined. The behavior of these measures with respect to derivatives of a sum,
product and quotient of functions, as well as their behavior with respect to the chain
rule is studied.

1 Introduction and Preliminaries

Burgin and S̆ostak in [2] introduced measures of continuity, which in some
sense fuzzified the notion of continuity. This was further developed in [1].
This concept was also studied by Janĭs in [4–6]. In this paper we intend to
introduce measures of differentiability, based on the notion of a nearness re-
lation. Nearness-based derivatives were defined in [8] and further developed
in [9]. A slightly different way to nearness-based differentiability was followed
by Janĭs in [7]. This paper describes a new approach to the nearness-based
differentiability of crisp functions introducing the measures of differentiability.

First, let us recall some notions, which are essential for our considerations.

Definition 1 [See e.g. [5]] Let f : [0, 1] −→ [0,∞] be a non-increasing func-
tion. Then f (−1) : [0,∞] −→ [0, 1] is said to be the pseudoinverse of f iff

f (−1)(z) = sup{x ∈ [0, 1]; f(x) > z}.

Lemma 1 Let f : [0, 1] −→ [0,∞] be a continuous non-increasing function.
Then

f
(
f (−1)(y)

)
= y. (1)

Proof. Assume f is strictly decreasing at f (−1)(y). Then formula (1) obviously
holds. Let f (−1)(y) ∈ [a, b] such that f is constant in [a, b]. Then, by Definition
1, f (−1)(y) = a (since f is continuous) and hence f(a) = y, what was to be
proved.

For the purpose of this paper we slightly modify the definition of a nearness
relation. We denote R∗ = R ∪ {±∞}
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Definition 2 N : R∗ × R∗ −→ [0; 1] is a nearness relation iff the following
hold

1. N (x, x) = 1 for all x ∈ R∗

2. N (x1, x2) = N (x2, x1) for all x1, x2 ∈ R∗

3. Let x1 ≤ x2 ≤ x3 ≤ x4. Then there holds

N (x1, x4) ≤ N (x2, x3)

4. All x ∈ R yield
lim

t−→±∞
N (x, t) = 0

Property 4 of nearness relations implies the following

Lemma 2 Let N : R∗ × R∗ −→ [0; 1] be a nearness relation. Then for all
x ∈ R the following hold

N (x,∞) = 0, N (x,−∞) = 0

There are two important classes of nearness relations:

Definition 3 A nearness relation N is called strict iff the following is satis-
fied:

N (x1, x2) = 1 ⇔ x1 = x2.

The nearness relation N is called shift-invariant iff the following is satisfied
for all z ∈ X:

N (x1, x2) = N (x1 + z, x2 + z).

Let us give some examples of nearness relations:

Example 1 a. Let ρ : R∗ × R∗ −→ [0,∞] be a shift-invariant metric with
the property

ρ(∞, x) =∞ if x �= ∞
and the same holding also for −∞. Then

N1(x1, x2) = max{0, 1− ρ(x1, x2)}
N2(x1, x2) = e−ρ(x1,x2)

N3(x1, x2) =
{

1, if x1 = x2

max{0, 1
2 − ρ(x1, x2)} if x1 �= x2

N4(x1, x2) =
{

1, if ρ(x1, x2) ≤ 1
max{0, 2− ρ(x1, x2)} if ρ(x1, x2) > 1

are nearness relations based on the metric. They are shift-invariant.
b.

N5(x1, x2) =

⎧
⎨

⎩

1, if x1 = x2 = 0
min{x1

x2
; x2

x1
} if x1x2 > 0

0 otherwise
is a nearness relation. Here, the degree, to which two elements are near to
each, is not given by their distance. This nearness is not shift-invariant.
All presented nearness relations, except N4, are strict.
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As a direct corollary to Definitions 1, 2, and 3 we get the following:

Lemma 3 Let f : [0, 1] −→ [0,∞] be a non-increasing function and g :
[0,∞] −→ [0, 1] be its pseudoinverse. If (R∗, ρ) is a metric space, then
N : R∗ ×R∗ −→ [0, 1] defined by

N (x1, x2) = g (ρ(x1, x2))

is a shift-invariant nearness relation.

2 Measures of Differentiability

Definition 4 Let g : R −→ R be a continuous function. Let us fix a point
x ∈ R. Let S = (sn)n be a sequence of real numbers such that

(∀n)(sn �= x) lim
n−→∞

sn = x (2)

Take some nearness relation N . Denote

g′m(S) = lim inf
n−→∞

g(sn)− g(x)
sn − x

, g′M (S) = lim sup
n−→∞

g(sn)− g(x)
sn − x

. (3)

Then we say that NS(g′(x)) = N (g′m(S), g′M (S)) is the sequential measure of
differentiability of g at x.

Example 2 Consider the nearness relations N1 and N2 from Example 1. Let

S =
(

(−1)n 1
n

)

n

.

Let f1(x) = |x|. Then the sequential measures of differentiability of f1 at 0
with respect to the sequence S and the nearness relations N1 and N2 are,
respectively,

N1S(f ′1(0)) = N1(−1, 1) = 0
N2S(f ′1(0)) = N2(−1, 1) = exp(−2)

Let f2(x) = 1
3 |x|. Then the corresponding sequential measures at 0 are

N1S(f ′2(0)) = N1

(
−1

3
,
1
3

)
=

1
3

N2S(f ′2(0)) = N2

(
−1

3
,
1
3

)
= exp

(
−2

3

)

Let

f3(x) =
{√

2x− x2 if x ∈ [0, 2]
0 otherwise
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Then both corresponding sequential measures at 0 are equal to zero.
Let

f4(x) =

⎧
⎨

⎩

√
2x− x2 if x ∈ [0, 2]

−
√
−2x− x2 if x ∈ [−2, 0[

0 otherwise

Then both corresponding sequential measures at 0 are equal to 1 since

N1(∞,∞) = N2(∞,∞) = 1.

Theorem 1 Let g : R −→ R and h : R −→ R be continuous functions, x
some fixed point, S a sequence fulfilling condition (2) and let f be a continuous
additive generator of a t-norm ∗f . Put N (x1, x2) = f (−1) (ρ(x1, x2)), where ρ
is a given metric. Then the following hold:

NS(g′(x) + h′(x)) ≥ NS(g′(x)) ∗f NS(h′(x)) (4)
NS((g(x).h(x))′) ≥ NS(g′(x).h(x)) ∗f NS(g(x).h′(x)) (5)

NS

((
g(x)
h(x)

)′)
≥ NS

(
g′(x)
h(x)

)
∗f NS

(
g(x).h′(x)
h2(x)

)
(6)

In the last item we assume h(x) �= 0.

Proof. The left-hand-side of formula (4) is the following:

N ((g + h)′m(S), (g + h)′M (S)) = f (−1) (ρ ((g + h)′m(S), (g + h)′M (S))) ≥
f (−1) (ρ (g′m(S) + h′m(S), g′M (S) + h′M (S))) ≥
f (−1) (ρ (g′m(S), g′M (S)) + ρ (h′m(S), h′M (S)))

since f , and hence also f (−1), is a non-increasing function. Applying Lemma
1 we get

f (−1) (ρ (g′m(S), g′M (S)) + ρ (h′m(S), h′M (S))) =

f (−1)
(
f
(
f (−1) (ρ (g′m(S), g′M (S)))

)
+ f

(
f (−1) (ρ (h′m(S), h′M (S)))

))
=

NS(g′(x)) ∗f NS(h′(x))

since f is the additive generator of ∗f .
The left-hand-side of formula (5) is the following:

N ((g · h)′m(S), (g · h)′M (S)) = f (−1) (ρ ((g · h)′m(S), (g · h)′M (S))) ≥
f (−1) (ρ (g′m(S) · h(x) + h′m(S) · g(x), g′M (S) · h(x) + h′M (S) · g(x))) ≥
f (−1) (ρ (g′m(S) · h(x), g′M (S) · h(x)) + ρ (h′m(S) · g(x), h′M (S) · g(x)))

since g and h are continuous functions at x and f (−1) is a non-increasing
function. Now, we can proceed exactly as in the previous case and we get
formula (5).

Formula (6) is just a modification of formula (5), just applied to functions
g and 1

h . �
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Theorem 2 Let g : R −→ R and h : R −→ R be continuous functions, x
some fixed point. Put, for some k > 0, the following nearness relation:

N k(x1, x2) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if x1 = x2 = 0

min
{(

x1
x2

)k

;
(

x2
x1

)k
}

if x1x2 > 0

0 otherwise

Then for a sequence S = (sn)n, fulfilling condition (2), we get

N k
S

(
(g(h(x)))′

)
≥ N k

S (g′(z)) · N k
S (h′(x)) (7)

where z = h(x).

Proof. Let us denote V = (h(sn))n. We will discuss several cases.

• First, assume that h′m(S) > 0 and g′m(V ) > 0. Then we get

N k
S

(
(g(h(x)))′

)
= N k(g(h)′m(S), g(h)′M (S)) =

g(h)′m(S)
g(h)′M (S)

≥

g′m(V )
g′M (V )

· h
′
m(S)
h′M (S)

= N k(g′m(V ), gM (V )) · N k(h′m(S), h′M (S)) =

N k
S (g′(z)) · N k

S (h′(x))

• Assume that h′M (S) < 0 and g′M (V ) < 0. This case can be treated similarly
as the first one, just we must keep in mind that now

|h′M (S)| < |h′m(S)| and |g′M (V )| < |g′m(V )|.

• Assume that h′M (S) < 0 and g′m(V ) > 0. Then g(h)′M (S) < 0 and we get

N k
S

(
(g(h(x)))′

)
= N k(g(h)′m(S), g(h)′M (S)) =

g(h)′M (S)
g(h)′m(S)

≥

g′m(V )
g′M (V )

· h
′
M (S)
h′m(S)

= N k(g′m(V ), gM (V )) · N k(h′m(S), h′M (S)) =

N k
S (g′(z)) · N k

S (h′(x))

• Assume that h′m(S) > 0 and g′M (V ) < 0. Then g(h)′M (S) < 0 and we get

N k
S

(
(g(h(x)))′

)
= N k(g(h)′m(S), g(h)′M (S)) =

g(h)′M (S)
g(h)′m(S)

≥

g′M (V )
g′m(V )

· h
′
m(S)
h′M (S)

= N k(g′m(V ), gM (V )) · N k(h′m(S), h′M (S)) =

N k
S (g′(z)) · N k

S (h′(x))

In all other cases we get either N k(h′m(S), h′M (S)) = 0 or N k(g′m(V ),
g′M (V )) = 0 and hence formula (7) is fulfilled. ��
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Theorem 3 Let N be a strict and shift-invariant nearness relation such that
there exist some points a �= b with N (a, b) > 0. Further, let x ∈ R be some
fixed point. Then for each t-norm ∗ there exist a couple of continuous functions
g : R −→ R and h : R −→ R and sequence S = (sn)n, fulfilling condition (2),
such that the following formula holds:

NS

(
(g(h(x)))′

)
< NS(g′(z)) ∗ NS(h′(x)), (8)

where z = h(x).

Proof. Without loss of generality we can assume that N (−1, 1) > 0. Put
h(x) = |x| and gk(x) = kx for k > 0. Then, for a sequence S converging to
0 and possessing infinitely many elements bigger then 0 and infinitely many
elements less then 0, the following holds

NS

(
(g(h(0)))′

)
= N (−k, k)

NS (g′(0)) = 1
NS (h′(0)) = N (−1, 1) > 0,

hence
NS(g′(0)) ∗ NS(h′(0)) = N (−1, 1) > 0. (9)

It is enough to choose k such that

N (−k, k) < N (−1, 1) (10)

and the assertion in question is proved. The existence of such k is implied by
property 4 of nearness relations. ��
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6. Janĭs, V., (1998) Fuzzy mappings and fuzzy methods for crisp mappings, Acta
Univ. M. Belii 6: 31–47
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Lipschitz Continuity of Triangular Norms

Andrea Mesiarová

Summary. In this contribution we will study t-norms which are stable with respect
to lp norms (where p ∈ [1,∞]) and the properties of classes of lp-stable t-norms. We
will also study transformations which preserve the l1-stability of t-norms.

Key words: Triangular norm, Lipschitz property, lp norm.

1 Introduction

Estimation of errors in outputs of processing by means of t-norms heavily
depends on the input errors. However, to measure the deviation of observed
input (x1, y1) and the real input (x0, y0), several types of norms on R

2 can
be chosen. For a given norm D : R

2 → [0,∞[ , a t-norm T : [0, 1]2 → [0, 1]
is called D-Lipschitz if and only if there is a real constant k ∈ ]0,∞[ such
that

|T (x1, y1)− T (x0, y0)| ≤ kD(x1 − x0, y1 − y0), (1)

for all (x1, y1), (x0, y0) ∈ [0, 1]2. Vice versa a t-norm satisfying (1) is called
k-D-Lipschitz. Obviously, each D-Lipschitz t-norm is continuous.

The aim of this contribution is to discuss D-Lipschitz t-norms for D = lp,
where p ∈ [1,∞[ and lp is a norm given by

lp(x, y) = p
√
|x|p + |y|p,

and for the Chebyschev norm D = l∞, l∞(x, y) = max(|x|, |y|). Note that
for p = 1, we obtain in (1) the standard Lipschitz property (in this case we
will say that the corresponding t-norm is Lipschitz). We will give the char-
acterization (in the case of p = 1 full and partial otherwise) of the class
of k-lp-Lipschitz t-norms for k ∈ ]0,∞[ , p ∈ [1,∞] and study the bound-
ary properties of these classes. Note that for p = 1, k = 1 we obtain
the class of associative copulas, which was already completely characterized
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in [6, 7] as ordinal sums of t-norms with convex additive generators. Note
also that the first steps in discussion of 1-lp-Lipschitz t-norms were intro-
duced in [2]. The characterization of the class of k-Lipschitz t-norms for
k > 1 which can be found in [3, 5] is an answer to an open problem posed
by Alsina, Frank and Schweizer in [1]. Note that a partial answer to this
problem for k-Lipschitz t-norms generated by differentiable additive gener-
ators was given by Shyu [8]. Finally, for k-Lipschitz t-norms we will study
transformations which preserve Lipschitz property (possibly with different
constant k).

Because of neutral element it is obvious that for all p ∈ [1,∞] a t-norm
can be k-lp-Lipschitz only for k ∈ [1,∞[ . Let us denote by Tk,lp (Tk) the
class of all k-lp-Lipschitz (k-Lipschitz) t-norms. Since for p, q ∈ [1,∞] , p ≤ q,
lp-norm is stronger then lq-norm, i.e., lp(x, y) ≥ lq(x, y) for all (x, y) ∈ [0, 1]2

we know that Tk,lq ⊂ Tk,lp for all k ∈ [1,∞[. Moreover, also Tk,lp ⊂ Tm,lp for
all k,m ∈ [1,∞[ , k ≤ m, p ∈ [1,∞]. All classes Tk,lp are compact (Tk,lq ⊂ Tk

which is compact).
Because of continuity, each k-lp-Lipschitz t-norm can be represented as

an ordinal sum of Archimedean t-norms. It is obvious that if an ordinal sum
t-norm is k-lp-Lipschitz every summand in ordinal sum is k-lp-Lipschitz, too.

Proposition 1. Let (Tα)α∈A be a family of k-lp-Lipschitz t-norms and let
T be an ordinal sum of these t-norms, i.e., T = (〈aα, eα, Tα〉)α∈A for some
family of pairwise disjoint open subintervals (]aα, eα[)α∈A. Then t-norm T is
a k-lp-Lipschitz t-norm.

Proof. From the properties of ordinal sums we know that

|T (x1, y1)− T (x0, y0)| ≤ k · lp(x1 − x0, y1 − y0)

for all (x0, y0), (x1, y1) ∈ [aα, eα]2 for some α ∈ A (this follows from the
fact that, for each α ∈ A, Tα and T |[aα,eα]2 have the same Lipschitz prop-
erties with respect to any lp norm) and for all (x0, y0), (x1, y1) /∈ ]aα, eα[2

for all α ∈ A (this follows form the fact that min is 1-lp-Lipschitz for any
p ∈ [1,∞]). Assume that (x0, y0) ∈ [aα0 , eα0 ]

2 and (x1, y1) ∈ [aα1 , eα1 ]
2 for

some α0, α1 ∈ A, α0 �= α1. Then the line connecting points (x0, y0) and (x1, y1)
can be divided to several parts which are subsets of squares [aα, eα]2 and the
rest of the line which is not a subset of any of such squares. Assume that this
line consist of three parts: the first part is a subset of [aα0 , eα0 ]

2, the second
is a subset of [aα1 , eα1 ]

2 and the rest is not a subset of any square [aα, eα]2

(all other cases can be proved analogically). Denote by (x2, y2), (x3, y3) the
points which separate the first and the third part, and the third and the sec-
ond part of the line, respectively. Then (x2, y2) = β(x0, y0) + (1 − β)(x1, y1)
and (x3, y3) = γ(x0, y0) + (1 − γ)(x1, y1) for some β, γ ∈ [0, 1], β ≥ γ.
Moreover,
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|T (x1, y1)− T (x0, y0)| = |T (x1, y1)− T (x3, y3)|+ |T (x3, y3)

−T (x2, y2)|+ |T (x2, y2)− T (x0, y0)|
≤ k · (lp(x1 − x3, y1 − y3) + lp(x3 − x2, y3 − y2)

+ lp(x2 − x0, y2 − y0)) = k · (γlp(x1 − x0, y1 − y0)
+ (β − γ)lp(x1 − x0, y1 − y0)
+ (1− β)lp((x1 − x0, y1 − y0))

= k · lp(x1 − x0, y1 − y0).

Proposition 1 shows that the problem of characterization of k-lp-Lipschitz
t-norms can be reduced to the characterization of continuous strictly decreas-
ing functions t : [0, 1] → [0,∞], t(1) = 0, such that the two-place function
T : [0, 1]2 → [0, 1] given by

T (x, y) = t−1(min(t(x) + t(y), t(0))) (2)

is a k-lp-Lipschitz t-norm.

2 k-Lipschitz t-Norms

In the case of k-Lipschitz t-norms it is important that Lipschitz property
can be reduced to one coordinate, i.e., that a t-norm T is k-Lipschitz if and
only if |T (x + ε, y) − T (x, y)| ≤ kε for all x, y ∈ [0, 1], ε ∈ [0, 1 − x]. The
following definition of a k-convex function as well as subsequent results about
k-Lipschitz t-norms can be found in [3].

Definition 1. Let t : [0, 1] → [0,∞] be a strictly monotone function and let
k ∈ ]0,∞[ be a real constant. Then t will be called k-convex if

t(x+ kε)− t(x) ≤ t(y + ε)− t(y) (3)

holds for all x ∈ [0, 1[ , y ∈ ]0, 1[ , with x ≤ y and ε ∈
]
0,min(1− y, 1−x

k )
]
.

It is evident that if a strictly monotone function t : [0, 1] → [0,∞]
is k-convex then it is continuous on ]0, 1[ (more precisely, each decreasing
k-convex function is continuous on ]0, 1] and each increasing k-convex func-
tion is continuous on [0, 1[). Note that a decreasing function can be k-convex
only for k ≥ 1. Moreover, when a decreasing function t is k-convex it is
l-convex for all l ≥ k.

Theorem 1. Let T : [0, 1]2 → [0, 1] be an Archimedean t-norm and let t :
[0, 1] → [0,∞] be an additive generator of T. Then T is k-Lipschitz if and
only if t is k-convex.
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Corollary 1 ([8]). Let t : [0, 1] → [0,∞] be an additive generator of a t-norm
T, differentiable on ]0, 1[ and let t′(x) < 0 for all 0 < x < 1. Then T is
k-Lipschitz if and only if t′(y) ≥ kt′(x) whenever 0 < x < y < 1.

Theorem 1 imply that generated k-Lipschitz t-norms satisfy T (x+kε, y) ≥
T (x, y + ε) for all x, y ∈ [0, 1], x ≤ y, ε ∈

]
0,min(1− y, 1−x

k )
]
, what can be

(because of ordinal sum structure) shown also for all k-Lipschitz t-norms. For
k = 1 this property is exactly the Schur-concavity of a t-norm.

Unfortunately in the case of k-lp-Lipschitz t-norms the situation cannot
be reduced to one coordinate (for one coordinate we obtain the standard
Lipschitz property) and thus a similar proof is out of the use. In [2] the
following conjecture can be found:

Conjecture 1 A t-norm T : [0, 1]2 → [0, 1] generated by an additive genera-
tor t is 1-lp-Lipschitz if and only if there exist a convex function g : [0, 1] →
[0,∞] such that gp(x) = t(x).

When we assume the same increment in both coordinates we obtain the
following necessary condition:

Proposition 2. An additive generator t : [0, 1] → [0,∞] of a k-lp-Lipschitz
t-norm T satisfy for all (x, y) ∈ [0, 1]2 such that t(x) + t(y) ≤ t(0), ε ∈]
0,min(1− x, 1− y, 1−T (x,y)

k·2
1
p

)
]

t(x+ ε)− t(x) + t(y + ε)− t(y) ≥ t(T (x, y) + k · 2 1
p ε)− t(T (x, y)). (4)

Proof. Assume (x, y) ∈ ]0, 1[2 such that t(x) + t(y) ≤ t(0), and 0 <

ε ≤ min(1 − x, 1 − y, 1−T (x,y)

k·2
1
p

). Then t(T (x, y)) = t(x) + t(y). Since T is

k-lp-Lipschitz we have

T (x+ ε, y + ε)− T (x, y) ≤ k2 1
p ε,

i.e.,

T (x+ ε, y + ε) ≤ T (x, y) + k2
1
p ε.

Subsequently

t(x+ ε) + t(y + ε) = t(T (x+ ε, y + ε)) ≥ t(T (x, y) + k2
1
p ε).

If we subtract from the left side of the above inequality the term t(x) + t(y)
and from the right side the term t(T (x, y)) we obtain the desired inequality.
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Corollary 2. A differentiable additive generator t : [0, 1] → [0,∞] of a
k-lp-Lipschitz t-norm T satisfy for all (x, y) ∈ ]0, 1[2

t′(x) + t′(y) ≥ k · 2 1
p t′(T (x, y)).

Proof. Since T is k-lp-Lipschitz, the additive generator t fulfills inequality (4)
and we have:

t′(x) + t′(y) = lim
ε→0

t(x+ ε)− t(x)
ε

+ lim
ε→0

t(y + ε)− t(y)
ε

≥

k2
1
p lim

ε→0

t(T (x, y) + k2
1
p ε)− t(T (x, y))

k2
1
p ε

= k2
1
p t′(T (x, y)).

Note that each differentiable additive generator t such that g = t
1
p is a

convex function satisfies Corollary 2 for all k ∈ [1,∞[ .

3 Boundaries of the Class of k-lp-Lipschitz t-Norms

The minimum t-norm TM is k-lp-Lipschitz for all k ∈ [1,∞[ , p ∈ [1,∞],
i.e., for all k ∈ [1,∞[ , p ∈ [1,∞] the minimum t-norm TM is the maximum
of the class of all k-lp-Lipschitz t-norms. On the other hand, in the class of
k-Lipschitz t-norms though there are several minimal elements there is no
weakest k-Lipschitz t-norm for k > 1. The following proposition can be found
in [4].

Proposition 3. Let A∗k : [0, 1]2 → [0, 1] be given by

A∗k(x, y) = inf{T (x, y) | T is a k-Lipschitz t-norm},

i.e., A∗k is the pointwise infimum of all k-Lipschitz t-norms. Then A∗k is the
weakest k-Lipschitz aggregation operator with neutral element 1, i.e.,

A∗k(x, y) = max(x+ ky − k, y + kx− k, 0).

The aggregation operator from the above proposition is a t-norm only for
k = 1. Note that since Tk is compact we know that for k > 1 A∗k cannot be
obtained as a limit of k-Lipschitz t-norms.

In the case of 1-lp-Lipschitz t-norm the situation is the following.

Proposition 4. Let p ∈ [1,∞] . Then the weakest 1-lp-Lipschitz t-norm is the
Yager t-norm with parameter p, i.e., t-norm given by TY

p (x, y) = max(1 −
p
√

(1− x)p + (1− y)p, 0).



314 Andrea Mesiarová

Proof. Let T : [0, 1]2 → [0, 1] be a 1-lp-Lipschitz t-norm then

T (1, 1)− T (x, y) ≤ p
√

(1− x)p + (1− y)p,

i.e., 1− p
√

(1− x)p + (1− y)p ≤ T (x, y). Now to complete the proof we need
to show that the Yager t-norm with parameter p is 1-lp-Lipschitz. Let us
assume points (x0, y0), (x1, y1) ∈ [0, 1], and let TY

p (x0, y0) ≤ TY
p (x1, y1). If

TY
p (x0, y0) > 0 then the inequality

TY
p (x1, y1)− TY

p (x0, y0) = 1− lp(1− x1, 1− y1)− (1− lp(1− x0, 1− y0))
≤ p

√
(x1 − x0)p + (y1 − y0)p = lp((x1 − x0, y1 − y0))

follows from the triangle inequality of lp norm. If TY
p (x0, y0) = 0 then 1 ≤

p
√

(1− x0)p + (1− y0)p and the inequality

TY
p (x1, y1)− TY

p (x0, y0) = 1− lp(1− x1, 1− y1)
≤ p

√
(x1 − x0)p + (y1 − y0)p = lp(x1 − x0, y1 − y0),

i.e., 1 ≤ lp(x1 − x0, y1 − y0) + lp(1 − x1, 1 − y1) follows from the inequality
lp(1− x0, 1− y0) ≤ lp(x1 − x0, y1 − y0) + lp(1− x1, 1− y1) what is again the
triangle inequality of lp norm.

For example, the only basic t-norm which is 1-l2-Lipschitz is the minimum.
Drastic product is not even continuous and both the �Lukasiewicz and the
product t-norm are 1-Lipschitz but not 1-l2-Lipschitz.

For p > 1 and k ≥ 1, k-lp-Lipschitz t-norms are bounded from below by
the following conjunctors.

Proposition 5. (i) Let p ∈ ]1,∞[ and k ∈
[

p
√

2p−1,∞
[

then the weakest
k-lp-Lipschitz conjunctor is a commutative conjunctor Ak,p, given for
x ≤ y by

Ak,p(x, y) = max(x+ (y − 1)(k
p

p−1 − 1)
p−1

p , 0).

(ii)Let p ∈ ]1,∞[ and k ∈
[
1, p
√

2p−1
[

then the weakest k-lp-Lipschitz con-
junctor is a commutative conjunctor Bk,p, given for x ≤ y by

Bk,p(x, y) =

⎧
⎪⎨

⎪⎩

max(x+ (y − 1)(k
p

p−1 − 1)
p−1

p , 0)
if y ≥ 1 + (x− 1)(k

p
p−1 − 1)

1
p

max(1− k p
√

(1− x)p + (1− y)p, 0) otherwise.

Proof. Let C : [0, 1]2 → [0, 1] be a k-lp-Lipschitz conjunctor. Assume x, y ∈
[0, 1], x ≤ y. Then

z − T (x, y) = T (z, 1)− T (x, y) ≤ k p
√
|z − x|p + (1− y)p
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holds for all z ∈ [0, 1] and consequently sup
z∈[0,1]

z − k p
√
|z − x|p + (1− y)p ≤

T (x, y). Since for z < x the inequality x − k(1 − y) ≤ T (x, y) imply z −
k p
√
|z − x|p + (1− y)p ≤ T (x, y) and since the function

f(z) = z − k p
√
|z − x|p + (1− y)p

is continuous on [x, 1] it is enough to assume max
z∈[x,1]

z−k p
√
|z − x|p + (1− y)p.

We will compare values of the function f in points x, 1 and in all stationary
points of f. We have f(x) = x− k(1− y), f(1) = 1− k p

√
(1− x)p + (1− y)p

and f ′(z) = 1−k(|z−x|p +(1− y)p)
1−p

p |z−x|p−1. Then f ′(z∗) = 0 whenever
k = (|z∗ − x|p + (1 − y)p)

p−1
p |z∗ − x|1−p, i.e., z∗ = x + (1 − y)(k

p
p−1 − 1)−

1
p .

We know that z∗ ∈ [0, 1] if and only if y ≥ 1 + (x − 1)(k
p

p−1 − 1)
1
p . Then

f(z∗) = x+ (y− 1)(k
p

p−1 − 1)
p−1

p . In the following we will prove that f(z∗) ≥
max(f(1), f(x)) (note that z∗ can be greater than 1). Inequality f(z∗) ≥ f(x)
is evident since k ≥ (k

p
p−1 − 1)

p−1
p . Now assume f(z∗) ≥ f(1). If y = 1 then

1 − k p
√

(1− x)p + (1− y)p ≤ x + (y − 1)(k
p

p−1 − 1)
p−1

p holds since k ≥ 1. If
y < 1 then denote a = 1−x

1−y , a ∈ [0,∞]. We need to prove that

a+ (k
p

p−1 − 1)
p−1

p ≤ k p
√
ap + 1.

Define a function h(x) = k p
√
ap + 1−a−(k

p
p−1−1)

p−1
p . Then h(0) = k−(k

p
p−1−

1)
p−1

p > 0 and lim
a→∞

f(a) ≥ 0 since k ≥ 1. Further h′(a) = k(ap+1)
1−p

p ap−1−1

and h(a∗) = 0 whenever a∗ = (k
p

p−1 − 1)−
1
p . Then h(a∗) = k

p
p−1

(k
p

p−1 −1)
1
p
−

(k
p

p−1 − 1)−
1
p − (k

p
p−1 − 1)

p−1
p , i.e., h(a∗) = 0. This means that h(a) ≥ 0 for

all a ∈ [0,∞], i.e., f(z∗) ≥ f(1). In the case when y ≤ 1 + (x− 1)(k
p

p−1 − 1)
1
p

(note that in the case when x ≤ y this is possible only for k ≤ 2
p−1

p ) we need
to prove that f(1) ≥ f(x), i.e., that

x− k(1− y) ≤ 1− k p
√
|z − x|p + (1− y)p,

i.e., that k p
√

(1− x)p + (1− y)p ≤ (1 − x) + k(1 − y). If x = y = 1 the
inequality trivially holds. Otherwise x < 1 and we can denote b = 1−y

1−x . Then

since y ≤ 1+(x−1)(k
p

p−1 −1)
1
p we have b ∈ [(k

p
p−1 −1)

1
p , 1] We have to prove

k p
√
bp + 1 ≤ 1+kb. Define g(b) = 1+kb−k p

√
bp + 1. Then g(1) = 1+k−k2 1

p ≥
0 for k ≤ 1

2
1
p −1

, i.e., for all k ≤ 2
p−1

p it is satisfied. Further g((k
p

p−1 − 1)
1
p ) =

1 + k(k
p

p−1 − 1)
1
p − k

p
p−1 ≥ 0. Since g′(b) = k − k(1 + bp)

1−p
p bp−1 > 0 for all

b ∈ [(k
p

p−1 − 1)
1
p , 1] function g has no stationary point, i.e., g(b) ≥ 0 for all

b ∈ [(k
p

p−1−1)
1
p , 1], i.e., f(1) ≥ f(x). Since conjunctors cannot attain negative

value we have proved that every k-lp-Lipschitz conjunctor is greater either
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than Ak,p or Bk,p. Evidently, Ak,p and Bk,p are conjunctors. To complete
the proof we need to show that conjunctors Ak,p and Bk,p are k-lp-Lipschitz.
Similarly as in the case of ordinal sums it can be shown that conjunctor Ak,p is
k-lp-Lipschitz whenever it is k-lp-Lipschitz on the set {(x, y) ∈ [0, 1]2 | x ≤ y}
and conjunctor Bk,p is k-lp-Lipschitz whenever it is k-lp-Lipschitz on the sets
{(x, y) ∈ [0, 1]2 | x ≤ y, y ≥ 1 + (x − 1)(k

p
p−1 − 1)

1
p } and {(x, y) ∈ [0, 1]2 |

x ≤ y, y ≤ 1 + (x− 1)(k
p

p−1 − 1)
1
p } (parts where x ≥ y are then k-lp-Lipschitz

because of commutativity).

Let us assume (x0, y0), (x1, y1) ∈ [0, 1]2. Then if in these points T (x0, y0) =
1 − k p

√
(1− x0)p + (1− y0)p and T (x1, y1) = 1 − k p

√
(1− x1)p + (1− y1)p,

T (x1, y1) ≥ T (x0, y0) the inequality

1− k p
√

(1− x1)p + (1− y1)p − (1− k p
√

(1− x0)p + (1− y0)p)

≤ k p
√
|x1 − x0|p + |y1 − y0|p

follows from the triangle inequality of lp norm. In the case when T (x0, y0) =
x0 + (y0 − 1)(k

p
p−1 − 1)

p−1
p and T (x1, y1) = x1 + (y1 − 1)(k

p
p−1 − 1)

p−1
p the

inequality x1 + (y1 − 1)(k
p

p−1 − 1)
p−1

p − (x0 + (y0 − 1)(k
p

p−1 − 1)
p−1

p ) ≤
k p
√
|x1 − x0|p + |y1 − y0| means that |x1 − x0| + |y1 − y0|(k

p
p−1 − 1)

p−1
p ≤

k p
√
|x1 − x0|p + |y1 − y0|. In the case when y1 = y0 the inequality holds

trivially. Otherwise denote c =
∣∣∣x1−x0

y1−y0

∣∣∣ , c ∈ [0,∞] We need to prove that

c+(k
p

p−1 − 1)
p−1

p ≤ k(1+ cp)
1
p . Define u(c) = k(1+ cp)

1
p − c− (k

p
p−1 − 1)

p−1
p .

Then u(0) = k − (k
p

p−1 − 1)
p−1

p > 0 and lim
c→∞

≥ 0 since k ≥ 1. Further

u′(c) = k(1 + cp)
1−p

p cp−1 − 1 and u′(c∗) = 0 whenever c∗ = (k
p

p−1 − 1)−
1
p .

Then u(c∗) = k
p

p−1

(k
p

p−1 −1)
1
p
− (k

p
p−1 − 1)−

1
p − (k

p
p−1 − 1)

p−1
p = 0. This means

that u(c) ≥ 0 for all c ∈ [0,∞] and thus the proof is finished.

Evidently, the only 1-l∞-Lipschitz t-norm is the minimum TM. Note that
since for k-lp-Lipschitz t-norm T we have

|T (x1, y1)− T (x2, y2)| ≤ k p
√
|x1 − x2|p + |y1 − y2|p ≤ k2

1
p δ,

where δ = max(|x1 − x2|, |y1 − y2|), we have T
k·2

1
p ,l∞

⊃ Tk,lp . As a special

case then T2,l∞ ⊃ T1, i.e., the class of 2-l∞-Lipschitz t-norms is a superset
of the class of associative copulas. Though minimal element of both of these
classes is the �Lukasiewicz t-norm TL, we will show that these two classes are
not equal.
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Example 1. Let t : [0, 1] → [0,∞] be given by

t(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2.225− 3x if x ∈ [0, 0.55],
1.4− 3

2x if x ∈ ]0.55, 0.6],
1.7− 2x if x ∈ ]0.6, 0.7],
1− x otherwise.

Then t is a (non-convex) additive generator of a t-norm T which is for x ≤ y
given by

T (x, y)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x+ y − 1 if (x, y) ∈ [0.7, 1]2, x+ y ≥ 1.7,
1
2x+ 1

2y − 0.15 if (x, y) ∈ [0.7, 1]2, x+ y ≥ 1.5,
2
3x+ 2

3y − 0.4 if (x, y) ∈ [0.7, 1]2, x+ y ≥ 1.425,
1
3x+ 1

3y + 0.075 if (x, y) ∈ [0.7, 1]2, x+ y ≤ 1.425,
2
3x+ 2

3y −
1.175

3 if (x, y) ∈ [0.6, 0.7[2 ,
x+ 1

2y − 0.5 if (x, y) ∈ [0.6, 0.7[× [0.7, 1], 2x+ y ≥ 2.2,
4
3x+ 2

3y −
2.6
3 if (x, y) ∈ [0.6, 0.7[× [0.7, 1], 2x+ y ≥ 17

8 ,
2
3x+ 1

3y −
0.475

3 if (x, y) ∈ [0.6, 0.7[× [0.7, 1], 2x+ y ≤ 17
8 ,

1
2x+ 1

2y −
0.575

3 if (x, y) ∈ [0.55, 0.6[2 ,
1
2x+ 2

3y −
0.875

3 if (x, y) ∈ [0.55, 0.6[× [0.6, 0.7[ ,
x+ 2

3y −
2
3 if (x, y) ∈ [0.55, 0.6[× [0.7, 1], 3

2x+ y ≥ 73
40 ,

1
2x+ y

3 −
0.175

3 if (x, y) ∈ [0.55, 0.6[× [0.7, 1], 3
2x+ y ≤ 73

40 ,

max(0, x+ y − 2.225
3 ) if (x, y) ∈ [0, 0.55[2 ,

max(0, x+ 1
2y −

1.4
3 ) if (x, y) ∈ [0, 0.55[× [0.55, 0.6[ ,

max(0, x+ 2
3y −

1.7
3 if (x, y) ∈ [0, 0.55[× [0.6, 0.7[ ,

max(0, x+ 1
3y −

1
3 ) if (x, y) ∈ [0, 0.55[× [0.7, 1].

The t-norm T is 2-l∞-Lipschitz (evidently, ∂T
∂x (x, y)+ ∂T

∂y (x, y) ≤ 2 in all points
where both partial derivatives exist), but not 1-Lipschitz.

Proposition 6. Let T : [0, 1]2 → [0, 1] be a continuous t-norm continuously
differentiable on ]0, 1[2 . Then T is k-lp-Lipschitz for some p > 1 whenever

(
∂T

∂x
(x, y)

) p
p−1

+
(
∂T

∂y
(x, y)

) p
p−1

≤ k
p

p−1 (5)

holds for all (x, y) ∈ ]0, 1[2 , and T is k-Lipschitz whenever ∂T
∂x (x, y) ≤ k and

∂T
∂y (x, y) ≤ k holds for all (x, y) ∈ ]0, 1[2 .
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Proof. A continuous t-norm T is k-lp-Lipschitz whenever for all (x, y) ∈
]0, 1[2 , ε ∈ [0, 1− x], δ ∈ [0, 1− y]

T (x+ ε, y + δ)− T (x, y) ≤ k p
√
εp + δp,

i.e.,

T (x+ ε, y + δ)− T (x+ ε, y) + T (x+ ε, y)− T (x, y) ≤ k p
√
εp + δp.

Denote m = δ
ε (in the case when ε = 0 we will denote m = ε

δ and continue
analogically). Then m ∈ [0,∞[ and we obtain

T (x+ ε, y +mε)− T (x+ ε, y) + T (x+ ε, y)− T (x, y) ≤ kε p
√

1 +mp,

i.e., for m �= 0

m · T (x+ ε, y +mε)− T (x+ ε, y)
mε

+
T (x+ ε, y)− T (x, y)

ε
≤ k p

√
1 +mp

and subsequently

m · lim
ε→0

T (x+ε, y+mε)− T (x+ε, y)
mε

+ lim
ε→0

T (x+ε, y)− T (x, y)
ε

≤ k p
√

1 +mp.

This means that T is k-lp-Lipschitz whenever for all (x, y) ∈ ]0, 1[2 and all
m ∈ ]0,∞[

m · ∂T
∂y

(x, y) +
∂T

∂x
(x, y) ≤ k p

√
1 +mp (6)

and ∂T
∂y (x, y) ≤ k, ∂T

∂x (x, y) ≤ k holds (this follows from the case when ε = 0
or δ = 0). In the case when p = 1 inequalities ∂T

∂y (x, y) ≤ k, ∂T
∂x (x, y) ≤ k are

equivalent with inequality m · ∂T
∂y (x, y) + ∂T

∂x (x, y) ≤ k p
√

1 +mp, m ∈ [0,∞].
For the case when p > 1 is finite we define a function f : [0,∞] → R by

f(m) = k p
√

1 +mp −m · ∂T
∂y

(x, y)− ∂T
∂x

(x, y).

The inequality (6) is fulfilled if and only if min
m∈[0,∞]

f(m) ≥ 0. Since f(0) ≥ 0

and f(∞) ≥ 0 whenever ∂T
∂y (x, y) ≤ k and ∂T

∂x (x, y) ≤ k are fulfilled and f is
differentiable on ]0,∞[ , to see the non-negativity of f we need to investigate
only values of f in stationary points. We have f ′(m) = k (1 +mp)

1−p
p mp−1−

∂T
∂y (x, y) and thus f ′(m∗) = 0 whenever k · (1 + (m∗)p)

1−p
p · (m∗)p−1 =

∂T
∂y (x, y), i.e., when

m∗ =

(
∂T
∂y (x, y)

) 1
p−1

(
k

p
p−1 −

(
∂T
∂y (x, y)

) p
p−1

) 1
p

.
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Note that whenever ∂T
∂y (x, y) ≤ k we have m∗ ∈ [0,∞]. We obtain

f(m∗) =

(
k

p
p−1 −

(
∂T

∂y
(x, y)

) p
p−1

) p−1
p

− ∂T
∂x

(x, y)

and thus f(m∗) ≥ 0 whenever

k
p

p−1 ≥
(
∂T

∂y
(x, y)

) p
p−1

+
(
∂T

∂x
(x, y)

) p
p−1

.

In the case when p = ∞, T is k-lp-Lipschitz whenever for m ≥ 1

m · ∂T
∂y

(x, y) +
∂T

∂x
(x, y) ≤ k ·m

and for m ≤ 1

m · ∂T
∂y

(x, y) +
∂T

∂x
(x, y) ≤ k

hold. Extreme points in this case are m = 0, 1,∞ (in the case when k =
∂T
∂y (x, y) all points m are extreme points, but in such a case ∂T

∂x (x, y) = 0 and
we get ∂T

∂y (x, y) + ∂T
∂x (x, y) = k). For m = 0 we get ∂T

∂x (x, y) ≤ k for m = ∞
we get ∂T

∂y (x, y) ≤ k and for m = 1 we get

∂T

∂y
(x, y) +

∂T

∂x
(x, y) ≤ k

what is exactly the inequality (5) for p = ∞. Finally note that since t-norm
T is non-decreasing inequality (5) implies inequalities ∂T

∂y (x, y) ≤ k and
∂T
∂x (x, y) ≤ k for all p > 1.

Note that this proposition can be generalized also for continuous t-norms
which are continuously differentiable on ]0, 1[2 \ R, where the set R consists
of isolated points and isolated segments of the type x × [0, 1] (or [0, 1] × x),
x ∈ [0, 1].

4 Transformations of k-Lipschitz t-Norms

Recall that in the case if 1-Lipschitz t-norms, i.e., in the class of associa-
tive copulas, it holds that a transformation Cf of a copula C, Cf (x, y) =
f−1(C(f(x), f(y))), where f : [0, 1] → [0, 1] is an increasing bijection is again
a copula (for any C) if and only if f is concave.

Proposition 7. (i) Let T : [0, 1]2 → [0, 1] be an associative copula (1-
Lipschitz t-norm) and let f : [0, 1] → [0, 1] be an increasing bijection.
Then Tf is a k-Lipschitz t-norm if and only if f is k-concave, i.e.,
f(x + kε) − f(x) ≥ f(y + ε) − f(y) holds for all x ∈ [0, 1[ , y ∈ ]0, 1[ ,
with x ≤ y and ε ∈

]
0,min(1− y, 1−x

k )
]
.
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(ii)Let T : [0, 1]2 → [0, 1] be a k-Lipschitz t-norm and let f : [0, 1] → [0, 1] be
an increasing bijection. Then Tf is a k-Lipschitz t-norm if and only if f
is concave.

Proof. Assume x, y ∈ [0, 1], ε ∈
]
0,min(1− x, 1−Tf (x,y)

k )
]
. Denote z =

Tf (x, y). Then Tf (x + ε, y) − Tf (x, y) ≤ kε whenever T (f(x + ε), f(y)) ≤
f(z+ kε). Since f(z) = T (f(x), f(y)) this inequality is equivalent to T (f(x+
ε), f(y))− T (f(x), f(y)) ≤ f(z + kε)− f(z). Since f(z) ≤ min(f(x), f(z)) we
have z ≤ min(x, y).

(i) The 1-Lipschitz property of T, i.e., T (f(x + ε), f(y)) − T (f(x), f(y)) ≤
f(x+ε)−f(x) and k-concavity of f, i.e., f(z+kε)−f(z) ≥ f(x+ε)−f(x)
imply that Tf is a k-Lipschitz t-norm.
Vice versa assume �Lukasiewicz t-norm TL (which is 1-Lipschitz) with ad-
ditive generator t : [0, 1] → [0,∞], t(x) = 1 − x. (TL)f is k-Lipschitz
whenever its additive generator t ◦ f is k-convex, i.e., when t(f(x+ kε))−
t(f(x)) ≤ t(f(y + ε)) − t(f(y)) for all x ∈ [0, 1[ , y ∈ ]0, 1[ , with x ≤ y
and ε ∈

]
0,min(1− y, 1−x

k )
]
. We get 1 − f(x + kε) − (1 − f(x)) ≤

1 − f(y + ε) − (1 − f(y)), i.e., f(y + ε) − f(y) ≤ f(x + kε) − f(x) what
means that f is k-concave.

(ii) Let f be concave. If T (f(x), f(y)) = f(x) then T (f(x + ε), f(y)) −
T (f(x), f(y)) ≤ f(x + ε) − f(x) ≤ f(z + ε) − f(z) ≤ f(z + kε) −
f(z). If T (f(x), f(y)) = f(y) then also T (f(x + ε), f(y)) = f(y), i.e.,
T (f(x+ε), f(y))−T (f(x), f(y)) = 0 and the result is trivial. Suppose that
f(z) < min(f(x), f(y)). Then z < x and for each 0 < ε ≤ min(x−z

k , 1− x)
it holds

f(z + kε)− f(z) ≥ k(f(x+ ε)− f(x)).
This inequality together with the k-Lipschitz property of T, i.e., T (f(x+
ε), f(y)) − T (f(x), f(y)) ≤ k(f(x + ε) − f(x)) ensures the result, i.e.,
Tf is k-Lipschitz in some neighborhood of (x, y). However, due to the
compactness of [0, 1]2, k-Lipschitz property valid for each (x, y) ∈ [0, 1]2 in
some neighborhood of this point is equivalent to the k-Lipschitz property
of Tf on entire [0, 1]2.
Vice versa let a, b ∈ [0, 1], a < b. Denote a = x, b = y + ε, y = x + kε =

a
k+1 + kb

k+1 . Assume an additive generator t : [0, 1] → [0,∞] of a k-Lipschitz
t-norm given by

t(x) =

{
1− x

k + y 1−k
k if x ∈ [0, y]

1− x otherwise.

Then t(f(x+kε))−t(f(x)) ≤ t(f(y+ε))−t(f(y)) means that 1− f(x+kε)
k +

y 1−k
k −(1− f(x)

k +y 1−k
k ) ≤ 1−f(y+ε)−(1−f(y)), i.e., k(f(y+ε)−f(y)) ≤

f(x+kε)−f(x). Since x+kε = y we have k ·f(y+ε)+f(x) ≤ (k+1)f(y),
i.e., kf(b)+f(a)

k+1 ≤ f( a
k+1 + kb

k+1 ) what means that f is concave.
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Formal Models of Knowledge Operators:
Rough-Set-Style and Fuzzy-Set-Style
Approaches

Ewa Or�lowska

A concept of knowledge of the agents about a set of objects of an information
system with incomplete information is discussed. A rough-set-style seman-
tics of the corresponding knowledge operators is presented, following [2]. An
abstract characterization of the semantic postulates is provided in terms of
a class of relational systems referred to as plain K-frames and a modal-like
logic, K-logic, based on the K-frames is developed. On an algebraic side, a
class of K-algebras with a knowledge operator is introduced.

Next, the refined formalisms of relative K-frames and relative K-algebras
are developed which capture the situation of multiple agents which are not
necessarily independent. An adequate multimodal logic based on relative
K-frames is presented. A methodology of reasoning with incomplete infor-
mation developed in [1] is applied here.

A duality of the classes of plain K-frames and K-algebras and a duality of
classes of relative K-frames and relative K-algebras are proved along the lines
of [3]. Finally, fuzzy-set-style versions of knowledge operators are presented
and discussed based on lattice-based fuzzy sets.
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Using a Fuzzy Model for Combining Search
Results from Different Information Sources
to Build a Metasearch Engine

Wiratna S. Wiguna, Juan J. Fernández-́ıébar, and Ana Garćıa-Serrano

Summary. Summary: In this paper it is presented an algorithm for combining and
reranking search results from different information sources with different techniques
to retrieve and rank their results. The proposed metasearch is based in the yagers
work on “aggregate operators”. The developed metasearch engine in Java and Ciao
Prolog is evaluated using an available set of documents collection, queries and their
corresponding answers (the TIME collection). Finally some concluding remarks are
given on the accuracy of the metasearch presented.

Key words: Reranking search results, Fuzzy models, Distributed informa-
tion retrieval.

1 Introduction

Soft computing offers appropriate handling of vagueness, subjectivity, uncer-
tainty, imprecission, partial truth, and approximation. The aim of information
retrieval system is to obtain relevant documents with respect to the query
expressing user needs, where vagueness, imprecission, and subjectivity are in-
volved. Therefore, information retrieval is a typical application field of soft
computing. As mentioned in [1], some of the main soft computing approaches
in information retrieval are the following:

– Fuzzy sets and logic: information fusion, text extraction, query language
models, and document clustering.

– Neural networks: document and term classification and clustering, and
multimedia retrieval.

– Genetic algorithms: document classification, image retrieval, relevance
feedback, and query learning.

– Probabilistic techniques: ranking, web mining.
– Rough sets and multivalued logics: document clustering.
– Bayesian networks: retrieval model, ranking, thesaurus construction, and

relevance feedback.
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This work1 employs fuzzy sets and logic approach on ranked lists fusion, as
suggested in [3] and [4]. This approach offer alternative solution for informa-
tion retrieval when there are many information sources and each source has
its own search engine. Knowing characteristics of each information source and
its search engine, it is possible to obtain relevant documents without having
to build a new search engine.

2 Foundations

In distributed information retrieval, there are two main problems to merge
ranked result lists from each information source. First problem is to deter-
mine how many retrieved documents should be selected from each individual
list, and second problem is how to combine these ranked lists into a single
ranked list. In the case where information sources have overlapping documents,
combining ranked lists should also consider removing duplicated documents
appearing in different lists.

The approach for the multisource information retrieval can be formulated
by the following steps:

1. Determine the number of documents to be retrieved in multisource infor-
mation retrieval, let this be N .

2. Determine the number of retrieved documents to be selected from each
information source.
Let Liq be the list containing |Liq| selected documents from information
source Si. The task is to determine |Liq| such that

N =
k∑

i=1

|Liq| (1)

The intuition behind determination of |Liq| is that more documents should
be retrieved from the information source that is more appropriate with
respect to the given query. It could depend on the type of information
contained in each information source, the topics expressed in the user
query, and the appropriateness of the information source as collector of
relevant document according to the query. |Liq| is defined as follows:

|Liq| = αiN (2)

αi =
b∗i∑m
i=1 b

∗
i

(3)

where fitness score b∗i indicates how much an information source Si is a
good collector of the relevant documents for a given query. Vector B∗

denotes fitness score values for all information sources with respect to a

1 This work has been partially funded by an Erasmus Mundus grant (held by
W. Wiguna) and the RIMMEL project (TIN2004-07588-C03-02) funded by the
Spanish Research Council.
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given query. There are several approaches to calculate B∗, some of them
are based on fuzzy rules, based on fuzzy prototypal set, or based on the
prototypal query. These approaches are explained briefly in [3].

3. Send the query to each information source, asking the first |Liq| result
from each source Si.

4. Define a set of document D where D = {d|d ∈ ∪i=1..kLi} be the set of all
documents appearing in the retrieved lists.

5. Calculate local performance judgement for each document.
Document with higher performance judgement indicates more relevant
document. Let Cji be the performance judgement of the document dj

according to information source Si. Cji is defined as follows:

Cji = |Liq| − pji + 1 (4)

where pji is the position of document dj in the list Liq. If the document
dj does not exist in Liq, pji = 0. As it can be seen, documents from longer
list is considered more relevant than those from shorter list when they
occupy same position in the list.

6. Determine fitness score fh which represents user preference of the h-th
search engine where 0 ≤ fh ≤ maxLq.
The most preferred engine has the highest fitness score and should have
a greater chance to determine the final judgement. In case of complete
uncertainty on fitness score of each engine, all the fitness score can be
fixed equal to the average cardinality of the lists.

7. Define the weighting vector W of IOWA operator [11].

W = [w1, ..., wk],
k∑

i=1

wi = 1 (5)

The orness of the IOWA operator is defined by

orness(W ) = (
1

K − 1
)

K∑

j=1

((K − j) ∗ wj) (6)

orness(W ) range from 0 to 1 where 0 denotes AND operator or fuzzy
quantifier all, and 1 denotes OR operator or fuzzy quantifier at least 1.

8. Calculate overall performance judgement Cj for each document by aggre-
gating Cji using IOWA operator as follows:

Cj = IOWA(〈uj1, Cj1〉, ..., 〈ujk, Cjk〉) =WTBjU (7)

with ujh defined based on fitness score fh of the hth search engine and
performance judgement Cjh:

ujh = 1− | Cjh ∗ fh
(maxLq)2

− orness(W )|, (orness(W ) > 0.5) (8)

ujh = 1− |Cjh ∗ (maxLq − fh)
(maxLq)2

− orness(W )|, (orness(W ) ≤ 0.5) (9)

where maxLq is the cardinality of the largest list.
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9. Order the documents according to their overall performance judgment,
descendingly. This is the merged ranked list.

A learning algorithm can be applied to adjust the fitness score fh. The
user can analyze the result of first query, and then identify those documents
that is considered relevant to the user needs. With learning rate s ∈ (0, 1),
the fitness score can be modified as follows:

fh(tn) = min[fh(tn−1) + s ∗ Crh(tn−1),maxLq], (10)

where Crh(tn−1) is the performance judgement of the relevant document iden-
tified by the user in the last run. User can also identify those documents that
is considered irrelevant to the user needs, and the fitness score can be modified
as:

fh(tn) = max[fh(tn−1)− s ∗ Crh(tn−1), 0], (11)

where Crh(tn−1) is the performance judgement of the irrelevant document
identified by the user in the last run.

3 Metasearch

The idea of metasearch is to submit an user query to several search engine
and merge their results to be presented as the result of the metasearch en-
gine. Eventhough the ideal goal of a metasearch engine is to increase quantity
and quality of the search result, there are arguments that the quality of the
metasearch result will not be better than the quality of each search engine
behind it [2]. In [10] for example, quality of a popular metasearch engine
Vivisimo, is questioned since the engines behind it are not considered as the
best ones. However, one of the main motivation for metasearch is the idea
“More heads is better than one” [9], and as mentioned in [7] the most obvious
advantage is that user can get results from multiple search engines without
having to visit each in turn.

As we will use services from Google and Yahoo!, we will give overviews of
techniques employed by these search engines to retrieve and rank their search
result. Google claims to be a fully automated search engine. A software known
as “spiders” is used to crawl the web on regular basis to find sites to be added
to their index. To perform the search, Google combines the measures of overall
importance and query specific relevance of a page, to ensure the most relevant
and reliable results appears on the first positions. Google uses PageRankTMto
examine the entire link structure of the web and determine which pages are the
most important. It then conducts hypertext-matching analysis to determine
which pages are relevant to the specific search being conducted [6]:

– PageRank Technology: PageRank performs an objective measurement
of the importance of web pages. PageRank interprets a link from Page
A to Page B as a vote for Page B by Page A. PageRank then assesses a
page’s importance by the votes it receives. PageRank also considers the
importance of each page that casts a vote, as votes from some pages are
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considered to have greater value, thus giving the linked page greater value.
In another word, links from an “important” page to other pages will help
them to be “important.” Important pages receive a higher PageRank and
appear at the top of the search results.

– Hypertext-Matching Analysis: Google’s search engine also analyzes
page content. However, instead of simply scanning for a page-based text
which can be manipulated by site publishers through meta-tags, Google’s
technology analyzes the full content of a page and factors in fonts, sub-
divisions and the precise location of each word. Google also analyzes the
content of neighboring web pages to ensure the results returned are the
most relevant to a user’s query.

Yahoo! Search crawls the web using Yahoo! Slurp every 2–4 weeks and
automatically finds new content for indexing. If the pages that are already in
their index link to a site, this site will be considered for inclusion in the next
update of the index. Yahoo! Search rank result according to their relevance
to a particular query by analyzing the web page text, title and description
accuracy as well as its source, associated links, and other unique document
characteristics [12].

4 Design and Implementation

4.1 Architecture

The system architecture is shown in Fig. 1. Package com.google.soap.
search and com.yahoo.search are APIs provided by Google and Yahoo! to

Fig. 1. System Architecture
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perform web search. Package CiaoJava is provided by The Ciao Prolog Sys-
tem [5] as the interfacing package between Java and Ciao Prolog. Ciaoserver
is a prolog query server, and result merging and iowa aggregator are the
implementation of list fusion algorithm. Package metasearch is a Java im-
plementation of the metasearch engine, based on the list fusion algorithm
presented in Sect. 5.

4.2 Evaluation

Metasearcher

The Metasearcher interface is shown in Fig. 2. We take the query “informa-
tion retrieval” as test sample, and ask for ten best results from each search
engine. The left and right upper part of the screen in Fig. 2 shows the search
results from Google and Yahoo!, respectively. Merged result is shown in the
lower part of the screen. Using W = [0.5, 0.5] and mean value of lists size
as fitness score for each engine fh = 10+10

2 = 10, we calculate local perfor-
mance judgements and overall performance judgements. In the Table 1, the
first column contains collection of documents retrieved by both search engines.
Second and third columns contains local performance judgements from Google
and Yahoo, respectively. Finally, the last column contains overall performance
judgments which are calculated using IOWA operator. Thus, the metasearch
result are these documents ordered by their overall performance judgements
descendingly.

Fig. 2. Metasearch result
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Table 1. Performance judgement for each webpage

Web Page Google Yahoo Overall

http://www.dcs.gla.ac.uk/Keith/Preface.html 10 10 10
http://www.dcs.gla.ac.uk/∼iain/keith/ 9 7 8
http://www.searchtools.com/info/info-retrieval.html 5 9 7
http://www.sims.berkeley.edu/∼hearst/irbook 8 6 7
http://www.springerlink.com/(rgjutuzz0zyeuhjmf1kyupzp)

/app/home/journal.asp?referrer=parent

&backto=linkingpublicationresults,1:103814,1 0 8 4
http://www.acm.org/sigir 6 2 4
http://ciir.cs.umass.edu 7 0 3.5
http://ir.dcs.gla.ac.uk 0 5 2.5
http://en.wikipedia.org/wiki/Information retrieval 0 4 2
http://www.kluweronline.com/issn/1386-4564 4 0 2
http://dmoz.org/Computers/Software/Information Retrieval 0 3 1.5
http://www.virage.com 3 0 1.5
http://macedonia.chem.demokritos.gr 2 0 1
http://web.syr.edu/∼diekemar/ir.html 0 1 0.5
http://www.budsir.org 1 0 0.5

Merging Module

As we have no benchmark for web search result, we evaluate the merging
module using a given set of document collection, some queries and their re-
sults. Provided with collection of 423 documents from TIME [8] and 20 set of
query and its corresponding ranked list of correct answers, we use information
retrieval tool developed by Intelligent System Research Group (ISYS-GSI) at
the Artificial Intelligence Department of Universidad Politécnica de Madrid
(UPM) to do indexing and searching. Table 2 shows the set of queries and
answers from TIME collection, and the answers given by our search engine.

Since we have only one search engine, it is not possible to use the merging
module. Therefore, we divided the collection into two subcollection, namely
part A and part B, in such a way so that the search results from part A
always have greater rank than part B in the TIME query-answer samples. This
partition mimics the condition where we have two collection of documents,
where one is more preferred than the others, but sometimes the preferred
collection has no answer for the query.

As described in sect. 5, in the ranked list fusion there are several free
variables that act as parameter for the merging algorithm. These are :

– Number of retrieved documents to be selected from each infor-
mation source
In this case we will take all answers given by each subcollection.

– Weighting vector of IOWA operator
We set the weighting vector W=[1,0] representing the fuzzy quantifier
at least 1, considering that both subcollections are reliable information
sources.
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Table 2. Set of queries, its corresponding ranked list of correct answers from TIME
collection, and answers given by search engine

query No. TIME answers search result

1. 268,288,304,308,323,326,334 308,370,378,257,326, 334,304,323,
288,268

2. 326,334 334,326,349
3. 326,350,364,385 316,349,339,421,326, 409,308,385,350
4. 370,378,385,409,421 334,349,370,385,350, 421,409,397,378
5. 359,370,385,397,421 350,385,421,397,409, 349,304,370
6. 257,268,288,304,308,323,324, 323,326,308,334,257, 349,397,268,

326,334 304,324
7. 386,408 386,408,423
8. 339,358 338,358
9. 61,155,156,242,269,315,339,358 156,61,269,242,358, 155,339
10. 61,156,242,269,339,358 358,61,339,303,155, 269,258,242,156
11. 195,198 198,135
12. 61,155,156,242,269,339,358 358,155,269,156,242, 303,61,339,258
13. 87,170,185 185,170,79,87,169
14. 269 279,269
15. 94,118,128,164,424 118,164,128,424,94
16. 169,170,239 350,185,169,239
17. 303,358 358,303
18. 356,99 356
19. 99,100,195,267,344 195,159,100,99,267, 344
20. 356 389,425

– Fitness score fh for each information source
We set zero as fitness score for part B, and the maximum length between
both ranked lists as the fitness score for part A. In this way, we try to
represent our preference on part A.

Table 3 shows the search result on each partition, fitness score for each
server, and the merged results. It is interesting to see that the ranked results
after the merging procedure is nearly similar to those produced by querying
the original collection. In most cases, rearranging documents having equal
overall rank may produce identical ranked results between merged results and
original collection results. This shows that the merging procedure can give
answers almost as good as if the search is performed on a single collection.

5 Conclusion

In this work we have implemented a fuzzy approach for ranked list fusion, and
apply it to combine search result from different web search engines, creating
a meta web search engine. The approach is to calculate overall performance
judgement for each document using IOWA operator, which aggregates local
performance judgements. The search result are these documents ordered by
overall performance judgement descendingly, because the greater performance
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Table 3. Search results on each partition, fitness scores, and merged results

Query
No.

Part A Part B f1 f2 Merging Results

1. - 308,370,378,257,
326,334,304,323,
288,268

10 0 (308,5.0),(370,4.5),(378,4.0),
(257,3.5),(326,3.0),(334,2.5),
(304,2.0),(323,1.5),(288,1.0),
(268,0.5)

2. - 334,326,349 3 0 (334,1.5),(326,1.0),(349,0.5)
3. - 316,349,339,421,

326,409,308,385,
350

9 0 (316,4.5),(349,4.0),(339,3.5),
(421,3.0),(326,2.5),(409,2.0),
(308,1.5),(385,1.0),(350,0.5)

4. - 334,349,370,385,
350,421,409,397,
378

9 0 (334,4.5),(349,4.0),(370,3.5),
(385,3.0),(350,2.5),(421,2.0),
(409,1.5),(397,1.0),(378,0.5)

5. - 350,385,421,397,
409,349,304,370

8 0 (350,4.0),(385,3.5),(421,3.0),
(397,2.5),(409,2.0),(349,1.5),
(304,1.0),(370,0.5)

6. - 323,326,308,334,
257,349,397,268,
304,324

10 0 (323,5.0),(326,4.5),(308,4.0),
(334,3.5),(257,3.0),(349,2.5),
(397,2.0),(268,1.5),(304,1.0),
(324,0.5)

7. - 386,408,423 3 0 (386,1.5),(408,1.0),(423,0.5)
8. - 338,358 2 0 (338,1.0),(358,0.5)
9. 156,61,155 269,242,358,339 4 0 (156,3.0),(269,2.0),(61,2.0),

(242,1.5),(358,1.0),(155,1.0),

(339,0.5)
10. 61,155,156 358,339,303,269,

258,242
6 0 (358,3.0),(61,3.0),(339,2.5),

(303,2.0),(155,2.0),(269,1.5),
(258,1.0),(156,1.0),
(242,0.5)

11. 198,135 - 2 0 (198,2.0),(135,1.0)
12. 155,156,61 358,269,242,303,

339,258
6 0 (358,3.0),(155,3.0),(269,2.5),

(242,2.0),(156,2.0),(303,1.5),
(339,1.0),(61,1.0), (258,0.5)

13. 185,170,79,87, 169 - 5 0 (185,5.0),(170,4.0),(79,3.0),
(87,2.0),(169,1.0)

14. - 279,269 2 0 (279,1.0),(269,0.5)
15. 118,164,128,94 424 4 0 (118,4.0),(164,3.0),(128,2.0),

(94,1.0),(424,0.5)

16. 185,169 350,239 2 0 (185,2.0),(350,1.0),(169,1.0),
(239,0.5)

17. - 358,303 2 0 (358,1.0),(303,0.5)
18. - 356 1 0 (356,0.5)
19. 195,159,100,99 267,344 4 0 (195,4.0),(159,3.0),(100,2.0),

(267,1.0),(99,1.0),(344,0.5)
20. - 389,425 2 0 (389,1.0),(425,0.5)
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judgements indicates the more relevant document. The ranked list fusion al-
gorithm might be an alternative solution for information retrieval over a very
large document collection. Our evaluation of the merging module shows that
with appropriate partition and merging parameter, the result from a merging
procedure can be almost as good as those obtained by performing a query on
the original single collection.
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Some Fuzzy Counterparts of the Language uses
of And and Or

Sergio Guadarrama, Eloy Renedo, and Enric Trillas

Summary. In this paper we want to explore some of the different uses of the con-
junctions and and or in language, and how they are related with the corresponding
theoretical models [2,11]. To do this, we must study both behavior in language and
the concrete meaning of its use. And after that test the models against their use in
language.

Key words: Conjunction, Disjunction, Coherency, Uses of and and or,
Lattices, Relations.

1 Introduction

As it was suggested in [5] fuzzy logic not only deals with issues in the tech-
nological side of computational intelligence but with what is known as the
Gordian Knot of computational intelligence: the problem of meaning. A fuzzy
set represents a concrete use of a predicate (or linguistic label) in the language
and, attending to L. Wittgenstein assertion, “the meaning of a word is its use
in the language”, fuzzy logic also deals whit its meaning.

At the same time, fuzzy logic recognizes that there is no a single way of
using the conjunction ‘and’, the disjunction ‘or’ and the negation ‘not’, and
there are countless theories of fuzzy sets to represent them. These diverse
representations of linguistic connectives are based on particular properties of
their current meanings.

In language we find different uses of and and or, and therefore, different
meanings of them. Any model willing to be useful to represent the linguistic
and or linguistic or must capture the properties and the concrete meaning of
its use. To develop these models we must study the behavior of and(or) in
language in the first place.

The rest of the paper is organized as follows: first we show a list of different
uses of and and or with some instructive examples extracted from dictionaries.
In the following section we introduce the concept of qualified statements.
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Next, it will be set out needed definitions: sets, operations, relation, and so
on. Finally it will be described what a “coherent” model is, and how it must
capture the conjunctive nature of the and ’s uses and the disjunctive of the
or one.

1.1 Uses of and and or Extracted from Dictionary

Let us transcribe the several uses of the conjunction and extracted from some
English dictionaries (see [3, 4, 13]):

Copulative (also)

Used to join words, phrases, sentences or parts together. Examples:
I have socks and shoes.
I live in Madrid and she lives in Barcelona.
We have many flowers and plants.
John is tall and rich.

Copulative (in addition to)

Used with numbers. Examples:
One hundred and ten.
Three and two are five.
She walked one mile and half.

Copulative (very)

Used to join the same word, making their meaning stronger. Examples:
She walked miles and miles. (increase)
I tried and tried. (repetition)
He talked and talked. (continuation)

Copulative (distinction)

Used to make distinctions within the same word. Example:
There are lawyers and lawyers.

Copulative (despite)

Used to express surprise or some contradiction. Example:
You’re a vegetarian and you eat fish.
You’re tired and you are working.
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Consecutive (then)

In this case the and has the meaning of then and links statements that are
consecutive. It can express a temporal sequence, p before than q , can denote
a consequence, p cause that q, or can be a necessity, p in order to q.

He came and went. (before than)
I was late and she got angry. (cause that)
I will go and see him. (in order to)

Now, let us transcribe the several uses of the conjunction or extracted
from some English dictionaries (see [3, 4, 13]):

Disjunctive (possibilities)

Used to connect different possibilities; Used to indicate an alternative, usually
only before the last term of a series . Examples:

Is the water hot or cold?
This, that, or the other.
You can pay now or when you come back to pick up the paint.
It doesn’t matter whether you win or lose - it’s taking part that’s important.

Disjunctive (not either)

Used after a negative verb between a list of things to mean not any of those
things or people:

Tim doesn’t eat meat or fish.
She doesn’t have a telephone or a fax machine.

Disjunctive and/or (logical or)

Used to mean an strictly inclusive or is required, i.e. either one of two things
or both of them is possible:

Many pupils have extra classes in the evenings or [and/or] at weekends

Disjunctive either-or (logical xor)

Express an unavoidable choice or exclusive division between only two alter-
natives.

We can either eat now or after the show - it’s up to you.

Descriptive (uncertainty)

Used to indicate uncertainty or indefiniteness:
Two or three.
There were ten or twelve people in the room.
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She lives in Chicago or thereabouts.
Is it Tuesday or Wednesday today?

In some way that is not known yet:
We’ll get out of this mess one way or another.

Descriptive (change)

Used to change or correct something you have said:
We told the truth, or most of it.

Descriptive (explain)

Used to show that a word or phrase means the same as, or explains or limits
or corrects, another word or phrase:

Rosalind, or Roz to her friends, took the initiative.
Things have been going quite well recently, or they were up until now.
Used to indicate a synonymous or equivalent expression:
Acrophobia, or fear of great heights.
The culinary art or art of cookery.

Consecutive (if not)

In this case the or has the meaning of if not and links statements that are
consecutive:

You should eat more, or you’ll make yourself ill.

Consecutive (reason)

Used to give a reason for something you have said:
She must love him or she wouldn’t have stayed with him all these years.

2 Standard Models of And (Or) in Fuzzy Logic

In Standard Theories of fuzzy sets and and or are typically represented by
means of t-norms and t-conorms mainly due to their interesting properties,
as it is explained below. But this is not mandatory as have been studied
in [12] [3]. In these papers non standard theories having interesting properties
were shown, and the Classical Preservation Principle was introduced, which
we recall it here:

Since crisp sets are particular instances of fuzzy sets, any newly defined
fuzzy concept, when applied to crisp sets, should provide the same
results as in the classical setting.

One should realize that any Standard Theory satisfy the Classical Preser-
vation Principle, and the proposed conjunctions and disjunctions of this paper
must also satisfy it.
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2.1 T-norms

In fuzzy logic there are different models of and, which are typically represented
by t-norms T : [0, 1]× [0, 1] → [0, 1], that are functions verifying:

– Commutativity: T (a, b) = T (b, a).
– Monotonicity: a ≤ b⇒ T (a, c) ≤ T (b, c).
– Associativity: T (a, T (b, c)) = T (T (a, b), c).
– Boundary conditions: T (a, 1) = a, T (a, 0) = 0.

2.2 T-conorms

In fuzzy logic there are different models of or, which are typically represented
by t-conorms S : [0, 1]× [0, 1] → [0, 1], that are functions verifying:

– Commutativity: S(a, b) = S(b, a).
– Monotonicity: a ≤ b⇒ S(a, c) ≤ S(b, c).
– Associativity: S(a, S(b, c)) = S(S(a, b), c).
– Boundary conditions: S(a, 1) = 1, S(a, 0) = a.

The continuity of operations is important in the applications. Continuity
implies that the t-norms T are only in either one of the three-families:

– minϕ = ϕ−1 ◦min ◦ (ϕ× ϕ) = min.
– Prodϕ = ϕ−1 ◦ Prod ◦ (ϕ× ϕ).
– Wϕ = ϕ−1 ◦W ◦ (ϕ× ϕ).

with ϕ an order-automorphism of ([0, 1],≤). Also T can be an ordinal-sum of
them, i.e. built using a set of continuous t-norms with idempotent elements
different than 0 and 1.

Continuity also implies that the t-conorms S are only in either one of the
three families:

– maxϕ = ϕ−1 ◦max ◦ (ϕ× ϕ) = max.
– Prod∗ϕ = ϕ−1 ◦ Prod∗ ◦ (ϕ× ϕ).
– W ∗

ϕ = ϕ−1 ◦W ∗ ◦ (ϕ× ϕ).

Also S can be an ordinal-sum of them, i.e. built using a set of continuous
t-conorms with idempotent elements different than 0 and 1. (see [3]).

After reviewing the different uses of and (or) we realize that standard
models are not enough to represent them. So, we have to search for new models
of and(or) that are not necessarily commutative, idempotent or monotonic,
as we do in the following sections introducing the concepts of conjunction,
weak conjunction, disjunction, weak disjunction and exclusive or. In order to
define conjunction and disjunction let us first introduce the concept of relation
induced by an operator.



340 S. Guadarrama et al.

3 Relations Induced by an Operation

Given a universe U of elements, a relation R on U is a subset of U × U , that
is, R ⊆ U × U .

Definition 1. Given a universe U and a binary operation ∗ : U × U → U ,
the ∗-relation Rl

∗ left induced by the operation ∗, is defined by

(a, b) ∈ Rl
∗, if it exists c ∈ U, such that, a = b ∗ c (1)

or equivalently

∀ a, b ∈ U : (a ∗ b, a) ∈ Rl
∗ (2)

The ∗-relation Rr
∗ right induced by the operation ∗ is defined by

(a, b) ∈ Rr
∗, if it exists c ∈ U, such that, a = c ∗ b

or equivalently

∀ a, b ∈ U : (a ∗ b, b) ∈ Rr
∗.

Lemma 1. If the operation ∗ is commutative, then the relations Rl
∗ and Rr

∗
induced by ∗ are identical, and we will denote it by R∗ = Rl

∗ = Rr
∗. (see the

proof [7])

Lemma 2. If the operation ∗ is associative and verifies that for each a ∈ U
there exists an e ∈ U , such that a = a ∗ e (conversely, a = e ∗ a), then, Rl

∗
(conversely Rr

∗) is a preorder. (see the proof [7])

4 Conjunction and Weak Conjunction

In what follows, we will use the concepts of conjunction and weak conjunction
defined on the ordered set ([0, 1],≤) (see [7, 11]).

Definition 2. Given a ordered set L = [0, 1] endowed with an order ≤ we will
say that a binary operation ∗ in ([0, 1],≤) is:

A weak conjunction if R≤ ⊂ Rl
∗ = Rr

∗ ; conjunction if R≤ = Rl
∗ = Rr

∗
A weak left conjunction if R≤ ⊂ Rl

∗ ; left conjunction if R≤ = Rl
∗

A weak right conjunction if R≤ ⊂ Rr
∗ ; right conjunction if R≤ = Rr

∗

where R≤ is the order relation, i.e. (x, y) ∈ R≤ ⇔ x ≤ y.
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Example 1. Let it L = [0, 1] be endowed with the usual linear order ([0, 1],≤),
and ∗ a continuous t-norm T ( [8, 14])in [0, 1][0,1]2 , then the diagram of the
relations RT and R≤ are:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RT R≤

T is a conjunction in ([0, 1],≤), since R≤ = RT

Example 2. Let it L = [0, 1] be endowed with the usual order ([0, 1],≤) and
∗ = gm, (geometric mean) in [0, 1][0,1]2 , then the inducted relation by gm
is: (a, b) ∈ Rgm if ∃ c = a2

b ∈ [0, 1]; a =
√
b.c⇔ a2 ≤ b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rgm R≤

R≤ ⊂ Rgm, therefore mg is a weak conjunction in ([0, 1],≤),

Example 3. Let it L = [0, 1] be endowed with the usual linear order ([0, 1],≤)
and ∗ = am, (arithmetic mean) in [0, 1][0,1]2 , then the inducted relation by
am is: (a, b) ∈ Ram if ∃ c = 2a− b ∈ [0, 1]; a = b+c

2 ⇔ b
2 ≤ a ≤

b
2 + 1

2 .
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R≤ Ram

Since R≤ � Ram y Ram � R≤, am IS NOT a weak conjunction in (L,≤)

4.1 Coherent Models

We will name truth assignment to any mapping T : E → [0, 1] that assign to
each element of a set of statements E a truth value of [0, 1]

Definition 3. Let E be a set of statements and an operator & : E ×E → E,
such that for any two statements p1, p2, give us the &-statement &(p1, p2) =
“p1 and p2”. A truth assignment T : E → [0, 1] is coherent with a use of and
if the induced relation R& is conjunction, and incorporates as properties the
linguistic features of the use.

Remark 1. Usually in fuzzy logic, it is assumed that the assignment of truth
values to the &-statements is functionally expressible by an function F : [0, 1]×
[0, 1] → [0, 1], such that,

T (p&q) = F (T (p), T (q))

A particular case of F in [0, 1] are t-norms T : [0, 1] × [0, 1] → [0, 1], that
all verify that for any truth assignment:

T (p&q) = T (T (p), T (q)) ≤ min(T (p), T (q))

and therefore by definition (see [7]) are T -conjunctions for any T .

The case of the copulative and with the meaning of also

In this case the and can be commutative, and the statements p and q must
be distinct, because otherwise it will change its meaning (see 1.1 or 1).

T (p&q) = T (q&p)
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And also, it looks reasonable to assume that if “p” is true and “q” is true
then “p and q” is true. And this with truth values in ([0, 1],≤) can be restated
as:

T (p) = 1, T (q) = 1 ⇒ T (p&q) = 1,

Example 4. Let p =“I have socks” and q =“I have shoes” be, then p&q =“I
have socks and shoes” we can have two different truth assignments:

• One coherent: T1(p) = 1, T1(q) = 1, and being T1(p&q) = min(T1(p), T1(q))
then

T1(p&q) = 1 = min(T1(p), T1(q))

• One non coherent: T2(p) = 0, T2(q) = 1, and being T2(p&q) = am(T2(p),
T2(q)) = 0.5

T2(p&q) = 0.5 � min(T2(p), T2(q)) = 0

Example 5. Let p =“John is handsome” and q =“John is rich” be, then
p&q =“John is handsome and rich” can be understood as “John is
attractive”.

• Given the truth assignment T (p) = 0.1, T (q) = 0.7 then this truth assign-
ment is more coherent with T1(p&q) = gm(T (p), T (q)) =

√
0.1 ∗ 0.7 =

0.26 than with T2(p&q) = am(T (p), T (q)) = 0.4 because gm is a weak
conjunction and because

T1(p&q) = 0.26 ≤ am(T1(p), T1(q)) = 0.4

The case of the copulative and with the meaning of very

In this case the statements are the same, its truth value have a restrictive
behavior and usually is not idempotent.

T (p&p) ≤ T (p)

Example 6. (See 1.1)

• Let be p =“He talked” and p&p = “He talked and talked” then the truth
assignment T1(p) = 0.8 and T1(p&p) = T1(p) ∗ T1(p) is coherent, since

T1(p&p) = 0.64 ≤ T1(p)

• Let be p =“She walked miles” and p&p = “She walked miles and miles”
then the truth assignment T2(p&p) =W (T (p), T (p)) = 0.5 to be coherent
will force that T2(p) ≥ 0.75 since

T2(p&p) = min(0, T2(p) + T2(p)− 1) = 0.5 ≤ T2(p) ⇒ T2(p) ≥ 0.75
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The case of the consecutive and with the meaning of then

In this case the use of and links statements that are consecutive and it intro-
duces a relation between the statements. If we have an operator � : U×U → U
that represents the relation “p then q,” then the truth assignment to be co-
herent must verify:

T (p&q) ≤ T (p) · T (p� q)
And if we want that this relation � is conditional (see [1]) must verify:

T (p) · T (p� q) ≤ T (p) · T (q)

Those can be comprised in:

T (p&q) ≤ T (p) · T (p� q) ≤ T (p) · T (q)

Example 7. (See 1.1)

• Let be p =“He came,” q =“He went,” p&q = “He came and went” and
p � q =“He came before he went,” then the truth assignment T1(p) = 1,
T1(q) = 1, and T1(p&q) = 1 is coherent only if T1(p� q) = 1, since

1 = T1(p&q) ≤ min(T1(p), T1(p� q)) ≤ min(T1(p), T1(q)) = 1

In the case that “he came, he went and he went before came,” the truth
assignment T1(p) = 1, T1(q) = 1, and T1(p � q) = 0 is coherent only if
T1(p&q) = 0, since

T1(p&q) ≤ min(T1(p), T1(p� q)) = 0

• Let be p =“I was late,” q =“She got angry,” p&q =“I was late and she
got angry” and p� q =“She got angry because I was late,” then the truth
assignment T2(p) = 0.8, T2(q) = 0.7, and T2(p� q) = 0.5 is coherent if

T2(p&q) ≤ min(T2(p), T2(p� q)) = 0.5

In the case that she got angry because other causes then T2 will be coherent
if

T2(p&q) ≤ min(T2(p), T2(q)) = 0.7

5 Inclusive or: Disjunction and Weak Disjunction

The use of or in common language differs to its use in classical logic. Mainly
due to that or in language usually behaves as an “exclusive or” while in
classical logic behaves as an “inclusive or”. In fact, to express in common
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language that the or is inclusive we use the “and/or” particle, as we can see
in the following example:

– Many pupils have extra classes in evenings and/or at weekends. (inclu-
sive or).

In what follows, we will use the concepts of disjunction and weak disjunction
defined on the ordered set ([0, 1],≤) (see [7, 11]) to define the “inclusive or.”

Definition 4. Given a ordered set L = [0, 1] equipped with an order ≤ we will
say that a binary operation ∗ in ([0, 1],≤) is:

A weak disjunction if R≥ ⊂ Rl
∗ = Rr

∗ ; disjunction if R≥ = Rl
∗ = Rr

∗
A weak left disjunction if R≥ ⊂ Rl

∗ ; left disjunction if R≥ = Rl
∗

A weak right disjunction if R≥ ⊂ Rr
∗ ; right disjunction if R≥ = Rr

∗

where R≥ is the opposite of the order relation, i.e. (x, y) ∈ R≥ ⇔ x ≥ y.

Example 8. Let L = [0, 1] be endowed with the usual order ([0, 1],≤) and ∗ a
continuous t-conorm S ( [8,14])in [0, 1][0,1]2 , then the diagram of the relations
RS and R≥ are:
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RS R≥

S is a disjunction in ([0, 1],≤), since R≥ = RS

Example 9. Let L = [0, 1] be endowed with the usual order ([0, 1],≤) and
∗ = dgm, (dual of geometric mean) in [0, 1][0,1]2 , then the inducted relation
by dgm(x, y) = 1−

√
(1− x).(1− y) is: (a, b) ∈ Rdgm if ∃ c = a2

b ∈ [0, 1]; a =
1−

√
(1− b).(1− c) ⇔ a2 ≤ b
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Rdgm R≥

R≥ ⊂ Rdgm, therefore dmg is a weak disjunction in ([0, 1],≤),

Example 10. Let L = [0, 1] be endowed with the usual order ([0, 1],≤) and
∗ = am, (arithmetic mean) in [0, 1][0,1]2 , then the inducted relation by am
is: (a, b) ∈ Ram if ∃ c = 2a− b ∈ [0, 1]; a = b+c

2 ⇔ b
2 ≤ a ≤

b
2 + 1

2 .
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R≥ Ram

R≥ � Ram y Ram � R≥, therefore am IS NOT a weak disjunction in (L,≤)

Remark 2. In any lattice (L,≤, ·,+), the operator · is a conjunction and the
operator + is a disjunction since for all x, y ∈ L, x = x · y, y = x + y is
equivalent to x ≤ y, and therefore, the induced relations verify, R· = R≤ and
R+ = R≥.

5.1 Coherent Models

Definition 5. Let E be a set of statements and an operator ∨ : E × E → E,
such that for any two statements p1, p2, give us the ∨-statement ∨(p1, p2) =
“p1 or p2”. A truth assignment T : E → [0, 1] is coherent with a use of or
if the induced relation R∨ is a disjunction, and incorporates as properties the
linguistic features of the use.
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Remark 3. Usually in fuzzy logic, it is assumed that the assignment of truth
values to the ∨-statements is functionally expressible by an functionG : [0, 1]×
[0, 1] → [0, 1], such that,

T (p ∨ q) = G(T (p), T (q))

A particular case of G in [0, 1] are t-conorms S : [0, 1]× [0, 1] → [0, 1], that
all verify that for any truth assignment:

T (p ∨ q) = S(T (p), T (q)) ≥ max(T (p), T (q))

and therefore by definition (see [7]) are T -disjunctions for any T .

The case of the disjunctive and/or expressing logical or

In this case the and/or can be commutative and express that both possibilities
can be simultaneous, it is a inclusive-or (logical or)

T (p ∨ q) = T (q ∨ p)

And also, it looks reasonable to assume that if “p or q” is true then “p”
is true or “q” is true. And this with truth values in ([0, 1],≤) can be restated
as:

max(T (p), T (q)) ≤ T (p ∨ q)

Example 11. Let p =“Many pupils have extra classes in the evenings” and
q =“Many pupils have extra classes at weekends” be, then p ∨ q =“Many
pupils have extra classes in the evenings and/or at weekends” we can have
two different truth assignments:

• One coherent: T1(p) = 1, T1(q) = 1, and being T1(p∨q) = max(T1(p), T1(q))
then

T1(p ∨ q) = 1 = max(T1(p), T1(q))

• One non coherent: T2(p) = 0, T2(q) = 1, and being T2(p ∨ q) =
am(T2(p), T2(q)) = 0.5

T2(p ∨ q) = 0.5 � max(T2(p), T2(q)) = 1

6 Exclusive or: Symmetric Difference

One can realize from the following examples that “exclusive or” in these ex-
amples have different degrees of exclusiveness. They are:

– The children always smiles or laughs. (less exclusive or)
– The patent was granted in 1962 or 1963. (more exclusive or)
– Either you leave now or I call the police. (most exclusive or)
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The “exclusive or”= xor in classical logic is modeled by the well known
symmetric difference operator.

A binary operator ∆ defined in a Fuzzy Set Theory (F(X),∧,∨,′ ) will be
called a symmetric difference operator if the following condition is satisfied:

For any µ, σ ∈ F(X), µ∆σ ≤ µ ∨ σ and µ∆σ ≤ µ′ ∨ σ′
Or equivalently µ∆σ = (µ ∨ σ) ∧ (µ′ ∨ σ′)

  (W, Max)

  (Prod, Max)

  (min, Max)   (Prod, Prod*)

  (min, Prod*)   (Prod, W*)

  (min, W*)

  (W, Prod*)

  (W, W*)

Fig. 1. Exclusiveness order of different fuzzy xor, (T, S)

Definition 6. Now we can functionally express xor in a Standard Fuzzy The-
ory ([0, 1]X , T, S,N) as:

∆(a, b) = T (S(a, b), S(N(a), N(b)))

This xor operators can be ranged from the most exclusive to the less
exclusive one (see Fig. 1):

The most exclusive or is ∆(a, b) =W (max(a, b),max(1− a, 1− b)
The less exclusive or is ∆(a, b) = min(W ∗(a, b),W ∗(1− a, 1− b)
One example in between is ∆(a, b) = min(max(a, b),max(1− a, 1− b)

Example 12. Let L = [0, 1] be endowed with the usual order ([0, 1],≤) and
xor operators ∆(min,W∗) = min(W ∗(a, b),W ∗(1 − a, 1 − b)) ∆(W,max) =
W (max(a, b),max(1 − a, 1 − b)), then the inducted relations by ∆(min,W∗)

and ∆(W,max) are:
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R∆(min,W∗) R∆(W,max)

One can see that R∆(min,W∗) is a weak disjunction in ([0, 1],≤), since R≥ ⊂
R∆(min,W∗) , and R∆(W,max) is a weak conjunction in ([0, 1],≤), since R≤ ⊂
R∆(W,max) .

Example 13. Let L = [0, 1] be endowed with the usual order ([0, 1],≤) and
xor operators ∆(min,max) = min(max(a, b),max(1−a, 1−b)) ∆(min,Prod∗) =
min((a+ b− a.b), (1− a+ 1− b− (1− a).(1− b)), then the inducted relations
by them are:
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R∆(min,max) R∆(min,P rod∗)

One can realize that neither R∆(min,max) nor R∆(min,P rod∗) are a weak dis-
junction or conjunction in ([0, 1],≤), since R≤ � R∆(min,max) � R≥, and
R≤ � R∆(min,P rod∗) � R≥.

The case of the disjunctive or expressing alternatives

In this case the or express different alternatives that should be in some way
exclusive, it is an exclusive-or.

T (p∆q) = T ((p ∨ q)&(p′ ∨ q′))
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And also, it looks reasonable to assume that if “p or q” is true then “p” is
true or “q” is true but not both. And this with truth values in ([0, 1],≤) can
be restated as:

T (p∆q) = T (S(T (p), T (q)), S(1− T (p), 1− T (q)))

Example 14. Let p =“The children always smiles” and q =“The children al-
ways laughs” be, then p ∨ q =“The children always smiles or laughs” we can
have the coherent truth assignments with the less exclusive-or given by:

• T (p) = 0.5, T (q) = 0.5, and being T (p∆q) = ∆(min,W∗) then

T (p∆q) = 1 ≤W ∗(T (p), T (q))

• T (p) = 0.8, T (q) = 0.7, and being T (p∆q) = ∆(min,W∗) then

T (p∆q) = 0.5 ≤W ∗(T (p), T (q))

Example 15. Let p =“The patent was granted in 1962” and q =“The patent
was granted in 1963” be, then p∆q =“The patent was granted in 1962 or 1963”
we can have the coherent truth assignments the more exclusive-or given by:

• T (p) = 0.5, T (q) = 0.5, and being T (p∆q) = ∆(min,max) then

T (p∆q) = 0.5 ≤ max(T (p), T (q))

• T (p) = 0.8, T (q) = 0.7, and being T (p∆q) = ∆(min,max) then

T (p∆q) = 0.3 ≤ max(T (p), T (q))

Example 16. Let p =“Either you leave now” and q =“I call the police” be, then
p∆q =“Either you leave now or I call the police” we can have the coherent
truth assignments with the most exclusive-or given by:

• T (p) = 0.5, T (q) = 0.5, and being T (p∆q) = ∆(W,max) then

T (p∆q) = 0 ≤ max(T (p), T (q))

• T (p) = 0.8, T (q) = 0.7, and being T (p∆q) = ∆(W,max) then

T (p∆q) = 0.1 ≤ max(T (p), T (q))

7 Conclusions

Proper models of linguistic and(or) must capture its conjunctive (disjunctive)
nature as well as the concrete meaning of its use. The pros and cons of each
model and how to get the coherency between models and uses have been
shown. This framework helps to study and to expand the representations of
the use of words in language.

In this sense, the aim of this paper is to study those particular properties
allowing to capture different uses of and ([5,6])and of or. That implies finding
models which can incorporate the properties characteristic of each use, and
this can by made by computationally testing them against linguistic examples
which contain concrete uses of words and phrases.
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5. I. Gómez. El significado de la conjuncion y. Teorema, XXII(1-2):55–84, 2003
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Fuzzy Sets Versus Language

Enric Trillas, Eloy Renedo, and Sergio Guadarrama

Summary. This paper just tries to stimulate some reflection to extend the current
theories of fuzzy sets to wider areas of language, with the objective of reaching a
better knowledge of the links between language and its representation by means
of fuzzy sets, when possible. This for the progress of computing with words that,
sooner or later, will pose the theoretically challenging, and practically important,
problem of the linguistic credit, or soundness in language, of the theories of fuzzy
sets. A problem that fuzzy logic cannot avoid to become a basic representation’s
tool for computing with words. To this end, the strategy of reconsidering the current
knowledge of fuzzy sets theories does not seem far from scope.

Key words: Fuzzy sets, Theories of fuzzy sets, Imprecision, Language.

1 Introduction

Although the set of functions [0, 1]X is called that of fuzzy sets in X (see [7])
each function µ : X → [0, 1] is only a purely mathematical entity until, for
some predicate P on X can be recognized that

Degree up to which “x is P”= µ(x),

for all x ∈ X. In this case it is written µ = µP .
To know that for all x ∈ X the degree up to which “x is P” is µ(x) is to

know how P is used on X and, hence, the function µP represents a use of P
on X, that is, following Ludwig Wittgestein’s Philosophical Investigation, µP

represents the current meaning of P on X. Of course, it is not the case that
all predicates on X do accept a degree in [0,1] (see [5]) but, in this paper, we
will only consider such case.

Once it is recognized that the current use of P on X can be represented
by µP ∈ [0, 1]X , one can change the name of things and say that

x ∈
r
P
∼
, provided that degree up to which “x is P” is µP (x) = r
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The new object P
∼

, to which elements in X belong with degree µP (x), is

named as the fuzzy set with linguistic label P. Is in this way that the set F(X)
of fuzzy sets in X is identified with [0, 1]X once a definition of inclusion and
equality is defined. In general, it is accepted that a fuzzy set µP is included
in a fuzzy fuzzy set µQ, µP ≤ µQ, if and only if, (see [2, 3, 7]):

µP (x) ≤ µQ(x), for all x ∈ X,

and that the fuzzy sets µP and µQ are equal if and only if µP ≤ µQ and
µQ ≤ µQ, that is

µP (x) = µQ(x) ⇔ µP (x) = µQ(x), for all x ∈ X,

These definitions are possibly excessive, since a single small variation in
a couple of values µP (x), µQ(x), can change the relative status of two fuzzy
sets P

∼
and Q

∼
. Anyway, such definitions are the immediate generalization of

the corresponding concepts with classical sets, and since

(P(X),∪,∩,c ) is isomorphic to ({0, 1}X ,min,max, 1− id)

by means of

A→ µA(x) =

{
1, x ∈ A
0, x /∈ A,

it results that P(X) is a part of F(X).
Contrarily to the case of classical sets in P(X), where ∩, ∪ and c, are

unique, it was recognized from the very beginning that, with imprecise predi-
cates, the connectives “and”, “or”, and “not”, have different uses. Hence, with
fuzzy sets, intersection, union, and complement are not unique, and there is
not a single theory of fuzzy sets. Actually, there are many theories of fuzzy
sets (F(X), ·,+,′ ) that depart form the structure (F(X),≤,=), the inclusion
{0, 1}X ⊂ [0, 1]X , and the restriction

µP · µQ = µP∩Q, µP + µQ = µP∪Q, µ
′
P = µP c ,

if P, Q are classical subsets of X, once the functions

· : [0, 1]X × [0, 1]X → [0, 1]X ,+ : [0, 1]X × [0, 1]X → [0, 1]X ,′ : [0, 1]X → [0, 1]X

that, respectively, represent the uses of “and” (intersection), “or” (union),
and “not” (complement), are defined.

Notice that because of the inclusion ≤ (partial order), the only theories
(F(X), ·,+,′ ) that are lattices is with · = min, + = max. Hence, no theory of
fuzzy sets is a boolean algebra.
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2 On General Theories of Fuzzy Sets

2.1

In the classical setting each precise predicate P on X specifies a single set P
∼

in X such that: “x is P” ⇔ x ∈ P
∼

, “x is not P” ⇔ x /∈ P
∼

. Even more,

– “x is P” and “x is Q”⇔ “x is P and Q”, or [x ∈ P
∼

and x ∈ Q
∼
⇔ x ∈ P

∼
∩Q

∼
]

– “x is P‘’ or “x is Q” ⇔ “x is P or Q”, or [x ∈ P
∼

or x ∈ Q
∼
⇔ x ∈ P

∼
∪Q

∼
]

– “not (x is P)” ⇔ “x is not P”, or [x /∈ P
∼
⇔ x ∈ P

∼
c]

In the fuzzy setting the situation is more complicated since it is also needed
to know how are used “and”, “or”, and “not”. That is, given imprecise pred-
icates P , Q, . . . on X, once given the corresponding functions µP , µQ, . . .,
that represent their current uses, it is needed to define the connectives ·, +,
and ′, in such a way that

µPandQ = µP · µQ, µPorQ = µP + µQ, µnotP = µ′P .

Hence, with imprecise predicates, each family of predicates on X does
specify not only the corresponding fuzzy sets but also a theory of fuzzy sets
(F(X), ·,+,′ ).

2.2

A basic requisite for any theory of fuzzy sets is

– If µ, σ ∈ {0, 1}X , then µ·σ = min◦(µ×σ), µ+σ = max◦(µ×σ), µ′ = 1−µ,
to be sure that (P(X),∩,∪,c ) is part of such theory. This is a requisite that
comes from the necessity of working jointly with precise and imprecise pred-
icates since it is not always the case that the family of predicates is also of
imprecise ones.

Apart from that previous condition, that can be called as the Principle
of Preservation of Classical Case, which laws could be taken as common for
all theories of fuzzy sets? Of course, there is no a single set of basic laws but
several minimal sets of these laws (see [3]).

Representing by µr the constant fuzzy sets µr(x) = r, for all x ∈ X, the
functions µ0 and µ1 do represent, respectively, the empty set φ and the total
set X. With this, a minimal set of common laws for all theories of fuzzy sets
([0, 1]X , ·,+,′ ) is:

– µ0 · µ = µ · µ0 = µ0, µ1 · µ = µ · µ1 = µ
– µ0 + µ = µ+ µ0 = µ, µ1 + µ = µ+ µ1 = µ1

– If µ ≤ σ, then µ · ρ ≤ σ · ρ, ρ · µ ≤ ρ · σ for all ρ ∈ [0, 1]X

– If µ ≤ σ, then µ+ ρ ≤ σ + ρ, ρ+ µ ≤ ρ+ σ for all ρ ∈ [0, 1]X
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– µ′0 = µ1, µ′1 = µ0

– If µ ≤ σ, then σ′ ≤ µ′

Given a family of predicates, some additional laws could be added to these
seven laws, depending on the concrete uses of the connectives and(·), or(+),
not(′) between the predicates. For example, the following laws:

– Commutative Laws: µ · σ = σ · µ, µ+ σ = σ + µ,
– Associative Laws: µ · (σ · ρ) = (µ · σ) · ρ, µ+ (σ + ρ) = (µ+ σ) + ρ,
– Idempotency Laws: µ · µ = µ, µ+ µ = µ,
– Distributive Laws: µ · (σ + ρ) = µ · σ + µ · ρ, µ+ σ · ρ = (µ+ σ) · (µ+ ρ),
– Involution Law: (µ′)′ = µ′′ = µ,
– Duality Laws: (µ+ σ)′ = µ′ · σ′, (µ · σ)′ = µ′ + σ′,

verified by classical sets, are optional for fuzzy sets. Concerning the two last
of these laws, notice that duality with the involutive one give

µ+ σ = (µ+ σ)′′ = (µ′ · σ′)′

µ · σ = (µ · σ)′′ = (µ′ + σ′)′,

that is, either + or · is defined from · and ′, or from + and ′, respectively.
Also, in this case, for example, from (µ′ + σ′)′ = µ′′ · σ′′ = µ · σ follows
µ′ + σ′ = (µ · σ)′, and from (µ′ · σ′)′ = µ + σ follows µ′ · σ′ = (µ + σ)′, that
is, just one of the two laws of duality is enough.

In general, the theory of fuzzy sets specified by a family of predicates will
inherit the laws these predicates do verify with respect to the connectives and,
or, not. For example, if for all P and all x ∈ X, “x is P” and “x is P” coincides
with “x is P”, then µP · µP = µP implies that for all µ ∈ [0, 1]X it should
be µ · µ = µ (idempotency of ·). Notice that this laws, jointly with the law
of duality (µ + σ)′ = µ′ · σ′ implies µ + µ = (µ′ · µ′)′ = (µ′)′ that, if there is
also the law of involution, gives µ+µ = µ (idempotency of +). Some laws can
imply some other laws.

3 Decomposable Theories of Fuzzy Sets

3.1

A theory ([0, 1]X , ·,+,′ ) is decomposable (see [3]) provided there exist numer-
ical functions

F : [0, 1]× [0, 1] → [0, 1], G : [0, 1]× [0, 1] → [0, 1], N : [0, 1] → [0, 1],

such that, µ · σ = F ◦ (µ × σ), µ + σ = G ◦ (µ × σ), µ′ = N ◦ µ. Of course,
a theory can be partially decomposable when only some of the three
operations ·,+,′ are decomposable.
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A typical example of a decomposable theory is with F = min,G = max,
and N = 1−id, a theory that verifies the totality of the laws listed in Sect. 2.2,
plus the law of Kleene µ·µ′ ≤ σ+σ′, for all µ, σ ∈ [0, 1]X , sincemin(a, 1−a) ≤
max(b, 1− b) for all a, b ∈ [0, 1].

In the decomposable theories, all its laws can be reduced to laws in
[0,1]. For example, the law of involution is N2(a) = a; the law of duality is
N(G(a, b)) = F (N(a), N(b)); the commutative laws are F (a, b) = F (b, a) and
G(a, b) = G(b, a); the laws of idempotency are F (a, a) = a, and G(a, a) = a;
the associative laws are F (a, F (b, c)) = F (F (a, b), c), and G(a,G(b, c)) =
G(G(a, b), c); etc.

Notice that the principle of preservation and the minimal set of laws trans-
late into:

– F (0, 0) = F (0, 1)) = F (1, 0) = 0, F (1, 1) = 1; G(1, 1) = G(1, 0) =
G(0, 1) = 1, G(0, 0) = 0; N(0) = 1, N(1) = 0.

– F (0, a) = F (a, 0) = 0, F (1, a) = F (a, 1) = a; G(1, a) = G(a, 1) = 1,
G(0, a) = G(a, 0) = a.

– If a ≤ b, then F (a, c) ≤ F (b, c), F (c, a) ≤ F (c, b) for all c ∈ [0, 1].
– If a ≤ b, then G(a, c) ≤ G(b, c), G(c, a) ≤ G(c, b) for all c ∈ [0, 1].
– If a ≤ b, then N(b) ≤ N(a).

In general, the study of the laws of fuzzy sets is reduced to the study of
Functional Equations and Inequations.

3.2

An important kind of decomposable theories are those that verify the laws of
associativity, commutativity, and involution. In this case, as it is well known,
F is a t-norm (T ), G is a t-conorm (S), and N is a strong negation. Usually,
such a theory ([0, 1]X , ·,+,′ ) is written as ([0, 1]X , T, S,N). When T and S are
continuous in both variables, the corresponding theory is called an Standard
Theory of fuzzy sets. Notice that because of N2 = id, strong negations are
always continuous function that verify N = N−1.

The continuity of F , S and N is important in the applications. If µ or σ are
continuous functions (as it is usual in the applications), then µ·σ = T ◦(µ×σ),
µ+σ = S ◦ (µ×σ) and µ′ = N ◦µ are also continuous (no discontinuities are
added).

Continuity implies that the t-norms T are only in either one of the three-
families:

– minϕ = ϕ−1 ◦min ◦ (ϕ× ϕ) = min.
– Prodϕ = ϕ−1 ◦ Prod ◦ (ϕ× ϕ).
– Wϕ = ϕ−1 ◦W ◦ (ϕ× ϕ).

with ϕ an order-automorphism of ([0, 1],≤), Prod(a, b) = a · b, and W (a, b) =
max(0, a + b − 1), or T is an ordinal-sum (set of continuous t-norms with
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idempotent elements different than 0 and 1). Continuity also implies that the
t-conorms S are only in either one of the three families:

– maxϕ = ϕ−1 ◦max ◦ (ϕ× ϕ) = max.
– Prod∗ϕ = ϕ−1 ◦ Prod∗ ◦ (ϕ× ϕ).
– W ∗

ϕ = ϕ−1 ◦W ∗ ◦ (ϕ× ϕ).

with Prod∗(a, b) = a + b − a · b, and W ∗(a, b) = min(1, a + b), or S is an
ordinal-sum (set of continuous t-conorms with idempotent elements different
than 0 and 1). Analogously, all strong negations N are of the form N = Nϕ =
ϕ−1 ◦ (1− id) ◦ ϕ (see [3, 4]).

The only Standard theories that are lattices, namely De Morgan–Kleene
Algebras, are ([0, 1]X ,min,max,N).

3.3

Two fuzzy sets µ, σ are contradictory when µ ≤ σ′. That is, when for all x ∈ X,
is µ(x) ≤ ϕ−1(1 − ϕ(σ(x))), with given by Nϕ, or ϕ(µ(x)) + ϕ(σ(x)) ≤ 1. A
fuzzy set µ is self-contradictory when µ ≤ µϕ−1(1/2): the constant fuzzy set
µϕ−1(1/2) is the upper-bound of self-contradictory fuzzy sets and, obviously,
the fuzzy sets µ that are never self-contradictory (for any strong negation)
are those with Supµ = 1, in particular those that are normalized (it exists
x ∈ X with µ(x) = 1). Of course, the only classical set µ ∈ {0, 1}X that is
self-contradictory is the empty set φ (µ0).

If µ ∈ [0, 1]X has Supµ < 1, there are always some strong negations Nϕ

such that µ(x) < ϕ−1(1/2) for all x ∈ X: These are strong-negations for which
µ is self-contradictory.

3.4

All Standard theories ([0, 1]X , T, S,N) verify (see [3]):

– The Law of Kleene, µ · µ′ ≤ σ + σ′, for all µ, σ in [0, 1]X , since it always
holds the functional inequality T (a,N(a)) ≤ S(b,N(b)) for a, b in [0, 1].

– The Law of Noncontradiction µ · µ′ ≤ (µ · µ′)′, in the sense that µ · µ′ is
always self-contradictory, since it always holds the functional inequality
T (a,N(a)) ≤ N(T (a,N(a))), for all a, b in [0,1].

– The Law of Excluded-Middle (µ + µ′)′ ≤ ((µ + µ′)′)′, in the sense that
(µ+ µ′)′ is always self-contradictory, since it always holds the functional
inequality N(S(a,N(a))) ≤ S(a,N(a), for all a, b in [0,1].

3.5

For any basic law of Boolean Algebras there are some Standard theories of
fuzzy sets verifying it (see [3]). For example:
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– The classical law of Noncontradiction µ · µ′ = µ0, is verified if and only if
T =Wϕ, Nϕ ≤ N , and any t-conorm S.

– The classical law of Excluded-Middle µ + µ′ = µ1, is verified if and only
if S =W ∗

ψ, N ≤ Nψ, and any t-norm T .
– Both former laws are jointly verified, if and only if T = Wϕ, S = W ∗

ψ,
Nϕ ≤ N ≤ Nψ.

– The law of Von Neumann µ = µ ·σ+µ ·σ′ and the law (µ ·σ′)′ = σ+µ′ ·σ′,
are verified if and only if T = Prodϕ, S =W ∗

ϕ, N = Nϕ, that give nondual
theories.

– The distributive law µ · (σ + ρ) = µ · σ + µ · ρ is verified if and only if
S = max and any t-norm T .

– The distributive law µ+ (σ · ρ) = (µ+ σ) · (µ+ ρ) is verified if and only if
T = min and any t-conorm S.

– Both former distributive laws, if and only if T = min and S = max.
– The law of idempotency µ · µ = µ, is verified if and only if T = min.
– The law of idempotency µ+ µ = µ, is verified if and only if S = max,

etc.

3.6

Nevertheless there are nonbasic (derived) boolean laws or formulas that are
not verified by any Standard Theory.

For example, in boolean algebras it is (a+ b) · (a+ b′) = a+ b · b′ = a, and
a · (a + b′) = a (since a ≤ a + b′), hence: (a + b) · (a + b′) = a · (a + b′). Are
there Standard theories where the formula (µ+σ) · (µ+σ′) = µ · (µ+σ′) does
hold? The problem lies in solving the functional equation

T (S(a, b), S(a,N(b))) = T (a, S(a,N(b))).

With b = 1 results T (a, a) = a for all a ∈ [0, 1], that is, T = min. With a = 0,
results T (b,N(b)) = 0 or T = Wϕ, that is absurd. Then, for no Standard
Theory the formula holds.

In the same vein, in boolean algebras holds a · b+ a · b′ = a+ a · b′, but the
law µ · σ+ µ · σ′ = µ+ µ · σ′ does not hold in any Standard Theory, since the
functional equation

S(T (a, b), T (a,N(b))) = S(a, T (a,N(b))),

gives the absurd S =W ∗
ϕ (with a = 1), S = max (with b = 0).

3.7

Let us say something else on the insufficiencies of the theories ([0, 1]X , F,G,N).
In the language the connective and is not always commutative. For example,
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since “He was judged and hanged” is not the same that “He was hanged and
judged”, no t-norm can be used for representing this sentences.

Analogously, in the language the predicates “S=silly” and “S and S=silly
and silly,” are sometimes used in such a way that Degree up to which “x is
silly”< Degree up to which “x is silly and silly,” but with t-norms µSandS(x) =
T (µS(x), µS(x)) ≤ µS(x).

Apart all this, it is not written neither that all predicates do have degrees
in [0,1], nor that all theories of fuzzy sets should be decomposable, nor that
all function in [0, 1]X are always needed. For example, in some cases it could
be interesting not to have more self-contradictory fuzzy sets than µ0 that is,
to not consider the functions µ �= µ0 such that µ ≤ µϕ−1( 1

2 ) and, consequently,
their negation µ′ ≥ µϕ−1( 1

2 ) with the exception of µ1. Unfortunately this would
mean to suppress all the constant functions µr with r ∈ (0, 1).

4 Examples Suggesting a Generalization of the Theories
(T,S,N)

4.1

It is well known that in boolean algebras it is a ·(a′+b) = a ·b , and a+a′ ·b =
a+ b, but in the theory (W,W ∗, 1− id), is:

W (a,W ∗(1− a, b)) = min(a, b)
W ∗(a,W (1− a, b)) = min(a, b)

That is, in such theory µ · (µ′ + σ)) and µ + µ′ · σ are not reducible to µ · σ
like it happens in boolean algebras. What results are

µ · (µ′ + σ) = µ ·1 σ, µ+ µ′ · σ = µ+1 σ

with two new connectives ·1(min) and +1(max).

4.2

The boolean formula a · b = a · (a · b), gives the Pexider functional equation

T1(a, b) = T2(a, T3(a, b)).

Whit b = 1, follows T1(a, 1) = a = T2(a, T3(a, 1)) = T2(a, a), and T2 = min.
Hence,

T1(a, b) = min(a, T3(a, b)) = T3(a, b),

and T1 = T3. Hence, the formula

µ ·1 σ = µ ·2 (µ ·3 σ)
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will hold with T2 = min and any t-norm T1 = T3.
Analogously , the boolean formula a+ b′ = a+(a+ b′) suggests µ+1 σ

′1 =
µ+2 (µ+3 σ

′2), that gives the functional equation

S1(a,N1(b)) = S2(a, S3(a,N2(b))),

giving S2 = max, S1 = S3, and N1 = N2.

4.3

Hence, there is the possibility of increasing the ways of representing formulas
by mixing several t-norms, t-conorms and strong negations. For example, the
law of classical sets

(µ+ µ) · (µ · µ′) = µ0

for no theory (T, S,N) is verified, but written as

(µ+ µ) ·1 (µ ·2 µ′) = µ0

gives the equation T1(S(a, a), T2(a,N(a))) = 0 that has infinite solutions, for
example, T1 = min, T2 =W,S = max, and any strong negation N .

Unfortunately, by mixing connectives are not captured all boolean formu-
las, for example, the law

µ+1 σ = [(µ+2 σ) ·1 (µ+3 �)] +4 [(µ+5 σ) ·2 µ′]

that holds for classical sets with +1 = +2 = +3 = +4 = +5 = ∪, ·1 = ·2 = ∩,
and ′ =c, conducts to the equation

S1(a, b) = S4(T1(S2(a, b), S3(a, c)), T2(S5(a, b), N(a)))

implying N(a) = 1 for all a ∈ [0, 1), which is not a strong negation because is
notcontinuous (see [1]).

4.4

Hence with the theories of the form ([0, 1]X , T1, . . . , Tn, S1, . . . , Sm, N1, . . . , Np),
there is the possibility of capturing more boolean formulas, although not all
of them, that by means of standard theories of fuzzy sets. That is with these
theories we can capture the representation of some more ways of saying things.

4.5

In the language there are fuzzy events, those reflected by imprecise phrases
to which the word “probable” can be applied, for example, “probably she will
arrive late on the night”. Notwithstanding it is not clear enough which axioms
the numerical probability of a fuzzy event does verify.



362 E. Trillas et al.

Let us consider a theory ([0, 1]X , ·,+,′ ) and made the perhaps abusive
hypotheses that a “fuzzy probability” is a function p : [0, 1]X → [0, 1]X –
taking all functions in [0, 1]X as fuzzy events – that follows rules analogous to
those of Kolmogorov. In principle, this is like the case of classical probability
that assigns numbers in [0, 1] to some subsets in X (a boolean algebra of sets),
or to the case of quantum probabilities that assign numbers in [0, 1] to the
elements of a lattice with relative complements (orthomodular lattices).

Let us consider the axioms:

1. p(µ1) = 1
2. p(µ+ µ′) = 1, for all µ ∈ [0, 1]X

3. If µ ≤ σ′, then p(µ+ σ) = p(µ) + p(σ)
4. max(p(µ) + p(σ)) ≤ p(µ+ σ), for all µ, σ ∈ [0, 1]X

for a fuzzy probability “p.” From them immediately follows:

5. Since µ ≤ (µ′)′, p(µ+ µ′) = p(µ) + p(µ′) = 1 : p(µ′) = 1− p(µ)
6. Since µ0 = µ′1, p(µ0) = 1− p(µ1) = 0
7. Provided the connectives verify the law of duality: p(µ·µ′) = p((µ+µ′)′) =

1− p(µ+ µ′) = 0.
8. If µ ≤ σ, since it implies that for all t-conorm S it exists ρ ∈ [0, 1]X such

that σ = µ+ ρ = S ◦ (σ × ρ), it follows:

p(σ) = p(µ+ ρ) ≥ max(p(µ), p(ρ)) ≥ p(µ),

that is, p(µ) ≤ p(σ).
Obviously, axioms 1–4, when applied to fuzzy sets in {0, 1}X – crisp or

classical subsets – capture a good part of the classical definition of a proba-
bility in the sense of Kolmogorov. Nevertheless, what does not hold in general
is the property

9. p(µ+ σ) + p(µ.σ) = p(µ) + p(σ),

whose failure could drive us too far from an approximation à la Kolmogorov.
In ([8]), Zadeh noticed that:

– With X = R
n

– Taking as fuzzy events those µ ∈ [0, 1]R
n

that are Borel-measurable in R
n

– With p(µ) = the Lebesgue–Stieljes integral of µ in R
n

it results:

– If ·1 = prod,+1 = prod∗ : p(µ+1 σ) + p(µ ·1 σ) = p(µ) + p(σ)
– If ·2 = min,+2 = max : p(µ+2 σ) + p(µ ·2 σ) = p(µ) + p(σ)

formulas that, in general, do not hold with · =W,+ =W ∗.
Notice that with T = W,S = W ∗, and N = 1−id, the eight first axioms

will be reduced to six. First, since now it is µ ≤ σ′ equivalent to µ · σ = µ0,
axiom 3 changes to the classical expression:



Fuzzy Sets Versus Language 363

3′. If µ · σ = µ0, then p(µ+ σ) = p(µ) + p(σ).

Second, axiom 2 is superfluous since µ + µ′ = W ∗ ◦ (µ × (1 − id) ◦ µ) = µ1

implies p(µ + µ′) = p(µ1) = 1. Axiom 5 reduces to p(µ + µ′) = p(µ1) = 1 =
p(µ) + p(µ′) since now µ · µ′ = µ0, and axiom 7 is also superfluous because of
p(µ · µ′) = p(µ0) = 0

Then, working within any theory (T, S,N), with duality, we can count
with properties 1–8, but to have property 9 it is needed to perhaps consider a
different T or S. Hence, to preserve the basic laws of a probability à la Kol-
mogorov, it seems that a theory of the type ([0, 1]X , T, T1, S, S1, N) could be
needed. For example, if we start working within the theory ([0, 1]X ,W,W ∗, 1−
id), axioms 1–8 will be preserved, but to have axiom 9 we should take either
T1 = min, S1 = max, or T1 = prod, S1 = prod∗.

4.6

The theories that mix connectives (T1, . . . , Tn, S1, . . . , Sm, N1, . . . , Np), allow
one the possibility to represent more derived laws than within the theories
(T, S,N). Let as show few examples:

1. Provided Nj ≤ Nr. Kleene’s Law Ti(a,Nj(a)) ≤ Sk(b,Nr(b)), does hold
for all Ti and all Sk.

2. Von Neumann’s Law a = S(T1(a, b), T2(a,N(b))) admits more solutions
than T1 = T2 = prodϕ, S = W ∗, N = Nϕ, for example, S = W ∗, T1 =
min, T2 =W,N = 1− id

3. The principle of noncontradiction: µ ·1 µ′1 ≤ (µ ·2 µ′2)′3 , that is,
T1(a,N1(a)) ≤ N3(T2(a,N2(a))) holds for N1 ≤ N2 = N3, for all T1, T2

(that captures the case (T, S,N). But, for example with N1 = 1 − id,
N2 = N3 = 1−id

1+id , T1 = prod, T2 = min, does not hold.
4. The principle of Excluded-Middle: (µ+1 µ

′1)′2) ≤ ((µ+2 µ
′3)′4)′5 , that is,

N2(S1(a,N1(a)) ≤ N5(N4(S2(a,N3(a)))), holds if N2 = N3 ≤ N1, N5 =
N4 for all S1, S2 (that captures the case (T,S,N)). But, for example, with
N2 = N3 = N5 = N4 = 1−id, N1 = 1−id

1+id , S1 = S2 =W ∗ does not hold.
5. Of course, in a theory ([0, 1]X , T1, T2, S1, S2, N1, . . . , Np) such that N1 =
N5 ≤ N2 = N3 = N4, the two laws 3 (NC) and 4 (EM) do hold for all
T1, T2, S1, S2.

5 Antonyms

The negation of a linguistic term is not itself a linguistic term. In dictionaries
we can find the words rich and poor, an antonym or opposite of rich, but
not the negation not rich. Antonymy is important in language and, in fuzzy
logic, is basic for constructing linguistic variables; many concepts are better
managed once pairs of words (P , antonym of P ) have being used.



364 E. Trillas et al.

Antonym is not independent of negation since is it always the case that if
“x is antP , then x is not P” (but not reciprocally). Let us suppose, as it is
usual, that not-P is the biggest antonym of P : µantP ≤ µnot P .

Oppositeness is a word requiring some kind of order and some kind of
symmetry on X. Actually, it seems that oppositeness could be understood
as a kind of symmetry with respect to a way of ordering X (the universe of
discourse) given by the use of the predicate. In fact, discoursing is, in part, to
introduce some “order” in the universe to which we refer to.

To simplify, let us consider the case where P is used on a closed interval
[a, b] in the real line by µP (see [6]). Provided:

(1) [a, b] = [b0, b1] ∪ [b1, b2] ∪ . . . ∪ [bn−1, bn], b0 = a, bn = b.
(2) µP is either nondecreasing or nonincreasing at each subinterval [bk, bk+1],

consider the preorder ≤P defined by

x ≤P iff x, y ∈ [bk, bk+1] and µP (x) ≤ µP (y),

Then, we will say that antP (used by µantP ) is an antonym of P (used by
µP ) whenever:

(1) There exist a strong-negation N such that µaP ≤ µnot P = N ◦ µP

(2) There are mappings αk : [bk, bk+1] → [bk, bk+1], 0 ≤ k ≤ n− 1, such that
– α2

k = id
– If x ≤P y, then αk(y) ≤P αk(x)

(3) µaP (x) = µP (αk(x)), for all x ∈ [bk, bk+1]

For example, consider X = [0, 10] and P= close to 4 used by

µP (x) =

⎧
⎨

⎩

0, if 0 ≤ x ≤ 3, 5 ≤ x ≤ 10
x− 3, if 3 ≤ x ≤ 4
5− x, if 4 ≤ x ≤ 5.

Since the decomposition [0, 10] = [0, 4]∪ [4, 10] agrees with what was said,
let us take, α1 : [0, 4] → [0, 4], α1(x) = 4−x, and α2 : [4, 10] → [4, 10], α2(x) =
14− x, that reverse the order ≤P and are idempotent. Then

µQ(x) =
{
µP (α1(x)), if 0 ≤ x ≤ 4
µP (α2(x)), if 4 ≤ x ≤ 10

}
=

⎧
⎨

⎩

0, if 1 ≤ x ≤ 9
1− x, if 0 ≤ x ≤ 1
x− 9, if 9 ≤ x ≤ 10,

verifies µQ ≤ 1− µP and allow one to recognize Q as a use of further from 4,
that is an antonym of a(close to 4), and conclude µQ = µantP

Let us apply the method to the case of the crisp predicate P=bigger than
4 on [0, 10], always used by

µP (x) =
{

0 if 0 ≤ x ≤ 4
1 if 4 < x ≤ 10.
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Decompose [0, 10] = [0, 4] ∪ [4, 10] and take α1(x) = 10 − 3x
2 , α2(x) =

2
3 (10− x). We get

µQ(x) =
{
µP (α1(x)), if 0 ≤ x ≤ 4
µP (α2(x)), if 4 ≤ x ≤ 10

}
=

{
1, if 0 ≤ x ≤ 4
0, if 4 ≤ x ≤ 10,

that verifies µQ(α(x)) < 1− µP (x). Then, Q = less than 4, is an antonym of
bigger than 4, and not(bigger than 4) results to be less or equal than 4.

All that shows that fuzzy sets are able to model well enough phenomena
of language that, like the case of antonymy, are not yet well done.

6 Last Comments

Fuzzy logic not only deals with problems of the technological side of compu-
tational intelligence. Since what is a fuzzy set does represent a concrete use
of a predicate or linguistic label, that is its meaning, fuzzy logic also deals
with the core of computational intelligence, a side of fuzzy logic that, in the
way towards computing with words, is of a great interest. Words are context
dependent and, if there are uncountable many theories of fuzzy sets, it is be-
cause fuzzy logic recognized, from the very beginning (see [7]), that there is
no a single way for using the connectives (and, or, not, antonym, rules, etc.),
and the representations of them are based on the properties exhibited by its
current meaning, or their use in a given context and for some goal.

Perhaps the time to rethinking fuzzy says is coming. What really matters
is imprecision and mathematical models can help to clarify some aspects, and
to base applications in more solid grounds. Mathematics are important in
that they can help us in the study of imprecision with as much precision as
possible, once questions on the phenomena are well posed. Only in conjunction
with good questions an fine observations of them, are mathematical models
actually interesting, and useful, for a deeper understanding of the phenomena.
In that sense, to go ahead with computing with words by means of fuzzy logic,
a good deal of experimentation in language is to be done to find, among the
multiplicity of fuzzy sets theories, the more adequate to the corresponding
situation by testing them against some linguistic reality, against the concrete
use of words and phrases.

What this paper tried to suggest is not only an intentional review of the
existing knowledge on fuzzy sets, either to find more or less paradigmatic
examples in the language, or to improve linguistic’s methodologies, but the
adoption of a new experimentally based view that, eventually, could lead to a
renewal of fuzzy logic’s theoretical way of working. Towards a typical experi-
mental science of imprecision, where it will be important not to forget neither
Occkam’s Razor: never introduce more entities than those that are strictly
necessary, nor Menger’s addition: nor less.
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Some Properties of Fuzzy Languages

Claudio Moraga

Summary. Some properties of fuzzy formal languages associated to Chomsky, Petri
and Lindenmayer formal languages will be presented. Generalized alpha cuts lead to
the generation of sets of crisp languages of different type within their hierarchies of
origin. A fuzzy formal language may serve as a model for several apparently different
phenomena of the real world.

Key words: Formal languages, Fuzzy logic.

1 Introduction

A crisp formal language is a set of words over a given finite alphabet built ac-
cording to specific rules for that language. Formal languages mainly study the
structure of the words and the relationship among languages. A fuzzy formal
language is a formal language where each word has a degree of membership to
the language.

Three families of formal languages have been chosen, which are represen-
tative of different options to generate the words belonging to them. They are
the Chomsky languages [1], the Petri languages [5] and the Lindenmayer lan-
guages [4]. Chomsky languages are characterized by sequences of elementary
transformations which produce a word out of an initial symbol. Petri languages
are based on the behavior of Petri nets [6] and the elementary transformations
are applied concurrently. In the case of Lindenmayer languages, elementary
transformations are applied simultaneously to all symbols of a word to obtain
a new word. To every formal language there is associated a generating struc-
ture, which specifies the finite nonempty set of symbols or alphabet to be used,
possibly a finite nonempty set of auxiliary symbols, and a finite nonempty set
of elementary transformations or rules to generate the words. The generating
structure of a Chomsky language is a grammar; that of a Petri language is a
Petri net, and that of a Lindenmayer language is an L-system.

In order to generate a fuzzy formal language from a crisp one, there are ba-
sically two alternatives (i) replace the crisp set(s) of symbols of the generating
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structure by fuzzy sets [8] or (ii) keep the crisp set(s) of symbols but create a
fuzzy set of rules by assigning to each rule a “degree of strength” in the unit
interval. In both cases the generating structures should be extended with ap-
propriate operations for the selected fuzzy sets. These operations will belong
to the family of norms [3]. In this paper only t-norms and t-conorms [2, 7]
will be considered. It becomes apparent that to every crisp formal language
an infinite number of fuzzy languages may be associated. In what follows,
the symbol ⊗ will be used to denote t-norms and the symbol ⊕ to denote
t-conorms.

The rest of the paper is structured as follows. First, some properties of
fuzzy Chomsky languages and of the corresponding fuzzy automata will be
discussed. In Sect. 3, fuzzy languages will be considered. Some aspects of fuzzy
Lindenmayer languages will be the subject of Sect. 4. The paper will be con-
cluded with some general remarks.

2 Fuzzy Chomsky Languages

Definition 1. A fuzzy grammar G is specified by the 7-tuple (N, T, S, P,
ω,⊗,⊕), where (N, T, S ,P) is a Chomsky grammar, ω: P −→ [0,1] associates
to every production in P a weight from the unit interval, ⊗ denotes a t-norm
and ⊕, a t-conorm. The fuzzy language L(G) generated by this fuzzy grammar
is {(w, µL(w))|w ∈ T ∗, S ⇒∗ w, µL(w) =

⊗
i pi}, where µL(w) represents

the degree of membership of the word w to the language L and is obtained
by applying the t-norm ⊗ to the weights of all productions involved in the
generation of w. Should the grammar be ambiguous, and a word w be reachable
from S by different sequences of productions, then t-conorm ⊕ will be used
to calculate the final degree of membership from the degrees of membership
obtained through different sequences of productions.

Definition 2. A fuzzy finite automaton A is specified by the 7-tuple (Σ, Q,
F, q0, δ, ϕ,⊗), where (Σ,Q,F, q0, δ) is a crisp finite automaton, ϕ : (Σ ×Q×
Q) −→ [0, 1] associates a weight to every transition of the automaton and ⊗
is a t-norm. A sequence of transitions from q0 to some state in F will be called
a trajectory.

It is easy to see that a deterministic fuzzy finite automaton A may be used
to generate a fuzzy regular language L(A) by taking Σ to be the alphabet of the
language, by taking the symbols of Σ associated to a sequence of transitions
from q0 to some state in F to constitute a word of the language and by
applying the t-norm ⊗ to the weights of the corresponding transitions to
determine a global weight that will be taken as the degree of membership of
the generated word to the fuzzy language L(A). This process is reversible in
the following sense: a deterministic fuzzy finite automaton A accepts a fuzzy
regular language L′ if and only if (Σ, Q, F, q0, δ) accepts the crisp regular
language deducible from L′ (by setting all degrees of membership of the words
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to be 1), and for every w in the language there exists a trajectory in A which
supports the word and whose global weight equals µL(w).

Definition 3. Let G = (N, T, S, P, ω, ⊗) be a nonambiguous fuzzy grammar
and let Pw be the subset of productions of P which are used to generate the
word w. Then:

(L(G),#α) = {w ∈ T ∗ |µL(w)#α} (1)
(L(G);#α) = {w ∈ T ∗ |∀p ∈ Pw, ω(p)#α} (2)

where # ∈ {≤, >,=, <,≤} when α ∈ [0,1]. If α is a subset of [0,1], then #
may represent ∈ or /∈.

It is simple to realize that # represents a generalization of the concept of
alpha cut in fuzzy sets. In the case of (L(G), #α), it represents a generalized
alpha cut on the fuzzy set of words that constitute the language. For (L(G);
#α), it represents a generalized alpha cut on the fuzzy set {(p,ω(p)) |p ∈ P}
of weighted productions. Notice that both (L(G), #α) and (L(G); #α) are
crisp formal languages deduced from the fuzzy language L(G). Furthermore,
even though this is not purpose in the theory of fuzzy sets, it is also possible to
use (generalized or classical) alpha cuts to obtain fuzzy subsets (which in this
paper are fuzzy sublanguages), by including in (1) and (2) not only the words,
but also their corresponding degrees of membership to the fuzzy language.

Example 1. Let G = (N, T, S, P, ω,⊗), where (N, T, S, P) is a regular gram-
mar, N = {S,A,B},T = {a,b, c} and ⊗ denotes the t-norm product. Finally
let the productions and their respective weights be as shown in Table 1.

It is simple to see that S ⇒∗ aibjck, with i, j, k ≥ 1 and accordingly,
L(G) = {aibjck|i, j, k ≥ 1}. Besides µL(aibjck) = (0.7)i · (0.5)j · (0.3)k. Since
the numbers 3, 5 and 7 are primes and the product of 0.7 · 0.5 · 0.3 = 0.105,
then (0, 105)n with n ≥ 1, has a unique decomposition in terms of its prime
factors smaller than 1, which is (0.7)n · (0.5)n · (0.3)n. It follows that

L(G,∈ {(0.105)n|n ≥ 1}) = {anbncn|n ≥ 1}. (3)

Similarly (0.35)n has a unique decomposition in terms of its prime factors
smaller than 1, namely (0.7)n · (0.5)n, from where

L(G,∈ {(0.35)n · (0.3)m|m ≥ 0,n ≥ 1}) = {anbncm|m ≥ 0,n ≥ 1}. (4)

Notice that in the context of the Chomsky hierarchy {anbncn|n ≥ 1} is
a context sensitive language and {anbncm|m ≥ 0,n ≥ 1} is context free,
meanwhile the grammar G is only regular.

Table 1. Productions and weights for example 1

p1 : S −→ aS ω(p1) = 0.7 p2 : S −→ aA ω(p2) = 0.7
p3 : A −→ bA ω(p3) = 0.5 p4 : A −→ bB ω(p4) = 0.5
p5 : B −→ cB ω(p5) = 0.3 p6 : B −→ c ω(p6) = 0.3
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3 Fuzzy Petri Net Languages

Definition 4. A Petri net is a finite directed graph whose nodes are parti-
tioned into two disjoint nonempty sets called places (P) and transitions (T),
such that P ∩ T = ∅.

Let E denote the set of edges. Edges connect places to transitions and tran-
sitions to places. Formally, E ⊆ P× T ∪ T× P. A function µ : P −→ N ∪ {0}
assigns to each place a number of tokens (or leaves it empty). Let P be an
ordered set. A marking of a net is a set ordered by places, which shows the
prevailing number of tokens in each place. The dynamic behavior of a net is
characterized by the changes in the marking. Notice that the marking of a
Petri net identifies the state of the net. This suggests a certain analogy with
finite automata. The modeling power of a Petri net is, however, much stronger
than that of finite automata. It is enough to mention that every regular lan-
guage can be generated by a Petri net, (see definition 5 below), however, not
every language generated by a Petri net is accepted by a finite automaton [5]).

A transition is enabled, when all places connected to it have at least one to-
ken. In such a case the transition can switch. (Some authors prefer to say that
a transition can fire.) When a transition is enabled and switches, it removes
one token from every one of its input places and adds one token to every one
of its output places. It is easy to see that every time that a transition switches,
the marking of the net may change.

At a given time several transitions of a Petri net might be enabled. The
formalism of the Petri nets (considered in this section) does not specify a
temporal ordering governing the switching of the enabled transitions. Every
possible temporal ordering, including simultaneous switching is acceptable. It
is said that transitions switch in a concurrent way.

Definition 5. A language generating Petri net is a 5-tuple (Π,Σ, ρ,M0,MF ),
where Π is a Petri net after definition 4; ρ : T −→ Σ is a labeling function
which assigns a symbol of the finite, nonempty, alphabet Σ to each transition,
M0 denotes the initial marking and MF is the set of final markings. Once a
final marking is reached, the generated word finishes. The generating process
is very simple: it begins with an empty symbol and starting with M0, each time
that a transition switches, the symbol associated to that transition is appended
to the word under generation.

Definition 6. A fuzzy language generating Petri net is specified by the 7-
tuple (Π,Σ, ρ,M0,MF , ω,⊗) where (Π,Σ, ρ,M0,MF ) is a language generat-
ing Petri net, (recall definition 5), ω : T −→ [0, 1] assigns a weight (“degree of
strength”) to each transition and ⊗ denotes a t-norm to calculate the weight
of the generated word based on the weights of the switched transitions. This
global weight will be interpreted as the degree of membership of the generated
word to the language.
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a 0.7 b 0.6

b 0.5

p1 

M0 = (1,0,0,0,0) 

MF = {(0,0,0,0,1)} 

c 0.7

c 0.5

a 0.5

p5

Fig. 1. Fuzzy language generating Petri net. Example 2

Example 2. Consider the fuzzy language generating Petri net of Fig. 1 and let
the t-norm be the product.

From the structure of the Petri net in Fig. 1 it may be deduced that the
degree of membership of the generated words w = apbqcq to the language
L(Π) is given by the following equation:

µL(Π)(w) = 0.7 ⊗ (0.5)p−1 ⊗ 0.6 ⊗ (0.5)q−1 ⊗ 0.7 ⊗ (0.5)q−1

= 0.294 · (0.5)p−1 · (0.5)2(q−1) = 0.294 · (0.5)p+2q−3 (5)

A short case analysis of (5) shows that:

p = q = 1⇒ µL(Π)(w) = 0.294 · (0.5)0 = 0.294

p = q = 1⇒ µL(Π)(w) = 0.294 · (0.5)1 = 0.147

p = q = 1⇒ µL(Π)(w) = 0.294 · (0.5)2 = 0.0735

p = q = 1⇒ µL(Π)(w) = 0.294 · (0.5)3 = 0.03675 (6)

from where

(L,> 0.2) = {abc}
(L,> 0.1) = {abc, a2bc

(L,> 0.07) = {abc, a2bc, ab2c2}
(L,> 0.03) = {abc, a2bc, ab2c2, a2b2c2} (7)

It is simple to observe that the value of µL(Πp) (w) decreases as the value
of p and q increases and then, the languages obtained with alpha cuts grow
including new (“weaker”) words as the level of alpha diminishes. In other
words, the level of alpha controls the growth of the corresponding crisp lan-
guages derived from the fuzzy one.
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4 Fuzzy Lindenmayer Languages

The generating structure of a Lindenmayer language is known as “L-system.”
The simplest L-system is called 0L.

Definition 7. A 0L system consists of a finite nonempty alphabet V, an initial
word w0 ∈ V+, and a finite nonempty set of productions P ⊂ (V × V*), which
represent transformation rules for symbols according to the following scheme:
Let u and v be words from V* such that u = u1u2...un, where ui ∈ V, and v
= v1v2...vn, where vi ∈ V*, with i = 1, 2, . . . , n. Then u ⇒ v (v is derivable
from u) if and only if there exist productions p in P such that p(ui) = vi with
i = 1, 2, . . . , n.

It is simple to see that in 0L systems |P| > |V|, (which allows a 0L to be
nondeterministic), i.e., there must be at least as many elementary productions
as symbols in the alphabet. Moreover the corresponding elementary produc-
tions are applied simultaneously to all symbols of a word. For this reason, 0L
systems are sometimes called (word) rewriting or (word) replacing systems.
A 0L system is called deterministic, in short D0L, if all productions in P are
functions. In this case |P| = |V|. If the productions show at the right side
words from V+, the system is called λ-free or propagating, abbreviated P0L.
A DP0L system is both deterministic and propagating. The language gener-
ated by a 0L system is given by £(0L) = {w ∈ V* | w0 ⇒* w}. The symbol
£ is used for the language in order to distinguish it from the “L” of a 0L sys-
tem. Since there is only one alphabet V, on each stage of a derivation process
a new word of the language is obtained. The language £ obviously inherits
the main features of the generating system. Thus, £(D0L) is a deterministic
language, £(P0L) a propagating one and £(DP0L), one with both properties.

Definition 8. A weighted system ω0L has the following structure: (V, w0,
P, ω, ⊗, ⊕), where (V, w0, P) is a 0L system and ω: P −→ [0,1] assigns a
weight to each production in P. An ω0L system generates a fuzzy Lindenmayer
language £(ω0L). At each stage of a derivation the specified t-norm will be
used to calculate the (possibly preliminary) weight of each word, based on the
weights of the productions that were used. If a word may be generated with
different sequences of derivation stages, then the t-conorm will be used to
calculate the final weight of that word considering all its preliminary weights.
The final weight will be considered to be the membership degree of that word
to the language. The initial word has per definition membership degree 1 to
the language.

Table 2. Productions and weights for example 3

p1 : A −→ AA p2: B −→ BB p3: C −→ CC
ω( p1) = 0.95 ω( p2) = 0.93 ω( p3) = 0.89
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Example 3. Let an ωDP0L system be given as ({A, B, C}, ABC, P, ω, product,
⊕), with the productions and weights shown in Table 2.

The corresponding crisp language £(PD0L) is {AkBkCk| k=2n, n ≥ 0}.
Let it be assumed that A, B, and C are the sides of a triangle with length 1.
Then £(DP0L) would represent “the set of all equilateral triangles with sides
of length 2n, where n is an integer and n > 0.” In the fuzzy Lindenmayer lan-
guage £(ωDP0L) it becomes evident that every new word will have a lower
degree of membership to the language, than that of the former words; i.e.,
as n increases, µ£(ωPD0L)(w) decreases. £(ωPD0L) could then represent “the
set of all small triangles with side of length 2n, where n is an integer larger
than 0.” It is simple to see that a 3D interpretation is also possible: £(PD0L)
would represent “the set of all cubes of side 2n,” meanwhile £(ωPD0L) would
represent “the set of all small cubes with side of length 2n.” Another interpre-
tation outside of geometry could be the following: A, B, and C represent (the
sounds of) three bells; 2n, the number of rings of the bells and µ£(ωPD0L)(w) =
(0.95)k(0.93)k(0.89)k, the acoustic intensity of the carillon. Then £(ωPD0L)
could represent “the set of all loud chords repeated 2n times produced by
three bells.” Notice that these are three different interpretations associated
to the same fuzzy language.

This example allows the claim that a fuzzy formal language may serve as
an abstract model for several (apparently very) different phenomena of the
real world.

5 Closing Remarks

It is possible to build fuzzy formal languages by assigning weights in the inter-
val [0,1] to the elementary transformations belonging to the generating system,
needed to derive words, and by using t-norms (and eventually t-conorms) to
calculate the degree of membership of the words to the language. Generalized
alpha cuts allow the derivation of different crisp (or fuzzy) formal languages
associated to each fuzzy formal language. This allows to visualize (a posteri-
ori) a fuzzy formal language as a weighted aggregation of different crisp formal
languages over the same alphabet, in the sense that if B is a fuzzy set and Bαis
an alpha cut, then B = ∪α∈[0,1]αBαu Moreover, the resulting crisp languages
may be of different type within their respective hierarchies.

Further results on this subject may be found in [9].
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General Form of Lattice Valued Intuitionistic
Fuzzy Sets

Andreja Tepavčević and Marijana Gorjanac Ranitović

Summary. Taking into account families of cut sets of intuitionistic lattice valued
fuzzy sets, it is proved that the general form of such fuzzy sets is the one with
the codomain [0, 1]I , I being a set of an arbitrary cardinality. It turns out that in
applications of intuitionistic fuzzy sets it is convenient to consider fuzzy sets in such
a form.

Key words: Lattice valued intuitionistic fuzzy set, Cut sets, Cutworthy
approach.

1 Introduction

1.1 Earlier Definitions of Lattice Valued Intuitionistic Fuzzy Sets

The original concept of fuzzy sets (introduced by Zadeh in 1965) has been gen-
eralized in several directions. One is obtained by replacing a codomain of the
membership function (originally [0, 1] interval) by a richer structure (Boolean
algebra, complete lattice, etc.). The best known generalization of this type is
the notion of lattice valued fuzzy set introduced by Goguen in 1967. Another
possibility of generalization is to consider two functions instead of one: mem-
bership and nonmembership function. This type of generalizations led to the
introduction of notion of intuitionistic fuzzy sets [1, 2, 4] by Atanassov.

By the original definition, an intuitionistic fuzzy set A in a set E is an
object of the form A = {(x, µA(x), νA(x)) | x ∈ E}, where µA and νA
are both functions from E to [0, 1] interval, such that for every x ∈ E,
µA(x) + νA(x) ≤ 1. µA and νA are the functions representing belonging and
nonbelonging of an element x to set E, respectively.

As a combination of two directions of generalization, Atanassov and Stoeva
defined a lattice valued intuitionistic fuzzy set (intuitionistic L-fuzzy set) [3],
using a complete lattice L with an involutive order reversing unary operation
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N : L → L. An intuitionistic L-fuzzy set is an object of the form A =
{(x, µ(x), ν(x)) | x ∈ X}, where µ and ν are functions µ : X → L, ν : X → L,
such that for all x ∈ X,

µ(x) ≤ N (ν(x)). (1)

In the sequel we consider intuitionistic L-fuzzy set in an equivalent form:
as an ordered triple (A,µ, ν), where µ and ν are both functions from A to
[0, 1] interval, satisfying (1) for all x ∈ A. Besides, we use abbreviation LIFS
for an lattice valued intuitionistic fuzzy set.

As it has been pointed out in paper [7], this definition has one disadvan-
tage. Namely, requirement of existence of an involutive order reversing unary
operation for a lattice is rather a strong condition. Even for some six element
lattices there is no unary operations satisfying the desiring properties. There-
fore, LIFS could not be defined for a large class of lattices. This was the main
reason for proposal of new definitions of lattice valued intuitionistic fuzzy sets
in papers [6, 7].

The first of the proposed definitions use a linearization function and the
second one a lattice homomorphism (as a special case of linearization function)
as tools for connection of membership and nonmembership functions.

The definition of LIFS with linearization function is not convenient for
defining set operations. This disadvantage has been overcome in the defini-
tion with lattice homomorphism [7]. The notion of LIFS with lattice homo-
morphism is a generalization of the ordinary intuitionistic valued fuzzy set
and its structure is richer. To every L-valued intuitionistic fuzzy set there
correspond two families of level subsets, which are lattices under inclusion.
A classical intuitionistic fuzzy set is obtained by this homomorphism, in the
natural way, which is not the case with other definitions.

Still for the simple lattices and for some other similar types, there is no
a lattice homomorphism, so this definition has disadvantages similar as the
original one.

Finally, in this context we mention the paper [5], where relationship be-
tween intuitionistic fuzzy sets (among them also lattice valued ones) and some
other extensions of fuzzy sets theory have been given.

1.2 Proposal of a New Definition

In this paper we consider a notion of the lattice valued intuitionistic fuzzy set
on set X as an ordered triple (X,µ, ν), where µ and ν are mappings from X
to L = [0, 1]I , where I is an arbitrary indexed set, such that

µ(x)(i) + ν(x)(i) ≤ 1,

for all x ∈ X and all i ∈ I.
We prove that the earlier proposed definitions of lattice valued intuitionis-

tic fuzzy sets (using the cutworthy approach and equivalence of fuzzy sets in
the sense of papers [11, 12]) can be united in the framework of the definition
given above.
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1.3 Definitions of Basic Notions and Their Relevant Properties

The notions of cut sets for L-valued intuitionistic fuzzy sets are defined in the
sequel.

Let L be a complete lattice and (X,µ, ν) a lattice valued intuitionistic
fuzzy set, where µ and ν are functions from X to L.

For each p ∈ L, there are two cut sets defined by:

µp = {x ∈ X | µ(x) ≥ p} and νp = {x ∈ X | ν(x) ≤ p}.

νp is sometimes called a ≤-p-cut.
By ML and NL we denote two families of cut sets of LIFS:
ML = {µp | p ∈ L} and NL = {νp | p ∈ L}.
These definitions are independent of the concept of LIFS and they can be

used in all the mentioned frameworks, in old as well as in new definitions. The
properties of cuts of LIFS that are listed in the sequel are also independent
of the approach.

If 0 is the bottom element and 1 the top element of the lattice L, the
following is true:

1. µ0 = X, and ν1 = X.
2. If p ≤ q, then µq ⊆ µp, and νp ⊆ νq.
3.

µ(x) =
∨
{p ∈ L | x ∈ µp};

ν(x) =
∧
{p ∈ L | x ∈ νp}.

4. If M ⊆ L, then
⋂

(µp | p ∈M) = µ∨{p|p∈M}

and ⋂
(νp | p ∈M) = ν∧{p|p∈M}.

5. ML and NL ordered by inclusion are complete lattices.

2 Results

2.1 Ordinary Lattice Valued Fuzzy Sets

The next three theorems are formulated for classical lattice valued fuzzy sets
and they are used in proofs of theorems (for intuitionistic fuzzy sets) given in
the sequel.
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Theorem 1. [8] Let L1 and L2 be complete lattices, such that L1 ⊆ L2,
all infima in L1 and L2 coincide and the top elements are the same. Let
µ : X → L1 and ν : X → L2 be fuzzy sets, such that µ(x) = ν(x) for all
x ∈ X. Then, fuzzy sets µ and ν have the same collections of cut sets.

Theorem 2. [8] Let L and L1 be complete lattices and let ϕ : L→ L1 be the
injection from L to L1 which maps the top element of L to the top element
of L1, such that for all x, y ∈ L, ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y). Let µ : X → L be a
fuzzy set on X. Let fuzzy set ν : X → L1 be defined by ν(x) = ϕ(µ(x)). Then
fuzzy sets µ and ν have the same families of cuts and µp = νϕ(p) for all p ∈ L.

In the sequel, we will use the theorem also in the dual form:

Theorem 3. Let L and L1 be complete lattices and let ϕ : L → L1 be the
injection from L to L1 which maps the bottom element of L to the bottom
element of L1, such that for all x, y ∈ L, ϕ(x∨y) = ϕ(x)∨ϕ(y). Let µ : X → L
be a fuzzy set on X. Let fuzzy set ν : X → L1 be defined by ν(x) = ϕ(µ(x)).
Then fuzzy sets µ and ν have the same families of ≤-cuts and µ≤p = ν≤ϕ(p) for
all p ∈ L.

Theorem 4. [8] Necessary and sufficient conditions under which F ⊆ P(X)
is a collection of cut sets of a fuzzy set µ : X → L, for a fixed complete lattice
L is that F is closed under intersections, contains X and its dual poset under
inclusion can be embedded into L, such that all infima and the top element
are preserved under the embedding.

Theorem 5. [8] Let µ : X → L be a lattice valued fuzzy set. Then there
exists a cardinal number c and a fuzzy set ν : X → [0, 1]c such that fuzzy sets
µ and ν have identical collections of cut sets.

The following theorem is well known Theorem of synthesis for lattice val-
ued fuzzy sets (see e.g. [9] or [10]).

Theorem 6. Let F be a family of subsets of a nonempty set X, which is
closed under intersection and contains X. Let µ : X → F be defined by

µ(x) =
⋂

(p ∈ F | x ∈ p).

Then, µ is a fuzzy set on X, where (F,≤) is a complete lattice anti-isomorphic
with (F,⊆), its family of p-cuts is F and for every p ∈ F , p = µp.

Here it is the statement that is analogous to the previous one and which
deals with ≤ - cuts.

Theorem 7. Let F be a family of subsets of a nonempty set X, which is
closed under intersection and contains X. Let ν : X → F be defined by

ν(x) =
⋂

(p ∈ F | x ∈ p).

Then, ν is a fuzzy set on A, its family of ≤-p-cuts is F and for every p ∈ F ,
p = νp.
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2.2 General form of LIFS

In the following theorem we prove that the intuitionistic lattice valued fuzzy
sets with the codomain [0, 1]I is the most general concept of LIFS (considering
cutworthy approach). This is the main theorem of this paper.

Theorem 8. Let (X,µ, ν) be a LIFS with an involutive order reversing unary
operation N : L → L, where µ and ν are functions from X to a complete
lattice L, satisfying (1). Then there exists an index set I and a fuzzy set
(X,µ′, ν′), where µ′ : X → [0, 1]I and ν′ : X → [0, 1]I such that fuzzy sets
(X,µ, ν) and (X,µ′, ν′) have identical collections of cut sets.

Proof. Let (X,µ, ν) be a lattice valued intuitionistic fuzzy set and for p ∈ L,
µp and νp its cut sets. Let N : L → L be the corresponding involutive order
reversing unary operation . Then for all x ∈ X,

µ(x) ≤ N (ν(x)). (2)

Since N is order reversing and involutive, we have that ν(x) ≤ N (µ(x)) is
valid as well.

Let 1 be the top and 0 the bottom element of the lattice L. By N (1) = 0,
and ν(x) ≤ N (µ(x)), it follows that:

if µ(x) = 1 then ν(x) = 0.

This fact is used in the sequel.
Let L be a lattice dually isomorphic to L under an isomorphism δ, such

that L ∩ L = ∅. We consider set P(L ∪ L) under the set inclusion, and this
lattice will serve as the lattice L1 in applications of Theorem 2 and Theorem 3
in this proof.

Next we define an injection ϕ from L into L1 = P(L ∪ L), as follows:

ϕ(1) = L ∪ L and ϕ(p) =↓ p := {z ∈ L | z ≤ p}, for all p ∈ L, p �= 1.

Now, it is straightforward to prove that for all x, y ∈ L, ϕ(x∧ y) = ϕ(x)∩
ϕ(y) and conditions of Theorem 2 are satisfied.

Further, we define another injection ψ from L into L1: ψ(p) = ξ(↓ δ(p)),
where ξ is a mapping from P(L) to P(L ∪ L) defined by ξ(X) = L \ X
and δ is the dual isomorphism from L to L defined above. Here (as above) ↓
δ(p) = {z ∈ L | z ≤ δ(p)}, where ≤ is an ordering relation in lattice L.

We have that ψ(0) = ξ(↓ δ(0)) = ξ(L) = ∅ and ψ(p∨q) = ξ(↓ (δ(p∨q))) =
ξ(↓ (δ(p) ∧ δ(q))) = ξ((↓ δ(p)) ∩ (↓ δ(q))) = L \ ((↓ δ(p)) ∩ (↓ δ(q))) =
(L\ ↓ δ(p)) ∪ (L\ ↓ δ(q)) = ψ(p) ∪ ψ(q). We have proved that the conditions
of Theorem 3 are satisfied.

The well known fact for lattice P(L ∪ L) (which is a Boolean lattice) is
that it can be naturally embedded into [0, 1]I for a set I of suitable cardinality
c (using an auxiliary isomorphism from P(L∪L) to {0, 1}I). To construct this
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isomorphism, we start from a set I of the same cardinality as L∪L and denote
by γ a bijection γ : L ∪ L → I. Let σ be the induced (by γ) mapping that
maps every subset of L ∪ L to a subset of I. Further, we take mapping κ
from P(I) to {0, 1}I , which maps each subset to its characteristic function.
By all the mentioned mappings, the top and bottom elements are mapped
into corresponding top and bottom elements, and infima and suprema are
preserved.

Let α be the mentioned embedding from P(L ∪ L) to [0, 1]I :

α(M) = κ(σ(M)).

We finally construct mappings µ′ : X → [0, 1]I and ν′ : X → [0, 1]I as a
composition of mappings, as follows:

µ′(x) = α(ϕ(µ(x)))

and
ν′(x) = α(ψ(ν(x))),

for all x ∈ X.
Since α is an embedding and ϕ and ψ satisfy conditions of Theorems 2

and 3, the corresponding families of cuts are identical.
Now, we only have to prove that the condition

µ′(x)(i) + ν′(x)(i) ≤ 1,

is satisfied for all x ∈ X and all i ∈ I, i.e., that (X,µ′, ν′) is the intuitionistic
fuzzy set.

Let x ∈ X. We distinguish two cases: µ(x) �= 1 and µ(x) = 1.
1. Let µ(x) �= 1 and let i ∈ I. Then for all i ∈ γ(L), µ′(x)(i) =

α(ϕ(µ(x)))(i) = 0, where γ(L) = {γ(z) | z ∈ L}. On the other hand, for
all i �∈ γ(L), ν′(x)(i) = α(ϕ(µ(x)))(i) = 0. Hence,

µ′(x)(i) + ν′(x)(i) ≤ 1.

2. Let µ(x) = 1 and let i ∈ I. Then, by assumption, ν(x) = 0. We have
that:

µ′(x)(i) = α(ϕ(µ(x)))(i) = α(L ∪ L)(i) = 1

and
ν′(x)(i) = α(ψ(ν(x)))(i) = α(∅)(i) = 0.

Therefore, the statement of the theorem is proved.
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A Note on Generated Pseudo-Operations with
Two Parameters as a base for the Generalized
Pseudo-Laplace Type Transform

Ivana Štajner-Papuga

1 Introduction

Approach proposed in this paper has been done in the pseudo-analysis’ frame-
work, where by the pseudo-analysis mathematical theory that is a genera-
lization of the classical analysis has been considered. Over the years, this
theory has proved itself to be a powerful tool for solving problems in different
aspects of mathematics, as well as in various practical problems. Using this
apparatus, some important notions that are analogous to their classical coun-
terparts, i.e., notions such as ⊕-measure, pseudo-integral, pseudo-convolution,
pseudo-Laplace transform, etc., have been introduced [7, 10,14,18–20].

As already mentioned, pseudo-Laplace transform is one of the important
notion from the pseudo-analysis’ framework, and it is often used in dealing
with differential or integral equation [5, 10, 14–16, 18, 19]. The generalized
(⊕,�)-Laplace transform presented in this paper is a generalization of the
pseudo-Laplace transform, based on a special class of generalized pseudo-
operations which need not be commutative nor associative. It should be
stressed that this class of operations has been introduced in [24,25] and it has
been used to extend the pseudo-linear superposition principle ( [4,8,10,14–18])
on generalized burger’s type nonlinear partial differential equations [25].

Another aspect of the generalization proposed in this paper has been
focused on the domain of functions that pseudo-Laplace type transform has
been applied to. This type of generalization has already been applied on
pseudo-convolution resulting with generalized pseudo-convolution that has
taken an important role in theory of fuzzy numbers (operations with fuzzy
numbers), as well as in optimization, information theory, system theory,
etc. [20]. Also, this approach has been applied on Laplace type transforms
based on a semiring from the first or second class (pseudo-operations are
commutative and associative, see [7,10,14,17–20]), which, combined with the
generalized pseudo-convolution, led to the extension of classical limit theorems
for triangle functions [23].
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Another important problem addressed by pseudo-analysis is construction
of aggregation operators by means of different types of pseudo-integrals. Some
of integrals that have been used for this constructions are Lebesgue inte-
gral, Choquet and Sugeno integral, monotone set functions-based integrals,
Choquet-like integrals, (S,U)-integral, etc. (see [1–3, 6, 11]). Therefore, this
paper proposes a further step in this direction by investigating possible role
of the generalized (⊕,�)-Laplace transform as a aggregation type operator.

Preliminary notions, such as generalized pseudo-operations,⊕-integral and
corresponding pseudo-convolutions, are given in Sect. 2. The third section con-
tains definition of the generalized (⊕,�)-Laplace transform, where ⊕ and �
are generated pseudo-operations with two parameters. Also, some basic prop-
erties and limit properties of the generalized (⊕,�)-Laplace transform are
investigated in Sect. 3. Aggregation type operator constructed by means of
the generalized (⊕,�)-Laplace transform is presented in Sect. 4.

2 Preliminary Notions

The first part of generalization proposed in this paper is based, as already
mentioned, on a special class of generalized pseudo-operations (see [24, 25]).
This class is given by the following definition.

Definition 1. Let ε and γ be arbitrary but fixed positive real numbers and let
g be a positive strictly monotone continuous function defined on R or [0,∞).
Generated pseudo-addition and pseudo-multiplication with two parameters, de-
noted with ⊕ and �, respectively, are

x⊕ y = g−1(εg(x) + g(y)) and x� y = g−1(g(x)γg(y)). (1)

Since operations ⊕ and � need not be commutative nor associative op-
erations, it is necessary to define pseudo-sum of n elements αi ∈ [a, b], i ∈
{1, 2, . . . n}:

n⊕

i=1

αi = (. . . ((α1 ⊕ α2)⊕ α3)⊕ . . .)⊕ αn.

Neutral elements from the left for ⊕ and � are 0 = g−1(0) and 1 = g−1(1),
respectively, i.e., 0⊕ x = x and 1� x = x.

Remark 1. For ε = γ = 1, commutative and associative pseudo-operations
from g-semiring are obtained ([9, 12,14]).

Remark 2. Operations of this type have been successfully used in dealing with
nonlinear PDE (see [24,25]), e.g., in dealing with the Burger’s type of nonlinear
partial differential equation ut−αuxx = αΦ(u)u2

x, where Φ is a given continu-
ous function and α ∈ R. In this case, pseudo-linear combination of solutions,
based on the generated pseudo-operations with two parameters with a gener-
ating function g(x) = ±

∫ x

0
exp(

∫ t

0
Φ(s) ds) dt, is, again, a solution (see [25]).
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Now, let (a, b] be a subinterval of the real line and let, for some n ∈ N,
Pn = {(xi, xi+1]}n−1

i=0 be its n-partition where a = x0 < x1 < . . . < xn = b.
The ⊕-measure µPn

: Pn → [0,∞) is given by

µPn
((xi, xi+1]) = g−1

(
xi+1 − xi

εn−i−1

)
.

Some properties of this family of measures has been proved in [22]. Among
them is the following type of pseudo-linearity:

µPn−r+j

⎛

⎝
r⋃

i=j

Ai

⎞

⎠ =
r⊕

i=j

µPn
(Ai),

where 1 ≤ j ≤ r ≤ n, Pn = {Ai}n
i=1 = {(xi−1, xi]}n

i=1 is a n-partition
of interval (a, b] and Pn−r+j = {Bs}n−r+j

s=1 is new (n − r + j)-partition, such
that Bs = As while s = 1, 2, · · · , j − 1, Bj = ∪r

i=jAi and Bs = As+r−j for
s = j + 1, · · · , n− r + j.

Further on, with P ′
n is denoted an (n + 1)-partition of interval (a, b] ob-

tained from n-partition Pn in the following manner: we keep all the points
from previous partition and add one more point and renumerate the points of
the new partition in the increasing order. After s-repetition of this procedure
an (n+ s)-partition P (s)

n is obtained (see [22]). Now, if f : [a, b] → [0,∞) is a
continuous function, the ⊕-integral of function f is

∫ (⊕,�)

[a,b]

fdµPn
= lim

µ
P

(s)
n

→0

(s→+∞)

(
n+s−1⊕

i=0

(
f(xi+1)� µP

(s)
n

((xi, xi+1])
))
,

if the limit exists.
Since it has been proved in [22] that the ⊕-integral does not depend on the

partition of the interval [a, b] and that it can be represented in the following
manner ∫ (⊕,�)

[a,b]

fdµPn
= g−1

(∫ b

a

gγ ◦ f(x)dx
)
,

the ⊕-integral will be denoted by
∫ (⊕,�)

[a,b]
f.

Corresponding pseudo-convolution of continuous functions f, h : [0,∞) −→
[0,∞) is

f " h(x) =
∫ (⊕,�)

[0,x]

([f ]g(x− t)� h(t)) , (2)

where [·]g is a transform of the following form [f ]g(x) = g−1
(
g1/γ (f(x))

)
.

The second aspect of generalization presented here concerns the domain
of functions that generalized pseudo-Laplace type transform has been ap-
plied to. In order to do this second part of generalization, classical addition
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has been substituted by L, where L is a binary operation on [0,+∞) which
is nondecreasing in both coordinate, continuous on [0,+∞)2, commutative,
associative, has 0 as identity and fulfills cancellation law. This operation is
given by multiplicative generator l : [0,∞) → (0, 1] as L(x, y) = l−1 (l(x)l(y)) ,
where l is continuous, decreasing function such that l(0) = 1. Additionally,
let ♦ : [0,∞)2 −→ [0,∞) be another binary operation that is distributive with
respect to L. It is easy to see that if L is given by multiplicative generator,
operation ♦ is x♦y = l−1 (exp (−α ln l(x) ln l(y))) , where α ∈ (0,∞).

Remark 3. Operation L has been introduced in the style of Schweizer and
Sklar [26]. Some further generalizations in this direction are possible.

3 The Generalized (⊕, �)-Laplace Transform Based on
Generated Pseudo-Operations with Two Parameters

Let ⊕ and � be generated pseudo-operations with two parameters given by
generating function g, and let L and ♦ be binary operations given by gener-
ating function l.

Definition 2. The generalized (⊕,�)-Laplace transform based on generated
pseudo-operations with two parameters of a continuous function f : [0,∞) −→
[0,∞) is

�L⊕
�(f)(z) = lim

b−→∞

∫ (⊕,�)

[0,b]

([
g−1 ◦ l

]
g
(x♦z)� f(x)

)
, (3)

if the limit exists.

It should be emphasized that through this paper, by generalized (⊕,�)-
Laplace transform, the pseudo-Laplace type transform given by previous def-
inition will be considered.

Using connection between the ⊕-integral and the Riemann integral, fol-
lowing form of the generalized (⊕,�)-Laplace transform is obtained:

�L⊕
�(f)(z) = g−1

(∫ ∞

0

(l (x♦z) g (f(x)))γ
dx

)
.

Example 1. Let ⊕ and � be generated pseudo-operations with two parame-
ters given by generating function g(x) = xp, x ∈ [0,∞), for some p > 0.
Under this assumption, corresponding generalized �L⊕

�-transform of function
f : [0,∞) −→ [0,∞) is

�L⊕
�(f)(z) =

(∫ ∞

0

(l (x♦z) f(x))pγ
dx

)1/p

,

and for l(x) = (ln(x+ e))−1
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�L⊕
�(f)(z) =

(∫ ∞

0

e−pγα ln(ln(x+e)) ln(ln(z+e))fpγ(x) dx
)1/p

.

Remark 4. (a) For ε = γ = 1, pseudo-Laplace type transform based on a
semiring from the second class (pseudo-operations are commutative and as-
sociative, see [7, 10,14,17–20]), presented in [23] can be obtained.
(b) For ε = γ = 1 and L(x, y) = x + y, pseudo-Laplace transform from [19]
can be obtained. In this case, the pseudo-exchange formula in cooperation
with the inverse pseudo-Laplace transform has been used for determination
of utility functions’ extreme values [5, 19].

Remark 5. Generalization of Laplace type transform of a measurable function
f : [0,∞) −→ [0, 1] known as the (S, T )-Laplace transform, where ([0, 1], S, T )
is the conditionally distributive semiring, can be found in [5].

3.1 Basic Properties of the Generalized (⊕, �)-Laplace Transform

Some basic properties of the generalized (⊕,�)-Laplace transform are given
by the following theorem.

Theorem 1. Let ⊕ and � be generated pseudo-operations with two parame-
ters given by generating function g, l generating function for operations L and
♦ and �L⊕

� corresponding transform given by (3).

(i) Following type of pseudo-linearity holds:

�L⊕
�

(
[a� f ⊕ b� h]g

)
(z) = a� �L⊕

�

(
[f ]g (t)

)
(z)⊕ b� �L⊕

�

(
[h]g (t)

)
(z).

(ii)For some u, v ∈ [0,∞) such that L(u, v) = z following holds:

�L⊕
� (f) (u) = �L⊕

� (ϕv � f) (z),

where ϕv(x) =
[
g−1 (1/l(x♦v))

]
g
.

Proof. (i) This property follows from (3) and properties of used class of
generalized pseudo-operations:

�L⊕
�

(
[a� f ⊕ b� h]g

)
(z)

= g−1

(∫ ∞

0

lγ(x♦z)g (a� f(x)⊕ b� h(x)) dx
)

= g−1

(∫ ∞

0

lγ(x♦z) (εg(a� f(x)) + g(b� h(x))) dx
)

= g−1

(
εgγ(a)

∫ ∞

0

lγ(x♦z)g(f(x)) dx+ gγ(b)
∫ ∞

0

lγ(x♦z)g(h(x)) dx
)

= a� �L⊕
� [f ]g (z)⊕ b� �L⊕

� [h]g (z).
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(ii) Properties of operations L and ♦ and assumption that L(u, v) = z,

for some u, v ∈ [0,∞), insure that l(u) = l(z) (l(v))−1 and lγ(x♦u) =
lγ(x♦z)l−γ(x♦v). Now, following holds:

�L⊕
�(f)(u) = g−1

(∫ ∞

0

lγ(x♦u)gγ (f(x)) dx
)

= g−1

(∫ ∞

0

lγ(x♦z)l−γ(x♦v)gγ (f(x)) dx
)

= �L⊕
� (ϕv � f) (z),

where ϕv(x) =
[
g−1 (1/l(x♦v))

]
g
. �

The generalized (⊕,�)-Laplace transform also has some nice properties
when applied to integrals of functions. Following theorem deals with this prob-
lem for l(x) = e−x, i.e., for L(x, y) = x+ y.

Theorem 2. Let ⊕ and � be generated pseudo-operations with two parame-
ters given by generating function g, l(x) = e−x and �L⊕

� corresponding trans-
form given by (3).

(i) For f : [0,∞) −→ [0,∞) being a continuous function, following holds:

�L⊕
� [F ]g (z) = g−1

(
(1/zγ)1/γ

)
� �L⊕

�f(z),

where F (x) =
∫ (⊕,�)

[0,x]
f.

(ii)For " being a pseudo-convolution given by (2) and f1, f2 : [0,∞) −→ [0,∞)
continuous functions, following holds:

�L⊕
� [f1 " f2]g (z) =

[
�L⊕
�f1

]
g
(z)� �L⊕

�f2(z).

Proof. Proof of this theorem is based on properties of the classical Laplace
transform, pseudo-operations given by (1), ⊕-integral and (3):

�L⊕
� [F ]g (z) = g−1

(∫ ∞

0

e−γxz

(∫ x

0

(g ◦ f(t))γ
dt

)
dx

)

= g−1

(
1
zγ

∫ ∞

0

e−γxz (g ◦ f(x))γ
dx

)

= g−1
(
(1/zγ)1/γ

)
� �L⊕

�f(z).

Proof for (ii) can be found in [27]. �
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3.2 Limits of Generalized (⊕, �)-Laplace Transforms

Let g be a generating function from Definition 1 and let λ be some positive
real parameter. Now, with ⊕λ is denoted a generated pseudo-addition given by

x⊕λ y = (gλ)−1(εgλ(x) + gλ(y)).

Of special interest for this paper is a fact that a family of such operations is
converging to an idempotent operation (see [25]), i.e.,

lim
λ−→∞

x⊕λ y = max{x, y}

while g is strictly increasing. Strictly decreasing generating function g will lead
to min. For corresponding generated pseudo-multiplication holds x �λ y =
x� y, which is easily checked.

Remark 6. This property of generated pseudo-operatios given by (1) has been
investigated in [25], where it has been applied on nonlinear PDE.

Remark 7. Limit property of g-operations (ε = γ = 1) has been investigated
in [13]. Also, this limit property has been expanded to the g-integral (see [13])
and the g-convolution [21].

Now, the generalized (⊕λ,�λ)-Laplace transform of some continuous func-
tion f is defined as

�L⊕λ
�λ

(f)(z) = �L⊕λ
� (f)(z) = lim

b−→∞

∫ (⊕λ,�)

[0,b]

([
(gλ)−1 ◦ lλ

]

gλ
(x♦z)  f(x)

)
. (4)

Remark 8. Since function lλ also generates operation L, operations L and ♦
are remaining as operations on the domain of function f in (4).

Theorem 3. Let (⊕λ)λ∈[0,+∞) be a family of generated pseudo-additions
given by continuous strictly increasing generator g : [0,+∞) → [0,+∞), and
let �L⊕λ

� be corresponding generalized pseudo-Laplace type transforms. Than,
following holds

lim
λ→∞

�L⊕λ
� (f)(z) = sup

x≥0

(
f(x)� g−1 (lγ(x♦z))

)
. (5)

Proof. For g strictly increasing generating function, λ ∈ (0,+∞) and pseudo-
operations x⊕λ y = (gλ)−1(εgλ(x)+gλ(y)) and x�λ y = x�y, corresponding
generalized pseudo-Laplace type transform is

�L⊕λ
� (f)(z) = lim

b−→∞

∫ (⊕λ,�)

[0,b]

([
(gλ)−1 ◦ lλ

]
gλ (x♦z)� f(x)

)

= g−1

((∫ ∞

0

(l (x♦z) g (f(x)))λγ
dx

)1/λ
)
.
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The last integral will be denoted with Iλ,[0,∞]. For all b > 0 and integral

Iλ,[0,b] = g−1

((∫ b

0
(l (x♦z) g (f(x)))λγ

dx
)1/λ

)
following holds

Iλ,[0,b] = g−1

⎛

⎝
(

lim
n→+∞

(
n∑

i=1

(
(l (xi♦z) g (f(xi)))

λγ b

n

)))1/λ
⎞

⎠ ,

where 0 = x0 < x1 < · · · < xn = b and length of each subinterval [xi, xi+1] is
b/n. Now, for a fixed n, we have

lim
λ−→∞

(
n∑

i=1

(l (xi♦z) g (f(xi)))
λγ b

n

)1/λ

= sup
i∈{1,...,n}

(l (xi♦z) g (f(xi)))
γ

and due to continuity of generating function,

lim
λ−→∞

Iλ,[0,b] = lim
n−→∞

g−1

(
sup

i∈{1,...,n}
(l (xi♦z) g (f(xi)))

γ

)

= g−1

(
sup

x∈[0,b]

(l (x♦z) g (f(x)))γ

)
.

Since previous equation holds for all b > 0, we have limλ−→∞ Iλ,[0,∞] =
g−1

(
supx≥0 (l (x♦z) g (f(x)))γ) = supx≥0

(
f(x)� g−1 (lγ(x♦z))

)
. �

Generalized pseudo-Laplace type transform obtained in the previous theo-
rem as a limit case will be denoted with �Lmax

� . Similar result holds for strictly
decreasing generating function, i.e., generalized pseudo-Laplace type trans-
form of the form �Lmin

� (f)(z) = infx≥0

(
f(x)� g−1 (lγ(x♦z))

)
can be easily

obtained.
Limit case obtained in Theorem 3 is a generalization of Laplace type trans-

form proposed in [23]. Since the following result is analogous to the exchange
formula proved in [23], the proof will be omitted.

Proposition 1. Let ⊕ and � be generated pseudo-operations given by (1)
and let �Lmax

� be a limit case from Theorem 3. Then, for continuous functions
f1, f2 : [0,∞) −→ [0,∞), following holds

�Lmax
� [f1 "L,γ f2]g (z) =

[
�Lmax
� f1

]
g
(z)� �Lmax

� f2(z),

where f1 "L,γ f2(x) = g−1
(
supL(u,v)=x g

γ(f1(u))gγ(f2(v))
)
.

Remark 9. Operation "L,γ can be obtained as a limit of generalized pseudo-
convolutions given by (2) where addition on domains of functions f1 and f2
has been substituted with L.
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4 Pseudo-Aggregation Operators Based on the
Generalized (⊕, �)-Laplace Transforms

By an aggregation operator [2] is usually considered a function A such that
A : ∪n∈N[0, 1]n −→ [0, 1] and

(i) A(u1, . . . , un) ≤ A(v1, . . . , v2) when ui ≤ vi for all i ∈ {1, . . . , n},
(ii) A(u) = u for all u ∈ [0, 1],
(iii) A(1, . . . , 1) = 1 and A(0, . . . , 0) = 0.

A large class of aggregation operators have been constructed by different types
of integrals [1, 2, 6]. With a method similar to the construction of (S,U)-
integral-based aggregation operators [6], it is possible to construct following
pseudo-aggregation operator Ã : ∪n∈N[0,∞)n −→ [0,∞) based on ⊕-integral:

Ã(u1, . . . , un) =
∫ (⊕,�)

[0,1]

ϕ,

where ϕ : (0, 1] −→ [0,∞) is a function given by ϕ(x) = ui, xi−1 < x ≤ xi,
i ∈ {1, . . . , n}, for some n-partition 0 = x0 < x1 . . . < xn = 1 (see [2, 6]).
For each input value corresponding associated interval can be considered as
an area of influence of the input value in question.

Problem addressed in this paper is whether operators of aggregation type
can be induced by the means of the generalized (⊕,�)-Laplace transforms.

Let u1, u2, . . . , un be n input values from [0,∞). For each n input values
and each n-partition where 0 = x0 < x1 < . . . < xn = 1 of interval (0, 1] is
possible to form a step function ϕ : (0,∞) −→ [0,∞) as

ϕ(x) =

{
ui, for x ∈ (xi−1, xi],

g−1(0), for x > 1,
(6)

where g is a generating function for pseudo-operations ⊕ and � given by (1).

Definition 3. Pseudo-aggregation operator ÃGL : ∪n∈N[0,∞)n −→ [0,∞)
based on the generalized (⊕,�)-Laplace transform is

ÃGL(u1, . . . , un) = �L⊕
�(ϕ)(z), (7)

where ϕ is a step function for input values u1, u2, . . . , un given by (6) and z
is some real positive parameter.

Since generalized (⊕,�)-Laplace transform is based on nonassociative and
noncommutative pseudo-operations, the impact of some input value to the
result can be determined by its index and by length of associated subinterval
of the unite interval.
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It can be easily shown that pseudo-aggregation operator ÃGL with para-
meter z has the following form

ÃGL(u1, . . . , un) =
n⊕

i=1

ui � ω(xi−1,xi],z, (8)

where (xi−1, xi] is subinterval of the unite interval associated to input value
ui and

ω(xi−1,xi],z = g−1

(
εi−n

∫ xi

xi−1

lγ(t♦z) dt
)
.

Example 2. Let ⊕ and � be generated pseudo-operations with two parameters
given by generating function g(x) = xp, x ∈ [0,∞) for some p > 0, and let
L(x, y) = x + y. Now, ω(xi−1,xi],z = g−1

(
(e−zγxi−1 − e−zγxi)/εn−iγz

)
and

corresponding pseudo-aggregation operator ÃL with parameter z for input
values u1, . . . , un is

ÃL (u1, . . . , un) =

(
1
zγ

n∑

i=1

upγ
i

(
e−zγxi−1 − e−zγxi

)
) 1

p

.

Basic properties of pseudo-aggregation operator ÃGL with parameter z are
given by next proposition.

Proposition 2. Let ÃGL be a pseudo-aggregation operator given by (7). Then

(i) ÃGL(u1, . . . , un) ≤ ÃGL(v1, . . . , v2) when ui ≤ vi and ui and vi are
associated to the same subinterval (xi−1, xi], i ∈ {1, . . . , n},

(ii) ÃGL(u) = u� ω(0,1],z for all input values u,
(iii) ÃGL(1, . . . ,1) = 1� ω(0,1],z and ÃGL(0, . . . ,0) = 0� ω(0,1],z.

Some other properties of pseudo-aggregation operators ÃGL are given by
the next proposition. This proposition is a generalization of result from [27]
with similar proof based on (8), therefore the proof will be omitted.

Proposition 3. Let ÃGL be pseudo-aggregation operator given by (7). For
input values u, u1, . . . , un and v1, . . . , vn and real parameters α, b ∈ [0,∞),
following hold:

(i) ÃGL(u, . . . , u) = u� ω(0,1],z,

(ii) ÃGL ([u1 ⊕ b]g, . . . , [un ⊕ b]g) = ÃGL ([u1]g, . . . , [un]g)⊕
(
[b]g � ω(0,1],z

)
,

(iii) ÃGL ([α]g � u1, . . . , [α]g � un) = α� ÃGL (u1, . . . , un) ,
(iv) ÃGL ([u1 ⊕ v1]g, . . . , [un ⊕ vn]g)

= ÃGL ([u1]g, . . . , [un]g) ⊕ ÃGL ([v1]g, . . . , [vn]g) .
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5 Conclusion

The main aim of this paper has been to present some further possible steps
in generalizations, based on the pseudo-analysis’ apparatus, of well known
notions as Laplace transform and aggregation operators, that could broaden
the area of applications. Some further research of this problem should concern
properties of generalize (⊕,�)-Laplace transform and corresponding pseudo-
aggregation operators and possible applications.
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Fuzzy All-Pairs Shortest Paths Problem

Miloš Šeda

Summary. In this paper, we deal with the All-Pairs Shortest Paths Problem
(APSPP) on a graph in which a fuzzy number, instead of a real number, is assigned
to each edge. Since the fuzzy min operator based on the extension principle leads to
nondominated solutions, we propose another approach to solving the APSPP using
a suitable fuzzy ranking method. We also show that the efficiency of computations
may be improved by the proposed APSPP modification of the Dijkstra algorithm
based on a binary heap data structure.

Key words: Shortest path problem, Fuzzy ranking, Binary heap, Priority
queue.

1 Introduction

The shortest path problems are among the most important tasks of graph
theory with many practical applications, e.g., in transportation, routing, and
communication. They include such problems as finding the shortest path be-
tween two given vertices of a graph, finding the shortest paths from a given
vertex to all other vertices, and finding the shortest paths between all pairs of
vertices. While geographical distances can be stated deterministically, costs
or times can fluctuate with traffic conditions, payload, and so on. In the last
two cases, deterministic values for representing the edge weights cannot be
used. A typical way of expressing these uncertainties in the edge weights is to
utilize fuzzy numbers based on fuzzy set theory.

In the literature, several different approaches can be found for solving fuzzy
graph problems. Zadeh [1] shows that fuzzy graphs may be viewed as a gener-
alisation of the calculi of crisp graphs. Blue et al. [2] give a taxonomy of graph
fuzziness that distinguishes five basic types combining fuzzy or crisp vertex
sets with fuzzy or crisp edge sets and fuzzy weights and fuzzy connectivity.
The paper also introduces an approach to finding the shortest path based on
level graphs. Boulmakoul [3] proposed a new algebraic structure to solve the
problem of the K-best fuzzy shortest paths and showed that the generalized
Gauss–Seidel algorithm solving this problem always converges. However, all
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these approaches are rather theoretical and do not address the implementation
point of view that will be in the center of our considerations.

2 Crisp Problem and Its Time Complexity

The All-Pairs Shortest Paths Problem (APSPP) for graphs with crisp edge
weights is usually solved by the Floyd–Warshall algorithm [4,5], which is based
on the idea of gradual improvement so that the set of intermediate vertices
of considered paths grows with every iteration until it encompasses all the
vertices.

2.1 Floyd–Warshall Algorithm

Let G = (V,E) be a connected weighted graph with non-negative edge lengths
and d(k)

ij be the length of the shortest path from i to j such that any inter-
mediate vertices on the path are chosen from the set {1, 2, . . . , k}. A path
consisting of a single edge has no intermediate vertices.

In the initial step we define d(0)ij = wij where W is the adjacency matrix.

To pass from d
(k−1)
ij to d(k)

ij , we use the following reasoning:

1. If the shortest path from i to j with intermediate vertices from the set
{1, 2, . . . , k} does not pass through k then d(k)

ij = d(k−1)
ij

2. If the shortest path from i to j with intermediate vertices from the set
{1, 2, . . . , k} passes through k then d(k)

ij = d(k−1)
ik + d(k−1)

kj

Summarizing, we get a recursive rule (the dynamic programming formulation)
for computing d(k)

ij :

d
(0)
ij = wij (1)

d
(k)
ij = min

(
d
(k−1)
ij , d

(k−1)
ik + d(k−1)

kj

)
for k ≥ 1 (2)

The final answer is d(n)
ij because this allows all possible vertices as intermediate

vertices. A straightforward transcription of this recursive rule leads to the
following algorithm in which mid(i, j) are mid-vertex pointers for extracting
the final shortest paths.

FLOYD-WARSHALL(G,d,mid)
input : connected weighted graph G = (V, E) with nonnegative edge lengths

w : E(G) → IR+;
output : d[i, j], i, j ∈ V ;

mid[i, j], i, j ∈ V ;
for i := 1 to |V | do

for j := 1 to |V | do
begin d[i, j] := w[i, j];

mid[i, j] :=null

end;
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for k := 1 to |V | do
for i := 1 to |V | do

for j := 1 to |V | do
if d[i, k] + d[k, j] < d[i, j]

then begin d[i, j] := d[i, k] + d[k, j];
mid[i, j] := k

end;

Theorem 1. The Floyd–Warshall algorithm runs in O(|V |3) time and needs
O(|V |2) space.

Proof. Time complexity of the algorithm is determined by the three nested
loops in its second part and space complexity is given by the size of the
adjacency matrix and a matrix of mid-vertex pointers for extracting the final
shortest paths. �

2.2 Single-Source Shortest Paths

In this section, we describe Dijkstra’s algorithm for finding the shortest paths
from a given vertex (called source) to all other vertices. Since this algorithm
is the key part of our all-pairs shortest paths algorithm proposed in the next
section of this paper, we only focus on its efficient implementation using a
priority queue data structure and skip its traditional descriptions.

A priority queue [6] supports these operations:

1. Insert(Q,u,key): insert u with the key value key in Q.
2. ExtractMin(Q): extract the item with the minimum key value in Q.
3. DecreaseKey(Q,u,new key): decrease the value of u’s key value to new key .

A priority queue can be easily implemented by a binary heap. It is a
binary tree with vertices numbered by integers and satisfying the following
conditions:

1. Each vertex of a binary heap that is not included in the last two levels
has two successors.

2. In the last level, all vertices are placed from the left. This means that,
passing vertices in the last but one level from left to right, only some of
them (or none) may have two successors. In the latter case, at most one
vertex may exist with one successor and all other vertices of this level are
leaves.

3. The number of each vertex is not higher than the numbers of its successors.

The root of the binary heap is numbered by 1, other vertices at lower levels
from left to right are assigned consecutive integers starting from 2.

It can be proved that, for the defined numbering of the binary heap ver-
tices, the jth element in the ith level of a binary heap corresponds to position
2i−1 + j−1 of the array; left and right successors of vertex i have positions 2i
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and 2i+1, respectively, and its predecessor has position (i/2) (that is position
i div 2 in the Pascal notation).

Operations Insert , ExtractMin and DecreaseKey are implemented by a
binary heap as follows:

Insert(Q,u,key)

1. [Inserting a vertex.] A new vertex is inserted into a binary heap by one of
the following steps:
(a) If the heap is empty, a tree with one vertex is created.
(b) If all vertices from the first to last but one level have two successors,

then, to the leftmost vertex in the last level, left successor is assigned
(so that a new level is created).

(c) If there is a vertex in the last but one level that has only the left
successor, then its right successor is added.

(d) If the previous condition is not satisfied and there is a vertex in the
last but one level that contains no successors, then the left successor
is added.

2. [Determination of key value.] Key value of the element u is assigned to
the key of the inserted vertex.

3. [Updating key values.] If the inserted vertex u differs from the root and its
key value is lower than the key value of its predecessor p, then we swap
u and p, move to the predecessor position and repeat this step; otherwise
the algorithm ends.

ExtractMin(Q)

1. [Extracting the root.] We remove the root from the binary heap because
it has the lowest key value.

2. [Creating a new root.] We extract the vertex that is placed in the lowest
level in the rightmost position and insert it in the position of the old root.

3. [Updating key values.] If the new root r has a successor x with a lower key
value, then we swap r and x, move to the position of the successor and
repeat this step; otherwise stop.

DecreaseKey(Q,u,new key)

After modifying the key value of a vertex, we have to check its neighbors
to see whether their key values need to be modified, too. This is accomplished
in the same way as in the last step of Insert operation.

Theorem 2. Operations Insert, ExtractMin and DecreaseKey using a binary
heap with n vertices run in O(log n) time.

Proof. Let a binary heap containing n vertices have h levels. According to its
properties we have n = 20 +21 +22 + . . .+2h−1 +x where x is an integer from
interval [1, 2h]. Hence we get n = 2h − 1 + x ≥ 2h and therefore h ≤ log2 n.
Operations Insert and ExtractMin pass along a path from the root to a leaf.
The DecreaseKey operation may pass from the root up to the vertex with a
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modified key value. The proposition is stemming from the fact that all these
operations in each level perform only a constant number of statements. �

Let d[v] be the length of the shortest path from the source s to the vertex v.
Evidently d[s] = 0. The lengths of unknown paths from the source to the other
vertices are initialized as ∞. The algorithm is based on gradually improving
the estimates of these lengths. Let (u, v) be an edge with length w(u, v) and
current estimates of the shortest path lengths to vertices u and v be d[u] and
d[v]. If d[u] + w(u, v) < d[v], then d[u] + w(u, v) becomes the new estimate
of d[v].

The process by which an estimate is updated is called relaxation. The
vertices of the shortest path are determined by means of the currently saved
pointers to predecessors. If we apply the relaxation repeatedly to all edges of
the given graph, then the values d[v] converge to the lengths of the shortest
paths from v to the source s.

Let S ⊆ V be a set of vertices for which we know the shortest distance to
the source. Initially S is empty. The question is how we decide which vertex
among the vertices of V −S should be added to S. The algorithm uses the
greedy strategy. In each step, it selects from V −S the vertex u for which d[u]
is minimum.

In order to perform this selection efficiently, the vertices of V −S are stored
in a priority queue and the key value of each vertex u is d(u).

Now we can formulate the algorithm. The proof of its correctness can be
found, e.g., in [6]. The information about vertices contained in S, i.e., the
vertices with the final value of the shortest distance from the source is stored
in the Boolean variables determined and pointers in the array pred define the
inverted tree of the shortest paths pointing back to s.

DIJKSTRA(G,s,d,pred)
input : connected weighted graph G = (V, E)

with nonnegative edge lengths w : E(G) → IR+;
s - source;

output : d[u]; u ∈ V
pred[u]; u ∈ V

auxiliary variables : Adj[u] - set of neighbours of vertex u.
for ∀u ∈ V do

begin d[u] := +∞;
determined[u] :=False;
pred[u] := nil

end;
d[s] := 0;
Q :=priority queue(V ); { push all vertices into Q }
while NonEmpty(Q) do

begin u := ExtractMin(Q);
for ∀v ∈ Adj[u] do

if d[u] + w(u, v) < d[v]
then begin d[v] := d[u] + w(u, v);
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DecreaseKey(Q,v,d[v]);
pred[v] := u

end;
determined[u] :=True

end; { Dijkstra s → V }

Theorem 3. Dijkstra’s algorithm runs in O(|E| log |V |) time.

Proof. By Theorem 2 the operation ExtractMin that extracts the vertex with
the minimal key value from the priority queue takes O(log |V |) time. To de-
crease the key of the neighboring vertex for each incident edge, we may need
up to O(log |V |) time. Thus the time spent is O(log |V |+ deg(u) log |V |). The
other steps of the update are performed in constant time. So the overall run-
ning time is

T (V,E) =
∑

u∈V

(log |V |+ deg(u) log |V |) =
∑

u∈V

(1 + deg(u)) log |V |

= log |V |
∑

u∈V

(1 + deg(u)) = log |V |(|V |+ 2|E|)

= O((|V |+ |E|) log |V |)

Since G is connected, |V | is not asymptotically greater than |E|, so the
time complexity of Dijkstra’s algorithm is O(|E| log |V |). �

2.3 “Repeated” Dijkstra’s Algorithm

In Sect. 2.1, we introduced the Floyd–Warshall algorithm for solving the
APSPP. However, this function can also be provided using Dijkstra’s algo-
rithm if we use as a source all vertices from the set V . This approach needs
only slight modifications in data structures and, as we will prove later, is more
efficient that the previous one. Here is the algorithm.

REPEATED DIJKSTRA(G,d,pred)
input : connected weighted graph G = (V, E)

with nonnegative edge lengths w : E(G) → IR+;
output : d[i, j];

pred[i, j];
for i := 1 to |V | do

begin DIJKSTRA(G,i,d0,pred0);
for j := 1 to |V | do

begin d[i, j] := d0[j]
pred[i, j] := pred0[j]

end
end;

Theorem 4. The previous algorithm for All-Pairs Shortest Paths Problem
runs in O(|V ||E| log |V |) time and needs O(|V |2) space.
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Proof. By Theorem 3 Dijkstra’s algorithm runs in O(|E| log |V |) time and this
time dominates the time O(|V |) of the nested loop for j. So the overall time
complexity is given by the loop for i and nested Dijkstra’s algorithm. The
space complexity is given by the size of the squared matrices used. �

Since we find the shortest paths between all the pairs most frequently
in road networks where the relation |E| < O(|V |2) is mostly satisfied, our
approach here is more efficient than the application of the Floyd–Warshall
algorithm.

3 Fuzzy Version of the APSPP

Let us assume that the weights of the edges be given by linear triangular
fuzzy numbers. Mathematically, a linear triangular fuzzy number Ã can be
represented by a triple (a1, a2, a3) and its membership function µÃ is given
by

µÃ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 , if 0 ≤ x ≤ a1
x−a1
a2−a1

, if a1 ≤ x ≤ a2
1 , if x = a2
x−a3
a2−a3

, if a2 ≤ x ≤ a3
0 , if x ≥ a3

(3)

The addition of these fuzzy numbers can be derived using Zadeh’s extension
principle and is determined as follows:

Ã⊕ B̃ = (a1, a2, a3)⊕ (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3) (4)

This operation always results in a triangular fuzzy number. In the APSPP,
we must also evaluate minimum operators. This means that it is necessary to
have a method for ranking or comparing fuzzy numbers. An ordering relation
� of fuzzy numbers can be defined, e.g., as follows:

Ã � B̃ ⇐⇒ (a1 ≤ b1) ∧ (a2 ≤ b2) ∧ (a3 ≤ b3) (5)

However, this relation is not a complete ordering, as fuzzy numbers Ã, B̃
satisfying

(∃i, j ∈ {1, 2, 3}) : (ai < bi) ∧ (aj > bj) (6)

are not comparable by �.
Let us consider fuzzy min operation defined like the fuzzy addition in the

following way:

∼
min(Ã, B̃) = (min(a1, b1),min(a2, b2),min(a3, b3)) (7)
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It is evident that, for noncomparable fuzzy numbers Ã, B̃, this fuzzy min
operation results in a fuzzy number different from both of them. For example,
for Ã = (5, 10, 13) and B̃ = (6, 9, 14), we get from (7) a fuzzy min (5, 9, 13)
which differs from Ã and B̃.

The previous remarks demonstrate the difficulties with comparisons of
fuzzy numbers. For this reason, the ranking or ordering methods of fuzzy
quantities have been proposed by many authors. Most of them were summa-
rized in [7, 8]. Unfortunately, none of these methods is commonly accepted.
In this paper, we use, for simplicity, the fuzzy ranking method described in [9],
modified for the case of triangular fuzzy numbers. This method uses the in-
verse functions gL

Ã
: [0, 1] → [a1, a2] and gR

Ã
: [0, 1] → [a2, a3] derived from

the functions fL
Ã

: [a1, a2] → [0, 1] and fR
Ã

: [a2, a3] → [0, 1], respectively.
From y = x−a1

a2−a1
we can easily derive that

gL
Ã

= a1 + (a2 − a1)y (8)

Similarly we get
gR

Ã
= a3 + (a2 − a3)y. (9)

The ranking function is defined as the distance between the centroid point
(x̃0, ỹ0) and the origin, i.e.

R(Ã) =
√

(x̃0)2 + (ỹ0)2 (10)

where

x̃0 =

∫

Supp Ã

xµÃ(x)dx

∫

Supp Ã

µÃ(x)dx
, ỹ0 =

1∫
0

(y gL
Ã
)dy +

1∫
0

(y gR
Ã

)dy

1∫
0

(gL
Ã
)dy +

1∫
0

(gR
Ã

)dy
(11)

and Supp Ã is the support of Ã.
Fuzzy numbers Ã, B̃ are then ranked by their ranking function values

R(Ã) and R(B̃).

FUZZY-DIJKSTRA(G,s,d̃,pred)
Input : connected weighted graph G = (V, E) with fuzzy edge

lengths w̃(e), e ∈ E
s - source (root);

output : d̃[u];
pred[u]; u ∈ V

auxiliary variables : Adj[u] - set of neighbors of vertex u.
for ∀u ∈ V do

begin d̃[u] := (0,∞,∞);
determined[u] :=False;
pred[u] := nil

end;

d̃[s] := (0, 0, 0);



Fuzzy All-Pairs Shortest Paths Problem 403

Q :=priority queue(V ); { push all vertices into Q ordered by d̃[u] }
while NonEmpty(Q) do

begin u := ExtractMin(Q);
for ∀v ∈ Adj[u] do

if R(d̃[u] ⊕ w̃(u, v)) < R(d̃[v])

then begin d̃[v] := d̃[u] ⊕ w̃(u, v);

DecreaseKey(Q,v,d̃[v]);
pred[v] := u

end;
determined[u] :=True

end; { Fuzzy Dijkstra s → V }

Theorem 5. Fuzzy Dijkstra’s algorithm runs in O(|E| log |V |) time.

Proof. Let O(TR) be the time of the centroid point evaluation. Then, as in
Theorem 3, we can determine the overall running time as follows:

T (V,E) =
∑

u∈V

(log |V |+ TRdeg(u) log |V |) =
∑

u∈V

(1 + TRdeg(u)) log |V |

= log |V |
∑

u∈V

(1 + TRdeg(u)) = log |V |(|V |+ TR · 2|E|)

= O((|V |+ |E|) log |V |)

Since G is connected, |V | is not asymptotically greater than |E|, so this is
O(|E| log |V |). �

Similarly as in the deterministic case of the APSPP, we can solve its fuzzy
modification using fuzzy Dijkstra’s algorithm if we use, as a source, all vertices
from the set V , and the weights of the edges are given by fuzzy numbers.

Hence we get:

Theorem 6. The algorithm for fuzzy All-Pairs Shortest Paths Problem runs
in O(|V ||E| log |V |) time.

4 Conclusions

In this paper, the problem of finding the all-pairs shortest paths was stud-
ied. We assumed that the weights of edges were given by linear triangular
fuzzy numbers. First, we proposed an APSPP modification stemming from
the Dijkstra algorithm and showed where it was more efficient that the clas-
sical Floyd–Warshall algorithm. Then we generalized it for the fuzzy APSPP
using a unique fuzzy ranking method to avoid generating the set of nondomi-
nated paths (or Pareto Optimal paths) because the number of nondominated
paths derived from a large network can be too numerous, and it could be
difficult for a decision maker to choose a preferable path.
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Optimal Toll Charges in a Fuzzy Flow Problem

Stephan Dempe and Tatiana Starostina

Summary. The problem of computing best toll charges is modelled as a bilevel
programming problem where, depending on the toll charge selected by the leader in
the upper level, a minimum cost network flow is computed in the lower level. Due to
fuzzyness of the costs for passing the edges in the network, this lower level problem
is a parametric fuzzy linear programming problem. In the paper we suggest an
approach for constructing a surrogate crisp optimization problem and an algorithm
for solving the latter one.

Key words: Fuzzy bilevel programming, Optimal toll charges, Fuzzy network
flow problem, Fuzzy costs.

1 Introduction

Toll charges are collected in many countries with different aims. Besides max-
imizing the collected charges and using them for covering expenses of the
government especially the use of toll charges for control of the traffic is of
interest. In both cases, a function f : X × R

n
+ −→ R is used to measure the

quality of the toll charges ct ∈ R
n
+ and the related traffic x ∈ X. To com-

pute the traffic flow different graph theoretic models can be used [8]. We will
consider a simplified problem of this type, where we assume that only the
traffic from one origin to one destination is of interest (which then reduces
to a minimum cost network flow problem). The generalization of this to the
general problem is straightforward.

To compute the traffic flow (or an optimal solution of the minimum cost
network flow problem) the costs for passing one edge of the underlying graph
need to be known. In general these costs depend on the flow on this edge
itself, they are not constant. Explicit formulas to compute these costs are not
known up to now [5]. To circumvent the resulting vagueness in the model
formulation, we model the costs as fuzzy numbers.

Let x(ct) denote an optimal solution of the minimum cost network flow
problem depending on the toll charges ct. Then, f(x(ct), ct) denotes the qual-
ity of this flow together with the toll charges. The aim of the toll setting
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authority is it now to maximize the function g(ct) := f(x(ct), ct) subject to
ct ∈ C. The topic of this paper is to suggest an algorithm solving this problem.

Related crisp optimization problems have been investigated, e.g., in
[1, 3, 13].

2 The Fuzzy Flow Problem

To model the flow problem first, consider a graph G = (V,A) describing a
transportation network, where the set of nodes V of the graph G (|V | = n)
stands for the junctions and the set of arcs A is used for the streets. Assume
that w vehicles have to drive from node s ∈ V (the source) to node d ∈ V (the
destination). Each arc (vi, vj) ∈ A has a capacity Uij . This capacity defines
the maximum number of vehicles, which can pass an appropriate part of the
road between two nodes in given time period.

Numbers xij , i, j = 1, 2, ..., n, which are defined on the arcs (vi, vj) ∈ A
of graph G are called flows if they satisfy the following conditions:

∑

vj∈Γ+(vi)

xij −
∑

vk∈Γ−(vi)

xki = bi :=

⎧
⎪⎨

⎪⎩

w, if vi = s,
−w, if vi = d,
0, if vi �∈ {s, d}

(1)

for all vi ∈ V and

0 ≤ xij ≤ Uij , ∀(vi, vj) ∈ A. (2)

Here, Γ+(vi) and Γ−(vi) denote the set of successors resp. predecessors of
node vi. Equations (1) are the flow conservation conditions and inequalities
(2) describe the need to satisfy the capacity conditions [11].

Some weight cij is assigned to the arc (vi, vj) ∈ A representing the cost
needed for traveling through the arc. This cost cij depends, e.g., on the dis-
tance between two nodes vi and vj , on the time needed to cover the distance
between these nodes, etc.

Having in mind the applied problem of computing optimal tolls for using
the network, let us assume that the costs cij for (vi, vj)∈A are sums cij = c0ij+
ctij of toll independent (i.e., e.g., only user, time or distance dependent) costs
and the toll charges. Now, we can formulate the minimal cost flow problem in
which a flow is searched for in the graph having minimal costs:

∑
(vi,vj)∈A

(c0ij + ctij)xij → min

∑
vj∈Γ+(vi)

xij −
∑

vk∈Γ−(vi)

xki = bi, ∀vi ∈ V

0 ≤ xij ≤ Uij , ∀(vi, vj) ∈ A.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

or

⎧
⎪⎨

⎪⎩

(c0 + ct)Tx→ min

Ax = b,

0 ≤ x ≤ U.

(3)
Usually it is assumed that traveling costs are exactly known. However, these
costs depend in reality on many factors, e.g., on the traveling time, which
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depends also on weather, on the present traffic, on the current situation on
this part of the road (traffic jams, road works, etc.). This means that in many
situations such costs can not be exactly known, but they are estimated [5].
Hence, they are better considered as fuzzy numbers. The membership function
of these numbers is assumed to have trapezoidal form given by four parameters

c̃0 = (c0; c0;α0;β0)L−L, (4)

where c0, c0–are the left and right borders of the fuzzy number c̃0 correspond-
ing to the λ-cut, where λ = 1, and α0 and β0 are non-negative real num-
bers [10].

We consider model (3) and assume now that the traveling costs are de-
scribed as fuzzy numbers. Then we obtain a model with fuzzy coefficients in
the objective function:

(c̃0 + ct)Tx→ min
Ax = b,
0 ≤ x ≤ U.

⎫
⎬

⎭ (5)

In (5), the traveling costs c̃ij are given as fuzzy numbers and the toll charges
ctij are crisp, but unknown.

3 The Toll Finding Problem and Its Reformulation

Now, we are in a position where it is possible to formulate the problem of
determining best toll charges in a fuzzy environment:

f(x, ct) −→ min
x solves problem (5) for fixed ct, (6)
ct ∈ C.

Here C is a set of feasible toll charges and the real valued function f(x, ct) gives
the profit resulting from the flow x and the toll charges ct. Clearly, the flow
depends on the toll charges and the profit is earned, e.g., by the government.

Problem (6) is a so called bilevel programming problem [6]. In the crisp
situation this problem has widely been investigated, e.g., in [8, 12]. In our
opinion, the more realistic formulation yet is using a fuzzy environment. To
the best of our knowledge fuzzy bilevel programming problems have hardly
ever been investigated, see [15] for a heuristic approach.

Denote an optimal solution of (5) by x(ct). Then, substituting this function
for x in the objective function of (6) we derive

min{f(x(ct), ct) : ct ∈ C}. (7)

Recall, that since (5) is a fuzzy linear programming problem, its solution
should rather be considered as fuzzy set X̃(ct) = {(x(ct), µ

X̃
(x(ct)))}. Hence,

also the function ct *→ f(X̃(ct), ct) has fuzzy sets as values. Problem (7) is
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then a realization of the problem

min{f(X̃(ct), ct) : ct ∈ C}. (8)

To solve this fuzzy optimization problem (8), approaches in the papers [4,14]
can be used. This means that we may use realizations (7) for attacking (8).

Assume that we take a best realization in the sense of [14]. To formulate
the lower level problem replacing (5) in the sense of [14] let there be given
a set Λ for determining the λ-cuts of the membership functions of the fuzzy
cost coefficients. The selection of these cuts is beyond the topic of this paper.
Clearly the obtained result is sensitive with respect to the selected cuts. We
suggest to check usefulness of the obtained solution against applicability and
to modify the values of the cuts if this fails. Assume that y∗λ

min and y∗λ
max are

lower bounds for the objective function value of a crisp linear programming
problems (LPλ

min) and (LPλ
max) obtained if the fuzzy cost coefficients c̃0ij in (5)

are replaced by the left-hand c0λ
ij , respectively, the right-hand side c0λ

ij of their
λ-cuts. Note that these bounds are assumed to be valid for all ct which can
be obtained if the objective function in (5) is minimized both with respect to
x and ct ∈ C. If, as it is reasonable from the practical point-of-view, the set
C is a box constraint C = {ct : ctij ≤ ctij ≤ ctij} these bounds can easily be
computed if ct is replaced componentwise by the lower bounds.

Also assume that there are given values yλ
min and yλ

max representing the
maximal acceptable objective function value of the problems (LPλ

min) and
(LPλ

max). Such values can e.g. be generated if the optimal solutions of the
problems (LPλ

min) and (LPλ
max) are interchanged as in the paper [14] and the

values of ct are replaced by ct.
Then, as in [14] we can compute membership functions

µλ
y min =

⎧
⎪⎨

⎪⎩

yλ
min − (c0λ + ct)Tx

yλ
min − y∗λ

min

if y∗λ
min ≤ (c0λ + ct)Tx ≤ yλ

min

0 otherwise

and

µλ
y max =

⎧
⎪⎨

⎪⎩

yλ
max − (c0λ + ct)Tx

yλ
max − y∗λ

max

if y∗λ
max ≤ (c0λ + ct)Tx ≤ yλ

max

0 otherwise

Now, if (5) is replaced by the crisp problem of maximizing the smallest value
of all the membership functions we obtain the optimization problem

ω −→ max

(yλ
min − y∗λ

min)ω + (c0λ + ct)Tx ≤ yλ
min, ∀λ ∈ Λ

(yλ
max − y∗λ

max)ω + (c0λ + ct)Tx ≤ yλ
max, ∀λ ∈ Λ (9)

Ax = b,

0 ≤ x ≤ U.
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Then, the realization (7) of (8) with this selection reduces to

f(x(ct), ct) −→ min

x(ct) solves (9) for fixed ct, (10)

ct ∈ C.

4 Solution Algorithm for the Bilevel Programming
Problem

Problem (10) is a crisp bilevel programming problem [6]. To be precise, the
formulation (10) is correct only in the case when the lower level programming
(9) has a uniquely determined optimal solution for all parameter values ct ∈ C.
If this is not the case there is an ambiguity in the definition of (10) in the
sense that the objective function value of this problem can be evaluated only
after publication of the choice of an optimal solution by the lower level decision
maker, i.e. after an optimal solution x(ct) of (9) has been selected. This means
the upper level decision maker has to wait for the lower level decision maker’s
selection. This, of course, is a difficult situation for an optimization process.

In bilevel programming theory [6] there are at least two ways out of this
unpleasant situation. The first one is the optimistic approach where the upper
level decision maker supposes that the lower level one supports him and allows
him to select such an optimal solution which is a best one from the upper
level point-of-view, i.e., which minimizes the upper level objective function
with respect to x(ct) over the solution set of (9). Sometimes this approach is
justified by the possibility of the upper level decision maker to share a part
of his revenue f(x(ct), ct) with the lower level decision maker [2].

If this is not possible, the other approach often used is the pessimistic one
which rests on bounding the damage resulting from a “bad” solution selected
by the lower level decision maker to the upper level objective function value.
This means that the upper level decision maker has to maximize the upper
level objective function with respect to x(ct) over the solution set of (9).

In both cases a new function

ϕo(ct) := min
x(ct)

{f(x(ct), ct) : x(ct) solves (9) for fixed ct}

in the optimistic and

ϕp(ct) := max
x(ct)

{f(x(ct), ct) : x(ct) solves (9) for fixed ct}

in the pessimistic approach arises which is then to be minimized for ct ∈ C.
The situation here is a little bit different. The optimal solution of (5) is

a fuzzy set of feasible points and (9) is used to compute elements of this set.
According to [4] elements with the largest membership function values should
be selected. Prospective candidates for this are basic feasible solutions of the
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vector optimization problems solved in [4] since nonbasic solutions do not
remain Pareto optimal under slight perturbations of the problem, see [9, 16].

For numerical reasons we do not suggest to apply the ideas in [4, 9, 16] to
compute the lower level solutions in problem (10) but the ideas in [14]. But
we adopt the above idea in the sense that we assume that a basic optimal
solution of (9) is selected in (10) and that the characteristics of this basic
optimal solution remain valid under perturbations of ct. This seems to be
reasonable due to the following facts. The crisp optimization problem solved
in [14] realizes a method to compute one Pareto optimal solution for a linear
optimization problem maximizing the membership function values of the ob-
jective function if certain different λ-cuts of the objective function coefficients
are used. This Pareto optimal solution is computed by solving (9). The com-
puted optimal solution of this problem can be found at the boundary of the
feasible set. These membership function values are sensitive with respect to
the selected λ values. Hence, if these values change, also the obtained solution
of the solved (9) changes. In this situation optimal solutions not being basic
solutions most probably will not maintain optimality. But optimal basic solu-
tions are relatively stable with respect to perturbations of the values of λ. As
the characteristics of these solutions we can take the basic matrix.

To keep the notation simple we will use the following more formal descrip-
tion of (9) together with an upper bound strategy in the simplex algorithm.
Slack variables will not be added to the basic variables.

ω −→ max
aω + (C0 + ct)Tx ≤ d (11)

Ax = b,

0 ≤ x ≤ U.

Then, some of the inequality constraints are satisfied as equations in the
optimal solution and nonbasic variables are zero or uij . We assume that the
first inequality constraints are satisfied strictly followed by the active ones and
that the set of basic variables is followed by the set of nonbasic variables. This
means that the coefficient matrix is decomposed into a basic and a nonbasic
matrix as follows:

(
a (C0 + ct)T

0 A

)
=

⎛

⎜⎝
a1 (C0

11 + ct11)
T (C0

12 + ct12)
T

a2 (C0
21 + ct21)

T (C0
22 + ct22)

T

0 A1 A2

⎞

⎟⎠

Note that ω is a basic variable for all ct. To compute the basic solution we
now have to solve the system of equations

(
a2 (C0

21 + ct21)
T

0 A1

)(
ω

xB

)
=

(
d2

b

)
. (12)
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From the theory of linear programming, the matrix

B =
(
a2 (C0

21 + ct21)
T

0 A1

)

is regular and (12) has a unique solution. To prove optimality of this solution
for (11) both feasibility (i.e., validity of the first set of inequalities) together
with boundedness of the reduced costs in sign has to be verified. These con-
ditions are all linear in (ω, xB). But note that the solution (ω, xB) of system
(12) is nonlinear in ct which appears in the coefficient matrix of a linear pro-
gramming problem.

For solving (10) we now suggest the following procedure:

Step 0: select ct ∈ C and a set Λ of cuts. Select ε > 0.
Step 1: solve (9) to get an optimal basic solution (ω(ct), x(ct)). Fix the basic

matrix B.
Step 2: compute a feasible descent direction r for the problem

f(x(ct), ct) −→ min
ct

(
a2 (C0

21 + ct21)
T

0 A1

)(
ω

xB

)
=

(
d2

b

)
(13)

ct ∈ C.

If there is no feasible descent direction, go to Step 4.
Step 3: compute a step size γ such that:

1. The solution of the system (12) for ct := ct + γr is an optimal solution
of (11)

2. ct + γr ∈ C
3. f(x(ct + γr), ct + γr) ≤ f(x(t), ct) + εγs
where s is the optimal objective function value of (13). If this was success-
ful, set ct := ct + γr and go to Step 1

Step 4: if either no feasible descent direction in Step 2 or no step size in Step
3 can be determined, try to replace the basic matrix B by another one and
repeat Step 2. If the basic matrix is uniquely determined or no other basic
matrix leads to a smaller objective function value in (10), respectively, a
successful selection in Step 3, terminate.

This algorithm is an application of the descent algorithm in Sect. 6.1 of [6] to
our problem, see also [7].

For the computation of a feasible descent direction in Step 2 we can use
that the optimal solution (ω(ct), x(ct)) of (12) is differentiable since B is a
basic matrix. For this, use the famous implicit function theorem. The gradient
(∇ω(ct),∇xB(ct),∇xN (ct)) with ∇xN (ct) = 0 of (ω(ct), x(ct)) is a solution
of the equation
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(
a2 (C0

21 + ct21)
T

0 A1

)(
∇ω
∇xB

)
+

(
xB(ct)

0

)
=

(
0
0

)
. (14)

Using this and assuming that the set C is a convex polyhedron with tangent
cone

TC(ct) = {r : ct + γr ∈ C for all sufficiently small γ > 0}
at ct, the computation of the feasible descent direction in Step 2 reduces to
solving

∇f(x(ct), ct)

⎛

⎝
∇xB(ct)

0
1

⎞

⎠ r −→ min
r∈TC(ct)

.

This is a linear programming problem.
A remark seems to be appropriate with respect to the existence of an

optimal solution. In the case of multiple optimal solutions of a crisp lower
level problem, the optimistic approach of bilevel programming has an optimal
solution under weak assumptions. We adopt this idea in the above algorithm
under the assumption that the follower will take a basic optimal solution of
his problem in any case.

5 Conclusion

In this paper we have modeled the problem of determining a best toll charge
as a bilevel fuzzy optimization problem. The fuzzy optimization problem is
the lower level problem in which it is assumed that the cost of traveling
through a street is the sum of the toll charge and a fuzzy value. To attack
the fuzzy bilevel programming problem we transform it into a crisp one by
using the approach by Rommelfanger et al. [14] and assuming that the lower
level decision maker will select a basic optimal solution of the resulting lower
level problem for all values of the toll charge. This assumption seems to be
reasonable for the fuzzy lower level optimization problem. Then, the resulting
problem can be reformulated as a one level programming (7) with a piecewise
differentiable objective function. Using the properties of the lower level basic
optimal solutions it was possible to formulate a first solution algorithm for
this problem.
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Modified Interval Global Weights in AHP

Tomoe Entani and Hideo Tanaka

Summary. The decision problem in Analytic Hierarchy Process (AHP) is struc-
tured hierarchically as several criteria and alternatives. It is proposed to determine
the global weights of alternatives considering the referenced priority weights of cri-
teria and local weights of alternatives. We assume them as intervals, since they are
obtained from the corresponding pairwise comparison matrices given by a decision
maker based on his/her intuition. The width represents the possibility of each weight
reflecting the inconsistency of the given comparisons. Then, the global weights calcu-
lated with them should be also intervals and such intervals tend to contain redundant
parts. We propose the models to modify the intervals so as to be normalized keeping
their possibilities. Instead of crisp normalization, the interval probability fills the
role of interval normalization. The modified interval global weights reflect a decision
maker’s uncertain judgments as intervals without redundancy.

Key words: Analytic hierarchy process, Interval probability, Interval nor-
malization, Interval global weight.

1 Introduction

AHP (Analytic Hierarchy Process) is a useful method in multicriteria decision
making problems [1, 2]. It is structured hierarchically as criteria and alterna-
tives and proposed to determine the priority weights of alternatives which are
the global weights as decision. In the decision problem of AHP, it is possible
to construct several layers of criteria as in Fig. 1, where C1 consists of m1

criteria, C11,C12, . . . ,C1m1 .
From the pairwise comparison matrix for criteria, the referenced priority

weights are obtained by eigenvector method [1]. In the same way, from the
pairwise comparison matrix for alternatives under each criterion, the local
weights for the criterion are obtained. The elements of the two types of com-
parison matrices are relative measurements given by a decision maker. The
obtained weights from the matrix can reflect his/her attitude in the actual
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Fig. 1. Structure of decision problem in AHP

decision problem. In this paper, it is assumed that the estimated referenced
priority and local weights are normalized intervals to reflect inconsistency of
the given pairwise comparisons. The normalized intervals satisfy the condi-
tions of interval probabilities in [3] so that the redundancy can be reduced.

With the obtained interval referenced priority and local weights, the global
weights of all alternatives are also obtained as intervals. Because of interval
arithmetic, the widths of the obtained intervals seem to be large. They have
some redundancy and are not normalized. Therefore, the model to obtain nor-
malized interval global weights has already been proposed [4]. In the model
the crisp referenced priority weights such that their sum becomes one are
selected and the interval global weights are calculated by them. However, the
normalized interval global weights depart from those by interval arithmetic.
The possibilities denoted as the widths of intervals are lessened. This paper
focuses on obtaining the interval global weights which are normalized and
reflect the original possibility as precisely as possible. We propose the models
to modify the obtained interval global weights so as to be interval probabili-
ties. The normalized interval global weights are useful information for a final
decision in the sense that they reflect a decision maker’s uncertain judgements
as intervals without redundancy.

2 Interval Priority Weights from Crisp Pairwise
Comparisons

AHP is a method to deal with the weights with respect to many alternatives
and to determine the priority weight of each alternative [1]. When there are n
alternatives, a decision maker compares a pair of alternatives for all possible
pairs to obtain a pairwise comparison matrix A as follows.

A = [aij ] =

⎛

⎜⎝
1 · · · a1n

... aij

...
an1 · · · 1

⎞

⎟⎠

where aij shows the priority ratio of alternative i comparing to alternative j.
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The pairwise comparison matrix satisfies the following relations so that
the decision maker gives n(n− 1)/2 comparisons.

Diagonal elements aii = 1
Reciprocal elements aij = 1/aji

(1)

As for the consistent comparison matrix, the following relation is satisfied.

aij = aikajk ∀(i, j) (2)

The given pairwise comparison aij is approximated by the ratio of priority
weights, wi and wj , symbolically written as aij ≈ wi/wj . Since this is the
ratio relation, we normalize the priority weights in order to obtain ones. When
the decision maker gives consistent comparisons, it holds aij = wi/wj . The
comparisons are given one after another based on decision maker’s intuitive
judgements so that they scarcely ever consistent. In this paper the priority
weight wi is assumed as an interval and the interval priority weights denoted
as Wi = [wi, wi]. We consider interval probabilities proposed in [3] so as to
normalize interval weights. Their conditions are defined as follows.

Definition 1 Interval weights (W1, ...,Wn) are called interval probabilities if
and only if ∑

i�=j wi + wj ≥ 1 ∀j
∑

i�=j wi + wj ≤ 1 ∀j
(3)

where Wi = [wi, wi].

It can be said that the conventional normalization is extended to the in-
terval normalization by using the above conditions. This is effective to reduce
redundancy under the condition that the sum of crisp weights in the interval
weights is equal to one.

The approximated pairwise comparison with the interval weights is defined
as the following interval.

Wi

Wj
=

[
wi

wj
,
wi

wj

]

where the upper and lower bounds of the approximated comparison are defined
as the maximum range.

The interval priority weights are obtained so as to include the given interval
by the approximation model [5, 6]. The obtained interval weights satisfy the
following inclusion relations.

aij ∈
Wi

Wj
=

[
wi

wj
,
wi

wj

]
∀(i, j) ↔ wi

wj
≤ aij ≤

wi

wj

∀(i, j) (4)

In order to obtain the least upper approximation, the width of each weight
must be minimized. Simply the sum of widths of all weights is minimized as
the following LP problem.
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min
∑

i(wi − wi)
s.t.

∑
i�=j wi + wj ≥ 1 ∀j∑
i�=j wi + wj ≤ 1 ∀j

wi

wj
≤ aij ≤

wi

wj

∀(i, j)

wi ≥ wi ≥ 0 ∀i

(5)

where constraint conditions consist of the interval normalization (3) and in-
clusion relations (4).

The interval weights by (5) include the given inconsistent comparisons and
the least uncertain weights are obtained. The width of the obtained interval
weight represents the possibility of the priority of the alternative i. The pos-
sibility is needed to include the inconsistency among the given comparisons.
The widths can be regarded as the index of inconsistency. If the consistent
comparisons are given, we can obtain crisp weights by the proposed approach
and they are the same as ones obtained by eigenvector method.

2.1 Interval Global Weights

The decision problem in AHP is structured hierarchically as criteria and al-
ternatives as in Fig. 1. A decision maker gives pairwise comparison matrix for
alternatives Ai(i = 1, . . . , n) under each criterion and also comparison matrix
for criteria Ck(k = 1, . . . ,m) comparing alternatives and criteria importance,
respectively. When the pairwise comparison matrices for criteria and alterna-
tives under each criterion are given by a decision maker, the interval referenced
priority and local weights are obtained, respectively, by (5). In Table 1, the lo-
cal weight of alternative Ai under criterion Ck is denoted as Wik = [wik, wik]
and the referenced priority weight of criterion Ck is denoted as Pk = [p

k
, pk].

With the obtained interval referenced priority and local weights, the global
weight of alternative Ai is obtained as follows by interval arithmetic.

Wi =
∑

k PkWik =
[∑

k pk
wik,

∑
k pkwik

]
(6)

Table 1. Weights at each layer of decision problem in AHP

Criterion
Alternative C1 · · · Ck · · · Cm Decision

A1 W11 W1k W1m W1

...
... Local weight

...
Ai Wi1 under criterion Wi

...
...

...
... Global weight

An Wn1 Wnk Wnm Wn

P1 · · · Pk · · · Pm

Referenced priority weight
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By multiplying the upper and lower bounds of intervals, their widths seem
to be large. Although Wik and Pk are all normalized intervals, Wi may have
some redundancy and is not normalized. The conditions of interval probabil-
ities in (3) are written as follows.

∀j
∑

i�=j

∑
k wikpk +

∑
k wjkpk

=
∑

k(
∑

i�=j wik + wjk)pk −
∑

k wjk(pk − pk
)

(7)

∀j
∑

i�=j

∑
k wikpk

+
∑

k wjkpk

=
∑

k(
∑

i�=j wik + wjk)p
k

+
∑

k wjk(pk − pk
)

(8)

In case of (7)≥ 1 and (8)≤ 1, the interval global weights can be interval
probabilities. Let consider the case where the referenced priority weights are
crisp. We assume the referenced priority weights are crisp, that is pk = pk = p

k
and

∑
k pk = 1.

(7) =
∑

j(
∑

i�=j wik + wjk)pk ≥ 1

(8) =
∑

j(
∑

i�=j wik + wjk)pk ≤ 1
(9)

From (9) it is noticed that the two conditions in (3) are satisfied so that the
interval global weights are obtained as interval probabilities in case of crisp
referenced priorities. Although, in other cases we can not tell they satisfy the
conditions in (3).

Then, the problem to obtain the normalized interval global weights has
been proposed by selecting crisp referenced priority weights in the obtained
interval referenced priority weights [4]. It is formulated as follows.

∀i max
∑

k(pi∗
k wik − pi

k∗wik)
s.t.

∑
k p

i∗
k = 1

∑
k p

i
k∗ = 1

p
k
≤ pi∗

k ≤ pk ∀k
p

k
≤ pi

k∗ ≤ pk ∀k

(10)

where pi∗
k , p

i
k∗(k = 1, ...,m) are variables and each represents the crisp refer-

enced priority weight of criterion Ck under determining the upper and lower
bounds of the interval global weight of alternative Ai.

In (10) the crisp referenced priority weights such that their sum becomes
one are selected for each alternative and the interval global weight is deter-
mined as W ∗

i =
[∑

k p
i
k∗wik,

∑
k p

i∗
k wik

]
⊆Wi. The interval global weights of

all alternatives are obtained by solving n problems. For the upper and lower
bounds of the interval global weights, they are determined by maximizing and
minimizing the global weights for each alternative, respectively. The selected
crisp weights depend on the bounds of interval global weights and the local
weights of each alternative. Although the normalized interval global weights
are included in those by interval arithmetic (6), they depart from each other.
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The possibilities of the global weights denoted as the widths of intervals are
lessened.

As in Fig. 1, the local weights of alternatives under C1 can be calculated
by the same way as (6) with the local weights under C11,...,C1m1 , and they are
not always obtained as interval probabilities. They also need to be modified,
since the local weights obtained from the given comparison matrices by (5)
are interval probabilities.

The purpose of this paper is to reduce redundancy of the obtained interval
global weights by interval arithmetic. The interval global weights which are
normalized and reflect the possibilities of the original intervals by (6) as pre-
cisely as possible are obtained. We propose the models to modify the interval
global weights based on the concept of interval approximation. Intervals can
be approximated so as to be interval probabilities by three approaches, the
least upper, greatest lower, and closest approximations.

The least upper approximation model is formulated as follows.

min
∑

i(
∑

j pkwik − gi)2 + (
∑

j pk
wik − gi

)2

s.t. g
i
≤

∑
k pk
wik ∀i

∑
k pkwik ≤ gi ∀i

∑
i�=j gi + g

j
≥ 1 ∀j

∑
i�=j gi

+ gj ≤ 1 ∀j

(11)

The greatest lower approximation model is formulated as follows.

min
∑

i(
∑

j pkwik − gi)2 + (
∑

j pk
wik − gi

)2

s.t.
∑

k pk
wik ≤ gi

∀i
gi ≤

∑
k pkwik ∀i

∑
i�=j gi + g

j
≥ 1 ∀j

∑
i�=j gi

+ gj ≤ 1 ∀j

(12)

In ordinal interval regression analysis where linear system is assumed, the
sum of widths or squared widths of approximations is maximized or mini-
mized. Instead, in these two models where linear systems are not assumed, the
sum of squared deviations between the original and modified interval global
weights, Wi and Gi, is minimized. The modified interval global weights by
(11) and (12) are included in and include (6), respectively. The second and
third constraints are the conditions of interval probabilities. The intervals Wi

are not interval probabilities because of several upper and/or lower bounds. If
(7)< 1 for j′, the lower bound of j′ and/or the upper bounds of others should
be increased to be interval probabilities. Because of inclusion relations of (11)
and (12), the upper bound of j′ is increased by (11) and the lower bound of
others are increased by (12). By the upper or lower approximation model, the
upper bound of j′ and lower bounds of others are not increased at the same
time, because of inclusion relation.



Global Weights in AHP 421

We propose the other approximation model without considering inclusion
relation. The modified interval global weights are obtained as the following
problem.

min
∑

i{(
∑

j pk
wik − gi

)2 + (
∑

j pkwik − gi)2}
s.t. g

i
≤ gi ∀i

∑
i�=j gi + g

j
≥ 1 ∀j

∑
i�=j gi

+ gj ≤ 1 ∀j

(13)

The upper and lower bounds of the modified interval global weights can be
greater or smaller than those of the original ones and Gi is not always included
in and includesWi. Gi can be considered as the closest approximations ofWi.
By minimizing the deviations in (13), the modified intervals Gi are close to
the original ones Wi by interval arithmetic and keep their possibilities as
precisely as possible. The excess and deficiency of being interval probabilities
are distributed to most of alternatives by QP problem (13). The intervals of
most of alternatives are modified to some extent.

Although we need to solve n LP problems by (10) in order to determine
the interval global weights of all alternatives, they are obtained by solving
(11), (12), or (13). In AHP, such modified normalized interval global weights
are useful information for a final decision in the sense that they reflect a
decision maker’s uncertain judgements as intervals without redundancy. In
case of more than two layers of criteria, it is necessary to modify interval
global weights so as to be interval probabilities with keeping the possibilities
in a sense of reflecting the uncertainty of the given information.

3 Numerical Example

There are six alternatives (A1, A2, A3, A4, A5, A6) and six criteria (C1, C2,
C3, C4, C5, C6) in the same layer. A decision maker gives pairwise comparison
matrices for six criteria and six alternatives under each criterion. Then, the
global weights of all alternatives are calculated and modified by the proposed
models.

The decision maker compares all the pairs of criteria and gives the com-
parisons. The pairwise comparison matrix with six criteria followed by (1) is
as follows.

Pairwise comparison matrix with criteria =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 2 1/2 2 3 2
1/2 1 3 2 1 1
2 1/3 1 1 2 1/2

1/2 1/2 1 1 3 2
1/3 1 1/2 1/3 1 1/2
1/2 1 2 1/2 2 1

⎞

⎟⎟⎟⎟⎟⎟⎠
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Since the given comparisons are inconsistent each other, they do not satisfy
(2). The interval referenced priority weights by the approximation model (5)
are obtained from the above matrix.

Interval referenced priority weights P =

⎛

⎜⎜⎜⎜⎜⎜⎝

[0.099, 0.222]
[0.111, 0.222]
[0.074, 0.198]
[0.111, 0.222]
[0.074, 0.111]
[0.111, 0.148]

⎞

⎟⎟⎟⎟⎟⎟⎠
(14)

In the same way, six pairwise comparison matrices for alternatives under
six criteria and the obtained interval local weights are shown in Table 2.

With the interval referenced priority weights (14) and interval local weights
in Table 2, the interval global weights Wi are obtained by interval arithmetic
(6) as follows.

Interval global weight W by (6) =

⎛

⎜⎜⎜⎜⎜⎜⎝

[0.293, 0.575]
[0.052, 0.156]
[0.049, 0.124]
[0.032, 0.124]
[0.030, 0.120]
[0.030, 0.118]

⎞

⎟⎟⎟⎟⎟⎟⎠

Assuming j = 1 in (7), that is for A1, (7)= 0.935 < 1, therefore, they do
not satisfy the 1st condition in (3). The modified interval global weights by
the proposed models (11), (12), and (13) and the ones by the selected crisp
referenced priority weights by (10) are shown in Table 3.

Table 2. Interval local weights of alternatives under each criterion

Interval local weight

Alternative C1 C2 C3

A1 0.536 0.530 0.517
A2 [0.107,0.153] [0.076,0.136] [0.103,0.164]
A3 [0.051,0.107] [0.091,0.106] [0.082,0.086]
A4 [0.077,0.089] [0.068,0.091] [0.055,0.086]
A5 [0.027,0.077] [0.045,0.091] [0.043,0.103]
A6 [0.038,0.107] [0.045,0.106] [0.043,0.103]

Interval local weight

Alternative C4 C5 C6

A1 0.536 0.405 0.482
A2 [0.107,0.107] [0.068,0.162] [0.080,0.120]
A3 [0.089,0.107] [0.054,0.162] [0.120,0.120]
A4 [0.036,0.134] [0.054,0.203] [0.040,0.096]
A5 [0.054,0.107] [0.081,0.135] [0.060,0.161]
A6 [0.054,0.107] [0.081,0.081] [0.054,0.120]
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Table 3. Modified interval global weights

Alternative Wi by (6) Gi by (11) Gi by (12) Gi by (13) W ∗
i by (10)

A1 [0.293,0.575] [0.293,0.575] [0.357,0.575] [0.304,0.575] [0.508,0.516]
A2 [0.052,0.156] [0.052,0.169] [0.052,0.156] [0.052,0.167] [0.091,0.143]
A3 [0.049,0.124] [0.049,0.137] [0.049,0.124] [0.043,0.135] [0.079,0.113]
A4 [0.032,0.124] [0.032,0.136] [0.032,0.124] [0.031,0.134] [0.053,0.113]
A5 [0.030,0.120] [0.030,0.133] [0.030,0.120] [0.025,0.131] [0.047,0.111]
A6 [0.030,0.118] [0.030,0.131] [0.030,0.118] [0.026,0.129] [0.048,0.107]

The interval global weight W ∗
i by (10) is included in Wi by (6). As for

A1, the width of W1 by interval arithmetic is greatest in six alternatives, its
lower parts are ignored in W ∗

1 by (10). This does not happen for the modified
interval global weights G1 by (11), (12), and (13). The proposed models keep
the possibilities denoted as widths of Wi by (6) more precisely than (10).
The interval global weights Wi and the modified intervals G∗

i by the proposed
models have the following relations, as [Gi by (12)]⊆[Wi by (6)]⊆[Gi by (11)].
By the upper approximation (11), the upper bounds of A2,A3,A4,A5, and A6

are increased, while by the lower approximation (12) only the lower bound
of A1 is decreased. On the other hand, by (13) most of the upper and lower
bounds of all alternatives are modified. The modified intervals Gi is not always
included in and includes Wi. In this example, the global weights by interval
arithmetic are almost interval probabilities since the amounts of modified are
very small. The modified interval global weights include inconsistency in the
given comparisons without redundancy.

4 Conclusion

In the decision problem in AHP, the global weights of alternatives considering
criteria are obtained as the final decision. In each aspect, such as compar-
ing criteria or alternatives under each criterion, a decision maker gives in-
tuitive judgements as pairwise comparisons. The given comparisons in each
aspect might be inconsistent each other. The interval weights, which are suit-
able for representing uncertain information, are obtained from the given crisp
pairwise comparison matrix. The interval referenced and local weights are
obtained from the respective comparison matrices even if their elements are
crisp. The widths of the obtained interval weights reflect inconsistency in the
given pairwise comparison matrix by a decision maker’s intuitive judgements.
In possibility analysis, the widths are as important as the upper and lower
bounds.

Then, the global weight of the alternative is obtained by multiplying the
interval referenced priority weight by the interval local weights under the
criterion and adding them over all criteria. Since the global weights are cal-
culated with intervals, they should be also denoted as intervals to maintain
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the uncertainty of all the given information. By multiplying the upper bounds
and lower bounds of intervals, their widths tend to be too large or small and
contain redundant parts. We propose the models to modify such intervals
to be normalized ones keeping their possibilities. In this paper, the interval
global weights reflecting the possibilities of the referenced and local weights
are obtained. The least upper, greatest lower, and closest approximations of
the original intervals are obtained by QP problems. By the least upper and
greatest lower approximation models, the modified ones are obtained so that
they include and are included in the original intervals by interval arithmetic.
In order to deal with redundant parts, their widths are widened and reduced
in the upper and lower approximation models, respectively. By the closest ap-
proximation model, their widths are widened and reduced at the same time.
The excess and deficiency of being interval probabilities are distributed to
most of alternatives. The modified intervals by the proposed models keep the
possibilities of the referenced and local weights as precisely as possible. There-
fore, they reflect the uncertainty of the given information as their widths. The
proposed models by which intervals are normalized can be used not only for
determining the interval global weights, but also for determining interval lo-
cal weights in case of several layers of criteria. The normalized interval global
weights are useful information for a final decision in the sense that they reflect
a decision maker’s uncertain judgements without redundancy. These models
modifying interval global weights so as to be interval probabilities might be
extended to the model by which a set of intervals based on human judgements
is normalized. It is natural that the given information is inconsistent and con-
tains redundant parts. The proposed models help to deal with such redundant
parts keeping the possibilities of the given intervals.

References

1. T.L. Saaty (1980) The Analytic Hierarchy Process, McGraw-Hill, New York
2. T.L. Saaty and L.G. Vergas (1987) “Uncertainty and Rank Order in the

Analytic Hierarchy Process”, European Journal of Operational Research,
32:107–117

3. H. Tanaka, K. Sugihara and Y. Maedab (2004) “Non-additive Measures by
Interval Probability Functions,” Information Sciences, 164:209–227

4. T. Entani and H. Tanaka (2005) “Interval estimations in AHP by linear pro-
gramming,” Proceedings of the 11th IFSA Word Congress

5. K. Sugihara and H. Tanaka (2001) “Interval Evaluations in the Analytic Hier-
archy Process by Possibility Analysis,” International Journal of Computational
Intelligence, 17, 3:567–579

6. H. Tanaka and P. Guo (1999) Possibilistic Data Analysis for Operation
Research, Physica-Verlag, A Springer Verlag Company



Fuzzy Approaches to Trust Management

Elizabeth Chang, Ernesto Damiani, and Tharam Dillon

Summary. We start from an overview of the most significant approaches to man-
aging and negotiating trust, introducing the basic concepts on which trust and
reputation management systems are built. Then, we illustrate opportunities for fuzzy
research in this area.

Key words: Trust management, Reputation-based systems, Fuzzy aggrega-
tors.

1 Introduction

Automatic trust management over the global information infrastructure has
become an essential requirement in modern economy, where unknown parties
can interact, at different levels of anonymity for the purpose of acquiring or
offering services [29].

The e-business research community has proposed several trust and rep-
utation models for open environments such as electronic marketplaces as a
measure of the reliability of participants (for an early survey, see [21]). This
notion of trust intuitively incorporates a certain degree of uncertainty. In this
paper we adopt this community’s notation conventions as put forward in [18]
and [16], where a consistent terminology is proposed. Namely, we shall use
term trust to denote a user’s willingness to start a transaction with a given
partner p, while the term reputation will be used to quantitatively express a
user’s judgment about previous transactions with p.1 The security research
community has developed a distinct, though closely related, notion of trust.
Namely, it considers trust management as a development of existing access
control (AC) models, whose policies express authorizations granted to sub-
jects for accessing resources. In trust systems, policies specify which creden-
tials signed by a trusted third party are needed to access a given resource.
1Note that in general trust T and reputation R do not coincide; at the very least, one

should take into account reputation aging, e.g., by writing T (t) = R(t0)e
−α(t−t0),

for t > t0 [4].



426 E. Chang et al.

Being closely related to AC policies relying on Boolean conditions on user
attributes, these trust systems initially included few provisions for dealing
with uncertainty.

However, some of them supported a notion of degree, e.g., by linking trust
values to the length of chains-of-trust connecting third parties signing creden-
tials. Recently, the availability of new profile credentials linked to inherently
uncertain use attributes (e.g., location-based ones) has triggered a new wave
of research [3]. Another distinction can be drawn from an architectural point
of view: depending on the underlying network architecture, trust and repu-
tation management systems can be classified as centralized or distributed. In
both cases, alternative methods for computing reputation and trust have been
proposed [18]. Centralized models include the classical eBay one [25], where
the difference between the sum of positive scores and the sum of negative
ones represents the final reputation value of a resource. Distributed mod-
els, suitable for peer-to-peer (P2P) environments, were initially proposed by
Karl Aberer and Zoran Despotovic [1]. Recently, a considerable amount of
research has been done on trust and reputations models for distributed mul-
tiagent environments, where agents act on behalf of their stakeholders [7,27].
Also, secure trust computation has been researched for anonymous distrib-
uted environments such as P2P networks [4]. The purpose of this paper is to
give an overview of existing and proposed approaches to trust management,
identifying open issues and highlighting opportunities for fuzzy research. The
remainder of the paper is organized as follows. Section 2 describes traditional
rule-based approaches to trust management and gives a brief overview of re-
cent reputation-based approaches. Section 3 discusses credential-based trust
negotiation protocols, while Sect. 4 presents reputation-based ones, focusing
on the recent P2PRep proposal. Section 5 deals with the general problem
of aggregating reputations, introducing fuzzy techniques; it also contains a
worked-out example of aggregation of fuzzy trust values. Section 6 discusses
the use of use of linguistic fuzzy rules [35] to define a rule-based trust evalu-
ation model capable of taking into account trust uncertainty and degrees of
trust. Finally, in Sect. 7 we draw the conclusions and give an outlook to our
future work.

2 Trust Management Systems

Security research’s approach to trust management relies on the notion of
security credentials, i.e., signed assertions made by third parties, whose signa-
ture must be verified before the credential may be used. Such credentials can
be used to establish trust relationships based on specific policies. Early trust
management systems include KeyNote [6] and rule-controlled environment for
evaluation of rules, and everything else (REFEREE) [11]. In these systems, a
user becomes trusted (according to a policy) by presenting a credential signed
by a third party who is already trusted by the server. This notion of trust



Fuzzy Approaches to Trust Management 427

management does provide an interesting framework for reasoning about trust
between unknown parties, by posing two major problems:

(i) The cold start problem: how can a party become trusted in the first place?
(ii) The trust propagation problem: how much should I trust someone who is

trusted by someone I trust?

In a credential-based environment, the former problem can be dealt with
by means of trust authorities, while the second has been tackled by formalizing
trust function behavior along trust-chains and, more in general, trust-graphs,
i.e., directed graphs whose nodes are potential transaction participants, and
whose arcs connect each trustor to the corresponding trustee [16]. Unfortu-
nately, trust-graph-based solutions do not always scale well on an global open
networks, where some degree of anonymity must be preserved. Intuitively, rep-
utation can be used in lieu of trust-chains to determine the extent to which a
party can be trusted (e.g., to possess an attribute). Architecturally, research
approaches [17] distinguish between two main types of reputation-based trust
management systems: centralized and distributed reputation systems. In cen-
tralized systems, reputation information is collected from community mem-
bers in the form of ratings. A central authority collects all ratings and derives
a trust value for each resource. In a distributed reputation system there is
no central location for submitting reputation ratings and obtaining resources’
trust scores; instead, ratings can be submitted at distributed points. Inn the
last few years, reputation-based trust management systems have been applied
to many different contexts such as P2P networks [22]. P2P reputation models
allow the expression and reasoning about putting trust in a peer based on its
past behavior [24].

3 Trust Negotiation Protocols

Trust negotiation protocols govern interactions between partners that need to
establish a trust relationship. At first sight, the notion of a trust negotiation
protocol may seem straightforward: when a client requests an access to a
service, the server checks if the client has provided the credentials (signed
by a suitable trusted third-party) required by its policy. If this is the case,
access is granted; otherwise, the server specifies the missing credentials, giving
the client the opportunity to gather and present them.2 If possible, the client
gathers the requested credentials and sends them to the server, gaining access
to the service. This naive protocol has however several drawbacks. At the first
step, the client releases all credentials it possesses, even if some of them may
be invalid or redundant. At the second step, by explicitly requesting all the
required credentials, the server is disclosing (part of) its policy to the client.

2Note that here the term “missing” may refer to credentials being physically missing
or lacking the required level of trust.
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Advanced trust negotiation protocols are based on the notion of gradual
trust establishment . At the initial step, the client only discloses the (possibly
empty) set of credentials that it is willing to show to the server. If the server
is itself not known or not trusted by the client, this set may well be empty.
In turn, the server replies asking some of the credentials needed to gain access.3

The client, according to its local policy, decides if it is willing to disclose
the requested credentials. Theoretical research has been conducted aimed at
proving minimality of disclosed information for given classes of negotiation
algorithms [8].

4 Reputation-Based Protocols

The basic idea behind reputation-aware trust management is avoiding chains-
of-trust on credentials; rather, reputation-based systems let remote parties
rate each other, for example after the completion of a transaction, and use
the aggregated reputation ratings about a given party to derive a reputa-
tion score.4 Reputation can then be used by other parties to compute trust
when deciding whether or not to transact with that party in the future. This
technique is more suitable to P2P environments; in credential-based settings,
linking reputations to parties and/or to their attributes would heavily im-
pact on the trust framework inasmuch it poses additional requirements on
credentials production and management.

4.1 The Example of P2PRep

P2PRep is a reputation-based protocol proposed by the research group on
security at the Department of Information Technology of the University of
Milan, including one of the authors of the present paper [12]. P2PRep was
designed for unstructured P2P environments like Gnutella, where data is dis-
tributed randomly over the peers and broadcasting mechanisms are used for
searching. However, it is readily extendable to structured P2P environments
like Chord [31], including data access structures to route search requests.
P2PRep runs in a fully anonymous P2P environment, where peers are iden-
tified using self-assigned opaque identifiers. Protocol P2PRep consists of four
steps. In step 1, an initiator i locates available services sending a Query broad-
cast message. Other peers answer with a QueryHit message notifying i that
they are interested the requested service. Upon receiving a set of QueryHit

3Alternatively, a proof of possession of the credential (including the third party sig-
nature) may be accepted. This avoids having to the disclose the actual credential
content.

4An important underlying assumption is that interactions outcomes can be evalu-
ated on a globally agreed scale.
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messages, initiator i selects a potential service provider s and polls the com-
munity for any available reputation information on s.5 When a peer receives
a Poll message, it checks its local experience repository of its previous ex-
periences with other peers. If it has some information to offer and wants to
express an opinion on service provider s, it generates a vote based on its expe-
rience, and returns a PollReply message to i. As a result of step 2, i receives
a set V of votes. In step 3, i evaluates the votes to collapse any set of votes
that may belong to a clique and explicitly selects a random set of votes for
verifying their trustworthiness [12]. In step 4, an aggregated community-wide
reputation value is computed from the set of reputations collected in step 3.6

Based on this reputation value, i can take a decision on whether using the
service provided by s or not (step 5). Finally, i will update its local trust on
s, based on the service quality.

5 Aggregation-Based Methods for Computing Trust

In the original presentation of P2PRep [12] reputation and trust were repre-
sented as single values in the interval [0, 1]. Regardless of the protocol used
to collect reputation ratings, however, the problems of i) representing them
and ii)) synthesizing them into a single trust value must be tackled. As far as
the former problem is concerned, singleton values can be readily extended to
more complex array-based representations taking into account multiple fea-
tures [4]. For the latter problem, ratings may have not to be aggregated at all.
Game-theoretic reputation models take a different approach: if the reputation
system is designed properly, trustworthy behavior emerges as the most con-
venient one. Several game-theoretical approaches to trust management have
been proposed by economic systems research [23]. Unfortunately, game the-
oretical approaches need a relatively high number of transactions to reach
equilibrium, making them less suitable than direct aggregation for many ap-
plications. Other probabilistic approaches [33] use Bayesian networks, taking
binary ratings as inputs and computing trust scores by statistically updat-
ing probability density functions (PDF). An evolution of these techniques
is network-based reputation aggregation. This class of approaches normally
implies the aggregation of all reputation information available on a (previ-
ously established) trust graph. This process requires checking all paths on
the trust graph from the computation initiator to the candidate partner
and aggregating reputation values along them; finally, path reputations are
merged into a network-wide value. Network-based aggregation of reputation
is at the basis of several recent proposals, including the Eigentrust system by

5Polling is performed by sending a Poll message, broadcasted in the same way as
Query messages.

6Note that, unlike the underlying protocol, the aggregation operator depend on the
reputation and vote semantics.



430 E. Chang et al.

Hector Garcia-Molina et al. [19]. However, its complexity is high and its over-
head in terms of messages is not negligible.

In [2], Karl Aberer and Zoran Despotovic show that a simple probabilistic
technique, maximum likelihood estimation, can substantially reduce overhead
when employed as the feedback aggregation strategy. As we shall see below,
the same line of reasoning in favor of straightforward aggregations can be
applied to “lightweight” fuzzy aggregations [5].

5.1 Fuzzy Aggregations

We now focus on fuzzy research, where several lines of research on trust have
been proposed. In particular Castelfranchi et al. [9] used Fuzzy Cognitive Maps
(FCM) [20] to model the relevance of the system inputs before their aggre-
gation. A distinct approach was taken by the REGRET system [26], where
fuzzy concepts are integrated into the analysis of social networks in electronic
marketplaces.

In [4] fuzzy aggregators have been used for the synthesis of opinions ex-
pressed by peers in a P2P distributed reputation system. The behavior of fuzzy
aggregation was assessed by comparison with other approaches like Eigentrust.

5.2 A Worked-Out Example

The mathematical properties of fuzzy aggregators used for computing trust
as a reputation aggregation have been discussed in several papers. Papers [13]
and [10] describe a method based on the WOWA aggregator [32], taking into
consideration both the relevance of the sources and the one of the values.
Here, for the sake of simplicity, we shall use the simpler Ordered Weighted
Averaging operator [34], whose behavior has been analyzed in detail in the
fuzzy literature [14,15]. OWA permits weighting the values in relation to their
ordering, because it weights reputation values in relation to their size, without
taking into account which sources have expressed them.

Let w be a weigh vector of dimension n(w = [w1w2 . . . wn]) such that (a)
wi ∈ [0, 1]; (b)

∑
i wi = 1.

In this case a mapping fOWA : Rn → R is an Ordered Weighted Averaging
(OWA) operator of dimension n if

fOWA(a1, a2, . . . , an) =
∑

i

ωiaσ(i) (1)

where {σ(1), σ(2), . . . , σ(n)} is a permutation of {1, 2, . . . , n} such that
aσ(i−1) ≥ aσ(i) for all i = 2, . . . , n.

We now briefly illustrate the use of the OWA operator in the computation
of several trust values on different sources S, S1, . . . , S10 providing a service.
Here, we shall focus on the aggregation step only. At an initial time t = 0
there are four users, Ur1, . . . ,Ur4, voting randomly on the resources. For
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Table 1. Trust values at t = 0

V S Ur1 Ur2 Ur3 Ur4 T

T S1 0.2 0.5 0.5 0.8 0.59
T S2 0.5 0.5 0.8 0.2 0.59
F S3 0.5 0.8 0.8 0.2 0.68
T S4 0.2 0.2 0.2 0.5 0.32
F S5 0.8 0.5 0.5 0.5 0.62
F S6 0.2 0.5 0.5 0.8 0.59
F S7 0.5 0.8 0.2 0.8 0.68
T S8 0.5 0.8 0.2 0.2 0.53
F S9 0.8 0.2 0.2 0.8 0.62
F S10 0.2 0.5 0.2 0.8 0.53

Table 2. Trust values at t = 1

V S Ur1 Ur2 Ur3 Ur4 U1 T

F S3 0.8 0.5 0.5 0.2 0.2 0.54
F S7 0.2 0.8 0.5 0.5 0.2 0.54
F S5 0.2 0.8 0.8 0.5 0.2 0.62
F S9 0.5 0.2 0.2 0.2 0.2 0.3
T S1 0.5 0.5 0.5 0.8 0.8 0.68
T S2 0.8 0.5 0.5 0.2 0.8 0.66
F S6 0.8 0.8 0.8 0.5 0.2 0.72
T S8 0.2 0.2 0.8 0.5 0.8 0.62
F S10 0.8 0.2 0.2 0.8 0.2 0.56
T S4 0.8 0.2 0.5 0.2 0.8 0.62

the sake of simplicity, we assume that these users use only three fuzzy values
to represent their evaluation of trustworthiness: 0.8 (very trustworthy), 0.5
(trustworthy), and 0.2 (untrustworthy).

Also, we assume that, at different times, four new users join in to vote on
all resources. In our example these users, U1, . . . ,U4, are assumed to know
resources’ trustworthiness, and again express it using the fuzzy values 0.8
(very trustworthy) and 0.2 (untrustworthy).

It is easy to see that after U1, . . . ,U4 joined in, resources providing a good
service tend to assume high trustworthiness values even if users Ur1, . . . ,Ur4
keep on voting randomly. The following tables illustrate, at different times, the
evolution of trustworthiness values related to different partners (Tables 1–4).7

At time t = 1 a single user U1 votes correctly on services provided by
partners S1, . . . , S10.

A new user U2 joins in at time t = 2.
At time t = 3 three users (U1,U2,U3) vote correctly and partners pro-

viding a good service rapidly earn first positions in the table.

7At time t = 0 partners are ordered casually and voters express random votes.
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Table 3. Trust values at t = 2

V S Ur1 Ur2 Ur3 Ur4 U1 U2 T

F S6 0.2 0.5 0.5 0.8 0.2 0.2 0.5
T S1 0.5 0.5 0.8 0.2 0.8 0.8 0.7
T S2 0.5 0.8 0.8 0.2 0.8 0.8 0.74
F S5 0.2 0.2 0.2 0.5 0.2 0.2 0.29
T S8 0.8 0.5 0.5 0.5 0.8 0.8 0.71
T S4 0.2 0.5 0.2 0.8 0.8 0.8 0.67
F S10 0.5 0.8 0.8 0.8 0.2 0.2 0.67
F S3 0.5 0.8 0.2 0.2 0.2 0.2 0.44
F S7 0.8 0.5 0.2 0.8 0.2 0.2 0.57
F S9 0.8 0.8 0.8 0.8 0.2 0.2 0.71

Table 4. Trust values at t = 3

V S Ur1 Ur2 Ur3 Ur4 . . . U3 T

T S2 0.8 0.2 0.5 0.2 0.8 0.8 0.7
T S8 0.2 0.8 0.5 0.5 0.8 0.8 0.73
F S9 0.2 0.8 0.8 0.5 0.2 0.2 0.53
T S1 0.5 0.8 0.2 0.2 0.8 0.8 0.7
T S4 0.5 0.5 0.5 0.8 0.8 0.8 0.74
F S10 0.8 0.5 0.5 0.2 0.2 0.2 0.47
F S7 0.8 0.2 0.8 0.5 0.2 0.2 0.53
F S6 0.2 0.2 0.8 0.5 0.2 0.2 0.41
F S3 0.8 0.2 0.5 0.8 0.2 0.2 0.53
F S5 0.8 0.8 0.8 0.8 0.2 0.2 0.67

Table 5. Trust values at t = 4

V S Ur1 Ur2 Ur3 Ur4 . . . U4 T

T S4 0.5 0.8 0.8 0.2 0.8 0.8 0.77
T S8 0.5 0.8 0.2 0.2 0.8 0.8 0.73
T S2 0.8 0.8 0.2 0.2 0.2 0.2 0.75
T S1 0.2 0.5 0.5 0.2 0.8 0.8 0.69
F S5 0.5 0.5 0.5 0.5 0.8 0.8 0.42
F S9 0.5 0.5 0.8 0.5 0.2 0.2 0.48
F S7 0.8 0.5 0.8 0.8 0.2 0.2 0.59
F S3 0.8 0.2 0.2 0.8 0.2 0.2 0.45
F S10 0.5 0.2 0.8 0.8 0.2 0.2 0.5
F S6 0.8 0.2 0.8 0.8 0.2 0.2 0.55

At time t = 4, with four user expressing a correct evaluation on partners,
the fake ones are discarded.

We now order partners based on column T of Table 5:

S4(T )(0.77), S2(T )(0.75), S8(T )(0.73),
S1(T )(0.69), S7(F )(0.59), S6(F )(0.55),
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S10(F )(0.5), S9(F )(0.48), S3(F )(0.45),
S5(F )(0.42).

As expected, “good” partners tend to bubble upwards. More impor-
tantly, should the appropriate protocol be adopted, this would happen even
if Ur1, . . . ,Ur4 showed a consistently malicious behavior instead of voting
randomly as in this example. For a complete experimentation, see [4].

6 Fuzzy Rule-Based Methods for Trust Management

While directly aggregating reputation values provides a highly efficient solu-
tion for trust computation, approaches based on fuzzy reasoning look very
promising inasmuch they provide a high-level symbolic representation of trust
computation as an inference process, potentially supporting full human under-
standing of trust-based decisions. Aggregated reputation values become one
of the (potentially many) context representation inputs that can be used by a
fuzzy rule-based system to assess the trustworthiness of a potential partner in
a transaction. In [30], the authors present a P2P reputation system based on
fuzzy logic inferences, aimed at handling uncertainty and incomplete informa-
tion in peer trust reports. This system aggregates peers’ reputations with an
affordable message overhead. Research by one of the authors of the present pa-
per [27] discusses the choice of fuzzy inference. Recent analysis [28] has shown
that Mamdani-type and Sugeno-type fuzzy inference methods have their mer-
its in different situations. For example, the more compact Sugeno-type fuzzy
inference approach reduces the computational burden, resulting in faster se-
lection of partners. However, to measure the quality of service (QoS) after
a business interaction, a Mamdani-type fuzzy inference represents a better
choice, since it allows higher flexibility and a more intuitive approach.

7 Conclusions

We described discussed recent fuzzy approaches for establishing trust between
unknown parties. Aggregation and rule-based techniques for trust computa-
tion show a very good potential for integration. For instance, automatic gen-
eration and tuning of fuzzy rules based on voting behavior is a well-known
task based either on the construction of a fuzzy decision tree or on the di-
rect generation of fuzzy rules (e.g. association rules, gradual rules, or fuzzy
summaries). In all these approaches, linguistic terms definitions are tuned on-
line to improve fuzzy reasoning. In our framework, adaptation of rules could
be performed based on the output of vote aggregation. Another promising
direction of research is expressing reputation values as fuzzy numbers to be
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(fuzzily) incremented whenever the client successfully interacts with the ser-
vice and decremented when an interaction is a failure or, automatically, after
a (crisp) time-to-live.
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Proposal of Holographic 3D-Movie Generation
Using Coherent Neural-Network Interpolation

Akira Hirose and Tomoaki Higo

1 Introduction

Computer-generated hologram (CGH) widens the application fields rapidly
in particular in recent three-dimensional movies. For example, many optics
researchers investigate flexible optical tweezers to manipulate small particles
and biological cells in water [1]. Phase CGH is most suitable for this purpose
because of the extremely low optical-power loss [2].

However, the generation of even a single CGH requires a large calculation
cost. To generate a movie, which is a stream of still CGH images, spends huge
amount of time. Realistically meaningful movie streams, however, including
the optical tweezers, present continuous deformation of object. Therefore, if
we can interpolate CGH images generated sparsely in time, the calculation
cost will greatly be reduced.

We propose a small-calculation-cost method to generate a CGH stream on
the basis of coherent neural networks that deal with phase information with
generalization ability in the carrier-frequency domain.

2 Hologram Interpolation Utilizing Generalization

Neural networks possess generalization ability. Coherent neural networks, hav-
ing a carrier frequency f , can change the learning and processing behav-
ior according to f . Then the frequency-domain generalization will bring a
smoothly-changing time-sequential phase signal [3].

Figure 1 shows a schematic diagram of the proposed system. First, we
calculate a certain number of CGH images sparsely in the stream, and map
them at frequency points fp in the carrier-frequency domain in the coherent
neural network, whose neuron is shown in Fig. 2. Then we use them as teacher
signals of learning [4]. For generating a smooth three-dimensional movie, we
sweep f to change continuously the CGH images time-sequentially.
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Fig. 1. Experimental setup of the neurally-interpolated phase-holographic genera-
tion of three-dimensional movie
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Fig. 2. Coherent neuron with multiple connections for a single pixel at position
(i, j) on the Spatial light modulator (SLM) functioning as a hologram

3 Simulation Experiment

Figure 3 shows a simulation result. Teacher images exist every four steps. Cal-
culation time becomes 1/7 of conventional one for three-dimensional images.

4 Summary

We have proposed a small-calculation-cost method to generate a three-
dimensional movie based on coherent neural networks.
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t

Fig. 3. Interpolated time-sequential hologram (upper, phase images in gray scale)
and reconstructed images (lower, brightness on screen in gray scale) as the optical
carrier frequency f is swept in the interpolation calculation: Single point moving on
an arc



Blur Identification Using Neural Network
for Image Restoration

Igor Aizenberg, Dmitriy Paliy, Claudio Moraga and Jaakko Astola

Summary. A prior knowledge about the distorting operator and its parameters is of
crucial importance in blurred image restoration. In this paper the continuous-valued
multilayer neural network based on multivalued neurons (MLMVN) is exploited for
identification of a type of blur among six trained blurs and of its parameters. This
network has a number of specific properties and advantages. Its backpropagation
learning algorithm does not require differentiability of the activation function. The
functionality of the MLMVN is higher than the ones of the traditional feedforward
neural networks and a variety of kernel-based networks. Its higher flexibility and
faster adaptation to the mapping implemented make possible an accomplishment
of complex problems using a simpler network. Therefore, the MLMVN can be used
to solve those nonstandard recognition and classification problems that cannot be
solved using other techniques.

Key words: Derivative free backpropagation learning, Complex-valued neural
network, Image restoration.

1 Introduction

A multilayer neural network based on multivalued neurons (MLMVN) has
been introduced in [1] and then investigated and developed further in [2].
This network consists of multivalued neurons (MVN). That is a neuron with
complex-valued weights and an activation function, defined as a function of
the argument of a weighted sum. This activation function was proposed in
1971 in the pioneer paper of Aizenberg et al. [3].

The multivalued neuron was introduced in [4]. It is based on the prin-
ciples of multiple-valued threshold logic over the field of complex numbers
formulated in [5] and then developed in [6]. A comprehensive observation of
the discrete-valued MVN, its properties and learning is presented in [6]. A
continuous-valued MVN and its learning are considered in [1,2]. In this paper
we consider the continuous-valued MVN (further simply MVN) only.

The most important properties of MVN are: the complex-valued weights,
inputs and output lying on the unit circle, and the activation function, which
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maps the complex plane into the unit circle. It is important that MVN learning
is reduced to the movement along the unit circle. The MVN learning algo-
rithm is based on a simple linear error correction rule and it does not require
differentiability of the activation function.

Different applications of MVN have been considered during recent years,
e.g., MVN as a basic neuron in the cellular neural networks [6], as the basic
neuron of the neural-based associative memories [6–10], as the basic neuron in
a variety of pattern recognition systems [10–12], and as a basic neuron of the
MLMVN [1, 2]. The MLMVN outperforms a classical multilayer feedforward
network and different kernel-based networks in the terms of learning speed,
network complexity, and classification/prediction rate tested for such popular
benchmarks problems as the parity n, the two spirals, the sonar, and the
Mackey–Glass time series prediction [1,2]. These properties of MLMVN show
that it is more flexible and adapts faster in comparison with other solutions.
In this paper we apply MLMVN to identify blur and its parameters, which is
a key problem in image restoration.

Usually blur refers to the low-pass distortions introduced into an image. It
can be caused, e.g., by the relative motion between the camera and the original
scene, by the optical system which is out of focus, by atmospheric turbulence
(optical satellite imaging), aberrations in the optical system, etc. [13]. Any
type of blur, which is spatially invariant, can be expressed by the convolu-
tion kernel in the integral equation [14, 15]. Hence, deblurring (restoration)
of a blurred image is an ill-posed inverse problem [16], and regularization is
commonly used when solving this problem [16].

There is a variety of sophisticated and efficient deblurring techniques such
as deconvolution based on the Wiener filter [13, 17], nonparametric image
deblurring using local polynomial approximation with spatially-adaptive scale
selection based on the intersection of confidence intervals rule [17], Fourier-
wavelet regularized deconvolution [18], expectation-maximization algorithm
for wavelet-based image deconvolution [19], etc. All these techniques assume
a prior knowledge of the blurring kernel or its point spread function (PSF)
and its parameter.

When the blurring operator is unknown, the image restoration becomes
a blind deconvolution problem [20–22]. Most of the methods to solve it are
iterative, and, therefore, they are computationally costly. Due to the presence
of noise they suffer from the stability and convergence problems [23].

The original solutions of blur identification problem that are based on the
use of MVN-based neural networks were proposed in [12, 24, 25]. Two differ-
ent single-layer MVN-based networks have been used to identify blur and its
parameter (e.g., variation for the Gaussian blur, extent for motion blur, etc.)
in [24]. The results were good, but this approach had some disadvantages. For
instance, the networks used have specific architecture with no universal learn-
ing algorithm, thus each neuron was trained separately. Another disadvantage
is the use of too many spectral coefficients as features (quarter of image size).
Thus the learning process was heavy.
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Significant improvement was obtained in [25] comparing to [24]. A single
neural network (the discrete-valued MLMVN) with the original backpropa-
gation training scheme was used to identify both smoothing operator and
its parameter on a single observed noisy image. However, the discrete-valued
MLMVN in [25] had such a drawback as discrete inputs which results in quan-
tization error of pattern vectors. This reduces its applicability.

In this paper, we propose to use the continuous-valued MLMVN (fur-
ther simply MLMVN) to solve both the blur and its parameters identification
problems in order to overcome the disadvantages mentioned above. The modi-
fication of the MLMVN results in significant improvement of the functionality.

2 Image Restoration Problem

Mathematically, a variety of image capturing principles can be modeled by the
Fredholm integral of the first kind in R

2 space z(t) =
∫

x
v(t, l)y(l)dl, where

t, l ∈ X ⊂ R
2, v is a point-spread function (PSF) of a system, y is an image

intensity function, and z(t) is an observed image [15]. A natural simplification
is that the PSF v is shift-invariant which leads to a convolution operation in
the observation model. We assume that the convolution is discrete and noise
is present. Hence, the observed image z given in the following form:

z(t) = (v ⊗ y)(t) + ε(t), (1)

where “⊗” denotes the convolution, t is defined on the regular L1 × L2 lat-
tice, t ∈ X = {(t1, t2); ti = 0, 1, . . . Li − 1, i = 1, 2}, and ε(t) is a noise.
It is assumed that the noise is white Gaussian with zero-mean and variance
σ2, ε(t) ∼ N(0, σ2). In the 2D frequency domain the model (1) takes the
form:

Z(ω) = V (ω)Y (ω) + ε(ω), (2)

where Z(ω) = F{z(t)} is a representation of a signal z in a Fourier do-
main and F{·} is a discrete Fourier transform, V (ω) = F{v(t)}, Y (ω) =
F{y(t)}, ε(ω) = F{ε(t)}, and ω ∈ W, W = {(ω1, ω2); ωi = 2πki/Li, ki =
0, 1, . . . , Li − 1, i = 1, 2} is the normalized 2D frequency.

The removal of the degradation caused by a PSF is an inverse problem,
widely referred as a deconvolution. Usually this problem is ill-posed which re-
sults in the instability of a solution, i.e., it is highly sensitive to the noise. The
stability can be provided by constraints imposed on the solution. A general
approach to this kind of problems refers to the methods of Lagrange multi-
pliers and the Tikhonov regularization [16]. The regularized inverse filter can
be obtained as a solution of the least square problem with a penalty term:

J = ‖Z − V Y ‖22 +α ‖Y ‖22, (3)

where α ≥ 0 is a regularization parameter and ‖·‖2 denotes l2-norm. Here, the
first term ‖Z − V Y ‖22 gives the fidelity to the available data Z and the second
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term bounds the power of this estimate by means of the regularization para-
meter α. In (3), and further, we omit the argument ω in the Fourier transform
variables. We obtain the solution in the following form by minimizing (3):

Ŷ =
V

|V |2 +α
Z, ŷα(x) = F−1{Ŷ }. (4)

where Ŷ is an estimate of Y , and V denotes complex-conjugate value of V .
In this paper we consider Gaussian, motion, rectangular (boxcar) and di-

agonal blurs. We aim to identify both blur, which is characterized by PSF,
and its parameter using a single network.

The PSF v describes how the point source of light is spread over the image
plane. It is one of the main characteristics of the optical system. For a variety
of devices, like photo or video camera, microscope, telescope, etc., PSFs are
often approximated by the Gaussian function:

v(t) =
1

2πτ2
exp

(
− t

2
1 + t22
τ2

)
(5)

where τ2 is a parameter of the PSF (the variance of the Gaussian function)
(Fig. 1a). Its Fourier transform V is also a Gaussian function and its absolute
values |V | are shown in Fig. 1d.

Another example of blur is a uniform linear motion which happens while
taking a picture of a moving object relatively to the camera:

v(t) =
{

1
h ,

√
t21 + t22 < h/2, t1 cosφ = t2 sinφ,

0, otherwise,
(6)

where h is a parameter which depends on the velocity of the moving object
and describes the lenght of motion in pixel, and φ is the angle between the
motion orientation and the horizontal axis. Any unifrom function like (6) is
characterized by the number of SLOPES in the frequency domain (Fig. 1b,e).
The uniform rectangular blur is described by the following function (Fig. 1c):

v(t) =
{

1
h2 |t1| < h

2 , |t2| <
h
2 ,

0, otherwise,
(7)

where parameter h defines the size of smoothing area. The frequency charac-
teristics of (7) are shown in Fig. 1f.

In order to solve (4) one should know PSF V . In this paper we propose
to use a neural network to recognize type and parameter of V from the noisy
observation Z.

3 Multilayer Neural Network Based On Multi-Valued
Neurons

A continuous-valued MVN has been introduced in [1,2]. It performs a mapping
between n inputs and a single output using n+1 complex-valued weights
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a)

b)

c)

d)

e)

f)

Fig. 1. Types of PSF used: (a) Gaussian PSF with τ = 2 and size 21 × 21; (b)
Linear uniform motion blur of the length 5; (c) Boxcar blur of the size 3 × 3; (d)
frequency characteristics of (a); (e) frequency characteristics of (b); (f) frequency
characteristics of (c)

f(x1, . . . , xn) = P (w0 + w1x1 + . . .+ wnxn), (8)

whereX = (x1, . . . , xn) is a vector of complex-valued inputs (a pattern vector)
and W = (w0, w1, . . . , wn) is a weighting vector. P is the activation function
of the neuron:

P (z) = exp(i(arg z)) = eiArg z =
z

|z| , (9)

where z = w0 +w1x1 + . . .+wnxn is a weighted sum, arg z is an argument of
the complex number z, Arg z is a main value of the argument of the complex
number z and |z| is its modulo. The function (9) maps the complex plane into
a whole unit circle.

The MVN learning is reduced to the movement along the unit circle. This
movement does not require differentiability of the activation function. Any
direction along the circle always leads to the target. The shortest way of this
movement is completely determined by an error that is a difference between
the desired and actual outputs. The corresponding learning rule is [1, 2]:
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Wr+1 =Wr +
Cr

(n+ 1)
(εq − eiArg z)X̄ =Wr +

Cr

(n+ 1)

(
εq − z

|z|

)
X̄, (10)

where X̄ denotes vector with the complex-conjugated elements to input pat-
tern vector X, Wr is a current weighting vector, Wr+1 is a weighting vector
after correction, Cr is a learning rate. A modified learning rule is [1, 2]:

Wr+1 =Wr +
Cr

(n+ 1) |zr|

(
εq − z

|z|

)
X̄, (11)

where zr is a current value of the weighted sum.
A multilayer feedforward neural network based on multivalued neurons

(MLMVN) has been proposed in [1, 2]. It refers to the basic principles of
the network with a feedforward dataflow through nodes proposed in [26] by
Rumelhart and McClelland. The most important is that there is a full connec-
tion between the consecutive layers (the outputs of neurons from the preceding
layer are connected with the corresponding inputs of neurons from the follow-
ing layer). The network contains one input layer, m-1 hidden layers and one
output layer. Let us use here the following notations. Let Tkm be a desired
output of the kth neuron from the mth (output) layer; Ykm be an actual out-
put of the kth neuron from the mth (output) layer. Then the global error of
the network taken from the kth neuron of the mth (output) layer is calculated
as follows:

δ∗km = Tkm − Ykm. (12)

The square error functional for the sth pattern Xs = (x1, . . . , xn) is as
follows:

Es =
∑

k

(δ∗km)2(W ), (13)

where δ∗km is a global error taken from the kth neuron of the mth (output)
layer, Es is a square error of the network for the sth pattern, and W denotes
all the weighting vectors of all the neurons of the network. The mean square
error functional for the network is defined as follows:

E =
1
N

N∑

s=1

Es, (14)

where N is a total number of patterns in the training set.
Following the backpropagation learning algorithm for the MLMVN pro-

posed in [1, 2], the errors of all the neurons from the network are determined
by the global errors of the network (12). Finally, the MLMVN learning is
based on the minimization of the error functional (14). It is fundamental that
the global error of the network consists not only of the output neurons errors,
but of the local errors of the output neurons and hidden neurons. It means
that in order to obtain the local errors for all neurons, the global error must
be shared among these neurons.
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Let us use the following notations. Let wkj
i be the weight corresponding

to the ith input of the kjth neuron (kth neuron of the jth level), Yij be the
actual output of the ith neuron from the jth layer (j = 1, . . . ,m), and Nj be
the number of the neurons in the jth layer (it means that the neurons from
the j+1st layer have exactly Nj inputs). Let x1, . . . , xn be the network inputs.

Hence, the local errors are represented in the following way. The errors of
the mth (output) layer neurons are:

δkm =
1
sm
δ∗km, (15)

where km is a kth neuron of the mth layer; sm = Nm−1+1, i.e., the number of
all neurons on the previous layer (layer m-1 which the error is backpropagated
to) incremented by one. The errors of the hidden layers neurons are computed
as follows:

δkj =
1
sj

Nj+1∑

i=1

δij+1(w
ij+1
k )−1, (16)

where kj specifies the kth neuron of the jth layer (j = 1, . . . ,m − 1); sj =
Nj−1 + 1, j = 2, . . . ,m, s1 = 1 is the number of all neurons on the layer j-1
incremented by one. Thus, (15),(16) determine the error backpropagation for
MLMVN. It is worth to stress on its principal distinction from the classical
error backpropagation: (15),(16) do not contain a derivative of the activation
function!

A factor 1/sj in (15),(16) ensures sharing of the particular neuron error
among all the neurons on which this error depends. It should be mentioned
that for the just hidden layer the parameter s1 = 1 because there is no previous
hidden layer, and there are no neurons the error may be shared with.

The weights for all neurons of the network are corrected after calculation
of the errors. In order to do that, we use the learning rule (10) (for the output
layer) and (11) (for the hidden layers). Hence, the following correction rules
are used for the weights [1, 2]:

w̃kj
i = wkm

i +
Ckm

(Nm + 1)
δkm

¯̃Yim−1, i = 1, . . . , n,

w̃km
0 = wkm

0 +
Ckm

(Nm + 1)
δkm,

(17)

for the neurons from the mth (output) layer (kth neuron of the mth layer),

w̃kj
i = wkj

i +
Ckj

(Nj + 1)|zkj |
δkj

¯̃Yij−1, i = 1, . . . , n,

w̃kj
0 = wkj

0 +
Ckj

(Nj + 1)|zkj |
δkj ,

(18)

for the neurons from the second till m-1st hidden layers (kth neuron of the
jth layer (j = 2, . . . ,m− 1), and



448 I. Aizenberg et al.

w̃k1
i = wk1

i +
Ck1

(n+ 1)|zk1|
δk1x̄i, i = 1, . . . , n,

w̃k1
0 = wk1

0 +
Ck1

(n+ 1)|zk1|
δk1,

(19)

for the neurons of the first hidden layer.
It should be mentioned that in our simulations we used Ckj = 1 in

(17)–(19).
In general, the learning process should continue until the following condi-

tion is satisfied:

E =
1
N

N∑

s=1

∑

k

(δ∗kms)
2(W ) =

1
N

N∑

s=1

Es ≤ λ, (20)

where λ determines the precision of learning. In particular, in the case when
λ = 0, (20) is transformed to ∀k,∀s δ∗kms = 0.

4 Simulations

4.1 Training Set Formation

The observed image z(t) is modeled as the output of a linear shift-invariant
system (1) which is characterized by the PSF v. Since in the frequency domain
this model is a product of the true object function Y and V we state the
problem as a recognition of the shape of V and its parameters from the power-
spectral density (PSD) of the observation Z, i.e., from |Z|2 = Z ·Z. In terms
of statistical expectation we can rewrite that as follows:

E
{
|Z|2

}
= E

{
|Y V + n|2

}
= |Y |2 |V |2 + σ2, (21)

where σ2 is the variance of noise in (2).
Examples of log |Z| values are shown in Fig. 2. The distortions of PSD for

the test image Cameraman (Fig. 2a) that are typical for each type of blur
(Fig. 2b,c) are clearly visible in Fig. 2e,f.

For the sake of simplicity we consider the image z(t) with the equal sizes,
i.e., L = L1 = L2 in (1),(2). In order to obtain the training vector X =
(x1, . . . , xn) in (19) as an input data of the network, and taking into account
that the PSF v is symmetrical, PSD of z(t) (21) is used as follows:

xj = exp
(

2πi · (K − 1)
log (|Z (ωk1,k2)|)− log (|Zmin|)

log (|Zmax|)− log (|Zmin|)

)
, (22)

where
⎧
⎨

⎩

j = 1, . . . , L/2− 1, for k1 = k2, k2 = 1, . . . , L/2− 1,
j = L/2, . . . , L− 2, for k1 = 1, k2 = 1, . . . , L/2− 1,
j = L− 1, . . . , 3L/2− 3, for k2 = 1, k1 = 1, . . . , L/2− 1,

(23)



Blur Identification Using Neural Network for Image 449

 
a)  d) 

g)

b)  e) h)

c) f ) i) 

Fig. 2. True test Cameraman image (a) blurred by: (b) Gaussian blur with τ = 2;
(c) boxcar blur of the size 9× 9. Logarithm of the PSD of the true test Cameraman
image (d) blurred by: (e) Gaussian blur with τ = 2; (f) rectangular blur of the
size 9 × 9. The normalized multiplied by K-1 logarithm values of PSD of Z used
as arguments to generate training vectors in (22),(23) obtained from the true test
Cameraman image (g) blurred by: (h) Gaussian blur with τ = 2; (i) boxcar blur of
the size 9 × 9

and Zmax = maxk1,k2 (Z (ωk1,k2)), Zmin = mink1,k2 (Z (ωk1,k2)), and K is
a number of sectors in (9). Eventually, the length of the pattern vector is
n = 3L/2− 3.

Some examples of vectors of PSD log values multiplied by K-1 used in
(22),(23) to obtain the input training vector X are shown in Fig. 2g,i.

4.2 Neural Network Structure

We provide two experiments in order to test performance of the neural
network. In the first experiment (Experiment 1) we consider six types of
blur with the following parameters. The Gaussian blur is considered with
τ ∈ {1, 1.33, 1.66, 2, 2.33, 2.66, 3} in (5); the linear uniform horizontal φ = 0
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motion blur of the lengths 3, 5, 7, 9, in (6); the data corrupted by the linear
uniform vertical φ = 90 motion blur of the length 3, 5, 7, 9, in (6); the lin-
ear uniform diagonal motion from South-West to North-East blur (φ = 45 in
(6)) of the lengths 3, 5, 7, 9, in (6); the linear uniform diagonal motion from
South-East to North-West blur (φ = 135) of the lengths 3, 5, 7, 9, in (6); rec-
tangular has sizes 3×3, 5×5, 7×7, 9×9, in (7). The MLMVN has two hidden
layers consisting of 5 and 35 neurons, respectively, and the output layer which
consists of the same number of neurons as the number of classes, i.e., types
of blur. Since we consider six types of blur (Gaussian, rectangular, and the
four motion ones: linear uniform horizontal, φ = 0 in (6), vertical, φ = 90 in
(6), and two diagonal φ = 45 and φ = 135 in (6) the output layer contains
six neurons. Therefore, the structure of network is 5→35→6. Each neural el-
ement of the output layer has to classify a parameter of the corresponding
type of blur, and reject other blurs (as well, as an unblurred image). The
MVN activation function (9) for the output layer neurons has a specific form
(Fig. 3): the equal subdomains (nonoverlapping sectors) of the complex plane
are reserved to classify a particular blur and its parameters and to reject other
blurs and unblurred images. For instance, the first neuron is used to identify
the Gaussian blur and to reject the non Gaussian ones. If the weighted sum
for the first neuron at the output (third) layer hits jth group, j ∈ {1, . . . , 7},
then the input vector X = (x1, . . . , xn) corresponds to the Gaussian blur and
its parameter is τj .

In the second experiment (Experiment 2) we are targeting classification of
a single Gaussian blur type, but with much higher precision. The grid of the
blur’s parameters is finer with significantly larger number of them on the same
interval τ ∈ {1 + 0.15∆ : ∆ = 0, 1, . . . , 14} in (5), which makes the problem of
classification more difficult. The output layer of the network contains in this
case a single neuron, and the network structure is 5→ 35→1.

Fig. 3. Structure of the neural element on the output layer of MLMVN
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4.3 Results

We have used a database which consists of 150 grayscale images with sizes
256× 256 to generate the training and testing sets. Hundred images are used
to generate the training set and 50 for the testing set. The images with no blur
and no noise are also included in both the training and testing set. Eventually,
the training set consists of 2,700 pattern vectors, and the testing set consists
of 1,350 vectors for the Experiment 1, and 1,600 and 800 for the Experiment
2, correspondingly. The level of noise in (1) is selected to satisfy the blurred
signal-to-noise ratio (BSNR) [17,18] to be equal to 40 dB.

When the training set is generated the backpropagation training algorithm
(15)–(19) is exploited to train MLMVN.

The trained network is used to make classification on the testing set. The
classification rate is used as an objective criterion of classification. It is com-
puted as the number of correct classifications in terms of percentage (%) for
each type of blur.

The results are presented in Table 1. The first row corresponds to the
recognition of the original nonblurred images. All the output layer neurons
should classify them as those that are not distorted by any of the considered
types of blur. Finally, the classification rate for images which are not blurred
is computed as average among all rejections.

Other rows present the results for blurred images classification and iden-
tification a parameter of a blurring function. The results for six types of blur
(Experiment 1) are better or comparative with those presented in [12,24,25].
The best ones are highlighted by the bold font. It was succeeded for the first
time to classify six blurs (compare to three in [12,24] and four in [25]).

The results of using the MLMVN for image reconstruction are shown in
Fig. 4 for the test Cameraman image. The adaptive deconvolution technique
proposed in [17] has been used after the blur and its parameter identified.
This technique is available following the link http://www.cs.tut.fi/∼lasip/.

Table 1. Classification rate for Blur identification

Blur [12],[24] Discrete-valued
MLMVN [25]

Continuous-valued
MLMVN

Exp. 1 Exp. 21

No blur n/a 100% 96.0% 90.0%
Gaussian 93.5% 98.7% 99.0% 85.0%
Rectangular 95.6% 97.9% 98.0% n/a
Motion Horizontal 98.1% 97.8% 98.5% n/a
Motion Vertical n/a 97.2% 98.3% n/a
Motion North-East Diagonal n/a n/a 97.9% n/a
Motion North-West Diagonal n/a n/a 97.2% n/a

1Experiment 1 and Experiment 2 are not comparable to each other because they
simulate the different problems (see Sect. 4).
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The image was blurred by the Gaussian PSF (5) with τ = 2. It is seen that if
classified PSF coincides with the true PSF then the value of improved signal-
to-noise ratio (ISNR) [17] criterion is 3.88 dB. If the image is blurred using
τ = 1.835 or τ = 2.165 then the network classifies them as blurred with τ = 2
and reconstruction is applied using the recognized value. Then, the error of
reconstruction is approximately 0.6 dB lower, comparing to the accurate value.

In order to reduce this error we propose to consider Experiment 2. Results
are given for the Gaussian blurring function with a great denser than in Ex-
periment 1 grid consisting of 15 parameters on the same interval. It is evident
that the error of classification is formally higher (see Table 1). Nevertheless, it
is very important that the error of reconstruction for the similar experiment
as shown in Fig. 4 does not exceed 0.1 dB, which is a minor value in practice.
During the reconstruction simulation we assumed that the images are blurred

  
a) b)

  
c) d)

Fig. 4. Test noisy blurred Cameraman image with Gaussian PSF τ = 2 (a) re-
constructed using the regularization technique [17] after the blur and its parameter
has been identified as Gaussian PSF with τ = 2 (ISNR = 3.88 dB) (b);. the orig-
inal Cameraman image blurred by the Gaussian PSF with τ = 1.8352 and then
reconstructed using the regularization technique [17] after the blur and its para-
meter has been identified as Gaussian PSF with τ = 2 (ISNR = 3.20 dB) (c); the
original Cameraman image blurred by Gaussian PSF with τ = 2.1652 and then re-
constructed using the regularization technique [17] after the blur and its parameter
has been identified as Gaussian PSF with τ = 2 (ISNR = 3.22 dB) (d)

2This blurred image does not differ visually from the one in Fig. 4a.
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with τ = 1.925 and τ = 2.075, while the reconstruction has been done as for
τ = 2.

The number of features used for classification in this paper is 381 while
in [12, 24] it is equal to 16384. It is worth to note that time spent on the
network training for Experiment 1 was about 24 hours on a computer with
Pentium 4, 3.2 GHz CPU and 45 minutes for Experiment 2 on the same
computer.

5 Conclusions

In this paper we propose a novel technique for blur identification using a sin-
gle observed image. The technique employs a continuous-valued feedforward
MLMVN which is trained for a database of images. Then this network is used
to identify both type and parameters of the blur. This identification procedure
is computationally fast and cheap. The obtained results show the high effi-
ciency of the proposed approach. It is shown by simulations that this network
can be used as an efficient estimator of PSF, whose precise identification is of
crucial importance for the image deblurring.
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Solving the Parity n Problem and Other
Nonlinearly Separable Problems Using a Single
Universal Binary Neuron

Igor Aizenberg

Summary. A universal binary neuron (UBN) operates with the complex-valued
weights and the complex-valued activation function, which is the function of the
argument of the weighted sum. This makes possible the implementation of the non-
linearly separable (nonthreshold) Boolean functions on the single neuron. Hence the
functionality of the UBN is incompatibly higher than the functionality of the tra-
ditional perceptron, because this neuron can implement the nonthreshold Boolean
functions. The UBN is closely connected with the discrete-valued multi-valued neu-
ron (MVN). This is also a neuron with the complex-valued weights and the complex-
valued activation function, which is the function of the argument of the weighted
sum. A close relation of the MVN and UBN and of the multiple-valued threshold
functions and P -realizable Boolean functions is considered in this paper. A modified
learning algorithm for the UBN is presented. It is shown that such classical non-
linearly separable problems as the XOR and Parity n can be easily solved using a
single UBN, without any network.

Key words: XOR problem, Parity problem, Complex-valued neuron.

1 Introduction

A well-known limitation of the classical Rosenblat’s perceptron [1], which
cannot implement the nonthreshold (nonlinearly separable) Boolean functions,
formed a common view on the implementation of the nonthreshold Boolean
functions. This view became a classical “axiom” that states: a nonlinearly
separable Boolean function cannot be implemented using a single neuron,
and to implement it, a network has to be designed [2]. It was formulated and
repeated many times in many later issues (see, e.g., [3]).

The classical examples of the nonlinearly separable problem that consid-
ered unsolvable using a single neuron are the XOR problem (mod 2 addition
of the two Boolean variables) and the Parity n problem, which is a general-
ization of the XOR problem for n variables [2,3]. These two examples one can
find in any modern fundamental book on neural networks (see, e.g., [3]). The
number of linearly separable Boolean functions of n variables is very small in
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comparison with the number of all Boolean functions of n variables for n > 3.
Really, if for n = 2 there are 14 linearly separable functions of 16 (only the
XOR function and its negation are nonlinearly separable), for n = 3 there are
104 linearly separable functions of 256, then for n = 4 there are only around
2,000 linearly separable functions of 65,536 [4].

Is it possible to design such a neuron, which will make it possible to over-
come a limitation of the classical perceptron?

A direction for solving this problem has been proposed in [5, 6]. The pro-
posed idea was concentrated on the use of the complex-valued weights and
an activation function, which is a function of the argument of the weighted
sum. This idea was developed in [7, 8] and deeply considered in [9]. Actually,
this idea can be considered as a generalization of an approach that was used
for development of a theory of multiple-valued threshold logic over the field
of complex numbers [10,11], where the use of the complex-valued weights and
of a complex activation function has been proposed for the first time.

These ideas form a theoretical background behind a multi-valued neuron
(MVN [12]) and a universal binary neuron (UBN [8]). The XOR problem has
been easily solved using a single UBN in [9].

In this paper we consider how the P -realizable Boolean functions are con-
nected with the multiple-valued threshold functions, and how the UBN is
connected with the MVN, respectively. We will consider how the close rela-
tionships among the UBN and MVN are used for simplification of the UBN
learning, which can be reduced to the MVN learning. The corresponding mod-
ified learning algorithm for the UBN will be considered. Then this algorithm
will be used for solving the Parity n problem (for 3 ≤ n ≤ 14) using a single
UBN. We will also consider how the edge detecting Boolean functions that are
used for edge detection by narrow direction and that are nonlinearly separa-
ble may be implemented using a single UBN and the same modified learning
algorithm.

2 UBN and MVN

Let us recall the most important basic notions related to the UBN and MVN.
A key point behind a UBN is a notion of a P -realizable Boolean function.
The Boolean function f(x1, . . . , xn) is called a P-realizable function over

the field of complex numbers C, if the following correspondence holds for all
the values of the variables x1, . . . , xn from the domain of the function f [6,9]

f(x1, . . . , xn) = PB(w0 + w1x1 + · · ·+ wnxn), (1)

where W = (w0, w1, . . . , wn), wj ∈ C, j = 0, 1, . . . , n is a complex-valued
weighting vector and PB is a binary predicate, which is defined as follows:

PB(z) = (−1)j , if 2πj/m ≤ arg(z) < 2π(j + 1)/m,m = 2t, t ∈ N, (2)

wherem is some even positive integer (m>n), and j is nonnegative: 0≤ j <m.
Definition of the predicate PB (see 2) is illustrated in Fig. 1. The predicate
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Fig. 1. Definition of the function PB (see 2)

PB separates the complex plane on m = 2t equal sectors, and the function
PB is equal to 1 for the complex numbers from the even sectors 0, 2, 4,. . . ,
m− 2, and it is equal to −1 for the numbers from the odd sectors 1, 3, 5, . . . ,
m− 1.

We use here a Boolean alphabet 1, −1 instead of a classical alphabet {0,
1}. If y ∈ {0, 1} then x ∈ {1,−1} is obtained by a linear transformation
x = 1−2y. Thus, 0 ∈ {0, 1} −→ 1 ∈ {1,−1} and 1 ∈ {0, 1} −→ −1 ∈ {1,−1}.

A UBN over the field of complex numbers is a neural element with the acti-
vation function (2), which performs according to (1) for a given input/output
mapping described by a Boolean function of n variables [6, 8, 9].

For t = 1,m = 2 in (2) the functionality of the UBN coincides with the
functionality of a traditional perceptron: it can implement only the threshold
Boolean functions. However, for t > 1 andm > 2 in (2) the functionality of the
UBN with the activation function (2) is always higher than the functionality
of the classical perceptron. For example, for t = 2,m = 4 the UBN has the
complete functionality for n = 2 [6,9] (which means that all Boolean functions
of two variables are P -realizable and therefore they can be implemented using
a single UBN). There are only two nonlinearly separable Boolean functions
of two variables: XOR and its negation. As we mentioned above, the XOR
problem was considerred as a classical problem that cannot be solved using a
single neuron [1–3]. However, this is not true, because the XOR problem was
solved using a single UBN in [9]. Indeed, let t = 2,m = 4 in (2). This means
that the activation function (2) separates the complex plane onto four equal
sectors: in two of them PB = 1, in other two of them PB = −1 (see Fig. 2).
Table 1 illustrates that the UBN solves the XOR problem using the weighting
vector (0, i, 1).

It is important to mention that all 256 Boolean functions of three variables
are P -realizable and it is possible to implement them using a single UBN with
m = 6 in (2); all 65,536 Boolean functions of four variables are P -realizable
and it is possible to implement them using a single UBN with m = 8 in (2); all
225

= 232 Boolean functions of five variables are P -realizable and it is possible
to implement them using a single UBN with m = 10 in (2).
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Fig. 2. Activation function (2) with m = 4

Table 1. Solving the XOR problem on the single UBN using the weighting vector
(0, i, 1)

No. x1 x2 z = w0 + w1x1 + w2x2 PB(z) XOR = x1 ⊕
mod 2

x2

(1) 1 1 1 + i 1 1
(2) 1 −1 −1 + i −1 −1
(3) −1 1 1 − i −1 −1
(4) −1 −1 −1 − i 1 1

A MVN was introduced in [12] as a neural element based on the principles
of multiple-valued threshold logic over the field of complex numbers. These
principles have been proposed in [11] and then deeply considered in [9]. A
discrete-valued MVN performs a mapping between n inputs and a single out-
put [9,12]. This mapping is described by a multiple-valued (k-valued) function
of n variables f(x1, . . . , xn) using the n+1 complex-valued weights as follows

f(x1, . . . , xn) = P (w0 + w1x1 + · · ·+ wnxn), (3)

where x1, . . . , xn are the variables, on which the performed function depends
and w0, w1, . . . , wn are the weights. The values of the function and variables
are complex. They are the kth roots of unity: εj = exp(i2πj/k), j ∈ 0, k − 1,
i is an imaginary unity. P is the activation function of the neuron

P (z) = exp(i2πj/k), if 2πj/k ≤ arg z < 2π(j + 1)/k, (4)

where j = 0, 1, . . . , k−1 are values of the k-valued logic, z = w0 +w1x1 + · · ·+
wnxn is the weighted sum, arg z is the argument of the complex number z.
Equation 4 is illustrated in Fig. 3. Function (4) divides a complex plane onto
k equal sectors and maps the whole complex plane into a subset of points
belonging to the unit circle. This is exactly a set of the kth roots of unity.

Multi-vauled neuron learning is reduced to the movement along the unit
circle. This movement does not require differentiability of the activation func-
tion. The shortest way of this movement is completely determined by the error
that is a difference between the desired and actual output. Thus, the learn-
ing algorithm for the discrete-valued MVN is based on the error correction
learning rule. It was proposed in [9] and recently it was modified in [14]:
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Fig. 3. Geometrical interpretation of the discrete-valued MVN activation function
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Fig. 4. Geometrical interpretation of the MVN learning rule

W r+1 =W r +
Cr

(n+ 1)|zr|
(εq − εs)X̄, (5)

where X is an input vector, n is the number of neuron inputs, X̄ is a vector
with the components complex conjugated to the components of vector X, εq

is a desired output of the neuron, εs = P (z) is an actual output of the neu-
ron (see Fig. 4), r is the number of the learning iteration, W r is a current
weighting vector (to be corrected), W r+1 is the following weighting vector
(after correction), Cr is a constant part of the learning rate, and |zr| is an
absolute value of the weighted sum obtained on the rth iteration, which is a
variable part of the learning rate. The use of a factor 1/|zr| can be important
for learning the nonlinear functions with many jumps. However, it should not
be used for learning the smoothed functions without many jumps. The rule
(5) ensures such a correction of the weights that a weighted sum is moving
from the sector s to the sector q (see Fig. 4). The direction of this movement
is completely determined by the error δ = εq − εs. The convergence of the
learning algorithm based on the rule (5) is proven in [9].
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It is easy to see that the activation functions (2) and (4) (Figs. 2 and
3, respectively) are very similar to each other: both of them separate the
complex plane on equal sectors, and both are the functions of the argument
of a weighted sum. Hence if a Boolean function f(x1, . . . , xn) is
P -realizable with the weighting vector (w0, w1, . . . , wn), and the predicate PB

is defined by (2) then a partially defined only on the Boolean sets of variables
m-valued function f̃(x1, . . . , xn) is the m-valued threshold function with
the same weighting vector (w0, w1, . . . , wn). It is known from [9] that any
P -realizable Boolean function can be implemented on a single UBN, and any
m-valued threshold function can be implemented on a single MVN. This means
that the UBN learning can be reduced to the MVN learning.

In fact, the learning algorithm for the UBN can be based on the same
learning rule (5) as the learning algorithm for the MVN. An incorrect output
of the UBN for some input vector X from the learning set means that a
weighted sum has fallen into an “incorrect” sector. Thus, the weights should
be corrected to direct the weighted sum into one of the neighboring sectors
(see Fig. 5). A natural choice of the “correct” sector (left or right) is based on
the closeness of the current value of the weighted sum to them. Let a current
weighted sum z is laying in the sth sector, and this sector is “incorrect”. Thus
to apply the learning rule (5) for the UBN learning, we can choose

q = s− 1(mod m), if z is closer to (s− 1)st sector,
q = s+ 1(mod m), if z is closer to (s+ 1)st sector. (6)

Let us illustrate how the XOR problem can be solved using learning rule
(5) and (6). We will omit in this example a factor 1/|zr| in (5). Let t = 2,
m = 4 in (2) (see Fig. 2) and Cr = 1 in (5). Let us start the learning process
from the weighting vector W 0 = (1, 1, 1)

Iteration 1.

s+1
i s 

 s-1 

Fig. 5. Geometrical interpretation of the UBN learning rule (5)–(6)
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(1) Inputs (1, 1). The weighted sum is equal to z = 1+1 ·1+1 ·1 = 3;PB(z) =
PB(3) = 1. Since f(1, 1) = 1, no further correction of the weights is
needed.

(2) Inputs (1, −1). The weighted sum is equal to z = 1 + 1 · 1 + 1 · (−1) = 1;
PB(z) = PB(1) = 1. Since f(1, −1)= −1, we have to correct the weights.
According to (6) εq = ε3 = i. δ = −i − 1. Then we have to correct the
weights according to (5):
w̃2

0 = 1 + 1
3 (−i − 1) = 2

3 −
1
3 i; w̃

2
1 = 1 + 1

3 (−i − 1) · 1 = 2
3 −

1
3 i; w̃

2
2 =

1 + 1
3 (−i− 1) · (−1) = 4

3 + 1
3 i. Thus W̃ =

(
2
3 −

1
3 i,

2
3 −

1
3 i,

4
3 + 1

3 i
)
.

The weighted sum after the correction is equal to z = 2
3 −

1
3 i+

(
2
3 −

1
3 i

)
·

1 +
(

4
3 + 1

3 i
)
· (−1) = −i; PB(z) = PB(−i) = −1.

Since f(1, −1)= −1, no further correction of the weights is needed.
(3) Inputs (−1, 1). The weighted sum is equal to z = 2

3−
1
3 i+

(
2
3 −

1
3 i

)
·(−1)+(

4
3 + 1

3 i
)
· 1 = 4

3 + 1
3 i; PB(z) = PB

(
4
3 + 1

3 i
)

= 1. Since f(−1, 1) = −1,
we have to correct the weights. According to (6) εq = ε3 = i. δ = −i− 1.
Then we have to correct the weights according to (5):

w̃3
0 =

2
3
− 1

3
i+

1
3
(−i− 1) =

1
3
− 2

3
i;

w̃3
1 =

2
3
− 1

3
i+

1
3
(−i− 1) · (−1) = 1;

w̃3
2 =

4
3

+
1
3
i+

1
3
(−i− 1) · (1) = 1.

Thus W̃ =
(

1
3 −

2
3 i, 1, 1

)
. The weighted sum after the correction is equal

to z = 1
3 −

2
3 i+ 1 · (−1) + 1 · 1 = 1

3 −
2
3 i; PB(z) = PB

(
1
3 −

2
3 i

)
= −1.

Since f(−1, 1) = −1, no further correction of the weights is needed.
(4) Inputs (−1, −1). The weighted sum is equal to

z =
1
3
− 2

3
i+ 1 · (−1) + 1 · (−1) = −5

3
− 2

3
i;

P B(z) = PB

(
−5

3
− 2

3
i

)
= 1.

Since f(−1,−1) = 1, no correction of the weights is needed.

Iteration 2.

(1) Inputs (1, 1). The weighted sum is equal to z = 1
3−

2
3 i+1·1+1·1 = 7

3−
2
3 i;

PB(z) = PB

(
7
3 −

2
3 i

)
= −1. Since f(1, 1)= 1, we have to correct the

weights. According to (6) εq = ε0 = 1. δ = 1− (−i) = 1+ i. Then we have
to correct the weights according to (5):
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w̃1
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1
3
− 2

3
i+

1
3
(1 + i) =

2
3
− 1

3
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w̃1
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1
3
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4
3
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3
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1
3
i.

Thus W̃ =
(
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1
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4
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4
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3 i
)
.

The weighted sum after the correction is equal to

z =
2
3
− 1

3
i+

(
4
3

+
1
3
i
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· 1 +

(
4
3

+
1
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i
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· 1 =

10
3
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2
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P B(z) = PB

(
10
3

+
2
3
i
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= 1.

Since f(1, 1) = 1, no correction of the weights is needed.
(2) Inputs (1, −1). The weighted sum is equal to

z =
2
3
− 1

3
i+

(
4
3

+
1
3
i
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· 1 +

(
4
3
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3
i
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P B(z) = PB
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Since f(1,−1) = −1, no correction of the weights is needed.
(3) Inputs (−1, 1). The weighted sum is equal to
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i
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i
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P B(z) = PB

(
2
3
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3
i
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Since f(−1, 1) = −1, no correction of the weights is needed.
(4) Inputs (−1, −1). The weighted sum is equal to

z =
2
3
− 1

3
i+

(
4
3

+
1
3
i

)
· (−1) +

(
4
3

+
1
3
i

)
· (−1) = −2− i;

P B(z) = PB(2− i) = 1.

Since f(−1,−1) = 1, no correction of the weights is needed.
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This means that the iteration process converged, and the XOR func-
tion is implemented on the single UBN using the weighting vector W̃ =(

2
3 −

1
3 i,

4
3 + 1

3 i,
4
3 + 1

3 i
)

obtained as the result of the learning process.

3 Solving the Parity n Problem Using a Single UBN

Let us consider an example for n = 3. Let t = 3, m = 6 in (2). Thus the
activation function (2) separates a complex plane onto six sectors (see Fig. 6).

The Parity 3 function can be implemented on a single UBN with the
activation function (2) (m = 6) using the weighting vector (0, ε6, 1, 1),
where ε6 = exp(i2π/6) is a primitive sixth root of unity (see Table 2). This
example rules out a common view that the Parity problem cannot be solved
on a single neuron: it can be solved on a single UBN.

Actually the Parity n problem for 3 ≤ n ≤ 12 can be easily solved on a
single UBN using the learning algorithm based on the rule (5)–(6). However,
for n > 10 this learning algorithm requires thousands of iterations for its
convergence. Although its principal convergence is based in [9], it would be
useful and attractive to modify the learning algorithm in such a way that it
will converge faster.

PB (z)= 1

PB (z)= −1 PB (z)= −1

PB (z)= −1

PB (z)= 1

PB (z)= 1

e 6

Fig. 6. Activation function (2) with m = 6, t = 3

Table 2. Solving the Parity 3 problem using a single UBN with the weighting vector
(0, ε, 1, 1)

Number f(x1, x2, x3)
x1 x2 x3 z = w0 + w1x1 + w2x2 + w3x3 of PB(z) = x1 ⊕ x2 ⊕ x3

sector

1 1 1 ε6 + 2 0 1 1
1 1 −1 ε6 1 −1 −1
1 −1 1 ε6 1 −1 −1
1 −1 −1 ε6 − 2 2 1 1

−1 1 1 −ε6 + 2 5 −1 −1
−1 1 −1 −ε6 4 1 1
−1 −1 1 −ε6 4 1 1
−1 −1 −1 −ε6 − 2 3 −1 −1
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Let us recall that a characteristic vector of the Boolean function
f(x1, . . . , xn) is a vector b = (b0, b1, . . . , bn), which is defined as follows [4]:
bj = (f ,xj) , j = 0, 1, . . . , n, where (,) is a scalar product of two vectors,
f is a 2n-dimensional vector of all the function values, xj , j = 1, . . . , n, is
a 2n-dimensional vector of all the values of the Boolean variable xj , and
x0 = (1, . . . , 1)T is a 2n-dimensional vector, whose all components are equal
to 1. A characteristic vector of the multiple-valued function f(x1, . . . , xn) par-
tially defined (or fully defined) on s sets of input variables is a vector b =
(b0, b1, . . . , bn), whose components are equal to [9]: bj = (f ,xj) , j = 0, 1, . . . , n,
where (, ) is a scalar product of two vectors, f is an s-dimensional vector of
all the function values, xj , j = 1, . . . , n, is an s-dimensional vector of all the
values of the variable xj , and x0 = (1, . . . , 1)T is an s-dimensional vector,
whose all components are equal to 1.

As it is mentioned in [4], a characteristic vector can be used as an initial
approximation for the weighting vector of the threshold Boolean function.
The same fact was experimentally confirmed for the multiple-valued thresh-
old functions in [12]. Actually, a characteristic vector is nothing else than a
weighting vector obtained using a Hebb rule [3,13]. It was shown experimen-
tally that the MVN learning algorithm converges incompatibly faster starting
from a normalized characteristic vector b̃ of a function (mapping) to be im-
plemented than starting from the random vector [12], where a normalized
characteristic vector is obtained as follows:

b̃j = (f ,xj) /s = bj/s j = 0, 1, . . . , n. (7)

Among other approaches to the UBN learning and synthesis, it was pro-
posed in [9] to reduce the UBN learning to the MVN learning replacing a
Boolean function to be implemented by a multiple-valued one not “virtually”-
like in the algorithm (5)–(6), but “physically,” creating a partially defined
multiple-valued function, whose parity coincides with a parity of the initial
Boolean function. However, this approach can be used only, if it is a prior con-
fidence that a multiple-valued function, which is created, is a multiple-valued
threshold function, so it will be possible to implement it on a single MVN.

We would like to combine here the last approach with the learning algo-
rithm (5)–(6). This can be done in the following way. Let Xj =

(
xj

1, . . . , x
j
n

)

is the jth set of the input variables.
Let us call a multiple-valued function f(x1, . . . , xn) as a minimal-monotonic

multiple-valued function, if the following condition holds for a whole domain
of the function: if Xj ≺ Xk (Xj precedes to Xk, i.e., xj

i ≤ xk
i , i = 1, . . . , n)

then fj ≤ fk + 1, i.e., fj = fk or fj = fk + 1.
A very interesting experimental fact is that a partially defined minimal-

monotonic multiple-valued function is a multiple-valued threshold function,
thus it can be implemented using a single MVN. Mathematically this is still
an open problem, but experimentally no refuting example was found.
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Let us consider the Parity n function: f(y1, . . . , yn) = y1 ⊕ · · · ⊕ yn; yi ∈
{0, 1} , i = 1, . . . , n (“⊕” is a mod 2 addition).

Let us create a multiple-valued function from f(y1, . . . , yn) as follows

f̃(y1, . . . , yn) = y1 + · · ·+ yn; yi ∈ {0, 1} , i = 1, . . . , n, (8)

where “+” is a regular addition. It is easy to check that f̃(y1, . . . , yn) is
a minimal-monotonic multiple-valued function partially defined only on the
Boolean sets of variables. For example, for n = 3 f̃ = (0, 1, 1, 2, 1, 2, 2, 3)T ,
for n = 4 f̃ = (0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4)T , etc. It is important for
us to translate these representations into the language of the multiple-valued
logic over the field of complex numbers. Let ε = exp (i2π/m), where m is the
number of sectors in (2), is a primitive mth root of unity. Then for n = 3 f̃ =
(ε0, ε1, ε1, ε2, ε1, ε2, ε2, ε3)T , for n = 4 f̃ = (ε0, ε1, ε1, ε2, ε1, ε2, ε2, ε3, ε1, ε2, ε2,
ε3, ε2, ε3, ε3, ε4)T , and finally for any n

f̃ = (ε0, ε1, ε1, ε2, ε1, ε2, ε2, ε3, . . . , εn−3, εn−2, εn−2, εn−1, . . . ,

. . . , εn−2, εn−1, εn−1, εn)T . (9)

The Parity n function is a symmetric function for any n: it is an even
function for even n and a self-dual (odd function) for odd n. It would
be natural to assume that the most effective implementation like (1)–(2)
for a symmetric function will be such that the weighted sums correspond-
ing to the opposite sets of inputs will get into the opposite sectors. In
this way it would be reasonable to transform the complex-valued multiple-
valued functions corresponding to the Parity n functions in the follow-
ing way: for n = 3 f̃ = (ε0, ε1, ε1, ε2,−ε2,−ε1,−ε1,−ε0)T , for n=4 f̃ =
(ε0, ε1, ε1, ε2, ε1, ε2, ε2, ε3,−ε3,−ε2,−ε2,−ε1,−ε2,−ε1,−ε1,−ε0)T , etc. This
means that for even n we have to take m = 2t (the number of sectors in (2))
such that t is even, while for odd n we have to take m = 2t such that t is odd.
For the even values of t the activation function PB takes the same values in the
opposite sectors, while for the odd values of t the activation function PB takes
the opposite values in the opposite sectors. Hence, for any n a multiple-valued
function created form the Parity n function can be expressed as follows:

f̃ = (ε0, ε1, ε1, ε2, . . . , εn−1,−εn−1, . . . ,−ε2,−ε1,−ε1,−ε0)T ,

ε = exp (i2π/m) . (10)

Let us now use the following modified algorithm for solving the Parity n
problem on a single UBN.

(1) Create a multiple-valued function corresponding to the Parity n function
according to (8).
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(2) Chose even t in (2) for even n or odd t in (2) for odd n such that 2n ≤
m = 2t ≤∼ 3n (∼3n means the number of order 3n such that this number
must be equal to 2t, where either t is odd for odd n or t is even for even
n) and represent the function (8) obtained on Step 1 as a multiple-valued
function over the field of complex numbers like (9).

(3) Recode the function (9) in such a way that it will take the opposite values
on the opposite input sets. Thus we obtain a function like (10).

(4) Obtain a normalized characteristic vector (7) for the multiple-valued func-
tion (10) obtained on Step 3.

(5) Apply either the learning algorithm (5)–(6) to the initial Parity n function
or the learning algorithm (5) to the function (10) obtained on Step 3
using the normalized characteristic vector (7) obtained on the Step 4 as
a starting weighting vector.

This algorithm shows incompatibly better results than either direct appli-
cation of the learning algorithm (5)–(6) to the initial Parity n function or the
learning algorithm (5) to the function (10) starting from the random initial
weighting vector. This is illustrated in Table 3.

Table 3. Solving the Parity n problem for 3 ≤ n ≤ 14 using a single UBN with the
activation function (2)

No. of variables,
n

3 4 5 6 7 8 9 10 11 12 13 14

No. of sectorsa

(m in (2))
6 8 10 12 14 16 22 28 30 36 38 44

Number of
iterations for the
modified learning

algorithm

3 3 7 8 12 17,744 30 181 819 127 595 1,143

The use of factor
1/|zr| in (5)

- - - - - - - - - - - -

Number of
iterations for the

learning
algorithm (5) and

(6) (median of
five runs)

8 23 37 52 55 24,312 57 428 1,383 1,525 –b –b

aThe smallest number of sectors (m in (2)), for which the convergence of the learning
process may be gotten in the reasonable time was used
b–means that for n = 13 and n = 14 there was still no convergence of the learn-
ing algorithm (5)–(6) after 2,000 iterations if only one time for five independent
experiments
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4 Implementation of the Edge Detecting Boolean
Functions

It is important to mention that the modified learning algorithm described
here can be used not only for solving the Parity n problem, but also for
implementation of any Boolean function on a single UBN. It is especially
effective for the symmetric functions (self-dual functions of odd number of
variables and even functions of even number of variables). However, this is
not a restriction, because any Boolean function of n variables can be easily
supplemented to the self-dual function (if n is even) or to the even function
(if n is odd) of n+ 1 variables.

Let us consider how the proposed modified UBN learning algorithm can
be effectively used for implementation the edge detecting Boolean functions
(that are nonlinearly separable and that cannot be learned by the learning
algorithm (5)–(6)) using a single UBN.

A problem of edge detection using Boolean functions has been considered
in [9]. It was proposed to split a gray-scale image (or the color channels of a
color image) onto the binary planes, to detect the edges on them using one of
the edge detecting Boolean functions of nine variables, and then to merge the
resulting binary planes into the resulting image. A Boolean function of nine
variables is applied to analyze a local 3 × 3 image window, which contains
exactly nine pixels. There are a number of different Boolean functions that
detect the global edges and the edges by narrow direction corresponding to the
upward and downward brightness jumps. Let us consider the following four
nonlinearly separable Boolean functions that are used for the edge detection
by narrow direction corresponding to the upward brightness jumps.
Direction West ↔ East

f(x1, . . . , x9) = (x5 &x4) & ((x̄1 ∨ x̄2) ∨ (x̄7 & x̄8))
(11)

∨(x5 &x6) & ((x̄2 ∨ x̄3) ∨ (x̄8 & x̄9)) ,

where x̄ is a negation of the Boolean variable x.
Direction North-West ↔ South-East:

f(x1, . . . , x9) = (x5 &x1)&(x̄2 ∨ x̄4) ∨ (x5 &x9)&(x̄6 ∨ x̄8). (12)

Direction South-West ↔ North-East:

f(x1, . . . , x9) = (x5 &x7)&(x̄4 ∨ x̄8) ∨ (x5 &x3)&(x̄2 ∨ x̄6). (13)

Direction North ↔ South:

f(x1, . . . , x9) = (x5 &x2) & ((x̄1 ∨ x̄4) ∨ (x̄3 & x̄6))
(14)

∨(x5 &x8) & ((x̄4 ∨ x̄7) ∨ (x̄6 & x̄9))
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Table 4. Implementation of the nonlinearly separable Boolean functions (11)–(14)
of nine variables using a single UBN with the activation function (2)

Function (11) (12) (13) (14)

Number of sectors (m in (2)) 18 18 18 18
Number of learning iterations

for the modified learning
algorithm

24,824 1 54,465 17,611,996

The use of factor 1/|zr| in (5) + − + +

The Boolean functions (11)–(14) are nonlinearly separable and moreover,
they can not be implemented using a single UBN by the learning algorithm
(5)–(6). There is no convergence after at least 25,000,000 iterations for all
of them. However, these functions can be successfully implemented using a
modified learning algorithm presented above. The results are summarized in
Table 4.

It is interesting that function (12) is implemented by the normalized char-
acteristic vector (obtained according to (7)) of the minimal monotonic Boolean
function corresponding to the function (12) and obtained by (10).

4 Conclusions

We have presented in this paper, how the XOR problem and Parity n problem
for 3 ≤ n ≤ 14 can be solved using the single UBN. The modified learning
algorithm for the UBN has been proposed. This algorithm is especially effec-
tive for the symmetric (self-dual and even) Boolean functions. The key points
of this algorithm are the creation of the minimal-monotonic multiple-valued
function over the field of complex numbers, its transformation to the sym-
metric multiple-valued function over the field of complex numbers and the
use of its normalized characteristic vector as a starting one for the learning
process. It was shown that this modified algorithm converges much faster than
a traditional learning algorithm for the UBN. It was also shown that other
important nonlinearly separable problems can be solved using a single UBN
and the same modified learning algorithm.
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Some Novel Real/Complex-Valued Neural
Network Models

Ramamurthy Garimella

Summary. Traditional models of neurons are based on the assumption that a
synapse is a lumped element represented by a scalar synaptic weight. But to faith-
fully model biological neurons, synapse is considered as a linear filter. Thus, a new
model of continuous time neuron is discussed. It is described how such model leads
to interesting neural networks. Also continuous time, complex-valued neuron is dis-
cussed. It is also described, how a synapse can be modeled as an FIR filter. Such
a model of neuron leads to practically useful neural networks. A novel, continuous
time associative memory is proposed. An approach to resolve the convergence of
state of such an associative memory is discussed. Various interesting generalizations
of neural networks are described.

Key words: Synapse model, Continuous time perception, Biological neural
networks.

1 Introduction

Artificial neural networks are innovated to provide models of biological neural
networks. The currently available models of neurons are utilized to build sin-
gle layer (e.g., single layer perceptron) as well as multilayer neural networks
(e.g., multilayer perceptron). These neural networks were utilized successfully
in several applications. Also various paradigms of neural networks such as
radial basis functions, self-organizing memory are innovated and utilized in
applications.

In the case of conventional real-valued neural networks, the inputs, outputs
belong to the Euclidean space. In these neural networks, a synapse is repre-
sented/modeled by a single synaptic weight which is lumped at one point.
These synaptic weights are updated in the training phase using one of the
learning laws (for example, Perceptron learning law, gradient rule, etc.). In
the case of supervised training, these learning laws enable one to classify the
input patterns into finitely many classes (based on the training samples).
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1.1 Motivation for a Better Model of Neurons

– By reflecting on modeling biological neurons, we are naturally led to mak-
ing the realistic assumption that synapses constitute distributed elements
rather than lumped elements. Thus, a realistic model of a synapse is a
linear system (characterized by impulse response) while at the same time
maintaining tractability.

– In conventional neuronal models, the input at each synapse is a constant
and is acted on by the scalar synaptic weight. But in biological neurons,
it is most natural to consider that the input signal samples are not scalar
values, but are functions defined over a finite support. The synapses (char-
acterized by impulse response) act on these input signals which are defined
on the domain (restricted to a support) [0, T ]. Thus the class of input
signals belong to a function space (defined on [0, T ]). For the sake of no-
tational convenience, let the synaptic weight functions be also defined on
[0, T ].

In summary, a continuous time, real-valued neuron has input signals
(which are real-valued functions of time) defined over a finite support. The
input signals are fed to synapses acting as linear systems/filters and sum of
responses is operated on by an activation function. Using this model of a
neuron, various feed-forward/recurrent networks of neurons are designed and
studied.

This research paper is organized as follows. In Sect. 2, Sect. 3, continu-
ous time perceptron model is discussed. Also in this section, the continuous
time perceptron learning law is discussed. In Sect. 4, abstract mathematical
structure of neuronal models is discussed. In Sect. 5, neuronal model based on
finite impulse response filter model of synapse is discussed. Also the associated
neural networks are proposed. In Sect. 6, a novel continuous time associative
memory is proposed and the convergence theorem is discussed. In Sect. 7, vari-
ous multi-dimensional neural network generalizations are discussed. In Sect. 8,
complex-valued neural networks based on the continuous time neuronal model
are discussed. The research paper concludes in Sect. 9.

2 Continuous Time Perceptron and Generalizations

The area of artificial neural networks was pioneered by the efforts of Mc-
Culloch and Pitts to provide a model of neuron. Soon, it was realized by
Minsky et al. that such a model of neuron has no training of the synaptic
weights. Thus they proposed the model of single perceptron as well as sin-
gle layer of perceptrons. Further they provided the perceptron learning law.
This law was proved to converge when the input patterns are linearly separa-
ble. Later it was shown that a multilayer perceptron, a feed-forward network
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can be trained (using the back-propagation algorithm) to classify nonlinearly
separable patterns. In the following (as discussed in Sect. 1), we propose a
more accurate (biologically) model of neuron and use it to construct various
artificial neural networks.

3 A New Mathematical Model of Neuron/Single
Perceptron

Consider finitely many (say M) input signals which are defined on a bounded
support [0, T ]. Let each of these signals be input to synapses which are char-
acterized by synaptic weight functions (that are defined on support [0, T ]).
Since each of the synapses act as a linear filter, the output of each synapse is
a convolution of the input function with the synaptic weight function. Mathe-
matically, let ai(t),Wi(t) for 1 ≤ i ≤ M be the input functions, synaptic
weight functions, respectively. Let the signum function be the activation func-
tion of the neuron. Thus the output of the neuron is given by

y(t) = sign

(
M∑

i=1

ai(t)⊗Wi(t)− T
)
, (1)

where ⊗ denotes the convolution operation between two time functions (and
T is the threshold at the neuron. Without loss of generality, T can be assumed
to be zero). More explicitly,

y(t) = sign

(( M∑

i=1

∫ T

0

ai(t)Wi(t− τ)dτ
)
− T

)
. (2)

The successive input functions are defined over the interval [0,T]. They are
fed as inputs to the continuous time neurons at successive SLOTS (Fig. 1).

Fig. 1. A novel model of continuous time neuron (in the figure ∗ denotes the con-
volution operator)
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3.1 Continuous Time Perceptron Learning Law: Proof

As in the case of “conventional perceptron,” a continuous time perceptron
learning law is given by

Wn+1
i (t) =Wn

i (t) + η(S(t)− g(t))ai(t), (3)

where S(t) is the target output for the current training example, g(t) is the
output generated by the perceptron, and η is a positive constant called the
learning rate.

Proof. In this model of continuous time perceptron, the weights are functions
of time defined on the interval [0, T]. Thus, since the synaptic weights are
functions of time, we are led to investigating the type of convergence: (1)
pointwise or (2) uniform.

Suppose we fix the time point, t. The convergence of synaptic weights in
3 is assured by the proof of convergence in the case of conventional percep-
tron. Since the choice of time point is arbitrary, we are assured of pointwise
convergence of synaptic weights based on training sample input functions.

It is interesting to know under what conditions, the sequence of synaptic
weight functions converge uniformly. �

Continuous Time Multilayer Perceptron

Using the above approach to model a neuron, it is straightforward to arrive
at a multilayer feed forward network. In such a multilayer perceptron, the
activation function at each neuron is changed from being a signum function
to a sigmoid function, i.e.

y(t) =
1

1 + e−z(t)
, where y(t) is output of neuron, (4)

z(t) =
M∑

i=1

ai(t)⊗Wi(t). (5)

The generalization of back-propagation algorithm (based on conventional
model of neuron) follows essentially in a one-to-one manner. The details are
avoided for brevity. Also various recurrent networks based on the continuous
time neuron can be designed and implemented.

It is possible to consider a model of neuron in which the input functions are
defined over the function space [0,∞]. It is possible to consider neural networks
based on such inputs. The inputs are divided into testing and training classes.

4 Abstract Mathematical Structure of Neuronal Models

Consider the inputs to a continuous time neuron which are defined on a finite
support [0, T ]. Let the impulse responses of synapses modeled as linear filters
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be defined on the finite support [0, T ]. Thus, the inputs as well as synaptic
weight functions belong to the function space defined over the finite support
[0, T ]. We answer the following question.

Q: Under reasonable assumptions, what is the mathematical structure of
the function space defined over [0, T ]?

Let F be the set (function space) on which the following operations are
well defined: addition, convolution (these operations are like addition, multi-
plication defined on the sets: real numbers, complex numbers).

Lemma Let the identically zero function be the additive identity element and
Delta function (δ(t) = 1 for t = 0 and δ(t) = 0 for t �= 0) be the multiplica-
tive identity. Then, the set F on which addition, multiplication (of functions
defined on [0,T]) operations are defined constitutes a field.

Proof. Involves routine verification of axioms of the field (closure under ad-
dition, convolution operations between the members of F, i.e., functions) and
are avoided for brevity.

Now define a vector space. G over the field. The set of input functions
incorporated into a vector belongs to G. The usual “multiplication” operation
is replaced by “convolution”.

1. Hyperplane: In the vector space defined above, a “hyperplane” defined by
a “vector” (specified by synaptic weight functions (Wi(t), 1 ≤ i ≤ M) is
given by

M∑

i=1

ai(t)⊗Wi(t) = L(t). (6)

2. Linear Separability : Consider the “field”. F of functions defined over [0, T ].
Let G be the vector space defined over F. A class of functions is separable
into two classes, if there exists a hyperplane such that the two regions are
defined by

M∑

i=1

ai(t)⊗Wi(t) ≤ L(t) and
M∑

i=1

ai(t)⊗Wi(t) > L(t). (7)

Similarly, it is straightforward to define the class of functions which are
classifiable into “N” classes.

4.1 Fourier Transform: Associated Field

It is well known that the Fourier transform of the convolution of two functions
is the product of Fourier transforms of the individual functions. It is found that
processing the functions (by applying the activation function) has advantages
in the transform domain [12].
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The function space being operated on by the activation function is now
the field of rational functions over [0, T ]. Thus there is a natural mapping
between the two fields (associated with continuous time neuron).

With the above discussion summarizing the abstract mathematical
structure of neuronal modeling (being considered), we arrive at the following
conclusions:

– Consider a single layer of continuous time perceptrons being trained by
input function samples. As long as the input samples are “linearly sepa-
rable,” the set of synaptic weight functions converge (to an equilibrium
vector).

– Consider a continuous time multilayer perceptron being trained by input
function samples. The back-propagation algorithm utilized to train synap-
tic weight functions converges even when the input function samples are
nonlinearly separable (provided there are sufficient number of continuous
time neurons in the hidden layer).

5 Finite Impulse Response Model of Synapses: Neural
Networks

– So far we have considered continuous time neural networks in which the
synaptic weight function corresponds to an analog linear filter. A natural
question arises whether it is possible to conceive a synapse whose im-
pulse response corresponds to that of a digital filter, i.e., a finite impulse
response filter (FIR). In the following, we consider neural network with
such a model of synapse.

– Typically, let the discrete time input signals be considered over the finite
horizon [0, 1, 2, . . . , S]. For the sake of simplicity, let the length of all FIR
filters modeling the synapses be the same, say T (the generalization to
the case where the FIR filters have different lengths is straightforward).
Thus, the impulse response sequences (associated with different synapses)
extend over the duration (0, 1, 2, . . . , T ).

– The output of the synapse (described by an FIR filter) depends on the
input signal values over a finite horizon (depending on the length of the
impulse response). Typically the length of filter is smaller than the support
of a distinct input sequence, i.e., T , S. It should be noted that the
successive input sequences are of same length.

y(n) = sign(
M∑

i=1

Ci(n)⊗ ai(n)) (8)

= sign(
M∑

i=1

T∑

k=0

Ci(k)ai(n− k)) (9)
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where Ci(k) for k = 1, 2, . . . , T is the impulse response sequence of ith
synapse and ai(k) is the ith input sequence to the neuron

– Thus the synaptic weight sequence values (impulse response of FIR filters)
can be trained according to the following perceptron learning law

Cn+1
i (k) = Cn

i (k) + η(S(k)− g(k)), (10)

where S(k) is the target output for the current training example, g(k)
is the output generated by the perceptron at time k and η is a positive
constant called the learning rate.

This update rule converges when the input patterns are linearly separable.
Using the same model of neuron, a multilayer perceptron is trained using a
modified version of back-propagation algorithm.

It is possible to consider neuronal models in which the synapse acts as an
infinite impulse response filter. Furthermore, based on such a model of neuron
(synapse acting as an FIR filter), it is possible to discuss a novel associative
memory.

Currently, the models of neurons discussed (in Sect. 2, 5) are being com-
pared with traditional models of neurons [12].

6 Novel Continuous Time Associative Memory

In addressing, the problem of signal design for magnetic/optical recording
channels, Wyner formulated an open research problem [3]. The problem state-
ment is provided below.

Open research problem: Consider a single input, single output linear time
invariant filter modeling a magnetic/optical recording channel. Let the class
of inputs (to the linear filter) defined on bounded support [0, T ] be bounded
in magnitude by unity (1). Determine the optimal signals such that the total
output over finite horizon

∫ T

0
y2(t)dt (where y(t) is the output of linear filter)

is maximized.
The author [10] as well as Honig and Stieglitz [5] independently solved the

problem. The solution in [10] is more general in the sense that we considered
multi-input, multi-output (MIMO) linear time varying filters and derived the
optimal input vector. Let Y (t) be an optimal input vector. Then it satisfies
the following signed integral equation

Y (t) = sign(
∫ T

0

R(t, u)Y (u)du), (11)

where R(t,u) is the energy density matrix of the MIMO, linear time varying
system. In the case of MIMO, linear time invariant system, the optimal input
vector satisfies the following equation:
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Y (t) = sign(
∫ T

0

R(t− u)Y (u)du). (12)

In the following paragraph, we consider a successive approximation pro-
cedure for computing the optimal control vector starting with an arbitrary
binary vector defined on the support [0, T ]. Consider a vector of binary-valued
functions Y (n)(t) (+1 or −1 valued) defined on the finite support [0, T ]. Let
R(t) be the energy density matrix of a MIMO linear system representing the
time varying synaptic weight matrix. The following successive approximation
scheme is used to compute the local optimum stable function starting with a
initial binary vector Y (0)(t)

Y (n+1)(t) = sign(
∫ T

0

R(t− τ)Y (n)(τ)dτ). (13)

From practical considerations, it is necessary to know whether the above suc-
cessive approximation scheme converges or not. This problem is converted
into an equivalent problem by discretizing the continuous time linear system
into a discrete time system. Such discretization can always be done for some
types of systems (satisfying some regularity conditions) without fear of ap-
proximating the system dynamics. The standard procedure of discretizing a
continuous time system is summarized in many text books including Gopal’s
book ([4], pp 185–187), With the discrete time system equivalent to the con-
tinuous time system, the argument technique adopted for convergence is once
again the energy function hill climbing in successive iterations.

Theorem 1. Consider a MIMO, linear time-invariant system described by
the dynamics

Ẋ(t) = AX(t) + CY (t) (14)
Z(t) = CX(t) (15)

The discrete time simulation (of the above continuous time system) of the
following form

X(k + 1) = FX(k) +GY (k) (16)
Z(k) = HX(k) (17)

can always be done. The discrete simulation is almost exact except for the error
introduced by sampling the input and that caused by the iterative procedure for
evaluating the matrices.

Proof. Follows from the procedure described in Gopal ([4], pp 185–187). �

With such a discrete time system corresponding to a continuous time sys-
tem, we have the following recursion (successive approximation scheme)
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Y (n+1)(k) = sign(WY (n)(k) for n ≥ 0, (18)

where Y(k) is the optimal control vector associated with the discrete time
linear system (obtained by discretizing a continuous time system) and W is
the energy density tensor (associated with the discrete time system). Thus we
have a Hopfield network with W as the synaptic weight matrix. Hence starting
with an initial vector Y (0)(k), the above recursion converges to a stable state
(local optimum vector) or atmost a cycle of length 2 (by invoking the con-
vergence theorem associated with Hopfield neural network whose Connection
matrix is W).

Thus, the above approach converts the problem of determining the conver-
gence of scheme in 13, to that associated with a discrete time linear system.
The iteration reminds of L∞ version of Neumann series. The energy function
(Lyapunov function) optimized over the state trajectory of continuous time
linear system is a quadratic form [8].

In [2], various possible generalized neural networks are discussed. These
neural networks are associated with an energy function which is a higher order
form than a quadratic form (associated with a Hopfield neural network). It
is very natural to formalize associative memories which are generalizations of
those discussed in this paper.

Several generalizations of the results are documented in the technical
report [12]. For instance, the complex-valued, continuous time associative
memory is discussed in detail in the technical report [12, 13]. For such a
complex-valued associative memory, a convergence theorem is stated and
proved.

7 Multi-Dimensional Generalizations

– In this research paper, so far, we have considered single/multilayer con-
tinuous time neural networks, whose input as well as output are vectors.
It is straightforward to generalize the results to the case where the in-
put/output is a three-dimensional/multi-dimensional array [8, 9]. Tensor
products are utilized to determine the output of each neuron in the net-
work. Such three/multi-dimensional neural networks arise in the biological
neural network in human/animal brain.

– In the case of a human/animal brain, the associative memory operates on
three-dimensional input patterns. Thus, the state of the associative mem-
ory is not a vector (one-dimensional array) but a three-dimensional array.
An appropriate model of such memory is a three-dimensional, continuous
time associative memory. It is easy to see that the model described in
Sect. 5 can easily be generalized along the lines of the work in [9].
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8 Generalization to Complex-Valued Neural Networks

Activation Functions: consider a complex-valued, continuous time neuron
whose inputs as well as synaptic weight functions (defined on support [0, T ])
and thresholds are complex-valued functions. In such a model of neuron, it is
possible to utilize various activation functions.

Let z(t) = (c(t) + jd(t)) be the net contribution (after convolving the in-
put functions with the synaptic weight functions) at a neuron. The following
activation functions can be utilized

1. Complex Signum Function

Sign(c(t) + jd(t)) = Sign(c(t)) + j Sign(d(t)). (19)

With such an activation function, the continuous time perceptron conver-
gence law described in 3 for real valued neurons is easily generalized to
continuous time, complex-valued perceptrons.
In the case of conventional complex-valued perceptron (with the above
activation function), it is well known that the perceptron training law is
easily generalized [1]. Using the similar proof technique, in the case of
complex-valued, continuous time neurons, the convergence proof utilized
by Aizenberg et al. is generalized.
Also, in the case of conventional, complex-valued neuron, the above acti-
vation function is utilized in [13] for arriving at an associative memory.

2. Complex Sigmoid Function

g(z(t)) =
1

1 + e−z(t)
or alternatively (20)

g(z(t)) = tanh(z(t)) (21)

In the case of complex-valued, continuous time multilayer perceptron, we
utilize the above complex-valued sigmoidal function as the activation func-
tion at each (complex-valued) neuron. With such a model of neuron, the
back-propagation algorithm in Nitta and Furuya [6], and Nitta [7] is gen-
eralized to the case of continuous time neural networks.

Utilizing traditional model of a neuron, unified theory of control, communica-
tion, and communication is discovered and formalized [11]. This unified theory
is generalized using the models of neurons discussed in this paper [8].

9 Conclusions

In this research paper, novel models of neurons are proposed. The synapses
are considered as distributed elements rather than lumped elements. Thus,
synapses are modeled as linear filters in continuous time as well as discrete
time. Using these novel models of neurons, associated neural networks are
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proposed. Also, a novel model of associative memory is proposed. Using such
a model, convergence aspects of various modes of operation are discussed.
Multi-dimensional generalizations of neural networks are discussed. Also as-
sociated complex-valued neural networks are discussed.
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Extending the Fuzzy Rule Interpolation
“FIVE” by Fuzzy Observation

Szilveszter Kovács

Summary. The chapter introduces a way for extending the “FIVE” (Fuzzy Inter-
polation based on Vague Environment) fuzzy rule interpolation (FRI) method by
the ability of handling fuzzy observations. The proposed extension is based on the
concept of “vague environment merging”, the unification of the fuzzy observation
vague environments to the vague environments of the antecedent universes. The
original “FIVE” FRI method together with an example is also introduced briefly in
the chapter.

Key words: Fuzzy Rule Interpolation (FRI), Interpolation-based fuzzy
reasoning, Vague environment.

Some difficulties emerging during the construction of fuzzy rule bases are
inherited from the type of the applied fuzzy reasoning. In fuzzy systems,
when classical methods (e.g. the Compositional Rule of Inference) are applied,
the completeness of the fuzzy rule base is required to generate meaningful
output. This means, that the fuzzy rule base has to cover all possible inputs.
The way of building a complete rule base is not always straightforward. One
simple solution to handle sparse fuzzy rule bases and to make infer reasonable
output is the application of fuzzy rule interpolation (FRI) methods. On the
other hand most of the FRI methods share the burden of high computational
demand. However there is a method “FIVE” (Fuzzy Interpolation based on
Vague Environment, originally introduced in [8–10]) which is simple and quick
enough to fit even the requirements of direct control, where the conclusions are
applied as real-time control actions, too. Beyond the simplicity and therefore
the high reasoning speed, “FIVE” has two obvious drawbacks, the lack of the
fuzziness on the observation and conclusion side. The main contribution of this
paper is the introduction of a way for handling fuzzy observations by extending
the original “FIVE” concept with the ability of merging vague environments.
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1 Introduction

Since the classical fuzzy reasoning methods (e.g. compositional rule of infer-
ence) are demanding complete rule bases, the classical rule base construction
claims a special care of filling all the possible rules. In case if there are some
rules missing, observations may exist which hit no rule in the rule base and
therefore no conclusion is obtained. Having no conclusion in a fuzzy control
structure is hard to explain. E.g. one solution could be to keep the last real
conclusion instead of the missing one, but applying historical data automati-
cally to fill undeliberately missing rules could cause unpredictable side effects.
Another solution for the same problem is the application of the fuzzy rule
interpolation (FRI) methods, where the derivable rules are deliberately miss-
ing. Since the rule base of an FRI controller is not necessarily complete, it
could contain the most significant fuzzy rules only without risking the chance
of having no conclusion for some of the observations. On the other hand most
of the FRI methods are sharing the burden of high computational demand,
e.g. the task of searching for the two closest surrounding rules to the obser-
vation, and calculating the conclusion at least in some characteristic α-cuts.
Moreover in some methods the interpretability of the fuzzy conclusion gained
is also not straightforward [7]. There have been a lot of efforts to rectify the
interpretability of the interpolated fuzzy conclusion [14]. In [1] Baranyi et al.
give a comprehensive overview of the recent existing FRI methods (namely
the α-cut, modified α-cut and generalised fuzzy interpolation methods). Be-
yond these problems, some of the FRI methods are originally defined for one
dimensional input space, and need special extension for the multidimensional
case (e.g. [3, 4]). In [17] Wong et al. gave a comparative overview of the recent
multidimensional input space capable FRI methods. In [3] Jenei introduced
a way for axiomatic treatment of the FRI methods. In [11] Perfilieva studies
the solvability of fuzzy relation equations as the solvability of interpolating
and approximating fuzzy functions with respect to a given set of fuzzy rules
(e.g. fuzzy data as ordered pairs of fuzzy sets).

The high computational demand, mainly the search for the two closest
surrounding rules to an arbitrary observation in the multidimensional an-
tecedent space makes many of these methods hardly suitable for real-time
applications. Some FRI, e.g. the method introduced by Jenei et al. in [4],
eliminate the search for the two closest surrounding rules by taking all the
rules into consideration, and therefore speed up the reasoning process. On
the other hand, keeping the goal of constructing fuzzy conclusion, and not
simply speeding up the reasoning process, they still require some additional
(or repeated) computational steps for the elements of the level set (or at least
some relevant α levels) to get the fuzzy conclusion.

A rather different application oriented aspect of the FRI emerges in the
concept of “FIVE”. The fuzzy reasoning method “FIVE” (Fuzzy Interpolation
based on Vague Environment, originally introduced in [8–10]) was developed
to fit the speed requirements of direct fuzzy control, where the conclusions
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of the fuzzy controller are applied directly as control actions in a real-time
system (see e.g. a downloadable and runable code of a real-time vehicle path
tracking and collision avoidance control at [18]).

Beyond the simplicity and therefore the high reasoning speed, the FIVE
has two obvious drawbacks, the lack of the fuzziness on the observation and
conclusion side. The reason is this deficiency is inherited from the nature of
the applied vague environment, which describes the indistinguishability of two
points and therefore the similarity of a fuzzy set and a singleton only. The
lack of the fuzziness on the conclusion side has a small influence on common
applications where the next step after the fuzzy reasoning is the defuzzifica-
tion. On the other hand, the lack of the fuzziness on the observation side can
restrict applicability of the method.

In the followings, a way of merging vague environments and therefore the
extension of the original FIVE concept with the ability of handling fuzzy
observations will be introduced.

2 The concept of Vague Environment

The FIVE FRI method is based on the concept of the vague environment [5].
Applying the idea of the vague environment the linguistic terms of the fuzzy
partitions can be described by scaling functions [5] and the fuzzy reasoning
itself can be replaced by classical interpolation. The concept of a vague en-
vironment is based on the similarity or indistinguishability of the considered
elements. Two values in a vague environment are ε-distinguishable if their dis-
tance is greater than ε. The distances in a vague environment are weighted dis-
tances. The weighting factor or function is called scaling function (factor) [5].

Two values in the vague environment X are ε-indistinguishable if

ε ≥ δs (x1, x2) =

∣∣∣∣∣∣

x1∫

x2

s (x) dx

∣∣∣∣∣∣
, (1)

where δs (x1, x2) is the scaled distance of the values x1, x2 and s (x) is the
scaling function on X.

For finding connections between fuzzy sets and a vague environment the
membership function µA (x) can be introduced as indicating level of similarity
of x to a specific element a that is a representative or prototypical element
of the fuzzy set µA (x), or, equivalently, as the degree to which x is indistin-
guishable from a (2) [5]. The α-cuts of the fuzzy set µA (x) are the sets which
contain the elements that are (1− α)-indistinguishable from a (see Fig. 1 also):

1− α ≥ δs (a, b) ,

µA (x) = 1−min {δs (a, b) , 1} = 1−min

{∣∣∣∣∣
b∫

a

s (x) dx

∣∣∣∣∣ , 1
}
.

(2)
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Fig. 1. The α-cuts of µA (x) contain the elements that are (1 − α)-indistinguishable
from a
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Fig. 2. A Ruspini fuzzy partition and its scaling function

In this case (see Fig. 1), the scaled distance of points a and b (δs (a, b)) is
the Disconsistency Measure (SD) (mentioned and studied among other dis-
tance measures in [16] by Turksen et al.) of the fuzzy sets A and B (where B
is a singleton):

SD (a, b) = 1− sup
x∈X

µA∩B (x) = δs (a, b) if δs (a, b) ∈ [0, 1] , (3)

where A∩B notes the min t-norm, µA∩B (x) = min [µA (x) , µB (x)], ∀x ∈ X.
Taking into account the most common way of building a traditional fuzzy

logic controller, where the first step is defining the fuzzy partitions on the an-
tecedent and consequent universes by setting up the linguistic terms and then
based on these terms building up the fuzzy rule base, the concept of vague
environment [5] is straightforward. The goal of the fuzzy partitions is to define
indistinguishability, or vagueness on the different regions of the input, output
universes. This situation is clearer, if intentionally Ruspini partitions are cho-
sen and the cores of the linguistic terms are set only (see e.g. Fig. 2). The
designer has no intention to specify particular fuzzy sets, but the vagueness of
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the terms and therefore the vagueness of the rules build from them. The vague
environment is characterised by its scaling function. For generating a vague
environment of a fuzzy partition an appropriate scaling function is needed,
which describes the shapes of all the terms in the fuzzy partition. A fuzzy
partition can be characterised by a single vague environment if and only if
the membership functions of the terms fulfil the following requirement [5]:

s (x) = |µ′ (x)| =
∣∣∣dµ

dx

∣∣∣ exists iff

min {µi (x) , µj (x)} > 0 ⇒ |µ′i (x)| =
∣∣µ′j (x)

∣∣ ,
(4)

∀i, j ∈ I, where s (x) is the scaling function of the vague environment (see e.g.
on Fig. 2).

3 Approximate Scaling Function

Generally condition (4) is not fulfilled, so the question is how to describe all
fuzzy sets of the fuzzy partition with one “universal” scaling function. For
this task the concept of an approximate scaling function, as an approximation
of the scaling functions describing the terms of the fuzzy partition separately
is proposed in [8–10].

The concept of an approximate scaling function is based on the assumption
that the original goal of setting up a fuzzy partition was to characterise a scal-
ing on a universe by some given points (member sets of the fuzzy partition),
where the scaling factor of the universe is known. This case, as a general way of
describing scaling on a universe, the member sets of the fuzzy partition can be
restricted to triangular (trapezoidal) shaped terms. Supposing that the fuzzy
terms are triangles, each fuzzy term can be characterised by three values (by a
triple), by the values of the left and the right scaling factors and the value of its
core point (see e.g. on Fig. 3). Having these cardinal points, as an approximate
scaling function, the scaling function can be simply interpolated. In [8–10] the
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Fig. 3. Fuzzy partitions consisting of triangular fuzzy sets can be characterised by
triples, by the values of the left sL and the right sR scaling factors and the cores
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Fig. 4. Approximate scaling function generated by nonlinear interpolation (5)
(k = 1) of the fuzzy partition shown on Fig. 3, and the partition as the approxi-
mate scaling function describes it (A′, B′)

following nonlinear formula was suggested for interpolation of the correspond-
ing scaling factors between the neighbouring terms (see e.g. on Fig. 4):

s (x) =

⎧
⎪⎪⎨

⎪⎪⎩

wi

(di+1)k·wi
·
(

(di+1)k·wi

(x−xi+1)k·wi
− 1

)
+ sLi+1

∣∣sRi ≥ sLi+1,

wi

(di+1)k·wi
·
(

(di+1)k·wi

(xi+1−x+1)k·wi
− 1

)
+ sRi

∣∣sRi < sLi+1,

x ∈ [xi, xi+1) , wi =
∣∣sLi+1 − sRi

∣∣ , di = xi+1 − xi,∀i ∈ [1, n− 1] ,

(5)

where s (x) is the approximate scaling function; xi is the core of the ith term
of the approximated fuzzy partition; sLi , s

R
i are the left and right side scal-

ing factors of the ith triangle shaped term, n is the number of the terms in
the approximated fuzzy partition; and k, k > 0 is the sensitivity factor for
neighbouring scaling factor differences.

For a detailed discussion of questions related to approximate scaling func-
tions see [8–10].

4 Shepard Interpolation for Fuzzy Reasoning: “FIVE”

The main idea of the FRI method “FIVE” (Fuzzy Interpolation based on
Vague Environment) can be summarised in the followings:

1. If the vague environment of a fuzzy partition (the scaling function or at
least the approximate scaling function) exists, the member sets of the
fuzzy partition can be characterised by points in that vague environment.
(These points are indicating the cores of the fuzzy terms, while the mem-
bership functions are described by the scaling function itself.)

2. If all the vague environments of the antecedent and consequent universes
of the fuzzy rule base exist, all the primary fuzzy sets (linguistic terms)
compounding the fuzzy rule base can be characterised by points in their
vague environment. Therefore the fuzzy rules (built-up from the primary
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fuzzy sets) can be characterised by points in the vague environment of the
fuzzy rule base too. In this case the approximate fuzzy reasoning can be
handled as a classical interpolation task.

3. Applying the concept of vague environments (the distances of points are
weighted distances), any crisp interpolation, extrapolation, or regression
method can be adapted very simply for approximate fuzzy reasoning
[8–10].

Because of its simple multidimensional applicability, for interpolation-
based fuzzy reasoning in this paper the adaptation of the Shepard operator
based interpolation (first introduced in [12]) is suggested. Beside the existing
deep application oriented investigation of the Shepard operator e.g. [2], it is
also successfully applied in the Kóczy-Hirota fuzzy interpolation [6]. (The sta-
bility and the approximation rate of the Shepard operator based Kóczy-Hirota
fuzzy interpolation is thoroughly studied in [13, 15].) The Shepard interpo-
lation method for arbitrarily placed bivariate data was introduced as follows
[12]:

S0 (f, x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fk if (x, y) = (xk, yk) for some k,
n∑

k=0

f(xk,yk)/dλ
k

n∑
k=0

1/dλ
k

otherwise, (6)

where measurement points (xk, yk) (k ∈ [0, n]) are irregularly spaced on the

domain of f ∈ -2 → -, λ > 0, and dk =
[
(x− xk)2 + (y − yk)2

]1/2

. This
function can be typically used when a surface model is required to interpolate
scattered spatial measurements.

The adaptation of the Shepard interpolation method for interpolation-
based fuzzy reasoning in the vague environment of the fuzzy rule base is
straightforward by substituting the Euclidian distances dk by the scaled dis-
tances δs,k:

δs,k = δs (ak,x) =

⎡

⎢⎣
m∑

i=1

⎛

⎜⎝
xi∫

ak,i

sxi
(xi) dxi

⎞

⎟⎠

2⎤

⎥⎦

1/2

, (7)

where sxi
is the ith scaling function of the m dimensional antecedent uni-

verse, x is the m dimensional crisp observation and ak are the cores of the m
dimensional fuzzy rule antecedents Ak.

Thus in case of singleton rule consequents the fuzzy rules Rk has the fol-
lowing form:

If x1 = Ak,1 And x2 = Ak,2 And ... And xm = Ak,m Then y = ck (8)
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by substituting (7) to (6) the conclusion of the interpolative fuzzy reasoning
can be obtained as:

y (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ck if x = ak for some k,
r∑

k=1

ck/δλ
s,k

r∑
k=1

1/δλ
s,k

otherwise. (9)

The interpolative fuzzy reasoning (9) can be extend simply to be able
to handle fuzzy conclusions by introducing the vague environment (scaling
function) of the consequence universe. In this case the fuzzy rules Rk has the
following form:

If x1 = Ak,1 And x2 = Ak,2 And ... And xm = Ak,m Then y = Bk (10)

By introducing scaled distances on the consequence universe:

δs (b0, bk) =

bk∫

b0

sy (y) dy, (11)

where sy is the ith scaling function of the one dimensional consequent uni-
verse, bk are the cores of the one dimensional fuzzy rule consequents Bk.

Introducing the first element of the one dimensional consequence universe
bk (Y : b0 ≤ y, ∀y ∈ Y ), based on (9) and (11), the requested one-dimensional
conclusion y (x) can be obtained from the following formula [8–10]:

δs (b0, y (x)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δs (b0, bk) if x = ak for some k,
r∑

k=1

δs(b0,bk)/δλ
s,k

r∑
k=1

1/δλ
s,k

otherwise. (12)

5 Fuzzy Observation by Merging Vague Environments

The lack of the fuzziness on the observation side in FIVE is inherited from the
nature of the vague environment (see Sect. 5), which describes the indistin-
guishability of two points and hence the Disconsistency Measure of a fuzzy set
and a singleton only. For introducing fuzzy observation in FIVE, the concept
of vague environment is needed to be extended to the observation too.

One possible solution for this task is an obvious one. If the observation is
a fuzzy set, it can be also characterised by a vague environment in the same
manner as it was done with the corresponding antecedent fuzzy partitions.
This case the question of introducing fuzzy observation turns to be the ques-
tion of merging two vague environments, the vague environment of the fuzzy
observation and the corresponding antecedent fuzzy partition.
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For merging two vague environments, the concept of equal Disconsistency
Measures is applied. According to (3) the Disconsistency Measure of fuzzy
sets A and B is the following:

SD (A,B) = 1− sup
x∈X

µA∩B (x) , (13)

where A∩B notes the min t-norm, µA∩B (x) = min [µA (x) , µB (x)], ∀x ∈ X.
Reconsidering the relation of the Disconsistency Measure of a fuzzy set

and a singleton to the scaled distance of two values in a vague environment
(according to (3)), the merged vague environment can be defined as the vague
environment, where the scaled distance of two values is equal to the Discon-
sistency Measure of the two corresponding fuzzy sets (see e.g. on Fig. 5):

SD (A,B) =
∣∣∣∣
x0∫
a

sA (x) dx
∣∣∣∣ =

∣∣∣∣∣
b∫

x0

sB (x) dx

∣∣∣∣∣

=

∣∣∣∣∣
b∫

a

sA′ (x) dx

∣∣∣∣∣ = δs (a, b) = SD (A′, B′) ,
(14)

where sA (x) is the scaling function of fuzzy set A, sB (x) is the scaling func-
tion of fuzzy set B, sA′ (x) is the merged scaling function on X and δs (a, b)
is the scaled distance of the values a, b in sA′ (x).

Solving (14) in case of constant scaling functions (according to the notation
of Fig. 5), the following merged scaling function (sA′) can be obtained:

SD (A,B) = sA · (x0 − a) = sB · (b− x0) = SD (A′, B′) ,

SD (A′, B′) = sA′ · (b− a) =
sA · sB
sA + sB

· (b− a) .
(15)
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Fig. 5. In the merged scaling function sA′ (16), the scaled distance of two values
a, b is equal to the Disconsistency Measure of the two corresponding fuzzy sets A, B
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sA′ (x) =
sA (x) · sB (x)
sA (x) + sB (x)

, ∀x ∈ X. (16)

It is obvious, that generally (16) is not fulfilling the requirements of equal
Disconsistency Measures for merging arbitrary vague environments, but it can
serve as a kind of “approximation” for the merged scaling function.

Applying the concept of merged scaling function, the method FIVE can
be simply completed by fuzzy observation. There is only one additional step
required for the original method, the merging of the fuzzy observation vague
environments to the vague environments of the corresponding antecedent
fuzzy partitions. In the merged vague environment, the fuzzy observation turns
to be a singleton, and hence the original FIVE method can be continued in
the ordinary way.

Unfortunately, the vague environment merging of the fuzzy observations to
the corresponding antecedent fuzzy partitions needed to be repeated in every
reasoning step if the scaling function of the fuzzy observation is changing. On
the other hand, in some cases, when all the observations can be characterised
by the same scaling function (e.g. if all the fuzzy observations have the same
isosceles triangle shaped membership function) the merging step needed to be
completed only once for all the reasoning steps (see e.g. on Fig. 6).

6 Example

Simple one-dimensional example for the fuzzy observation extended (16) FIVE
method (12) is introduced in Fig. 7. For comparing the crisp conclusions of
FIVE to the classical methods, the conclusions generated by the max–min
compositional rule of inference (CRI) and the centre of gravity defuzzification
for the same rule base is also noted in the figure.

In Fig. 7 the label “fuzzy” notes the case of fuzzy observation. For compar-
ison, the figure also contains the conclusions of the crisp observations (label
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function sA′ constructed from sA and sB according to (16)
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Fig. 7. Interpolation of two fuzzy rules (A1 → B1, A2 → B2) applying the fuzzy
observation extended (16) FIVE fuzzy rule interpolation (12), λ = 1

“crisp”) for the same rule base. In the example it was assumed, that the run-
ning observation has the same isosceles triangle shaped membership function
(see x on Fig. 7) everywhere in the observation universe X. For the notation
of the scaling function merging in Fig. 7, see Fig. 6.

7 Conclusions

The goal of this paper was to introduce a way for extending the “FIVE” FRI
method to be able to handle fuzzy observations. The proposed extension, the
“vague environment merging”, unifies the vague environments of the fuzzy ob-
servations to the vague environments of the antecedent universes, and hence
introduce the ability of handling fuzzy observation in FIVE.
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The main drawback of the proposed extension is the additional step
required for merging the observation and antecedent vague environments. This
vague environment merging step is needed to be repeated in every reasoning
case if the scaling function of the fuzzy observation is changing. On the other
hand, when all the fuzzy observations can be characterised by the same scaling
function, this merging step is needed to be done only once.

The merged vague environment is introduced as the vague environment,
where the scaled distance of two values is equal to the Disconsistency Measure
of the two corresponding fuzzy sets characterised by the two separate vague
environments intended to be merged (see Sect. 6 for more details). The func-
tion proposed for vague environment merging in this paper (16) is only a kind
of approximation. Generally the requirement of equal Disconsistency Measure
is not fulfilled, save the case when the scaling functions are constants. In spite
of this drawback, the proposed merging function (16) is simple enough to keep
the simplicity and reasoning speed of the fuzzy observation extended FIVE
method. (Since the main goal of developing FIVE was to construct an FRI
method, which could be implemented to be simple and quick enough to fit
the requirements of real-time direct fuzzy logic control systems.)

A freely applicable code of the extended FIVE introduced in this paper,
together with some application examples can be downloaded from [18].
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Fuzzy Rule Interpolation Based on Polar Cuts

Zsolt Csaba Johanyák and Szilveszter Kovács

Summary. Fuzzy logic systems applying sparse rule bases should use inference
techniques that can produce acceptable output in cases when there no rules for
some observations. This paper presents a new fuzzy rule interpolation technique
called FRIPOC that is applicable in such cases. Main advantages of the method
are its extrapolation capability, its applicability even in subnormal cases and its
comprehensibility.

Key words: Fuzzy rule interpolation, Polar cut.

Systems applying fuzzy logic are rule based ones. The collection of the rules
the so-called rule base can be characterized as dense or sparse depending on
whether there exist rules for all the possible observations. In the sparse case for
some observations there are no rules whose antecedent part would overlap the
observation at least partially. Therefore the classical compositional reasoning
methods can not produce an acceptable conclusion. The inference techniques
based on fuzzy rule interpolation are developed for especially this purpose.

This paper proposes a new fuzzy rule interpolation based inference tech-
nique applying the concept of linguistic term shifting and polar cut. It is called
FRIPOC (Fuzzy Rule Interpolation based in POlar Cuts) and it is applicable
in the case of sparse and dense rule bases, too. Its main advantages are its
comprehensibility, extrapolation capability and its applicability even if the
height of one or more fuzzy sets is smaller than one.

The rest of this paper is organized as follows. Sect. 1 gives a brief overview
on the relevant fuzzy rule interpolation techniques grouping them depend-
ing on the main steps they are following. Sect. 2 presents the main structure
and the steps and stages that characterize the method FRIPOC. Sect. 3 in-
troduces the concept of the polar cut and a fuzzy set interpolation technique
called FEAT-p based on it as a possible implementation for the first and third
stage of the first step. In Sect. 4 the authors propose a technique for the de-
termination of the position of the consequent sets that is an extension and
adaptation of the Shepard 2D interpolation [14]. Sect. 5 introduces a new polar
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cut based single rule inference method for the determination of the conclu-
sion. In Sect. 6 some relevant features of the new method are outlined through
some numerical examples.

1 A Brief Overview of Fuzzy Rule Interpolation Methods

The fuzzy rule interpolation (FRI) based inference techniques have been used
for several years in order to alleviate the problems arising from the informa-
tion gaps in sparse rule bases. They can be divided into two groups depending
on whether they are producing the approximated conclusion directly or a new
intermediate rule is interpolated first.

Relevant members of the first group are among others the α-cut based in-
terpolation (KH) [10] proposed by Kóczy and Hirota, which was the first
developed technique, the modified α-cut based interpolation (MACI) [16]
introduced by Tikk and Baranyi, the fuzzy interpolation based on vague en-
vironment (FIVE) [11] developed by Kovács and Kóczy, the improved fuzzy
interpolation technique for multi-dimensional input spaces (IMUL) [19] pro-
posed by Wong, Gedeon and Tikk, the interpolative reasoning based on grad-
uality (IRG) [2] introduced by Bouchon-Meunier, Marsala and Rifqi, the
interpolation by the conservation of fuzziness (GK) [4] developed by Gedeon
and Kóczy, the method based on the conservation of the relative fuzziness
(CRF) proposed by Hirota, Kóczy and Gedeon, and the VKK method [18]
introduced by Vass, Kalmár and Kóczy.

The structure of the methods belonging to the second group can be de-
scribed best by the generalized methodology of the fuzzy rule interpolation
introduced by Baranyi, Kóczy and Gedeon in [1]. As other typical members of
this group can be mentioned the ST method [20] introduced by Yan, Mizumoto
and Qiao, the interpolation with generalized representative values (IGRV) [5]
developed by Huang and Shen, the technique proposed by Jenei in [6], and
the method being presented in this paper.

The solvability and approximate solvability of fuzzy relation equations and
the approximation quality of approximate solutions was studied by Perfilieva
and Gottwald in [12].

2 The Structure of the Proposed Method

The method FRIPOC (Fuzzy Rule Interpolation based on POlar Cuts) essen-
tially follows the concepts of the generalized methodology of fuzzy rule inter-
polation (GM) introduced by Baranyi et al. in [1]. The position of the fuzzy
sets is characterized by a reference point during the calculations. For example
the centre of the core, the centre of gravity, the centre of the support or the
projection of the centre of the core to the horizontal axis can play this role (Fig.
1.). In the case of the polar cut based set interpolation and single rule reason-
ing methods the latter choice offers the most advantages. Besides its informa-
tion content about the middle one from the most relevant (having the maximal
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Fig. 1. Options for the reference point and the related set distances

membership value) elements of the set it also reduces the need for calculations
due to the fact that its ordinate value is always zero. Further on this type of
reference point is used during the calculations. The distance of the fuzzy sets is
measured by the horizontal distance between the reference points of the sets.

The method consists of two steps. First a new intermediate rule is interpo-
lated, of which antecedent part contains fuzzy sets whose position is identical
with the position of the sets describing the observation in each dimension. This
task is done in three stages. First the antecedent part of the new rule is deter-
mined through a set interpolation method. The application of the technique
FEAT-p introduced in Sect. 3 is proposed by the authors for this purpose.
Next the position of the fuzzy sets belonging to the consequent part of the
new rule is calculated. The method suggested by the authors for this task is
presented in Sect. 4. Thirdly the shape of the consequent sets is determined
using the same technique as in the case of the antecedent sets.

The conclusion is determined in the second step by firing the interpolated
rule. A special single rule reasoning technique called SURE-p, which is based
also on polar cuts, is introduced for this task in Sect. 5.

3 Fuzzy Set Interpolation Based on Linguistic Term
Shifting and Polar Cuts

The task of the fuzzy set interpolation is to determine the antecedent and
consequent sets that belong to the new rule. The method is the same in the
case of each linguistic term regardless of it belongs to an antecedent or con-
sequent universe of discourse. The calculations are done separately for each
input and output dimension. The starting point is a fuzzy partition with the
reference points of the sets determined in advance and the reference point of
the observation (conclusion) in the actual dimension/partition. All the sets in
the partition belong to the antecedent (consequent) part of one or more rules.

The reference point of the new set is identical with the the reference point
of the observation (conclusion) in the actual dimension. The method goes out
from the assumption that a better set approximation can be attained by taking
into consideration not only the two sets flanking the observation/conclusion
but all the available linguistic terms in the partition. First all sets are shifted
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Fig. 2. The original partition and the result of the shifting

Fig. 3. Polar cut

horizontally in order to reach the coincidence of the horizontal position of
their reference points with the position of the interpolation (see Fig. 2). This
idea is similar to the concept in [2], but that method uses and translates only
the two flanking sets into the location of the observation. Next the shape of
the new set is determined from the collection of the overlapped sets.

There are several solutions for this task. Similar to the choice of the refer-
ence point the selection of the calculation mode of the shape is also a tuning
point. In [8] the authors present a solution with low computational complex-
ity called FEAT-α (Fuzzy SEt interpolAtion Technique based on α-cuts). It
is based on α-cuts and its application area is however, restricted to the most
popular case of the convex and normal fuzzy (CNF) sets.

Further on the concept of the polar cut is introduced and next based on it
a solution called FEAT-p (Fuzzy SEt interpolAtion Technique based on polar
cuts) is proposed. Its main advantage is that it can also be applied in cases
when the normality condition is not satisfied for all the sets participating in
the interpolation process, i.e. the height of one or more sets is smaller than one.

The concept of the polar cut is strong related to the application of a polar
co-ordinate system whose origin coincides with the abscissa of the reference
point of the observation. A polar cut is defined by a value pair {ρ, θ} that
determines a point on the shape of the linguistic term. The value ρ denotes
the polar distance at the angle θ (Fig. 3). The authors are going out from the
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assumption that an extension and a resolution principle of the fuzzy sets can
be defined for polar cuts, too. This extension principle states that the solution
of a problem for fuzzy sets can be found in the form of solving it first for its
polar cuts and then extending the solution to the fuzzy case. The resolution
principle states in this case that a fuzzy set can be decomposed into polar cuts.

The shape calculation technique FEAT-p is based on the above defined
extension principle. For each polar cut of the interpolated set the value ρ is
calculated as weighted average of the polar distances ρ of the shifted sets for
the same θ angle using (1).

ρ
(
Ai

jθ

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

nj∑
k=1

wjk·ρ(Ajkθ)

nj∑
k=1

wjk

d
(
A∗

j , Ajk

)
> 0

ρ (Ajkθ) d
(
A∗

j , Ajk

)
= 0, k = 1..nj

(1)

where ρ denotes the length of a polar cut, j is the actual antecedent (conse-
quent) dimension, θ is the angle of the actual cut, nj is the number of the
sets in the partition, Ajkθ is the polar cut of the kth set, wjk is the weighting
factor of the kth set, Ai

jθ is the interpolated polar cut and the superscript i
denotes that the set is an interpolated one. The collection of the angles , the
so called polar levels, for which the calculations are done, should be set-up in
such mode to include the values 0, π/2 and π.

It seems to be natural that the sets whose original position were in the
neighbourhood of the reference point of the observation to exercise higher in-
fluence as those ones situated in farther regions of the universe of discourse.
Therefore the weighting factor should be dependent on distance. The simplest
weighting factor is the reciprocal value of the distance, which can be expressed
by (2) with p = 1, but there are several recommendations in the literature for
more or less analogue cases. For example in [10] the square of the reciprocal
value of the distance is suggested (p = 2). The authors of [17] propose the use
of the reciprocal value of the distance on the mth power (p = m), where m is
the number of the antecedent dimensions.

wjk =
1

d
(
A∗

j , Ajk

)p (2)

The formula (1) separates the case when the position of the interpolation
coincides with the actual set of the partition (d

(
A∗

j , Ajk

)
= 0). Its reason is

that the weighting factor (2) contains the distance in the denominator. Thus
if the reference point of the observation (conclusion) is the same as one of the
original sets of the partition the interpolated set will be the same as that lin-
guistic term. This feature ensures the fulfilment of the condition four from [7],
namely the compatibility with the rule base, for the rule interpolation method
based on the above mentioned method.
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4 The Position of the Consequent Sets

The position of the fuzzy sets belonging to the consequent part of the new
rule is determined independently in each output dimension. The task can be
defined as a problem of finding a point on a hyper-surface defined by the ref-
erence points of the antecedent sets (sets belonging to the antecedent parts
of the existing rules) and the consequent sets in the actual output dimension.
Due to the sparse character of the rule base an na dimensional interpolation
has to be done for irregularly spaced data, where na is the number of the
output dimensions. It can be expressed in general by the formula (3).
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= f

(
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(
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(
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, ..., RP
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j
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, ..., RP
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(3)

where RP
(
Bi

l

)
is the reference point of the interpolated consequent set in the

lth output dimension and RP
(
Ai

j

)
is the reference point of the interpolated

antecedent set in the jth input dimension. The function should pass through
the known points of the hyper-surface and it should be smooth, i.e. continuous
and once differentiable.

There are several applicable linear or non-linear functions that take into
consideration either only the points (rules) situated in the closest neighbour-
hood of the interpolation or all the known points. The authors suggest the use
of an interpolation function that is an extension and adaptation of the Shepard
interpolator [14] for the case of arbitrary number of antecedent dimensions.

The antecedent part of each rule can be thought of as a point in the an-
tecedent hyper-space. Its co-ordinates are given by the reference points of the
sets belonging to it. The point corresponding to the antecedent of the interpo-
lated rule is at the same time also the representing point of the observation.
Further on the Euclidean distance between these points is used as the mea-
sure of the closeness of the antecedents and by this means also the closeness
of the rules. The proposed interpolation function (4) determines the reference
point of the conclusion as a weighted average of the reference points of the
consequent sets of the known rules in the actual output dimension.
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)
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RP (Blj) · sj
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sj

(4)

where RP
(
Bi

l

)
is the reference point of the interpolated consequent set in the

lth dimension, N is the number of the rules, j denotes the actual rule, sj is
the weight attached to the jth rule.

The rules whose antecedent part is in the closer neighbourhood of this
point should exercise higher influence than those situated farther. Therefore
the weighting factor is a distance function. Shepard proposed in [14] several
variants of the weighting factors for its interpolation function. The first of
them, which applies the inverse of the square of the distance, was chosen by



Fuzzy Rule Interpolation Based on Polar Cuts 505

the authors to be applied considering it as the one having the lowest compu-
tational complexity. Its adapted version, the formula (5) is the inverse of the
square of the distance between the antecedent of the interpolated rule and the
antecedent of the jth rule. It is actually the sum of the squares of distances
measured along each antecedent dimension.

sj =
1

d (RAi, RAj)
2 =

1
na∑

k=1

(
RP

(
Ai

k

)
−RP (Ajk)

)2
(5)

where RAi is the antecedent of the interpolated rule, RAj is the antecedent
of the jth rule, RP

(
Ai

k

)
is the reference point of the interpolated antecedent

in the kth dimension (identical with the reference point of the observation in
the kth dimension), RP (Ajk) is the reference point of the reference point of
the antecedent set of the jth rule in the kth dimension and na is the number
of the antecedent dimensions. Generally the fuzzy sets are identified in the
different formulas by two indexes (e.g. in (1) and (2)) the first indicating the
dimension and the second indicating the ordinal number of the set. Contrary
to this in the last two formulas ((4) and (5)) the second subscript gives the
number of the rule of which antecedent part the set belongs to. It is because
this notation mode simplifies the formulas.

Shepard suggested in [14] for the 2D case the use of maximum 10 closest
points in order to reduce the computational needs. However, when the number
of the dimensions is much more than two and the rule base is sparse it seems
to be easier to take into consideration all the rules than to seek those ones
that are in a special proximity of the observation.

5 Single Rule Reasoning Based on Polar Cuts

In the second step of the inference the conclusion is generated by firing the
new rule. The reference point of the interpolated conclusion in the current
dimension will be the same as the reference point of the consequent set of
the new rule in the current dimension. Usually the antecedent part of the rule
does not fit perfectly the observation. Therefore a special single rule reasoning
technique is needed. There are some methods for this task in the literature,
but their common drawback is that their applicability is restricted to some
regular cases. For example the similarity transfer method introduced in [15]
requires the normality of the sets. Beside this the revision principle based FPL
and SRM techniques presented in [13] also demand the coincidence between
the support of the antecedent set and the support of the observation. Gener-
ally these conditions are not fulfilled. Therefore some transformations of the
fuzzy relation are needed when one decides for their application.

The technique SURE-p (Single rUle REasoning based on polar cuts) being
presented alleviates this problem. In addition its advantage is its applicabil-
ity in multi-dimensional cases. SURE-p is based on the concept of polar cut.
Although it determines the conclusion sets in each consequent dimension in-
dependently, there are some common calculations that have to be done only
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Fig. 4. Polar distances used for the calculation of the relative difference

once at the beginning. Thus for each polar cut firstly the difference between
the polar distance of the antecedent set and the polar distance of the obser-
vation in each dimension is calculated, and the result is divided by the range
of the linguistic variable (6).

rjθ =
ρ
(
Ai

jθ

)
− ρ

(
A∗

jθ

)

rangeaj
(6)

where rjθ is the relative difference at the θ level in the jth antecedent di-

mension, ρ
(
Ai

jθ

)
the polar distance of the antecedent set (see fig. 4), ρ

(
A∗

jθ

)

is the polar distance of the observation and rangeaj is the range of the an-
tecedent linguistic variable in the jth dimension. Next an average relative
difference is calculated taking into consideration the relative differences in all
antecedent dimensions (7).

rθ =

na∑
j=1

rjθ

na
(7)

where rθ is the average relative difference at the θ level, na is the number of
the antecedent dimensions. In each consequent dimension the corresponding
polar cut is calculated supposing that the relative difference at θ level between
the polar distances of the rule consequent and the conclusion is equal to rθ as
expressed in formula (8).

ρ
(
Bi

lθ

)
− ρ (B∗

lθ)
rangecl

= rθ (8)

where ρ
(
Bi

lθ

)
the polar distance of the interpolated consequent set, ρ (B∗

lθ) is
the polar distance of the conclusion, rangecl is the range of the consequent
linguistic variable in the lth output dimension and θ is the polar angle. Due
to the nature of the fuzzy sets the resulting height of the conclusion has to be
maximized to one. Thus arises the formula (9).

ρ (B∗
lθ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Min
[
ρ
(
Bi

lθ

)
− rθ · rangecl,

1
sin(θ)

]
sin (θ) > 0

rho
(
Bi

lθ

)
− rθ · rangecl sin (θ) = 0

(9)
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Fig. 5. Non-convex conclusions obtained by the formula (9)

Due to the revision of the interpolated consequent sets based on the av-
erage relative antecedent difference the formula (9) can easily lead to a non-
convex fuzzy set. As an example Fig. 5 presents the consequent partitions of a
system with two output dimensions (output1 and output2). The interpolated
conclusion sets (B∗

1 and B∗
2) obtained by (9) are drawn with bold lines. In

order to alleviate this problem the calculations should start at polar level π/2
in top-down direction, they should be done separately for the right and left
flanks of the linguistic terms as well a control and correction algorithm should
be included. Further on the basic ideas and the steps that have to be done
are presented only for the case of the right flank of the set. The calculation
of the left flank is similar.

The convexity requirement is satisfied if and only if the horizontal distance
to the centre of the polar co-ordinate system of each point is not smaller than
the same distance calculated for the previous point and if the vertical distance
to the centre of the polar co-ordinate system of each point is not greater than
the same distance calculated for the previous point. This condition can be
expressed by the formula (10).

ρ
(
B∗c

lθ(k)

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(
B∗

lθ(k)

)
k = 1

ρ
(
B∗

lθ(k−1)

)
· cos(θ(k−1))

cos(θ(k)) k > 1 and
ρ(B∗

lθ(k−1))·cos(θ(k−1))

ρ
(
B∗

lθ(k)

)
·cos(θ(k))

> 1

ρ
(
B∗

lθ(k−1)

)
· sin(θ(k−1))

sin(θ(k)) k > 1 and
ρ(B∗

lθ(k))·sin(θ(k))

ρ
(
B∗

lθ(k−1)

)
·sin(θ(k−1))

> 1

ρ
(
B∗

lθ(k)

)
otherwise

(10)

where θ is an array containing the polar angles necessary for the calculation
of the right flank from π/2 to 0 in descending order, ρ

(
B∗

lθ(k)

)
is the polar
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distance calculated by the formula (9) and ρ
(
B∗c

lθ(k)

)
is the corrected polar

distance.

6 Numerical Examples

In the followings the sensitivity of the method FRIPOC to the value of its pa-
rameter p will be studied through some numerical examples. Figure 6 presents
a fuzzy system having two antecedent (input1 and input2) dimensions and one
consequent dimension (output1). There are triangular, trapezoidal and rectan-
gular (crisp) set shapes and four of the sets are subnormal. For the sake of
simplicity each original antecedent partition contains only two sets that are
surrounding the observation drawn by bold line. Based on the same consider-
ation the original consequent partition also contains two fuzzy sets. The rule
base consist of two rules according to (11).

R1 : if A∗
1 = A11 and A

∗
2 = A21 then B

∗
1 = B11

R2 : if A∗
1 = A12 and A

∗
2 = A22 then B

∗
1 = B12

(11)

The observation is trapezoid shaped in both antecedent dimensions (A∗
1

and A∗
2). The third axes (frame) contains the final interpolated conclusion

marked by bold line and obtained for the value p = 0.001. Figure 7 contains
three further results obtained for the values 1, 2 and 10 of the parameter p.
One can clearly observe that increasing the value of p the second rule (R2),
which is visibly the nearest one to the observation keeps getting more domi-
nant and the corrected interpolated conclusion (B∗c

1 ) becomes more and more
similar to the set B12.

Fig. 6. FRIPOC applied with p = 0.001 to a system with two input and one output
dimension and two rules
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Fig. 7. Conclusions obtained for p = 1, p = 2 and p = 3

7 Conclusions

The interpolation based fuzzy reasoning methods ensure an acceptable con-
clusion even in cases when there are no rules whose antecedent part would
overlap the observation.

In this paper a new technique called FRIPOC is presented that introduces
the concept of polar cuts and linguistic term shifting for fuzzy rule interpola-
tion. It determines the conclusion in two steps following the concept of GM [1].
First an intermediate rule is interpolated whose antecedent part is in the same
position as the observation in each antecedent dimension and next the result
is determined by firing the new rule. The authors suggest the application of
a new method called FEAT-p for the set interpolation tasks and the use of
an adapted version of the Shepard interpolation for the determination of the
position of the consequent part of the rule in the first step. A new technique
called SURE-p is suggested as single rule reasoning method for the second
step. The main advantages of the method FRIPOC are its comprehensibility,
extrapolation capability and its applicability even in subnormal cases. The
sensitivity of the method to the value of the parameter p is outlined through
some numerical examples. The method is implemented in Matlab and can be
downloaded from [3]. This website is dedicated to a fuzzy rule interpolation
Matlab toolbox development project (introduced in [9]) aiming the implemen-
tation of various FRI techniques.
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Approximate Reasoning Using Fodor’s
Implication

Adrian Giurca and Ion Iancu

Summary. Using generalized modus ponens reasoning, we examine the values of
the inferred conclusion using the Fodor’s implication in order to interpret a fuzzy
if–then rule with a single input single output and the T-norms t1(x, y) = min(x, y),
t2(x, y) = xy, and t3(x, y) = max(0, x + y − 1) for composition operation. These are
the very used T-norms in generalized modus ponens reasoning.

Key words: Fuzzy sets, Fuzzy implication, Generalized modus ponens,
T-norm, T-conorm.

1 Introduction

An investigation of inference processes in the fuzzy if–then rules is still a
subject of many papers in literature: [1, 5–23]. The principal difficulty in the
utilization of these rules appears when the observed facts do not match the
condition expressed in the premise. These problems led Zadeh [23] to outline
the theory of approximate reasoning that is the deduction of imprecise conclu-
sion from a set of imprecise premises. He extends the traditional modus ponens
rule in order to deduce an imprecise conclusion from imprecise premises; thus
he obtained generalized modus ponens rule. This inference mechanism states
that from the propositions “If X is A then Y is B” and “X is A′” we can
deduce “Y is B′” where A,B,A′, and B′ are modeled by fuzzy sets, X and Y
are variables whose domains are U and V , respectively; evidently, A,A′ ⊆ U
and B,B′ ⊆ V . The proposition “X is A” can be understood as “the quan-
tity X satisfies the predicate A” or “the variable X takes its values in the
set A.” Its semantic content can be represented by πX = µA, where πX is
the possibility distribution restricting the possible value of X and µA is the
membership function of the set A.

A causal link from X to Y is represented as conditional possibility distri-
bution [22,23], πY/X which restricts the possible values of Y for a given value
of X. For the rule If X is A then Y is B this is
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∀u ∈ U, ∀v ∈ V, I (u, v) ≡ πY/X(v, u) = µA(u) → µB(v),

where → is an implication operator and µA and µB are the possibility distri-
butions of the propositions “X is A” and “Y is B,” respectively.

If µA′ is the possibility distribution of the proposition “X is A′” then
the possibility distribution µB′ of the conclusion Y is B′ is computed as
µB′ (v) = sup

{
t
(
µA′ (u) , πY/X (v, u)

)
/u ∈ U

}
where t is a T-norm.

The membership function µA can be expressed using parametric represen-
tation, which is achieved by the five-tuple (LA, lA, RA, rA, θ) [2, 3]:

µA (x) =

⎧
⎪⎪⎨

⎪⎪⎩

θ if x ≤ LA − lA or x ≥ RA + rA
1 if LA ≤ x ≤ RA

Ψ1 (x) if LA − lA ≤ x ≤ LA

Ψ2 (x) if RA ≤ x ≤ RA + rA

where θ ∈ [0, 1] describes the uncertainty that accompanies the piece of infor-
mation, Ψ1 is a nondecreasing function, and Ψ2 is a nonincreasing function.
Besides, the continuity conditions are necessary:

Ψ1 (LA) = Ψ2 (RA) = 1 and Ψ1 (LA − lA) = Ψ2 (RA + rA) = θ.

For θ = 0 the piece of information is certain. For practical reasons we shall
work with trapezoidal distributions: Ψ1 and Ψ2 are linear functions and θ = 0.

2 Basic Concepts

We recall the definitions of basic concept used in generalized modus ponens
reasoning.

Definition 1. A T-norm, T : [0, 1]2 → [0, 1] is a commutative, associative,
nondecreasing function, and T (x, 1) = x ∀x ∈ [0, 1].

A T-conorm, S : [0, 1]2 → [0, 1] is a commutative, associative, nondecreas-
ing function, and S(x, 0) = x ∀x ∈ [0, 1].

A strong negation, N : [0, 1] → [0, 1] is an involutive and continuous de-
creasing function from [0, 1] to itself.

Definition 2. A fuzzy implication is a function I : [0, 1]2 → [0, 1] satisfying
the following conditions:

(I1) If x ≤ z then I(x, y) ≥ I(z, y) for all x, y, z ∈ [0, 1].
(I2) If y ≤ z then I(x, y) ≤ I(x, z) for all x, y, z ∈ [0, 1].
(I3) I(0, y) = 1 (falsity implies anything) for all y ∈ [0, 1].
(I4) I(x, 1) = 1 (anything implies tautology) for all x ∈ [0, 1].
(I5) I(1,0)=0 (Booleanity).

The following properties could be useful in some applications:

(I6) I(1, x) = x (tautology cannot justify anything) for all x ∈ [0, 1].
(I7) I(x, I(y, z)) = I(y, I(x, z)) (exchange principle) for all x, y, z ∈ [0, 1].
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(I8) x ≤ y if and only if I(x, y) = 1 (implication defines ordering)
for all x, y ∈ [0, 1].

(I9) I(x, 0) = N(x) for all x ∈ [0, 1] is a strong negation.
(I10) I(x, y) ≥ y for all x, y ∈ [0, 1].
(I11) I(x, x) = 1 (identity principle) for all x ∈ [0, 1].
(I12) I(x, y) = I(N(y), N(x)) for all x, y ∈ [0, 1] and a strong negation N .
(I13) I is a continuous function.

The most important families of implications [4] are given by

Definition 3. A R-implication associated with a T-norm T is defined by

IT (x, y) = sup{z ∈ [0, 1]/T (x, z) ≤ y}, ∀x, y ∈ [0, 1].

A S-implication associated with a T-conorm S and a strong negation N is
defined by

IS,N (x, y) = S(N(x), y) ∀x, y ∈ [0, 1].

A QL-implication is defined by

IT,S,N (x, y) = S(N(x), T (x, y)), ∀x, y ∈ [0, 1].

We shall work with Fodor’s implication

IF (x, y) =
{

1 if x ≤ y
max(1− x, y) otherwise

which is a R-implication for T = min0, a S-implication for S = max0 and a
QL-implication for T = min and S = max0, where

min0 (x, y) =
{

0 if x+ y ≤ 1
min(x, y) if x+ y > 1

and

max0 (x, y) =
{

1 if x+ y ≥ 1
max(x, y) if x+ y < 1

and N(x) = 1 − x. Besides, the Fodor’s implication verifies the properties
I1–I12.

3 Generalized Modus Ponens with Fodor’s Implication

Taking into account the properties verified by Fodor’s implication it results
that it is one of the most important implication operators. That is why, we
shall investigate the generalized modus ponens reasoning using the Fodor’s
implication and the T-norms:

(T1) t1(x, y) = min(x, y),
(T2) t2(x, y) = xy, and
(T3) t3(x, y) = max(0, x+ y − 1).
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Our aim is to obtain the conclusion Y is B′ from the rule

If X is A then Y is B

and the fact
X is A′

when A,A′, B, and B′ are represented by trapezoidal possibility distribution.
The set B′ is computed as

µB′ (v) = sup
u∈U

{t (µA′ (u) , IF (µA(u), µB(v)))} .

We shall analyze five cases, depending on the relation between µA and µA′

and we will give the proof only for T-norm t1; for t2 and t3 one repeats the
reasoning used for t1.

Theorem 1. If the premise contains the observation: µA′(u) ≤ µA(u), ∀u ∈
U , then

1. for T-norm t1:
µB′(v) ≥ µB(v) if µB(v) ≤ 0.5
µB′(v) = µB(v) if µB(v) > 0.5

2. for T-norm t2:
µB′ (v) = µB(v) if µB(v) ≥ 0.5 or (0.25 ≤ µB(v) < 0.5)
µB′ (v) < 0.25 if µB(v) < 0.25

3. for T-norm t3:
µB′ (v) = µB(v).

Proof. (I1) Value on the set U1 = {u ∈ U/µA(u) ≤ µB(v)}
Because IF (µA(u), µB(v)) = 1, we have

µB′(v) = sup
u∈U1

min(µA′(u), 1) = sup
u∈U1

µA′(u) ≤ sup
u∈U1

µA(u) ≤ µB(v).

(I2) Value on the set
U2 = {u ∈ U/µA(u) > µB(v) ≥ 0.5} ∪ {u ∈ U/µA(u) > 1− µB(v) > 0.5} .
We have IF (µA(u), µB(v)) = µB(v) and therefore

µB′(v) = sup
u∈U2

min(µA′(u), µB(v)) = µB(v).

(I3) Value on the set U3 = {u ∈ U/µB(v) < µA(u) ≤ 1− µB(v)} .
In this case IF (µA(u), µB(v)) = 1− µA(u) and therefore

µB′(v) = sup
u∈U3

min(µA′(u), 1− µA(u)) < 1− µB(v).

Taking into account that, in this case, 1− µB(v) > µB(v), we obtain the
final conclusion. �
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If the observation is more precise than the premise of the rule, then it
gives more information than the premise. However, it does not seem reason-
able to think that the generalized modus ponens allows to obtain a conclusion
more precise than that of the rule. The result of the inference is valid if
µB′(v) = µB(v), ∀v ∈ V . This case is illustrated in the following example
from [11]:

Example 1.
Rule: if the result in the mathematics is good then my recommendation for the
choice of a university faculty is mathematics.
Observation: the result in mathematics is very good.
Consequence: my recommendation is mathematics.

Sometimes, the deduction operation allows the reinforcement of the conclusion
(see also [15]), as in the example below:

Example 2.
Rule: if the tomato is red then the tomato is ripe.
Observation: this tomato is very red.
If we know that the maturity degree increases with respect to color, we can
infer.
Consequence: this tomato is very ripe.

On the other hand, in the next example:

Example 3.
Rule: if the melon is ripe then it is sweet.
Observation: the melon is very ripe.
we do not infer that “the melon is very sweet because it can be so ripe that it
can be rotten.

This examples show that the conclusion depends on the knowledge base. If
the expert has not supplementary information about the connection between
the variation of the premise and the conclusion, he must be satisfied with the
conclusion µB′(v) = µB(v). Theorem 1 says that for this we can choose the
T-norm t3.

Theorem 2. If the premise and the observation coincide, i.e., µA(u) =
µA′(u), ∀u ∈ U , then

1. µB′(v) = max(µB(v), 0.5), for T-norm t1.
2. µB′ (v) = max(µB(v), 0.25), for T-norm t2.
3. µB′ (v) = µB(v), for T-norm t3.

Proof. In this case all inequalities (generated by inequality µA′(u) ≤ µA(u))
from the proof of the Theorem 1 become equalities. �

When the observation and the premise of the rule coincide the convenient
behavior of the fuzzy deduction is to obtain an identical conclusion. But, the
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T-norms t1 and t2 give a different conclusion. This fact indicates the appear-
ance of an uncertainty in the conclusion that is totally unreasonable. In order
to avoid this possibility we suggests to use the T-norm t3.

Theorem 3. If the observation contains the premise, i.e., µA(u) ≤ µA′(u),
∀u ∈ U , then µB′(v) ≥ µB(v) ∀v ∈ V .

Proof. (I1) Value on the set U1 = {u ∈ U/µA(u) ≤ µB(v)}
We have IF (µA(u), µB(v)) = 1 and therefore

µB′(v) = sup
u∈U1

min(µA′(u), 1) = sup
u∈U1

µA′(u) ≥ µB(v).

(I2) Value on the set
U2 = {u ∈ U/0.5 ≤ µB(v) < µA(u)} ∪ {u ∈ U/µA(u) > 1− µB(v) > 0.5} .
We have IF (µA(u), µB(v)) = µB(v) and therefore

µB′(v) = sup
u∈U2

min(µA′(u), µB(v)) = µB(v).

(I3) Value on the set U3 = {u ∈ U/µB(v) < µA(u) ≤ 1− µB(v)} .
We have IF (µA(u), µB(v)) = 1− µA(u) and therefore

µB′(v) = sup
u∈U3

min(µA′(u), 1− µA(u)) ≥ µB(v). �

Theorem 4. If there is a partial overlapping between the sets A and A′, then

1. µB′(v) = 1 if core(A′) ∩ (U −AµB(v)) �= ∅ and
2. µB′(v) ≥ µB(v) otherwise

where Aα denotes the α-cut of A.

Proof. (I1) The case core(A′) ∩ (U −AµB(v)) �= ∅.
On the set U1 = {u ∈ U/µA(u) ≤ µB(v)} we have

IF (µA(u), µB(v)) = 1

and therefore

µB′(v) = sup
u∈U1

min(µA′(u), 1) = sup
u∈U1

µA′(u) = 1.

(I2) The case core(A′) ∩ (U −AµB(v)) = ∅.
For µB(v) ≥ 0.5, on the set

U2 = {u ∈ U/µA(u) > µB(v) ≥ 0.5}
we have

IF (µA(u), µB(v)) = µB(v)
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and
µB′(v) = sup

u∈U2

min(µA′(u), µB(v)) = µB(v).

For µB(v) < 0.5, on the set

U3 = {u ∈ U/µA(u) > 1− µB(v) > 0.5}

we obtain the same result, µB′(v) = µB(v).
It results that the value of µB′(v) is at least µB(v). �

Theorem 5. If the premise and the observation are contradictory, i.e., ∀u ∈
U µA′(u) = 1− µA(u), then µB′(v) = 1 ∀v ∈ V .

Proof. On the set U1 = {u ∈ U/µA(u) ≤ µB(v)} we have

IF (µA(u), µB(v)) = 1

and therefore

µB′(v) = sup
u∈U1

min(µA′(u), 1) = sup
u∈U1

min(1− µA(u), 1) = 1

because there is u0 ∈ U1 with µA(u0) = 0. �

The value µB′(v) = 1 from the Theorems 4 and 5 represents an indetermi-
nate conclusion, all elements v ∈ V having a possibility equal to 1. The result
from the last theorem is valid for every T-norm t.
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Brain-, Gene-, and Quantum-Inspired
Computational Intelligence: Challenges
and Opportunities

Nikola Kasabov

Summary. This paper discusses opportunities and challenges for the creation of
artificial neural network (ANN) and more general – computational intelligence (CI)
models inspired by principles at different levels of information processing in the
brain – neuronal, genetic, and quantum, and mainly – the issues related to the
integration of these principles into more powerful and accurate ANN models. A par-
ticular type of ANN, evolving connectionist systems (ECOS), is used to illustrate
this approach. ECOS evolve their structure and functionality through continuous
learning from data and facilitate data and knowledge integration and knowledge elu-
cidation. ECOS gain inspiration from the evolving processes in the brain. Evolving
fuzzy neural networks and evolving spiking neural networks are presented as exam-
ples. With more genetic information becoming available now, it becomes possible to
integrate the gene and the neuronal information into neurogenetic models and to use
them for a better understanding of complex brain processes. Further down in the
information-processing hierarchy in the brain, are the quantum processes. Quantum-
inspired ANN may help to solve efficiently the hardest computational problems. It
may be possible to integrated quantum principles into brain–gene-inspired ANN
models for a faster and more accurate modeling. All the topics above are illustrated
with some contemporary solutions, but many more open questions and challenges
are raised and directions for further research outlined.

Key words: Artificial neural networks, Computational intelligence, Neuro-
informatics, Bioinformatics, Evolving connectionist systems, Gene regula-
tory networks, Computational neurogenetic modeling, Quantum information
processing.
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1 Introduction: Brain, Gene, and Quantum Levels
of Information Processing in the Brain as Inspirations
for ANN and CI Models

The brain is an evolving information-processing system that evolves its struc-
ture and functionality in time through information processing at different
levels (Fig. 1).

At the quantum level, particles (e.g., atoms, electrons, ions, photons, etc.)
are in a complex evolving state all the time [35]. The atoms are the material
that everything is made of. They can change their characteristics due to the
frequency of external signals [11,22].

At a molecular level, RNA and protein molecules evolve in a cell and in-
teract in a continuous way, based on the stored information in the DNA and
on external factors, and affect the functioning of a cell (neuron) under certain
conditions (Crick 1970).

At the level of a neuron, the internal information processes and the exter-
nal stimuli cause the neuron to produce a signal that carries information to
be transferred to other neurons.

At the level of neural ensembles, all neurons operate in a “concert,” defin-
ing the function of the ensemble, for instance perception of sound.

At the level of the whole brain, cognitive processes take place, such as lan-
guage and reasoning, and global information processes are manifested, such
as consciousness.

At the level of a population of individuals, species evolve through evolution
changing the genetic DNA code for a better adaptation.

The principles of each of the above processes have inspired the creation
of different artificial neural network (ANN) models with the goals of under-
standing the brain; creating powerful methods and systems of computational
intelligence (CI) for solving complex problems in all areas of science and the
humanity.

6.  Evolutionary (population/generation) processes
__________________________________________________ 
5.   Brain cognitive processes
 _________________________________________________ 
4.  System information processing (e.g., neural ensemble)
___________  _____________________________________ 
3.   Information processing in a cell (neuron)  
_________________________________________________ 
2.  Molecular information processing (genes, proteins) 
_________________________________________________  
1.    Quantum information processing 

Fig. 1. Levels of information processing in the brain and the interaction between
the levels
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ANN models, that are brain-inspired (using some principles from the
brain) or brain-like (more biologically plausible models, usually developed
to model a brain function) have already been proposed (for references, see
[2, 3]). Examples are: models of single neurons and neural network ensem-
bles [1, 12,28,29,48,51,67,68,83] cognitive ANN models [4, 5, 74]. Levine and
Aparicio; etc.

The information processes at each level from Fig. 1 are very complex and
difficult to understand, but much more difficult is to understand the interac-
tion between the different levels. It may be that understanding the interaction
through its modeling would help to understand better each level of informa-
tion processing in the brain and perhaps the brain as a whole. Using principles
from different levels in one ANN and modeling their relationship can lead to
a next generation of ANN – more powerful tools to understand the brain and
to solve complex problems.

Some examples of ANN that combine principles from different levels in
Fig. 1 are:

Computational neurogenetic models (CNGM; [43,53,54] Benuskova 2006);
Quantum-inspired ANN [11,20,62,64,73];
Evolutionary ANN models [23,84].
Suggestions are made also that modeling higher cognitive functions and

consciousness can be achieved only if the principles of quantum information
processing are considered [60,61].

There are many issues and open questions to be addressed when creating
ANN CI models that integrate principles from different levels. Here we will
focus on the issues related to a class of ANN models called evolving connec-
tionist systems (ECOS); [39,41]. ECOS are ANN that develop their structure
and functionality over time through incremental learning from incoming in-
formation and through interaction.

The paper discusses in Sect. 2 two particular models inspired by the prin-
ciples of evolving neuronal information processes – local learning ECOS and
evolving spiking neural networks (SNN). In Sect. 3, the issue of combining
neuronal with genetic information processing is discussed and one particular
CNGM is presented for illustration, along with a list of open questions. Sect. 4
presents some ideas behind the quantum-inspired ANN models and offers fur-
ther open questions about the integration of principles from quantum, genetic,
and neuronal information processing.

2 Some Brain-Inspired ECOS Models

Many evolving ANN models have been suggested so far, where the structure
and the functionality of the models evolve through incremental, continuous
learning from incoming data, some times in an on-line mode, and through
interaction with other models and the environment. Examples are: growing
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neural gas [63], RAN (Platt 1991), cascade-correlation ANN [21], on-line learn-
ing ANN [9, 10, 24, 32, 34, 36, 70, 77], FuzzyARTMAP [12], EFuNN [39, 40],
DENFIS [42], and others. Here two models are presented only for illustration,
mainly due to the author’s personal involvement in their development, mod-
ification and applications, but more general open questions are raised at the
end of this section.

2.1 Local, Knowledge-Based Learning: EFuNN, DENFIS,
and TWNFI

Incremental, local learning from a stream of input data and specialization of
an ensemble of neurons to perform a certain function as part of a more global
goal is a principle of the human brain [5, 25].

Local learning ECOS are connectionist systems that evolve their nodes
(neurons) and connections between them through incremental learning from
data vectors where the nodes capture local information from the data in a
supervised or unsupervised mode [41]. One of the ECOS models, the evolving
fuzzy neural network EFuNN [40], is shown in a simplified version in Fig. 2. It
consists of five layers: input nodes, representing input variables; fuzzy input
nodes, representing the degree to which input values belong to fuzzy member-
ship functions that are used to define concepts such as low value or high value
for a variable; rule nodes, representing cluster centers of samples in the prob-
lem space and their associated local output functions; fuzzy output nodes,
representing membership degrees of the output values to predefined output
membership functions; and output nodes that represent output variables. The
fuzzy representation nodes are optional.

W1 W2

Inputs 
Outputs 

Fuzzy   Rule   Fuzzy 
Inputs   Nodes   Outputs  

Fig. 2. A simplified version of an evolving fuzzy neural network EFuNN (from
Kasabov 2001)
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ECOS evolve incrementally rule nodes to represent cluster centers of the
input data, where the first layer W1 of connection weights of these nodes
represent their coordinates in the input space, and the second layer of con-
nections W2 represents the local models (functions) allocated to each of the
clusters.

Data samples are allocated to rule nodes based on their similarity, mea-
sured either in the input space – this is the case in some of the ECOS models,
e.g., the dynamic neuro-fuzzy inference system DENFIS [42] and the zero in-
struction set computers – ZISC, or in the input and the output space – this
is the case in the evolving fuzzy neural networks EFuNN (Fig. 2). Samples
that have a distance to an existing cluster center (rule node) N of less than a
threshold Rmax (for the EfuNN models the output vectors of these samples
have to be different from the output value associated with this cluster center
in not more than an error tolerance E) are allocated in the same cluster Nc.
Samples that do not fit into existing clusters form new clusters. Cluster cen-
ters are continuously adapted to new data samples, or new cluster centers are
created. The distance between samples and nodes can be measured in different
ways. The most popular measurement is the normalized Euclidean distance
as it is in the self-organized maps SOM [48].

In case of missing values for some of the input variables, a partial nor-
malized Euclidean distance can be used which means that only the existing
values for the variables in a current sample S (x,y) are used for the distance
measure between this sample and an existing node N

d(S,N) = sqrt(Σ i = 1, ..,n (xi−W1N(i))2)/n, (1)

for all n input variables xi that have a defined value in the sample S and an
already established connection WN(i).

At any time of the EFuNN or DENFIS continuous and incremental learn-
ing, rules can be derived from the ANN structure that represent the local
functions. Each rule associates a cluster area from the input variable space
with a local output function applied to the data in this cluster, e.g.:

IF <data are in cluster Ncj, defined by a cluster center Nj, a cluster radius
Rj, and a number of examples Njex in this cluster>

THEN <the output function is Fc> (2)

In case of DENFIS, first-order local fuzzy rule models are derived incremen-
tally from data, for example:

IF <the value of x1 is in the area defined by Gaussian membership func-
tion with a center at 0.1 and a standard deviation of 0.05, AND the value of
x2 is in the area defined by a Gaussian function with parameters (0.25,0.1),
respectively>

THEN <the output y is calculated by the formula: y = 0.01+0.7x1+0.12x2 >
(3)
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In case of EFuNN, local simple fuzzy rule models are derived, for example:
IF: IF x1 is (Medium 0.8) and x2 is (Low 0.6)

THEN y is (High 0.7), radius R = 0.24; Nexamp = 6, (4)

where low, medium, and high are fuzzy membership functions defined for the
range of each of the variables x1, x2, and y; the number and the type of the
membership functions can either be deduced from the data through learning
algorithms, or it can be predefined based on human knowledge [14, 83, 85];
R is the radius of the cluster and Nexamp is the number of examples in the
cluster.

Further development of the EFuNN and the DENFIS local ECOS models is
the transductive weighted neuro-fuzzy inference engine (TWNFI); [72]. In this
approach, for every new vector (sample S/example) a “personalized” model
is developed from existing nearest samples, where each of the variables is nor-
malized in a different subrange of [0,1] so that they have a different influence
on the Euclidean distance, therefore they are ranked in terms of their impor-
tance to the output calculated for any new sample individually. Samples are
also weighted in the model based on their distance to the new sample, where
in the Euclidean distance formula variables are also weighted. Each personal-
ized model can be represented as a rule (or a set of rules) that represents the
personalized profile for the new input vector. The TWNFI model is evolving
as new data samples, added to a data set, can be used in any further per-
sonalized model development. That includes using different sets of variables,
features.

2.2 Incremental Feature Selection for ECOS

The brain has the ability to incrementally improve and optimize the set of
features while learning continuously to recognize patterns. In many CI prob-
lems data samples arrive in chunks and sometimes – new class samples are
presented – see for illustration Fig. 3. Inspired by the brain ability to select
features incrementally, several methods have been proposed.

T1      T2  T3  T4   T5   T6

Fig. 3. Incremental presentation of chunks of data over time periods T1, T2,. . . ,
having samples of initially two classes (time T1), but introducing at a time T3 a
third class samples (from Ozawa et al. 2005)
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In [57, 58] a method for incremental PCA learning from a stream of
data is presented. In [59] a method for incremental LDA feature selection is
proposed. While the structure of an ECOS is evolving incrementally, the set
of the input variables (features) in the model can also be evolving, changing
over time.

2.3 Evolving SNN

Spiking models of a neuron and neural networks – SNN have been inspired
and developed to mimic more biologically the spiking activity of neurons in
the brain when processing information [51].

One model – the spike response model (SRM) of a neuron; [27, 52] – is
described below and extended in Sect. 3 to a CNGM.

A neuron i receives input spikes from presynaptic neurons i ∈ Γi, where
Γi is a pool of all neurons presynaptic to neuron i. The state of the neuron
i is described by the state variable ui(t) that can be interpreted as a total
postsynaptic potential (PSP) at the membrane of soma. When ui(t) reaches
the firing threshold ϑi(t), neuron i fires, i.e., emits a spike (Fig. 4, 5). The
moment of ϑi(t) crossing defines a firing time ti of an output spike. The value
of the state variable ui(t) is the sum of all PSPs, i.e.,

ui(t) =
∑

j∈Γi

∑

tj∈Fj

Jijεij(t− tj −∆ax
ij ). (5)

The weight of synaptic connection from neuron j to neuron i is denoted by
Jij . It takes positive (negative) values for excitatory (inhibitory) connections,
respectively. Depending on the sign of Jij , a presynaptic spike generated at
time tj increases (or decreases) ui(t) by an amount εij(t − tj − ∆ax

ij ). ∆ax
ij

is an axonal delay between neurons i and j which increases with Euclidean
distance between neurons.

The positive kernel εij(t− tj −∆ax
ij ) = εij(s) expresses an individual PSP

evoked by a presynaptic neuron j on neuron i. A double exponential formula
can be used

Fig. 4. A general representation of a spiking neuron model (from Kasabov, et al.
2005)
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Fig. 5. Spiking behavior of a neuron – the spiking threshold increases after the first
spike and then goes back to a normal state [45]

εsynapse
ij (s) = Asynapse

(
exp

(
− s

τsynapse
decay

)
− exp

(
− s

τsynapse
rise

))
, (6)

where τsynapse
decay/rise are time constants of the rise and fall of an individual PSP,

A is the PSP’s amplitude, and synapse = fast−excitation, fast−inhibition,
slow−excitation, and slow−inhibition, respectively. These types of PSPs are
based on neurobiological data ([19], Semyanov 2002).

Immediately after firing an output spike at ti, neuron’s firing threshold
ϑi(t) increases m times and then returns to its initial value ϑ0 in an exponen-
tial fashion:

ϑi(t− ti) = m× ϑ0 exp

(
− t− ti
τ τ
decay

)
, (7)

where ϑϑ
decay is the time constant of the threshold decay. In such a way,

absolute and relative refractory periods are modeled (Fig. 5).
External inputs from the input layer are added at each time step, thus

incorporating the background noise and/or the background oscillations. Each
external input has its own weight Jext input

ik and εk(t), such that

uext inpu
i (t) = Jext input

ik εik(t), (8)

It is optional to add some degree of Gaussian noise to the right-hand side
of the equation above to obtain a stochastic neuron model instead of a deter-
ministic one.

Spiking neurons within a SNN can be either excitatory or inhibitory. Lat-
eral connections between neurons in a SNN may have weights that decrease
in value with distance from neuron i for instance according to a Gaussian
formula while the connections between neurons themselves can be established
at random.
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SNN can be used to build biologically plausible models of brain sections
as illustrated in, Semyanov (2002), and [19,43].

In evolving SNN new neurons and connections can be created incremen-
tally to accommodate new data samples over time. For example, in [86] a
new submodule of several spiking neurons and connections is evolved when a
new class of objects (e.g., a new face, in case of face recognition problem) is
presented to the system for learning at any time of this process. This work
extends the work in [18].

Developing new methods for learning in evolving SNN is a challenging
direction for future research with a potential for applications in multimodal
information processing (e.g., speech, image, odor, gestures).

2.4 Some Open Questions

Further development of brain-like or brain-inspired ANN requires some ques-
tions to be addressed:

• How much should an ANN mimic the brain in order to be an efficient CI
model?

• How is a balance between structure definition and learning achieved in
ANN?

• How can ANN evolve and optimize their parameters and input features
over time in an efficient way?

• How incremental learning in ANN can be achieved without a presentation
of an input signal (“sleep” learning)?

• Can ANN have “dreams” and how that can affect their evolving learning
and structure?

3 Brain–Gene-Inspired CNGM

3.1 General Notions

With the advancement of molecular and brain research technologies more
and more data and information are being made available about the ge-
netic basis of some neuronal functions (see for example: the brain–gene
map of mouse at http://alleninstitute.org; the brain–gene ontology BGO at
http://www.kedri.info).

This information can be utilized to create biologically plausible ANN mod-
els of brain functions and diseases that include models of gene interaction.
This area integrates knowledge from computer and information science, brain
science, molecular genetics, and it is called here computational neuro-genetic
modeling (CNGM; [43]).

Several CNGM models have been developed so far varying from modeling
a single gene in a biologically realistic ANN model, to modeling a set of genes
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forming an interaction gene regulatory network (GRN; [43,53,54]; Benuskova
et al. 2006). In this section we give an example of a CNGM that combines
SNN and GRN into one model.

3.2 A CNGM that Integrate GRN within a SNN Model

The main idea behind the model proposed in [43] is that interaction of genes in
neurons affect the dynamics of the whole ANN through neuronal parameters,
which are no longer constant, but change as a function of gene/protein expres-
sion. Through optimization of the GRN, the initial gene/protein expression
values, and the ANN parameters, particular target states of the ANN can be
achieved, so that the ANN can be tuned to model real brain data in particular.

This idea is illustrated here by means of a simple neurogenetic model of a
SNN. The behavior of the SNN is evaluated by means of the local field poten-
tial (LFP), thus making it possible to attempt modeling the role of genes in
different brain states, where EEG data are available to test the model. A stan-
dard FFT signal-processing technique is used to evaluate the SNN output and
to compare it with real human EEG data. Broader theoretical and biological
background of CNGM construction is given in [43]. A simple linear version of
an internal GRN with preliminary results on epilepsy modeling can be found
in [7]. In Benuskova et al. (2006) a more realistic nonlinear model of GRN
is proposed with a list of real proteins/genes that are involved in CNGM.
The model performance is compared to real human EEG data using the same
signal-processing technique, where an optimization procedure is proposed to
obtain a CNGM with parameters leading to modeling of the real EEG signal.

In general, we consider two sets of genes – a set Ggen that relates to gen-
eral cell functions, and a set Gspec that defines specific neuronal information-
processing functions (receptors, ion channels, etc.). The two sets form together
a set G={G1, G2, . . . , Gn}. We assume that the expression level of each gene
is a nonlinear function of expression levels of all the genes in G, inspired by
discrete models:

gj(t+ ∆t′) = σ

(
n∑

k=1

wjkgk(t)

)
. (9)

It is assumed here that: (1) one protein is coded by one gene; (2) relation-
ship between the protein level and the gene expression level is nonlinear; (3)
protein levels lie between the minimal and maximal values. Thus, the protein
level is expressed by

pj(t+ ∆t) = (pmax
j − pmin

j )σ

(
n∑

k=1

wjkgk(t)

)
+ pmin

j . (10)

The delay constant introduced in the formula corresponds to the de-
lay caused by the gene transcription, mRNA translation into proteins and
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posttranslational protein modifications, and also the delay caused by gene
transcription regulation by transcription factors.

Some proteins and genes are known to be affecting the spiking activity of
a neuron represented in a SNN model by neuronal parameters. Some neuronal
parameters and their correspondence to particular proteins are summarized
in Table 1.

Relevant protein expression levels are directly related to neuronal para-
meter values Pj such that

Pj(t) = Pj(0)pj(t), (11)

where Pj(0) is the initial value of the neuronal parameter at time t = 0.
Besides the genes, coding for the proteins mentioned above and directly

affecting the spiking dynamics of a neuron, a GRN model can include other
genes relevant to a problem in hand, e.g., modeling a brain function or a brain
disease. In [7] these genes/proteins are c-jun, mGLuR3, Jerky, BDNF, FGF-2,
IGF-I, GALR1, NOS, S100beta.

An example of a CNGM is given in Fig. 6 for the purpose of modeling
inputs from the thalamus to the cortex. It uses the SRM [27], with excita-
tion and inhibition having both fast and slow components, both expressed as
double exponentials with amplitudes and the rise and decay time constants.

The goal of the CNGM is to achieve a desired SNN output through op-
timization of the model parameters. The LFP of the SNN, defined as LFP
= (1/N)Σui(t), by means of FFT is evaluated in order to compare the SNN
output with the EEG signal analyzed in the same way. It has been shown that
brain LFPs in principle have the same spectral characteristics as EEG [46].

In order to find an optimal GRN within the SNN model, so that the
frequency characteristics of the LFP of the SNN model are similar to the

Table 1. Neuronal parameter and their related proteins

Neuronal parameter
amplitude and time
constants of

Protein

Fast excitation PSP AMPAR
Slow excitation PSP NMDAR
Fast inhibition PSP GABRA
Slow inhibition PSP GABRB
Firing threshold SCN, KCN, CLC

Abbreviations: PSP = postsynaptic potential AMPAR = (amino-methylisoxazole-
propionic acid) AMPA receptor, NMDAR = (N -methyl-d-aspartate acid) NMDA
receptor, GABRA = (gamma-aminobutyric acid) GABAA receptor, GABRB =
GABAB receptor, SCN = sodium voltage-gated channel, KCN = kalium (potas-
sium) voltage-gated channel, CLC = chloride channel
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Fig. 6. An example of an SNN model used in a CNGM. About 10 to 20% of N =
120 neurons are inhibitory neurons that are randomly positioned on the grid (filled
circles). External input is random with a defined average frequency (e.g., between
10 and 20 Hz; from Benuskova et al. 2006)

brain EEG characteristics, the following evolutionary computation procedure
is used:

1. Generate a population of CNGMs, each having randomly generated values
of coefficients for the GRN matrix W, initial gene expression values g(0),
initial values of SNN parameters P (0), and different connectivity.

2. Run each SNN over a period of time T and record the LFP.
3. Calculate the spectral characteristics of the LFP using FFT.
4. Compare the spectral characteristics of SNN LFP to the characteristics of

the target EEG signal. Evaluate the closeness of the LFP signal for each
SNN to the target EEG signal characteristics. Proceed further according
to the standard GA algorithm to find a SNN model that matches the EEG
spectral characteristics better than previous solutions.

5. Repeat steps 1–4 until the desired GRN and SNN model behavior is
obtained.

6. Analyze the GRN and the SNN parameters for significant gene patterns
that ause the SNN model to manifest similar spectral characteristics as
the real data.

In [47] some preliminary results of analysis performed on real human inter-
ictal EEG data are presented. The model performance and the real EEG data
are compared for the following relevant to the problem subbands: delta (0.5–
3.5 Hz), theta (3.5–7.5 Hz), alpha (7.5–12.5 Hz), beta 1 (12.5–18 Hz), beta 2
(18–30 Hz), gamma (above 30 Hz). This particular SNN had an evolved GRN
with only five genes out of 16 (s100beta, GABRB, GABRA, mGLuR3, c-jun)
and all other genes having constant expression values. A GRN is obtained that
has a meaningful interpretation and can be used to model what will happen
if a gene/protein is suppressed by administering a drug, for example.

In evolving CNGM new genes can be added to the GRN model at a cer-
tain time, in addition to the new spiking neurons and connections created
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incrementally, as in the evolving SNN. Developing new evolving CNGM to
model brain functions and brain diseases, such as epilepsy, Alzheimer, Parkin-
son disease, Schizophrenia, mental retardation, and others, is a challenging
problem for a future research.

There are some technical questions that emerged from the first CNGM
experiments, such as:

1. How many different GRNs would lead to similar LFPs and what do they
have in common?

2. What neuronal parameters to include in the ANN model and how to link
them to activities of genes/proteins?

3. What genes/proteins to include in the model and how to represent the
gene interaction over time within each neuron?

4. How to integrate in time the output activity of the ANN and the genes
as it is known that neurons spike in millisecond intervals and the process
of gene transcription and translation into proteins takes minutes?

5. How to create and validate a CNG model in a situation of insufficient data?
6. How to measure brain activity and the CNGM activity in order to validate

the model?
7. What useful information (knowledge) can be derived from a CNG model?
8. How to adapt incrementally a CNGM model in a situation of new incom-

ing data about brain functions and genes related to them?

3.3 Open Questions

Integrating principles from gene and neuronal information processing in a sin-
gle ANN model raises many general questions that need to be addressed in
the future, for example:

1. Is it possible to create a truly adequate CNGM of the whole brain? Would
gene–brain maps help in this respect (see http://alleninstitute.org)?

2. How can dynamic CNGM be used to trace over time and predict the
progression of a brain diseases, such as epilepsy and Parkinson’s?

3. How to use CNGM to model gene mutation effects?
4. How to use CNGM to predict drug effects?
5. How CNGM can help to understand better brain functions, such as mem-

ory and learning?
6. What problems of CI can be efficiently solved with the use of a brain–

gene-inspired ANN?

4 Quantum-Inspired Evolving Connectionist Models

4.1 Why Quantum-Inspired Models and Systems?

Quantum computation is based upon physical principles from the theory of
quantum mechanics [22].
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One of the basic principles is the linear superposition of states. At a macro-
scopic or classical level a system exists only in a single basis state as energy,
momentum, position, spin, and etc. However, at microscopic or quantum level
a quantum particle (e.g., atom, electron, positron, ion) or a quantum system
is in a superposition of all possible basis states. At the microscopic level any
particle can assume different positions in the same time, can have different
values of energy, can have many values of the spins, and etc. This superposi-
tion principle is counterintuitive because in the classical physics one particle
has only one position, energy, spin, and etc.

If a quantum system interacts in any way with its environment, the super-
position is destroyed and the system collapses into one single real state as in
the classical physics (Heisenberg). This process is governed by a probability
amplitude. The square of the intensity for the probability amplitude is the
quantum probability to observe the state.

Another quantum mechanics principle is the entanglement – two or more
particles, regardless of their location, are in the same state with the same
probability function. The two particles can be viewed as “correlated,” undis-
tinguishable, “synchronized,” coherent. An example is a laser beam consisting
of millions of photons having same characteristics and states.

Quantum systems are described by a probability density ψ that exists in
a Hilbert space. The Hilbert space has a set of states |φi〉 forming a basis.
A system can exist in a certain quantum state |ψ〉 which is defined as

|ψ〉 =
∑
ci|φi〉, |a|2 + |b|2 = 1, (12)

where the coefficients ci may be complex. |ψ〉 is said to be in a superposition of
the basis states |φi〉. For example the quantum-inspired analogue of a single bit
in classical computers can be represented as a qubit in a quantum computer

|x〉 = a|0〉+ b|1〉, (13)

where |0〉 and |1〉 represent the states 0 and 1. The qubit is not a single value
entity, but it is a function of parameters which values are complex numbers.
After the loss of coherence the qubit will collapse into one of the states |0〉
or |1〉 with the probability a2 for the state |0〉 and the probability b2 for the
state |1〉. So, in quantum mechanics and in any scientific domain, where we
use the superposition, the introduction of the qubit to measure information
states change radically any interpretation of the information processes and
also of any computation.

The state of a qubit can be changed by an operation called a quantum
gate. A quantum gate is a reversible gate and can be represented as a unitary
operator U acting on the qubit basis states. The defining property of an uni-
tary matrix is that its conjugate transpose is equal to its inverse. There are
several quantum gates already introduced, such as the NOT gate, controlled
NOT gate, rotation gate, Hadamard gate, etc. [15,62].
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Quantum mechanical computers and quantum algorithms try to exploit
the massive quantum parallelism which is expressed in the principle of
superposition. The principle of superposition can be applied to many existing
methods of CI, where instead of a single state (e.g., a parameter value, or a
finite automata state, or a connection weight, etc.) a superposition of states
will be used, described by a wave probability function, so that all these states
will be computed in parallel increasing the speed of computation by many
orders of magnitude.

Quantum mechanical computers have been proposed in the early 1980s
and a description was formalized in the late 1980s (Benioff 1980). This kind
of computers proved to be superior to classical computers in various special-
ized problems. Many efforts were undertaken to extend the principal ideas of
quantum mechanics to other fields of interest. There are well-known quan-
tum algorithms such as Shor’s quantum factoring algorithm [71] and Grover’s
database search algorithm [30]. Hogg extended the work of Grover in order to
demonstrate the application of quantum algorithms in the context of combi-
natorial search [37]

The advantage of quantum computing is that, while a system is uncol-
lapsed, it can carry out more computing than a collapsed system, because, in
a sense, it is computing in many universes at once. The above quantum prin-
ciples have inspired research in both computational methods and brain study.

It is widely accepted now that NP-hard problems (e.g., time complexity
grows exponentially with the size of the problem) can be solved by a quan-
tum computer. Penrose [61] argues that solving the quantum measurement
problem is prerequisite for understanding the mind as consciousness emerges
as a macroscopic quantum state due to a coherence of quantum-level events
within neurons.

4.2 Quantum-Inspired Evolutionary and Connectionist Models

Quantum-inspired methods of evolutionary computation (QIEC) have already
been discussed in Han and Kim (2002), Jang et al. (2003), that include:
genetic programming (Spector 2004), particle swarm optimizers (Liu et al.
2005), finite automata, and Turing machines (Benioff, 1980). In QIEC, the
population of Q-bit individuals at time t can be represented as

Q(t) = {qt1, qt2, . . . , qtn}, (14)

where n is the size of the population.
Evolutionary computing with Q-bit representation has a better character-

istic of population diversity than other representations, since it can represent
linear superposition of states probabilistically. The Q-bit representation leads
to a quantum parallelism in the system as it is able to evaluate the function
on a superposition of possible inputs. The output obtained is also in the form
of superposition which needs to be collapsed to get the actual solution.
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Recent research activities focus on using quantum principles for ANN
[20, 56, 65, 66, 78, 80]. Considering quantum ANN seems to be important for
at least two reasons. There is evidence for the essential role that quantum
processes may play in realizing information processing in the living brain. [60]
argued that a new physics binding quantum phenomena with general relativity
can explain such mental abilities as understanding, awareness, and conscious-
ness [11]. The second motivation is the possibility that the field of classical
ANN could be generalized to the promising new field of quantum computation
(Brooks 1999). Both considerations suggest a new understanding of mind and
brain function as well as new unprecedented abilities in information process-
ing. Ezhov and Ventura [20] are considering the quantum neural networks as
the next natural step in the evolution of neurocomputing systems. Several
quantum-inspired ANN models have been proposed and illustrated on small
examples. In [78] a QIEA is used to train a MLP ANN.

Naraynan and Meneer [56] simulated classical and various types of
quantum-inspired ANN and compared their performance. Their work suggests
that there are indeed certain types of problems for which quantum neural net-
works will prove superior to classical ones.

Other relevant work includes quantum decision making [17], quantum
learning models [49], quantum networks for signal recognition (Tsai et al.
2005), and quantum associative memory [75, 79]. There are also recent ap-
proaches to quantum competitive learning where the quantum system’s poten-
tial for excellent performance is demonstrated on real-world data sets [80,82].

The quantum-inspired neural network (QUINN) proposed by Narayanan
and Meneer (2000) interprets each input pattern Sp (p = 1,2,. . . ,k) as a par-
ticle, being learned in a separate NNp model in a separate universe Up, the
superposition of all ANN constituting the ANN model. The structure of all
ANN is the same, so that a connection weight between neuron Ni and neuron
Nj in the total model is a superposition of all connection weights Wij (k) of all
k ANNs. When an input pattern S is presented, the ANN model “collapses”
into a particular NN–S that recognizes this pattern. Each pattern needs to be
presented only once in order an NN model to be created for this pattern and
become part of the superposition of all NN models.

In evolving quantum-inspired ANN, presenting a new pattern Sk+1 (a new
particle) would cause the creation of a new ANN model that becomes part of
the superposition of connection weights and states of the whole system.

Quantum-inspired SNN would have a smaller number of neurons and a
much larger number of states due to the superposition principle. A challenge
would be to represent the spikes as superposition of trains of signals across
many QI-SNN.

4.3 Quantum-Inspired CNGM: Some Preliminary Thoughts

QI-CNGM would open new possibilities for modeling gene–neuron interac-
tions. In Sect. 3 a CNGM was presented that combines principles of informa-
tion processing in gene/protein molecules with neuronal spiking activity, and
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then – to the information processing of a neuronal ensemble that is measured
as LFPs. How the quantum information processes in the atoms and particles
(ions, electrons, etc.) that make the large gene/protein molecules, relate to
the spiking activity of a neuron and to the activity of a neuronal ensemble, is
not known yet and it is a challenging question for the future.

What is known at present, is that the spiking activity of a neuron relates to
the transmission of thousands of ions and neurotransmitter molecules across
the synaptic clefts and to the emission of spikes. Spikes, as carriers of infor-
mation, are electrical signals made of particles that are emitted in one neuron
and transmitted along the nerves to many other neurons. These particles are
characterized by their quantum properties. So, quantum properties may in-
fluence, under certain conditions, the spiking activity of neurons and of the
whole brain, as brains obey the laws of quantum mechanics as everything else
does.

Similarly to a chemical effect of a drug to the protein and gene expression
levels in the brain, that may affect the spiking activity and the functioning
of the whole brain (modeling of these effects is subject of the computational
neurogenetic modeling CNGM), external factors like radiation, high frequency
signals, etc. may influence the quantum properties of the particles in the brain
through gate operators. According to Penrose [61], icrotubules in the neurons
are associated with quantum gates.

So, the question is: Is it possible to create a CNGM that incorporates some
quantum principles – a QI-CNGM?

We can represent the above problem as a set of hypothetical functions as
follows. A future state Q′ of a particle or a group of particles (e.g., ions, elec-
trons, etc.) depends on the current state Q and on the frequency spectrum
Eq of an external signal, according to the Max Planck constant:

Q′ = Fq(Q,Eq). (15)

A future state of a molecule M′ or a group of molecules (e.g., genes, pro-
teins) depends on its current state M, on the quantum state Q of the particles,
and on an external signal Em:

M′ = Fm(Q,M,Em). (16)

A future state N′ of a spiking neuron, or an ensemble of neurons will de-
pend on its current state N, on the state of the molecules M, on the state of
the particles Q, and on external signals En

N′ = Fn(N,M,Q,En). (17)

A future cognitive state C′ of the brain will depend on its current state C
and also on the neuronal – N, on the molecular – M, and on the quantum –
Q states of the brain:

C′ = Fc(C,N,M,Q,Ec). (18)
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Some support for the above hypothetical model of integrated function rep-
resentations comes from the following [5, 25,60,61,74]

1. A large amount of atoms are characterized by the same quantum prop-
erties, possibly related to the same gene/protein expression profile of a
large amount of neurons characterized by spiking activity;

2. A large neuronal ensemble can be represented by a single LFP;
3. A cognitive process can be represented perhaps as a complex function Fc

that depends on all previous levels.

4.4 Some Open Questions

Several reasons can be given in support to the research in integrating princi-
ples from quantum, molecular, brain information processing into future ANN
model.

1. This would lead to a better understanding of both molecular and quantum
information processing;

2. Modeling molecular processes are needed for progress in many areas of
biology, chemistry, and physics;

3. At the nano-level of microelectronic devices, quantum processes may have
a significant impact;

4. Using these processes as inspiration for new computer devices – million
times faster and more accurate

Many open questions need to be answered in this respect. Some of them
are listed below:

How quantum processes affect the functioning of a living system in general?

1. How quantum processes affect cognitive and mental functions?
2. Is it true that the brain is a quantum machine – working in a probabilistic

space with many states (e.g., thoughts) being in a superposition all the
time and only when we formulate our thought through speech or writing,
then the brain “collapses” in a single state?

3. Is fast pattern recognition in the brain, involving far away segments, a
result of both parallel spike transmissions and particle entanglement?

4. Is communication between people and between living organisms in gen-
eral, is a result of entanglement processes?

5. How does the energy in the atoms relates to the energy of the proteins,
the cells and the whole brain?

6. Would it be beneficial to develop different quantum-inspired (QI) com-
putational intelligence techniques, such as: QI-SVM, QI-GA, QI-decision
trees, QI-logistic regression, QI-cellular automata, QI-ALife?

7. How do we implement the QI computational intelligence algorithms
in order to benefit from their high speed and accuracy? Should we wait
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for the quantum computers to be realized many years from now, or we
can implement them efficiently on specialized computing devices based on
classical principles of physics?

5 Conclusions and Directions for Further Research

This paper presents some CI methods and in particular – evolving ANN mod-
els, inspired by principles from different levels of information processing in
the brain – including higher cognitive level, gene/protein level, and quantum
level, and argues that ANN models that integrate principles from different lev-
els of information processing would be beneficial for a better understanding
of brain functions and for the creation of more powerful methods and systems
of computational intelligence in general.

Further directions in this research are:

1. Building large ontology systems that integrate facts, information, ANN
models, and other CI models of the three levels of information processing
in the brain and their interaction, such as brain–gene–quantum ontology
systems;

2. Building novel brain-, gene-, and quantum-inspired ANN and CI models,
such as: new ECOS, evolving SNN, evolving CNGM, QI-CNGM, QI-SVM,
etc.;

3. Studying the characteristics of the above models and interpreting the
results;

4. Applying the new methods to solving complex problems in neuro-
informatics, such as modeling learning and memory, understanding brain
diseases, etc.;

5. Applying the new methods to solve complex problems in bioinformatics,
such as selecting dynamically genes and proteins related to cancer, mod-
eling cellular processes, modeling GRNs and metabolic pathways;

6. Applying the new methods for multimodal information processing,
biometric tasks, robotics, and other practical tasks of computational
intelligence.
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Incremental Learning for E-mail Classification

Sigita Misina

Summary. Machine learning algorithms can be divided into two categories – sta-
tistic learning and incremental learning algorithms. Incremental learning training
set examples distribute over time, maintaining examples one by one. This paper
describes partial instance memory incremental learning algorithm FLORA2 - al-
gorithm for supervised learning of concepts that are subject to concept drift. The
algorithm FLORA2 uses a special feature for keeping a subset of examples in mem-
ory – a window. In length of time new examples are being added to the window while
others are considered outdated and are forgotten. In this paper incremental learning
algorithm FLORA2 with dynamic window size is applied in e-mail classification task.
An e-mail classification task is the junk e-mail problem solving task. Active e-mail
user receives thousands of messages each month. Separating the good messages from
the junk using artificial intelligence algorithm decreases the time what users spend-
ing for managing their inboxes.

Key words: Incremental learning, Window, FLORA2.

1 Introduction

Most of earlier machine learning algorithms are conservative. They assume
the object class is stable and does not change with time. But in many real-
world applications, the object concepts may change. For example, in financial
manipulations, in medical diagnosis, in text classification in accordance with
their importance, the object concept does not stay stable. This paper reports
an incremental learning for object classification in cases of changeable con-
texts. In incremental learning, training examples are classified one by one.
Incremental learning systems must have a memory model that dictates how
to treat the previous training examples. There are three possibilities [1]:

– Full instance memory, in which the learner retains all previous training
examples.
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– Partial instance memory, in which only some of the previous training
examples are retained.

– No instance memory, in which none of the previous examples are retained.

This paper describes partial instance memory incremental learning algo-
rithm FLORA2 [2]. Partial instance memory means that part of the instances
are kept in memory because effective learning in environments with hidden
context and class drift demand the algorithm that can detect context changes
without explicit information, regenerate after context changes and use previ-
ous experience in situations where old contexts recur.

The paper provides practical experiments with the FLORA2 algorithm
that consider e-mail messages classification task. Experiments are done to
study working principles of the FLORA2 algorithm, to compare algorithm
FLORA2 results with the results of previous researches where multilayer in-
cremental inference algorithm (MLII ) [3] was used and results the gained by
interface agent in e-mail messages filtering task.

2 Incremental Learning

There are two kind of machine learning algorithms – static learning and in-
cremental learning algorithms. An algorithm for incremental learning can be
executed in five steps [1]:

1. Learn rules from training example set;
2. Store new rules and discard the oldest examples;
3. Use the rules learned to predict and navigate;
4. When new examples arrive, learn new rules using old rules and new in-

stances;
5. Go on to step 2.

As the context in incremental learning varies in time, the learner trusts newest
examples more – this example set is called the window [4]. As time passes new
examples are being added to the window while the others are considered out-
dated and are forgotten (deleted from it).

In simple cases, the window will be of fixed size, and the oldest example
will be dropped whenever a new one comes in (see Fig. 1). For a window of
the fixed size, the choice of “good” window size is a compromise between fast
adaptability (small window) and good and stable learning results without or
with little concept change (large window). An adaptive size window is most
effective. The dynamic window size is calculated heuristically to avoid concept
drift [4].
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Fig. 1. The window moving along the stream of examples

3 Partial Memory Incremental Learning Algorithm
FLORA2

FLORA2 is the algorithm for supervised learning of concepts that are subject
to concept drift [2]. A typical use of that algorithm is for modeling the aging
of knowledge. The learning process is incremental in that the examples are
processed one by one. There is a special feature in algorithm FLORA2 for
keeping in memory a subset of examples – a window. In the simplest case [2],
this means that every time when a new example appears, it is added to the
window (learn) and one of the oldest examples will be deleted from the win-
dow (forget). In line with concept drift, the system keeps in memory not only
valid descriptions of the concepts derived from the objects currently present
in the window, but also “candidate descriptions” [4] that may turn into valid
ones in the future.

The basic idea of algorithm FLORA2 is to keep in memory all possible
concept descriptions. Let us forget, for the moment, about a combinatorial
“explosion” that could later be avoided by suitable heuristics. In FLORA2
the following description sets are used [2]:

– ADES set, that have been derived from the positive examples and have
not been connected with any negative examples.

– PDES – set of “candidate descriptions” that cover both positive and neg-
ative examples and which is worth supporting.

– NDES set of descriptions that cover only negative examples from all the
example sets.

Since the possibility of a concept drift is assumed, we have more trust in
more recent examples, than in older ones. FLORA therefore takes into account
only a subset of examples called “window”. The window thus moves along the
stream of examples (see Fig. 1) and the changes in its contents induce changes
in those of ADES, PDES, and NDES. The window size is calculated by size
adjustment heuristics (see Table 1):
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Table 1. Window size adjustment heuristics

Let N = examples (positive) count covered by ADES and
S = ADES size

IF
N/S < 1.2 (coverage is low)
and PDES is not empty (exists alternative hypothesis)

THEN
decrease window size on 10% and forget oldest examples

ELSE
IF N/S > 5 (coverage is high),
THEN keep the window size,
ELSE increase window size on 1 (add new example without old one forgetting).

3.1 Incremental Update of Description Sets

Let us assume that description sets ADES, PDES, and NDES already exist
(in the beginning, they might be empty). ADES is a set of all descriptions
that are consistent (they match only positive examples). PDES is a set of can-
didate descriptions that if taken together are complete, but not consistent (it
matches all positive examples, but also some negative ones). In its turn NDES
is a consistent description of the negative instances seen so far (it matches no
positive instances).

Each description set can be interpreted as a disjunctive normal form
(DNF ) expression. DNF allows detecting if an expression is or is not incon-
sistent. DNF is disjunction of conjunctions. Members of those conjunctions
are positional variables (with negation or without it).

Thus the three description sets [4] have the following form:

ADES = {ADes1/AP1, ADes2/AP2, . . .}, (1)

PDES = {PDes1/PP1/PN1, PDes2/PP2/PN2, . . .}, (2)

NDES = {NDes1/NN1, NDes2/NN2, . . .}, (3)

where
ADesi (PDesi, NDesi)− description items (conjuncts or descriptors),
{A,P}Pi . . . the number of positive examples matching description

{A,P}Desi,
{P,N}Ni . . . the number of negative examples matching description

{P,N}Desi.
An important thing is that the system keeps counts of the number of in-

stances matched. These numbers concern only instances that are in the current
window. They are used to decide when to move a description to a different
description set or when to drop it altogether.

These description sets are stored in minimal power, in order to prevent a
combinatorial “explosion”. In FLORA2 this is achieved by exploiting the sub-
sumption ordering in the description space to see that ADES contains only
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the most general descriptions consistent with positive examples (if two de-
scription items ADesi and ADesj both are consistent with positive instances
and ADesi subsumes ADesj ,only ADesi is kept in ADES ). These conditions
are checked whenever one of description sets is modified. Instances transac-
tions among the description sets are represented in Fig. 2.

3.2 Incremental Learning

Let us assume that a new training instance is presented to the system, with
given classification C ∈ {positive, negative}. If the classification C is posi-
tive, all three description sets are updated (see Table 2).

Corrections done in description sets if classification C is negative are sim-
ilar, only then description ADesi is deleted from description set ADES, if a
new negative example matches that description [2].

3.3 Incremental Forgetting

Let us assume that the system decides “deliberately” to forget old training
examples with known classification C. This happens when an old example

ADES PDES NDES

+

+

−+

+ −

−

−
deletions

arrivals

Fig. 2. Transactions among the description sets

Table 2. Incremental learning for a positive instance

For all ADesi in ADES :
if match (instance, ADesi), then AP i := AP i +1

For all PDesi in PDES :
if match (instance, PDesi), then PP i := PP i +1

For all NDesi in NDES :
if match instance Ndesi, then remove NDesi from NDES and include it
in PDES as triple NDesi/1/NN i and check the updated PDES for
subsumptions;
If there is no ADesi in ADES that matches the new instance; then include
in ADES all possible generalizations of the new positive instance with all
ADesj present in ADES, such that the resulting expressions are maximally
general and do not subsume any descriptions in PDES or NDES ; as an
extreme case, the description of the instance itself may be added to ADES ;
then check ADES for subsumptions.
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Table 3. Incremental forgetting for a positive instance

For all ADesi in ADES :
if match (instance, ADesi), then AP i := AP i − 1;
if AP i := 0, then remove ADesi from ADES;

For all PDesi in PDES :
if match (instance, PDesi) then PP i := PP i − 1;
if PP i := 0 then remove PDesi from PDES and include it in NDES as a
pair PDesi/PN i and check the updated NDES for subsumptions.

is dropped from the current window. If the forgotten old example is posi-
tive, the description sets are updated [2] by the algorithm demonstrated in
Table 3.

If an example that is forgotten matches the negative class, description sets
PDES and NDES are updated in the same way.

4 Experiments

Three experiments based on e-mail messages classification task are performed
to observe FLORA2 working principles and compare the results with previous
task – the MLII – Multi-Layer Incremental Learning [3] algorithm based on
the CN2 algorithm [6].

Basic data set consists of e-mail correspondence from mail server about
usage, restrictions and specific functions of application Lotus Notes. These
electronic messages have been described with four attributes: From; Subject ;
Body ; Category (message category, one of the following: question, answer,
suggestion or information) and Classes (action: “forward” or “delete” new
incoming message).

As the e-mail messages attributes Subject and Body contain sufficient
amount of words and lot of them are not significant, it is necessary to process
them using some method. To get most common occurred words from Subject
and Body, the Levenshtein Distance [7] algorithm is used. Instead of simple
frequency count Levenshtein Distance algorithm save time and prevent human
factor error.

A software levenstain.jsp that is based on Levenshtein Distance algorithm
is utilized written in Java language [7] and adapted for this particular task
solution. From field Subject three words with smallest distance (distance is a
measure of the similarity between two strings – smaller the distance, the more
closer word are) are chosen, but from Body – four words are chosen.

The learning examples are constructed by combining one word from each
e-mail description field (Fig. 3 shows an example). After processing basic 40
e-mail messages, 410 examples are gained, 160 of them belonging to class
“delete” and 250 belonging to class “forward”.
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From = {a1 a2}
Subject = {b1}
Body = {c1 c2 c3}
Category = {d1 d2}

a1 b1 c1 d1;
a2 b1 c1 d1;
a1 b1 c2 d1;
a2 b1 c2 d1;
a1 b1 c3 d1;
a2 b1 c3 d1;
a1 b1 c1 d2;
a2 b1 c1 d2;
a1 b1 c2 d2;
a2 b1 c2 d2;
a1 b1 c3 d2;
a2 b1 c3 d2;

Fig. 3. Learning examples construction mechanism

Fig. 4. FLORA2 learning and testing software user interface

4.1 Results of experiments

The learning set examples are randomly shuffled and three experiments pro-
ceed to see FLORA2 working principles.

The initial learning data set size is chosen as 30 examples and the size
of conjunctions set as 2, the incremental learning and incremental forgetting
done using dynamic window size calculation. Learning and testing processes
are done using software written in InterBase in IBManager 3 in the form
of stored procedures, while user interface (see Fig. 4) is written in Delphi
version 7.0.
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Table 4. Summary of experiments

Experiment 1 Experiment 2 Experiment 3

Number of training examples 266 290 220
Number of test examples 144 123 25
Correct classification 89 74 19
Misclassifications 55 49 7
No of rules 446 449 548
Accuracy of rules 61,81% 60,16% 72%

The final rule set is tested on test set examples by supervisor (in this time
without subsumption process), the summary of experiments and test results –
misclassifications are provided in Table 4.

4.2 Analysis of Experiments

As a result of FLORA2 learning process, the rule set is generated; the size of
rule sets in all three experiments is impressive. The reason for such rule count
could be the FLORA2 possibility to store “candidate” descriptions, which can
be useful in future learning or subsumption necessity.

As compared to previous e-mail filtering task practical solution by MLII [5]
algorithm, MLII shows better results (the accuracy is between 75% and 93%)
and provides smaller count of misclassified examples, but the FLORA2 algo-
rithm gives much more larger rule sets, where in case of MLII rule sets size
is between 6 and 49.

5 Conclusions

In conclusion it can be stated that, the strength of the incremental learning
algorithm FLORA2 lays in the explicit representation of the three descrip-
tion sets ADES, PDES and NDES. These three sets together see summarize
the important information in the training examples. There is no need to re-
examine all the instances at every learning step. Once the learning process is
well on the way, there is little need for the construction of new descriptions.
Most of the action is migration of descriptions between the three sets. All this
contributes significantly to the efficiency of the algorithm.

To research the FLORA2 incremental learning and forgetting principles,
a practical e-mail classification task is performed. Three experiments of su-
pervised inductive learning and testing are done. It can be concluded that
FLORA2 generates a large amount rules in the form of conjunctions, also the
“candidate” descriptions, which belong to both classes and could be useful
for further learning process. Comparing with previous experiments [5], it can
be concluded that in e-mail classification task algorithm MLII shows better
results in testing process, but FLORA2 generates more rules.
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There is the description subsumption usage and the next FLORA family
algorithms FLORA3, FLORA4 left for further experiments.
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Reduction of Search Space for Instance-Based
Classifier Combination

Anatoly Sukov and Arkady Borisov

Summary. To combine classifiers on the basis of the local distribution of perfor-
mance quality of separate algorithms, searching for the nearest neighbours of the
record under classification is necessary. This study proposes to reduce the space of
the mentioned search by using the methodology of data condensation. An algorithm
is developed that enables one to perform searching in two stages. At the first stage
only a small and the most representative part of the data, the condensed set, is
examined. At the second stage, clarification of neighbours takes place in the local
part of the complete data set. Experimental results confirm the hypothesis about a
higher accuracy level of classifier combination as compared to separate models.

Key words: Classifier combination, Data condensation, Data mining.

1 Introduction

In solving classification tasks, one of practical problems of data mining [1, 2]
consists in choosing an optimal classification algorithm, or classifier. Instead
of choosing a particular classifier, generation of classifier ensemble [3] or their
combination [4, 5] is often possible. The first approach employs the so-called
base classifier, trains it a certain number of times and shapes a final hypothesis
as a result of ensemble voting [3]. The well-known classification performance
improvement algorithm AdaBoost [6] exemplifies an approach of that kind.
In its turn, the second approach can assume several different by nature classi-
fiers as a basis and combine them thus adapting itself to the local performance
quality distribution of those algorithms [4]. Practical application of classifier
ensembles and classifications confirms an idea that hypothesis voting might
describe the real function separating the classes more precisely [3].

This paper deals with an approach that is aimed at a more effective ap-
plication of classifier combination. With that end in view, the solving of two
basic problems related to local evaluation of classifiers is suggested [5]. Since
the methodology is based on finding nearest neighbours of a new object, this
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is limitations of that algorithm that present the essence of the aforementioned
difficulties. First, a search of that kind might require significant increase in
computational resources, when the amount of the data available for learning
increases. Second, the application of k-nearest neighbours is only adequate
when relevant metric for the evaluation of the distance between the objects
(records), is available.

Previously, the problem of lessening computational efforts for instance-
based learning was solved by reducing the number of instances used for learn-
ing, or by changing data representation [7]. The approach employed in this
paper is based on the data pre-processing called data condensation [8]. Such
a pre-processing enables one to operate first with the reduced set of data
and then with the necessary part of the total set, which as a whole reduces
calculations aimed to find the nearest neighbours. The application of data
condensation to the reduction of search space is considered in detail in Sect. 2
of this paper.

To raise the adequacy of the metric employed, it is proposed to use those
distance evaluation functions in classifier combination which are effective for
specific data kind. Principles of instance-based classifier combination as well
as the used distance evaluation metric are described in Sect. 3.

One of application examples of the adaptive combination of classifiers is
the task of credit scoring [9]. In the course of the study, a number of exper-
iments aimed at combining classifiers on the basis of the suggested method-
ology, were conducted. The experiments performed are discussed in Sect. 4,
which is followed by Conclusion.

2 Reduction of Search Space via Data Condensation

Data condensation means initial data set based generation of a set contain-
ing only those data which are most representative under the given number of
neighbours, k (control parameter). The representativeness manifests itself in
that the chosen object is able to cover the largest number of the remaining
objects in some radius (depending on k and local data distribution density).
Thus, high-density regions will be represented by a larger number of objects
whereas sparser regions will have significantly less representatives [8].

After the pre-processing, neighbour searching for the new object is sug-
gested first in the condensed set (Stage 1 of the search), which differs from
the original set in sufficiently smaller number of records (the ratio is called
condensation ratio, CR), and then in the original set. It should be noted,
however, that only that part of the data from the original set is used, which –
according to condensation results – is covered by the objects found at Stage 1.
Since the number of the data in the condensed set, NCR, is considerably less
than that in the original one even at small values of k [8], owing to the first
stage, a quick localisation of the area of searched neighbours occurs which
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Fig. 1. Illustration of execution stages of the algorithm for search space reduction.
Active at the given time objects (records) are marked as black: (a) initial set of
data – xi =

(
xi

1, x
i
2

)
∈ [0, 1]2, N = 55; (b) condensed set, k = 3, NCR = 13

(CR ≈ 23, 64%); (c) searching for three nearest neighbours for a new object (marked
with a cross) first in the condensed set; (d) finding the neighbours searched among
the data of the initial set; in the course of search only those records were used that
fall under the condensed data found as neighbours at stage (c)

are then defined more accurately during the second stage. Besides, a mini-
mal collection of the data necessary for finding neighbours of the new object
participates in the second stage. An example of the aforementioned algorithm
execution is shown in Fig. 1.

3 Adaptive Classifier Combination

The concept of evaluation of the local accuracy of class recognition was sug-
gested in [4]. For each new record under classification it is necessary to evaluate
how the classification of that record’s neighbours (from the learning set) was
effected by different classifiers. Using that information, it is possible to make a
conclusion about the most probable class of a new record. As a continuation of
that approach, special methods of calculating the similarity between the ob-
jects were used as well as a parameter controlling neutrality or predomination
of one class over the other was introduced [5]. If we consider classification from
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the point of view of choosing the most probable class, the probability of class i,
is the evaluation of that class, divided by the sum of evaluations of all classes:

pC=i =
αi∑
i αi
. (1)

To control the neutrality or predomination of one class over the other, thres-
hold is introduced such that the target class is considered winning if it has
reached (or is greater than):

pC=i ≥ ε. (2)

Expression (2) foresees neutrality provided that in case of two classes, ε = 0.5.
In other cases one class will prevail over the others, which is frequently nec-
essary due to the cost of incorrect information [9].

A topical aspect of combination is selection of similarity measure among
the objects (records). In particular, for the mixed data – that exemplify the
most widespread kind of the data – this paper employs the interpolated value
difference metric (IVDM) [10]. As opposed to the methodology of distance
computation described in [5], using IVDM provides a more system and effec-
tive – from the viewpoint of classification – character to difference evaluation
of the objects described by the mixed type of attributes.

4 Case Study: Credit Scoring Data Set

The experiments were performed using credit granting statistics available in
one of German banks [11]. The set consists of 1,000 records described by 20
attributes, three of which are continuous but the other 17 are categories.

To compare the effect of parameter k on condensation ratio, CR, two
simulated sets with two continuous attributes were also used. The first set
contained 55 records but the second one consisted of 486 records. Besides,
the aforementioned scoring data set was condensed with category attributes
only. For the simulated sets the Euclidean metric was employed, for the com-
plete scoring data set the IVDM was used and for the set of only category
attributes VDM was used. Condensation results obtained at k ∈ [1, 20] are
shown in Fig. 2.

It is apparent that the general condensation trend on the whole does not
depend on the character of the data set; it only slightly varies for each of
the sets (see also Fig. 2). As regards search space reduction for classifier com-
bination, using condensation, say, at k = 5, at the first stage allows one to
calculate the distance to less than 15% of the initial records.

In the second part of the experiments classifier combination using two
approaches to testing was implemented. Hold-out at the separation 80% for
training and 20% for testing as well as tenfold stratified cross-validation were
employed. The base classifiers were the following: näıve Bayes [2], logistic
model trees, LMT [12], and classification tree J4.8, which is one of the versions
of popular machine learning algorithm C4.5 [13]. All the mentioned models
are available in the Weka environment [14].
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Fig. 2. Dependence of condensation ratio (CR) on the number k

In case of hold-out, the error rate for separate classifiers was: NB – 28%,
LMT – 26.5%, and J4.8 – 28%. Combination error was 25% (ε = 0.5). In case of
tenfold stratified cross-validation, the error rate for separate classifiers was:
NB – 26.2%, LMT – 24.8%, and J4.8 – 26.4%. In its turn, when these classi-
fiers were combined, the error was 23.8% (ε = 0.5). Thus it can be concluded
that adaptive combination of classifiers excels separate base algorithms in per-
formance. Moreover, further classification improving is possible owing to the
adjusting of parameter to the needs of a particular task.

5 Conclusions

The paper examined the problem of search space reduction for the instance-
based classifier combination. Using the principle of data condensation, an al-
gorithm can be constructed which enables one to effectively reduce the above
space. As a result, instead of exhaustive searching for all possible nearest
neighbours, it is necessary to find them first within the condensed set of the
data and then – in the part which is covered by the records found at the first
stage.

The experiments conducted have demonstrated stable combination results
which excel separately taken base classifiers. Besides, the application of the
algorithm of nearest neighbour search space reduction considerably cuts down
combination time.
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Linguistic Matrix Aggregation Operators:
Extensions of the Borda Rule

José Luis Garćıa-Lapresta, Bonifacio Llamazares and Miguel Mart́ınez-Panero

Summary. In this paper we consider a decision making situation where agents
pairwise compare all the alternatives and show their levels of preference through
previously established linguistic labels. Then, from these non-numerical inputs, we
introduce two extensions of the Borda rule, called broad and narrow approaches. The
difference between them arise when individual assessments are aggregated through
matrix operators: the first one takes into account all the labels which compare each
alternative and all others, while the second one only consider those favorable. Once
these linguistic Borda rules designed, the fulfillment of some properties within the
Social Choice framework is verified.

1 Introduction

Decision Theory was initially based on utility functions (see, for instance, von
Neumann and Morgenstern [30]). Under this approach, if an alternative pro-
vides greater utility than another one, then the first alternative ought to be
preferred to the second one. Therefore, a complete preorder (or weak order)
is associated to each individual, and both the preference and the indifference
relations are transitive.

But this cardinal approach has received serious criticisms, so that the
ordinal one appears to be a more appropriate tool for dealing with human
preferences (see Arrow [1]). In this framework, individuals show their pref-
erences among feasible alternatives through crisp binary relations satisfying
some suitable properties as irreflexivity, asymmetry, acyclicity, transitivity
or negative transitivity. Taking into account different concepts of rationality,
weaker models than complete preorders have been considered in the litera-
ture: semiorders, interval orders, quasitransitivity, acyclicity (see, for instance,
Roubens and Vincke [27] and Garćıa-Lapresta and Rodŕıguez-Palmero [16]).

However, all the above mentioned models require individuals to show their
preferences in a dichotomomic way: given two alternatives, either one of them
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is preferred to the other or both are indifferent. There is no possibility of
declaring preferences with different degrees. In order to deal with intensities
of preference, fuzzy preferences allow agents to show their opinions within
the unit interval: being 0 the null preference and 1 the absolute preference,
individuals have the possibility of declaring intermediate preferences between
these two extreme values. On this, see Nurmi [26], Tanino [29], Fodor and
Roubens [9], De Baets and Fodor [6] and Garćıa-Lapresta and Llamazares [12],
among others.

Although fuzzy preferences generalize the classical model in a fruitful way,
it is also true that individuals usually have difficulties for declaring their pref-
erences by means of exact numerical assessments. In order to capture in a
more faithful manner the lack of precision in human behavior —vague and
imprecise—, linguistic preferences (“highly preferred”, “slightly preferred”,
etc.) seem to be more realistic than fuzzy preferences. In this sense, Zadeh
[32–34] introduced the program computing with words which has produced a
vast literature within the Decision Theory framework (see Delgado, Verdegay
and Vila [7, 8], Yager [31], Herrera, Herrera-Viedma and Verdegay [19–21],
Bordogna, Fedrizzi and Pasi [4], Herrera and Herrera-Viedma [18], among
others).

The Borda rule, a well known and appropriate decision making proce-
dure, was originally proposed for linear orders in Borda [3] —in what follows,
we will call it classic Borda rule—. It has been widespread analyzed and
extended to more general orders from its initial design (see Black [2] and
Gärdenfors [17], among others). In the last years it has also been consid-
ered in a fuzzy framework (see Marchant [22, 23] and Garćıa-Lapresta and
Mart́ınez-Panero [13, 14]), and in a linguistic context (see Garćıa-Lapresta,
Lazzari and Mart́ınez-Panero [11] and Garćıa-Lapresta, Mart́ınez-Panero and
Meneses [15]).

In the last paper, two extensions of the Borda rule were introduced by
using linguistic labels represented through trapezoidal fuzzy numbers. One
of them, the broad Borda rule, corresponds to the sum of all linguistic la-
bels which compare each alternative and all others. The other possibility, the
narrow Borda rule, takes into account for each alternative only those labels
corresponding to worse alternatives than that considered to be valued. In this
paper we follow an abstract point of view of the linguistic Borda rules which
essentially takes into account that of Garćıa-Lapresta [10] for the simple ma-
jority, and we focus on verifying the fulfillment of several desirable properties
in the Social Choice framework.

The paper is organized as follows: In Sect. 2 we present as preliminaries
the classic conception of the Borda rule and the linguistic preference relations
which will be the informational basis for our extensions of such procedure. As
a tool in our future design, this section also introduces the concept of ordered
monoid of linguistic labels. The aforementioned linguistic approaches to the
Borda rule (broad and narrow) are presented through linguistic matrix aggre-
gation operators in Sect. 3, where some examples are also considered. In Sect. 4
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some properties such as anonymity, neutrality, consistency, monotonicity and
strong monotonicity are defined in a linguistic context and verified for our ex-
tensions. Finally, in Sect. 5 we include some further extensions and concluding
remarks.

2 Extending the Classic Borda Rule to a Linguistic
Framework

Let X = {x1, x2, . . . , xn} be a finite set of alternatives, where n ≥ 2, and
m voters, with m ≥ 2. We consider P 1, P 2, . . . , Pm to be ordinary pref-
erence relations (i.e., asymmetric binary relations on X) of the voters and
I1, I2, . . . , Im the associated indifference relations, respectively. The pref-
erence/indifference opinions of individual k can be expressed through the
following matrix representation:

Mk =

⎛

⎜⎜⎝

rk11 r
k
12 · · · rk1n

rk21 r
k
22 · · · rk2n

· · · · · · · · · · · ·
rkn1 r

k
n2 · · · rknn

⎞

⎟⎟⎠ ,

where

rkij =

⎧
⎪⎨

⎪⎩

1, if xi P
k xj ,

1
2 , if xi I

k xj ,

0, if xj P
k xi.

For the classic Borda rule to be implemented, each P k must be a lin-
ear order (i.e., the individuals ought to arrange the alternatives from best
to worst in a linear manner). There are two main ways to define individual
Borda counts, as follows. The first one assigns to each alternative an individ-
ual score consisting in adding up all the numerical values which compare such
alternative with all others, itself included, namely:

rk(xi) =
n∑

j=1

rkij .

The second way gives to each alternative an individual score which coin-
cides with the number of alternatives worse than that considered:

r̂k(xi) =
∑

xiP kxj

rkij .

In order to obtain a score for the alternative xi —from the point of view
of the individual preference matrices— the first count adds up all the entries
in the ith row in the matrix Mk, while the second one only take into account
those greater than 1

2 .
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By adding the individuals scores up, collective scores are defined for each
alternative as

−→r (xi) =
m∑

k=1

rk(xi),

−̂→r (xi) =
m∑

k=1

r̂k(xi).

The most collective scored alternatives become the winners. In fact, col-
lective preference relations (negatively transitive) can be obtained from these
collective scores as

xiP
Bxj ⇔ −→r (xi) > −→r (xj),

xiP
B̂xj ⇔ −̂→r (xi) > −̂→r (xj).

Notice that being each P k a linear order (and hence each alternative is
only indifferent to itself), the two aforementioned individual counts verify
rk(xi) = r̂k(xi) + 1

2 . Thus, their respective collective counts are equivalent in
the sense that they provide the same collective preference relations. However,
if we consider the introduced individual Borda counts for more general orders
where voters can express indifference among different alternatives, then the
collective counts are not equivalent at all.

Since ordinary preference relations are too rough for capturing individual
opinions, we consider another possible approach, more flexible and closer to
agent’s way of thinking than the above mentioned model (see Zadeh [32–34]).
In this way, individuals will be allowed to declare their preferences between
each pair of alternatives in a linguistic manner, namely: one alternative is pre-
ferred to the other (absolutely or somewhat —in several allowed degrees—),
or both alternatives are indifferent. Along the paper we consider a set of
linguistic labels L = {l0, l1, . . . , ls}, with s ≥ 2, ranked by a linear order:
l0 < l1 < · · · < ls. Suppose that there is an intermediate label representing
indifference, and the rest of labels are defined around it symmetrically. The
number of labels, s+1, will be odd and, consequently, ls/2 is the central label.

The symmetric structure of the set of linguistic labels can be captured
through the classic negation operator N : L −→ L defined by N (li) = ls−i

for every i ∈ {0, 1, . . . , s}.

Definition 1. A linguistic preference relation on X based on L is a L-valued
binary relation R : X ×X −→ L satisfying rji = N (rij) for all xi, xj ∈ X,
where rij = R(xi, xj).

We denote by RL(X) the set of linguistic preference relations on X based
on L. Notice that rii = ls/2 for every i ∈ {1, . . . , n} whenever R ∈ RL(X).
Moreover, it is easy to check that rij > ls/2 if and only if rij > rji.
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It is worth emphasizing that the notion of linguistic preference relation
is related to that of reciprocal fuzzy preference relation (see, for instance,
Nurmi [26], Tanino [29] and Garćıa-Lapresta and Llamazares [12]), where
L = [0, 1] and N (x) = 1− x.

The linguistic preference relation for each agent k, Rk, can be represented
by means of the matrix Mk whose entries are linguistic labels, defined as
follows:

Mk =

⎛

⎜⎜⎝

rk11 r
k
12 · · · rk1n

rk21 r
k
22 · · · rk2n

· · · · · · · · · · · ·
rkn1 r

k
n2 · · · rknn

⎞

⎟⎟⎠ .

Obviously, Mk is antisymmetric in the sense that rkji = N (rkij) for all
i, j ∈ {1, . . . , n}. We denote by Mn(L) the set of antisymmetric matrices of
size n and coefficients in L.

According to the Borda rule conception, individual opinions expressed
through linguistic labels must be aggregated, and the winner must be deter-
mined as the best alternative according to a previously established ordering.
So, labels have to be added, and the outcomes ought to be compared. This is
the reason why we consider the commutative monoid

(
〈L〉,+

)
generated by

L through all possible sums of labels of L with an associative and commu-
tative binary operation + on L, where l0 is the neutral element:

1. L ⊂ 〈L〉
2. l + l′ ∈ 〈L〉, for all l, l′ ∈ 〈L〉
3. l + (l′ + l′′) = (l + l′) + l′′, for all l, l′, l′′ ∈ 〈L〉
4. l + l′ = l′ + l, for all l, l′ ∈ 〈L〉
5. l + l0 = l, for all l ∈ 〈L〉.

In addition to this, 〈L〉 is considered to be endowed with a total order ≤
which is compatible with the former order on L:

6. l ≤ l, for all l ∈ 〈L〉
7. (l ≤ l′ and l′ ≤ l) ⇒ l = l′, for all l, l′ ∈ 〈L〉
8. (l ≤ l′ and l′ ≤ l′′) ⇒ l ≤ l′′, for all l, l′, l′′ ∈ 〈L〉
9. l ≤ l′ or l′ ≤ l, for all l, l′ ∈ 〈L〉

10. l0 < l1 < · · · < ls, where < is the strict order associated with ≤ (l < l′ if
l ≤ l′ and l �= l′, for all l, l′ ∈ 〈L〉).

We also assume the following compatibility property:

11. l < l′ ⇒ l + l′′ < l′ + l′′, for all l, l′, l′′ ∈ 〈L〉.
So,

(
〈L〉,+,≤

)
is a totally ordered monoid (see Garćıa-Lapresta [10]).

We denote by Mn

(
〈L〉

)
the set of matrices of size n and coefficients in 〈L〉.
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3 Linguistic Matrix Aggregation Operators and Decision
Rules

From now on, we deal with the matrix representation Mk associated with the
linguistic preference relation of voter k, Rk. In order to introduce our linguistic
extensions of the Borda rule, an equivalent procedure to the classic one is used
as follows. Firstly, we will componentwise add all the individual preference
matrices up —either adding all the values up (broad case), or only taking into
account those favorable (narrow case)—. Then, we will consider a collective
value for the alternative xi by adding all the entries up in the i-th row in
the aggregated matrix, which could be obtained through linguistic matrix
aggregation operators mapped to matrices with coefficients in 〈L〉 instead of L.

Definition 2. A linguistic m-matrix aggregation operator is a mapping

A(m) :
(
Mn(L)

)m −→Mn

(
〈L〉

)
.

Definition 3. A linguistic matrix aggregation operator is a mapping

−→
A :

∞⋃

m=2

(
Mn(L)

)m −→Mn

(
〈L〉

)
.

In this paper we focus in two possibilities taking into account all the
opinions or only those favorable ones when we aggregate them:

1.
−→
A (M1, . . . ,Mm) =M = (rij), where

rij =
m∑

k=1

rkij .

2.
−̂→
A (M1, . . . ,Mm) = M̂ = (r̂ij), where

r̂ij =

⎧
⎪⎨

⎪⎩

∑

k∈Kij

rkij , if Kij �= ∅,

l0, otherwise,

and Kij = {k ∈ {1, . . . ,m} | rkij > ls/2}.
From these matrices with entries in 〈L〉, different ordinary preference rela-

tions could be obtained. If we denote by P(X) the set of ordinary preference
relations on X, this association can be formally given by means of a mapping

O : Mn

(
〈L〉

)
−→ P(X).

In order to extend the classic Borda rule to the linguistic framework, we
will consider the mapping
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OB : Mn

(
〈L〉

)
−→ P(X).

which assigns PM ∈ P(X) to M = (rij) ∈Mn

(
〈L〉

)
in the following way:

xi PM xj ⇔
n∑

u=1

riu >

n∑

u=1

rju.

As usual, we denote by IM the indifference relation associated with PM , i.e.,

xi IM xj ⇔
n∑

u=1

riu =
n∑

u=1

rju.

Definition 4. Given a linguistic matrix aggregation operator
−→
A and

O : Mn

(
〈L〉

)
−→ P(X), the composition

F = O ◦ −→A :
∞⋃

m=2

(
Mn(L)

)m −→ P(X).

is called a linguistic-based decision rule.

In this way, the linguistic-based decision rule FB = OB ◦
−→
A will be called

broad Borda rule and the linguistic-based decision rule F
B̂

= OB ◦
−̂→
A will

be called narrow Borda rule. In both cases, the obtained collective preference
relations are negatively transitive, in a similar way to the classic model for
PB and P B̂.

It is worth mentioning that Sen [28] also defines broad and narrow Borda
counts in connection with the fulfillment of the independence of irrelevant
alternatives principle. However, these variants, although sharing names, are
different of ours. Sen takes into account the amplitude of the referential set of
alternatives in order to define a choice function, while we consider opinions (all
of them or only the favorable ones) in pairwise comparisons of alternatives.

We note that when L = {l0, l1, l2} and the linguistic labels are identified
with 0, 1

2 and 1, respectively (i.e., agents show their opinion through ordinary
preferences), both broad and narrow Borda rules coincide with the classic
Borda count, supposed the preferences to be linear orders. However, in general,
these extended procedures are different as shown in the following example.

Example 1. Consider three individuals who express their preferences over
X = {x1, x2, x3} by means of linguistic labels L = {l0, l1, l2, l3, l4, l5, l6}
whose meaning is given in Table 1.

Suppose that they have associated the following matrix representations of
their linguistic preferences:

M1 =

⎛

⎝
l3 l4 l6
l2 l3 l5
l0 l1 l3

⎞

⎠ M2 =

⎛

⎝
l3 l0 l3
l6 l3 l6
l3 l0 l3

⎞

⎠ M3 =

⎛

⎝
l3 l4 l3
l2 l3 l1
l3 l5 l3

⎞

⎠
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Table 1. Meaning of linguistic labels

Label Meaning

l0 xj is totally preferred to xi

l1 xj is highly preferred to xi

l2 xj is slightly preferred to xi

l3 xi is indifferent to xj

l4 xi is slightly preferred to xj

l5 xi is highly preferred to xj

l6 xi is totally preferred to xj

When the broad Borda rule is used we obtain the following aggregated
matrix:

−→
A (M1,M2,M3) =M =

⎛

⎝
3l3 2l4 l6 + 2l3

l6 + 2l2 3l3 l6 + l5 + l1
2l3 l5 + l1 3l3

⎞

⎠ .

Since l6+2l4+5l3 > l5+5l3+l1 and 2l6+l5+3l3+2l2+l1 > l5+5l3+l1 we
have x1 PM x3 and x2 PM x3. However, the relationship between x1 and x2,
which would determine the effective winner, might depend on the considered
totally ordered monoid.

On the other hand, under the narrow Borda rule the following aggregated
matrix is obtained:

−̂→
A (M1,M2,M3) = M̂ =

⎛

⎝
l0 2l4 l6
l6 l0 l6 + l5
l0 l5 l0

⎞

⎠ .

Now, from 2l6 + l5 > l6 + 2l4 > l5 we have x2 P M̂
x1 P M̂

x3. Notice that
in this case x2 is the winner and the collective outcome is independent of
the considered totally ordered monoid. It is worth to mention that this fact
does not always hold under the narrow approach. For instance, in the follow-
ing example we show how the collective order may depend on the established
totally ordered monoid.

Example 2. Consider three voters who express their preferences over the set
of alternatives X = {x1, x2, x3} by means of the same linguistic labels and
their meaning as in the previous example, whose matrix representations of
linguistic preferences are the following:

M1 =

⎛

⎝
l3 l5 l6
l1 l3 l4
l0 l2 l3

⎞

⎠ M2 =

⎛

⎝
l3 l2 l3
l4 l3 l4
l3 l2 l3

⎞

⎠ M3 =

⎛

⎝
l3 l3 l6
l3 l3 l4
l0 l2 l3

⎞

⎠

When the narrow Borda rule is used we obtain the following aggregated
matrix:
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−̂→
A (M1,M2,M3) = M̂ =

⎛

⎝
l0 l5 2l6
l4 l0 3l4
l0 l0 l0

⎞

⎠

Since 2l6 + l5 > l0 and 4l4 > l0 we have x1 P M̂
x3 and x2 P M̂

x3. Again
the relationship between x1 and x2 depends on the representation of the
labels, and then on the way of defining the additive and order structure of
the monoid. Following Garćıa-Lapresta [10], we consider three ways of repre-
senting the established linguistic labels through real numbers, intervals and
triangular fuzzy numbers (TFNs), as appearing in Table 2.

There is no discussion about how to define the addition of real numbers,
intervals and TFNs, as well as the way of defining an order of real numbers.
However, there appear in the literature several possibilities for defining orders
of intervals and TFNs. In this example we will consider the following order of
intervals:

[a, b] > [a′, b′] ⇔

⎧
⎪⎨

⎪⎩

a+ b > a′ + b′

or

a+ b = a′ + b′ and b− a < b′ − a′.

Concerning the TFNs, the following order already considered in Garćıa-
Lapresta, Lazzari and Mart́ınez-Panero [11] will be used:

(a, b, c) > (a′, b′, c′) ⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a+ 2b+ c > a′ + 2b′ + c′

or

a+ 2b+ c = a′ + 2b′ + c′ and c > c′

or

a+ 2b+ c = a′ + 2b′ + c′, c = c′ and a > a′.

We now show that the collective preference between x1 and x2 depends
on the chosen representation.

– If real numbers are considered, then x1 I M̂
x2 because

2l6 + l5 = 2.8 = 4l4.

Table 2. Representation of linguistic labels

Label RN Interval TFN

l0 0 [0, 0] (0, 0, 0)
l1 0.2 [0, 0.2] (0, 0.2, 0.4)
l2 0.3 [0.2, 0.4] (0.1, 0.3, 0.5)
l3 0.5 [0.4, 0.6] (0.4, 0.5, 0.6)
l4 0.7 [0.6, 0.8] (0.5, 0.7, 0.9)
l5 0.8 [0.8, 1] (0.6, 0.8, 1)
l6 1 [1, 1] (1, 1, 1)
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– If the interval representation is taken into account, then x1 P M̂
x2

because
2l6 + l5 = [2.8, 3] > [2.4, 3.2] = 4l4.

– If TFNs are used, then x2 P M̂
x1 because

4l4 = (2, 2.8, 3.6) > (2.6, 2.8, 3) = 2l6 + l5.

4 Social Choice Type Properties

Within the Social Choice framework, we now propose several properties of
the introduced decision rules which extend to a linguistic context those usual
when ordinary preferences are considered.

Definition 5. Let F be a linguistic-based decision rule.

1. F is anonymous if for every (M1, . . . ,Mm) ∈
(
Mn(L)

)m and every bi-
jection σ : {1, . . . ,m} −→ {1, . . . ,m}:

F
(
Mσ(1), . . . ,Mσ(m)

)
= F (M1, . . . ,Mm).

2. F is neutral if for every bijection σ : {1, . . . , n} −→ {1, . . . , n} and
all (M1, . . . ,Mm), (N1, . . . , Nm) ∈

(
Mn(L)

)m, such that Mk = (rkij),
Nk = (skij), F (M1, . . . ,Mm) = PM and F (N1, . . . , Nm) = PN :

If rkij = skσ(i)σ(j) for all i, j ∈ {1, . . . , n} and k ∈ {1, . . . ,m},
then xi PM xj ⇔ xσ(i) PN xσ(j), for all i, j ∈ {1, . . . , n}.

3. F is consistent if for all xi, xj ∈ X and all (M1, . . . ,Mm) ∈
(
Mn(L)

)m,

(N1, . . . , Nm′) ∈
(
Mn(L)

)m′
, such that F (M1, . . . ,Mm) = PM ,

F (N1, . . . , Nm′) = PN and F (M1, . . . ,Mm, N1, . . . , Nm′) = PM+N :

If xi PM xj and xi PN xj, then xi PM+N xj.
4. F is monotonic if for all (M1, . . . ,Mm), (N1, . . . , Nm) ∈

(
Mn(L)

)m, with
Mk = (rkij), Nk = (skij), F (M1, . . . ,Mm) = PM , F (N1, . . . , Nm) = PN ,
such that there exist h ∈ {1, . . . ,m} and i, j ∈ {1, . . . , n} with rhij < s

h
ij,

rhpq = shpq whenever {p, q} �= {i, j} and Mk = Nk for all k �= h:
i) If xi PM xj, then xi PN xj.
ii) If xi IM xj, then xi (PN ∪ IN )xj.

5. F is strongly monotonic if for all (M1, . . . ,Mm), (N1, . . . , Nm) ∈(
Mn(L)

)m, with Mk = (rkij), Nk = (skij), F (M1, . . . ,Mm) = PM ,
F (N1, . . . , Nm) = PN , such that there exist h ∈ {1, . . . ,m} and
i, j ∈ {1, . . . , n} with rhij < shij, r

h
pq = shpq whenever {p, q} �= {i, j}

and Mk = Nk for all k �= h:
If xi (PM ∪ IM )xj, then xi PN xj.
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Strong monotonicity is related to a property within the classical approach
of Social Choice called positive responsiveness (see May [24]). An extension
of this property within the linguistic approach has been considered in Garćıa-
Lapresta [10]. We note that every linguistic decision rule satisfying strong
monotonicity is also monotonic.

The following theorem shows that the broad Borda rule satisfies all the
previous properties while the narrow Borda rule only does not satisfy the
strong monotonicity. Consequently, they essentially inherit those features of
the classic Borda rule.

Theorem 1. For every totally ordered monoid
(
〈L〉,+,≤

)
based on a set of

linguistic labels L, the associated linguistic Borda rules (both in the broad and
narrow cases) are anonymous, neutral, consistent and monotonic. Moreover,
the broad Borda rule is also strongly monotonic.

Proof. We only prove the result for the broad Borda rule (the proof for the
narrow Borda rule can be obtained in a similar way).

1. Anonymity. It is obvious because the linguistic matrix aggregation opera-

tor
−→
A satisfies

−→
A

(
Mσ(1), . . . ,Mσ(m)

)
=
−→
A (M1, . . . ,Mm), for all bijection

σ : {1, . . . ,m} −→ {1, . . . ,m} and (M1, . . . ,Mm) ∈
(
Mn(L)

)m.
2. Neutrality. Let σ : {1, . . . , n} −→ {1, . . . , n} be a bijection and

(M1, . . . ,Mm), (N1, . . . , Nm) ∈
(
Mn(L)

)m such that Mk = (rkij),
Nk = (skij), FB (M1, . . . ,Mm) = PM and FB (N1, . . . , Nm) = PN . If
rkij = skσ(i)σ(j) for all i, j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}, then

xi PM xj ⇔
n∑

u=1

riu >

n∑

u=1

rju ⇔
n∑

u=1

m∑

k=1

rkiu >

n∑

u=1

m∑

k=1

rkju

⇔
n∑

u=1

m∑

k=1

skσ(i)σ(u) >

n∑

u=1

m∑

k=1

skσ(j)σ(u)

⇔
n∑

u=1

sσ(i)σ(u) >

n∑

u=1

sσ(j)σ(u) ⇔ xσ(i) PN xσ(j),

for all i, j ∈ {1, . . . , n}.

3. Consistency. Let (M1, . . . ,Mm) ∈
(
Mn(L)

)m, (N1, . . . , Nm′) ∈
(
Mn(L)

)m′

such that Mk = (rkij), Nk = (skij), FB (M1, . . . ,Mm) = PM ,
FB (N1, . . . , Nm′) = PN and FB (M1, . . . ,Mm, N1, . . . , Nm′) = PM+N .
Given xi, xj ∈ X, if xi PM xj and xi PN xj , then

n∑

u=1

m∑

k=1

rkiu >

n∑

u=1

m∑

k=1

rkju and
n∑

u=1

m′∑

k=1

skiu >

n∑

u=1

m′∑

k=1

skju.
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Therefore,

n∑

u=1

(
m∑

k=1

rkiu +
m′∑

k=1

skiu

)
>

n∑

u=1

(
m∑

k=1

rkju +
m′∑

k=1

skju

)
,

i.e., xi PM+N xj .

4. Strong monotonicity. Let (M1, . . . ,Mm), (N1, . . . , Nm) ∈
(
Mn(L)

)m,
withMk = (rkij), Nk = (skij), FB (M1, . . . ,Mm) = PM , FB (N1, . . . , Nm)
= PN , such that there exist h ∈ {1, . . . ,m} and i, j ∈ {1, . . . , n} with
rhij < s

h
ij , r

h
pq = shpq whenever {p, q} �= {i, j} and Mk = Nk for all k �= h.

Since rhij < s
h
ij , we also have shji < r

h
ji. Therefore,

rij =
m∑

k=1

rkij <

m∑

k=1

skij = sij and rji =
m∑

k=1

rkji >

m∑

k=1

skji = sji,

while riu = siu if u �= j and rju = sju if u �= i. Consequently,

n∑

u=1

riu <

n∑

u=1

siu and
n∑

u=1

rju >

n∑

u=1

sju.

Now, if xi (PM ∪ IM )xj , then

n∑

u=1

siu >

n∑

u=1

riu ≥
n∑

u=1

rju >

n∑

u=1

sju,

i.e., xi PN xj . ��

We note that in Garćıa-Lapresta, Mart́ınez-Panero and Meneses [15] other
properties, namely representativity and Condorcet-type properties, have been
analyzed. The fulfillment of representativity (which states that Borda qual-
ifications must agree with linguistic pairwise comparisons of alternatives for
each agent) is granted under rationality requirements for the linguistic nar-
row Borda rule weaker than those for the broad one. However, a Condorcet
loser (an alternative which is defeated by simple majority when opposed
to each other in pairwise tournaments) might became a winner under the
narrow approach. Such undesirable fact will never happen under the broad
one —supposed the linguistic labels to be represented through symmetric
trapezoidal fuzzy numbers— and this is a compelling argument for the broad
linguistic Borda rule when confronted to the narrow one.

5 Some Further Extensions and Concluding Remarks

The way of generalizing the Borda rule to a linguistic context also allows us
to extend other decision making procedures. In this sense we can obtain a
linguistic extension of simple majority when we consider the mapping
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OS : Mn

(
〈L〉

)
−→ P(X)

which assigns PM to M = (rij) ∈Mn

(
〈L〉

)
in the following way:

xi PM xj ⇔ rij > rji.

Analogously, we also obtain a linguistic extension of the Copeland rule
([5]) when we consider the mapping

OC : Mn

(
〈L〉

)
−→ P(X)

which assigns QM to M = (rij) ∈Mn

(
〈L〉

)
in the following way:

xiQM xj ⇔
n∑

u=1

c(i, u) >
n∑

u=1

c(j, u),

where c : {1, . . . , n}2 −→ {−1, 0, 1} is the function given by:

c(i, j) =

⎧
⎪⎨

⎪⎩

1, if rij > rji,

0, if rij = rji,

−1, if rij < rji.

In conclusion, linguistic matrix aggregation operators provide a versatile
and appropriate tool for dealing with several decision making procedures, as
shown for the Borda rule and pointed out for other well-known methods.
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An Evolutionary Algorithm for the Biobjective
QAP

Istvan Borgulya

Summary. In this paper we present a new method for the biobjective quadratic
assignment problem. This method is a modified version of an earlier multi-objective
evolutionary algorithm. It uses a special truncation selection, and the descendents
are derived from the parents by mutation based on an EC-memory method. This
EC-memory method is an extended version of an earlier method, and we can use on
the more value discrete space. The quality of the results of our algorithm is better
than the results of some stochastic local search, or ACO algorithms.

Key words: Multi-objective optimization, EC-memory method, QAP,
Evolutionary algorithm.

1 Introduction

Knowles and Corne [7] presented a QAP variation considering several flows
and distances. This multi-objective QAP problem has a number of potential
applications. For example, in hospital layout problem we may be concerned
with simultaneously minimizing the flows of doctors of their rounds, of pa-
tients, of hospital visitors, and of pharmaceuticals and other equipment [7].

The mathematical expression is then

min
π∈Sn

F (π) = {f1(π), f2(π), . . . , fm(π)}

where fk(π) =
n∑

i,j=1

fwk
ijdπ(i)π(j)1 ≤ k ≤ m.

n is the number of facilities and locations, fwk
ij denotes the kth flow between

i - and j-facilities, Sn is the set of all permutations with n elements and π ∈ Sn,
dij is the distance between location i and location j and πi gives the location
of facility i in permutation π.

In the last years Knowles and Corne [8] presented instance generators for
the biobjective QAP (bQAP) and some methods were developed for bQAP.
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E.g. an ACO algorithm was designed [9], stochastic local search algorithms
were developed [11], and a parallel evolutionary technique for bQAP was
present [4].

In this paper we present a new evolutionary algorithm (EA) for the bQAP.
This algorithm is based on an earlier multi-objective EA, named MOSCA2 [2].
For the bQAP we modified MOSCA2, we use other selection, mutation opera-
tor and we use a local search procedure. To improve the quality of the results
we use a modified version of an EC-memory method by mutation, instead of
recombination operator.

We compared our algorithm with other algorithms (e.g. robust tabu search
(RoTS), ACO, stochastic local search algorithms). The quality of the results
of our algorithm became better and we got this result after similar or longer
running times.

In addition to this introduction section, this paper is organized into the
following sections. The new, extended version of an EC-memory method is
described in Sect. 2. Section 3 includes the new version of the MOSCA2. In
Sect. 4, we present our computational experience with the new version and
compare our results with other heuristics results. Section 5 contains conclud-
ing remarks.

2 The EC-Memory Method

There are many variants of explicit collective memory (EC-memory) methods
that memorises the past events and/or past successes of the evolution process
in the EA. With the help of this method we can chose e.g. appropriate evolu-
tionary operators during the evolutionary process, we can drive the offspring
generate process, or we can select the individuals (e.g. the PIBS of Baluja
et al. [1], the “Virtual loser” of Sebag et al. [14], ant colony algorithm [3],
cultural algorithm [13]).

We choose to adopt the method of Sebag et al. [14] that memorises the
past failures of evolution through a virtual individual, the virtual loser (V L).
We can use the V L in the binary space, and its memory is a numeric vector
that gives the average values of the worst individual by every bit position
(variable). With the help of the V L we can give the probability of mutating a
bit in an individual: the probability of mutating bit i in individual X should
reflect how much it discriminates Xi from V L, that is, it should increase with
pi = 1 − |V Li − Xi|. We can use this technique e.g. by continuous function
optimization, or by combinatorial problem, discretized through a binary or a
Gray coding.

In this paper we modify and extend the V L. We made to be able the
V L more discrete values handling. The discrete values can be integer, or real
number, but different objects, e.g. values of permutations too. Generally we
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can not compute the average of the discrete values (e.g. by permutation) as
by the V L, but we can compute the relative frequency of every discrete values
by the variables one by one.

The principle of the new VL version, named EVL (Extended V irtual
Loser) is the following. Let be m different values of the variables. (We see
only this simple version. If the numbers of the discrete values or the discrete
values are not the same by every variable we can easily modify the next for-
mulas.) Let us notice ECM an nxm matrix that stores the relative frequency
of the different values of the variables. This matrix is updated through the
search procedure using a few of the worst performing individuals.

Let ECMgen
ij be the relative frequency of the ith values on the jth position

(variable) in the genth generation. We can update the elements of the ECM
matrix similar way as by the VL:

ECMgen+1
ij = (1− α)ECMgen

ij + α dECMij (e.g. α = 0.2)

where dECMij is the relative frequency of the ith value on the position jth
based on the worse individuals of the genth generation and α denotes some
relaxation factor.

For the probability of mutating the jth variable in individual X we can
use the

qj =
ECMXj ,j∑n
k=1ECMkj

formula. We get the highest qj values by the worst values of the variable Xj

based on the worst individuals. Consequently we can chose a better value for
Xj with higher probability than 1−qj . To improve the probability we can use
the best individual too. Let be B one of the best individuals. If Xj = Bj we
change evidently the value of Xj with low probability. With the help of Bj

the probability of mutating the j th variable in individual X is the following:

pj = 1− |qj − aj |

where if Xj = Bj then aj = 1 else aj = 0.
Mutation based on the EVL. Let be X a descendant. We rank the variables

Xi decreasing based on qi, and select the first (e.g. max n/2) elements of the
queue. Let U notice the set of the selected variables. By every variable Xj ∈ U
we search an other Xz ∈ U such a way, that the probability

pj = 1− |
ECMXz ,j∑n
k=1ECMkj

− ai|

is maximal (where if Xz = Bj then ai = 1 else ai = 0). After that we write
the value of Xz into the ith position and we delete the variables Xz from U .
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3 The New Algorithm

3.1 The MOSCA2

The fundamental principles of MOSCA2 [2] are the following: Let us segre-
gate the members of the population into t subpopulations, each subpopulation
will approximate an other part of the Pareto front sought. Each subpopula-
tion is storing only non-dominated individuals of the possible members of the
subpopulation (at a limited amount). The dominance of a new descendant
getting into the subpopulation is determined by comparing it to a designated
non-dominated individual, the prototype. If it founds a non-dominated de-
scendant superior to the previous prototype, it deletes the former members of
the subpopulation, and replaces the prototype by the new descendant.

During the evolution process the new potential Pareto optimal solutions
are periodically stored in a separate archive, and we get the result in this
archive. If this separate archive (SARC ) is full, the algorithm deletes a given
percentage (10%) of its elements. We select first the most dominated individ-
uals for deletion, after that continuously one of the individuals close to each
other.

The MOSCA2 uses a 2-stage algorithm structure where every stage is a
steady-state EA. The first stage is a quick “preparatory” stage that is desig-
nated to improve the quality of the initial population. The second stage is an
evolutionary strategy with some special operators (more details in [2]).

3.2 MOSCA2b for bQAP

The new version of the MOSCA2, named MOSCA2b, uses some special op-
erators. So, the selection is a special version of the truncation selection, the
descendents are derived from the parents by mutation based on the EVL and
the algorithm uses the 2-opt local search procedure with weighted objective.

By solving a multi-objective problem there are two important tasks gen-
erally: to reach a good convergence to the Pareto optimal front and to cover
all points of this front with different solutions. MOSCA2b solves these tasks
only with the help of the truncation selection and the EVL method.

The main steps of MOSCA2b:

Procedure MOSCA2b (t, subt, arcn, itend, ddp)
it = 0, SUBPi = ∅ (i = 1, 2, ..., t) /* The initial values.
Let pi ∈ SUBPi (i = 1, 2, ..., t) : SARC = ∅
itt = 400, kn = 100
/* First stage *
Fitness evaluation: ranking of P
Do itt times
it = it+ 1
A descendant is generated randomly. Reinsertion.

od
/* Second stage *



An Evolutionary Algorithm for the Biobjective QAP 581

Ranking of P. Initial values of ECM
Repeat

Do kn times
it = it+ 1
Truncation selection, mutation based on EVL, local search.
Reinsertion.

od
Ranking of P, Update of SARC, Deleting. Update ECM.

until it > itend
end

The parameters of the algorithm:
t – the number of the subpopulation
subt – the maximum size of each subpopulation
arcn – the maximum size of SARC
itend – the maximal number of the generation
ddp – parameter of the Deleting procedure

The main function and characteristics of the two EAs are as follows:

– The first individuals are randomly generated.
– The P population is built from subpopulations: SUB1, SUB2, . . . , SUBt

(P = ∪SUBi). There is a designated non-dominated individual in every
subpopulation, the prototype.

– The value of the fitness function is a rank number determined according
to the Pareto ranking method by Goldberg [6].

– In the first stage the descendants are randomly selected from S. In the
second stage the algorithm randomly selects a parent with rank number
1 from P (this is a special truncation selection).

– Mutation based on the EVL. Let be X a descendant. We rank the variables
Xi decreasing based on qi, and select the first, maximum n/2 elements of
the queue for mutation and we change the value of the variables according
in Sect. 2 (By the bQAP, B is the prototype of the subpopulation of X ).

– ECM. It is the matrix in the EVL method. ECM is defined after the ter-
mination of the first stage. It is periodically updated by using the weakest
individuals. In the updating procedure we use 20% of the population.

– As local search the algorithm uses the 2-opt local search with weighted
objective [5].

– On reinsertion in a subpopulation the algorithm do not use the rank num-
ber, it is enough to examine the Pareto dominance between a prototype
and the descendant. In the first stage, the algorithm compares the descen-
dant with the most similar prototype. In the second stage the descendant
is compared with the prototype of the subpopulation of the parent.

– Deleting. A given percent of the most dominated individuals in P will be
deleted based on the rank number. This percent decreases as the number
of iteration increases (The deleted subpopulations will be replaced with
new one).
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– Function computation. Based on observation in [12] on the transformation
of asymmetric flow or distance matrix into symmetric one, we compute
in a simple form the change of the function values in the local search
procedure similar way as in [11].

– Stopping criteria. The algorithm is terminated if a pre-determined number
of iterations have been performed.

4 Experimental Results

Test Problems

We used the test problem of [11] that was generated with the instance genera-
tor of [8]. These instances and the reference solutions of RoTS are available at
http://www.intellektik.informatik.tu-darmstadt.de/∼lpaquete/QAP. The in-
stances were generated with n ∈ {25, 50, 75} locations and with correlations
between the flow matrices of ρ ∈ {−0.75, −0.50, −0.25, 0.0, 0.25, 0.50, 0.75}.

Parameter Selection

Our experience with the earlier version of MOSCA2b helped easier to chose
the values of the parameters. Only with a little difference we could use
the same values. So the used parameters were the following: t = 100,
subt = 10, arcn = 1,000 and ddp = 30%. The maximal number of the gener-
ation (or fitness evaluations) was 1,500 or 2,300 depending from the problem
(The MOSCA2b was implemented in Visual Basic and ran on a Pentium 4
1.8 GHz with 256 MB RAM).

Comparative Results

As performance measure we used the binary ε-indicator from [11]. The binary
ε-indicator gives the factor by which an approximation set is worse than an-
other with respect to all objective [15]. In practice, the binary ε-indicator is
calculated as

Iε(A,B) = max
b∈B

min
a∈A

max(
a1
b1
,
a2
b2

)

where A and B are non-dominated objective value vectors of a problem with
two objectives. With the help of this measure we can compare two solutions: if
Iε(A,B) > 1 and Iε(B,A) ≤ 1, then the set B completely dominates the set A.

To compare the results of the MOSCA2b we chose the RoTS algorithm.
With the help of the reference solutions of the RoTS we compared the per-
formance of the MOSCA2b and RoTS, used shorter running times as the
RoTS running time. Every test problem was run 10 times, and Table 1 shows
the average comparative results of MOSCA2b. In Table we see the results
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Table 1. The average comparative results of MOSCA2b

ρ n ε1 ε2 avgt avgn

0.75 25 1.096 0.923 18.8 2
50 1.041 0.967 86.0 3
75 1.032 0.978 249.9 2

0.50 25 1.094 0.908 18.1 5
50 1.021 0.989 86.5 7
75 1.014 0.985 289.4 5

0.25 25 1.099 0.933 19.4 8
50 1.045 0.971 87.6 7
75 1.009 0.985 1464.2 10

0.00 25 1.051 0.947 18.7 12
50 1.009 0.975 88.1 11
75 1.012 0.993 1465.5 12

−0.25 25 1.073 0.928 18.8 19
50 1.020 0.968 144.5 16
75 1.010 0.986 1454.1 22

−0.50 25 1.084 0.952 19.3 28
50 1.022 0.962 157.4 20
75 1.031 0.978 1231.2 36

−0.75 25 1.086 0.990 19.5 64
50 1.007 0.986 153.9 71
75 1.001 0.993 1036.4 82

by different values of correlation (ρ ) and size (n), ε1 gives Iε(B,A), ε2 gives
Iε(A,B) (where A is the outcomes of the MOSCA2b and B is the outcomes
of RoTS), avgt is the average computation times in second and avgn is the
average number of solutions.

Analyzing the results, we can conclude that the outcomes of MOSCA2b
are better by all test problems based on the performance measure than the
outcomes of RoTS. That shows Fig. 1 too. The plot gives the non-dominated
results of the methods and every MOSCA2b’ results dominate the RoTS’ re-
sults. Only the numbers of the non-dominated solution of the RoTS are more
that by MOSCA2b, but the quality of the MOSCA2b’solutions are better.

We can compare MOSCA2b with other methods too. In [9] an ACO al-
gorithm, and in [11] two stochastic local search (Pareto Local Search and
Two-Phase Local Search) were developed for the bQAP. In both papers the
methods were compared based on the binary ε-indicator with RoTS, so we
can compare MOSCA2b with these methods too. Because the RoTS has bet-
ter performance as the ACO and the two stochastic local search algorithms
(see [9,11]), MOSCA2b has also better performance by the given problems as
these methods. Only the running time is different: MOSCA2b has similar or
shorter running times as the ACO, and has longer running times as the two
local search algorithms. (We considered by the comparison that the methods
run on different computers.)
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Fig. 1. The plot gives the non-dominated results of MOSCA2b (thicker points) and
the results of RoTS (thinner points). The results correspond to three–three instances
with size 50 (left column) and with size 75 (right column) and with correlation
ρ = −0.75 (line top), ρ = 0 (line center), ρ = 0.75 (line bottom)

We can observe that the solution quality of MOSCA2b (and the other
methods too) depends from the correlation (ρ) between the flow matrices.
Depending on this correlation there are significant differences in the results.
For high positive correlations the search is very hard and by every method
the average number of solutions is low. With decreasing correlation the meth-
ods found the solutions easier and the average number of solutions increases
continuously.
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5 Summary

With the modification of an earlier multi-objective EA, we have developed
a method for bQAP. The new version, named MOSCA2b, uses some special
operators: the selection is a special version of the truncation selection, and
the descendents are derived from the parents by mutation based on an EC-
memory method, named EVL. The EVL is an extended version of the “virtual
loser” method of Sebag et al. [14].

With the help of the truncation selection and the EVL method our algo-
rithm can reach a good convergence to the Pareto optimal front and cover
all points of this front with different solutions. Other EA methods can solve
these important tasks only with special plus techniques, operators.

The quality of the results our algorithm is better than the results of some
stochastic local search, or ACO algorithms, but the running times are gen-
erally similar, or longer. As future work we can improve the speed of our
algorithm, and we can try to use our algorithm by other multi-objective opti-
mization problems.
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On a Hill-Climbing Algorithm with Adaptive
Step Size: Towards a Control Parameter-Less
Black-Box Optimisation Algorithm

Lars Nolle

1 Introduction

Many scientific and engineering problems can be viewed as search or optimisa-
tion problems, where an optimum input parameter vector for a given system
has to be found in order to maximise or to minimise the system response
to that input vector. Often, auxiliary information about the system, like its
transfer function and derivatives, etc., is not known and the measures might
be incomplete and distorted by noise. This makes such problems difficult to
be solved by traditional mathematical methods. Here, heuristic optimisation
algorithms, like Genetic Algorithms (GA) [1] or Simulated Annealing (SA) [2],
can offer a solution. But because of the lack of a standard methodology for
matching a problem with a suitable algorithm, and for setting the control pa-
rameters for the algorithm, practitioners often seem not to consider heuristic
optimisation.

The main reason for this is that a practitioner, who wants to apply an algo-
rithm to a specific problem, and who has no experience with heuristic search
algorithms, would need to become an expert in optimisation algorithms be-
fore being able to choose a suitable algorithm for the problem at hand. Also,
finding suitable control parameter settings would require carrying out a large
number of experiments. This might not be an option for a scientist or engineer,
who simply wants to use heuristic search as a tool.

For such practitioners, an optimisation algorithm that would have no con-
trol parameters to choose, while still being effective and efficient, would clearly
be of benefit. The aim of this project was to develop a search algorithm with
as few control parameters as possible that is still effective for solving black-box
optimisation tasks. In this paper, a novel optimisation algorithm is introduced,
which has only one control parameter. Experiments presented in this paper
demonstrate that the algorithm, which is a population based hill-climbing
algorithm with self-adapting step size, is very effective and also very efficient.
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2 Self-Adaptive Step-size Search (SASS)

For heuristic search algorithms, like Hill-Climbing (HC) [3], it was previously
shown that the definition of the neighbourhood, and in particular the chosen
step size, is crucial to the success of the algorithm [4], not only for continu-
ous parameter search, but also for discrete parameters, when the search space
is too large to consider direct neighbours of a candidate solution for perfor-
mance reasons. It was shown that selection schemes with random step sizes
with an upper limit (maximum step size smax) outperform neighbourhood
selection schemes with a constant step length. It was also demonstrated that
using a scaling function for reducing smax over time could again increase the
performance of Hill-Climbing algorithms.

However, it would clearly be of benefit if the maximum step length would
be more adaptive to the search progress itself. Therefore, a new population-
based adaptation scheme with a self-adaptive step size, referred to as Self-
Adaptive Step-size Search (SASS) throughout this article, has been developed
for HC, where the temporary neighbourhood of a particle pi is determined by
the distance between itself and a randomly selected sample particle si of the
population during each iteration.

At the beginning of a search this distance is likely to be large, because
the initial population is uniformly distributed over the search space and the
chances are high that si is drawn from a different region within the input
space. When the search is progressing, each particle is attracted by a local
optimum and hence the population is clustered around a number of optima. If
both, pi and si are located in different clusters, pi has the chance to escape its
local optimum if it samples from a region with a higher fitness, i.e. lower costs.
Towards the end of the search, most particles have reached the region of the
global optimum and hence their mean distance is much smaller than in the
initial population. As a result, the maximum step size smax is sufficiently small
to yield the global optimum. Figure 1 shows pseudocode of the algorithm. The
main advantage of SASS is, that it only has one control parameter that has
to be chosen in advance, which is the number of particles n in the population.

3 Experiments

In order to evaluate the effectiveness and the efficiency of the new algorithm,
a set of experiments was conducted using two well-established standard test
functions, the inverted Schwefel function and the inverted Griewank func-
tion [5]. The first test function, the n-dimensional inverted Schwefel function
(1), was chosen because of its interesting characteristic that the second best
optimum is located far away from the global optimum, which can cause an op-
timisation algorithm to converge towards one of the local optima. The global
optimum of zero is located at the coordinate x = (420.969, 420.969, . . .).
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Procedure selfAdaptiveStepSizeSearch
Begin

initialise population of n particles
While stopping criterion not met
Begin

For every particle p in population
Begin

select random particle s �= p
For every component pi in particle p
Begin

Smax ← | pi – si |
generate random value r ∈ [−smax; +smax]
p′

i ← pi + r
End
If f(p′) better than f(p) then p ← p′

i

End
End
Return best result

End

Fig. 1. Pseudocode of the SASS algorithm

f(x) = 418.98288n+
n∑

i=1

−xi sin(
√
|xi|) (1)

where −500 ≤ xi ≤ +500.
The second test function, the n-dimensional inverted Griewank function

(2), was chosen because the product term introduces a correlation between the
function variables and hence a high degree of epistasis [6]. This can disrupt
optimisation techniques that work on one function’s variable at a time

f(x) = 1 +
n∑

i=1

x2
i

4000
−

n∏

i=1

cos(
xi√
i
) (2)

where −30 ≤ xi ≤ +30.
The global optimum of zero is located at the point x = (0, 0, . . . ). There

are many local optima in the landscape of this function. An increase in the
number of variables decreases the number of local optima since it makes the
function surface flat. The 2, 5, and 10 dimensional versions of both test func-
tions have been used. The population sizes were varied from 3 to 30 particles
and every experiment was repeated 100 times in order to prove reproducibility.
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4 Experimental Results

Figure 2 shows the average costs of the 100 experiments per population size
for the different versions of the Schwefel function, whereas Fig. 3 shows the
same for the different versions of the Griewank function.

Figures 4 and 5 document the percentage of experiments that have
converged towards the global optimum for the Schwefel, respectively, the
Griewank function, for the different population sizes.

As it can be seen, SASS was able to find the global optima with a very
high reproducibility of about 99%, provided that the population sizes used
exceeded a certain minimum. For example, for the two dimensional Schwefel
function, the algorithm proved to be very robust if the population size was
greater than 12, whereas for the 10 dimensional version, it was necessary to
use population sizes greater than 20. Similar behaviour was observed for the
different versions of the Griewank function.

5 Analysis of the SASS Algorithm

In this section, a typical search run of SASS for the 2 dimensional Schwefel
function is analysed. Figure 6 shows the development of the average costs of
the population and the lowest costs found in a population over time, i.e. iter-
ations. It can be seen that the population converged after approximately 800
iterations.

Figure 7 shows the actual development of the average smax in the popula-
tion over time for the same search run. It can be seen that it starts off with

 0

500

1000

1500

2000

2500

0 5 10 15 20 25 30

A
ve

ra
ge

 C
os

ts

Population Size

Schwefel

10-dim
5-dim
2-dim

Fig. 2. Average costs for the 2, 5, and 10 dimensional versions of the Schwefel
function



Hill-Climbing Algorithm with Adaptive Step Size 591

0.6

0.5

0.4

0.3

0.2

0.1

0

0 5 10 15

Population Size

Griewank

10-dim

5-dim

2-dim

20 25 30

A
ve

ra
ge

 C
os

ts

Fig. 3. Average costs for the 2, 5, and 10 dimensional versions of the Griewank
function

 0

20

40

60

80

100 

0 5 5 20 25 3010

G
lo

ba
l O

pt
im

um
 fo

un
d 

[%
]

Population Size

Schwefel

10-dim
5-dim
2-dim

Fig. 4. Percentage of experiments that converged towards the global optimum for
the 2, 5, and 10 dimensional versions of the Schwefel function

relatively large values compared to the size of the input space and that it
finally settles on very small numbers after approximately 800 iterations. This
is in line with Fig. 6, which shows that the population has converged after
approximately 800 iterations. It also confirms the initial assumptions given in
Sect. 2.
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Figure 8 shows a contour plot of the initial population for the same search
run. It can be seen that the population is more or less uniformly distributed
over the input space, although no particle starts near the global optimum at
(420.969, 420.969). After 600 iterations, all particles have settled into three dif-
ferent clusters (Fig. 9), which are located relatively far away from each other.
Algorithms like GA, SA, and HC would be very unlikely to escape from the
local optima, while SASS was able to achieve this and to converge towards
the global optimum after about 800 iterations (Fig. 10).
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In other words, whereas these large distances between the clusters would
make it impossible for SA and HC to converge, for SASS they result into
large values for smax for particles from different clusters, and hence enabled
the particles to escape the local optima and hence enable the algorithm to
converge.
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6 Conclusions and Future Work

This paper introduced SASS, a novel population based Hill-Climbing algo-
rithm with a self-adaptive step size. SASS has only one control parameter to
be chosen in advance, which is the population size. Although the algorithm
is very simple, the results presented in this paper have demonstrated that
SASS is capable of finding the global optimum with a very high reproducibil-
ity, provided that there are enough particles in the population. This number
depends on problem difficulty and ranged from 12 for the 2 dimensional test
functions to more than 20 for the 10 dimensional versions. The next step will
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be to apply SASS to more test problems and to develop a heuristic that can
help to determine the minimum number of particles needed for a particular
problem at hand. This would make SASS a truly control parameter-less search
algorithm.
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Self-Adaptive Baldwinian Search in Hybrid
Genetic Algorithms

Tarek A. El-Mihoub, Adrian A. Hopgood, Lars Nolle and Alan Battersby

Summary. The problem of proper utilization of the search time to adapt a hybrid
to a given problem can be viewed as a problem of finding optimal control parameter
settings. The algorithm’s time utilization can be optimized through adapting the
local search duration. Evolving this control parameter via genetic operations is one
possible way to achieve this adaptation. However, the hindering effect can obstruct
the self-adaptive ability of the Baldwinian search. Local search methods with narrow
steps and the use of the local search duration to discriminate between solutions can
help to alleviate this problem.

Key words: Self-adaptaion, Hybrid genetic algorithms, Baldwinian search,
Hindering effect.

1 Introduction

A genetic algorithm is usually combined with a domain-specific method to
solve a real-world problem [8]. The success of such a hybrid algorithm in solv-
ing a given problem efficiently depends on its success in achieving a balance
between exploration and exploitation [3, 4, 8]. Among the factors that affect
this balance is the duration of local search [5], which is defined as the num-
ber of the consecutive local search iterations that is performed on a solution
before terminating a local search procedure. This control parameter can be
used to adapt the hybrid on-line to a specific problem.

The interactions between local search duration, learning strategy, fitness
topology, and other genetic components have a great impact on search time
utilization [4, 5]. The idea of evolutionary self-adaptation [6] can be applied
to adapt the local search duration in order to optimise the performance of a
hybrid on a particular problem without the need for external control.

The impact of the hindering effect [9] on obscuring genetic differences can
obstruct the Baldwinian [7] search’s self-adapting ability to a given problem.
The genotypes cannot be effectively discriminated according to their fitness
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without considering the learning cost and hence the evolution of effective
solutions can be hindered.

The ability of genetic search to find favourable parameter settings for pure
genetic algorithms has been proven [6]. However, its ability within a hybrid
to self-adapt the control parameters, especially those related to incorporating
a local method, may require further investigation. In this paper, we analyse
the influence on the behaviour of the Baldwinian hybrid of simultaneously
exploring both the problem search space and the control space of local search
duration. This analysis can help to gain some insight into the factors that
may affect the search performance in order to find ways to improve it.

2 Evolutionary Self-Adaptation and Duration
of Local Search

In evolutionary self-adaptive algorithms, the fitness of the individual asso-
ciated with a specific control parameter value is used as feedback to assess
the suitability of the control parameter values for solving a given problem.
The link between the duration-of-local-search control parameter and the in-
dividual’s fitness depends on the fitness function topology, the details of the
local search method and the genetic algorithm’s setup. By allowing the du-
ration of the local search to evolve by means of genetic operations, the link
between favourable duration of the local search and the fitness can be ex-
ploited. Genetic operations can adaptively control the duration of the local
search method to optimise the individuals fitnesses. In this way, this link can
be defined, which is essential for the adaptation of control parameters [11].

However, it may be difficult to define this link when the genetic algorithm
is combined with Baldwinian search. The acquired fitness is the sum of the
improvements introduced by applying a local search method for the encoded
duration and the innate fitness. The hindering effect can direct the search to-
wards individuals with long durations and a small innate fitness. The search
process, in this case, is degraded from optimising the fitness function to opti-
mising a single control parameter. The possibility of leading the search in this
direction increases as the dimension of the fitness function increases, since it
may be easier for the algorithm to optimise a single control parameter than
to optimise a large number of variables. It can also waste its resources as it
can direct the individuals towards performing useless local search iterations.
The use of the acquired fitness as a metric to assess the quality of solutions
in the Baldwinian search can produce an algorithm with poor performance.

The use of a local search method, which takes narrow steps in the search
space while restricting the values of the duration of local search to very small
numbers, can help to combat the hindering effect problem. In this way, the
problems consequences on the ability of the algorithm to define a link between
this control parameter and the fitness in the direction of optimising solutions
quality can be alleviated.
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However, the ultimate solution for the hindering effect problem is to rely
on innate fitness to decide between solutions of equal acquired fitness values.
Since the number of local iterations, which is a good indication of the cost of
learning, is already encoded into the individual, it can be used together with
the acquired fitness to direct the search towards solutions of high quality.

It may be beneficial to allow the local search method to cooperate with
the global genetic algorithm to explore the search space in the early stages
of the search by allowing wide local steps. However, as the Baldwinian search
reaches the fitness-convergence-state, taking narrow local steps can be more
helpful. By adapting the local step size according to the standard deviation
of the population fitness, the search performance may be improved.

3 Experiments

A set of experiments was conducted to gain some insight into the evolutionary
self-adaptive behaviour of the Baldwinian search using three different hybrids.
Hybrid-A, which uses a local search method with a predefined maximum local
step size and discriminates between solutions based on the acquired fitness
only, was used to study the effect of local search step size on the performance.
Hybrid-B, which is identical to Hybrid-A except that it uses local search iter-
ations to discriminate between solutions of an equal acquired fitness, was used
to investigate the effectiveness of using the local search duration to discrimi-
nate between solutions. The possibility of improving the hybrid performance
by employing an adaptive local step was examined through Hybrid-C, which
uses an adaptive local step size and utilizes the local search duration to dis-
criminate between effective solutions.

In these hybrids, the number of local search iterations that should be per-
formed by an individual was encoded into its chromosome. At each iteration,
the local search method tries to find the smallest possible step in the allowed
range of a randomly selected variable space that improves the fitness. Starting
from the least significant bit of a randomly chosen variable and moving to-
wards its most significant bit, the local search method keeps flipping the bits
until an improvement in the fitness produced or a specified number of bits are
flipped. In the case of no improvement in the fitness, the process is repeated
for another randomly chosen variable until an improvement is produced. By
controlling the maximum number of bits that can be scanned for fitness im-
provement of each variable before randomly selecting another variable, the
algorithm controls the size of the local search step.

The generalized Ellipsoidal [2], Ackley [1], Schwefel [10], Rastrigin [10],
and Griewank [10] functions were selected as a test suite. The hybrids used
the simple elitist genetic algorithm with binary tournament selection, two-
point crossover, and simple mutation. The values of the duration of local
search parameter were restricted to very small values in the range 0–3. For all
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experiments, the rate of crossover and mutation were set to 0.7 and (popula-
tion size)−1, respectively. The population sizes for the 2- and 10-dimensional
functions were set to 50 and 100, respectively. Each variable was represented
by a 10-bit string. The stopping criterion for all experiments was a maximum
number of function evaluations. The number of bits that were exposed to
modification was limited to a specific percentage of the length of the variables
string. Each experiment was repeated 100 times.

4 Discussion

The results of the first two hybrids clearly show that as the size of the local
search step decreases, the ability of the evolutionary self-adaptive Baldwinian
hybrid to find a global optimum increases. This is depicted in Fig. 1 for the
10-dimensional Ellipsoidal, Ackley, and Schwefel functions. The algorithms
were unable to find the global optimum for the 10-dimensional Griewank and
Rastrigin functions. However, the curves of the best fitness of these functions
show a similar trend. The curves of the percentage of experiments that found
a global optimum of the 10-dimensional functions, as expected, have a steeper
slope than the 2-dimensional functions. As shown in Fig. 1, Hybrid-B outper-
formed Hybrid-A in terms of the percentage that converged.

The experiments also show that using small local steps improves the speed
of the algorithms in finding the global optimum (Fig. 2). Figure 2 also illus-
trates that Hybrid-B significantly outperforms Hybrid-A in terms of the search
speed of the 10-dimensional Ackley and Schwefel functions.

Hybrid-C produced a near optimal performance in terms of the percentages
that converged and an optimal performance in terms of convergence speed for
the 10-dimensional Schwefel and Ellipsoidal functions, as illustrated by the

Fig. 1. The effect on convergence ability
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Fig. 2. The effect on convergence speed

dotted lines in Figs. 1 and 2. Hybrid-C also improved the best fitness and the
search speed of the Rastrigin and Griewank functions. However, the algorithm
produced a poor performance for the Ackley function.

5 Conclusions

The hindering effect can obstruct the ability of Baldwinian search to self-adapt
the duration-of-local-search control parameter. The possibility of obstructing
this ability increases as the dimension of the fitness function increases. The
results presented in this paper also show that the use of a local search method
with narrow steps in the search space can help to alleviate this problem and
hence improve the performance of the Baldwinian search in terms of solution
quality and convergence speed. The performance of the Baldwinian search
can be further improved when the local search duration is used alongside
the acquired fitness to discriminate between effective solutions. The use of
an adaptive local search step can improve the performance of the Baldwinian
search on some of the tested problems.
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Intragenerational Mutation Shape Adaptation

Stefan Berlik and Bernd Reusch

Summary. The aim of this work is to discuss questions that arise when porting
the directed mutation principle from the uncorrelated setting in classical evolution
strategies to the correlated case as given in covariance matrix adaptation-evolution
strategies. The main problem to be addressed here is the shape vector update. The
shape vector controls the distribution’s skewness and has to be updated either inter-
generational or intragenerational. Starting with an analogue to the intergenerational
parameter update mechanics used in CMA-ES, we argue that an intragenerational
update is of greater benefit. Different heuristics will be presented and compared,
additionally some experimental data of several test functions is provided.

Key words: Intragenerational adaptation, Directed covariance matrix ad-
aptation, Directed mutation, Mutation operator, Evolutionary algorithm,
Evolution strategy, DCMA-ES, CMA-ES.

1 Introduction

Since the early work of Rechenberg [13] and Schwefel [15] the design of mu-
tation operators turned out to be one of the most critical points in Evolution
Strategies (ESs). These early works relied on just one single mutation strength,
i.e. step-size, for all problem dimensions (isotropic mutation) and were con-
cerned mainly with determining the optimal step-size for a faster search. To
put it in a more general light, the covariance matrix of the mutation operator’s
distribution was considered to be the identity matrix. Soon Schwefel extended
this approach and proposed to self-adapt one step-size per variable, i.e. to use
a diagonal covariance matrix with positive entries. Consequently, as the most
general case, he later suggested self-adapting of the whole covariance matrix
(correlated mutation). A more detailed review of the field’s history is given
e.g. by Bck et al. [5, 6].

However, all of these methods rely on normally distributed mutations and
relatively little effort has been put into examining different distributions as
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mutation operators. One such example is the so-called Fast Evolution Strategy
by Yao [18], where a Cauchy distribution is proposed as mutation operator.
Nevertheless, Rudolph [14] later proofed that the order of local convergence
is identical to that of normal mutations. Just to exchange the mutation dis-
tribution seems in general to be a questionable idea. The intention of directed
mutation on the other hand is to introduce a different mutation principle. It
will abandon the random mutation hypothesis – a fundamental tenet postulat-
ing that mutations occur at random, regardless of fitness consequences to the
resulting offspring. This seems to be justified by the fact that the ES knows
its optimization history and is thus able to extrapolate the evolution path
to some extent. Under the assumption of a local similar objective function
it is obviously reasonable to generate a bigger portion of offspring along the
successful path.

2 The DCMA-ES Algorithm

So far, directed mutation was realized with uncorrelated mutation models
only. However, its usefulness has been shown for both, for test function opti-
mization [7,8] as well as in real-world scenarios [9]. Now, as already mentioned
in the introduction, there are several even more powerful ES approaches that
rely on the flexibility of correlated mutations. The performance of these EA
depends obviously highly on the choice of the covariance matrix C, which
has to be adjusted not only to the problem at hand, but also to the current
state of the evolution process. Several methods have been proposed, from the
self-adaptation of the mutation parameters in ES (SA-ES) [16] to the Co-
variance Matrix Adaptation-ES (CMA-ES) [12]. While the first removes the
need to manually adjust the covariance matrix, the latter takes into account
the history of evolution and deterministically adapts the covariance matrix
from the last moves of the algorithm, thereby directing the search to use the
most recent descent direction. In [11] an advanced version of the CMA-ES is
presented, that is computationally more efficient.

All these approaches use symmetric normally distributed random numbers.
The aim of the sequel is therefore to accommodate the CMA-ES with a mul-
tivariate skew-normal distribution, yielding the Directed Covariance Matrix
Adaptation-ES (DCMA-ES). Especially the update of the distribution’s shape
vector will be investigated. While in classical ES with multi-recombination of
less than the whole population an intergenerational update is inevitable, the
CMA-ES setting allows to establish an intragenerational tuning of the shape
vector. Here one distinct mean, i.e. the center of the parental population,
is calculated and used subsequently to generate all descendants. This fixed
point can be treated as reference for the whole offspring generation cycle. Re-
cent studies have shown remarkable results. However, much further research
is necessary and the results are in that sense preliminary.
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A conceptually related approach, called LS-CMA-ES, was presented by
Auger et al. [2]. It is based on quasi-Newton techniques, i.e. relying on local
curvature information to find out the next points to sample. Therefore it aims
at learning the local Hessian matrix by solving a linear least-square minimiza-
tion problem. The solution is then found by evaluating the pseudo-inverse of
this linear system. The cost of the direct computation of this pseudo-inverse
by standard numerical methods is scaling as n6, indicating also a high effort
of the approximative solution. In contrast the DCMA-ES is computationally
by far less expensive.

The rest of this section is organized as follows: First we recall the univariate
skew-normal distribution, present then a multivariate version, and give a hint
how to generate corresponding random vectors. Afterwards different update
strategies of the shape vector are discussed. Finally, some first experimental
data is provided.

2.1 Univariate Skew-Normal Distribution

The class of distributions that is used to build the following directed muta-
tion operators is called skew-normal (SN) distribution and was introduced by
Azzalini [3]. A detailed presentation of the SN distribution, some extensions,
and a small historical review are given by Arnold and Beaver [1].

The univariate SN density function is defined by

fSN (z;λ) = 2ϕ(z)Φ(λz) (1)

where ϕ and Φ represents the probability density function and the cumula-
tive distribution function of the standard normal density, respectively. λ is a
real parameter that controls the skewness, i.e. the shape. Positive (negative)
values indicate positive (negative) skewness. In the case λ = 0 the SN density
gets back to the normal density (see Fig. 1). With Z ∼ SN(λ) we denote a
random variable that has density (1).

2.2 Multivariate Skew-Normal Distribution

An extension of the skew-normal distribution to the multivariate setting was
proposed by Azzalini and Dalla Valle [4]. An n-dimensional random vector X
is said to have a multivariate SN distribution, denoted by SNn(µ,Ω,α), if it
is continuous with probability density function

fSNn(z;µ,Ω,α) = 2ϕn(z;µ,Ω)Φ(αT (z − µ)) (2)

where ϕn(z;µ,Ω) is the n-dimensional probability density function with mean
µ and correlation matrix Ω. Φ(·) is the standard normal distribution function
N(0, 1) and α is a n-dimensional shape vector.
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Fig. 1. The density functions SN(−10), SN(−1), SN(0), SN(1), and SN(10)
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(b) Schwefel’s function
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(c) Cigar function
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(d) Tablet function

Fig. 2. Number of function evaluations versus the problem dimension for the func-
tions fsphere, fSchwefel, fcigar, and ftablet. The Directed-CMA is plotted with a solid
line, the original CMA with a dashed one
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(a) Ellipsoid function
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(b) Parabolic ridge function
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(c) Sharp ridge function
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(d) Rosenbrock’s function

Fig. 3. Number of function evaluations versus the problem dimension for the func-
tions felli, fparabR, fsharpR, and fRosen. The Directed-CMA is plotted with a solid
line, the original CMA with a dashed one

To generate SNn distributed random vectors their stochastic representa-
tion is used. Let Y have the probability density function ϕn(z;µ,Ω) and W
be a N(0, 1) distributed random variable. If

Z =

{
Y + µ if W < αTY

−Y + µ otherwise,
(3)

then Z ∼ SNn(µ,Ω,α), see e.g. Wang et al. [17].

2.3 Shape Vector Control

As already mentioned, integration of the multivariate SN distribution into the
CMA-ES framework is at a very early stage. As an ad hoc implementation we
first used the mechanics of step-size adaptation to adjust the shape vector.
Shape control then reads

p(g+1)
α = (1− cα)p(g)

α

+
√
cα(2− cα)µeffC(g)−

1
2 m(g+1) −m(g)

α(g)
(4)
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with learning rate

cα =
µeff + 2

n+ µeff + 3
(5)

and all other constants as given by Hansen and Kern [10]. Although the learn-
ing rate was altered over the whole [0, . . . , 1] range, no satisfying results were
obtained during the test runs. Therefore the intergenerational shape update
was replaced by an intragenerational one. Thus, we track the fitness of the
generated offspring within every generation and adapt the shape vector ac-
cordingly.

One appropriate heuristic is given as follows: calculate the normalized
direction vector from the mean of the current distribution to the actual off-
spring. If the fitness of this offspring is better than the mean fitness, then
factor the direction vector into the shape vector. Otherwise take the opposite
direction. Additionally, the fitness ratio is weighted exponentially and with
the dimension. The definition of the update vector thus reads

u = n exp
(

fitx

fitxmean

)
x− xmean

|x− xmean|
(6)

where n is the dimension, x and xmean are the actual individual and the
mean used to generate the offspring, respectively, and the function fit(·) gives
the fitness of a sample. The intragenerational update of the shape vector p

[l]
α

depends on the actual individual’s fitness.

p[l]
α =

⎧
⎨

⎩
p

[l−1]
α + u if fitx / fitxmean

p
[l−1]
α − u else

(7)

with l ∈ [1, . . . , λ] and p
[0]
α = 0.

Until now, neither the shape control nor the learning rate has been adapted
satisfactorily to the special demands of shape vector control. However, even
with this crude treatment of the shape vector some very promising results
have been obtained.

3 Experimental Results

Two different CMA-ESs are experimentally investigated: the original vari-
ant as described by Hansen and Kern [10], using N(0,C) distributed random
vectors and the DCMA-ES, using instead SNn(µ,Ω,α) distributed random
vectors with intragenerational shape update. For the comparison of the two
functions, a test suite consisting of the eight well-known functions shown in
Table 1 is used. Initial values are set to x(0) ∈ [−1, 1]n, σ(0) = 1, and α(0) = 0
for all functions except for Rosenbrock’s case where x(0) = 0, σ(0) = 0.1, and
again α(0) = 0. As stopping criterion for all functions but fparabR and fsharpR
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Table 1. Test functions

Name Function x(0) σ(0) α(0) f stop

Sphere fsphere(x) =
∑n

i=1
x2

i [−1, 1]n 1 0 10−10

Schwefel fSchwefel(x) =
∑n

i=1

(∑i

j=1
xj

)2

[−1, 1]n 1 0 10−10

Cigar fcigar(x) = x2
1 +

∑n

i=2
(1000xi)

2 [−1, 1]n 1 0 10−10

Tablet ftablet(x) = (1000x1)2 +
∑n

i=2
x2

i [−1, 1]n 1 0 10−10

Ellipsoid felli(x) =
∑n

i=1

(
1000

i−1
n−1 xi

)2

[−1, 1]n 1 0 10−10

Parabolic ridge fparabR(x) = −x1 + 100
∑n

i=2
x2

i [−1, 1]n 1 0 −1010

Sharp ridge fsharpR(x) = −x1 + 100
√∑n

i=2
x2

i [−1, 1]n 1 0 −1010

Rosenbrock fRosen(x) =
∑n−1

i=2

(
100(x2

i − xi+1)2

+(xi − 1)2
)

0 0.1 0 10−10

Table 2. Sphere function

Dim DCMA CMA Comparison

x̄ σ m x̄ σ m ∆ η

2 283.68 28.01 276 286.08 36.53 288 2.4 1.0085
5 756.48 48.94 760 820.8 68.20 808 64.32 1.085
10 1466.4 81.13 1460 1598.8 84.87 1600 132.4 1.0903
20 2762.88 72.27 2760 3005.28 127.28 3024 242.4 1.0877
40 5250.6 154.1 5265 5703.6 131 5730 453 1.0863
80 9888.56 176.92 9843 10545.44 192.25 10540 656.88 1.0664

fitness better than 10−10 is demanded, for the two others fitness has to be less
than −1010. All functions, except for fsphere, are highly nonseparable. Tests
are carried out in n = [2, 5, 10, 20, 40, 80] dimensions and for offspring numbers
λ = 4 + (3 log n) with parent numbers µ = 0λ/21. For each combination 25
runs are done. Depicted in figures are the results of each case, the correspond-
ing figures are given in the Tables 2–9. Reported is the mean x̄ of necessary
function evaluations, the standard deviation σ, and the median m for each
constellation. In the comparison ∆ = x̄CMA − x̄DCMA gives the difference of
the means, where positive values indicate better performance of the DCMA.
η = x̄CMA/x̄DCMA represents the ratio of the means, i.e. the factor the DCMA
performs better.

3.1 Discussion of the Results

The runs on fsphere show a DCMA-ES that outperforms the CMA-ES relative
constantly at about 8% for all but n = 2. On fSchwefel it performs approxi-
mately 6% better for all dimensions, while the gain on fcigar and ftablet is only
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Table 3. Schwefel’s function

Dim DCMA CMA Comparison

x̄ σ m x̄ σ m ∆ η

2 290.4 31.18 288 309.12 31.94 312 18.72 1.0645
5 907.2 63.2 912 961.6 90.3 936 54.4 1.06
10 2216 88.88 2230 2378 119.44 2350 162 1.0731
20 6136.8 226.07 6156 6538.08 236.29 6516 401.28 1.0654
40 19629 566.82 19650 20872.2 505.01 20835 1243.2 1.0633
80 67476.4 941.4 67286 71267.4 1020.08 71400 3791 1.0562

Table 4. Cigar function

Dim DCMA CMA Comparison

x̄ σ m x̄ σ m ∆ η

2 753.36 57.47 762 778.8 66.27 786 25.44 1.0338
5 2335.68 79.48 2344 2380.48 108.37 2384 44.8 1.0192
10 4765.2 134.79 4780 4948.4 163.27 4940 183.2 1.0384
20 8992.8 184.51 9000 9328.8 186.74 9336 336 1.0374
40 17245.8 241.34 17295 17634 320.4 17535 388.2 1.0225
80 32305.44 263.17 32300 33073.16 308.83 33167 767.72 1.0238

Table 5. Tablet function

Dim DCMA CMA Comparison

x̄ σ m x̄ σ m ∆ η

2 747.36 56.82 762 778.08 78.95 780 30.72 1.0411
5 2452.16 128.87 2400 2501.44 129.09 2504 49.28 1.0201
10 5971.2 216.4 5960 6108.4 199.6 6090 137.2 1.023
20 15768 297.87 15720 16211.04 230.48 16236 443.04 1.0281
40 43626.6 476.93 43620 44574 528.52 44760 947.4 1.0217
80 130870.08 1176.82 130764 135356.72 1039.39 135252 4486.64 1.0343

Table 6. Ellipsoid function

Dim DCMA CMA Comparison

x̄ σ m x̄ σ m ∆ η

2 748.56 55.51 762 750.72 66.69 750 2.16 1.0029
5 2318.72 97.7 2312 2456.32 92.25 2472 137.6 1.0593
10 6298 176.28 6310 6522 269.61 6570 224 1.0356
20 20229.6 347.31 20280 20405.76 442.88 20484 176.16 1.0087
40 72435.6 704.93 72495 72492.6 557.66 72420 57 1.0008
80 282727 4438.34 285039 284641.2 3501.13 285736 1914.2 1.0068
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Table 7. Parabolic ridge

Dim DCMA CMA Comparison

x̄ σ m x̄ σ m ∆ η

2 824.88 58.61 822 983.28 86.28 978 158.4 1.1920
5 2444.8 131.13 2440 2654.4 161 2672 209.6 1.0857
10 4442.4 205.41 4390 4756 235.67 4780 313.6 1.0706
20 7949.28 246.66 7884 8619.36 273.10 8568 670.08 1.0843
40 15095.4 233.46 15030 16271.4 182.14 16215 1176 1.0779
80 30016.0 261.38 29971 31681.88 269.24 31654 1665.88 1.0555

Table 8. Sharp ridge

Dim DCMA CMA Comparison

x̄ σ m x̄ σ m ∆ η

2 617.28 87.93 624 771.6 101.1 780 154.32 1.25
5 2596.16 365.47 2584 2856.96 249.11 2808 260.8 1.1005
10 9275.2 1544.72 9090 9644.4 1385.66 9280 369.2 1.0398
20 43298.4 3752.47 42504 41407.68 2681.13 41328 −1890.72 0.9563
40 166173 8355.13 168225 165607.8 8854.61 165900 −565.20 0.9966
80 699454.8 25741.55 701658 685775.24 22478.54 682329 −13679.56 0.9804

Table 9. Rosenbrock

Dim DCMA CMA Comparison

x̄ σ m x̄ σ m ∆ η

2 585.84 64.04 582 644.16 59.67 654 58.32 1.0995
5 2136.96 151.21 2136 2318.08 177.45 2320 181.12 1.0848
10 6116.8 247.94 6120 6655.6 315.52 6630 538.8 1.0881
20 20182.56 597.03 20148 21740.16 519.10 21576 1557.6 1.0772
40 77881.2 1008.21 77760 81233.4 1221.92 81285 3352.2 1.0430
80 315456.08 2525.97 315418 325051.56 3497.75 324037 9595.48 1.0304

about 3%, and greater than 2%, repectively. On the function felli the outcome
is somewhat irregular. The result is significant only for 5 and 10 dimensions,
where the DCMA-ES is slightly superior. Interesting is the 2-dimensional case
on fparabR, where the DCMA-ES is 19% better, besides about 8%. The high
performance of the DCMA-ES in low dimensions is also true on fsharpR. But
here its performance is rapidly decreasing with increasing dimensions. For
n > 10 it is outperformed by the CMA-ES. The same tendency can be seen
on. Here the gain of the DCMA-ES decreases from 10% for n = 2–3% for
n = 80. In general, the DCMA-ES performs better on all functions except
on fsharpR. On average, there is a gain of a few percentage points. This must
be seen against the background of the CMA-ES considered already as state-
of-the-art in parameter optimization, the preliminary design of shape vector
control, and the very small overhead caused by directed mutation. In fact, all
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that has to be done is to calculate one n-dimensional scalar product, gener-
ate one univariate random number, and do one comparison. Compared to a
function evaluation in a real world application this can rather be neglected.

4 Conclusions

With directed mutation a promising new mutation principle for uncorrelated
EAs had been presented that has now been ported to the correlated setting
in a CMA-ES context. First results with the DCMA-ES left us optimistic
about the potential of this approach. It is a zeroth-order algorithm causing
only very small overhead. Regarding the presented results, it has to be kept in
mind that intergenerational adaptation of the shape vector is still left open,
intragenerational adaptation itself is in an inadequate state, and the learn-
ing rate has to be further investigated. Thus, much work is left to be done
to tune the DCMA-ES. Finally, comprehensive experimental studies which
should also include multi-objective problems are undone.

References

1. B. C. Arnold and R. J. Beaver. Skewed multivariate models related to
hidden truncation and/or selective reporting. Test. Sociedad de Estad́ıstica e
Investigación Operativa, 11(1):7–54, 2002

2. A. Auger, M. Schoenauer, and N. Vanhaecke. LS-CMA-ES: A second-order
algorithm for covariance matrix adaptation. In Parallel Problem Solving from
Nature, volume 3242 of Lecture Notes in Computer Science, pages 182–191.
Springer, Berlin Heidelberg New York, 2004

3. A. Azzalini. A class of distributions which includes the normal ones.
Scandinavian Journal of Statistic, 12:171–178, 1985

4. A. Azzalini and A. Dalla Valle. The multivariate skew-normal distribution.
Biometrika, 83(4):715–726, 1996

5. T. Bck, U. Hammel, and H.-P. Schwefel. Evolutionary Computation: Com-
ments on the History and Current State. IEEE Transactions on Evolutionary
Computation, 1(1):3–17, 1997

6. T. Bck, F. Hoffmeister, and H.-P. Schwefel. A survey of evolution strategies.
pages 2–9, 1991

7. S. Berlik. A step size preserving directed mutation operator. In K. Deb, editor,
Proceedings of the International Genetic and Evolutionary Computation Conf.,
GECCO 2004, volume 1 of Lecture Notes in Computer Science. Springer, Berlin
Heidelberg New York, 2004

8. S. Berlik. Directed mutation by means of the skew-normal distribution. In
B. Reusch, editor, Proceedings of the International Conference on Computa-
tional Intelligence, FUZZY DAYS, Advances in Soft Computing, pages 35–50.
Springer, Berlin Heidelberg New York, 2005

9. S. Berlik and M. Fathi. Multi-objective optimization using directed mutation.
In H. R. Arabnia and R. Joshua, editors, Proceedings of the International



Intragenerational Mutation Shape Adaptation 613

Conference on Artificial Intelligence, ICAI 2005, Las Vegas, USA, June 27–30,
2005, volume II, pages 870–875. CSREA, USA, 2005

10. N. Hansen and S. Kern. Evaluating the CMA Evolution Strategy on Multi-
modal Test Functions. In X. Yao, E. K. Burke, J. A. Lozano, J. Smith, J. J. M.
Guervós, J. A. Bullinaria, J. E. Rowe, P. Tiño, A. Kabán, and H.-P. Schwefel,
editors, Parallel Problem Solving from Nature, volume 3242 of Lecture Notes in
Computer Science, pages 282–291. Springer, Berlin Heidelberg New York, 2004

11. N. Hansen, S. D. Mller, and P. Koumoutsakos. Reducing the time complexity
of the derandomized evolution strategy with covariance matrix adaptation
(CMA-ES). Evolutionary Computation, 11(1):1–18, 2003

12. N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distri-
butions in evolution strategies: The covariance matrix adaptation. In IEEE
International Conference on Evolutionary Computation, pages 312–317, 1996

13. I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart, 1973

14. G. Rudolph. Local convergence rates of simple evolutionary algorithms with
Cauchy mutations. IEEE Transactions on Evolutionary Computation, 1(4):
249–258, 1998

15. H.-P. Schwefel. Adaptive Mechanismen in der biologischen Evolution und
ihr Einfluß auf die Evolutionsgeschwindigkeit. Technical report, Technical
University of Berlin, 1974

16. H.-P. Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995
17. J. Wang, J. Boyer, and M. G. Genton. A skew-symmetric representation of

multivariate distributions. Statistica Sinica, 14(4):1259–1270, 2004
18. X. Yao and Y. Liu. Fast Evolution Strategies. Control and Cybernetics,

26(3):467–496, 1997



The Choquet-Integral as an Aggregation
Operator in Case-Based Learning

Eyke Hüllermeier

Summary. In case-based learning, various types of aggregation problems have to
be solved. In particular, proceeding from an attribute-value representation of cases,
a (global) similarity measure for (pairs of) cases is commonly derived from local sim-
ilarity functions pertaining to individual attributes. Moreover, in connection with
the nearest neighbor estimation principle, an aggregation operator is needed in order
to combine the votes coming from the query’s neighbors. In this paper, we argue
that considering potential interdependencies between individual pieces of informa-
tion (like similarity degrees or votes) is quite important in the context of case-based
learning. In this connection, we advocate the Choquet integral as a suitable ag-
gregation operator. In particular, we introduce a method called Cho-k-NN, which
generalizes the weighted nearest neighbor estimation by taking the mutual simi-
larities between the query’s neighbors into account. Besides, we suggest using the
Choquet integral in order to combine local similarity functions into global measures.

1 Introduction

The case-based learning (CBL) paradigm relies upon memorizing cases in the
form of successful problem solving experiences. When it comes to solving a
new problem, each of these cases serves as an individual piece of evidence that
gives an indication of the solution to that problem. Thus, rather than induc-
ing a global model (theory) from the data and using this model for further
reasoning, as inductive, model-based machine learning methods typically do,
CBL systems simply store the data itself. The processing of the data is de-
ferred until a prediction (or some other type of query) is actually requested,
a property which qualifies CBL as a lazy learning method [1]. Predictions
are then derived by combining the information provided by the stored cases,
primarily by those which are similar to the new query. Thus, the concept of
similarity is of central importance in CBL.

Case-based aka instance-based learning algorithms have been applied suc-
cessfully in diverse fields, including machine learning and pattern recogni-
tion [2, 4]. Besides, the case-based learning paradigm is also at the heart of
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case-based reasoning (CBR), a problem solving methodology which goes be-
yond standard prediction problems like classification and regression [10,14].

The need to aggregate different pieces of information arises in case-based
learning in several respects. In particular, proceeding from an attribute-value
representation of cases, the (global) similarity between two cases is typically
defined as an aggregation of local similarity degrees referring, respectively,
to the individual attributes. Moreover, the basic estimation principle in case-
based prediction, the nearest neighbor (NN) rule, requires combining the votes
coming from the query’s nearest neighbors.

A standard aggregation operator which is commonly employed in CBL is
the weighted arithmetic mean. This operator implicitly assumes the indepen-
dence of the pieces of information to be aggregated. In this paper, we advocate
the Choquet integral as an alternative aggregation operator, mainly due to its
ability to take interdependencies between information sources into account. In
fact, we argue that this ability is quite useful in the context of CBL, especially
for the two types of aggregation problems mentioned above.

By way of background, Sect. 2 gives a concise review of the NN princi-
ple, which constitutes the core of case-based learning algorithms. In Sect. 3,
we discuss the problem of interaction between cases in CBL and propose a
new NN inference principle which takes such interactions into account. This
method, called Cho-k-NN, is evaluated empirically in section 4. In Sect. 5, we
discuss the use of the Choquet integral as an operator for combining several
local similarity measures into a global one.

2 Nearest Neighbor Estimation

The well-known nearest neighbor (NN) estimation principle is applicable to
both classification problems (prediction of discrete class labels) and regression
(prediction of numeric values). Consider a setting in which an instance space
X is endowed with a similarity measure sim : X × X → [0, 1]. An instance
corresponds to the description x of an object (usually in attribute-value form,
cf. Sect. 5). In the standard classification framework, each instance x is as-
sumed to have a (unique) label y ∈ L. Here, L is a finite (typically small)
set comprised of m class labels {�1 . . . �m}, and 〈x, y〉 ∈ X × L is a labeled
instance (case).

The NN principle originated in the field of pattern recognition [4]. Given
a sample S consisting of n labeled instances 〈xı, yı〉, 1 ≤ ı ≤ n, and a novel
instance x0 ∈ X (a query), this principle prescribes to estimate the label y0 of
the yet unclassified query x0 by the label of the nearest (most similar) sample
instance. The k-nearest neighbor (k-NN) approach is a slight generalization,
which takes the k ≥ 1 nearest neighbors of x0 into account. That is, an estima-
tion yest

0 of y0 is derived from the set Nk(x0) of the k nearest neighbors of x0,
usually by means of a majority vote. Besides, further conceptual extensions
of the (k-)NN principle have been devised, such as distance weighing [5]:
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yest
0 = arg max

�∈L

∑

〈x,y〉∈Nk(x0)

ωx · I(y = �) (1)

where ωx is the weight of the instance x and I(·) the standard {true, false} →
{0, 1} mapping. (Throughout the paper, we assume the weights to be given
by ωx = sim(x, x0).)

The NN principle can also be used for regression problems, i.e., for re-
alizing a (locally weighted) approximation of real-valued target functions
x *→ y = f(x) (in this case, L = R). To this end, one reasonably computes
the (weighted) mean of the k nearest neighbors of a new query point:

yest
0 =

∑
〈x,y〉∈Nk(x0)

ωx · y∑
〈x,y〉∈Nk(x0)

ωx
(2)

3 The Cho-k-NN Method

In k-NN estimation, the cases in a query’s neighborhood are basically consid-
ered as independent information sources: In classification, the evidences in fa-
vor of a certain class label are simply added up (see (1)). Likewise, in regression
the estimation is a simple linear combination of the observed outcomes (see
(2)). This assumption of independence between case-based evidence can thor-
oughly be called into question [8]. Indeed, it is not even in agreement with the
key assumption underlying CBL, namely the “similarity hypothesis” suggest-
ing that similar problems (instances) have similar solutions (outputs). In fact,
if this hypothesis is true, then two neighbored cases that are not only similar to
the query case but also similar among each other will probably provide similar
information regarding the query. In other words, when taking the similarity
hypothesis for granted, the information coming from the neighbored cases is at
least not independent. In particular, from a problem solving perspective, one
should realize that a set of cases can be complementary in the sense that the
experiences represented by the individual cases complement or reinforce each
other. On the other hand, cases can also be redundant in the sense that much
of the information is already represented by a smaller subset among them.

To illustrate this point by an example, consider a simple estimation prob-
lem, namely to predict the yearly rainfall at a certain location (city). For

x1 x3

x2

x0

x1

x3

x2

x0

Fig. 1. Different configurations of locations in two-dimensional space
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instance, given the rainfall yı at location xı (ı = 1, 2, 3), what about the rain-
fall at location x0 in the two scenarios shown in Fig. 1? The important point
to notice is that even though the individual distances between x0 and the xı

are the same in both scenarios, the yı should not be combined in the same
way. In this example, this is due to the different arrangements of the neigh-
bors [19]: Simply predicting the arithmetic mean (y1 + y2 + y3)/3 seems to be
reasonable in the left scenario, while the same prediction appears questionable
in the scenario shown in the right picture. In fact, since x1 and x2 are closely
neighbored in the latter case, information about the rainfall at these locations
will be partly redundant. Consequently, the weight of the (joint) evidence that
comes from the observations 〈x1, y1〉 and 〈x2, y2〉 should not be twice as high
as the weight of the evidence that comes from 〈x3, y3〉.

The above example shows the need for taking interdependencies between
observed cases into account and, hence, provides a motivation for the method
that will be proposed below. Before proceeding, let us make two further re-
marks: First, the above type of interaction between cases seems to be less
important if the sample size is large and even becomes negligible in asymp-
totic analyses of NN principles. In fact, strong results on the performance of
NN estimation can be derived [4], but these are valid only under idealized
statistical assumptions and arbitrarily large sample sizes. Roughly speaking,
if the sample size n tends to infinity, the distance between the query and
its nearest neighbors becomes arbitrarily small (with high probability). This
holds true even if the size k of the neighborhood is increased too, as a function
k(n) of n, provided that k(n)/n → 0 for n → ∞. Moreover, if the individual
observations are independent and identically distributed in a statistical sense,
the neighborhood becomes “well distributed”. Under these assumptions, it is
intuitively clear that interdependencies between observations will hardly play
any role. On the other hand, it is also clear that statistical assumptions of
such kind will almost never be satisfied in practice.

The second remark concerns related work. In fact, there are a few methods
that fit into the CBL framework and that allow for taking certain types of
interaction between observations into account. Particularly, these are methods
that make assumptions on the statistical correlation between observations, de-
pending on their distance [11]. For example, in our rainfall example one could
employ a method called kriging, which is well-known in geostatistics [12]. Usu-
ally, however, such methods are specialized on a particular type of applica-
tion and, moreover, make rather restrictive assumptions on the mathematical
(metric) structure of the instance space. Our approach, to be detailed below,
is much more general in the sense that it only requires a similarity measure
sim(·) to be given. We do not make any particular assumptions on this mea-
sure (such as symmetry or any kind of transitivity), apart from the fact that
it should be normalized to the range [0, 1]. From an application point of view,
this seems to be an important point. In CBR, for example, cases are typically
complex objects that cannot easily be embedded into a metric space.
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3.1 Modeling Interaction in Case-Based Learning

Let X be a finite set and ν(·) a nonadditive measure (fuzzy measure) 2X →
[0, 1]. That is, ν(·) is normalized (ν(∅) = 0, ν(X) = 1) and monotone (ν(A) ≤
ν(B) for A ⊆ B) but not necessarily additive [16]. For any A ⊆ X, we interpret
ν(A) as the weight or, say, the degree of relevance of the set of elements A.

In connection with the problem of combining evidence in NN estimation,
the set X of elements corresponds to the neighbors of the query case x0:

X = Nk(x0) = {x1, x2 . . . xk} (3)

It is well-known that fuzzy measures (as opposed to additive measures) can
principally be used for modeling interaction between elements (subsets) of X.
The basic question that we have to address in the CBL context is the follow-
ing: What is the evidence weight or simply the weight, ν(A), of a subset A of
the neighborhood (3)?

First, the boundary conditions ν(∅) = 0 and ν(X) = 1 should of course be
satisfied, expressing that the full evidence is provided by the complete neigh-
borhood X. Moreover, according to our comments above, the evidence com-
ing from a set of cases A ⊆ X should be discounted if these cases are similar
among themselves. Likewise, the weight of A should be increased if the cases
are “diverse” (hence complementary) in a certain sense. To express this idea
in a more rigorous way, we define the diversity of a set of cases A by the sum
of pairwise dissimilarities:

div(A) df=
∑

xı �=xj∈A

1− sim(xı, xj)

(By definition, the diversity is 0 for singletons and the empty set.) Now, the
idea is to modify the basic (additive) measure

µ(A) df=
∑

xı∈A

sim(x0, xı) (4)

by taking the diversity of A into account. This can of course be done in dif-
ferent ways. Here, we use the following approach:

ν̄(A) df= µ(A) + α div(A) (5)

As can be seen, the higher the diversity of a set of cases A, the more the
original measure µ(A) is increased. The parameter α ≥ 0 controls the extent
to which interactions between cases are taken into consideration. For α = 0,
interactions are completely ignored and the original measure µ(·) is recovered.

The measure ν̄(·) in (5) is obviously monotone. To guarantee the boundary
condition, we finally define

ν(A) df= ν̄(A)/ν̄(X). (6)
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Before going on, let us comment on the derivation of the measure ν(·) from
the similarity function sim(·). Firstly, even though the measure (6) captures
our intuitive idea of decreasing (increasing) the evidence weight of cases that
are (dis)similar by themselves, we admit that it remains ad hoc to some ex-
tent, and by no means we exclude the existence of alternative formalizations.
In fact, in [9], where we first introduced the Cho-k-NN method, we used a
different measure. Secondly, even though the assumption that similar cases
provide redundant information is supported by the similarity hypothesis, one
might of course argue that the similarity between the predictive parts of two
cases, xı and xj, is not sufficient to call them redundant. Rather, the asso-
ciated output values yı and yj should be similar as well. Indeed, if y1 differs
drastically from y2, the first two measurements in our rainfall example might
better be considered as nonredundant. (In that case, the two measurements
in conjunction suggest that there is something amiss ...) This conception of
redundancy can easily be represented by deriving ν(·) from an extended sim-
ilarity measure sim′(·) which is defined over X × L.1

3.2 Aggregation of Interacting Pieces of Evidence

So far, we have a tool for modeling the interaction between different pieces of
evidence in case-based learning. The next question that we have to address
is how to combine these pieces of evidence, i.e., how to aggregate them in
agreement with the evidence measure ν(·).

For the time being we focus on the problem of regression. Recall that in
the standard approach to NN estimation, an aggregation of the output values
f(xı) = yı is realized by means of a simple weighted average:

yest
0 =

∑

xı∈X

µ({xı}) · f(xı), (7)

where µ({xı}) = sim(x0, xı)
(∑

xı∈X sim(x0, xı)
)−1. Interestingly, (7) is noth-

ing else than the standard Lebesgue integral of the function f : X → R with
respect to the additive measure µ(·) (i.e., the additive extension of the µ({xı})
in (7)):

yest
0 =

∫

X

f dµ

In order to generalize this estimation, an integral with respect to the nonad-
ditive measure ν(·) is needed: the Choquet integral, a concept that originated
in capacity theory [3].

Let ν(·) be a fuzzy measure and f(·) a non-negative function.2 The
Choquet integral of f(·) with respect to ν(·) is then defined by

1 We did not explore this alternative in detail so far.
2 The Choquet integral can be extended to any real-valued function through de-

composition into a positive and negative part.



The Choquet-Integral as an Aggregation Operator in Case-Based Learning 621

∫ ch

f dν
df=

∫ ∞

0

η([f > t]) dt

where [f > t] = {x | f(x) > t}. The integral on the right-hand side is the
standard Lebesgue integral (with respect to the Borel measure on [0,∞)). In
our case, where X is a finite set, we can refer to the discrete Choquet integral
which can be expressed in a rather simple form:

yest
0 =

k∑

ı=1

f(xπ(ı)) ·
(
ν(Aı)− ν(Aı−1)

)
, (8)

where π(·) is a permutation of {1 . . . k} such that 0 ≤ f(xπ(1)) ≤ . . . ≤
f(xπ(k)), and Aı = {xπ(1) . . . xπ(ı)}.

The discrete Choquet integral (8) can be seen as a special type of aggre-
gation operator, namely a generalized arithmetic mean. Indeed, (8) coincides
with (7) if ν(·) is an additive measure. Otherwise, it is a proper generalization
of the standard (weighted) NN estimation.

So far, we have focused on the problem of regression. In the case of classifi-
cation, the Choquet integral cannot be applied immediately, since an averaging
of class labels yı does not make sense. Instead, the Choquet integral can be
derived for each of the indicator functions f� : y *→ I(y = �), � = �1 . . . �m.
As in (1), the evidence in favor of each class label is thus accumulated sep-
arately. Now, however, the interaction between cases is taken into account.
As usual, the estimation is then given by the label with the highest degree of
accumulated evidence.

4 Empirical Validation

In order to validate the extension of NN estimation as proposed in the previ-
ous section, called Cho-k-NN, we have performed several experimental studies
using benchmark data sets from the UCI repository3 and the StatLib archive.4

Experiments were performed in the following way: A data set is randomly split
into a training and a test set of the same size. For each example in the test set,
a prediction is derived using the training set in combination with weighted
k-NN resp. Cho-k-NN. In the case of regression, an estimation yest

0 is evalu-
ated by the relative estimation error |yest

0 − y0| · |y0|−1, and the overall per-
formance of a method by the mean of this error over all test examples. In
the case of classification, we simply took the misclassification rate as a per-
formance index. Moreover, we derived statistical estimations of the expected
performance of a method by repeating each experiment 100 times.

For the purpose of similarity computation, all numeric attributes have
first been normalized to the unit interval by linear scaling. The similarity
was then defined by 1-distance for numeric variables and by the standard
3 http://www.ics.uci.edu/˜mlearn
4 http://stat.cmu.edu/
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0/1-measure in the case of categorical attributes. The overall similarity sim(·)
was finally obtained by the average over all attributes. As the purpose of
our study was to compare – under equal conditions – weighted k-NN with
Cho-k-NN in order to verify whether or not taking interactions into account
is useful, we refrained from tuning both methods, e.g., by including feature se-
lection or feature weighing (even though it is well-known that such techniques
can greatly improve performance [17]). Results have been derived for neigh-
borhood sizes of k = 5 and k = 7; the parameter α in (5) has always been set
to 1/3.

The application of Cho-k-NN for regression has shown that it consistently
improves weighted k-NN, sometimes only slightly but often even considerably.
Some results are shown in Table 1. In particular, it seems that the smaller the
size of the data set, the higher the gain in performance. This finding is intu-
itively plausible, since for large data sets the neighborhoods of a query tend
to be more “balanced”; as already said, the neglect of interaction is likely to
be less harmful under such circumstances.

For classification problems, it is also true that Cho-k-NN consistently out-
performs weighted k-NN; see Table 2. Usually, however, the gain in classifi-
cation accuracy is only small, in many cases not even statistically significant.
Again, this is especially true for large data sets, and all the more if the classi-
fication error is already low for standard k-NN. Nevertheless, one should bear
in mind that, in the case of classification, the final prediction is largely insen-
sitive toward modifications of the estimated evidences in favor of the potential
labels. In fact, in this study we only checked whether the final prediction is
correct or not and, hence, used a rather crude quality measure. More subtle
improvements of an estimation such as, e.g., the enlargement of an example’s
margin [15], are not honored by this measure.

Table 1. Estimation of expected relative estimation error and its standard deviation

Data set k Weighted k-NN Cho-k-NN

auto-mpg 5 12.21 (0.05) 11.36 (0.04)
7 12.18 (0.06) 11.21 (0.05)

bolts 5 47.07 (1.19) 38.73 (0.69)
7 51.36 (1.25) 39.92 (0.80)

housing 5 14.83 (0.08) 14.41 (0.06)
7 14.99 (0.09) 14.55 (0.06)

detroit 5 16.02 (0.55) 14.90 (0.45)
7 15.93 (0.55) 14.66 (0.51)

echomonths 5 97.77 (7.17) 72.87 (3.87)
7 99.03 (8.98) 74.80 (7.55)

pollution 5 4.12 (0.05) 4.01 (0.05)
7 4.22 (0.05) 4.16 (0.04)
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Table 2. Estimation of expected classification error and its standard deviation

Data set k Weighted k-NN Cho-k-NN

glass 5 33.58 (0.34) 33.16 (0.31)
7 34.54 (0.37) 33.65 (0.32)

wine 5 3.52 (0.20) 3.41 (0.18)
7 3.27 (0.20) 3.24 (0.19)

zoo 5 10.43 (0.60) 10.09 (0.61)
7 11.65 (0.51) 11.37 (0.53)

ecoli 5 16.30 (0.25) 16.25 (0.22)
7 16.17 (0.24) 16.07 (0.21)

balance 5 15.62 (0.14) 15.24 (0.17)
7 13.28 (0.16) 13.16 (0.18)

derma 5 3.75 (0.13) 3.47 (0.11)
7 3.57 (0.12) 3.39 (0.10)

5 Specification of Similarity Measures

Instances (cases) are usually formalized in terms of an attribute-value rep-
resentation, i.e., an instance x is characterized as a vector x = (a1 . . . an)
of attribute values. Denote by Aı the domain of the ıth attribute and let
X = A1 × . . . × An. Moreover, suppose a global similarity measure sim :
X×X → R≥0 to be given. The so-called local-global principle makes the follow-
ing assumption [13]: There are local similarity measures simı : Aı×Aı → R≥0

and a composition function f : (R≥0)n → R≥0 such that

sim(x, x′) = f
(
sim1(a1, a′1) . . . simn(an, a

′
n)

)
(9)

for all x = (a1 . . . an), x′ = (a′1 . . . a
′
n) ∈ X . There are some reasonable prop-

erties that might be assumed in connection with the representation (9). For
example, the global monotonicity axiom states that, for all a, a′, a′′ ∈ A:

sim(a, a′) < sim(a, a′′) ⇒ ∃ ı ∈ {1 . . . n} : simı(aı, a
′
ı) < simı(aı, a

′′
ı ).

According to the local-global principle for similarities, deriving a global
similarity relation from a set of individual relations comes down to defining
an adequate aggregation operator. Ideally, such an operator should preserve
certain properties of the individual relations. Most aggregation operators do
preserve reflexivity and symmetry, but not necessarily transitivity. This re-
mark does already apply to the weighted arithmetic mean. On the other hand,
when using a t-norm ⊗ as an aggregation operator, it is not difficult to show
that the global measure

sim : (a, a′) *→ sim1(a1, a′1) ⊗ sim2(a2, a′2) ⊗ . . . ⊗ simn(an, a
′
n)
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is ⊗-transitive whenever the same holds true for the local measures simı

(1 ≤ ı ≤ n). In fact, several aggregation operators which have been studied
extensively in the literature on fuzzy sets are quite interesting in the context of
case-based reasoning. For example, weighted aggregations [6] are of particular
interest since they allow for assigning a level of importance to the attributes.
Ordered weighted averaging (OWA) operators, which generalize several well-
known operators such as, e.g., the mean and the minimum, have also been
proposed as aggregation operators in CBR [18].

Another interesting aggregation operator is again the Choquet integral, as
it does not only allow for weighing individual attributes, but also to take inter-
dependencies between attributes into account. By making use of the (discrete)
Choquet integral as an aggregation operator, the following global measure is
obtained:

sim : (x, x′) *→
∫ ch

h dη, (10)

where h : {1 . . . n} → [0, 1] is given by the mapping ı *→ simı(aı, a
′
ı). That is,

h(ı) denotes the similarity between the attribute values aı and a′ı. Moreover,
η : 2{1...n} → [0, 1] is again a normalized and inclusion-monotone measure.

Let π denote a permutation of {1 . . . n} such that h(π(ı)) ≤ h(π(ı + 1))
for 1 ≤ ı < n. That is, π arranges the attributes according to the degree of
similarity. The similarity function (10) can then be written as follows:

sim : (x, x′) *→
n∑

ı=1

h(π(ı)) · (η({π(1) . . . π(ı)})− η({π(1) . . . π(ı− 1)})) , (11)

where η(∅) df= 0. Note that (11) includes several known aggregation operators
as special cases. For instance, with η being the counting measureX *→ 1/n·|X|
we obtain the arithmetic mean. More generally, let η be the additive measure
with η({ı}) = αı for all 1 ≤ ı ≤ n, where 0 ≤ αı ≤ 1 and α1 + . . . + αn = 1.
The global measure (11) is then given by the weighted arithmetic mean

sim : (x, x′) *→
n∑

ı=1

αı · simı(aı, a
′
ı).

OWA operators are recovered if η(·) is symmetric (commutative), i.e., if η(X)
only depends on the cardinality of X. For example, a kind of threshold sim-
ilarity can be modeled by letting, for a fixed k ∈ {1 . . . n}, η(X) = 1 if
|X| ≥ n− k + 1 and η(X) = 0 otherwise. The similarity between two objects
is then given by the k-th highest among the similarity degrees, that is,

sim(a, a′) = h(π(n− k + 1)), (12)

expressing that the objects must resemble each other according to “at least k
out of n” criteria. The special case k = n yields the minimum operator as an
aggregation function:
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sim : (a, a′) *→ min
1≤ı≤n

simı(aı, a
′
ı). (13)

As already mentioned above, an interesting aspect in connection with the
Choquet functional as an aggregation operator is its capability to take in-
terdependencies between different attributes into account. In fact, in many
applications the global similarity between two objects does not simply corre-
spond to the (weighted) sum of the local similarities. Suppose, for example,
that the ıth and the jth attribute are complementary in a certain sense. In
order to call two objects similar, it might hence be required that both, aı is
similar to a′ı and aj is similar to a′j. The minimum in (13), for instance, might
be seen as an adequate aggregation operator if all attributes are complemen-
tary in this sense. The measure (12) combines this type of complementarity of
attributes with a compensation effect, since the similarity with regard to one
attribute can compensate for the dissimilarity with respect to another one.

6 Concluding Remarks

In this paper, we advocated the use of the Choquet integral for two types of
aggregation problems that arise in case-based learning: combining predictions
in nearest neighbor estimation, and combining local similarity functions into
global measures.

Our Cho-k-NN method is a direct extension of the standard weighted NN

estimation. As opposed to the latter, however, it allows one to take the mutual
dependencies between neighbored cases into account. Our experimental results
have shown that Cho-k-NN consistently outperforms standard (weighted)
k-NN on publicly available benchmark data. Nevertheless, there is scope for
further development. For example, one might think of alternative strategies
for deriving the nonadditive measure ν(·) from the similarity function sim(·)
(cf. Sect. 3). In particular, the degree to which a set of cases is complementary
resp. redundant might not only depend on their mutual similarity but also on
other aspects.

Regarding the specification of similarity measures, Sect. 5 has only given a
first idea of how to make use of generalized measures and integrals. Of course,
there are questions of practical importance which call for further investiga-
tion. In particular, this concerns the definition (elicitation) of the measure
η(·) [7]. How should an expert determine η to depict his view of similarity in
an optimal way? Besides, it would be interesting to solve the inverse problem:
Given a set of examples in the form of global similarity evaluations provided
by some expert, induce (or approximate) the measure η this expert has used
in order to derive these evaluations. Likewise, given a set of training exam-
ples, one might try to adapt the measure η(·) so as to maximize the predictive
accuracy of a case-based learner.

A further topic of future work, relevant to both types of aggregation
problems addressed in this paper, concerns the aggregation of qualitative
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information, especially the combination of values from an ordinal scale. The
latter problem arises, for example, if the NN estimator is applied to ordinal
classification problems. Regarding the specification of similarity measures, the
use of ordinal similarity scales might be appealing if precise numerical sim-
ilarity degrees are difficult to obtain. The Sugeno integral [16] might be an
interesting aggregation operator for these types of problems.
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Fuzzy Sets and Multicriteria Decision Making

R. Mesiar

Summary. We discuss and propose some fuzzy set based methods to build a
preference structure in multicriteria decision making. First we discuss fuzzy mea-
sures/aggregation operators based approach, including its finite refinements. Next
preference structure construction is based on residual implications adjoint to left-
continuous t-norms. Finally, we transform score vectors into fuzzy quantities and
apply orderings over fuzzy quantities.

Key words: Aggregation operator, Fuzzy measure, Multicriteria decision
making, Preference relation, Triangular norm.

1 Introduction

In multicriteria decision making procedures, for each alternative a ∈ A (the
set of all discussed alternatives), a finite number n of criteria is applied for its
evaluation. These criteria reflect several qualitative and quantitative aspects
and can be related one with another. In this contribution we will deal with
a simple model, when to each alternative a ∈ A can be assigned a degree of
satisfaction ai ∈ [0, 1] for each criterion i ∈ {1, . . . , n} (here ai = 1 means that
the alternative a fully satisfies the criterion i, while ai = 0 means complete
failure of a in criterion i). Thus a ∈ A can be identified with a score vector
(a1, . . . , an) ∈ [0, 1]n, or, equivalently, with a fuzzy subset of {1, . . . , n} with
the relevant membership function. In what follows, we will not distinguish the
alternative a ∈ A and the corresponding score vector (a1, . . . , an) ∈ [0, 1]n.

The aim of this contribution is a discussion and proposal of some meth-
ods based on fuzzy sets allowing to construct a crisp preference relation
R : A × A → {0, 1} (i.e., R ⊂ A × A) defined on the set of all alterna-
tives (such preference structure is crucial for a decision maker to help him in
choosing the best alternative). Here R(a,b), or, equivalently, a ≥ b, means
that a is weakly preferred to b (i.e., a is better or nondistinguishable from b).
Note that the basic results and terminology for this topic can be found in [7].
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2 Fuzzy Measures/Aggregation Approach

One typical way how to construct R is linked with the idea of utility function
u : A → R. Without any loss of generality we may suppose that Ran(u) ⊂
[0, 1].Moreover, we expect that utility function u reflects the weak Pareto prin-
ciple, i.e., u(a) ≥ u(b) whenever ai ≥ bi, i = 1, . . . , n. However, then u can be
understood as (possibly a restriction of) an aggregation operator Q [2,11,12].

Definition 1. Let n ∈ N, n > 2, be given. A function Q : [0, 1]n → [0, 1] is
called an aggregation operator whenever it is nondecreasing in each coordinate
and Q(0, . . . , 0) = 0, Q(1, . . . , 1) = 1.

Proposition 1. Let Q : [0, 1]n → [0, 1] be an aggregation operator. Then the
relation RQ ⊂ A × A (i.e., �Q) given by (a,b) ∈ RG (i.e., a �Q b) if and
only if Q(a1, . . . , an) ≥ Q(b1, . . . , bn) is a transitive complete weak preference
relation.

Observe that Q can be understood also as a fuzzy measure defined on
fuzzy events from [0, 1]n. Zadeh’s fuzzy probability measures [21] yield in

this case the class of weighted arithmetic means, W (a1, . . . , an) =
n∑

i=1

wiai,

wi ∈ [0, 1],
n∑

i=1

wi = 1. Klement’s TM-measures [9] generalize fuzzy probability

measures and they yield in our case operators Q(a1, . . . , an) =
n∑

i=1

wiFi(xi),

where Fi : [0, 1] → [0, 1] are (restrictions of) distribution function of random
variables with range in [0, 1] . For several other types of aggregation operators
(fuzzy measures on fuzzy events) we recommend [1,2, 11].

The problem of too many ties in approach described in Proposition 1 can
be solved by limit approach refining the preference relation RQ.

Proposition 2. Let α = (Qk)k∈N be a system of aggregation operators,
Qk : [0, 1]n → [0, 1], with pointwise limit lim

k→∞
Qk = Q. Then Rα = lim inf

Qk∈A
RQk

is a refinement of RQ.

Note that the preference relation Rα preserves RQ in the case of strict
preference, i.e., Q(a) > Q(b) implies Rα(a,b), however, some RQ-ties can be
broken by Rα.

Example 1. (i) Let α = (TAA
k )k∈A, be a system of Aczél-Alsina t-norms [10].

Then lim
k→∞

TAA
k = TM (min-operator) and a ≥α b if and only if either

min ai = min bi = 0 or (a1, . . . , an) ≥leximin (b1, . . . , bn) (for leximin order
see, for example, [4]).

(ii) Let α = (Pk)k∈N be a system of power-root operators [6],

Pk(a1, . . . , an) =

(
1
n

n∑

i=1

ak
i

) 1
k

.



Fuzzy Sets and Multicriteria Decision Making 631

Then lim
k→∞

Pk = SM (max-operator) and a ≥α b if and only if

(a1, . . . , an) ≥leximax (b1, . . . , bn).

Observe that Propositions 1 and 2 can be formulated with different dimen-
sions (e.g., when the information about the score for some criteria is missing),
simply dealing with extended aggregation operators Q :

⋃
n∈N

[0, 1]n → [0, 1].

Then different systems α in Proposition 2 may lead to different extensions
of the leximin or leximax orders. Namely, for α from Example 1 (i), the ex-
tended leximin ordering (i.e., lexicographical ordering over permuted score
vectors rearranging them in the nondecreasing order) means that any score
vector can be extended by adding new score coordinates with full satisfaction
an+1 = . . . = am = 1, so that for n < m, n-dimensional score vector a and
m-dimensional score vector b are compared after completion of a = (a1, . . . , an)
into m-dimensional vector a(m) = (a1, . . . , an, 1, . . . , 1). Similarly in the case
of leximax we can add new score coordinates an+1 = . . . = am = 0.
Completely different is the leximin (leximax) extension related to the sys-
tem α from Example 1 (ii). Then to compare n-dimensional score vector a
and m-dimensional score vector b with n �= m we introduce and compare
two new n · m-dimensional vectors a(m) = (a, . . . ,a) (m copies of a) and
b(n) = (b, . . . ,b) (n copies of b). For some details we recommend [5,13].

The following proposition generalizes the Lorenz ordering.

Proposition 3. Let β = (Qk)k∈K be a (finite or infinite) system of (n-ary,
extended) aggregation operators. Define a ≥β b if and only if Qk(a) ≥ Qk(b)
for all k ∈ K. Then ≥β is a transitive weak preference relation.

Note that the preference relation ≥β on [0, 1]n is the Lorenz ordering

if, for x ∈ [0, 1]n, K = {1, 2, . . . , n}, and Qk(x) =
n∑

i=k

x′i, where x′i is the

i-th order statistics from the sample (x1, . . . , xn). Preference relation ≥β is
not complete, in general. To avoid this inconvenience, we introduce a lexiβ-
ordering ≥lexiβ as follows: a ≥lexiβ b if and only if K is an interval in N and
(Qk(a))k∈K ≥lex (Qk(b))k∈K (≥lex is the standard lexicographical linear order
on [0, 1]K).

3 Fuzzy Logic Based Construction of Preference Relations

Let T : [0, 1]2 → [0, 1] be a left-continuous t-norm [10] and let

IT : [0, 1]2 → [0, 1]

be the adjoint residual implication, IT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y}.
Then x ≤ y if and only if IT (x, y) ≥ IT (y, x). This fact allows to introduce
preference relations on A as follows:
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Definition 2. Let T : [0, 1]2 → [0, 1] be a left-continuous t-norm and let
H : [0, 1]n → [0, 1] be an aggregation operator. Then the preference relation
RT,H ⊆ A2 is given by (a,b) ∈ RT,H , i.e., a �T,H b if and only if

H(IT (a1, b1), . . . , IT (an, bn)) ≤ H(IT (b1, a1), . . . , IT (bn, an)). (1)

Note that if H has neutral element 1 or if H is cancellative then the
decision about relation of a and b depends only on those score for which
ai �= bi, i.e., the discriminative approach to decision making as discussed
in [14] is applied. Observe that though in some cases �T,H can be represented
in the form �Q, see Proposition 1, and thus the preference relation RT,H is
transitive, in general this is not true. Note also that H need not be symmetric.

Example 2.

(i) For any nilpotent t-norm T with an additive generator t : [0, 1] → [0,∞],
see [10], and the quasiarithmetic mean Mt generated by t, see [2], 2T,Mt

is exactly 2Mt
, and a = (a1, . . . , an) 2T,Mt

b = (b1, . . . , bn) if and only if
n∑

i=1

t(ai) ≤
n∑

i=1

t(bi). Thus the transitivity of 2T,Mt
is obvious.

(ii) Similarly for any strict t-norm T with an additive generator t : [0, 1] →
[0,∞] (recall that now t(0) = ∞, while in the nilpotent case we have
t(0) < ∞), 2T,Mt

is transitive, but there is no aggregation operator
Q such that 2T,Mt

≡2Q . Observe that now a 2T,Mt
b if and only if∑

a2
i
+b2

i
>0

t(ai) ≤
∑

a2
i
+b2

i
>0

t(bi).

(iii) For any nilpotent t-norm T with an additive generator t,2T,TM
is not

transitive. Observe that a 2T,TM
b if and only if

min(t−1(max(t(b1)− t(a1), 0), . . . , t−1(max(t(bn)− t(an), 0)) ≤
min(t−1(max(t(a1)− t(b1), 0), . . . , t−1(max(t(an)− t(bn), 0)).

4 Preference Relations Based on Orderings of Fuzzy
Quantities

In the criterion i, the dissimilarity Di(x, y) of a score x and another score y,
with x, y ∈ [0, 1], is described by the dissimilarity function Di : [0, 1]2 → R,
such that Di(x, y) = Ki(fi(x)−fi(y)), where Ki : R → R is a convex function
with the unique minimum Ki(0) = 0 (shape function), and fi : [0, 1] → R is a
strictly monotone continuous function (scale transformation). Evidently, each
Di is then continuous. Observe that this approach to dissimilarity is based
on the ideas of verbal fuzzy quantities as proposed and discussed in [15–17].
Note also that the concept of dissimilarity functions is closely related to the
penalty functions proposed by Yager and Rybalov [19], compare also [3].
Finally, remark that the dissimilarity function D is related to some standard
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metric on the interval [0, 1] whenever it is symmetric, i.e., if K is an even
function.

The dissimilarity of score (x1, . . . , xn) and the unanimous score (r, . . . , r) is
described by the real vector (D1(x1, r), . . . , Dn(xn, r)). The fuzzy utility func-
tion U, compare [8,20], assigns to each alternative a (with score (a1, . . . , an))
the fuzzy quantity U(a) with membership function µa : [0, 1] → [0, 1],

µa(r) =
1

1 +
n∑

i=1

Di(ai, r)
(2)

Proposition 4. For each alternative a ∈ A, the fuzzy utility function value
U(a) with membership function given by (2) is a continuous quasiconvex fuzzy
quantity.

Now we are ready to define a (weak) preference relation RU (�U ) on A.
Definition 3. Let A be a set of alternatives and let U : A → F(R) be a
fuzzy utility function given by (2). Let ≤ be a crisp ordering on the set of
all continuous quasiconvex fuzzy quantities. Then we define a weak preference
relation � on A as follows: a � b whenever U(a) < U(b) or U(a) = U(b)
and hgt(U(a)) ≥ hgt(U(b)).

More details about these ideas can be found in [18]. Note only that each
defuzzification method DEF on fuzzy quantities compatible with the fuzzy
maximum yields a nondecreasing operator QDEF : [0, 1]n → R, QDEF(x) =
DEF(U(x)). In the case of mean of maxima defuzzification method MOM,
QMOM is even an idempotent aggregation operator and thus our approach
allows to construct idempotent aggregation operators.

Example 3.

(i) Let D1 = . . . = Dn = D with K(x) = x2 and arbitrary f. Then
QMOM =Mf is the quasigeometric mean generated by f.

(ii) Let D1 = . . . = Dn = D with K(x) = |x| and arbitrary f. Then
QMOM = Med(median operator).

(iii) Let f(x) = x and f1 = f2 = f, and K1(x) = c|x|, K2(x) = dx2 for some
c > 0, d > 0. Then QMOM(x1, x2) = Med(x1, x2 − c

2d , x2 + c
2d ).

5 Conclusion

We have introduced and discussed several methods based on fuzzy set theory
to build preference relations as a support for multicriteria decision making.
As a byproduct we have obtained also a construction method for idempotent
aggregation operators. This method allows easy incorporation of weights (im-
portances) of single criteria simply multiplying the dissimilarity functions Di

by the corresponding weights wi. Note that this method allows to incorporate
weights also into the nonsymmetric aggregation, compare Example 3 (iii).
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Fuzzy Reinforcement Learning for Routing
in Wireless Sensor Networks

Jerzy Martyna

Summary. The wireless sensor networks (WSNs) are composed of a large number
of sensing devices. They are used for such tasks as environmental monitoring, sensing
and actuating faculties. The sensors gather the data and transfer the information to
the sink. All sensor nodes are battery-powered. It is thus to devise efficient power
usage, communication and message routing schemes. In this paper, we introduce a
new fuzzy reinforcement learning algorithm which learns the best routing with a
high reduction of energy consumption in WSNs. We also show that our routing al-
gorithm is able to select the best routing strategy with regards to all the parameters
such as battery power, distances between sensors, etc.

Key words: Q-learning, Reinforcement learning, Multiagent systems, Wire-
less sensor networks.

1 Introduction

Wireless Sensor Networks (WSNs) are ad hoc wireless networks of small, low
cost sensors. They have enabled a new revolution of distributed embedded
computing, where micro-miniaturized low-power versions of processors,
memory, and the radio modems, responsible for wireless communication,
are integrated into a single chip [1, 2]. Wireless sensor networks have many
applications in the commercial, medical, scientific, industrial and military do-
mains. They are often used in intelligent transportation systems, monitoring
systems, the sensing of many parameters such as temperature, humidity, pres-
sure, ozone, pH value, etc. A widely employed energy-saving technique is to
place sensor nodes in a sleep mode. A low-power consumption is also used for
the data transfer in the WSNs.

The best routing strategy in WSNs is a compromise between the short-
est path and the minimum consumption of the energy power. This approach
reduces the load of WSNs and increases the system lifetime. In order to
find the best routing scheme in WSNs the method based on reinforcement
learning [3–5] can be used.
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As a popular reinforcement learning method a Q-learning algorithm is of-
ten applied. At first it was adapted for packet routing in computer networks
by Boyan and Littman [6]. The given method was very useful for finding the
shortest path without a prior knowledge on network topology. A routing al-
gorithm called a Q-routing was developed by Kumar [7]. In this algorithm the
quality of exploration was improved by attacking confidence measures to each
the Q-values in the network. These confidence values are used in determining
the learning rate for the Q-values. Nevertheless, this method cannot take into
consideration the energy consumption by sensors.

Currently, in the paper by Dowling et al. [8] the so-called collaborative
reinforcement learning for routing optimalisation in mobile ad hoc networks
(MANETs) was proposed. Analogously as in the previously mentioned paper,
the problem of energy consumption was not undertaken.

In this paper, we introduce a new routing scheme for wireless sensor net-
works which is based on fuzzy reinforcement technique. Each sensor is treated
here as an agent in Multi-Agent Systems (MAS). Each agent learns which
action should be made by applying a fuzzy Q-learning algorithm. With the
help of standard simulation techniques, we show that our algorithm is able to
choose the best routing strategy with regard to the energy power of sensor
batteries and the size of the transfered data.

The rest of this paper is structured as follows. In the next section we
give the problem formulation. Section 3 gives the fuzzy reinforcement learning
approach for routing in WSNs. In Sect. 4 we discuss the results of the simula-
tion experiments. In Sect. 5, we conclude the paper and give future research
directions.

2 Assumptions and Problem Formulation

In this section we describe the problem and explain in detail the activity of
WSNs.

A wireless sensor network can be defined as a directional communication
graph G = (V,E), where V corresponds to the set of the subsets of sensor
nodes Vi, i = 1, . . . , n such that ∪i=1,...,nVi = V and E represents the wireless
connections between the sensor nodes. For each set Vi there is a unique node
ci, the clusterhead, that represents the set and can take on various tasks (data
aggregation, communication with other clusterheads, etc.).

The Q-learning algorithm was introduced by Watkins [3], Watkins and
Dayan [4]. It is based on scalar rewards given by the environment. It was
proved by Tsitsiklis [9] that under certain conditions the Q-learning algorithm
guarantees the convergence to the optimal solution of a Markov decision prob-
lem. According to the Q-learning algorithm at moment t the agent in MAS
chooses action at and reward rt. The function Q, denoted by Qt(st, at), is
denoted as

Qt(st, at) = (1− α)Qt(st, at) + α(rt + γmax
at∈A

Qt(s′t, a
′
t)) (1)
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initialization t = 0, rT = (st, at) = 0;
begin
for ∀ st ∈ S and at ∈ A do

begin
t := t + 1;
access the current state st;
at ← choose action(st, Qt);
perform action at;
compute: rt(st, at), st+1;
update

∆Qt ← (rt + γ maxat(Qt(st+1, at)) − Qt(st, at);
Qt(st, at) ← (1 − α)Qt(st, at) + α∆Qt;

end;
end;

Fig. 1. Q-learning algorithm estimates new state obtained by performing the chosen
action at each time step

where A is the set of all the possible actions, α (0 ≤ α < 1) and γ (0 ≤ γ ≤ 1)
denote the learning rate and the discount parameter, Qt(s′t, a

′
t) is the value of

the Q function after the execution of action a′t.
Figure 1 shows the raw form of the Q-learning algorithm (without possible

improvements). It can be seen that Q-learning algorithm is an incremental
reinforcement learning method. The choice of the action did not shows how
to obtain it. Therefore, the Q-learning can use other strategies that it learns.
It is irrespective of the strategy. It means that it does not need such actions
which maximize the reward function rt.

Additionally, in certain situations the Q-learning algorithm is ineffective.
For instance, if some actions are constantly repeated, the complexity of the
algorithm is increased. Moreover, it is not effective in all the situations while it
estimates another Q-function belonging to another agent in the environment.
One of the methods to overcome some of the problems with the use of the
Q-learning algorithm depends on the use of the fuzzy reinforcement learning.

3 Fuzzy Reinforcement Learning for Routing in Wireless
Sensor Networks

In this section we formulate our model of fuzzy reinforcement learning (FRL)
for routing in WSNs.

Let us assume a model of a WSN system in which each agent (sensor)
can observe all other agents and the possible possessions (clusterheads, sinks,
etc.). Therefore, we assume that each agent has a sufficient number of re-
ceptors needed for the observation all other agents and possessions within its
reach within radius R.

We assume that a single receptor p(j)i , (i = 1, . . . , n) of agent j can collect
the information about only one other sensor or possession. For the sake of
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routing in WSN this information must be used to appreciate the usefulness
of all the neighbouring agents for agent coalition formation. The coalition of
agents will be intermediated in the data transferring from the source to the
sink. Each agent from the coalition seeks also the possessions that are helpful
in packet delivery.

For a two-dimensional environment all the information obtained by the
jth agent about another kth agent is defined by the membership functions:
µ

(j)
x (agent(k)), µ(j)

y (agent(k)) (see Fig. 2a,b). Analogously, the information
obtained by agent j about possession l is defined in a two-dimensional environ-
ment by two membership functionsµ(j)

x (possession(l)) andµ(j)
y (possession(l)) -

see Fig. 2c,d. The usefulness of another agent defined on the basis of the
battery energy and the distance between agent j and agent k are de-
scribed for a two-dimensional environment by the membership functions:
µ

(j)
x (usefulness(k)) and µ(j)

y (usefulness(k)). Model membership functions for
a sensor with a visual depth equal to 3 are shown in Fig. 2d,e.

A membership value defining the fuzzy state of agent k with respect to
agent j is

µ
(j)
state(agent

(k) = µ(j)
x (agent(k)) · µ(j)

y (agent(k)) (2)

Fig. 2. Fuzzy sets for two-dimensional environment defining: other agent (a, b);
possession (c, d); usefulness of other agent (e, f)
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A membership function defining the fuzzy state of the jth agent in respect
of the lth possession for a two-dimensional environment is as follows:

µ
(j)
state(possession) = µ(j)

x (possession(j)) · µ(j)
y (possession(j)) (3)

Similarly, the usefulness of agent k for agent j which also defines the fuzzy
state of agent j for a two-dimensional environment is computed as:

µ
(j)
state(usefulness) = µ(j)

x (usefulness(j) · µ(j)
y (usefulness(j)) (4)

The model of the system described in this way consists of a multidimen-
sional membership function which can be treated as a multidimensional hyper-
cube. We can use an aggregation of the fuzzy state for the jth agent described
by the fuzzy pair (sn, an) for the nth fuzzy variable. It is given by

Q
(j)
state(s, a) ← Q

(j)
state(s, a) +

N∑

n=1

α(j)
n · µ(j)

state(sn, an) (5)

where N is the total number of fuzzy variables.
For the three exemplary fuzzy variables we have the Q-function for jth

agent, namely

Q
(j)
state ← Q

(j)
state(s, a) +

K∑

k=1

(α(j)
k µ

(j)
state(agent

(k)) + α(j)
k µ

(j)
state(usefulness

(k)))

+
L∑

l=1

α
(j)
l µ

(l)
state(possession

(l)) (6)

where α(j)
n is the learning rate for agent j with respect to nth fuzzy variable,

K is the total number of agents, L is the total number of possessions.
Assuming that the range of the agent observation has the radius equal to

R, we can again define the Q-function as follows

Q
(j)
state(st+1, at+1) ←

⎧
⎪⎨

⎪⎩

0 if j /∈ {J}
Q

(j)
state(st, at) + α(j)

state(st, at) if j ∈ {J0<r≤0.5R}
Q

(j)
state(st, at) + β(j)Q

(j)
state(st, at) if j ∈ {J0.5R<r≤R}

(7)
where {J} is the set of agents and possessions in the range of the agent ob-
servation with the radius equal to R, {J0<r≤0.5·R} and {J0.5·R<r≤R} are the
sets of agents and possessions in the range of the agent observation with the
radius equal to 0 < r ≤ 0.5 · R and 0.5 · R < r ≤ R, respectively. β(j) are
learning rate factors.

It should be noted that the Q-values are usually stored in a lookup
table [10]. The state space in a reinforcement learning can be treated as
stochastic problems. The standard approach for dealing with this problem
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Fig. 3. A block diagram for an agent system architecture in case of data mining

is to generalize the Q-values across states by using a function approxima-
tion Q(s, a, r) for approximating Q(s, a), where r is the set of all learned
parameters. The decisions are undertaken by use the specially prepared fuzzy
logic mechanism [11,12]. Here, we apply data mining approach to handle the
incomplete information received from environment.

The system architecture proposed for the data mining process of single
agent in the environment is shown in Fig. 3. The data mining process with
reference to a single agent can be given by following procedure:

Procedure 1

1. The agent by use its receptors fixes the current values of all the member-
ship functions. Further, it defines the actual value of state-action pair.

2. The agent computes the learning rate α, which for the jth agent is given
as follows:

α(j) =
1

∑N
n=1 µ

(n)
state

(8)

where N is the total number of fuzzy variables. Above equation shows
that by increase of the number of fuzzy variables the learning rate be-
comes smaller.

3. The agent computes the Q-function for each fuzzy parameter. We
applied the selection procedure based on Kóczy-Hirot method [13] here.
This method computes a conclusion as a weighted sum of vague consequent
values bn, which is given by

C(bh) =
∑H

h=1 wh · dist(y0, bh)
∑H

h=1 wh

(9)
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where wh is the weight inverse proportional to the vague distance of the
observation x from action a. For the hth rule the weight is defined as

wh =
1

dist(x, a)
(10)

4. After the choice of the action by the agent the reward function rt(st, at)
is computed. Further, it upgrades the ∆Qt and computes Qt(st, at).

5. The agent goes to step 1. ��

4 Experimental Results

To test the effectiveness of the learning process of our algorithm and demon-
strate its possibility, we conducted some experiments. Our MAS system
consists of some number of agents and possessions. In our approach all the
possessions are identified as clusterheads of WSNs. All agents are randomly
placed in the environment.

Nine rules were defined for the decision subsystem of each agent, namely:
do nothing, connect with another agent, disconnect from another agent, con-
nect with a possession, disconnect from a possession, connect with the agent
and possession. Each rule has a weight. The rule concerning both connections
(with another agent and possession) has weight equal 3. The weight equal 2 is
assigned to all the rules which are concerned with one connection, either the
agent or the possession. The weight equal 1 is used only for one connection
and one disconnection. A lack of an action or a double disconnection is asso-
ciated with the weight equal 0. In our approach all the weights are multiplied
by the rule in the subsystem decision.

Initially, all the values of the Q-function had an identical Q-value equal
0.5. The learning rates are α = 0.1 and β = 0.06. The radius of the agent
observation equals 3 and 2.

We present three sets of simulation results (see Fig. 4) in which we com-
pare our two FRL routing scheme with the Destination-Sequenced Distance
Vector (DSDV) protocol [14]. In the first two sets, we study mean energy con-
sumption per time steps for two values of radius in FRL. In the third set, we
show only the energy consumption against the time steps. The results have
shown that the decrease of radius R increases the growth of the mean energy
consumption in time steps.

5 Conclusion

In this paper, we introduce a fuzzy reinforcement learning for the routing in
wireless sensor networks. We take into consideration all the important pa-
rameters of sensors such as the battery energy and the distances between
sensors and clusterheads. The obtained results have shown that our method
works independently of the sensor placements and the energy consumption.
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Fig. 4. Mean energy consumption versus time steps

In the future, we will compare our method of routing in WSN with other
routing algorithms used in WSNs.
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Outlier Resistant Recursive Fuzzy Clustering
Algorithms

Yevgeniy Bodyanskiy, Illya Kokshenev, Yevgen Gorshkov, and
Vitaliy Kolodyazhniy

Summary. The problem of fuzzy clustering on the basis of the probabilistic and
possibilistic approaches under the presence of outliers in data is considered. Robust
recursive fuzzy clustering algorithms are proposed, which optimize the objective
function suitable for clustering data with heavy-tailed distribution density. Advan-
tages of the proposed algorithms in comparison with the well-known fuzzy c-means
algorithm are demonstrated in an experiment in clustering and classification of data
with outliers. The robustness property results in finding correct cluster prototypes
whose locations are not affected by anomalous observations, and in achieving thus
higher classification accuracy.

Key words: Fuzzy clustering, Heavy-tailed distribution, Objective function,
Robustness, Recursive algorithm, Classification.

1 Introduction

Clustering and classification of large datasets are key problems of data mining,
and effective solving of these problems is important for knowledge acquisition
by analysis of observations.

Generally, cluster analysis is the algorithmic basis of data classification by
means of separation of the available data into a number of classes (clusters)
without a priori defined membership of any observation sample to one of the
class (unsupervised learning). In the traditional (crisp) approach it is assumed
that every observation belongs to only one class. The k-means algorithm [1]
and the nearest-neighbor rule [2] are the most popular examples of this ap-
proach. However, it is much more natural to assume that every observation
may belong to several clusters at the same time with certain degrees of mem-
bership. This assumption is the basis of fuzzy cluster analysis [3,4]. At present
time many fuzzy clustering algorithms are widely used, such as Bezdek’s fuzzy
c-means [3], the Gustafson-Kessel algorithm [5], fuzzy k-nearest neighbors [6],
fuzzy shell cluster analysis by Klawonn-Kruse-Timm [7], mountain cluster-
ing by Yager and Filev [8]. The approaches mentioned above are capable
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of efficient data clustering when the clusters are overlapping, but only with
the assumption that the clusters are compact, i.e., they do not have abrupt
(anomalous) outliers. Whereas real datasets usually contain up to 20% of out-
liers [9–11], the assumption of cluster compactness may sometimes become
inadequate.

Thus, the problem of cluster analysis of data with heavy-tailed distribu-
tions has received more and more attention in recent years. Various modifi-
cations of clustering methods mentioned above were proposed and designed
to process data containing outliers [12–14]. At the same time, most of the
proposed robust fuzzy clustering algorithms are not suitable for real-time or
sequential operation. So it is advisable to develop recursive algorithms for
robust fuzzy clustering, having adaptive properties and suitable for the se-
quential processing of incoming data.

The source information for all the mentioned algorithms is the data set of
N n−dimensional feature vectors X = {x(1), x(2), . . . , x(N)}, x(k) ∈ Rn,
k = 1, 2, . . . , N . The output of the algorithms is the separation of the source
data into m clusters with some degree of membership wj(k) of the kth feature
vector to the jth cluster.

2 Recursive Fuzzy Clustering Algorithm

In this paper, we make an attempt to derive an adaptive computationally
simple outlier resistant robust fuzzy clustering algorithm for recursive data
processing in online mode as more and more data become available. The re-
cursive probabilistic and possibilistic fuzzy clustering approaches, stable to
outliers, are considered. They belong to the class of the objective function
based algorithms designed to solve the clustering problem via the optimiza-
tion of a certain predetermined clustering criterion [3].

For such a criterion, we use the objective function

ER (wj(k), cj) =
N∑

k=1

m∑

j=1

wβ
j

n∑

i=1

(
1− sech2 (xi(k)− cji)

)
(xi(k)− cji)

2
5 , (1)

which is an everywhere differentiable even function, close to the quadratic
near the extremum, and close to the linear as the distance from it increases.

Here wj(k) ∈ [0, 1] is the degree of membership of the vector x(k) to the
jth cluster, cj is the prototype (center) of the jth cluster, β is a non-negative
parameter, referred to as “fuzzifier” (usually β = 2).

It is the form of the objective function, whose derivative decreases with
the distance from the extremum point, that provides the robust properties of
the clustering procedure, weakening the influence of anomalous observations.

Introducing the system of standard constraints for probabilistic and pos-
sibilistic [15–17] approaches to clustering, the respective Lagrangians and
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Kuhn–Tucker equations, and applying the procedure of Arrow–Hurwitz–
Uzawa for finding the saddle point [15], we obtain the combined recursive
clustering algorithm

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wprob
j (k) = (DR(x(k),cj(k)))

1
1−β

∑m

l=1
(DR(x(k),cl(k)))

1
1−β
,

µj(k) =
∑k

p=1
(wprob

j
(p))βDR(x(p),cj(k))∑N

p=1
(wprob

j
(p))β

,

wpos
j (k) =

(
1 +

(
DR(x(k),cj(k))

µj(k)

) 1
β−1

)−1

,

cji(k + 1) = cji(k)− η(k)(wpos
j (p))β [2 sech2(xi(k)− cji(k))

· tanh(xi(k)− cji(k))|xi(k)− cji(k)|
2
5

+0.4(1− sech2(xi(k)− cji(k)))

·|xi(k)− cji(k)|−
3
5 sign(xi(k)− cji(k))],

(2)

where DR (x(k), cj(k)) =
∑n

i=1

(
1− sech2 (xi(k)− cji(k))

)
(xi(k)− cji(k))

2
5

is the adopted metrics, that determines the distance from the feature vector
x(k) to the jth prototype at the kth step; µj(k) is the scalar parameter that
determines the distance at which the degree of membership equals 0.5; η(k)
is the learning rate parameter.

Thus, the proposed procedure computes the probabilistic memberships
wprob

j (k), then uses them to compute the parameter µj(k) which is further
used to compute the possibilistic levels of membership wpos

j (k), and, finally,
corrects the cluster prototypes cj(k).

3 Experiments

We used the proposed algorithms in the problem of data classification on a
specially generated artificial data set containing three two-dimensional data
clusters with samples labeled as ‘o’, ‘x’, and ‘+’ (see Fig. 1). The distance from
each sample to its cluster center is distributed according to the heavy-tailed
Laplacian density

p(xi) = σ(1 + x2
i )

−1, (3)

where σ is the width of a cluster.
The data set contains 9,000 samples (3,000 for each cluster), divided into

the training (7,200 samples) and checking (1,800 samples) sets. Note that
there are some data points that are very distant from the cluster prototypes
(Fig. 1a). The prototypes are to be found somewhere in the central part of
the data shown in Fig. 1b. In order to find correct prototypes, the clustering
algorithm should be insensitive to the outliers. For each of the compared al-
gorithms, the procedure was as follows. First, the training set was clustered
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Fig. 1. Complete data set (a) and its central part (b)

Table 1. Classification results for the checking data sets

Classification error rate

Algorithm Min. Max. Avg.

Bezdek’s fuzzy c-means 8.3% (150) 59.8% (1076) 12.5% (224)
Robust probabilistic clustering 8.9% (161) 12.9% (232) 10.7% (192)
Robust possibilistic clustering 7.6% (137) 11.2% (202) 9.3% (168)

using the respective algorithm and the prototypes of the clusters were found.
Then, the checking set was classified using the cluster prototypes obtained for
the training data. The membership of a sample to a certain cluster during the
process of classification was calculated according to the type of the clustering
algorithm that was used. The cluster to which the given sample belongs with
maximum degree of membership determined the class of that sample.

Training and classification were performed assuming β = 2 and η(k) =
0.01. To avoid the influence of random initialization of cluster prototypes and
to get a cross-validation effect, the test was performed 500 times. Each time
the dataset was shuffled and then divided into the training and checking sets.
The results for the checking sets are shown in Table 1.

The drawback of fuzzy clustering methods based on the quadratic objec-
tive function could be visually shown by plotting the obtained prototypes
over the data set. From Fig. 2 it could be easily seen that the cluster centers
(prototypes) obtained using Bezdek’s fuzzy c-means algorithm are displaced
from the visual cluster centers because of the heavy-tailed distribution density
of observations, in contrast to the robust objective function-based methods
which found the cluster prototypes more accurately. This is confirmed by
lower classification error rates as shown in Table 1. It is also easy to see that
the classification errors, obtained with the robust algorithms, have signifi-
cantly smaller variance than those of the fuzzy c-means. This fact confirms
the stability of the proposed procedures, and their low sensitivity to initial
conditions.
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Fig. 2. Example of cluster prototypes obtained with different clustering algorithms,
plotted over a checking data set

4 Conclusion

In the paper, robust recursive probabilistic and possibilistic fuzzy cluster-
ing algorithms based on the objective function of a special form suitable for
processing of data with heavy-tailed distributions or contaminated with out-
liers were proposed. The robustness property resulted in significantly higher
accuracy and stability of clustering and classification compared to those ob-
tained with a non-robust algorithm. The proposed algorithms could be used
in a wide range of applications, such as fault detection, data mining, pattern
recognition in self-organizing mode when the data contain outliers, the size of
the data set is not known a priori, and the data must be processed in real time.

The algorithms can be modified by the use of other robust distance metrics
or objective functions.
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Fuzzy Set Theory – 40 Years of Foundational
Discussions

Siegfried Gottwald

Summary. For classical sets one has the cumulative hierarchy of sets, and also the
category SET of all sets and mappings as standard approaches toward the universe
of all sets. Both of them discussed within the realm of classical logic.

We discuss the corresponding situation for fuzzy set theory, and the suitable for-
mal logics for it, and give is a (concise) survey of important such approaches which
have been offered since Zadeh published his seminal paper.

Key words: Fuzzy set theory, Universes of fuzzy sets, Categories of fuzzy
sets, Axiomatic fuzzy set theory, Foundations for fuzzy sets, Graded equali-
ties, History, 20s century mathematics.

1 Introduction

For classical set theory one has a quite satisfactory naive foundation in the
idea of the cumulative hierarchy of sets which forms the standard model for
the common axiomatizations of set theory, like the systems ZFC or NBG.

The paradigmatic situation for a category theoretic characterization of
classical sets is the category SET of (crisp) sets and mappings [38].

To have a similar situation in the fuzzy field, one is interested to find either
some kind of cumulative universe of fuzzy sets which should be closed under
the formation of fuzzy (sub-)sets, and which can serve as a kind of standard
model for axiomatizations of fuzzy set theory, or one is interested to have a
category of fuzzy sets and mappings.

So one immediately faces at least the following problems:

1. What are fuzzy sets of higher level?
2. Is there a kind of standard cumulative universe of fuzzy sets? or
3. Is there a kind of standard category of fuzzy sets?

But there is still more in the background here: the intuition of graduation of
membership calls for a background logic which is a many-valued one – with
the structure of the membership degree as its structure of truth degrees. Even



654 S. Gottwald

more is intuitively convincing: as the basic set theoretic notion of membership
is a graded one, other set theoretic notions should become graded too. One
very basic such notion seems to be a graded identity between fuzzy sets.

These problems have been approached in quite different ways. If one tries
to classify the approaches then the following types can be recognized:

1. Constructions of some cumulative universe of fuzzy sets, either in a
“naive” or in a model based manner

2. Axiomatic approaches
3. Category theoretic approaches

In the following we give a concise survey of important developments in
this area. A much more detailed presentation shall be given in [19,20].

2 Model Oriented Constructions

The consideration of model oriented approaches started with two versions for
a cumulative hierarchy of many-valued sets introduced in 1965 by the German
mathematician D. Klaua independent of the seminal paper [53]. As member-
ship degrees this author had chosen a finite subset of the unit interval [0, 1]
understood as set of truth degrees of a finitely valued �Lukasiewicz logic. But
this difference to the standard fuzzy sets is an inessential, purely technical
point.

In general, all the cumulative universes V have been constructed by induc-
tion through (a subclass of) the ordinals. Each such construction yields an ex-
panding hierarchy of partial universes Vα with V as the global union, and with
unions over the preceding partial universes at limit stages. So there is a natural
notion of rank, and constructions at successor stages become the crucial steps.

2.1 The Very First Universe

For the first one of these hierarchies, D. Klaua [31, 34] started from some
infinite (crisp) set U of urelements with a graded identity relation ≡, i.e. a
relation which is reflexive, symmetric and &L-transitive for the �Lukasiewicz
t-norm &L and its associated implication −→L. Then he forms, with reference
to the standard (crisp) power set operation P, the hierarchy

V ∗(0) = U × {0} ,
V ∗(n+ 1) = P(V ∗(n))× {1} ,

and introduces a graded identity =w, a graded membership ∈w, and a graded
inclusion ⊂=w

as follows:

x =w y =

⎧
⎪⎨

⎪⎩

pr1(x) ≡ pr1(y) ,
0 ,
x ⊂=w

y ∧ y ⊂=w
x ,
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depending whether x, y are urelements, of different rank, or of equal rank, and
with

x ∈w y = sup
v∈pr1(y)

(x =w v) , x ⊂=w
y = inf

u∈pr1(x)
u ∈w y .

The authors main results are (1) There is a natural embedding of the ωth
level of the standard hierarchy of crisp sets into V ∗. (2) Suitable (graded)
versions of the axioms of extensionality and of comprehension hold true in
this universe. and (3) Some elementary set algebra is developed.

2.2 A Naive Fuzzy Power Set Iteration

The same author D. Klaua almost immediately modified his first approach
and considered in [32] for some crisp set U a transfinite hierarchy starting
from V0 = U with the particular extension steps determined by the sets of all
functions f : Vα −→ [0, 1] which satisfy the condition that their support is
rank-cofinal in Vα.

This condition intends to avoid the “doubling” of objects – in the sense
that it forbids to add to Vα membership functions which have the same sup-
port as membership functions in Vα, but only a larger domain.

The graded membership predicate ε , for some object a, is defined as the
value of the membership function at a. Contrary to the first approach, there
is no graded identity inside the set of urelements. But there is again a graded
inclusion and a graded identity:

x ⊂=w
y = ∀z(z ε x −→L z ε y) , (1)

x =w y = x �w y ∧ y ⊂=w
x . (2)

As indicated here, the author refers to a language of many-valued logic.
Its main connectives are min-conjunction, max-disjunction, (1−. . . )-negation,
and �Lukasiewicz implication.

The considerations, continued in [33,35,36], have as main results (1) that
the graded inclusion and identity have suitable properties; (2) that suitable
(many-valued) versions of the axioms of extensionality, of comprehension and
of separation hold true; and (3) that a lot of set algebra can be developed,
essentially only in an elementary way, up to the basic notions of cardinals and
integers.

2.3 Taking Graded Identity More Seriously

The idea that for a graded identity ≡ the fuzzy sets of the hierarchy should
satisfy an extensionality condition like

|= x ≡ y & y ε z −→ x ε z (3)
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was the starting point for the modification of that approach [13, 14] by the
present author. The idea was to save the simple graded inclusion and identity
(1), (2) and additionally to satisfy condition (3).

So the hierarchy of fuzzy sets was determined by extension steps deter-
mined by the sets of all functions f : V ∗

α −→ [0, 1] with their support rank-
cofinal in V ∗

α , satisfying the additional condition

∀∀x∀∀ y(f(x) &L [[y ≡∗ x]] ≤ f(y)) (4)

which uses the identity (2), and a fuzzified rank equality �	∗, to give ≡∗ by

y ≡∗ x = x =w y ∧ y �	∗ x .

The main results of this approach are again (1) that within this cumulative
universe of fuzzy sets suitable versions of all the basic ZF axioms are satis-
fied; (2) that natural many-valued generalizations of the basic laws of set and
relation algebra hold true; and (3) that one can even define the uniqueness
of relations in some argument, and thus extend this approach up to suitable
notions of fuzzy functions and of equipotency, and thus of cardinality, cf. [15].

2.4 A Type Theoretic Approach

Quite recently L. Běhounek/P. Cintula [1] offer a new approach. Their back-
ground (fuzzy) logic is the first-order system �LΠ with identity which is a com-
bination of the infinite valued �Lukasiewicz logic L∞ with the product logic Π
(both understood as t-norm based residuated logics). Thus their background
logic has a high expressive power. For technical reasons �LΠ is treated as a
two-sorted system, and Baaz’s 4-operator is added.1

These authors primarily intend to give a formalized theory of fuzzy subsets
of a given universe, i.e., of fuzzy sets of first level. However, this is understood
as the starting point for a full set theory – or type theory – over a given set
of urelements.

The basic axioms here are the axiom of extensionality in the form

∀x4(x ∈ X ↔ x ∈ Y ) → X = Y ,

and the schema of comprehension axioms in the form

∃X4∀x(x ∈ X ↔ ϕ(x))

for each formula ϕ not containing the set variable X.
This theory is consistent, because the “standard” class of all fuzzy subsets

over a given universe of discourse provides a model. And the authors develop
a considerable part of elementary set algebra for fuzzy sets in this theory.
1 For these systems of many-valued logic the interested reader may consult [18] for

the propositional case, and [23] for the first-order case.
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Additionally these authors sketch the extension of first-order �LΠ to higher
order logics, particularly second and third order. This is more or less a routine
matter and allows them to treat in this more general context also the theory of
fuzzy relations with graded relation properties, a topic previously discussed in
a less formalized setting in [16], as well as the well known extension principle
of Zadeh, cf. e.g. again [16].

2.5 Strongly Model Theoretic Constructions

The basic background idea comes from the Boolean valued models for ZF set
theory of Scott/Solovay, cf. e.g. [2, 17]. For these Boolean valued models V B

a given Boolean algebra B acts as set of truth degrees.
The first such model theoretic approach toward the construction of a uni-

verse of fuzzy sets was sketched by Zhang Jin-Wen [54,55], and given in more
detail in [56]. But this paper restricts the degree structure G to the stan-
dard structure GZ = 〈[0, 1],max,min, 1 − . . . , 0, 1〉 enriched with the Gödel
implication. The main results are that this universe of fuzzy set is a model of
essentially all the ZF-axioms, with the exception that in the axiom schema of
replacement only negation-free formulas are allowed.

A bit later G. Takeuti/S. Titani [46,47] started their construction of a sim-
ilar type of universe (without urelements) from a complete Heyting algebra
(cHA) H.

Their main argument in favor of this intuitionistic case is that

ϕ ∧ (ϕ −→L ψ) −→L ψ (5)

does not hold true for min-conjunction and �Lukasiewicz implication (the orig-
inal Zadeh case), which would mean not to get extensionality for the resulting
(fuzzy) sets. But this is a very weak argument, because the exchange of the
min-conjunction ∧ in (5) by the �Lukasiewicz arithmetic conjunction gives a
logically valid formula.

As usual in the intuitionistic context, implication is residuation, i.e., the
relative pseudo-complement.

As main result the authors give an axiomatic set theory, based on a se-
quent calculus, which has besides axioms for equality suitable versions of all
the ZF axioms, together with two technical axioms concerning the embedding
of the ZF universe into the actual cHA valued universe.

The case of intuitionistic logic is extended by these authors in [48]. In that
paper they include, over the set [0, 1] of truth degrees, also the connectives for
�Lukasiewicz’s negation and conjunction, for product conjunction, and a truth
degree constant for 1

2 .

2.6 A BL-Algebra Valued Universe

A very recent approach along these lines is by P. Hájek/Z. Haniková [24] and
based upon the basic t-norm logic BL of Hájek enriched with the “globaliza-
tion” operator ∆, denoted by BL∀∆, as explained in [21].
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In a language with primitive predicates ∈, ⊂=,= their axioms are suitable
versions of the standard ZF axioms together with an axiom stating the exis-
tence of the support of each fuzzy set.

The “standard” model for this theory is formed w.r.t. some complete BL-
chain L and given by a hierarchy which starts from the empty set and extends
the partial universes Vα by all partial functions from Vα into L.

The primitive predicates are interpreted as

[[x ∈ y]] =
⋃

u∈dom (y)

([[u = x]] ∗ y(u)) ,

[[x ⊂= y]] =
⋃

u∈dom (x)

(x(u) ⇒ [[u ∈ y]]) ,

[[x = y]] = ∆[[x ⊂= y]] ∗∆[[y ⊂= x]] .

The last condition forces the equality to be crisp, and makes the authors
standard form of the axiom of extensionality trivially true in the model.

The authors main result is that the structure V L =
⋃

α∈On V
L
α is a model

of all the axioms given by the authors.

3 Axiomatizations

There is no clear division between model based approaches which discuss the
forms of standard set theoretic axioms which are satisfied in the particu-
lar models under considerations, and those approaches which intend to give
some – hopefully convincing – axiomatization for fuzzy set theory.

In this section we shall consider only such axiomatizations, let us call them
“pure”, which are not combined with the idea of some (preferably cumulative)
universe of fuzzy sets.

Over the years a lot of such proposals have been offered. None of them has
really convinced the fuzzy set community. Therefore we shall mention only
the most interesting ones of them which offer some non-standard points of
view, but we shall not go into details.

These approaches started with an axiomatization by Chapin [5, 6] who
chose for the membership degrees fuzzy sets themselves. Semi-lattices as struc-
tures of the membership degrees was the choice of Weidner [49]. A broader
notion of fuzzy objects, with fuzzy sets as a subclass of these fuzzy objects,
was the background for an axiomatization by Prati [39]; however there is a
lack of intuition about what fuzzy objects are to mean.

An interesting unification of fuzzy sets and multisets, both understood
as particular cases of objects with positive reals as membership degrees, was
offered by Lake [37] and Blizard [3].

And most recently again P. Hájek [22] was going back to an older approach
and considered a Cantorian set theory over L∞.
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That older approach toward a consistency proof of naive set theory,
i.e., set theory with comprehension and extensionality only, in the realm of
�Lukasiewicz logic was initiated by Skolem [43] and resulted – after a series of
intermediate steps mentioned e.g., in [17] – in a proof theoretic proof (in the
realm of L∞) of the consistency of naive set theory with comprehension only
by White [50].

Two equality predicates come into consideration here – Leibniz equality
=l and extensional equality =e with definitions

x =l y =def ∀z(x ∈ z ↔ y ∈ z) ,
x =e y =def ∀z(z ∈ x↔ z ∈ y) .

Leibniz equality is shown to be a crisp predicate, but extensional equality is
not.

The whole system becomes inconsistent by the coincidence assumption

x =l y ↔ x =e y .

A (crisp) set of natural numbers can be added. But again the adjunction
of some simple and sufficiently strong induction principle makes the system
inconsistent.

It seems thus that one gets in this kind of approach only a rather weak
set theory.

4 Category Theoretic Approaches

With the development of the notion of an elementary topos through Lawvere
and Tierney, cf. [9], and the understanding that topoi describe generalized
set theories, the situation changed and the paradigm became the Higgs topos
SET(H) of cHA valued sets, which was introduced in [25] and used essentially
also in [10].

Since H-valued maps admit an internalization as characteristic morphism
in SET(H), some authors claimed that the Higgs topos would give the cate-
gory of all fuzzy sets too, i.e., that fuzzy set theory had to be nothing more
but a kind of intuitionistic, or at least cHA valued, set theory: a point of view
never accepted by those people which had a closer relationship to (and better
knowledge of) fuzzy set theory.

There are two core points for the rejection of this “solution” by the fuzzy
people (1) that the �Lukasiewicz negation cannot be internalized as a truth
arrow in the Higgs topos SET([0,1]), and (2) that the internal logic of topoi
is the intuitionistic one.

4.1 The First Approaches

The first who introduced a category of fuzzy sets was J.A. Goguen [11]. He
considered a category S(L) of L-fuzzy sets and L-fuzzy relations where L is
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a closg, i.e., a complete lattice ordered semi-group 〈L,∧,∨, ∗〉 satisfying the
complete distributive law

a ∗
∨

i

bi =
∨

i

(a ∗ bi) .

There are no particular results about this category in Goguen’s paper. The
category, however, is a quasitopos, cf. [45]. And it can e.g., even become ex-
tended to describe a kind of graded inclusion relation together with a notion
of fuzzy power set, as explained in [41].

A bit later Goguen [12] gave a categorical characterization of fuzzy sets.
This time he considers another category Set(L) of L-fuzzy sets, L some com-
pletely distributive lattice. And the main result is that this category Set(L)
is characterized (up to categorical equivalence) by the properties that it:

– has initial and terminal objects
– has associative images
– is disjointedly cdl-ordered
– has coproducts as disjoint unions, and satisfies that each disjoint union is

the coproduct of its summands
– has an atomic monic projective generator P , and P +P is not isomorphic

to P

The fuzzy sets background is rather standard, particularly the author does
neither know a graded inclusion nor a graded identity in these considerations.

Rather similar to these approaches by Goguen is the approach of M. Ey-
tan [8]. Starting point is a cHA H. M. Eytan’s category Fuz(H) of H-valued
sets can be understood as the category of subobjects of constant objects in
the Higgs topos. This category was claimed in [8] to be a topos, but it is not.

4.2 Further Approaches

A unifying survey of such categorical approaches gives O. Wyler [51, 52], ex-
tending [44]. The basic logic remains the intuitionistic one, i.e. reference is only
to cHA’s H as value structures. But graded identities come into consideration,
as is the case in the Higgs topos, and e.g. also in [40].
H-valued fuzzy sets are pairs A = (|A|, εA) of a crisp set |A| and a

membership function εA : |A| −→ H.
H-valued totally fuzzy sets (or H-sets, for short) are pairs A = (|A|, δA)

of a set |A| and a map δA : |A| × |A| −→ H subjected to the conditions of
symmetry and transitivity.
H-valued fuzzy set A = (|A|, εA) determine H-sets Aε = (|A|, δεA

) by

δεA
(x, y) =

{
εA(x) , if x = y
⊥ otherwise.

Thus, H-sets form a refinement of fuzzy set, and the H-valued fuzzy sets are
the discrete H-sets.
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After having fixed objects describing the intuitive idea of fuzzy sets, one
has to specifying morphisms. There exist at least two fundamentally different
types of morphisms: crisp maps and certain binary H-valued relations.

We begin with Wyler’s category Settc(H): Objects are just the H-sets
with non-empty support and morphisms f : A −→ B are ordinary maps
f : |A| −→ |B| satisfying

δA(x, x′) ≤ δB(f(x), f(x′)) . (6)

The subcategory of all discreteH-sets (i.e. of allH-valued fuzzy sets) coincides
with Goguen’s category Set(L) (= Setdc(H)).

A trouble with Settc(H)-morphisms is that maps between H-sets are not
necessarily extensional. This leads to a crisp equivalence relation ∼= in the
hom-sets of Settc(H):

f ∼= g ⇔ δA(x, x) ≤ δB(f(x), g(x)) .

f and g are extensionally equal iff f ∼= g.
Now the category Sette(H) of extensional morphisms can be defined as

follows: Objects are again H-sets with non empty support set and morphisms
are ∼=-equivalence classes.

There exists also an alternative to express morphisms by binary H-valued
relations; e.g. the Higgs topos – i.e. the category Settf (H) – consists of the
following data: Objects are again H-sets with non-empty support sets, but
morphisms are H-valued functional relations.

Now the subcategory of all discrete H-sets of Settf (H) coincides with
Eytan’s category Fuz(H) (= Setdf (H) in Wyler’s notation).

Some interesting results are:

– Setdc(H) is a topological quasitopos over sets, and hence has “crisp” in-
ternal logic.

– Settc(H) is cartesian closed, but not a quasitopos.
– Settf (H) is a topos with H-valued internal logic, and equivalent to the

category sh(H) of sheaves over H, cf. [10, p. 363].
– Sette(H) is a quasitopos with H-valued internal logic, and equivalent to

the category spsh(H) of separated presheaves over H, cf. [7].

The other categories are, in general, neither topoi nor quasitopoi.
But this structural deficiency never was the main point of criticism from

fuzzy people: their core objection always was that the intuitionistic context
is too restricted by not allowing to discuss non-idempotent conjunctions,
cf. [4, 30,44].

4.3 Categories of Monoidal Sets

A more general non-intuitionistic, particularly a monoidal context together
with a graded notion of identity for fuzzy sets is the core problem for the
approach of U. Höhle as explained mainly in [26–29].
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Instead of totally fuzzy sets, i.e. instead of H-sets, he considers M -sets,
with M = (L,≤, ∗) an integral, divisible, commutative completely lattice-
ordered monoid with zero, i.e. a complete divisible residuated lattice – called
GL-monoid by this author.

The point is to consider global M -sets A = (|A|, δA) which are, like the
H-sets of the Higgs topos, characterized by an M -valued global equality rela-
tion δA satisfying the conditions of reflexivity, symmetry, and ∗-transitivity.
They are called separated iff they additionally satisfy the condition

δA(x, y) = 1 ⇒ x = y . (7)

The separated, global M -sets are natural generalizations of fuzzy sets (of
higher level), because the most natural, naive understanding of a graded iden-
tity between fuzzy sets seems to involve the ideas that (1) each fuzzy set is
identical with itself to the highest possible degree, and (2) that two fuzzy sets
which are identical to the highest possible degree are truly identical.

The separated, globalM -sets become the objects of a category if one takes
as morphisms the “structure preserving” maps f : |A| −→ |B| which have to
satisfy the preservation of equality condition

δA(x, y) ≤ δB(f(x), f(y)) . (8)

For these separated, global M -sets this choice of morphisms gives a category
with interesting properties. Particularly this category is complete and cocom-
plete, i.e. has all limits and colimits. However, it does not allow for a unique
classification of (extremal) subobjects, as shown in [29].

The problem is to find a finitely complete category C ofM -sets, or of some
other (suitably related) objects, which

– Has a subobject classifier Ω and a truth arrow t
– Allows the unique classification of the (Ω, t)-classifiable subobjects
– Internalizes M -valued maps as C-morphisms with codomain Ω
– Is equivalent with the Higgs topos in the case that the underlying GL-

monoid is a cHA

Höhle has in mind that for each cHA H the Higgs topos SET(H) of
H-valued sets (and H-set morphisms) is categorically equivalent to the cate-
gory sh(H) of sheaves over H. Furthermore one knows that Fourman/Scott
[10] have shown that every presheaf determines an H-set, and that the sheaves
correspond to the complete H-sets (which have all their singleton subsets
determined by a single element).

His generalization thus starts with the search for a notion of presheaf in the
monoidal context by looking for suitable singletons. And this happens not for
globalM -sets, but forM -sets, which generalize the globalM -sets in that they
refer to a notion of local existence as was done for the cHA valued case in [42].

The details are too complex to be explained here in detail. But the
approach is successful.
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21. Hájek, P., Metamathematics of Fuzzy Logic. Dordrecht, (1998)
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Fuzzy Control – Expectations, Current State,
and Perspectives

Mirko Navara and Milan Petŕık

Summary. We summarize the history of fuzzy sets. We try to find the reasons why
fuzzy control has been so successful in applications. This is mainly explained by the
fact that fuzzy logic created an alternative to exact computation and it better fits
to the human way of reasoning.

We point out some aspects in which current fuzzy systems are not completely
satisfactory and directions in which they should develop in the future.

Key words: Fuzzy set, Fuzzy control, Computational complexity, Fuzzy
arithmetic, Stability.

The idea of partial truth and partial membership is old and it has been
rediscovered many times (e.g., [4,7,13]). However, the seminal paper [28] has
opened a new epoch of its rapid development.

Our first question is why exactly this work initiated a revolution if many
theoretical results (see [4,24]) have been derived before and remained almost
unnoticed.

One reason is that Zadeh expressed this idea in a way accepted by experts
in many fields, not only theoretical, but also applied, even by engineers. The
preceding papers were recognized only by a limited community of mathemati-
cians. Now the principle was expressed in a way understandable to everybody
and in a context drawing new horizons and capabilities of the new technology
based on it. It might have been crucial that the applications in control theory
followed very soon [14, 26, 29]. Their success ensures permanent interest of
industrial partners and financial support of this field.1

The second reason of success of fuzzy logic in Zadeh’s approach is the
state of control theory in the sixties. Preceding development of computers
and cybernetics has brought ambitious expectations which have been satis-
fied only partially. The rapid development of control theory, as initiated by
Wiener, has slowed down. It solved successfully some problems, in particular
in control of linear systems, but it has encountered difficulties in control of

1 In some countries.
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systems with high non-linearity. These were partially solved by the developing
non-linear control theory and by adaptive control, but this effort has brought
much more complex questions without a clear trend to their satisfactory so-
lutions. We bring arguments that in some sense the same happened to fuzzy
control a few decades later.

The third reason is a disillusion from the limits of computational power.
At the first moment, people were fascinated by the newly open possibility
of cheap high-precision computations offered by computers. However, they
recognized soon that some solutions are far from satisfactory. Simplified mod-
els failed to describe important features of real systems and the solutions did
not perform well on some real-world systems. Then it was found out that
supreme precision is not as important. Instead of that, we need to describe
(at least roughly) the complexity of the surrounding world. This requires a
representation of numerous relations which are not precisely known, but whose
effect is at least intuitively understood by humans. Fuzzy logic offered a tool
allowing to implement these ideas easily. This returned the technology closer
to the human way of reasoning.

1 Success of Fuzzy Control

Fuzzy control celebrated a rapid success. If we look for its reasons, we may
emphasize [6]:

– Easy design and tuning
– Interpretability of rules
– Possibility of combination of human knowledge with optimization and

adaptive methods, neural networks, and genetic algorithms
– Description similar to our understanding and human way of reasoning

1.1 Through Simplification to Higher Complexity

Generally, we may say that fuzzy control represents a return from exact com-
puting to computing with words or approximate quantities. The lost precision
is compensated by the possibility to describe complex relations easily. It is not
by chance that the development of fuzzy techniques followed (with some de-
lay) the boom of computers. People were first fascinated by the possibility of
fast and cheap computations with supreme precision. This was followed by a
disillusion when users recognized that this technology does not produce satis-
factory solutions to many problems which humans can solve easily. Fuzzy logic
has brought a new hope. The ease of its use allows to include more rules de-
scribing many situations. What is also important, the antecedents (premises)
of rules ensure that they will not be applied in inadequate situations, thus
they will not influence rules applied in different modes. As an example, a
cookbook is full of fuzzy algorithms. An experienced cook can work without
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precise measurements, but with numerous feedback loops which compensate
the uncertainty. If we replace a cook by an automaton, the recipe is strictly
followed, but the result is not much better, often even worse.

In control, fuzzy logic is mostly used for approximation. In general, infor-
mation used for approximation can be divided to data and a program (pro-
cedural knowledge, procedural information) working on them. A very general
complexity criterion is the minimal description length (MDL). It simply counts
all information needed, the total length of the data and the program. Current
solutions usually suffer from a triviality of the procedural knowledge with
respect to the high complexity of data. This is partially caused by techni-
cal means: The rapidly developing hardware allows to handle large data files;
their allowed size increases exponentially. In contrast to this, the design of
procedural information requires more advanced techniques (often human in-
tervention) and thus it grows slowly. We usually know that the MDL of our
solution is not optimal because a longer program could shorten the neces-
sary data significantly. Nevertheless, we lack ideas and time for development
of more complex programs, an extensive use of large data is a cheaper way.
Fuzzy logic tries to break this trend by an offer of easy design of procedural
information. Precision is not needed, because it can be improved by the ad-
ditional data. (This is a typical situation in information compression, here
considered as a specific approximation task, see [3].)

Remark 1. It would be interesting to classify the genetic information from this
point of view. Current understanding of DNA suggests that it is rather a pro-
cedural information. Only small pieces (e.g., telomeres) are recognized as pure
data which only control the procedural part. Maybe that nature discovered
a more efficient encoding based mainly on procedural information. However,
our understanding of information encoded in the proteins accompanying the
DNA is not sufficient and it may change this conclusion.

A similar effect can be found in computer games, mainly chess. Current
chess programs reach the level of top human players; however, this is achieved
by extensive computation and enormous speed, not by deeper understand-
ing [18]. In this aspect, people are still much ahead in the classification of
alternatives which are worth attention.

1.2 Incompletely Described Tasks

Practice shows that people can control systems which they do not fully un-
derstand. E.g., a child can learn to drive a bike without any knowledge of
partial differential equations used in classical solutions of this task. The suffi-
cient principles can be described even without precise measurement of forces,
moments, etc. Fuzzy logic takes the advantage of this phenomenon very of-
ten. What is even more important, the mutual relations between variables
need not be precisely known. Otherwise, they cause problems also in the clas-
sical methods. E.g., the description of a joint distribution of several random
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variables may be very complex and it might be difficult to collect sufficient sta-
tistical data for its determination. In this situation, classical methods usually
introduce drastically simplifying assumptions (e.g., independence of variables
which are known to be dependent) or they work with many probabilities which
are fictitious, not rigorously determined. Fuzzy logic overcomes this difficulty
due to its functionality (in the logical sense). This is often criticized as an in-
correct tool, but alternative approaches also use drastic simplifications which
only are not as apparent. On the other hand, fuzzy logic imitates a human
approach to the solution and this appeared satisfactory in many situations.

1.3 Fuzzy Logic as Human–Machine Interface

The development of technology before fuzzy logic has led to many useful but
very abstract notions. E.g., we know that the stability of a linear dynamic
system depends on its eigenvalues. However, if the system is instable, it is
difficult to find which change of parameters allows to stabilize it. This is
sometimes a necessary approach, but there are also many situations which
can be solved differently. Humans succeed to stabilize many systems with-
out an exact knowledge of their parameters, applying only simple rules. Thus
there must be an easy solution to these problems.

Remark 2. The study of insects, their perception, recognition, and orientation,
shows that a satisfactory solution can often be achieved by surprisingly simple
principles, see e.g., [22]. During evolution, such solutions appeared sufficient
and efficient.

Why should we care to imitate humans in these “easy” control tasks?
There are several reasons:

– Fast design
– The controller is easily understandable; this facilitates the tuning, debug-

ging, and repairs
– The human-like solutions usually offer also a high level of robustness
– Sometimes we only want to substitute a human who does the task satis-

factorily, but needs a rest, adequate working conditions, etc.

Typical successful stories of this kind are the control of a cement kiln [9] and
an unmanned helicopter [25].

1.4 Intelligent Database Search and Antispam

Intelligent database search has been an intended area of applications of fuzzy
logic. Instead of crisp search criteria, fuzzy sets can better describe the de-
sired goal. The (combined) membership degree can be used as a criterion of
relevance. Recently these principles were particularly successful in Google. We
may hope that similar approach will improve also antispam filters. Current
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solutions (e.g., SpamAssassin) combine numerous criteria in a rather naive
way which ignores their dependence. More advanced classification techniques
could improve the performance. However, there is a problem with a perma-
nently changing situation. Once learned parameters become obsolete within
several weeks of months and additional rules should be applied. Thus profes-
sional antispam service requires continuous updating of the rule base. New
rules should not destroy the effect of other rules; we need a soft tuning during
the run of the program. Fuzzy logic offers an adequate tool for formulation
and implementation of new rules. However, problems may occur if we add too
many new rules; this problem will be discussed in Sect. 3.3.

2 General Problems

2.1 From Global to Local

Current technology has the following specific problem which distinguishes it
from human perception: For a computer, it is easy to recognize small items –
words in a text, details of images, individual items in a database. However,
global features require more advanced and extensive computing; it is diffi-
cult to recognize large objects in the image (with occlusions, shadows, etc.),
prevailing features of objects in a database, etc. So far a computer cannot
summarize a book. Even if it recognizes at least the type of a text document,
this classification is based on separate statistical features and not on general
understanding. In any case, this computation requires much more time than
recognition of details. Human perception goes in the opposite direction—we
first see a person and only later a freckle on it. This shows much difference
between the two approaches.

Fuzzy logic might be expected to contribute here because it allows to de-
scribe the objects (characterized in fuzzy terms) that should be recognized.
However, this did not lead to much faster algorithms, and in the current state
of technology, it even cannot for the reasons that will be mentioned in Sect. 3.1.

2.2 What can be Solved Automatically?

Computers opened new perspectives, but there are many human activities
which failed to be solved by classical (hard) computing. E.g., it is possible
to recognize the cover of any CD and play it from a database, without the
CD record. On the other hand, the task of recognition of natural objects is
by far too difficult. Consider, e.g., a field guide of plants. At the first sight,
it seems ready for programming. Besides, an implementation could overcome
the uncomfortable tree structure. However, the field guide is full of imprecise
terms difficult to explain to the computer. Fuzzy logic offers an excellent tool
for their description and further manipulation. Nevertheless, the recognition
is still very difficult and trained human experts can perform much better in
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this task; for them, a single leaf can be a sufficient clue. Another problem
causing difficulties here was described in Sect. 2.1.

2.3 Cheap Solutions

Fuzzy logic is often criticized as an offer of cheap solutions to difficult tasks.
This need not be correct. Even a simple solution can be optimal if we take into
account the speed; sometimes this admits to work with a fast approximation
rather than a precise time-consuming solution. In control, the computation
time is often important and requires to predict the state at the time when
the output signal is ready. This may be difficult. A simple algorithm does not
need a long prediction and thus may perform satisfactorily.

Sometimes simple solutions are required by hardware restrictions. Com-
mon processors have dimensions in centimetres and power consumption in
tens of watts or more. Applications which require small size and consumption
cannot be based on this standard hardware. Fuzzy control suggests a reason-
able alternative; some tasks may be solved by microchips with a very low
consumption, e.g., [1].

Also the speed of design may play a decisive role. E.g., the manipulator for
the repair of the Hubble telescope has been equipped with a fuzzy controller
simply because this was the only one which had been designed in time [19].

Finally, some solutions based on fuzzy control can be hardly called cheap
and simple; also this technique contributed by rather advanced solutions.

The objection remains that fuzzy systems are often designed without a
good understanding of the relations. Thus the reliability is doubtful. There-
fore investigation of the guaranteed properties of fuzzy controllers is crucial.
Nevertheless, the classical approach need not be more reliable; it offers exact
solutions to well described systems which, however, are only very simplified
approximations of reality, thus a serious error also cannot be excluded.

So far, the boom of fuzzy technologies is mainly concentrated in areas
where reliability is not a supreme requirement. Fuzzy controlled vacuum clean-
ers, shavers, rice cookers, washing machines, etc. do not risk very much if a
failure occurs. Also the intelligent database search is a useful tool which helps
people in orientation in large data files, but does not take responsibility for
the decision. Without any doubt, fuzzy systems proved to be useful. However,
for other applications they need to prove to be at least as reliable as other
approaches.

3 Specific Problems

3.1 Paradox of Computation with Uncertainty

The human way of computing gives rough estimates quickly, more exact results
require additional effort and time. In contrast to this, conventional computers
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give fast results with the machine precision (which is limited, but high enough
for most applications). Any uncertain quantity (fuzzy number, as well as a
random variable) requires more information for its representation and much
longer time for arithmetical operations. Besides the standard fuzzy arithmetic
(see, e.g., [11]), alternatives were suggested, in particular the constrained fuzzy
arithmetic [10]; surprisingly, its computational complexity is even higher [17].

This is a paradox – a less precise value requires more computation than the
“precise” one. This might be caused by our hardware and encoding. In fact,
imprecision is described very precisely, using more information, in contrast to
the representation of quantities in a human brain. There are some common
aspects of his paradox and the problem of global/local features discussed in
Sect. 2.1.

3.2 Defuzzification

Defuzzification is a necessary part of most fuzzy systems. It seems to be under-
developed in comparison with the other elements. There are many defuzzifica-
tion methods offering different advantages and disadvantages. Little is known
about the selection of defuzzification methods. This is usually quietly left to
the designer. This is a weak point of fuzzy control which is rightly criticized:
From the user point of view, there is no specific requirement on the defuzzi-
fication. We deal thoroughly with the rule base, but not with defuzzification.
Trying to compute with words or fuzzy quantities, we have no natural terms
for specification of the method of defuzzification; we simply rely that it is per-
formed in a way sufficient for interpretation of our rule base. This is treated
only sometimes as a part of the inference mechanism.

3.3 Adding a New Rule

Many fuzzy systems automatically add new rules when the current rule base
appears insufficient. It is possible to modify the whole rule base after this
change, but this is usually not done. It may be even undesirable because of
a risk of a change of behavior in other situations which were handled prop-
erly before. Typically, the new rule is merely added to those already used.
As shown by H. Prade, this approach may have an undesirable side effect,
especially if it is used repeatedly and many new rules are added.

If we add a new rule to a Mamdani–Assilian controller [14], the control
surface, as well as the output, increase. Thus the output membership degrees
become closer to 1 and they may carry less information.

In the residuum-based controller [23], the opposite situation occurs: The
control surface and the output decrease. This monotonic development may
result in output membership degrees closer to 0.

In both cases, the information about a desirable output becomes less spe-
cific. Besides, there are more problems with solvability of the respective system
of fuzzy relational equations [2, 8, 21].



674 M. Navara and M. Petŕık

One attempt to overcome this drawback has been suggested by D. Peri [20];
he considers not only positive, but also negative rules. When their antecedent
is satisfied, the consequent of a negative rule says which output values are not
desirable.

Another solution is the controller with conditionally firing rules proposed
in [15]. The newly added rule does not change the form of other rules, but it
modifies their effect by attenuation of their influence within the domain of (the
antecedent of) the new rule. This increases the membership degrees in points
of the new consequent and decreases the membership degrees of other points.
Thus the controller with conditionally firing rules may be recommended in
systems where we expect many new rules added during the phase of tuning.

In [16], the latter two methods were tested on the automatic generation
of fuzzy rules for approximation in the Fuzzy Rule Learner according to [27]
and implemented in a system for medical diagnostics.

4 Conclusions and Perspectives

The above arguments lead us to a conclusion that fuzzy control reached a crit-
ical point. The following decade will decide its future role. There are many
difficult control problems which combine high non-linearity with supreme
requirements on reliability. If fuzzy control succeeds to solve them, it may
expect a second boom and a wide spectrum of applications. If it fails, it will
remain only one alternative method of cheap design of cheap controllers for
applications where reliability is not the highest preference. Applications in vac-
uum cleaners, washing machines, etc. are nice, but not satisfactory as the only
applications of an ambitious theory. Therefore the study of guaranteed prop-
erties of fuzzy controllers (in particular stability) is crucial for their future.
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Fuzzy Sets in Categories of Sets with Similarity
Relations∗

Jǐŕı Močkoř

Summary. Several examples of categories K of sets with similarity relations are
investigated. Objects of K are pairs (A, δ), where A is a set and δ is a similarity rela-
tion on A with values in an MV -algebra Ω. A fuzzy set t in (A, δ) in a category K (in
symbol t ⊂∼K

(A, δ)) is then defined as a morphism t : (A, δ) → (Ω,↔) in a category

K. Some properties of these fuzzy sets are investigated in some special categories K .

Key words: Fuzzy sets, Sets with similarity relation, Categories of sets with
similarity relations.

1 Introduction

There are several categories of sets with similarity relations defined over lat-
tice structures which are of importance [1, 3]. Let us mention at least three
examples. The first one is a category SetF(Ω) defined over a complete MV -
algebra Ω = (L,∧,∨,⊗,→, 1Ω , 0Ω). This category consists of objects (A, δ)
(called Ω-sets), where A is a set and δ is a similarity relation, i.e. a map
δ : A×A→ Ω such that

(a) δ(x, x) = 1 = 1Ω ,
(b) δ(x, y) = δ(y, x),
(c) δ(x, y)⊗ δ(y, z) ≤ δ(x, z).
A morphism f : (A, δ) → (B, γ) in SetF(Ω) is a map f : A → B such
that γ(f(x), f(y)) ≥ δ(x, y) for all x, y ∈ A. A category SetR(Ω) which is
an analogy of a category of sets with relations between sets as morphisms is
also of importance. Objects of this category SetR(Ω) are the same as in the

∗ The paper has been supported by the project MSM 6198898701 of the MŠMT
ČR.
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category SetF(Ω) and morphisms f : (A, δ) → (B, γ) are maps f : A×B → Ω
such that

(a) (∀x, z ∈ A)(∀y ∈ B) δ(x, z)⊗ f(x, y) ≤ f(z, y),
(b) (∀x ∈ A)(∀y, z ∈ B) γ(y, z)⊗ f(x, y) ≤ f(x, z),
(c) (∀x ∈ A) 1 =

∨
{f(x, y) : y ∈ B}.

Finally let Set(Ω) be a category with the same objects as in the category
SetF(Ω) and with morphisms f : (A, δ) → (B, γ) which satisfy conditions for
morphisms in SetR(Ω) and the condition

(a) (∀x ∈ A)(∀y, z ∈ B) f(x, y)⊗ f(x, z) ≤ γ(y, z) (functionality of f).

This category is an analogy of a category of classical sets with relations which
are functions as morphisms.

It is clear that all these categories of sets with similarity relations are gen-
eralizations of a classical category Set of sets with maps as morphisms. Hence
for any category K of Ω-sets it is than natural to investigate objects which
could be understood as a generalizations of fuzzy sets in a category Set. In
this paper we want to introduce these fuzzy sets and investigate some of their
properties. We will be specially interested in fuzzy set which are derived from
classical subsets.

2 Fuzzy Sets in Ω-sets

We introduce fuzzy sets objects in Ω-sets by the following definition.

Definition 1. Let K be a category with Ω-sets as objects. Then a fuzzy set s
in an object (A, δ) in a category K (in symbol s ⊂∼K

(A, δ)) is a morphism

s : (A, δ) → (Ω,↔)

in K, where α↔ β = (α→ β) ∧ (β → α) .

The following are some examples of fuzzy sets in categories defined above.

Example 1.

(a) A fuzzy set s ⊂∼SetF(Ω)
(A, δ) is a map s : A→ Ω such that s(x)⊗δ(x, y) ≤

s(y) for all x, y ∈ A (These objects are called extensional objects (see [2]).
(b) A fuzzy set s ⊂∼SetR(Ω)

(A, δ) is a map s : A×Ω → Ω such that

(i) s(a, α)⊗ δ(a, a′) ≤ s(a′, α),
(ii) s(a, α)⊗ (α↔ β) ≤ s(a, β),
(iii) 1 =

∨
α∈Ω s(x, α).

(c) A fuzzy set s ⊂∼Set(Ω)
(A, δ) is a map s : A × Ω → Ω such that

s ⊂∼SetR(Ω)
(A, δ) and s(a, α)⊗ s(a, β) ≤ α↔ β.
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Let K be a category with objects Ω-sets (A, δ). We set

FK(A, δ) = {s : s ⊂∼K
(A, δ)}

(the set of all fuzzy sets in (A, δ) in K).

Theorem 1. For K = SetF(Ω),SetR(Ω) or Set(Ω), FK : K → Set is a
contravariant functor.

It is well known that there exists a functor F : SetF(Ω) → Set(Ω) which
is an identity function on objects and for a morphism f : (A, δ) → (B γ),
F (f)(a, b) = γ(f(a), b) holds for all a ∈ A, b ∈ B.

Proposition 1. There exists a natural transformation

σ : FSetF(Ω) → FSet(Ω) ◦ F.

For an object (A, δ) we define a map σ(A,δ) : FSetF(Ω)(A, δ) → FSet(Ω)(A, δ)
such that for s ∈ FSetF(Ω)(A, δ), σ(A,δ)(s)(a, α) = s(a) ↔ α for all a ∈ A and
α ∈ Ω. Then it can be proved that σ is a natural transformation.

Let S be a subset in an Ω-set (A, δ), S ⊆ A. Analogously as for classical
sets any subset defines a fuzzy set in a corresponding Ω-set for all categories
defined above.

Proposition 2. Let (A, δ) be an Ω-set and let S ⊆ A.

(i) Let K = SetF(Ω) and let ∈S (x) =
∨

s∈S δ(x, s). Then ∈S⊂∼SetF(Ω)

(A, δ).
(ii) Let K = SetR(Ω) and let ∈S (x, α) = α→

∨
s∈S δ(x, s). Then

∈S⊂∼SetR(Ω)
(A, δ).

(iii) Let K = Set(Ω) and let ∈S (x, α) = α↔
∨

s∈S δ(x, s). Then
∈S⊂∼Set(Ω)

(A, δ).

It is clear that a value α→∈S (a) then represents in some sense a truth value
‖a ∈α S‖(A,δ)

K of an interpretation of a statement a ∈α S = “a ∈ S in a de-
gree at least α” in an object (A, δ) in a category K = SetF(Ω). Analogously
∈S (a, α) represents the same truth value in a category SetR(Ω) or Set(Ω).

There is even a more closer relationship between subsets and fuzzy set.
Recall that a subset S ⊆ A is called complete in (A, δ) if S = {a ∈ A :∨

x∈S δ(a, x) = 1} = S.

Proposition 3. Let (A, δ) be an Ω-set and let S ⊆ A.

(i) ∈S=∈S for any category K = Set(Ω),SetF(Ω) or SetR(Ω).
(ii) Let p ⊂∼K

(A, δ), where K = Set(Ω),SetR(Ω), respectively. Then
Sp = {a ∈ A : p(a, 1) = 1} is a complete set.

(iii) Let K = Set(Ω),SetR(Ω), respectively. Then S∈S
= S if and only if S

is a complete set in (A, δ).
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Let f : (A, δ) → (B, γ) be a morphism in a category K of Ω-sets and let
T ⊆ B. Depending on a category K we can define various types of inverse
images of T under a morphism f . For example, if K = SetF(Ω) then
f−1(T ) = {a ∈ A : f(a) ∈ T} and for K = SetR(Ω), f−1(T ) = {a ∈
A :

∨
y∈T f(a, y) = 1}.

Proposition 4. Let f : (A, δ) → (B, γ) be a morphism in K, T ⊆ B and let
a ∈ A, α ∈ Ω. Then

(i) ‖a ∈α f
−1(T )‖(A,δ)

K ≤ ‖f(a) ∈α T‖(B,γ)
K ,

(ii) FK(f)(∈T )(a, α) ≤ ‖f(a) ∈α T‖(B,γ)
K

for K = SetF(Ω) and SetR(Ω).

It can be proves that the equality relation does not hold in previous propo-
sition, in general. On the other hand we have the following partial result.

Proposition 5. Let f : (A, δ) → (B, γ) be a morphism in K = Set(Ω).

(a) If the operation ⊗ is idempotent in MV-algebra Ω then the equality relation
holds in a statement (b) from Proposition 2.4.

(b) If for any a ∈ A there exits b ∈ B such that f(a, b) = 1 then the equality
relation holds in a statement (b) from Proposition 2.4.

An inverse image of a set T ⊆ B in a morphism f : (A, δ) → (B, γ) in a
category Set(Ω) can be also introduced in a little different form as follows:

f (−1)(T ) = {a ∈ A :
∨

x∈T

∨

b∈B

f(a, b)⊗ γ(b, x) = 1}.

In the following proposition we present some properties of these sets.

Proposition 6. Let f : (A, δ) → (B, γ) be a morphism in a category Set(Ω)
and let T ⊆ B.

(a) f (−1)(T ) is a complete set in (A, δ),
(b) f (−1)(T ) = f (−1)(T ),

Finally, let f : (A, δ) → (B, γ) be a morphism in a category SetF(Ω). By
using a functor F we obtain a morphism F (f) in a category Set(Ω), namely
F (f)(a, b) = γ(f(a), b) for any a ∈ A, b ∈ B. By the following proposition we
can simply calculate the inverse image of this morphism F (f).

Proposition 7. Let f : (A, δ) → (B, γ) be a morphism in a category SetF(Ω)
and let T ⊆ B. Then we have

F (f)−1(T ) = f−1(T ) = {a ∈ A : f(a) ∈ T}.
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3 Properties of functors FK

In this section we present some principal properties of functors FK for some
categories K of sets with similarity relations. In the first theorem we show
that fuzzy sets in an object (A, δ) in a category SetF(Ω) can be identified
with some characteristic morphism (A, δ) → (Ω∗, µ), where

Ω∗ = ({(α, β) ∈ L× L | α ≥ β}, µ),
µ((α1, β1), (α2, β2)) = α1 ⊗ (β1 → β2) ∧ α2 ⊗ (β2 → β1).

Theorem 2. There exists a natural equivalence

ζ : FSetF(Ω)(−) ∼= HomSetF(Ω)(−, (Ω∗, µ)).

Instead of a contravariant functor FSetF(Ω) : SetF(Ω)op → Set we
can introduce a covariant version Fcov

SetF(Ω) : SetF(Ω) → Set such that
Fcov

SetF(Ω)(A, δ) = FSetF(Ω)(A, δ) and for a morphism f : (A, δ) → (B, β)
in SetF(Ω) let Fcov

SetF(Ω)(f) be defined such that for s ∈ FSetF(Ω)(A, δ) and
b ∈ B we have

Fcov
SetF(Ω)(f)(s)(b) =

∨

x∈A

s(x)⊗ β(b, f(x)).

Analogously we can introduce a covariant version of a functor Hom. Let
hom : SetF(Ω) → Set be a covariant functor such that

hom(A, δ) = HomSetF(Ω)((A, δ), (Ω∗, µ))

and for a morphism f : (A, δ) → (B, β), u ∈ hom(A, δ), b ∈ B,

hom(f)(u)(b) = (1Ω ,Fcov
SetF(Ω)(f)(pr2.u)(b)).

Theorem 3. The natural equivalence ζ is also a natural equivalence

ζ : Fcov
SetF(Ω)(−) ∼= hom(−).

If K is a category of sets with similarity relationss then a set of fuzzy sets
FK(A, δ) of an object (A, δ) can be transformed onto a set with a similar-
ity relation. For example if K = SetF(Ω) then on a set FSetF(Ω)(A, δ) two
similarity relations σ, τ can be defined such that

σ(s, t) = σ(A,δ)(s, t) =
∧

x∈A

s(x) ↔ t(x),

τ(s, t) = τ(A,δ)(s, t) =

{∨
x∈A s(x)⊗ t(x), if s �= t

1, if s = t
,
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If K = Set(Ω) then on a set FSet(Ω)(A, δ) a similarity relation ρ can be
defined such that

ρ(p, q) = ρ(A,δ)(p, q) =
∧

x∈A

p(x, 1) ↔ q(x, 1).

Recall that a fuzzy set t ⊂∼Set(Ω)
(A, δ) is a weak singleton if

∨
a∈A t(a, 1) = 1

and t(a, 1) ⊗ t(b, 1) ≤ δ(a, b) for all a, b ∈ A. Let Fws
Set(Ω)(A, δ) = {t :

t is a weak singleton in (A, δ)}.

Definition 2. (a) Let F↔(SetF(Ω)) ↪→ SetF(Ω) be a full subcategory of
SetF(Ω) with objects (FSetF(Ω)(A, δ), σ),

(b) Let F⊗(SetF(Ω)) ↪→ SetF(Ω) be a full subcategory of SetF(Ω) with ob-
jects (FSetF(Ω)(A, δ), τ),

(c) Let Fws(Set(Ω)) ↪→ Set(Ω) be a full subcategory of Set(Ω) with objects
(Fws

Set(Ω)(A, δ), ρ).

Theorem 4. Any of the above defined subcategories is a weak reflective sub-
category in a corresponding category.
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Fuzzy Sets as a Special Mathematical Model
of Vagueness Phenomenon∗

Vilém Novák

Summary. In the paper, the indeterminacy phenomenon is discussed, that is, a
phenomenon having two facets: uncertainty and vagueness. We argue that fuzzy
sets are a reasonable mathematical tool for modeling of the latter. The necessary
sound foundations of their theory can now be more easily established because of
significant progress reached in the formal theory of fuzzy logic. Further direction in
the development of fuzzy set theory is also briefly discussed.

Key words: Fuzzy set theory, Fuzzy logic, Vagueness, Uncertainty, Indeter-
minacy.

1 Introduction

Forty-one years have already passed since Zadeh published his first paper [23].
It attracted a lot of researchers and also philosophers by turning their interest
into vagueness phenomenon which, in the same way as randomness, has also
been recognized as an unavoidable feature of the surrounding world. More-
over, Zadeh has shown in a sequence of papers that his ideas can be used in
many kinds of real applications. We claim that fuzzy set theory is a reasonable
mathematical theory providing a working model of vagueness phenomenon in
a way similar to probability theory which provides the same for uncertainty.

The history of fuzzy sets is analogous to the history of classical set theory.
In the beginning (see [23]), it was formulated purely intuitively as a theory of
groupings with unsharp boundaries. During the time, several attempts to for-
mulate their theory as a formal axiomatic theory appeared. But only recently,
thanks to the rapid development of the formal fuzzy logic, sound foundations
of fuzzy set theory have been established [1, 5, 11].

∗ The paper has been supported by the projects MSM 6198898701 and 1M0572 of
the MŠMT ČR.
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In this paper, we will briefly characterize the vagueness phenomenon and
the way, how it can be encompassed by the fuzzy set theory. We will also briefly
discuss the distinction between potentiality and actuality and show that these
phenomena lay in the core of understanding to the distinction between truth
and possibility.

2 Uncertainty and Vagueness

Two phenomena whose importance in science raised especially in 20th century
are uncertainty and vagueness [2,19]. Both of them characterize situations in
which the amount and extent of knowledge we have at disposal is crucial. It
is important to stress that both uncertainty as well as vagueness form two
complementary facets of a more general phenomenon called indeterminacy.
In reality, we often meet indeterminacy with both its facets present, i.e., vague
phenomena are at the same time uncertain.

The uncertainty phenomenon emerges when there is a lack of knowledge
about occurrence of some event. This means that it is encountered when an
experiment (process, test, etc.) is to proceed, the result of which is not known
to us; it may also refer to variety of potential outcomes, ways of solution,
choices, etc. We will speak about events also in this case. Its specific form
is randomness which is uncertainty raising in connection with time. There is
no randomness (uncertainty) after the experiment was realized and the result
is known to us. From this point of view, uncertainty is epistemological con-
cept. Note that it is connected with the question whether a given event may
be regarded within some time period, or not. This becomes apparent on the
typical example with tossing a player’s cube. The phenomenon to occur is the
number of dots on the cube and it occurs after the experiment (i.e., tossing
the cube one times) has been realized. Thus, we refer here to the future. How-
ever, the variety of potential events may raise even a more abstract uncertainty
that is less dependent on time. We may, for example, analyze uncertainty in
potentiality (that is, lack of knowledge) without necessary reference to time,
or with reference to the past (such as a posterior Bayesian probability). This
supports the ideas presented in the next section. It should be stressed, how-
ever, that when speaking about the pure uncertainty we refrain from the
character of events in concern so that they can be both crisply as well as
vaguely delineated.

The mathematical model (i.e., quantified characterization) of the uncer-
tainty phenomenon is provided especially by probability theory. In everyday
terminology, probability can be thought of as a numerical measure of the like-
lihood that a particular event will occur. There are also other mathematical
theories addressing the mentioned abstract uncertainty, for example possibil-
ity theory, belief measures and others.

The vagueness phenomenon raises when trying to group together objects
that have a certain property ϕ. The result is an actualized grouping of objects

X = {o | o is an object having the property ϕ}.
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Note that X, in general, it cannot be taken as a set since the property ϕ may
be vague, i.e., it may not be possible to characterize the grouping X precisely
and unambiguously; there can exist borderline elements o for which it is un-
clear whether they have the property ϕ (and thus, whether they belong to X),
or not. On the other hand, it is always possible to characterize, at least some
typical objects (prototypes), i.e., objects having typically the property in con-
cern. For example, everybody can show a “blue sweater” or “huge building”
but it is impossible to show “all huge buildings”.

Vagueness is opposite to exactness and we argue that it cannot be avoided
in the human way of regarding the world. Any attempt to explain an ex-
tensive detailed description necessarily leads to using vague concepts since
precise description contains abundant number of details (see the incompati-
bility principle formulated by Zadeh in [24]). To understand it, we must group
them together — and this can hardly be done precisely. A nonsubstitutable
role is here played by natural language. However, the problem lays deeper, in
the way how people regard the phenomena around them.

Vagueness should also be distinguished from generality and from ambigu-
ity. “More general” means that more (various) groupings of objects are taken
into account, while ambiguity occurs in the language when more alternative
meanings are assigned to the same word or expression. Unlike uncertainty
where we always have to consider whether some phenomenon occurs or not,
vagueness concerns the way how the phenomenon itself is delineated, no mat-
ter whether it will occur or not.

A typical feature of vagueness is its continuity: a small difference between
objects cannot lead to abrupt change in the decision of whether either of them
has, or has not a vague property (cf. Black’s “museum of applied logic” in [2]).
The transition from having a (vague) property to not having it is smooth.

We believe that it is now clear that the vagueness phenomenon cannot be
avoided. In the most striking way it is exhibited in the semantics of natural
language. Let us stress that this is not its weakness but vice-versa, its great
strength and it is the main reason why we are able to communicate in nat-
ural language about everything we see in the surrounding world. Therefore,
when used for description of some process, the theory harnessing its semantics
enables us to develop methods for harnessing the process itself. This is the
secret of success, for example, of fuzzy control.

3 Actuality and Potentiality

When shall we use the degree of truth and when some other degree, such
as possibility or probability? We argue that this difference follows from the
difference between actuality and potentiality.

Due to the deep analysis of Vopěnka in [21,22], every set in classical (Can-
tor) set theory is understood as actual, i.e., we take all its elements as already
existing and at our disposal in one moment. Therefore, our reasoning about
any set stems from the assumption that it is at our disposal as a whole. Of
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course, when a set is infinite then only God is able to see it as a whole while
we can see only a part of it. On the other hand, most events around us are
only potential, i.e., they may, but need not, occur or happen. Thus, to create
a grouping of objects, we may have only a method how a new element can
be created but all of them will never exist together. For example, if a tailor is
given a piece of cloth, many various dresses can be sewed off it but only one
will actually be finished. It is even impossible to imagine all dresses that can
be sewed from one piece of cloth.

We conclude that the difference between actuality and potentiality corre-
sponds to the difference between vagueness and uncertainty: vagueness applies
to an actualized non-sharply delineated groupings while uncertainty is encoun-
tered when dealing with still nonactualized ranges of objects: we speculate
about the whole X, but only part of it indeed exists. Once an actualized, i.e.,
already existing grouping of objects is at our disposal, we may speak about
truth of the fact that some element belongs to it. Indeed, let an object y be
created (at least in our mind). If we learn that it has a property ϕ, we know
that it falls into (the existing part of) X, i.e., we know the truth of y ∈ X. If,
however, we do not know whether y will be created (will exist) or not, it has no
sense to speak about the truth of the fact that y ∈ X since there is no such fact.

The possibility raises when we temporarily actualize a potential grouping,
i.e., we imagine all (or, some) still not existing elements as existing. Then the
“added” part may be, or may be not, possible. For example, given a tossing
cube, we can imagine all dots that can be tossed, i.e., 1–6 as already existing
(though they will never exist together). Hence, any of the numbers 1–6 is
possible. On the other hand, since there is no number 7 on the cube, it has no
sense to imagine it as a member of this temporarily actualized grouping. Con-
sequently, 7 is, in this case, impossible. At the same time, we may try to guess
whether a given number will indeed be tossed (i.e., the given element of this
grouping will be created). This situation is usually modeled using probability.
Note that only possible events can indeed occur with various probability and
so, probability is majorized by possibility. Has that the temporarily actual-
ized grouping can be at the same time vague and so, possibility needs not
be crisp.

Finally, let us remark that the difference between actuality and potential-
ity has been implicitly considered by Zadeh as conjunctive and disjunctive
view on fuzzy sets. The latter appears in his possibility theory [25].

4 Fuzzy Sets Naturally Emerge as a Graded Model
of Vagueness

It is clear that a working mathematical theory of the vagueness phenomenon
is necessary. There are not many theories aiming at this goal. Let us mention
supervaluation [9, 20], alternative set theory [21, 22] and fuzzy logic (fuzzy
set theory). The latter has a privileged position among all of them especially
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because it is the best elaborated theory. Its main idea applies a principle called
graded approach (sometimes also fuzzy approach) that is, a relation between
object and its property is characterized using a scale. This is a general prin-
ciple of the human mind for which it is natural to introduce a scale whenever
a vague property is encountered. For example, we often say “almost white
dress”, “very strong engine”, “too unpleasant situation”, etc. In all these ex-
amples, we introduce some degrees of intensity of the property in concern. The
degrees are taken from a scale that must have certain necessary properties: it
must be an ordered set and it must have potential to capture the continuity
feature of vagueness, i.e., to be uncountable. Furthermore, it must enable us
to represent various kinds of operations with the properties. The result is an
algebra of truth values (see [4, 7, 8, 16]).

Let us stress that fuzzy sets take the role of approximation of vagueness
(this has been mathematically formulated by Novák first in [10] and later also
in [12]). We argue that such approximation is a consequence of an indiscerni-
bility, i.e., of our inability to discern objects (cf. Vopěnka [21, 22], and also
Novák [12]). For example, a movie is a sequence of pictures. When projected
at a sufficient speed, we are unable to distinguish them one from another and
the result is a vague phenomenon that we regard as a continuous movement.
Similarly, a shape of a heap of stones is also vague and when adding or remov-
ing one stone, its shape indiscernibly changes. This is the core of the sorites
paradox (for the mathematical model of sorites using indiscernibility relation
see [14]). Just another example is the so-called ostensive definition, that is,
learning by examples: for example, mother shows her child a given plant and
says “this is a tree”. After several repetitions with different trees, the child cap-
tures this idea and he/she is able to point out correctly various trees that may
be significantly different from those originally shown. This means that he/she
captured certain indiscernibility relation enabling him/her to classify trees.

The indiscernibility is in fuzzy set theory modeled via fuzzy equality (fuzzy
equivalence). Note this idea is contained in the works of various authors
(e.g., [6, 7]) and it fully conforms with the original idea that fuzzy sets deal
with gradedness or graduality.

With respect to the discussion in the previous section, it becomes clear
that when temporarily actualizing a potential and, at the same time, vague
grouping and we use fuzzy sets for this task, we naturally arrive at degrees
of possibility. From this point of view, Zadeh’s possibility postulate [25] stat-
ing that the possibility distribution comes out of a membership function of a
corresponding fuzzy set is quite natural.

Stated as a conclusion of this section, fuzzy sets characterize actualized
vague groupings while possibility distributions characterize potential ranges
of objects and we imagine certain part of them (sometimes even whole of them)
as temporarily actualized. In the former case, the membership degree is a de-
gree of truth that a given element has a property in concern, while in the latter
case, it is a possibility degree that an object can be actualized (i.e., created).
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5 Future Development of Fuzzy Set Theory

We see the main tract of further development of fuzzy set theory and its
applications in the following:

1. Development of complete formal logical and philosophical backgrounds of
fuzzy set theory.

2. Seeking new problems stemming from display of the vagueness phenom-
enon and offering solutions using fuzzy sets (and fuzzy logic).

3. Development of new methods based on fuzzy sets thanks to which it is
possible to solve classical problems in a novel way, with less effort and
more transparent results.

Ad 1. Clearly, the development of fuzzy set theory is closely related to that
of fuzzy logic, which achieved a significant progress especially during recent
15 years. There is still a lot of work before us to establish good mathematical
foundations of fuzzy set theory. However, various attempts have been accom-
plished (see [3] and the citations contained therein). A very promising work
on foundations based on the formal theory of fuzzy logic, both predicate as
well as higher order, is contained in the recent papers [1,5] (cf. also the fuzzy
type theory [13] whose model comprises fuzzy sets of all orders).

It seems also important to clarify the relation of fuzzy sets to supervalua-
tion theory ( [9,20]). The main idea of the latter is that vague phenomena can
be made precise in a variety of different ways. The truth that an element has
a vague property is its supervaluation, which is a function of the tentative or-
dinary (classical) truth valuations of this proposition. For each way of making
it precise, we get a new tentative classical valuation indicating whether the
proposition, as thus made precise, is true or false. If every way of making the
proposition precise makes it (classically) true, all of its tentative valuations
will be true. If every precise version of the proposition is false, all of the ten-
tative classical valuations are false. Otherwise, we get a mixture of tentative
valuations. The result of supervaluation of the vague proposition is true if all
the tentative valuations are true and false if they are all false; otherwise it is
undefined. We argue that this situation can be embedded into fuzzy logic and
thus, in fuzzy set theory. The details, however, have to be elaborated.

Ad 2. One of the problems of fuzzy set theory can be seen in the fact that
people often confine to, sometimes rather cheap, generalization of the known
results obtained in classical mathematics. We cannot completely cast this work
aside since it may often be a starting point to something deeper. However, it
is insufficient as a general paradigm. It should be noted that Běhounek and
Cintula have shown in [1] that a great deal of results that have been developed
for special models of fuzzy sets are more or less direct consequence of the very
general syntactic theory of fuzzy classes. Consequently, a lot of effort can be
spared for seeking and solving questions and problems specific for the vague-
ness phenomenon. We may be successful only when we carefully realize, what
is fuzzy set theory about, what it can, or cannot, offer and at which moment
the vagueness phenomenon really prevents classical mathematical methods
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(i.e., those ignoring vagueness) from providing a good solution. Example of
such problem is the theory of evaluating linguistic expressions (see, e.g., [14])
that may hardly be formed using classical set theory and that, in our opinion,
plays a very important role in many applications of fuzzy sets. Note that this
theory has also been initiated by Zadeh and it is closely related to his concepts
of “computing with words” and “precisiated natural language” (cf. [26]).

We argue that fuzzy sets can offer means for solution of nonstandard prob-
lems in the newly emerging theories, e.g., in artificial intelligence, robotics,
computer science, when developing human-like robots, modeling of swarms,
and elsewhere.

Ad 3. This interesting possibility emerged not long ago. A typical example
of this idea is the concept of fuzzy approximation which considers a problem of
approximation of ordinary functions in other than classical spaces of functions
equipped with similarities or fuzzy partitions.

One of already existing results of fuzzy approximation theory is a surpris-
ingly powerful technique of fuzzy transforms developed by I. Perfilieva (see,
e.g., [17, 18]). It can be demonstrated that this technique can be used for so-
lution of many conventional problems such as numerical integration, solution
of differential equations (including partial ones), or compression of pictures.
Technique of fuzzy transforms is in many respects simpler than the technique
of other known transforms (Fourier, Laplace, etc.) and less sensitive to setting
of initial conditions.

6 Conclusion

Fuzzy set theory is a well established mathematical theory that is far from
being trivial but still has a great potential for further development. It is reason-
ably philosophically substantiated and provides a wide field both for further
theoretical investigation as well as for the development of new methods and
applications not only in itself but also as a part of many other theories.
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Fuzzy IF-THEN Rules from Logical Point
of View∗

Irina Perfilieva

Summary. The theory of IF-THEN rules proposed by Lotfi A. Zadeh attracted
many researchers and practitioners because of its simplicity and elegance. This con-
tribution is an attempt to create a comprehensive logical theory of fuzzy IF-THEN
rules based on Hájek’s predicate BL-fuzzy logic. The formal logical theory presented
in this contribution emphasizes that:

– A system of fuzzy IF-THEN rules with the Compositional Rule of Inference
characterizes a partially given fuzzy function.

– In any model of the theory of IF-THEN rules the respective system of fuzzy
IF-THEN rules is solvable.

Key words: Fuzzy logic, Fuzzy IF-THEN rules.

1 Introduction

The theory of fuzzy IF-THEN rules proposed by Lotfi A. Zadeh (see e.g., [9])
attracted many researchers and practitioners because of its simplicity and ele-
gance. The main idea is to show that deduction can proceed via computation.
With this purpose, he proposed two rules of entailment:

x is A

(x, y) is R
CRI:

y is (A ◦R)

and

IF x is A THEN y is B
x is A′

GMP:

y is B′

∗ This paper has been partially supported by the grant 201/04/1033 of GA ČR and
partially by the research project MSM 6198898701 of MŠMT ČR.



692 I. Perfilieva

where CRI abbreviates the Compositional Rule of Inference and GMP stands
for the Generalized Modus Ponens. Without going to specific details which
will be discussed later, let us comment that in CRI, ◦ denotes a composition
between A and R and in GMP, A′ and B′ denotes restrictions related to
A and B. Both rules can be understood as generalization of classical Modus
Ponens rule

IF x is A THEN y is B
x is A

MP:

y is B

when considering its semantical interpretation extended to the set [0, 1] of
truth values.

The following semantical interpretation of CRI and GMP rules has been
proposed by Zadeh:

– Choose [0, 1] as a set of truth values.
– For interpretation of logical connectives choose min(a, b) for conjunction,

max(a, b) for disjunction, min(a, b) for implication and 1−a for negation.
– For interpretation of R in CRI choose a fuzzy relation R : X×Y −→ [0, 1].
– For interpretation of IF x is ATHEN y is B in GMP choose a fuzzy rela-

tion (A→ B)(x, y) = min(A(x), B(y)).
– To compute (A ◦R) in CRI choose the sup−∧-composition

(A ◦R)(y) =
∨

x∈X

A(x) ∧R(x, y), y ∈ Y.

– Compute B′ in GMP as follows:

B′(y) = (A′ ◦ (A→ B))(y) =
∨

x∈X

(A′(x) ∧A(x) ∧B(y)), y ∈ Y. (1)

This means that the original intention of Zadeh was to consider both rules
semantically. Therefore, he did not put any restriction on interpretation of
A,A′, B,R.

The problem arises if we try to apply the proposed interpretation to MP.
This leads to verification of the equality

B(y) = (A ◦ (A→ B))(y) =
∨

x∈X

(A(x) ∧B(y)). (2)

It turns out that (2) does not always hold. To show this, it is sufficient
to choose universes X,Y and put B(y0) > 0 for some y0 ∈ Y and put
A(x) ≤ B(y0)

2 for all x ∈ X. The right hand side of (2) gives (A◦ (A→ B))(y)
which is not equal to B(y) at y0 and so, the chosen interpretation violates MP.

The situation becomes even more complicated if we consider a set of fuzzy
IF-THEN rules and extend the conditional premise of GMP to

IF x is AiTHEN y is Bi, i = 1, . . . n.
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It is desirable that particularization of extended GMP to extended MP of
the form

IF x is Ai THEN y is Bi, i = 1, . . . n
x is AjMP:

y is Bj

should be valid for each j = 1, . . . , n.

1.1 Semantical Interpretation of Fuzzy IF-THEN Rules

Much effort has been made to find a proper semantics and keep MP valid as
a particular case of CRI or GMP. Let us list the most recognizable ones:

– Interpretation of→ which together with max and min would allow to keep
(2) valid.

– Interpretation of the main logical connectives by the corresponding oper-
ations from some residuated lattice.

– Interpretation of Ai|i=1,...,n, Bi|i=1,...,n, R in such a way that R solves the
corresponding system of fuzzy relation equations:

(Ai ◦R)(y) = Bi(y), i = 1, . . . , n. (3)

Although many results have been obtained in this direction and gave rise to
corresponding theories (cf. [1, 3, 4, 6]), they did not result in a formal logical
theory that would explain reasoning based on fuzzy IF-THEN rules.

1.2 Formal Logical Theories of Fuzzy IF-THEN Rules

Two approaches are worth to be mentioned in a correspondence with the topic
of this subsection: Novák’s fuzzy logic in broader sense based on fuzzy logic
with evaluated syntax [7] and Hájek’s theory of approximate reasoning as a
special theory of predicate BL-fuzzy logic [5].

Hájek actually created three special theories in predicate fuzzy logic:
Comp, CompMP and CompCR, each with the respective special axiom re-
lated to CRI or GMP. In each theory he used a trick of splitting an axiom
and creating by this a rule of inference. However, he did not consider a re-
lationship between CRI and MP or GMP and MP. Therefore, his special
theories have no interconnections.

1.3 Synergy of Semantics and Syntax of Fuzzy IF-THEN Rules

Logical deductions via computations and computing with words — these par-
adigms are still actual and attractive (see e.g., [2]). They motivate creation of
formal logical theories capable of producing and explaining deduction based
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on fuzzy IF-THEN rules, answering queries and, at the same time, proving
that the produced answers are correct. In other words, they require both se-
mantics as well as syntax of fuzzy IF-THEN rules and deduction over them.

This contribution is an attempt to create a new comprehensive logical the-
ory of fuzzy IF-THEN rules based on Hájek’s predicate BL-fuzzy logic (see
also [8]). The formal logical theory which will be presented here emphasizes
the following features:

– A system of fuzzy IF-THEN rules with the Compositional Rule of Infer-
ence characterizes a partially given fuzzy function.

– A corresponding system of fuzzy relation equations (3) is solvable in any
model of the theory of fuzzy IF-THEN rules.

– The extended MP is provable in the theory of fuzzy IF-THEN rules.
– A particular form of GMP is provable in the theory of fuzzy IF-THEN

rules.
– A proper extension of the theory of IF-THEN rules by additional axioms

(rules) can be modeled by an extended model which preserves all para-
meters computed before.

2 Special Theory of Fuzzy IF-THEN Rules

2.1 Language of BL∀ and Its Structure

Let us recall [5] that the language J of the basic predicate fuzzy logic (BL∀)
consists of predicate symbols P,Q, S, . . ., object variables {x, y, . . .}, object
constants, {a, b, . . .}, connectives {&,→}, quantifiers {∀,∃} and truth con-
stants {0̄, 1̄}. Terms and formulas are defined as in classical predicate logic.
Further defined connectives are

p ∧ q = p&(p→ q), ¬p = p→ 0̄,
p ∨ q = ¬(¬p ∧ ¬q), p ≡ q = (p→ q) ∧ (q → p)

Evaluation of formulas is determined by a linearly ordered BL-algebra

L = 〈L,∨,∧, ∗,→, 0, 1〉

and an L-structure for the language J :

M = 〈M, {rP }, {ma}〉.

It is supposed that M is safe, i.e., all the necessary suprema/infima in truth
evaluation of formulas exist. We refer to [5] for other details of predicate cal-
culus BL∀.
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2.2 A Theory Rn as a Conservative Extension of BL∀

Let the language J be extended to Jn, n ≥ 1, by:

– Unary predicate symbols A1, . . . , An and B1, . . . , Bn.
– Binary predicate symbol R.
– Symbol ◦ and a new formula (ϕ◦ψ)(y) as an abbreviation for the formula

(∃x)(ϕ(x)&ψ(x, y)).

A theory Rn as a special theory of BL∀ extends the latter by a set of
special axioms:

(S1) R(x, y) →
∧n

i=1(Ai(x) → Bi(y)),
(S2i) Bi(y) → (Ai ◦R)(y), i = 1, . . . n.

The following theorems can be proved in Rn:

– Properties of ◦

Rn 6 ϕ→ (ψ → ϕ ◦ ψ)

Rn 6 ϕ ◦ (ϕ→ ψ)(y) → ψ(y)

Rn 6 (ϕ1 ≡ ϕ2) → (ϕ1 ◦ ψ ≡ ϕ2 ◦ ψ)

Rn 6 (ϕ1 ∨ ϕ2) ◦ ψ → (ϕ1 ◦ ψ ∨ ϕ2 ◦ ψ)

– Properties of a relation model of fuzzy IF-THEN rules

Rn 6 (∀y)(Bi(y) ≡ (Ai ◦
n∧

i=1

(Ai → Bi))(y)) Extended MP

Rn 6 R(x, y) → (A(x) → (A ◦R)(y)) Compositional Rule

Rn 6 (∀x)(A(x) ≡ Ai(x)) → (∀y)((A ◦R)(y) ≡ Bi) Generalized MP

An L-structure for Jn

Mn = 〈M, {rP }, {rAi
|i=1,...,n, rBi

|i=1,...,n, rR}, {ma}〉

is an expansion of the L-structure M for J .
The following propositions characterize conditions on a structure Mn to

be a model of Rn:

– Mn is a model of Rn if and only if the system of fuzzy relation equations

rAi
◦ rR = rBi

, i = 1, . . . , n,

is solvable and the fuzzy relation rR gives its solution.
– each model M of BL∀ has an expansion to a model Mn of Rn.
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Moreover, the following two statements can be proved:

Proposition 1. Let Mn be a model for Rn. Then M̂n is also a model for Rn

where M̂n differs from Mn in the interpretation r̂nR of R:

r̂nR(x, y) =
n∧

i=1

(rAi
(x) → rBi

(y)).

Proposition 2. Rn is a conservative extension of BL∀.

2.3 Extension of the Special Theory for Fuzzy IF-THEN Rules
by New Rules

A crucial question for making our theory closer to reality is a possibility to
extend it by new rules. We will show thatRn can indeed be properly extended.

First, we extend the language Jn to Jn+1 by putting

Jn+1 = Jn ∪ {An+1, Bn+1}

where An+1, Bn+1 are new unary predicate symbols. Furthermore, we extend
the theory Rn to Rn+1 by putting

Rn+1 = Rn ∪ {S1n+1,S2n+1}

where

(S1n+1) R(x, y)→ (An+1(x) → Bn+1(y)),

(S2n+1) Bn+1(y) → (An+1 ◦R)(y).

Proposition 3. Let M̂n from Proposition 1 be a model of Rn. Assume that
unary predicates rAn+1 and rBn+1 are chosen in such a way that the system

rAi
◦ rR = rBi

, i = 1, . . . , n+ 1,

is solvable with respect to rR. Then the structure

M̂n+1 = M̂n \ {r̂nR} ∪ {rAn+1 , rBn+1 , r̂
n+1
R },

where r̂n+1
R = r̂nR ∧ (rAn+1 → rBn+1), is a model of Rn+1.

Corollary 1. Rn+1 is a conservative extension of Rn.

Proposition 3 shows how a certain model of theory Rn can be extended
to a model of theory Rn+1 and not computed from the very beginning again.
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3 Conclusion

In this paper, a comprehensive logical theory of fuzzy IF-THEN rules based
on Hájek’s predicate BL-fuzzy logic has been formulated. Its main features
are the following:

– A system of fuzzy IF-THEN rules with the Compositional Rule of Infer-
ence characterizes a partially given fuzzy function.

– In any model of the theory of IF-THEN rules the respective system of
fuzzy IF-THEN rules is solvable.

– A particular form of the Generalized Modus Ponens is provable in the
theory of IF-THEN rules.

– A proper extension of the theory of IF-THEN rules by additional axioms
(rules) can be interpreted in an extended model which preserves all the
properties of the original model.
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Synthesizing Adaptive Navigational Robot
Behaviours Using a Hybrid Fuzzy A* Approach

Antony P. Gerdelan and Napoleon H. Reyes

Summary. Previously, we have devised a novel Hybrid Fuzzy A* algorithm that
seamlessly integrates the forward planning feature of A* and the refined reactionary
robot maneuvering capabilities of Fuzzy Logic in a real-time simulation environ-
ment. This paper further explores the uncharted domain of synthesizing three pri-
mary robot maneuvering behaviours, namely target pursuit, obstacle avoidance and
opponent evasion in an adaptive compact Hybrid Fuzzy A* navigation system. In
addition, this work sheds some light onto the dark pits of the previous Fuzzy A* ar-
chitecture proposed, as the former Hybrid approach did not account for the necessity
of evasive behavior, and so modifications to the forward planning layer are deemed
to be necessary. In light of this, this chapter presents a new undesirability compo-
nent that is injected into the A* algorithm, as well as optimisations to the cascade
of fuzzy systems architecture that calculates the robot speed and angle adaptively.
Empirical results are also presented that attest to the algorithm’s robustness when
faced with a formidable army of moving obstacles while in pursuit of a target, as
well as evading multiple opponents.

Key words: Autonomous navigational systems, Path planning, Fuzzy logic,
The A* algorithm, Robot soccer.

1 Introduction

The evasion algorithm presented here is designed to augment the path-
planning layer of the previously developed Hybrid Fuzzy A* Robot Navigation
System [1], and relies on receiving reliable threat information from the sensors
of the robot system. After receiving information concerning threats, a series of
maps (conceptual grids) is created to represent the robot’s environment and a
modified version of the A* algorithm is used to construct a shortest path to a
goal, avoiding obstacles and evading potential threats to the robot. The sys-
tem presented in this chapter has been created to extend navigation systems
specifically for the game of robot soccer, but is applicable to problem domains
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with the same key features. The problem domain for which this algorithm is
intended consists of:

– A complex, three-dimensional environment
– Multiple hostile agents to evade
– A dynamic, moving target to pursue
– A static goal location
– Static and dynamic obstacles to avoid

The evasion algorithm is based on the premise that whilst seeking a target,
a robot must also avoid obstacles and evade competing robots. The game of
robot soccer operates in real time at very high speeds, and therefore demands
extremely fast processing. The window of time available for calculation is ap-
proximately 33 ms and must be shared with machine vision processing and
other system components. Navigation systems must be fast enough to remain
synchronous with the state of the robots, and therefore a balance between
speed of calculation and optimality must be struck.

2 General System Architecture (Fig. 1)

Environment information is collected by the sensors and analysed for key en-
vironment features. Environment features required for the planning layer with
the evasion algorithm are:

– Hostile agent locations and headings
– Obstacle locations
– A goal location

Fig. 1. Architecture of the augmented hybrid fuzzy A* system
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These information are then used to create conceptual grids (maps) of the
environment which are then passed to the planning layer. The environment
processor must create two conceptual grids:

– An environment map
– An undesirability map

An environment map marks obstructed areas of the environment to be ex-
cluded from the search domain of the path-finding algorithm. An undesirabil-
ity map awards undesirability ratings to all areas of the environment based
on the level of perceived threat from hostile agents to that area. The planning
layer draws on both maps to plan a path toward its goal location, avoiding
obstacles and undesirable areas where possible. The waypoints of the path are
passed down to the Fuzzy Logic Control layer, which refines robot movement
and reacts to avoid immediate obstacles. Defuzzified outputs for speed and
rotation of the robot are sent to the actuator control module, where speed
and rotation outputs are decomposed into specific motor instructions.

3 The Evasion Algorithm

The evasion algorithm presented in this chapter is an extension of a dynamic
A* path-finding algorithm [1]. Navigation systems employing dynamic A*
path-finding operate on a 2D grid [2–4], representational of the real environ-
ment, and cells of the grid correspond to nodes in the search domain of the
A* algorithm.

3.1 Dynamic A* Path Finding

For the A* path finding to operate in a dynamic environment, the conceptual
grid must be continually regenerated, keeping up-to-date information on the
locations of moving obstacles. This allows robots to recalculate paths on the
fly when dynamic obstacles move and obstruct the intended path. Cells con-
taining obstacles are excluded from the search process. Figure 2 illustrates a
path calculated on such a grid, where obstructed nodes have been excluded
from path calculation. Other nodes are awarded an f* score from the formula:

f∗ = h∗ + g∗ (1)

where h* represents a heuristic distance from the examined node to the goal
node, and where g* represents the sum of distances between nodes; from the
initial node to the examined node. The A* algorithm finds the shortest path
by searching the domain of nodes and connecting nodes with the lowest f*
scores from the start node to the goal. As can be viewed in Fig. 3, the h* val-
ues for nodes in 2D conceptual grid can be represented in three dimensions,
where z-axis represents the h* value for each node.
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Fig. 2. A Sample A* path finding result (directed arrows) vs. Hybrid Fuzzy A*
Path Finding (curve)

Fig. 3. Example h* values for cells in a conceptual grid

Figure 3 illustrates the h* values for cells in a conceptual grid, where a
start node is at grid position (1, S1) and a goal node at grid position (13,
S13). We can clearly see that, excluding obstacles, the shortest path is in a
straight line; from the highest point to the lowest.
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Fig. 4. Undesirability values awarded to grid cells surrounding a hostile agent

3.2 Undesirability Maps

For the path-planning layer of the navigation system to evade opponents, it
must be provided with information detailing the level of threat to areas of
the environment. To this end, a second conceptual grid of the environment is
created, and each cell is awarded a value based on the undesirability of the
area. A function is required to determine the relative undesirability of each
cell. The valuing function must be tailored to the specific problem domain
and environment.

For the game of robot soccer levels of undesirability centre on each hostile
agent; a teardrop-shaped field of undesirability extends away from the agent
(refer to Fig. 4). Areas of highest undesirability are immediately in front of
the agent. Areas beside the agent are less undesirable to reflect the reduced
threat to those areas, as the agent must rotate before directly threatening
those areas. Areas behind the agent are awarded a lower undesirability value
also; reflecting the reduced threat of the agent reversing or turning around.

Figure 5 illustrates undesirability values in three dimensions for the same
environment as illustrated in Fig. 3, where the z-axis represents the undesir-
ability value of each cell. This effect can be compared to the implementation
of navigation systems employing potential field methods [5–8], but extends
the potential field concept by preempting the movements of hostile agents
and their direction of travel.

3.3 An Evasive Path-Finding Algorithm

Undesirability values and heuristic distance values can be combined to form
a new f* score, balancing the weight of heuristic distance with that of unde-
sirability:

f∗ = h∗ + u∗ + g∗ (2)
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Fig. 5. Example undesirability values for cells in a conceptual grid

Equation (2) presents a new formula; undesirability has been factored into
the heuristic component of the A* algorithm, where h* represents the heuris-
tic distance from the examined node to the goal node, where u* represents
the undesirability value of the examined node, and where g* represents the
cumulative distance from the start node to the examined node.

The combined heuristic distance and undesirability values can be repre-
sented in three dimensions for a “hills-and-valleys” effect, where the z-axis
represents the combined values for each cell in the conceptual grid. Figure 6
illustrates a combination of the heuristic distance values represented in Fig. 3
and the undesirability values represented in Fig. 5. We can see that, as the
algorithm will try to construct a path with lower h* + u* values, it will no
longer plan a path directly to the goal through the centre of the grid, but will
circumnavigate the undesirable areas en route to the goal. The cumulative
g* value ensures that a shortest possible path is created, and not simply the
most “downhill” path.

3.4 Considerations for Evasion

Experimentation with simulation has shown that the weighting given to un-
desirability values is of great importance to the effectiveness of the evasion
system. Values that are too low will effectively produce a system that has no
evasive behavior undesirable regions will be outweighed by the path-finding
components of the f* score formula. Referring to Fig. 6, undesirability values
that are too low would be observed as the peaks created by u* disappear-
ing below the sloping area created by h*. Experiments have shown that if
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Fig. 6. h* + u* values for cells in a conceptual grid

undesirability values are too high, the undesirability component u* of the for-
mula will overcome the path-finding components, compromising the reliability
of the algorithm to produce consistent paths. A balance must be struck by
choosing an appropriate range of undesirability values. Undesirability values
that are too high would be observed by the total dominance of the u* peaks
over the h* slope. The operation taken to determine the undesirability values
for nodes where areas of threat overlap will result in subtle changes to robot
behavior. If, in the problem domain of the robot, areas in between multiple
threats are even more undesirable than areas near one threat alone, it may
make sense to award the area affected the sum of all of the overlapping undesir-
ability values. Otherwise, the maximum of the values may be the most effective
choice.In the game of robot soccer, robots attempting to evade other robots
are often crushed against the walls. In this problem domain, the undesirability
of areas near static obstacles (the walls) can be increased to good effect. For
broader applicability, areas where a robot has more room to evade to ma-
neuver and change course should be less undesirable than those areas where a
robot is more confined. The direction, speed and other details of hostile agents
can be incorporated into the undesirability rating function, so that a very ac-
curate representation of threat can be created in the threat map. Areas further
in front of fast-moving hostile agents are awarded high undesirability ratings,
whilst ratings for areas to the sides and behind those agents are reduced,
as it takes those agents longer to turn around. This additional information
makes more accurate threat maps, but requires additional calculation and is
of diminishing importance to the robot as hostile agents are further away
from it.
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4 Cascade of Fuzzy Systems

Robot navigation systems employing Fuzzy Logic [9–14] require input infor-
mation about a robot’s target; the distance between the robot and the target,
and the angle between the robot’s heading and the target. Utilising the same
inputs, the proposed Fuzzy system architecture embodies multiple fuzzy sys-
tems that collectively perform angle and speed refinements for the tasks of
target pursuit and obstacle avoidance. As can be seen in the diagram of the
Reactionary Layer (Fig. 7), the Path Planning Layer feeds the next intermedi-
ary waypoint to a cascade of Fuzzy systems which paves the way for a smooth
robot maneuvering towards the target.

Such refined robot movements are made precisely to suit the prevailing
circumstances. Target pursuit is carried out by the system whenever it is safe
to do so, and obstacle avoidance is instantaneously engaged with the onset
of any opponent interference. On the top layer is the Fuzzy system for target
pursuit (Fuzzy System 1) that reacts on two inputs, namely the robot’s dis-
tance from the target, and the difference between the robot’s heading angle
and target. The main task of such system is to calculate the correct turning

Fig. 7. Reactionary layer: cascade of fuzzy systems
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Table 1. Fuzzy associative memory matrix for angle control: target pursuit

NEAR FAR VERY FAR

SMALL Mild Turn Mild Turn Zero Turn
MEDIUM Med Turn Mild Turn Mild Turn
LARGE Sharp Turn Med Turn Med Turn

Fig. 8. Fuzzy membership functions for speed control: target pursuit – angle (top)
and Distance (bottom)

angle towards the target relative to its current orientation. Table 1 depicts the
collection of rules that dictate the correct turning angle for a combination of
distance and angle conditions. Such fuzzy sets are defined using trapezoidal
membership functions (Fig. 8). As an example, one of the rules states that:

If the Distance from the Target is NEAR and the Angle from the
Target is SMALL Then the robot should make a Mild Turn.

4.1 Taking Advantage of Angle Symmetry

It is worth mentioning that the design for the fuzzy associative memory ma-
trix takes advantage of the angle symmetry; thereby, considering only the
right-half of the angles involved, from [0, 90] and [270, 360]. As can be viewed
in Fig. 9, the angles were partitioned only into three overlapping parts, each
with its own corresponding fuzzy set. Using this simplified approach, the size
of the FAMM was considerably reduced, since both left and right cases were
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Fig. 9. Fuzzy sets for angle and distance

Table 2. Fuzzy associative memory matrix for speed control: target pursuit

NEAR FAR VERY FAR

SMALL Med Speed Fast Speed Very Fast
MEDIUM Slow Speed Med Speed Fast Speed
LARGE Very Slow Speed Slow Speed Slow Speed

accounted for using the same generic FAMM. In particular, for cases where
the obstacle or target is found on the left-hand side, considering angles from
[90, 270] counter-clockwise, relative to the robot’s orientation, the fuzzy out-
put is simply negated. Moreover, the Fuzzy systems were designed to respond
by taking the minimum turning angle towards the desired robot orientation.
This reactionary robot pursuit movement is further enhanced by yet another
Fuzzy system that handles speed control based on the same inputs fed into
Fuzzy System 1. As an example, a fuzzy rule for speed control comes in the
following form: If the Distance from the Target is VERY FAR and the Angle
from the Target is SMALL Then the robot should move Very Fast. Finally,
the two Fuzzy Systems at the bottom were designed to perform course cor-
rections to account for cases where obstacles are close to the robot. Similar
to Fuzzy System 1, except that it is considering an obstacle instead of the
target, Fuzzy System 3 adjusts the robot’s steering angle based on the robot’s
distance from the obstacle, and difference between the robot’s heading angle
and the angle to the obstacle. In conjunction with Fuzzy System 3, Fuzzy
System 4 deals with speed adjustment, which is also similar to Fuzzy System
2 (Table 2), except that its rule base is designed to avoid collisions.
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4.2 Limits of the Reactionary Fuzzy Systems

Despite the system’s ability to perform refined course corrections to pursue
the target and avoid the obstacles, there are cases however where forward
planning is necessary to prevent the robot from taking routes that could lead
to it getting trapped. Since the fuzzy systems do not take into account the
directions of the moving obstacles, using the fuzzy system solely is not enough
to prevent collisions completely. Thus, the A* algorithm is used to guide the
cascade of fuzzy systems.

5 Conclusions

This chapter has extended our previous paper on a novel Hybrid Fuzzy A*
navigational system, inculcating a predictive quality into autonomous robot
navigation. Robot path planning is now able to second guess the movements of
hostile agents in order to evade the onslaught of potential threats in real time.
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Fuzzy Impulse Noise Reduction Methods
for Color Images

Stefan Schulte, Mike Nachtegael, Valérie De Witte,
Dietrich Van der Weken, and Etienne E. Kerre

Summary. The reduction or removal of noise in a color image is an essential part
of image processing, whether the final information is used for human perception
or for an automatic inspection and analysis. In addition to all the classical based
filters for noise reduction, many fuzzy inspired filters have been developed during
the past years [3–26]. However, it is very difficult to judge the quality of all these
different filters. For which noise types are they designed? How do they perform com-
pared to each other? Are there some filters that clearly outperform the others? Do
the numerical results correspond with the visual results? In this paper we answer
these questions for color images that are corrupted with impulse noise. We also have
developed a Java Applet (http://www.fuzzy.ugent.be/Dortmund.html). The Java
Applet is used to compare all the mentioned filters with each other. It illustrates
the numerical and visual performance of all these filters. Users have the possibility
to load and corrupt an image from a predefined list.

1 Introduction

Noise can be systematically introduced into digital images, e.g., due to the cir-
cumstances of recording (e.g., dust on a lens, electronic noise in cameras and
sensors, ...), transmission (e.g., interaction with satellite images, transmission
over a channel, ...), scanning, etc. A fundamental problem of image processing
is to reduce noise effectively from a digital image while keeping its features
intact. Therefore, it is not surprising that different algorithms are developed
for different noise types. During the past years, also a lot of fuzzy logic based
filters have been introduced. In this article we will present a comparative
study for color images (there already exist studies for grayscale images [1]).
Besides this comparative study, we illustrate the shortcomings of the common
filter techniques in order to stimulate researchers to design noise reduction
techniques that reduce noise on the one hand and that preserve colors and
image structures on the other hand. We also discuss some recent solutions
that are especially designed for color images. These methods try to preserve
the color component differences while performing efficient noise removal.
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In this paper we discuss the case of impulse noise in digital color images.
A digital color image (denoted as I) can be modeled in a certain color space.
The most common color space is the RGB color space. By mixing red, green
and blue light in different proportions it is possible to obtain a wide range of
colors. For that reason colors in the RGB space are represented by a three-
dimensional vector, with as first component the red, second the green and
third the blue pigment. These pigments are called the three primary compo-
nents, each quantized to the range [0, 2m−1] (mostly with m = 8). Practically
a digital color image I can be represented by a two-dimensional array of vec-
tors, where an address (i, j) defines a position in I, called a pixel or picture
element. The color components for a certain pixel are denoted by I(i, j, 1),
I(i, j, 2), and I(i, j, 3) for the red, green, and blue component, respectively.

One of the common impulse noise types is salt and pepper noise; for other
types we refer to [7, 8]. In an image that is corrupted with salt and pepper
noise, two things can happen to each of the components of a pixel: it re-
mains unchanged, it gets a value n1 or it changes to a value n2. Generally
these two values are n1 = 0 and n2 = 2m − 1. An important parameter is
the noise density δ, which expresses the fraction of the image pixels that are
corrupted.

Besides the RGB color space, we also take into account other well known
color spaces [2]: YIQ, HSV, HSL, CMY, XYZ, XYZ2.

2 Filters for Noise Reduction

The wide range of filters found in the literature can be divided in three sub-
classes (1) classical filters; (2) fuzzy-classical filters, i.e., fuzzy logic based
filters that are extensions or modifications of classical filters; and (3) fuzzy
filters, i.e., filters that are completely based on fuzzy logic and have no con-
nection with classical filters. This classification will be used during the paper.
Our comparative study concerns 42 different algorithms. The fuzzy-classical
and fuzzy filters are accompanied by a reference for those readers who are
interested in more background information.

2.1 Classical Filters

The classical filters pass step-by-step over the whole image and process each
pixel by some filter depending operator (e.g., the median). Thus, all the pix-
els are changed independently whether the pixel was or was not distorted. In
that manner, usually the fine details of the image are blurred, because the
fine texture elements are not taken into account. The shortcomings of many
classical filters is the inability of expressing pixels into several degrees of noise.
Most classical filters are not able to distinguish noisy pixels from uncorrupted
ones. Some very popular classical filters are:
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– MF: the Median Filter, which takes the median from a certain neighbor-
hood around the filtered pixel.

– WF: the Weighted Filter, which averages all the pixel values from the
neighborhood around the filtered pixel.

– AWF: the Adaptive Weighted Filter, which is an extension of the weighted
filter.

– WIENER: Wiener Filter.
– GAUS: Gaussian Filter, which assumes a Gaussian distribution of the

noise.
– VMF1: Vector Median Filter based on the Euclidian distance [25].
– VMF2: Vector Median Filter based on the Minimum Angle distance [26].

2.2 Fuzzy-Classical Filters

When images are corrupted with noise it will be difficult to make the difference
between noise and texture elements and distinguish degrees of contamination.
This illustrates the added value of fuzzy set theory that is used to model
such kind of uncertainties. This allows us to improve the quality of noise
reduction methods. In general, a fuzzy filter for noise reduction uses both nu-
merical information and linguistic information (modeled by fuzzy set theory,
e.g., “small” differences, “similar” pixels, etc.) to filter the noise. The fuzzy
extensions of the classical filters are:

– FMF: Fuzzy Median Filter [3, 4]
– TMED: Symmetrical Triangle Fuzzy Filter with median center [5, 6]
– ATMED: Asymmetrical Triangle Fuzzy Filter with median center [5, 6]
– GMED: Gaussian Filter with Median Center [5, 6]
– WFM: Weighted Fuzzy Mean Filter [10,11]
– FWM: Fuzzy Weighted Mean [4]
– AWFM: first Adaptive Weighted Fuzzy Mean Filter [10]
– AWFM2: second Adaptive Weighted Fuzzy Mean Filter [11]
– CK: Choi & Krishnapuram Filter [12]
– FDDF: Fuzzy Decision Directed Filter [13]
– TMAV: Symmetrical Triangle Fuzzy Filter with Moving Average Cen-

ter [5, 6]
– ATMAV: Asymmetrical Triangle Fuzzy Filter with Moving Average Cen-

ter [5, 6]
– DWMAV: Decreasing Weight Fuzzy Filter with Moving Average Cen-

ter [5, 6]
– GMAV: Gaussian Fuzzy Filter with Moving Average Center [5, 6]
– MPASS: Multipass Fuzzy Filter [14,15]
– FMMF: Fuzzy Multilevel Median Filter [15]
– FVRF: Fuzzy Vector Rank Filter based on the Euclidian distance [25]
– FCWVMF: Fuzzy Center Weighted Vector Median Filter based on the

Minimum Angle distance [26]
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2.3 Fuzzy Filters

Fuzzy logic based filters that have no connections with classical filters are:

– FIRE: Fuzzy Inference Ruled by Else-action Filter [16]
– DSFIRE: Dual Step FIRE Filter [17]
– PWLFIRE1: first (nonadaptive) Piecewise Linear Fuzzy Inference Ruled

by Else-action Filter [18]
– PWLFIRE2: second (adaptive) Piecewise Linear Fuzzy Inference Ruled

by Else-action Filter [18]
– IFCF: Iterative Fuzzy Control based Filter [19]
– MIFCF: Modified IFCF Filter [19]
– EIFCF: Extended IFCF Filter [19]
– SFCF: Smoothing Fuzzy Control based Filter [20]
– SSFCF: Sharpening SFCF Filter [19]
– GOA: Gaussian Noise Reduction Filter [21]
– HAF: Histogram Adaptive Filter [22]
– FSB1: first Fuzzy-Similarity-Based Noise Reduction Filter [23,24]
– FSB2: second Fuzzy-Similarity-Based Noise Reduction Filter [23,24]
– FSB1R: first Recursive Fuzzy-Similarity-Based Noise Reduction Filter

[23,24]
– FSB2R: second Recursive Fuzzy-Similarity-Based Noise Reduction Fil-

ter [23,24]
– FIDRM: Fuzzy Impulse noise Detection and Reduction Method [7,8]
– FIDRMC: Fuzzy Impulse noise Detection and Reducing Method for Color

images [9]

3 Comparative Study

As a measure of objective similarity between a filtered image and the original
one, we use the peak signal to noise ratio. The peak signal to noise ratio, often
abbreviated as PSNR, is an engineering term for the ratio between the maxi-
mum value of a signal and the magnitude of the background noise. Because
many signals have a very wide dynamic range, PSNRs are usually expressed in
terms of the logarithmic decibel scale. The PSNR is used to measure the qual-
ity of reconstruction. Reconstructed images with higher metrics are judged
better. This similarity measure is based on the dissimilarity measure called
mean square error (MSE). The MSE and PSNR are defined as:

MSE(A,B) =
1
NM

N∑

i=1

M∑

j=1

3∑

c=1

[
A(i, j, c)−B(i, j, c)

]2

,

PSNR(A,B) = 10 · log10

2552

MSE(A,B)

where A is the original color image, B the filtered color image of size NM .
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The evaluation is carried out on two levels: numerical (based on the
PSNR values) and visual (based on visual inspection). In order to get a
clear idea of the performance with respect to the level of impulse noise,
experiments have been carried out for several impulse noise levels. The re-
sults can be seen on the website http://www.fuzzy.ugent.be/Dortmund.html.
During the experiments we have used several different color images, such as
the Lena image (256 × 256), the Baboon image (512 × 512), the Hill image
(768× 1024), the Tree image (258× 350) etc. The test images are also avail-
able at http://www.fuzzy.ugent.be/Dortmund.html. Some of these numerical
results for the Lena and the Hill image are summarized in Table 1 with δ = 0.1,
0.2, 0.3, 0.4, and 0.5.

For this conference we have developed a Java Applet (http://www.fuzzy.
Ugent.be/Dortmund.html). The Java Applet is used to compare all the men-
tioned filters with each other. It illustrates the numerical and visual perfor-
mance of all these filters. Users have the possibility to load and corrupt an
image from a predefined list. We implemented three noise types: impulse noise,
white Gaussian noise and Speckle noise. After the corruption (the mixture of
these noise types is possible too), the users can apply one of these filters so
that the numerical and visual results appear. Besides the RGB color space, it
is possible to work in other color models as well.

3.1 Numerical Results

In Table 1 the numerical performance in terms of the PSNR is pictured for
a (256 × 256) colored Lena image (a) and a (768 × 1024) colored Hill image
(b). The images are corrupted with salt and pepper noise [8] for different δ’s.
We can summarize our conclusions w.r.t. the numerical results based on our
experiments with the Lena, Baboon, Hill and Tree images, as follows:

– The FIDRMC filter performs best for all levels of impulse noise. In case of
the Lena image it generally increases the PSNR value by a factor 3.68 for
low levels (δ = 0.1) as well for high levels (δ ≥ 0.5) w.r.t. the noisy image.
For the other filters these factors range between 1.75 and 1.95. These are
very satisfying results.

– The FIDRM filter is the second best performing filter. In case of the Lena
image it generally increases the PSNR value by a factor 2.50 for low levels
(δ = 0.1) but for high levels (δ ≥ 0.5) it almost performs as good as the
FIDRMC.

– For low noise levels (δ = 0.1 and δ = 0.2) there are several filters that
return very good results: the DSFIRE filter (it is the third best filter for
noise levels δ ≤ 0.15), the FMF filter, the AWFM2 filter (whose perfor-
mance increases when the noise rate gets higher), the AWFM filter (which
always has smaller PSNR values than AWFM2), GMED and MED.

– For higher noise levels (δ ≥ 0.3) the top five of the best performing filters
remains always the same: the FIDRMC together with the FIDRM filter
are the best ones, the AWFM2 filter which is a little bit better than the
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Table 1. Numerical results (in PSNR) for images corrupted with impulse noise for
δ = 0.1, 0.2, 0.3, 0.4 and 0.5, (a) colored (256 × 256) Lena image and (b) colored
(768 × 1024) Hill image

(a) (b)

0.1 0.2 0.3 0.4 0.5

Noisy 15.33 12.35 10.55 9.28 8.35

MF 30.23 27.58 23.14 18.59 15.05

VMF1 18.51 12.62 10.18 8.98 7.83

VMF2 20.31 14.83 11.67 9.59 8.23

WF 23.10 20.26 18.18 16.61 15.41

AWF 15.31 12.36 10.57 9.27 8.37

WIENER 14.88 14.79 14.35 14.02 13.27

GAUS 15.37 12.39 10.63 9.31 8.39

FMF 33.14 28.56 23.84 18.62 16.45

TMED 30.13 27.20 22.94 17.75 15.35

ATMED 29.20 28.10 26.15 22.36 20.29

GMED 30.19 27.55 23.13 17.53 15.05

WFM 27.31 27.00 26.73 25.70 23.23

FWM 20.72 18.58 16.99 14.55 13.27

AWFM 28.07 27.55 27.04 25.61 24.98

AWFM2 31.39 30.51 29.72 27.67 26.91

CK 21.81 18.10 15.42 13.30 11.55

FDDF 18.54 14.22 11.61 10.20 8.73

TMAV 29.87 26.83 22.77 18.26 16.03

ATMAV 28.00 27.47 27.00 26.19 23.67

DWMAV 23.10 20.26 18.18 16.51 15.41

GMAV 11.29 9.16 8.08 10.56 6.65

MPASS 27.80 24.91 20.90 16.31 14.19

FMMF 17.59 14.27 12.06 10.13 9.24

FVRF 24.47 21.09 18.79 16.89 15.43

FCWVMF 27.32 24.98 21.21 17.15 14.21

FIRE 29.31 23.62 19.11 15.47 13.37

DSFIRE 34.33 30.64 25.81 20.25 17.22

PWLFIRE1 27.99 21.83 17.42 12.93 11.94

PWLFIRE2 30.69 23.00 18.11 14.15 12.28

IFCF 29.36 27.08 24.08 20.67 18.24

MIFCF 28.64 24.12 22.42 18.67 16.33

EIFCF 29.32 27.01 23.91 20.41 17.98

SFCF 27.76 24.12 20.31 16.57 14.57

SSFCF 28.27 24.61 20.49 16.31 14.20

GOA 23.32 21.33 19.57 17.62 17.00

HAF 29.46 29.01 28.59 26.98 26.18

FSB1 29.79 27.25 22.88 17.18 14.89

FSB2 29.84 27.11 22.63 17.18 14.76

FSB1R 29.05 27.67 25.92 23.02 20.42

FSB2R 29.08 27.88 26.05 21.73 20.06

FIDRM 38.82 34.80 33.14 31.10 30.08

FIDRMC 52.81 45.16 40.81 34.46 31.23

0.1 0.2 0.3 0.4 0.5

15.25 12.39 10.63 9.25 7.62

28.89 26.28 21.78 17.68 15.2

18.57 12.53 11.13 8.79 7.2

20.40 14.56 13.35 9.32 7.4

23.18 20.65 18.48 17.04 15.91

15.35 12.38 10.63 9.39 7.63

14.15 13.96 13.83 13.73 12.67

15.44 12.54 10.66 9.42 8.46

32.62 27.41 22.40 18.59 16.37

28.83 25.96 21.68 17.84 15.48

26.22 24.78 23.35 21.54 20.06

28.86 26.27 21.78 17.68 15.20

27.15 26.99 26.67 25.72 20.60

21.23 18.39 16.41 14.83 12.50

27.23 26.62 26.18 22.7 21.30

30.07 29.11 28.48 20.66 22.62

22.30 18.60 15.86 13.68 10.41

18.38 13.98 11.50 9.86 8.80

28.75 25.70 21.66 18.22 16.04

21.64 20.76 20.84 21.13 19.40

23.18 20.38 18.48 17.04 15.91

17.54 14.37 12.34 10.83 8.24

27.46 23.91 19.88 16.47 14.33

18.34 14.95 12.83 11.26 10.26

24.49 21.30 19.05 17.35 14.80

27.27 25.05 21.27 17.32 11.78

29.46 23.19 18.81 15.62 13.52

34.28 30.17 25.23 20.66 17.57

23.94 19.09 15.77 13.27 12.06

29.95 22.06 17.49 14.34 12.42

28.94 21.28 24.19 21.17 18.61

28.86 25.98 22.37 19.00 16.55

28.84 26.82 23.93 20.84 18.26

27.38 23.71 19.84 16.75 14.68

27.63 23.94 19.81 16.49 14.31

23.91 21.93 20.39 19.11 18.22

28.92 28.29 26.88 24.90 23.82

28.62 25.88 21.34 17.28 11.67

28.58 25.87 21.37 17.34 11.72

28.28 27.35 25.93 23.90 18.28

28.12 27.21 25.19 22.21 15.96

37.00 33.44 31.14 30.35 27.84

52.56 46.06 40.29 34.65 30.12



Fuzzy Impulse Noise Reduction Methods 717

HAF filter (this filter removes the impulse noise but causes some kind of
blur) followed by AWFM, ATMAV, WFM, ATMED, FSB1R and FSB2R
filters.

– The numerical results for vector based approaches (VMF, FVRF and
FCWVMF) are the worst of all filters. When the noise level increases,
the performance decreases. A second disadvantage of those methods is
the computational complexity.

3.2 Visual Results

Visual results are presented in Fig. 1 for a part of the Hill image, which
is contaminated with 30% salt and pepper noise. Additionally, we pre-
sented visual and numerical results for other test images on the website
http://www.fuzzy.ugent.be/Dortmund.html. We can summarize our conclu-
sions with respect to the visual observations as follows:

– The FIDRMC filter yields the best visual performance. Especially for low
impulse noise this filter outperforms the others. But for images contam-
inated with very high impulse noise it does not reduce all noise. But in
comparison to other filters it remains the best.

– The FIDRM filter filters out the impulse noise very well but introduces
many artifacts. These artifacts are mostly situated at the contour pixels,
which cause lower PSNR values for lower impulse noise levels. The reason
for these artifacts is situated in the way FIDRM handles color. FIDRMC
tries to keep the color differences while FIDRM performs on each color
component separately.

– For all noise levels the HAF, FSBR1, ATMED, and MF filter produce a
more blurry picture than the FIDRMC, FIDRM, and AWFM2 filters. In
other words, the FIDRMC, FIDRM, and AWFM2 filter have the property
that they keep the sharpness of the image.

– For the very higher noise levels (δ = 0.5–0.9) the third and fourth best
performing filters show an increasing number of dots or impulse noise pix-
els that are not filtered out, which does not occur with the FIDRMC filter
and FIDRM filter.

– As seen in the Java Applet the chosen color space has not much influence
on the performance of each filter.

– Many filters perform better for grayscale images than for color images.
This can also be concluded from the Java Applet available at the website.
The reason is almost the same: by not taking into account the original
color differences it occurs that pixels mostly situated on edges are flipped
over so that dots appear. This extra information (e.g., the color differ-
ences) should be taken into account in future work in order to improve
noise reduction methods for color images.

– It is also noticeable that the numerical and visual experiments confirm
each other.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1. The restoration of a magnified part of a colored Hill image (768×1024): (a) a
noise free part, (b) the same part contaminated with 30% impulse noise (i.e., salt &
pepper noise with δ = 0.3), (c) FIDRMC, (d) FIDRM, (e) AWFM2, (f) HAF,
(g) ATMED, (h) DSFIRE, (i) IFCF, (j) FSB1R, (k) FMF, (l) MF

From both numerical and visual observations we see that color images
should be treated in a different way as grayscale images. Filtering each com-
ponent separately from each other will cause new impulse noise like artifacts
especially on the edges of the image. Vector based approaches were devel-
oped for this reason but the numerical and visual results have shown that the
filtering capacity decreases in comparison to the other filters. The first satis-
factory filter that treated this problem were presented in our earlier work [9].
In this work we have incorporated the information about the color component
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differences. Instead of filtering each component we filtered each color compo-
nent difference. This comparative study has illustrated that future work should
be spent on this issue to improve the current methods for color images.

4 Conclusion

The numerical and visual experiments are in accordance with each other: the
FIDRMC filter returns the best for all noise levels, followed by the FIDRM
filter which even performs equally well as the FIDRMC filter for extremely
high noise levels. Other well filtering methods for low noise levels are: DS-
FIRE, FMF, AWFM2, GMED, and MED. And for high noise levels we can
also advise: AWFM2, HAF, ATMAV, FSB1R, and FSB2R. These results show
that the use of fuzzy techniques in image processing can have an added value.
Indeed, all best performing filters belong to the class of fuzzy-classical or even
purely fuzzy filters. But especially the visual results suggest that future work
must be done in order to develop more sophisticated color methods, which
also incorporate the original color differences.
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Use of Variable Fuzzy Sets Methods
for Desertification Evaluation

Wu Li∗, Guo Yu, Chen Shouyu, and Zhou Huicheng

Summary. Many factors affect the desertification and the factors generally are not
in the same scope, it also brings about a great difficulty for evaluating desertifica-
tion. Under global view of system that the variable fuzzy sets method is presented
to set up comprehensive evaluating model for desertification degree and transform
the qualitative assessment into quantitative one. The method can scientifically and
reasonably determine and relative membership functions of disquisitive indexes at
level interval that relating to desertification, also it can fully use one’s experience
and knowledge, qualitative and quantitative information of index system to obtain
weights of indexes for operating comprehensive evaluation. The numerical example
of the dry and hot valley of Jinsha River has shown that the proposed method is
feasible and effective, and it provides a new theory for desertification study.

Key words: Desertification evaluation, Variable fuzzy sets, Difference func-
tion, Rank feature values.

1 Introduction

Desertification is one of the most serious ecological and environmental prob-
lems in the world. It directly influences regional economic development and
social stability. As to people affected by desertification, Asia is influenced by
desertification most seriously on the earth, and China, with a territory of 9.6
million km2, is one of the most severely deserted countries in Asia [1]. Deserti-
fication is threatening the lives of close to 400 million people and has affected
about 3.3 million km2 of land [2]. The rest of the land is degraded land with
sparse vegetation covering less than 5%, which mainly consists of desert and
gobi (CCICCD, 1997). It was estimated that the direct economic loss of sandy
desertification in China is about 54.1billion RMB per year [3, 4], at present,
development of western China has become an important national task for the
next 10–20 years and environment improvement is considered the most im-
portant issue. Therefore, study desertification is of extreme importance for
∗ Corresponding author: Fax: +86-411-84707911-86 E-Mail: wuli water@163.com
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dealing desertification to China with respect to the conservation of natural
resources and sustainable development.

Desertification, which often conceived of as a “global” problem, is multi-
causal and highly dependent on cultural, economic and biophysical factors [5].
And desertification evaluation is the key step of controlling desertification,
which not only can reveal the actual situations of ecological and social de-
velopment, but more important is that it can quantitatively analyze the fruit
of desertification prevention and provide accessorial decision for the task of
future desertification observation [6,7]. At present, there are many methods in
fields of researching desertification, yet most of which are single qualitative or
quantitative evaluation (pure mathematic model). And that the geological in-
vestigation must synthesize qualitative picture with quantitative analysis, and
no exceptions of desertification evaluation. Comprehensive evaluation of vari-
able fuzzy sets (VFS) can effectively solve influence of border fuzzy and moni-
tor error of estimation standard to assessment result. The method can scientif-
ically and reasonably determine membership degrees and relative membership
functions of disquisitive objectives (or indexes) at level interval that relating to
desertification, also it can fully use one’s experience and knowledge, qualitative
and quantitative information of index system to obtain weights of objectives
(or indexes) for operating comprehensive evaluation of desertification.

2 Principle of VFS

2.1 Definition of VFS

In defining the concept, let us suppose that U is a fuzzy concept (alternative
or phenomenon) A

∼

, and to any elements u(u ∈ U), µA
∼

(u) and µA
∼

c(u) are rela-
tive membership degree (RMD) function that express degrees of attractability
and repellency respectively [8]. Let

DA
∼

(u) = µA
∼

(u)− µA
∼

c(u) (1)

Where DA
∼

(u) is defined as relative difference degree of u to A
∼

. Mapping

DA
∼

: D −→ [−1, 1]

u| −→ DA
∼

(u) ∈ [−1, 1] (2)

is defined as relative difference function of u to A
∼

. And we have

µA
∼

(u) + µA
∼

c(u) = 1 (3)

Then

DA
∼

(u) = 2µA
∼

(u)− 1 (4)
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Or

µA
∼

(u) = 1 +DA
∼
(u)/2 (5)

Where 0 ≤ µA
∼

(u) ≤ 1, 0 ≤ µA
∼

c(u) ≤ 1. Let

V
∼

=
{

(u,D)|u ∈ U,DA
∼

(u) = µA
∼

(u)− µA
∼

(u),D ∈ [−1, 1]
}

(6)

A+ =
{
u|u ∈ U,µA

∼

(u) > µA
∼

c(u)
}

(7)

A− =
{
u|u ∈ U,µA

∼

(u) < µA
∼

c(u)
}

(8)

A0 =
{
u|u ∈ U,µA

∼

(u) = µA
∼

c(u)
}

(9)

Here V
∼

is just defined as VFS of U ; A+,A− and A0are defined as attracting

(as priority) sets, repelling (as priority) sets and balance boundary or qual-
itative change boundary of VFS V

∼
, respectively. Assume that C is variable

factors sets of V
∼

C = {CA, CB , CC} (10)

Here CA are variable model sets, CB are variable model parameters sets
and CC are variable other factors sets except model and its parameters. Let

A+ = C(A−) = {u|u ∈ U, µA
∼

(u) < µA
∼

c(u), µA
∼

(C(u)) > µA
∼

c(C(u)) } (11)

A− = C(A+) = {u|u ∈ U, µA
∼

(u) > µA
∼

c(u), µA
∼

(C(u)) < µA
∼

c(C(u)) } (12)

We generally define these two subsets as qualitative change sets of VFS V
∼

to variable elements sets C. Let

A(+) = C(A+) = {u|u ∈ U, µA
∼

(u) > µA
∼

c(u),

µA
∼

(C(u)) > µA
∼

c(C(u)) } (13)

A(−) = C(A−) = {u|u ∈ U, µA
∼

(u) < µA
∼

c(u),

µA
∼

(C(u)) < µA
∼

c(C(u)) } (14)

We generally define these two subsets as quantitative change sets of VFS
V
∼

to variable elements sets C.

VFS models include fuzzy optimization model, fuzzy pattern recognition
model and fuzzy clustering iteration model etc. [8]. Variable parameters sets
of model include indexes weights, standard indexes values and other impor-
tant parameters. We will illustrate changeability of model and parameters in
application of desertification evaluation.
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c      a     M      b                      d 

Fig. 1. Relationship between pointsx, M and internals [a, b], [c, d]

2.2 Methods of Relative Difference Function

We suppose that X0 = [a, b] are attracting (as priority) sets of VFS V
∼

on real

axis, i.e. interval of µA
∼

(u) > µA
∼

c(u), X = [c, d] is a certain interval containing

X0, i.e. X0 ⊂ X (see Fig. 1).
According to definition of VFS we know that interval [c, a]and [b, d] all are

repelling (as priority) sets of VFS, i.e. interval of µA
∼

(u) < µA
∼

c(u). Suppose

thatM is point value of µA
∼

(u) = 1 in attracting (as priority) sets [a, b], andM

can be determined by actual problem or selected as midpoint value of interval
[a, b]. x is value of random point in interval X, then if x locates at left side of
M , its difference function is

⎧
⎪⎨

⎪⎩

DA
∼

(u) =
(

x−a
M−a

)β

x ∈ [a,M ]

DA
∼

(u) = −
(

x−a
c−a

)β

x ∈ [c, a]
(15)

And if x locates at right side of M , its difference function is
⎧
⎪⎨

⎪⎩

DA
∼

(u) =
(

x−b
M−b

)β

x ∈ [M, b]

DA
∼

(u) = −
(

x−b
d−b

)β

x ∈ [b, d]
(16)

Where βis index than bigger than 0, usually we take it as β=1, viz. (15) and
(16) become linear functions. Equations (15) and (16) satisfy: (i) x = a,x =
b,DA

∼

(u) = 0 or µA
∼

(u) = µA
∼

c(u) = 0.5; (ii) x = M , DA
∼

(u) = 1 or µA
∼

(u) = 1;

(iii) x = c, x = d,DA
∼

(u) = −1 or µA
∼

(u)=0. Then according to (15) or (16) and

(5) we can obtain values of difference function µA
∼

(u) of disquisitive indexes.

3 VFS for Comprehensive Evaluation of the
Desertification Degree

In this paper we take the case of desertification degree to the dry and hot
valley of Jinsha River as example, and use data in [9] to show application of
VFS method for desertification evaluation.
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Desertification is affected by many complex factors, in addition to nat-
ural conditions of climate, vegetation and soil, it also involves many human
economic activities, such as agriculture and animal husbandry, which directly
or indirectly destroy the vegetation, affect the soil configuration, degrade the
land and decrease arable area, and all these deteriorate environment and leads
to desertification. As the elevation indexes should reflect reduced infield or de-
teriorative land, here we choose Yuanmou county, the dry and hot valley of
Jinsha River, as study area, illustrate the factors of desertification with single
component schematics and analyze its weight of indexes, establish evaluation
indexes system of land degradation (see Table 1). we also select 23 samples
for this research under actual status (Table 2).

According to Table 1 and [10], we set up values matrix of parameters
(a, b, c, d, m) for calculating difference function of VFS:

I[a,b] =

⎡

⎢⎢⎢⎢⎣

[20, 5] [5, 4] [4, 3] [3, 2] [2, 0]
[90, 35] [35, 25] [25, 15] [15, 7] [7, 0]
[0, 5] [5, 10] [10, 15] [15, 25] [25, 100]
[0, 5] [5, 15] [15, 25] [25, 33] [33, 200]

[0, 110] [110, 125] [125, 132] [132, 150] [150, 250]

⎤

⎥⎥⎥⎥⎦

I[c,d] =

⎡

⎢⎢⎢⎢⎣

[20, 4] [20, 3] [5, 2] [4, 0] [3, 0]
[90, 25] [90, 15] [35, 7] [25, 0] [15, 0]
[0, 10] [0, 15] [5, 25] [10, 100] [15, 100]
[0, 15] [0, 25] [5, 33] [15, 200] [25, 200]
[0, 125] [0, 132] [110, 150] [125, 250] [132, 250]

⎤

⎥⎥⎥⎥⎦

−→
M =

⎡

⎢⎢⎢⎢⎣

20 4.5 3.5 2.5 0
90 30 20 11 0
0 7.5 12.5 20 100
0 10 20 29 200
0 117.5 128.5 141 250

⎤

⎥⎥⎥⎥⎦

Based on matrixes I[a,b],I[c.d] and
−→
M , we judge that evaluating index x lo-

cates at left side or right side of pointM , and according these to select (15) or

Table 1. Evaluation indexes system of land degradation in the Dry-hot Valley of
Jinsha River, Yunnan province

physiognomy soil

Degree of
degradation

Density of
incision
(km/km2)

Slope
degree (◦)

thickness
(cm)

organism
(g/kg)

Vegetation
index

Special 1 >5 >35 <5 <5 <110
Strong 2 54 3525 510 515 110125
Intermediate 3 43 2515 1015 1525 125132
Light 4 32 157 1525 2533 132150
Tiny 5 ≤ 2 <7 >25 >33 >150
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Table 2. Measured values of desertification indexes on the 23 sample lands (with
permission)

physiognomy soil

Sample Density of Slope degree Thickness organism Vegetation
incision (km/km2) (◦) (cm) (g/kg) index

1 0 5 2.5 100 144
2 0 5 0.6 60 140
3 4 12 0.3 15 131
4 0 0 0.66 10 134
5 0 12 0.7 20 140
6 0 3 0.55 15 135
7 5.5 0 0.8 100 131
9 3.5 15 0.45 35 135

10 2.5 23 0.7 10 139
11 2 23 0.7 10 165
12 2.3 30 0.7 15 138
14 2.8 15 2.5 50 160
15 2.8 17 1.5 40 149
16 3.5 15 0.7 30 140
17 4.3 0 0.4 20 122
19 4.1 3 0.65 100 122
20 4 20 0.41 20 131
21 2.8 26 0.45 25 138
22 4.5 15 0.4 10 134
23 0 24 1.2 15 162
25 0 0 0.6 50 131
26 0 3 1.8 100 143
27 0 6 0 0 100

(16) for calculating difference function µh(uij) of indexes to standards. Here
h is grade number and h = 1, 2, 3, 4, 5; i is indexes number and i = 1, 2, 3, 4, 5.

From Table 2, for sample 1, when h = 1, its attracting (as priority) matrix
[a, b], interval matrix [c, d] and point values matrix

−→
M respectively are

[a, b] = ( [0, 5] [5, 10] [10, 15] [15, 25] [25, 100] )

[c, d] = ( [0, 10] [0, 15] [5, 25] [10, 100] [15, 100] )
−→
M = (0 7.5 12.5 20 100 )

When i = 3, density of physiognomy incision 31=2.5, and that c31 = 0,
a31 = 0, b31 = 5, d31=10, M31 = 0, then we can see that index value (2.5)
locates at right of M11 and belongs to interval [M31,b31], so we select equa-
tion DA(u31) = −(x31 − b31)β

/
(M31 − b31)β in (16). Substituting β=1 and

other relevant parameters into this equation then we obtain DA
∼

(u31) = 0.5;

according to (5) we obtain µA
∼

(u31) = 0.75. Analogously, we get relative
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membership function µA
∼

(uih) of each single index under i = 1, 2, 3, 4, 5 to

degrees h = 1, 2, 3, 4, 5 as:

µ
A
∼

(uih)5×5 =

⎡

⎢⎢⎢⎢⎣

0.5 0.5 0.5 0 0
0.5 0.5 0.5 0.3572 0.6429
0.75 0.25 0.5 0.5 0.5
0.5 0.5 0.5 0.2994 1
0.5 0.5 0.1667 0.8334 0.3333

⎤

⎥⎥⎥⎥⎦

To get synthetic RMD of each index, we use variable fuzzy recognition
model presented by [11]

uih =
1

1 +

⎧
⎪⎨

⎪⎩

m∑
i=1

[wi(1−µA
∼

(uih))]p

m∑
i=1

(wiµA
∼

(uih))p

⎫
⎪⎬

⎪⎭

α/p
(17)

Through it we obtain synthetic RMD of each index for desertification by
using (17), after normalizing them that we get normalized synthetic RMD of
each index. Here wi is index weight; m is number of recognition indexes; α is
rule parameter of model optimization, α = 1 is least single method and α = 2
is least square method; p is distance parameter, p = 1 is hamming distance
and p = 2 is Euclidean distance.

To determine weights of five indexes to five standards, we use consistency
theorem of taxis on importance of determining indexes weights [11] and get
qualitative scribe of four indexes by their influence to comparison between
elements:

Taxis

F =

⎡

⎢⎢⎢⎢⎣

0.5 1 0 0 0
0 0.5 0 0 0
1 1 0.5 1 0
1 1 0 0.5 0
1 1 1 1 0.5

⎤

⎥⎥⎥⎥⎦

(4)
(5)
(2)
(3)
(1)

According to taxis F and experience, we take vegetation index, whose
ranking is first, as comparison standard and get under consideration:

Vegetation index is on way from “rather” to “obvious” important than
soil thickness; vegetation index is on way from “obvious” to “remarkable”
important than soil organism; vegetation index is on way from “very” to “ex-
tra” important than physiognomy density of incision; vegetation index is on
the way from “exceeding” to “extreme” important than land slope degree
(see Table 3)
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Table 3. Relationships between mood operator relative membership degrees of
quantitative scale

Mood Equal Slight Somewhat Rather

operator

Quantitative 0.50 0.525 0.55 0.575 0.60 0.625 0.65 0.675

scale

RMD 1.0 0.905 0.818 0.729 0.667 0.60 0.538 0.481

Mood Obvious Remarkable Very Extra

operator

Quantitative 0.70 0.725 0.75 0.775 0.80 0.825 0.85 0.875

scale

RMD 0.429 0.379 0.333 0.290 0.250 0.212 0.176 0.143

Mood Exceeding Extreme Incomparable

operator

Quantitative 0.90 0.925 0.95 0.975 1

scale

RMD 0.111 0.081 0.053 0.026 0

And according to Table 3 [11] we obtain weights of five evaluation indexes
as:

w′ = (0.212 0.081 0.481 0.379 1 ) = (w′
i)

Then normalized weights vector of indexes is:

w = (0.0985 0.0376 0.2234 0.176 0.4645 ) = (wi)

Therefore we may use variable fuzzy recognition model (17) to calculate
synthetic RMD of sample 1. When taking rule parameter of model optimiza-
tion α = 2 distance parameter p = 1 and substituting relative data into model
(17) we get synthetic RMD as

u′ = (0.6103 0.3897 0.2175 0.6277 0.4337 )

After normalized it is:

u = (0.2678 0.1710 0.0954 0.2755 0.1903 )

Using rank feature values (RFV) [11] and we get RFV of sample 1 as
H = (1, 2, 3, 4, 5)·( 0.2678 0.1710 0.0954 0.2755 0.1903 )T = 2.9494

For sample (as disquisitive objective), due to its standard is five grades, so we
have:

(a) If 1.0 ≤ H ≤ 1.5,then desertification degree belongs to tiny (1 grade).
(b) If 1.5 < H ≤ 2.5,then it belongs to slight (2 grade).
(c) If 2.5 < H ≤ 3.5, then it belongs to Intermediate(3 grade).
(d) If 3.5 < H ≤ 4.5, then it belongs to strong(4 grade).
(e) If 4.5 < H ≤ 5.0, it belongs to special(5 grade).
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Table 4. Synthetic relative membership degree and evaluation results of 23 sample
lands

sample U1(p) U2(p) U3(p) U4(p) U5(p) H(p) Judgment Investigation

results data

1 0.2678 0.1710 0.0954 0.2755 0.1903 2.9494 3 D3

2 0.2586 0.1166 0.2619 0.2836 0.0794 2.8087 3 D4

3 0.2142 0.1196 0.3032 0.1058 0.2573 3.07243 3 D3

4 0.3031 0.2416 0.1820 0.2341 0.0392 2.4647 2 D2

5 0.0017 0.2899 0.0193 0.4727 0.2164 3.6120 4 D4

6 0.0018 0.4486 0.0198 0.3082 0.2216 3.2993 3 D3

7 0.0000 0.3471 0.1542 0.3560 0.1427 3.2942 3 D2
9 0.0020 0.1684 0.0226 0.5536 0.2534 3.8879 4 D4
10 0.0013 0.2908 0.0068 0.4384 0.2627 3.6703 4 D4
11 0.0059 0.0296 0.0283 0.1294 0.8068 4.7016 5 D5
12 0.0026 0.0134 0.0128 0.6073 0.3639 4.3165 4 D4
14 0.0064 0.0324 0.0256 0.0534 0.8822 4.7725 5 D5
15 0.3356 0.1358 0.0544 0.2787 0.1954 2.8625 3 D3
16 0.0018 0.0093 0.3122 0.4231 0.2535 3.9172 4 D4
17 0.8625 0.0591 0.0021 0.0217 0.0547 1.3469 1 D1
19 0.8447 0.0579 0.0020 0.0212 0.0742 1.4224 1 D1
20 0.2472 0.0835 0.1729 0.0686 0.4277 3.3461 3 D3
21 0.3316 0.0001 0.0024 0.0921 0.5739 3.5764 4 D4
22 0.1608 0.6948 0.0005 0.0199 0.1240 2.2513 2 D2
23 0.0005 0.0066 0.1915 0.0265 0.7749 4.5687 5 D5
25 0.0006 0.0076 0.0687 0.0305 0.8927 4.8070 5 D5
26 0.0005 0.0072 0.1243 0.0287 0.8393 4.6991 5 D5
27 0.7392 0.0009 0.1485 0.0037 0.1077 1.7396 1 D1

Notes: D1- extreme desertification D2- strong desertification D3- remarkable deser-
tification D4- slight desertification D5- tiny desertification

Hence we judge that comprehensive desertification evaluation (3.0219) belongs
to 3 grade, the rest can be obtained in the same way. The results are showed
in Table 4 (the RMD has been normalized).

Compared with actual instances, exception for 2#, 7#, 23#, that the
rest 20 evaluation results are all tallied with the investigative results, and
the accurate rate is 87%. When quantifying appraisal target, and considering
the influence of indeterminacy in estimation, we find that the method and the
process are quite perfect for comprehensive evaluation of desertification. Yet
VFS use RFV to operate evaluation, it can intuitively reflect desertification
degree partial to another rank, so the conclusion of VFS are more reasonable
and appropriate.

4 Conclusion

1. The difference function, which describes the process that includes the
change of objective things movement and development, the transition of
quantitative and qualitative, and the essence of transform-attract and
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distract, conforms to natural dialectics. Concepts, theory and method of
VFS is the further advancement of relative membership degree of en-
gineering fuzzy set, and it will be verified, improved and developed in
application.

2. The RMD of VFS can scientifically and reasonably determine member-
ship degrees and relative membership functions of disquisitive objectives
at level interval that relating to desertification, also it can fully use one’s
experience and knowledge, qualitative and quantitative information of in-
dex system to obtain weights of objectives (or indexes) for comprehensive
evaluation. The numerical example has shown that the proposed method
is feasible and effective.

3. Though great progress has been obtained in VFS study, there are still
exist much issue need to be solved, such as selecting of objective and sub-
jective factors, the difference function design, research territory expansion
and so on.
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A Fuzzy Ultrasonic System for Estimating
Degradation of Insulating Oil

Yutaka Hata, Kensuke Iseri, Syoji Kobashi, Katsuya Kondo, and
Kazuhiko Taniguchi

Summary. This paper proposes an ultrasonic estimation system for the degrada-
tion of the insulating oil of electric power supply aided by fuzzy inference. In general,
it is known that the viscosity of insulating oil depends on the acidity. We employ
the viscosity as characteristic value for estimating the degradation. First, we show
a strong positive correlation between the acidity and the viscosity. Second, we con-
struct a fuzzy estimation system. Third, we infer the acidity of insulating oil by using
the system. Our experimental results show that the fuzzy system can identify the
acidity with the accuracy of 74% on 50 samples. Thus, this system can successfully
estimate the degradation of the oil.

Key words: Fuzzy logic, Estimation, Ultrasound, Oil, Acidity, Viscosity.

1 Introduction

The stability of the power supply is very important in human life. Especially,
since the short time failure of electric power supply can significantly cause
large outage that affects information technology society, nonstop power sup-
ply is required. In this paper, we consider the failure of transformer in electric
supply system. The transformer includes insulating oil. This oil has currently
been changed every 10–20 years because of the degradation of the oil. The
proper periodic inspection is therefore essential to supply continuously and
to save this change cost. Current inspection methods [1–4] such as gas-in-oil
analysis and dielectric test need large measurement system, and they require
the sampling of insulating oil from the transformer. These samplings require
stopping the electric supply. To solve this problem, we employ an ultrasonic
testing system that enables us to inspect the oil without stopping the supply.
This ultrasonic system is feasible to a portable low cost system. It analyzes the
oil by the propagation characteristics of the ultrasonic wave from the outside
of the transformer. In this paper, we propose a fuzzy system for estimating
the degradation of insulating oil by the ultrasonic system. It is known that the
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degradation of the oil can be evaluated by the acidity. Moreover, it is shown
that the viscosity of insulating oil depends on the acidity [5]. First, we show a
strong positive correlation between the acidity and the viscosity in our system.
We employ the viscosity as characteristic value for estimating the degradation.
In our method, ultrasonic burst wave (2 MHz) is used to calculate a viscosity
value. We employ fuzzy min–max-center-of-gravity method [6,7] for estimating
the degradation of the insulating oil. As a result, we can successfully identify
the acidity with the accuracy of 74% on 50 samples. Thus, this fuzzy ultrasonic
system can successfully estimate the degradation of the insulating oil.

2 Preliminaries

The ultrasonic system used is shown in Fig. 1. The pulsar receiver provides
burst ultrasonic wave (max. amplitude 15 V, 2.0 MHz, wave number 10) by a
probe, and the other probes (2 MHz) receive the wave, as shown in Fig. 2. The
oscilloscope (DL 1720CL, Yokogawa Co.) receives the wave (data sampling
500MS s−1). The received waves are transmitted to personal computer.

We used five oils with different acidity of 0.11, 0.20, 0.27, 0.32, and 0.35
mg KOH per g. Each oil is in a 20 l oil box. We sample the oil (about 20 cm3)
from each oil box.

Target oil

palser receiver

personal computer

oscilloscope

probe probe

Fig. 1. The ultrasonic system

Probe
Probe

Oil input

 

Fig. 2. The probe system



Ultrasonic System for Estimating Degradation 735

3 Fuzzy Ultrasonic Estimation System

3.1 Relationship Between Viscosity and Acidity

Figure 3a shows the received wave. The wave includes four echoes and these
echoes are used for the estimation. The first wave is first received wave, and
the second wave is the reflected wave of the first wave. The third and forth
waves are received in a similar way, as shown in Fig. 3b.

First, we show a calculation method of the viscosity.
The viscosity, v, is calculated by (1):

v =
2ac3ω2

(ω2 + a2c2)2
, (1)

where notation a denotes attenuation rate, ω does angular frequency, and c
does the ultrasonic speed. These values are calculated from the received wave
below.

Attenuation
The attenuation, a, is calculated by (2):

a = 20log
A1

A4
, (2)

where notation A1 denotes the amplitude of the first wave and A4 denotes the
amplitude of the fourth wave. The amplitudes are derived the integration of

Fig. 3. The received wave and measurement system
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the wave between −2 wave lengths and +2 wave lengths (total 4 wavelengths)
from the central point of the echo.

Speed of ultrasound
The speed of ultrasound is derived from the time between the start point

and the first echo. The speed is calculated by dividing the distance between
the pulser and receiver probes (10 mm) by the calculated time.

Frequency, ω
The frequency is calculated by Fourier transform of the received wave.
We investigate the relationship between the acidity and the viscosity for

known data. As the known data, we sampled the oils (10 samples per each oil
box, total 50 samples). We did experiment for every sample. Their viscosities
are calculated. Table 1 tabulated the mean and the standard deviation, SD, of
viscosity values for the corresponding acidity values. Figure 4 shows the graph
between the viscosity and the acidity. This graph shows a strong positive cor-
relation between our calculated viscosity values and the acidity values. This
correlation coefficient is 0.99.

Table 1. Acidity and viscosity on 50 oil samples

acidity
viscosity (mm2 s−1)

mean standard deviation

0.11 16.94686 0.50
0.20 17.10941 0.45
0.27 17.32979 0.67
0.32 17.35831 0.55
0.35 17.45735 0.54

(mm3/s)Viscosity

Fig. 4. Relationship between the acidity and the viscosity
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3.2 Fuzzy Inference for Estimating Degradation

The overview of our method is shown in Fig. 5. As shown in this figure, we
calculate the viscosity, which is derived from attenuation ratio, speed of ul-
trasound, and the frequency of the oil. We form fuzzy membership functions
from the known viscosity values in the construction part. These membership
functions are employed for the fuzzy estimation system. In the estimation,
this fuzzy system estimates the degradation for unknown oil.

We describe this fuzzy inference system. In it, fuzzy min–max-center-of-
gravity fuzzy inference method is employed.

Figure 4 means that we can calculate the acidity, A(v), from the viscosity
v. We define the function f: v −→ A(v). We consider the following fuzzy rule
by considering this function.

For input viscosity x, IF x is viscosity v, THEN the acidity is A(v).
We made four fuzzy membership functions with respect to the viscosity

and the acidity. First, we determine fuzzy membership functions, MFV i(v),
with respect to the viscosity from Table 1.

The notation Vi denotes viscosity of i = 16.94686, 17.10941, 17.32979,
17.35831, and 17.457350. The notation mVi does the mean of ten viscos-
ity values, and SDVi does the standard deviation of them for i. First, we
form four fuzzy membership functions, MFV i(v) as shown in Fig. 6. Second,
we made four membership functions, MFA0.11(y), MFA0.20(y), MFA0.27(y),
MFA0.32(y), and MFA0.35(y) with respect to the acidity as follows:

MFA0.11 (y) =
{

1− |y−0.11|
0.09 if 0.02 ≤ y ≤ 0.2

0 otherwise

MFA0.20 (y) =

⎧
⎨

⎩

1− |y−0.20|
0.09 if 0.11 ≤ y ≤ 0.20

1− y−0.20
0.07 if 0.20 ≤ y ≤ 0.27

0 otherwise

Fig. 5. Overview of our procedure
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Fig. 6. A fuzzy membership function MF V i(v)

MFA0.27 (y) =

⎧
⎨

⎩

1− |y−0.27|
0.07 if 0.20 ≤ y ≤ 0.27

1− y−0.27
0.05 if 0.27 ≤ y ≤ 0.32

0 otherwise

MFA0.32 (y) =

⎧
⎨

⎩

1− |y−0.32|
0.05 if 0.27 ≤ y ≤ 0.32

1− y−0.32
0.03 if 0.32 ≤ y ≤ 0.35

0 otherwise

MFA0.35 (y) =
{

1− |y−0.35|
0.03 if 0.32 ≤ y ≤ 0.38

0 otherwise

(3)

The fuzzy if–then rule consisting of these eight membership functions can
represent as follows:

For input viscosity vx,

IF vx is MFV 1(v) THEN acidity A(vx) is MFA0.11(y),
ELSE IF vx is MFV 2(v) THEN acidity A(vx) is MFA0.20(y),
ELSE IF vx is MFV 3(v) THEN acidity A(vx) is MFA0.27(y),
ELSE IF vx is MFV 4(v) THEN acidity A(vx) is MFA0.32(y).
ELSE vx is MFV 5(v) THEN acidity A(vx) is MFA0.35(y).

These fuzzy rules can be calculated by the min–max rule:

µ(y) = max(min(min(MFV 1(v),Svx(v)),MFA0.11(y)),
min(min(MFV 2(v),Svx(v)),MFA0.20(y)),
min(min(MFV 3(v),Svx(v)),MFA0.27(y)),
min(min(MFV 4(v),Svx(v)),MFA0.32(y)),
min(min(MFV 5(v),Svx(x)),MFA0.35(y))

=
A0.35,v5∑

A=A0.11,v=v1

∨(MFv(v) ∧ Svx(v) ∧MFA(y)) (4)
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Table 2. Estimation results of min–max-center-of-gravity method (50 samples)

acidity
(degradation)

estimation result
(correctly estimated sample #)

0.11 7
0.20 8
0.27 6
0.32 7
0.35 9

Table 3. Examples of the result

input
viscosity

17.01 17.14 17.27 17.37 17.50

acidity 0.171 0.228 0.282 0.324 0.362

input
viscosity

16.69 17.09 17.15 17.32 17.47

acidity 0.098 0.184 0.232 0.303 0.360

In (4), the fuzzy singleton function, Sv(x), is defined as Sv(x) = 1 if x = v; = 0
otherwise, and the notation ∨ denotes maximum and ∧ denotes minimum. Fi-
nally, we calculated the acidity, A(vx), as the center of gravity by

A(vx) =
∫
y · µ(y)∫
µ(y)

. (5)

4 Experimental Results

As the unknown data, we newly sampled the oil (10 samples per each oil box,
total 50 samples). We calculate the viscosity and inferred the acidity from all
data. The results are tabulated in Table 2 on 50 samples. In it, we consider
that if the inferred value is the closest to one truth value of five acidity val-
ues, the value is correct. From the result, we can identify the acidity with
the accuracy of 74%. Several examples of the experimental results are shown
in Table 3. Thus, this system can calculate the acidity values for various vis-
cosities by this fuzzy inference. From the inferred acidity, we can successfully
estimate the degradation of the oil.

5 Conclusions

This paper describes a fuzzy estimation system of degradation of oil by iden-
tifying the acidity on an ultrasonic system. In this estimation, we employ the
min–max-center-of-gravity method for identifying the acidity. There are many
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methods to identify them [8]. We need to compare it with the other meth-
ods. This ultrasonic system can be easily installed in fabrication stage of the
electric transformer. This ultrasonic system can estimate the degradation of
the insulating oil by identifying the acidity in the running transformer. Thus,
ultrasonic testing is the good choice to identify the degradation of the oil. In
this chapter, first, we describe that our calculated viscosity and the acidity
shows a strong positive correlation; the correlation coefficient is 0.99. Second,
we construct the fuzzy estimation system by standard fuzzy inference method,
and test the fuzzy system on 50 samples for five kinds of acidity. Then, we
were able to estimate the degradation of unknown oils. Consequently, both a
fuzzy inference and an ultrasonic equipment can realize the estimation system
of the oil degradation. In our experiments, we sampled from five kinds of the
oil for both design and test processes. It therefore remains as the future study
to evaluate the system for different kinds of oils.
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A Genetic Algorithm-Based Fuzzy Inference
System in Prediction of Wave Parameters

M. Zanganeh, S.J. Mousavi, A. Etemad-Shahidi

Summary. An important issue in application of fuzzy inference systems (FISs) to
a class of systems identification problems such as forecasting problems is to extract
the structure and type of fuzzy if-then rules from an input–output data set avail-
able. Given a FIS whose number and structure of fuzzy rules are known, artificial
neural networks (ANNs) may be used to tune the shape of membership functions of
fuzzy variables or other parameters of the fuzzy rule base. Adaptive-Network-Based
Fuzzy Inference System (ANFIS) is an example of models in which the shape para-
meters of the membership functions of fuzzy premise variables as well as the linear
parameters of the consequent part of fuzzy rules in a Takagi-Sugeno (TKS) FIS are
tuned using ANNs. Genetic algorithms (GAs) may also be used for optimizing the
parameter values of the subtractive clustering method by which the number and
structure of an initial FIS is determined before it is tuned by ANNs. In this paper, a
hybrid Genetic Algorithm-ANFIS (GA-ANFIS) model has been developed in which
both clustering and rule base parameters are simultaneously optimized using GAs
and ANNs. The model has been applied in prediction of wave parameters (wave
significant height and peak spectral period) in Lake Michigan. The data set of year
2001 was used as training set and that of year 2004 as testing data. The results
obtained by the hybrid GA-ANFIS model proposed are presented and analyzed.

Key words: Fuzzy inference systems, Prediction, Wave parameters, Genetic
algorithms.

1 Introduction

Prediction of wave parameters plays an important role in ocean activities
and costal engineering. Wave parameters are required for design of offshore
and onshore structures, sediment transports estimation, design of submarine
pipelines, etc. Several methods have been developed for prediction of signif-
icant wave parameters of which is numerical models working based on the
solution of energy balance equations. Numerical models are time consuming
and may not be justified from practical and economic point of view for small
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projects. Therefore many engineers tend to use simplified wave prediction
methods such as SPM (US. Army Corps of Engineers, 1984) and Coastal
Engineering Manual, CEM (US Army Corps of Engineers, 2003) methods.
Empirical methods often estimate significant wave parameters based on three
main parameters which are wind speed, wind duration and fetch length while
considering wave generation conditions (fetch-limited or duration-limited).
Soft computing-based models have been recently used for prediction of sig-
nificant wave parameters using the same input or premise variables used in
empirical methods. Tsai et al. (2002) developed ANN-based models for pre-
dicting the wave parameters. Kazeminezhad et al. (2005) used ANFIS in pre-
diction of wave parameters in fetch-limited conditions. In this study a hybrid
GA-ANFIS model has been presented wherein the parameters of the subtrac-
tive clustering method, by which the number of fuzzy rules is controlled, are
varied by a GA model within which ANFIS (Jang, 1993) is called for tuning
fuzzy rule base parameters.

2 Fuzzy Inference Systems (FISs)

FISs may be used as tools for approximating ill-defined nonlinear functions.
They can import qualitative aspects of human knowledge and reasoning
processes by data sets without employing precise quantitative analyses us-
ing the following five functional components as shown in Fig. 1:

– A rule base containing a number of fuzzy if-then rules.
– A database defining the membership functions of fuzzy sets.
– Decision making unit as the inference engine.
– A fuzzification interface which transforms crisp inputs to linguistic vari-

ables.
– A defuzzification interface converting fuzzy outputs to crisp outputs.

ANFIS is an architecture which is functionally equivalent to a TSK fuzzy
rule base whose parameters are tuned by using a learning algorithm in ex-
istence of input–output data. Assume a simple TSK fuzzy inference system
with two inputs x and y and one output f and a rule base with two fuzzy
if-then rules as follows:

Fig. 1. Components of a FIS
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Fig. 2. ANFIS structure

Rule 1: If x is A1 and y is B1 then f1 = p1x+ q1y + r1,
Rule 2: If x is A2 and y is B2 then f2 = p2x+ q2y + r2,

where A1, A2 and B1, B2 are respectively fuzzy sets of input premise vari-
ables x and y; and p1, q1, r1 and p2, q2, r2 are parameters of the consequent
or output variable.

The general structure of ANFIS is presented in Fig. 2 wherein circle nodes
are fixed nodes and square nodes are adaptive nodes whose parameters are
changed during training process. ANFIS architecture is composed of the fol-
lowing layers:

Layer 1: All the nodes in this layer are adaptive. It contains member-
ship functions of input variables. Each node i in this layer is presented by a
function as follows.

O1
i = µAi

(x) (1)

O1
i = µBi

(x) (2)

where Ai is the linguistic label, and x is input to node i, O1
i is the membership

of Ai which is usually defined by a bell-shape function with maximum and
minimum values equal to 1 and 0 as follows:

µAi
(x) = exp

[
−

(
x− ci
ai

)2
]

i = 1, 2 (3)

where ai is the sigma and ci is the center of the above Gaussian membership
function.

Layer 2: The fixed nodes in this layer are T-norm operators like AND
operator. The output of each node in this layer represents the firing strength
of the associated rule as follows:

wi = µAi
(x)× µBi

(x) , i = 1, 2 (4)
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Layer 3: Nodes in this layer are fixed nodes and the normalized ratio of the
ith rule’s firing strength to the sum of all rules’ firing strength is calculated
in this layer as:

w =
wi

w1 + w2
i = 1, 2 (5)

Layer 4: All nodes in this layer are adaptive. The output of each node
(rule) is simply the product of normalized firing strength and a first order
polynomial.

O4
i = wifi = wi (pix+ qiy + ri) (6)

where pi, qi, ri are parameters of the consequent part of rule i.
Layer 5: This layer has only one node labeled

∑
to indicate that it per-

forms as the simple sum over all outputs coming from layer 4.
A hybrid learning algorithm is used in ANFIS wherein the parameters of

membership functions of input variables in antecedent part of fuzzy rules are
optimized using a steepest descent algorithm while the linear parameters of the
output variable in consequent part are optimized using least square method. If
all the parameters defined are fixed, the final output of network is as follows:

f =
w1

w1 + w2
f1 +

w2

w1 + w2
f2 = w1f1 + w2f2

= w1(p1x+ q1y + r1) + w2(p2x+ q2 + r2)
= (w1x) p1 + (w1y) q1 + (w1) r1 + (w2x) p2 + (w2y) q2 + (w2) r (7)

As there is a linear combination of adaptive parameters, one can divide the
set of all parameters (S) in two separate sets as S = S1⊕S2 where S is the set
of total parameters, S1 is the set of nonlinear antecedent parameters, S2 is the
set of linear consequent parameters and ⊕ is the summation operator. Least
square method is used in forward path for optimizing consequent parameters
through minimizing the error function as ‖AX −B‖2 where X is an unknown
vector whose elements are parameters in S2, A and B are, respectively, the
coefficient matrix and the right hand side vector whose elements are deter-
mined using input–output data available as training data set. In the second
step antecedent parameters are optimized using the steepest descent method.

3 Subtractive Clustering

As it is crucial in ANFIS to have the number of fuzzy rules as minimum as
possible, a subtractive clustering method (Chiu et al., 1994) is used whose
parameters would control the number of fuzzy rules. The proper cluster para-
meters may be obtained by experience or by using a trial and error procedure.
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In subtractive clustering, the potential of each data point to be a cluster center
is estimated and the points with high potential values are selected as candi-
dates for cluster centers in an iterative manor. The points whose distance
from the cluster center is less than a prespecified value (cluster radius) are
then subtracted and the procedure continues until all the data are examined.
Taking a collection of K data points xk, k = 1, 2, . . .,K each of which is spec-
ified by a D-dimensional vector, the potential of xk to be a cluster center may
be estimated as below:

Pk =
K∑

j=1

exp

⎛

⎜⎝−4

√√√√
D∑

i=1

(
xi

k − xi
j

ri

)2
⎞

⎟⎠ (8)

where Pk is the potential of kth data point and ri is the cluster radius asso-
ciated with ith dimension of the point. Therefore, a data point would have
a high potential value if it has more neighboring points. After determining
the potential value of each data point, the point with the highest potential is
selected as the first cluster center. Assume that xC1 is that point and P ∗

1 is
its potential value. Then, the potential value of each data point xk is reduced
by using the following equation:

P ′
k = Pk − P ∗

1 exp

⎛

⎝−4

√√√√
D∑

i=1

(
xi

k − xi
C1

η ri

)2
⎞

⎠ (9)

where P ′
k is the reduced potential value of the kth data point and η is a para-

meter called as squash factor, which is multiplied by radius values to determine
the neighboring clusters within which the existence of other cluster centers are
discouraged. New cluster centers are determined based on a potential value
depending upon an acceptance ratio ε, rejection ratio ε, and the relative dis-
tance criterion. A data point with a potential greater than the acceptance
threshold is directly accepted as a cluster center. The acceptance level of data
points with potential values between the upper and lower thresholds depends
on the relative distance equation as follows:

dmin +
P ∗

k

P ∗
1

≥ 1 (10)

where dmin is the nearest distance between the candidate cluster center and
all cluster centers previously found as follows:

dk,c =

⎛

⎝

√√√√
D∑

i=1

(
xi

k − xi
C1

ri

)2
⎞

⎠ (11)

where dk,c is the distance of kth data point from ci th cluster previously
found. In ANFIS each cluster center would represent a fuzzy if-then rule as
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the cluster center i is assumed to be the mean value (ci) of the following
Gaussian membership function for the ith fuzzy input variable of the fuzzy
rule base:

µAi
(x) = exp

[
−

(
x− ci
ai

)2
]

(12)

The sigma parameter of Gaussian membership function (ai) is calculated as
follows:

ai = ri

(
max (xi)−min (xi)√

8

)
(13)

Therefore the cluster centers and squash factors may be viewed as parameters
which the number of fuzzy rules in an initial FIS depend on, before the rule
base parameters of that initial FIS is tuned by ANNs in ANFIS.

4 Hybrid GA-ANFIS Model

It was mentioned that clustering parameters on which ANFIS parameters de-
pend may be determined by a trial and error procedure and therefore they
would not necessarily be optimal. The hybrid GA-ANFIS model proposed in
this study is a model wherein the clustering parameters are optimized using a
GA model within which an AFIS model is called for fitness function evaluation
of any candidate solution generated by GA. Therefore GA acts as a stochastic
search-based model within which the hybrid learning algorithm used in ANFIS
performs as a local search optimizer. The parameters of the FIS designed for
mapping input values to desired outputs are optimized by GA-ANFIS model
proposed to get the total prediction error of the final model minimized. The
objective function of the GA optimizer would therefore be the minimization
of root mean square error (RMSE) of prediction made by an ANFIS model
whose number of rules has been generated by GA. The abstract form of the
optimization problem being considered in Hybrid GA-ANFIS model may be
written as follows:

min(

√√√√√
N∑

k=1

(Ok − P k)2

N
+ P1))

if(2 ≤ NumRule ≤MaxNumRule)
P1 = 0

Else

P1 = large number

P k = f(radius of clustring for any input, squashfactor, Governing Eqs. of
ANFIS ) where MaxNumRule is the maximum number of fuzzy rules. P1 is a
penalty function penalizing the objective function where the number of fuzzy
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Fig. 3. Flow diagram of the hybrid GA-ANFIS model

rules become greater than MaxNumRule. However the number of fuzzy rules
NumRule resulting to the best objective function is a variable which depend
on clustering parameters that are varied by GA. Note that P k is the ANFIS
output for the kth member of the training data set. Figure 3 shows the flow
diagram of the hybrid GA-ANFIS model presented.

5 Application

The hybrid GA-ANFIS model explained has been applied in prediction of
wave parameters in Lake Michigan. The wave data is gathered by National
Data Buoy Center (NDBC) at station 45007. The station is located at
42◦40′30′′ N, 87◦01′30′′ W in a depth of 176.4 m with a maximum measured
peak spectral period of 7.3 s. The data available belongs to a period from
March to January, 2001 and from January to December 2004, in 1-hr inter-
vals. Wind-induced waves generally depend on wind speed, fetch length and
the wind duration. In duration-limited condition, fetch length itself depends
on wind duration and wind speed. Therefore the wave significant parameters
would be a function of wind duration and wind speed. The data set was sep-
arated to 2 sets including duration-limited and fetch-limited data sets. 550
duration-limited data points of total 4,554 hourly data points were selected
of which 350 data points (2001 data set) were used as training data and the
remaining (2004 data set) as testing data. 300 data points of 350 training
data were directly used in training procedure and 50 data points as checking
data to ensure over-fitting would not be occurred. Separate hybrid GA-ANFIS
models were developed for predicting significant wave height (GA-ANFIS-H)
and peak spectral period (GA-ANFIS-P), respectively. The GA and ANFIS
parameters used are given in Table 1.
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Table 1. Suppositions of GA and ANFIS in wave prediction models

Model GA-ANFIS-H GA-ANFIS-P

Maximum number of generations in GA 100 100
Population size 20 20
Maximum number of epochs in ANFIS 300 300
Mutation probability in GA 0.27 0.17
Crossover probability in GA 0.64 0.72
Number of elitism 2 2
MaxNumRule 10 10

Figures 4 and 5, respectively, show the best fitness (objective) function of
the GA-ANFIS-H and GA-ANFIS-P models over evolving generations. The
optimal clustering parameters in GA-ANFIS-H were obtained as [rtr, rU10 ,
rHs
,Hssquash factor

]
= [0.43, 0.09, 0.378, 2.15] with an optimal number of

fuzzy rules equal to 5. The initial and final optimal membership shapes of
the premise variables in GA-ANFIS-H associated with that optimal cluster-
ing parameters are also illustrated in Fig. 6. For the GA-ANFIS-P, the op-
timal clustering parameters were obtained as

[
rtr, rU10 , rHs

, Tpsquash factor

]
=

[0.47, 0.48, 0.49, 0.53] with an optimal number of fuzzy rules equal to 4. It
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Fig. 6. Initial and final membership functions of input premise variables in GA-
ANFIS-H model

is seen that the optimal radius of wind speed in GA-ANFIS-H model is less
than that one in GA-ANFIS-P model indicating that wind speed has more
effect on wave height rather than on peak spectral period.

6 Summary and Conclusions

In this paper a hybrid GA-ANFIS model was presented in which GA opti-
mizes the structure and number of fuzzy if-then rules in a FIS by finding the
best values for parameters of a subtractive clustering method, while ANFIS is
used to optimize the initial FIS constructed based on the clustering parameter
values generated by GA. The model was applied in predicting wave signifi-
cant parameters, i.e., significant wave height and peak spectral period in Lake
Michigan. Results show the satisfactory performance of the GA-ANFIS model
proposed in reducing the prediction error of the FIS to be used in prediction
of wave parameters.
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Estimation of Degree of Polymerisation
and Residual Age of Transformers Based
on Furfural Levels in Insulating Oil Through
Generalized Regression Neural Networks

K.S. Madhavan, T.S.R. Murthy, and R. Sethuraman

Summary. Furfural Analysis and Degree of Polymerisation measurements give a
measure of the degradation of paper insulation in transformers. These in turn relate
to the ageing of transformers. Independent analysis of each of these chemical parame-
ters gives an idea of the residual age of a transformer. But there have been no specific
standards established to determine the ageing in transformers. In this paper, there is
an attempt to estimate/predict the Degree of Polymerisation and the residual age of
a transformer using Artificial Neural Networks given the Furfural component in oil.

Key words: Degree of polymerisation, Furfural analysis, Generalized regres-
sion neural networks, Probability density function, Residual age.

1 Introduction

Furfurals are major degradation products of cellulose insulation paper and
are found in insulation oils of operating transformers. Furfural analysis is an
indirect method to estimate the integrity of cellulose insulation compared to
the direct measurement of Degree of Polymerisation of insulating paper. The
tensile strength of the paper decreases corresponding to an increase in the
concentrations of the Furfural in the oil. 5-Hydroxymethyl-2-Furfuraldehyde
and 2-Furfuraldehyde are present in the oil at significantly greater concentra-
tions than any other Furfural components. Furfural levels range from 0.1 ppm
to 10 ppm depending on the age and condition of the transformer insulation.
The residual life of the transformer can be predicted by estimating Furfural
content in the oil or by the Degree of Polymerisation of cellulose paper taken
from lead insulation. The life assessment can be made faster by estimating
furfural from oil which can be collected from the transformer in running con-
dition. The collection of cellulose paper involves cumbersome procedure of
shutdown of the transformer and removal of paper from lead insulation after
opening the transformer. Hence life assessment by furfural estimation is more
popular and rapid method as compared to DP estimation of paper.
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2 Transformer Insulation Measurement and Residual
Life Assessment

The solid insulation used in transformers is a sheet of material made from cel-
lulose. The solid insulation could be paper, pressboard or transformer-board.
Cellulose is a linear polymer composed of individual anhydrous glucose units
linked at the first and fourth carbon atoms through a glucosidic bond. The
good mechanical properties of cellulose and its derivatives are due to their
polymeric and fibrous nature. The number of monomer units in the polymers
indicates Degree of Polymerisation (DP) [1].

Degree of Polymerisation has been used as a diagnostic tool to deter-
mine the condition of transformer. New Kraft paper has an average length of
1,000–1,500. After long period of service at high temperatures, its Degree of
Polymerisation falls to 200–250.

Presently, Degree of Polymerisation (DP) estimation is not possible with-
out collection of cellulose samples wherein paper is removed from lead insula-
tion of the transformer windings after opening the transformer. Measurement
of Furfural content is done on the oil sample that is collected from a trans-
former, the residual life of the transformer is also calculated.

A large database is available on DP, Furfural content and the correspond-
ing age of transformers. Using this database, a software package has been
developed such that the DP of paper insulation as well as the residual age
of the transformer can be predicted more accurately, by applying ANN tech-
nique. The present aim is that in future the DP and the age of the transformer
can be predicted without paper sample. It is easier to collect the oil sample
from the transformer offline.

3 Choice of Artificial Neural Networks

Artificial Neural Networks have been applied to study/classify the patterns
established in Degree of Polymerisation and Residual Age of transformer cal-
culated as the Furfural levels vary in the transformer oil. Artificial Neural
Networks have proven to be very versatile techniques for prediction on sparse
data sets or when data input is vague and indeterminate in specific cases.

The Degree of Polymerisation and Residual Age of transformers are con-
tinuous functions of Furfural levels of transformers. Therefore continuous
function approximation of multiple outputs through Generalized Regression
Neural Networks is one solution for predicting output patterns.

GRNN based on radial units, giving estimates of continuous variables
rather than discrete decisions, overcoming the disadvantage of slow training
inherent in backpropagation thereby lending itself well to real-time applica-
tion, is the appropriate choice for our present analysis. Least square method
has been used to minimize the error in prediction [2].
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4 Application of Generalized Regression Neural
Networks

The basic structure of this network consists of four layers, a layer of input
units, (radial basis layer) a layer of pattern units, a layer of summation units
and a layer of output units. Each output unit corresponds to a continuous
variable. It has a second hidden layer, a summation layer, unlike the usual
radial basis network

Two main functions are required for GRNN neurons and its output pre-
diction. Those functions are (1) to calculate the difference between all pairs
of input pattern vectors and (2) to estimate the probability density func-
tion (pdf) of the input variables. Equation 1 namely the difference between
input vectors is the simple Euclidean distance (Di) between the data values
in attribute space. Multiplying the measured value of the output with the
appropriate probability function of the Euclidean distance (Di) of any input
variable X from other input variables occurring in the attribute space and
averaging yields the estimated value of the predicted output [3].

D2
i = (X−Xi)2 . . . (1)

E[y|X] =

∞∫
−∞

yf(X, y)dy

∞∫
−∞

f(X, y)dy
. . . (2)

where E[y|X] is regression of y on X, f(X,y) is the probability density function
Estimation of pdf i.e. f(X,y) is based on Parzen’s theory. As per the the-

ory each point is assigned a sphere of influence (sigma, known as the Parzen
window or smoothing factor), similar to variance, which is centered over the
point. The most common sphere of influence given to each data point is the
Gaussian curve.

Many spheres of influence will be formed for various points. The appropri-
ate sphere of influence is defined as the one that produces the smallest mean
square error between the actual and predicted output values. Determination
of this appropriate sphere of influence i.e. σ (smoothing factor) is where learn-
ing takes place in GRNN. In accordance with the above theory, Equation 2
takes the form of Equation 3 where f(Xiy) is given by exp (−D2

i /2σ2). Oi is
called the output of pattern unit i.

Ŷ(X) =

n∑
i=1

Yi exp(−D2
i )/2σ2

n∑
i=1

exp(−D2
i /2σ2)

. . . (3)

where Oi = Yiexp(−D2
i /2σ

2) or exp(−D2
i /2σ

2)
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Yet another estimator of the output activation Oi as per the concept of
Parzen is exp(−Ci/σ) instead of exp(−D2

i /2σ
2) Where Ci = |X−XI|, the city

block distance. The predicted probability value Y (based on the least square
error between the predicted value and the actual value) is finally calculated in
the output layer by dividing the value in the numerator A unit by the value
in the denominator unit B.

For the determination of the optimum smoothing factor σ, initial weights
of any value are assigned to each variable. Then the weights are varied to get
the lowest mean square error (mse) between the estimated output and actual
output The architecture of the GRNN is shown in Fig. 1 [4].

The Furfural Concentration as input with corresponding Degree of Poly-
merisation and Residual Age of transformer as outputs are fed into the Neural
Network. A set of 31 patterns, 28 training patterns and 3 test patterns are
trained with the neural network. The error curves are shown in Fig. 2. The
data is trained through 23 iterations with a smoothing factor of 0.00254.
The variation of smoothing factor with mean square error is shown in Fig. 3.
The correlation coefficient obtained on the final result for both the outputs is
0.997. The statistical analysis is shown in Tables 1 and 2.

The results of Statistical Analysis after training by GRNN are shown in
Table 1 and 2.

         N
SS YI exp (-DI

2/2s2)
         I=1

 Input Units
   (I = 1)

     Summation Units Output Units
         n     (O = 2)

                     S exp (-DI
2/2s2)

         I=1

Pattern Units
(n=31)

X1

P1

P2

P3

Pn

A

B

Y1

Y2

Fig. 1. The general regression neural network for estimating continuous variables
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Fig. 2. Variation through patterns of pattern number vs error

Fig. 3. Variation of smoothing factor vs mean square error

5 Conclusion

This is a novel method for predicting Degree of Polymerisation (DP) and
Residual Age (RA) of transformers based on Furfural levels given. The method
would be of great help in Residual Life Assessment studies of transformer.
Henceforth, the DP and the life of the transformer can be predicted by simply
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Table 1. Training parameters

Training Parameters Value

Training Patterns 28
Test Patterns 3
Smoothing Test Events 3
Current Best Smoothing Factor 0.00254
Smoothing Test Epochs 23

Table 2. Error parameters

Error Parameters C1 C2

Mean Square Error 365.8 0.618
Mean Absolute Error 9.231 0.379
Min. Absolute Error 0 0
Max. Absolute Error 64.3 2.639
Correlation Coefficient 0.997 0.997
C1 = DP Coefficient; C2 = RA Coefficient

measuring Furfural content and feeding into an ANN. Transformers need not
be changed for paper samples which is most desirable. Also the testing time
is reduced.
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Fuzzy Shortest Paths in Fuzzy Graphs

Amir Baniamerian and Mohammad Bagher Menhaj

Summary. This paper presents a new method for finding the shortest path in fuzzy
graphs. This is indeed a “modified Dijkstra” in which there is no need to compare all
paths between any two nodes. A new approach has been developed in this paper for
fuzzy numbers comparison if needed. To show how good the method is, a computer
simulation is done. The simulation results are very promising.

Key words: Fuzzy graphs, Shortest path, Modified dijkstra.

1 Introduction

Graph theory has various applications in different fields of science, like sys-
tem analysis, research operation, economics, etc. In graph theory, weighted
directed graphs are of special importance. Edge weights can represent money,
time, etc.

There are so many cases that a unique number cannot be assigned to a
given edge weight because of cost variations. One example is a computer net-
work in which link costs are changed as traffic changes in the network [1]. One
of the existing solutions is to use fuzzy graphs which have fuzzy numbers as
edge weights.

One of the most important problems in graph theory is to find the short-
est path available between two nodes. In crisp graphs, the optimum algorithm
is Dijkstra’s algorithm which has an order equal to (n log n) [1]. Dijkstra’s
algorithm needs only one execution in order to determine the shortest path
between every specific source node to all other nodes.

In fuzzy graph algorithms, it is crucial to compare all available paths be-
tween every two nodes. On the other hand, in [3, 4] the algorithm must be
executed for each node from the source node to acquire the shortest path.

With the above condition, it is obvious that the number of available paths
between two nodes increases dramatically as the number of edges or nodes
increases. In the suggested approach, numbers of fuzzy comparisons are lim-
ited to the number of edges. Note that this algorithm is applicable on directed
acyclic fuzzy graphs. This algorithm, in fact, is a modified Dijkstra’s algorithm
for fuzzy graphs.
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The rest of the paper is organized as follows:
At the end of this section, the notation used in this paper is introduced.
In Sect. 2, the necessary mathematical preliminaries for other sections are ex-
plained. In Sect. 3, a new approach to compare two fuzzy numbers is developed
and two basic theorems are derived. Section 4 presents the algorithm in a step
by step format. In Sect. 5, a computer simulation is carried out and finally the
future work are explained in Sect. 6.

Notation:

Ã : A triangular fuzzy number that determined by (a1, a2, a3).
ei : An edge of graph.
Sha−b : Fuzzy shortest path set from node “a” to node “b” (goal set).
Sha−b(e) : Membership degree of the edge “e” to the shortest path set.
Li : A path in graph that is defined by a series of edges (i.e.

(em1 , em2 , ..., emk
)).

µLi≈Lj
: Reflects how much Li is near to Lj .

E : The edge set of a graph.
V : The node set of a graph.

2 Preliminaries

In this section some useful definitions are introduced.

Definition 1. Triangular Fuzzy number

A fuzzy number is a normal, convex fuzzy set whose support1 is bounded. In
this study triangular fuzzy numbers are used. See Fig. 1.

 

1

3a  2a  1a  

1 

Fig. 1. A triangular fuzzy number

1 Support of Ã is {x |A(x) > 0} .
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Definition 2. Fuzzy graph

In [4] five types of fuzzy graphs are introduced. In this study, fuzzy graphs
with the following properties are considered:

1. The graph is directed and acyclic.
2. Nodes and edges are both crisp.
3. Edge length is a triangular fuzzy number.

Definition 3. Fuzzy shortest path

In crisp graphs, shortest path between two nodes is a specific path which is
composed of some certain edges. It can be defined as:

{
(ei, µ)

∣∣∣∣µ =
{

1 , ei ∈ Shortest path
0 , ei /∈ Shortest path

}
(1)

where ei is an edge.
The fuzzy shortest path set can then be guessed from (1). Membership

degree of the shortest path set is assigned to each edge. In other words we can
write: {

(ei, Shs−d(ei))
∣∣ Shs−d(ei) ∈ [0, 1]

}
(2)

It is apparent that separate shortest paths must be calculated for a specific
source node to other nodes. The goal of the proposed algorithm is to find
them in one run. Membership values for each edge are determined as:

Sha−b(ei) = ∨
P∈Π

( ∧
Q∈Π

µLQ≈LP
) (3)

where Π is set of all paths between a and b, P is each path between a and b
that contains ei, and ∧ , ∨ are infimum and suprimum operations, respectively.

From (3), it is obvious that all paths between a and b containing ei must
be taken into account.

3 The Proposed Method

In this section, a new method to compare two fuzzy numbers is introduced.
Furthermore, two theorems which are the bases of the algorithm are investi-
gated.

3.1 Comparing Two Fuzzy Numbers

To compare two fuzzy numbers, an index for fuzzy numbers should be first
evaluated2:

2 This index was introduced completely in [2].
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AI =
∫ 1

0

D(0, [AL
α, A

U
α ])dα (4)

where [AL
α, A

U
α ] is α− cut of Ã fuzzy number and

D(0, [AL
α, A

U
α ]) = 1/2(AL

α +AU
α ).

Now, the following equation can be used to compare two fuzzy numbers.

g : -+ −→ [0, 1]
µÃ≈B̃ = g(BI −AI)

(5)

In the above equation g(·) is a monotonically decreasing function in which AI

and BI are calculated from (4).

3.2 Theorems

Theorem 13:

Assume that, the binary operator ∗̂ is a t-norm with the following two prop-
erties:

1. a∗̂a < a
2. ∗̂ is continuous for all of its arguments

Then, a monotonically decreasing function f(·) can be found which satis-
fies:

a∗̂b = f−1(f(a) + f(b)) ; a, b ∈ [0, 1] (6)

f(·) is called “t-norm generator function”.

Theorem 2.

Assume that the fuzzy numbers Ã,B̃,C̃ are given. We can write

µÃ≈B̃ = µ(Ã+C̃)≈(B̃+C̃) (7)

where µX̃≈Ỹ is defined by (5).

Proof.

For a triangular fuzzy number X̃ = (x1, x2, x3), the index defined in (4) be-
comes

XI = 1/2(2x2 + x1 + x3) (8)

Meanwhile, for any tow triangular fuzzy numbers X̃, Ỹ , we can have

(X̃ + Ỹ ) = (x1 + y1, x2 + y2, x3 + y3) (9)

3 This theorem was explained in [5].
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The above equation is obtained as follows

Z̃ = (X̃ + Ỹ )

Z(z) = ∨
z=x+y

(X(x) ∧ Y (y))

Use (8) and (9) to write

(X̃ + Ỹ )I = X̃I + ỸI

where (X̃ + Ỹ )I is index of (X̃ + Ỹ ) defined by (4). Use (5) to complete the
proof as:

µ(
Ã+C̃

)
≈
(
B̃+C̃

) = g((BI + CI)− (AI + CI))

= g(BI −AI) = µ
Ã≈ B̃

This theorem is used to compare two paths that share some common edges.

Theorem 3.

Consider three triangular fuzzy numbers Ã, B̃, C̃ and a t-norm, ∗̂ with the
properties given in theorem 1. We further assume AI ≤ BI ≤ CI and g(·) =
f−1(·). Note that function g(·) is defined in (5). Then, it can be shown that

µÃ≈B̃
∗̂µB̃≈C̃ = µÃ≈C̃ (10)

Proof.

It is clear that
µX̃≈Ỹ = f−1(YI −XI) (11)

In the light of (6), we can write

µÃ≈B̃ ∗ µB̃≈C̃ = f−1(f(µÃ≈B̃) + f(µB̃≈C̃))
= f−1(f(f−1(BI −AI)) + f(f−1(CI −BI)))

µÃ≈B̃ ∗ µB̃≈C̃ = f−1(BI −AI + CI −BI)
= f−1(CI −AI) = µÃ≈C̃

Now we are ready to develop the proposed algorithm using the above theo-
rems. Next subsection is devoted to do so.

Consider Fig. 2 and calculate the fuzzy shortest path set from node a to
node d as illustrated below.

Let us assume

L1 = (5), L2 = (1, 2, 4), L3 = (1, 3, 4), L4 = (1, 2), L5 = (1, 3)



762 A. Baniamerian and M.B. Menhaj

d

c 

b 

a 

5

3
4

2

1

Fig. 2. A simple fuzzy graph

Denote
L1 as the shortest path from a to d
L4 as the shortest path from a to c
It is clear that the shortest path from a to d, containing edge (4), is L2.

Hence,
Sha−d(4) = µL1≈L2

Now, we want to calculate Sha−d(3). From (3) and Fig. 2, it is obvious that

Sha−d(3) = µL1≈L2 .

Assuming that Sha−c was completely calculated4 and

Sha−c(3) = µL4≈L5

Theorem 2 implies
µL2≈L3 = µL4≈L5

Use theorem 3 and the above fact to obtain

µL1≈L3 = µL2≈L3 ∗̂µL1≈L2

= µL4≈L5 ∗̂µL1≈L2

⇒ µL1≈L3 = Sha−c(3)∗̂Sha−d(4)
⇒ Sha−d(3) = Sha−c(3)∗̂Sha−d(4)

The last result shows that no fuzzy comparison is needed to compute Sha−d(3).
Now the steps of the proposed algorithm are summarized in the next

section.

4 The Proposed Algorithm

1. Calculate all edge indexes5 and {Shs−u(ei) = 0 ∀u ∈ V , ∀ei ∈ E}
2. Use “Dijkstra algorithm” with the following actions.

4 In the algorithm, an edge, ei, is selected when the shortest path set from the
source node to the ei head node was calculated completely.

5 The indexes are obtained by (11).
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1. If the selected node “v” is picked up for the first time (this means that
the selected path is the shortest path), then set

Shs−v(e0) = µ′ = 1

where e0 is the last edge in the selected path.
2. For a repeatedly selected node “v” find

Sha−v(e0) = µ′

where e0 is the last edge in the selected path and µ′ is calculated by com-
paring the shortest path from “a” to “v” and a path which is obtained
from e0, and the shortest path from “a” to the head of e0(“v′”).

3. For every edge, do the following

Sha−v(e) = max
{

(Sha−v′
(e)∗̂µ′), Sha−v(e)

}

where ∗̂ is a t-norm with the specifications given in theorem 3.

5 Simulation

Consider the following graph.
For this example, we have applied the proposed algorithm in C environ-

ment and Table 1 summarizes the results. In this simulation, dot product is
used as t-norm and g(x) = e−x is considered in (5).

Table 1 also summarizes the results for the fuzzy shortest path set from
node “1” to node “8”. Total number of comparisons for this graph became 10
as expected.

Table 1. The fuzzy shortest path set for node “8” in graph shown in Fig. 3 (The
lengths are triangular fuzzy number).

arc Length Degree

(1,2) (19,25,29) 1

(2,3) (15,20,25) 1

(2,4) (58,63,68) 0.86

(3,4) (38,41,46) 1

(4,5) (12,15,18) 0.68

(3,6) (54,57,62) 0.22

(4,6) (8,9,10) 1

(5,7) (70,75,80) 0.68

(6,7) (65,75,85) 1

(7,8) (20,25,30) 1
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Fig. 3. A simple fuzzy graph for simulation

6 Conclusion

In this paper, a new approach was presented to find fuzzy shortest paths in
fuzzy graphs. In the algorithm, a method for fuzzy comparison was derived.
This algorithm reduces the total number of comparisons to the maximum
number of the edges. This algorithm with a few modifications would be able
to exploit s-norm for finding the longest path. This is under current investi-
gation and will be reported later.
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Improving Vegas Algorithm Using PID
and Fuzzy PID Controllers

Aria Shahingohar, Mohammad Bagher Menhaj, Mehdi Karrari,
and Mohammad Hossein Yaghamae

Summary. Since in the TCP protocol the source has no idea which congestion
window size will result in the best performance, it tunes the window size according
to parameters such as loss, duplicate acknowledge and etc. The Vegas algorithm
is one of the most intelligent flow control algorithms that despite other protocols,
tunes the window size by estimation of actual throughput. In this paper, we focus
on the fact that controlling the traffic flow is indeed a control problem in nature. We
developed a PID and Fuzzy PID based Vegas algorithm. To show the performance of
our proposed methods, we performed simulations on NS-2 simulator. The simulation
results highlight better performance of our methods.

1 Introduction

TCP Tahoe [1] and TCP Reno [2] are two common type of TCP algorithms.
TCP Vegas [3] enhanced the Congestion Avoidance and Fast Retransmission
algorithms of TCP Reno [2]. In resent years several attempts have been made
to develop Vegas algorithm [4–7]. In this paper, we first briefly introduce con-
gestion control mechanism. Then, we explain Vegas algorithm and show that
congestion avoidance phase is a simple feedback control problem that is easily
solved by a PID controller. Afterwards, we adaptively tune the parameters of
the PID controller using fuzzy logic. The simulation results easily approve the
outperformance of the proposed methods over the ordinary Vegas.

2 Congestion Control

TCP congestion control, prevents a source from exceeding network capacity
by allowing it to adapt its transmission rate to avoid congestion in routers.

When a TCP connection is first established, the source TCP does not
transmit a full receiver’s advertised window of segments. The source TCP ini-
tiates slow-start by transmitting one segment and waiting for its ACK. When
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Fig. 1. Slow start and Congestion Avoidance in TCP

the ACK is received, the source increases congestion window size (CWND)
from one to two, and two segments are sent. When these two segments are
acknowledged, the source increases its CWND from two to four and four seg-
ments are sent. The exponential growth of CWND continues until either its
value exceeds the destination’s advertised window or packets are dropped due
to congestion.

When the source TCP discovers that a packet has been dropped by the
network, it sets the variable ssthresh (slow-start threshold) equal tone-half
of the current value of CWND. The source reduces its transmission rate by
returning to slow-start mode, but this time it exponentially increases its trans-
mission rate until CWND is equal to the value of ssthresh. At this point, the
sender increases CWND linearly (by at most one segment per RTT), allowing
it to slowly increase its transmission rate as it begins to approach the previous
CWND value that caused packets to be dropped. Figure 1 shows an example
of TCP behavior in slow-start and congestion avoidance.

3 TCP Vegas

In the TCP Vegas, in the Congestion Avoidance phase, the congestion win-
dow size is not increased linearly. Instead, the actual throughput of network is
compared with its expected throughput. If these values are close or if the ac-
tual throughput is greater than the actual value, the window size is increased
but if the actual throughput is very smaller than expected throughput, then
the window size is decreased. The main difference between Vegas with other
algorithms is using throughput rather than loss of packets for detection of
severity of congestion.

The actual and expected throughputs of network are computed accord-
ing to (1) and (2), respectively. In (2), BaseRTT is the smallest measured
RTT(Round Time Trip).
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Actual Throughput =
CWND

RTT
(1)

Expected Throughput =
CWND

BaseRTT
(2)

Vegas then define Delta according to the following equation:

Delta = ExpectedThroughput−ActualThroughput (3)

Vegas uses Delta to set the window size. For this purpose two thresholds α
and β (α < β) are defined. If Delta > β, Vegas decreases the window size at
each RTT and if Delta < α Vegas increases the window size at each RTT.

To adjust the window size in the Vegas algorithm, Delta is compared with
two constant thresholds. This is the main weakness of Vegas algorithm since
in fact it is an On–Off control. We show that better results could be achieved
if a proper controller is used to adjust the window size.

4 Developing TCP Vegas using PID Controller

The block diagram of the PID controller that we have used to adjust the
CWND is shown if Fig. 2. In this figure Kp, Kd, and Ki are proportional,
differential and integral gains respectively. D0 is the set point of Delta. A
small value for D0 will utilize maximum network resources while preventing
from congestion. The same idea exists in ordinary Vegas, since the thresholds
α and β are experimentally selected positive values.

We have also selected the PID gains based on experience. The simulation
results show that PID controller has better performance than ordinary Vegas.

5 Developing TCP Vegas using Fuzzy PID Controller

The PID Vegas controller surpasses ordinary Vegas. However, it is possible to
enhance the PID controller’s performance by online tuning of PID gains. We
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Fig. 2. PID Vegas algorithm
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Fig. 3. Fuzzy PID Vegas algorithm

will follow the approach proposed by Zhao, Tomizuka and Isakaf for Fuzzy gain
scheduling of our PID controller [8]. The block diagram of proposed method is
shown in Fig. 3. We use three groups of rules each consisting 49 rules to tune
the PID gains. We combine the 49 rules in each set using product inference
engine, singleton fuzzifier, and center average defuzzifier.

For tuning of the parameters we shall first define the intervals [Kpmin,
Kpmax] ⊂ - and [Kdmin,Kdmax] ⊂ - so that proportional gainKp ∈
[Kpmin,Kpmax] and differentia gain Kd ∈ [Kdmin,Kdmax]. For convenience
Kp and Kd are normalized to the ranges between zero and one according to
the following transformations:

K ′
p =

Kp −Kpmin

Kpmax −Kpmin
(4)

K ′
d =

Kd −Kdmin

Kdmax −Kdmin
(5)

Assume that the integral time constant is determined with reference to the
derivative time constant by:

Ti = α× Td (6)

From which we can obtain:

Ki =
Kp

α× Td
=

K2
p

α×Kd
(7)
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Hence the parameters to be tuned by the fuzzy system are K ′
p, K

′
d, and α.

Assume that the inputs to the fuzzy system are e(n) and ∆e(n)=e(n)-e(n-1).
So our fuzzy systems consist of three two-input one-output fuzzy systems, as
shown in Fig. 3. We now derive the fuzzy If-Then rules that constitute these
fuzzy systems. Let the fuzzy If-Then rules be of the following form:

IF e(n) is Al and ∆e(n) is Bl, THEN K ′
p is Cl, K ′

d is Dl, α is El

Where Al, Bl, Cl,Dl, and El are fuzzy sets and suppose that the domains
of interest of e(n) and ∆e(n) are[e−M , e

+
M ] and [e−Md, e

+
Md], respectively. We de-

fine seven fuzzy sets as shown in Fig. 4 to cover them. Thus, a complete fuzzy
rule base consists of 49 rules. For simplicity, assume that Cl and Dl are either
the fuzzy big or the fuzzy set small whose membership functions are shown
in Fig. 5. Finally, assume that El can be the four fuzzy sets shown in Fig. 6.

According to [8], we have derived the fuzzy rules such that the error of the
step response of a sample system becomes minimum. The fuzzy rules for K ′

p,
K ′

d, and α are shown in Tables 1–3, respectively. We combine the 49 rules in
each set using product inference engine, singleton fuzzifier, and center average
defuzzifire; that is, parameters K ′

p, K
′
d, and α are tuned online according to

equations (8)–(10).

eM
- or 

eMd
- 

eM
+ or 

eMd
+ 

PB PM PS Z 0 NS NM NB 

Fig. 4. Membership functions of e(n) and ∆e(n)

1 

0 1 

Big Small 

Fig. 5. Membership functions of K′
p, K′

d, and α
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1 

min  max

B M  M S S 

Fig. 6. Membership functions of α

Table 1. Fuzzy tuning rules for K′
p

e(n)
NB NM NS Z0 PS PM PB

NB B B B B B B B
NM S B B B B B S
NS S S B B B S S

∆e(n) Z0 S S S B S S S
PS S S B B B S S
PM S B B B B B S
PB B B B B B B B

K ′
p(n+ 1) =

∑49
l=1 y

−l
p µAl(e(n))µBl(∆e(n))

∑49
l=1 µAl(e(n))µBl(∆e(n))

(8)

K ′
d(n+ 1) =

∑49
l=1 y

−l
d µAl(e(n))µBl(∆e(n))

∑49
l=1 µAl(e(n))µBl(∆e(n))

(9)

α(n+ 1) =
∑49

l=1 y
−l
α µAl(e(n))µBl(∆e(n))

∑49
l=1 µAl(e(n))µBl(∆e(n))

(10)

6 Performance Evaluation

To evaluate the performance of the proposed controllers, we use the NS-2
simulator [9]. We have used four measures as the bases of comparison. These
measures are overall throughput of TCP sources, channel utilization, loss prob-
ability, and number of duplicate acknowledges. We shall express these concepts
first.
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Table 2. Fuzzy tuning rules for K′
d

e(n)
NB NM NS Z0 PS PM PB

NB S S S S S S S
NM B B S S S B B
NS B B B S B B B

∆e(n) Z0 B B B B B B B
PS B B B S B B B
PM B B S S S B B
PB S S S S S S S

Table 3. Fuzzy tuning rules for α

e(n)
NB NM NS Z0 PS PM PB

NB S S S S S S S
NM MS MS S S S MS MS
NS M MS MS S MS MS M

∆e(n) Z0 B M MS MS MS M B
PS M MS MS S MS MS M
PM MS MS S S S MS MS
PB S S S S S S S

– Overal Throughput of TCP sources: This measure shows the amount of
acknowledged packets. This quantity is in fact the average of instant
throughput that is computed according to the (1). The overall throughput
of TCP source is computed according to following equation:

Overal Thoughput(Time) =
ACKNum× PacketSize× 8

Time× 1024× 1024
(11)

– Channel Utilization: Channel utilization shows how much capacity of
the link is used. This value is the ratio of the departed packets to the
dropped packets and it is computed according to the following equation.
The greater this value is close to 1 the more the link is utilized.

Utilization(Time) =
DepartmentPackets× PacketSize× 8

Time× LinkSpeed (12)

– Loss Probability : This value shows the extent of dropped packets and it
is computed according to this equation:

Loss Probablity(Time) =
DropedPackets

DepartmentPackets+DropedPackets
(13)

– Number of duplicate acknowledges: The receiver creates duplicate acknowl-
edge when it receives a packet out of order or in case of missing a single
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Fig. 7. Topology of simulation

Fig. 8. CWND in (a) Ordinary Vegas (b) PID Vegas (c) Fuzzy PID Vegas

packet in the stream of packets. So if a TCP controls the CWND more
efficiently, the number of duplicate acknowledges decreases.

The topology of the simulation is shown in Fig. 7. Bandwidth and delay of
all links are shown. All links are duplex and their buffer management is Tail
Drop. A TCP connection is set between the nodes 1 and 4 and the connection
between the nodes 2 to 5 and 3 to 6 is UDP. An FTP application is connected
to the node 1 and 2 CBR applications with rate .5 Mb/s are connected to
the nodes 2 and 3. The node 1 starts sending data at the beginning of the
simulation to the end. The nodes 2 and 3 starts at 5s. The node 2 stops at 15s
and the node 3 stops at 20s. In this regard, a bottleneck is created between the
nodes 7 and 8 in the duration 5s to 15s and we can examine the performance
of protocols.

Figure 8 shows the CWND of TCP node for ordinary Vegs, PID Vegas,
and Fuzzy PID Vegas. Figure 9–11 and Table 4 show the overall throughput,
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Fig. 9. Comparison of overall throughput of Ordinary Vegas, .PID Vegas, and Fuzzy
PID Vegas

Fig. 10. Comparison of channel utilization of Ordinary Vegas, .PID Vegas and
Fuzzy PID Vegas (fig b is magnification of fig a)

utilization and loss probability and number of double acknowledges respec-
tively for three algorithms. As it is shown in Fig. 9, the throughput of the
PID Vegas has been greater than that of the ordinary Vegas and the through-
put of the Fuzzy PID Vegas has been greater than that of the PID Vegas.
In Fig. 10 we have compared the channel utilization of three algorithms. This
figure shows that the PID Vegas and the Fuzzy PID Vegas has utilized the link
more efficiently. Figure 11 shows the trends of loss probability for the three al-
gorithms. The proposed algorithms has been more success full to avoid losses.
Table 4 shows the number of duplicate acknowledges for three algorithms. It
is seen that the performance of the PID Vegas has been better than that of
the ordinary Vegas and the Fuzzy tuning has improved the performance of
the PID Vegas.
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Fig. 11. Comparison of loss probability of Ordinary Vegas, .PID Vegas and Fuzzy
PID Vegas

Table 4. Number of duplicate acknowledges

TCP Number of Duplicate Acknowledges

Ordinary Vegas 1525

PID Vegas 613

Fuzzy PID Vegas 583

7 Conclusion

We reviewed the TCP Vegas algorithm and showed that there is a feedback
control loop in its congestion avoidance phase which uses a simple On/Off con-
troller to adjust the CWND. Then, we introduced the PID Vegas algorithm
in which, a PID controller is used for tuning of CWND. The PID controller
enables the algorithm to control the sending rate from the source such that
more capacity of the network is utilized while it avoids congestion. Simulation
results show that performance of the PID Vegas algorithm is better than ordi-
nary Vegas. The reason is that PID Vegas is more flexible than ordinary Vegas
and it is sensible to deviations in Delta. This enables the TCP to continually
examine the network and increase the CWND if possible and at the same
time if there is any problem in the network it rapidly decreases the CWND
to avoid congestion.

Finally, we developed a Fuzzy methode to tune the parameters of the PID
controller. Simulation results approve better performance of TCP as expected.
Since the Fuzzy tuning of parameters is done no matter what the plant, it en-
sures that the algorithm behaves properly in unexpected network conditions.
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A Fuzzy-Based Automation Level Analysis
in Irrigation Equipment

Mohsen Davoudi, Mohammad Bagher Menhaj, and Mehdi Davoudi

Summary. In underdeveloped countries because of old irrigation/agricultural
equipment, there are some problems with automation. In some cases, automation
is not efficient. In this paper, we introduce an idea to make automation plausible
for an old equipment environment using fuzzy logic based analysis. The proposed
fuzzy analyzer uses data collected from farm, climate, energy, etc to determine which
equipment has enough reasons to be automated. The analyzer helps us decide where
and when to switch from the mechanization level to the automation level.

Key words: Fuzzy control, Irrigation, Automation level.

1 Introduction

Agriculture has, throughout History, played a major role in human societies
endeavors to be self-sufficient in food. However, water shortage has seriously
impeded the attainment of such an objective. This is why, for Mankind, agri-
cultural land irrigation has increasingly become a challenge and water resource
control is a priority [1]. Around the middle of twentieth century a period
started where design and operation of the irrigation systems were increasingly
determined by scientific methods and techniques. This scientific approach was
based on production objectives: optimization of yields and efficiencies. Soil,
water, and plant relationship became the focus [2].

As a result of extensive research into this relationship, water requirements
for crops at various growth stages under different climatic and soil conditions
could be determined with a great accuracy [3].

Today, irrigation systems performance has been increased using mech-
anized equipment. A mechanized system needs automation to be more ef-
ficient because of correct and efficient management. In this context, new
approaches are needed for more insight into ways of achieving greater effi-
ciency at decision-making stages involved in irrigation and water resource
management, in order to optimize the available irrigation systems and to help
decision making for agriculture management.
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Fig. 1. A typical irrigation fuzzy analyzer

The rest of the paper is organized as follows. Section 2 introduces a proce-
dure to calculate both automation level and automation threshold. In Sect. 3,
we discuss the so called field parameter followed by Section 4 that presents the
energy parameter. Section 5 describes the mechanization parameter. Section 6
is devoted to explain the fuzzy analyzer. Section 7 present the simulation
results and finally, Section 8 concludes the paper.

2 Automation Level and Automation Threshold

Automation level is maximum capability of performing tasks automatically
by machines. Automation level determination is the first step to determine
the efficiency of the automation. Automation level is not dependent on en-
vironmental conditions, and it only depends on structure and specification
of the equipment [4]. The second step is the calculation of the Automation
Threshold (AT ) for a given the farm or field where the equipment is installed.

Parameters such as geographical attributes, cost of energy resources (elec-
tricity and water), human resource accessibility, and existing level of mecha-
nization in equipment are all effective in calculation of AT . Figure 1 shows a
typical irrigation fuzzy analyzer [5].

The value of AT cannot be calculated precisely, because it depends on
inputs such as management, economic, and technical problems that cannot
be clearly quantified. Fuzzy analyzer employs specific rules commonly used
by farmers, combines environment data to calculate AT value [6]. At last by
comparing Automation Levels calculated in the first step and the AT value
calculated in the second step, we can select the equipment that has technical
and economical plausibility for performing automation plan in a field. The
analysis of farmers’ perceptions is based on the data generated using a farmer
survey questionnaire [7].

The aims of each controller in the Irrigation system is flexibility, accuracy,
simplicity, and reliability [8].

3 Automation Level Determination

In this paper, we consider a number of irrigation equipment. This method
can be also generalized to other agricultural/irrigation equipment. In Table 1
irrigation equipment are categorized into different types. To determine Au-
tomation levels, we assign normalized scores to each item of equipment given
in Table 2.
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Table 1. Irrigation equipment

Local Irrigation (Drip) Global Irrigation (Rain)

Drip Center pivot
Bubbler Linear
Spray Wheel move
Tape Classic
Subsurface Traveling Gun

Table 2. Items of equipment

Item Score

Accessible electricity existence in the equipment 0 - 10
Control level of the electricity box (if exists) 0 - 10
Cost of automation implementation 0 - 10
Data transmission capability (wired /Wireless/none) 0 - 10
Equipment’s Distribution Uniformity (DU) 0 - 5
Irrigation frequency by this equipment 0 - 10
Alarm based installed sensors and auto stop 0 - 5
Water supply (Fixed pipe/Canal/Hydrant) 0 - 10
Movement structure (Fix/Pivot/Linear move) 0 - 10
Movement driver (Fix/Electromotor/Diesel motor/manual) 0 - 10
Cost of mechanized system 0 - 10

Each item in Table 2 corresponding to each equipment has a specific score;
therefore, the total score for equipment can be computed. The total value
quantifies the Automation level. Typically, for the Center pivot, Hose Fed
Linear, Canal Fed Linear, Wheel Move, Drip irrigation and Turf, the values
of Automation level, respectively, are: 100, 48, 70, 33, 77, and 87. No matter
what the environmental conditions are, the automation level only depends
on the specifications of the equipment. The interactions between Automation
level and farm conditions are formulated by fuzzy inference systems developed
in the paper and will be used in the fuzzy analyzer. Now, we briefly introduce
the parameters important in determination of the AT .

4 Energy Resources

Electricity power and water resources are two important factors which play
key role in automation of the agricultural equipment. Rising from mecha-
nization level to automation level needs applying control methods in water
resources. Variable Frequency Drive (VFD) on irrigation pumping plant is an
effective approach for supplying water in irrigation equipment with minimum
power consumption [8]. In order to stabilize water pressure stabilization into
the irrigation pipes, which is one of the automation duties, the relationship
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Fig. 2. Variable Frequency Drive on pumping plant

between “change in pump speed” and “change in Q” must be known. In prac-
tice, there is neither a constant nor a precisely known relationship because (I)
the water level in the pump changes considerably during the year, and (II)
pump characteristics can change with time. Figure 2 illustrates the pump and
system curves.

This paper defines five fuzzy term sets for the energy cost factor: “Ex-
pensive, Expensive-medium, Medium, Cheep-medium, Cheep”. These fuzzy
sets cover the nonlinearity and changes in irrigation pump plants and indi-
rectly effects on the Automation Threshold which is the basis for selection of
equipment to be automated.

Statistics shows that implementation of the mechanized irrigation system
reduces the water consumption to 5400m3/hectare. For example, in nonmech-
anized systems it may be 11000m3/hectare. Automation improves the man-
agement of water and farm and increases the efficiency of the mechanized
system.

5 Field

Climatic factor in the agricultural field or farm where irrigation equipment
are installed is the second parameter that is studied in this paper. This para-
meter is another input of the fuzzy analyzer. Table 3 illustrates how the major
climatic factors affect crop water needs.

The AT value directly depends on the Climatic factors. Typically fuzzy
sets for field parameter are: “Dry, Dry-medium, Medium, Wet-medium, Wet”.
Figure 3 shows map of a typical area which can be divided into these area sets.
Generally the map of areas is available and fuzzy sets can be extracted sim-
ply on map [9]. Here, we describe how humidity affects from the irrigation
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Table 3. Effects of major climatic factors on crop water needs

Climatic Factor Crop water need (High) (Low)

Temperature hot cool
Humidity low (dry) high (humid)
Wind speed windy little wind
Sunshine sunny (no clouds) cloudy (no sun)

Fig. 3. Map of a typical area

management and automation. The basic equation for Evapotranspiration
(ET ) based scheduling is:

ETcrop = Kc× ETo (1)

ETo the crop evapotranspiration, usually measured in inches/day, ETo is the
evapotranspiration of a reference crop (usually either alfalfa or grass) Kc is
a crop coefficient, and is a dimensionless number. Kc tells how much water
your crop uses in comparison with the reference crop [10]. Much research has
allowed us to estimate ETo based on four weather variables which are shown
in Table 3.

The weather may vary from day to day and can vary with location. But
for a given set of weather conditions, ETo can be used for all crops grown
on that day in that location. Kc will vary with crop stage of growth (time
of the season), so we can use Kc at all locations where that crop is grown.
More precisely Kc also depends on irrigation management, which may not be
the same at all locations. However we often assume the “typical” or “normal”
irrigation practice is being used, so Kc is regarded as being transferable from
one location to another. Kc is subject to two adjustments that irrigation man-
agement can affect. One has to do with a wet soil surface after an irrigation,
and the other has to do with possible soil moisture stress in the last days
before an irrigation [11]. The basic equation for adjusting Kc is:

Kc = Kcb×Kstress +Kevap (2)
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Fig. 4. Crop coefficient variations

Fig. 5. Stages of the evaporation

Kcb is called the “basal crop coefficient.” Kcb is defined at the crop coefficient
that will be observed when the soil surface is dry (no soil surface evaporation),
and there is adequate moisture in the root zone to prevent any decrease in the
relative ET (Fig. 4). Kstress is an adjustment factor that makes Kc decrease
when the soil is so dry that relative ET is decreased. Kevap accounts for the
extra water use due to evaporation from a wet soil surface. Evaporation from
a wet soil surface is at its maximum rate for about 1 day after the soil surface
is wetted, and then the evaporation amount decreases in stage 2 evaporation,
as shown in Fig. 5.

As stage 2 evaporation decreases to essentially zero, Kevap = 0. Note that
when the soil surface is dry and there is enough moisture in the root zone so
that the relative ET is at 100 percent, Ksress = 1.0. Under these conditions,
thus:

Kc = Kcb× 1 + 0 ⇒ Kc = Kcb (3)
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“When to irrigate?” is a TIME question. Our basic expression for TIME ques-
tions is this:

Time = Amount/Rate (4)

so, for irrigation time,

IrrigationFrequency =
SMDmax, (in)
ETcrop, (in/day)

(5)

SMD = Soil Moisture Depletion.
Above equations show dependence between climatic factors and irrigation

frequency which is done by means of irrigation equipment under manage-
ment [1,12]. There is no clear relationships that can be analytically formulated
between climatic factor and other parameters like field, etc.

6 Mechanization

Irrigation System Effectiveness, Water Use Index (WUI) and Agricultural
Water Productivity (AWP ) are the main objective of the irrigation man-
agement. Irrigation System Effectiveness depends on the mechanization type.
Mechanization type affects the irrigation depth and water infiltration into
soiled.

WUI =
Crop(AnyUnit)
Water(AnyUnit)

,DU =
MDWA

ADWA
(6)

MDWA= Minimum Depth of Water Accumulated in an Element.
ADWA=Average Minimum Depth of Water Accumulated in all Elements

Statistics shows that in a mechanized irrigation system WUI = 1.7Kg/m3

but in a nonmechanized system WUI = 0.79Kg/m3 in an underdeveloped
country. DU is the ratio of the “minimum” to the “average” amounts of wa-
ter received by plants in a field or system [13].

The water destination diagrams shown in Fig. 6 display the fate of the
water that has infiltrated into the ground, however not all the water pumped
is absorbed by ground. There is runoff, evaporation, and spray loss according
to irrigation type. It is customary to show the amount of these pre-infiltration
losses above the Depth = 0 line, as shown in Fig. 6.

The Pre-Infiltration Loss (PILoss) is usually indicated as a percent of
the gross amount applied, or in inches if known directly. The mechanization
system determines how much water will be absorbed by plant reflected by
the value of DU . Runoff is included in pre-infiltration losses but is handled
separately because it may be recovered for re-use [14].

7 Fuzzy Analyzer

A very wide range of applications of fuzzy logic based methodology has been
found in the literature especially for industrial control systems which are very
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Fig. 6. Water destination diagram

complex, uncertain and cannot be modeled precisely even under various as-
sumptions and approximations. Here, we introduce another application of
fuzzy rule base system to irrigation.

The fuzzy analyzer designed in the paper consists of some rules which
are derived from relationships between soiled/water/crop, perception of the
farmer using questionnaire and managers considerations in irrigation systems.
After a deep look at the information gathered from different questionary sheets
and resources, we came up with a set of 42 fuzzy if-then rules. Some samples
of these rules are given below.

R1: IF(F is dry) and (E is expensive) and (H is cheep) and (M is medium),
then (AT is High)
R2: IF(F is wet) and (E is cheep) and (H is medium) and (M is high),

then (AT is Low)
R3: IF(F is wet) and (E is cheep) and (H is medium) and (M is medium),

then (AT is Medium)

Where Dry, Dry-medium, Medium, Wet-medium, and Wet are linguistic
terms of antecedent fuzzy sets for the Field parameter (F ). Energy (E), hu-
man (H), and mechanization (M) have their own fuzzy sets else. Fuzzy set of
AT is: Low Low, Low, Medium, High, and High High. We use a general form
to describe these fuzzy rules:

Ri: IF(F is x1) and (E is x2) and (H is x3), and (M is x4), then (AT is y),
i = 1..42

Where x1, x2, x2, x4 are triangle-shaped fuzzy number and y is fuzzy
singleton.

Let first X and Y be the input and output space, and F,E,H,M be ar-
bitrary fuzzy sets in X. Then a fuzzy set, [F,E,H,M ] ◦ Ri in Y , can be
determined by each Ri. We use the sup-min compositional rule of inference:

mi
AT i = µF i(x1).µEi(x2).µHi(x3).µMi(x4), i = 1..42 (7)
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By using the center of area (centroid method) defuzzifier, we can obtain a
crisp output AT :

AT =
∑
mi

AT i · ȳi

∑
mi

AT i

, i = 1..42 (8)

where ȳi is center of the AT i area.
3−D surfaces of Fig. 7 show relationship between rules which considered

above. In order to demonstrate these relationships, each surface consists of
two parameters and rules that create the surface [6]. Three typical surface are
shown in Fig. 7.

8 Simulation Results

In the simulation, we considered six farms with different conditions shown in
Fig. 8. The first farm is a dry farm with mechanized equipment whose cost of
energy and human resources are very high. The fuzzy analyzer suggests us to
go to a higher level of automation because the value of AT obtained is low.
The AT values of other farms are shown in Fig. 9 and 10.

Based on these results the equipment for automation should be se-
lected as: Center Pivot, Canal fed linear, Turf, and Drip irrigation. The
analyzer also indicates that the above equipment have enough manage-
ment/economic/technical justification for the automation.

Fig. 7. 3 − D surfaces of the fuzzy rules
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Fig. 8. Curve of the supposed farms with different conditions

Fig. 9. Values of AT for the given farms

9 Conclusion

This paper conclusively reached to the point that any satisfactory operation
of an automated irrigation system, particularly in a water-poor environment,
is complex and requires realistic planning and rigorous implementation. This
has been achieved by developing proper fuzzy based decision making process.
We developed a software in MATLAB environment for the purpose of sim-
ulation. Some typical farms have been considered and implemented in our
toolbox. The simulation results approved the aforementioned claim.
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Fig. 10. Comparison of the AT with automation levels
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Motorized Skateboard Stabilization Using
Fuzzy Controller

Mohsen Davoudi, Mohammad Bagher Menhaj, and Mehdi Davoudi

Summary. In this paper, a fuzzy tuner is designed for a motorized skateboard to
tune KI and KP coefficients of the PI controller to stabilize the skateboard rider.
The fuzzy if-then rules are derived from physical reactions of body against external
forces. The PI controller tracks the set point chosen by riders through a handle and
applies a proper force to the skateboard to keep dynamic equilibrium of the person
stable during the travel. In this paper, through different simulations, it has been
shown that the proposed controller make the system track the set point as quickly
as possible while having a remarkably bigger traveling distance without any sort of
instability problem.

Key words: Skateboard, Fuzzy controller, Stability, Motor scooter.

1 Introduction

Motor scooter is a two-wheeled motor vehicle similar to a motorcycle or
two-wheeled children’s vehicle resembling a skateboard with a handlebar.
Motorized skateboard is a four-wheeled vehicle. The percentage of people
do Skate boarding is 5 percent [1]. Staff from the US Consumer Product
Safety Commission (CPSC) recently conducted a special study to track in-
juries associated with powered scooters, a recreational product growing in
popularity. From July 2003 through June 2004, an estimated 10,015 powered
scooter-related emergency room-treated injuries were reported through
CPSC’s National Electronic Injury Surveillance System (NEISS) [1].

Usually control of a motorized skateboard is done by a handle. However
for many people it is very difficult to learn how to control the skateboard and
keep balance [2]. The concept which is outlined in this paper is controlling a
Motorized skateboard with a person standing on to keep dynamic equilibrium
easily and increasing velocity and traveled distance as well. Suppose that the
skateboard has an electric motor, battery pack, a handle containing Start/Stop
button which is run on a standard road. The control of Skateboard consist
of two main parts (1) determination of the physical parameters of the person
standing on the skateboard, (2) changing the parameters of the PI controller
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using data gathered in Section 1. Physical parameters of a person needed in
this analysis are weight, flexibility of the joints, length of every organ of the
body such as shank, leg, chest, head, etc. [3]. To reach these objectives, we
design a system to estimate amount of changes in the PI controller using the
data driven from sensors on the skateboard and a fuzzy tuner.

In the first step, a pulse wave is sent to the driver of the electric motor to
run the motor in a limited time, e.g., 5 s. This action leads to a pulse like force
to both the skateboard and the person making a movement. The person reacts
to this force and starts to oscillate. Every one has its own specific reaction [4].
It depends on age, flexibility of joints, length, weight, etc. [5]. Then, the system
records the velocity signal during the time. Practically the velocity signal can
be obtained through a shaft encoder sensor installed in a wheel of the skate-
board. Finally, by processing the velocity signal, getting information needed
for the fuzzy tuner and applying some rules in the Fuzzy Inference System
(FIS), the fuzzy tuner changes the coefficients KP and KI in the PI con-
troller. The rules are derived from practical skateboarding situations, physics
of motion and perception of the people reaction on the skateboard, see figure 1.

2 Skateboard Model

The modeled skateboard has 50 cm length and 5 kg weight. A general model
is used for skateboard based on Euler Springs. Euler Springs model stores
no static energy in the skateboard and dynamic energy causes vibration in
motion as shown in figure 2. The resonant frequency is:

ω =

√
k

m
=

√
g

L
(1)

Fig. 1. The block diagram of the skateboard fuzzy controller
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Fig. 2. Dynamic energy and vibration in motion

Ground Prismatic

B F B F

earth

Custom Joint

Joint Actuator
Set point

1

Joint Sensor

skate mass

Fig. 3. Skate model implemented in MATLAB/Sim mechanics

where k is the coefficient of the springs connected to the skate (related to the
body model), m is the weight of the skateboard (m = 5kg), g is the Gravity
and L is the displacement. Because of puddles on the road the dynamic energy
is changed during the time. The resonant frequency usually is above 10 Hz
(ω ≥ 10Hz). This frequency is seen in the velocity signal but does not give us
any useful information about the body parameters.

Signal processor contains a filter to eliminate the above frequencies. Fig-
ure 3 shows the skate model implemented in MATLAB/Sim mechanics. This
model contains an actuator (motor driver) and a sensor (shaft encoder).

3 Body Model

The postural balance system is one of the most fundamental functions for hu-
man voluntary motion. This system has been analyzed and modeled by many
researchers in the past. In the field of biomechanics, many researchers work
on the human balance control. Some of them investigated features of balance
control of the real human [3,6].

They actually applied perturbations to the real human, and measured the
force, the velocity, or several physical parameters. Others investigated the mo-
tion of balance recovery by stepping [6, 7]. In these researches, the motion of
the real human is analyzed. For postural balance, Horak et al. [8] found that
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human use three strategies for keeping the balance, the ankle, hip, and arm
strategy. The ankle strategy is a strategy to use mainly the ankle joint to re-
store the position of the center of gravity back to the equilibrium state. This
strategy is chosen when the foot surface is long enough relative to the foot
length, so that the subject can fully use his/her toes to push back the body.
When the foot surface is short relative to the foot length, the subject uses the
hip and trunk joint to keep the balance, which is called the hip strategy.

Kuo et al. [9] theoretically analyzed such strategies using the musculoskele-
tal model. When a person is about to lose his/her balance, and is under a
condition that he/she cannot step out one leg, the arms are recursively ro-
tated to work as the final servo to move the center of mass back over the
feet. This strategy is effective in returning the center of mass over the feet,
because the angular momentum of the trunk of the body is canceled out by
the angular momentum generated by the rotation of the arms [10]. In this
paper, we propose a new human body model which is composed of five body
segments, the shank, thigh, trunk, head, and arm.

The human-like body motion is obtained by rigid body, spring, and damper
which are used for every joint in our body model. The arm strategy appears
without any prior feed-forward input when large perturbation force is applied
to the body. The motion of recovery closely resembles those by real human.
Figure 4 shows the model of a sample joint in MATLAB/Sim mechanics. Other
joints are similar to this joint. In order to model the above three strategies,
feedback force is applied to the ankle, hip, and arm joints.

4 Signal processor

The velocity signal is only reachable signal that is derived from shaft encoder
sensor practically. Velocity signal is given to two Band Pass Filters (BPF).
Therefore, the vibration frequency is divided into two frequency bands (a) 2–4
Hz, (b) 4–10 Hz.

The first band indicates the low frequency vibration of the body and the
second indicates high frequency vibration. Relationships between signal pa-
rameters in these two bands help us find out the person’s body parameters
and lead to model them into IF-THEN fuzzy rules. For example, we found

Shank

Revolute

B F

knee Spring & Damper3

thigh

Fig. 4. model of a sample joint in MATLAB/Sim mechanics
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out that the signal of a short strong person on the skate in band (b) has a
higher value of energy in comparison with band (a) because of rapid reactions
to changes. In this case, the skate can be run with a higher speed by means of
increasing the KI coefficient. For a tall weak inflexible person that has slow
reactions, energy of band (a) is higher than energy of band (b). So a minimum
value of KI and KP is needed to control the motion equilibrium. We first
calculate the energy of the velocity signal in these bands:

S1 = (
∫
f2
1 dt)

1/2 (2)

S2 = (
∫
f2
2 dt)

1/2 (3)

where f1 is the output of the 2–4 Hz BPF and S1 is energy of the signal in
this band. f2 is output of the 4–10 Hz BPF and S2 is energy of the signal
in this band. Then, we count zero crossings in f1 and f2 signals within the
experiment time to obtain the zc1 value and the zc2 value, respectively. The
following parameters

A =
zc1
zc2

(4)

B =
S1

S2
(5)

C =
S1

zc1
+
S2

zc2
(6)

are used to tune KP and KI by fuzzy tuner based on the aforementioned
rules [10]. The next step is to design the fuzzy tuner which is strongly de-
pendent upon the physical reactions of the rider. This information helps us
determine fuzzy sets boundaries on every joint’s position and organs’ weights.
The Fuzzy tuner which is outlined in the next section has fixed rules.

5 Fuzzy Tuner

In this section, a fuzzy tuner is introduced to tune the PI controller. This
tuner is described by the Following set of IF-THEN rules [11,12].
R1: IF (A is SMALL) and (B is SMALL) and (C is HIGH), then (KI is H),
(KP is H)
R2: IF (A is SMALL) and (B is SMALL) and (C is SMALL), then (KI is M),
(KP is M)
R3: IF (A is SMALL) and (B is HIGH) and (C is HIGH), then (KI is H), (KP
is LL)
R4: IF (A is HIGH) and (B is HIGH) and (C is SMALL), then (KI is L), (KP
is LL)
R5: IF (A is HIGH) and (B is SMALL) and (C is MEDIUM), then (KI is
HH), (KP is H)
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In the above SMALL, MEDIUM, HIGH, and LL, L, M, H, HH are lin-
guistic terms of antecedent fuzzy sets, and in the then parts LL, L, M, H,
HH stand for very low, low, medium, high, very high, respectively. We use a
general form to describe these fuzzy rules [13]:
Ri: IF (A is x1) and (B is x2) and (C is x3), then (KI is y1), (KP is y2),

i = 1,...,16
where x1, x2, x3 are triangle-shaped fuzzy numbers and y1, y2 are fuzzy

singletons. An arbitrary fuzzy set A is depicted in Figure 5. Figure 6 represents
the term sets of the output linguistic variable KI.

Let X and Y be the input and output space, and A,B,C be arbitrary
fuzzy sets in X. Then, a fuzzy set, [A,B,C] ◦Ri in Y , can be determined by
each Ri. We use the sup-min compositional rule of inference [13,14]:

mi
KIi = µAi(x1).µBi(x2).µCi(x3) (7)

Fig. 5. An arbitrary fuzzy set A

Fig. 6. Term sets of output linguistic variable
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mi
KP i = µAi(x1).µBi(x2).µCi(x3) (8)

By using the center of area defuzzifier, we can obtain a crisp outputs
KI,KP :

KI =
∑
mi

KIi · ȳi

∑
mi

KIi

, i = 1, ..., 16 (9)

where ȳi is center of the KIi area.

KP =
∑
mi

KP i · ȳi

∑
mi

KP i

, i = 1, ..., 16 (10)

where ȳi is center of the KP i area.
Figure 7 shows a 3-D surface plot of the above rules.

6 Simulation Results

In this section we study four types of person’s body shown in Table 1 [15,16].
The objective here is the PI controller makes the skateboard track the

desired trajectory indicated by set point signal in block diagram shown in
figure 1.

Fig. 7. surfaces of the fuzzy rules

Table 1. Four type of person’s body

Number Tallness Weight Strength

1 180 cm 74 kg Average
2 160 cm 74 kg Strong
3 190 cm 66 kg Weak
4 140 cm 74 kg Strong



796 M. Davoudi et al.

Fig. 8. A person on the skateboard in three states

Fig. 9. The Set point signal

As the set point signal increases, the risk of instability increases though
it is dependent on the rider physical parameters [17, 18]. Figure 8a shows a
person in equilibrium state, (b) is a person in the threshold equilibrium state,
and (c) is a person in tumble state. In this experiment a positive pulse applied
in t = 5 s with a 5 sec duration (altitude = 1) and a negative pulse applied in
t = 20 s with 5 s duration (altitude = 1) (Figure 9)

The experiment contains a case in which an over exciting force leading to
an immediate instability condition is applied. Figure 10 shows the open loop
simulation results for the first person whose parameters are given in Table 1.
Here we assumed that the traveled distance in 30 s is 8 m. Figure 11 shows a
closed loop simulation results for KP = 1, KI = 0.2. In this case the traveled
distance becomes 25 m.

Figure 12 shows the simulation results (velocity signal) when the para-
meters Kp and Ki which are adjusted by the proposed fuzzy tuner. In this
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Fig. 10. Velocity signal (without using any feedback controller)

Fig. 11. Velocity signal (PI controller with constant parameters)

case the traveled distance becomes 51 meters in 30 s. Figure 13a shows the
trajectory of controller parameter KI and figure 13b shows the trajectory of
controller parameter KP .

7 Conclusion

In this paper, a Fuzzy tuner has been developed for a motorized skateboard.
The tuner adjusts the parameters of a PI controller online. The rule base
designed for the tuner came from reactions of riders against external forces
so that to keep dynamic equilibrium state. As the set point signal increases,
the risk of instability increases. Thus, the PI controller tracks the desired set
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Fig. 12. Velocity signal (with fuzzy tuner)

Fig. 13. KI (a) and KP (b) coefficients

point signal by applying proper forces to the skateboard to keep dynamic
equilibrium state of the rider during traveling.
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