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Summary. The conditional variance of random variables plays an important role for well-
known variance decomposition formulas. In this paper, the conditional variance for fuzzy
random variables and some properties of it are considered. Moreover possible applications
of the variance decomposition formula are presented.
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1 Introduction

Conditional expectation and conditional variance play an important role in probabil-
ity theory. Let be X a random variable on the probability space (Ω ,F,P) and A ⊆ F

a sub-σ -algebra of F. Then the conditional expectation E(X |A), for example, is the
best mean squared approximation (best prediction) of X by a more rough, i.e. only
A-measurable function.

Conditioning is one of the principles of variance reduction, i.e. the “more rough”
random variable E(X |A) has a smaller variance than X ,

Var(E(X |A)) ≤ VarX .

The difference VarX − Var(E(X |A)) can be expressed mainly by the conditional
variance of X which is defined by

Var(X |A) = E((X −E(X |A))2|A) (1)

and which leads to the well known formula of variance decomposition

VarX = E(Var(X |A))+Var(E(X |A)). (2)

This formula plays an important role in applications (see section 4).
Very often we meet the situation where the random variables X has only fuzzy

outcomes. E.g. if an insurance company is interested in the claim sum X of the next
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year, it would be wise to assume fuzzy claims. Or if we interested in the state X
of health in a country the society of which is stratified e.g. wrt age or wrt to social
groups then it seems to be a violation to restrict X on numbers. Linguistic expres-
sions, however, lead more or less straightforward to a fuzzy valued X .

In section 2 we introduce necessary tools like frv’s and their expectation and
variance. In section 3 the conditional variance of a frv and some of its properties
are investigated and in section 4 we discusses possible applications of the variance
decomposition formula.

2 Preliminaries

A fuzzy subset Ã of R
n is characterized by its membership function µÃ : R

n → [0,1]
where µÃ(x) is interpreted as the degree to which x ∈ R

n belongs to Ã. The α-cuts of

Ã for 0 <α ≤ 1 are crisp sets and given by Ãα := {x ∈R
n : µÃ(x)≥α}. Additionally,

we call Ã0 := cl{x ∈ R
n : µÃ(x) > 0}, the support of Ã.

Let Kc(Rn) be the space of nonempty compact convex subsets of R
n and Fc(Rn)

the space of all fuzzy sets Ã of R
n with Ãα ∈Kc(Rn) for all α ∈ (0,1]. Using Zadeh’s

extension principle, addition between fuzzy sets from Fc(Rn) and scalar multiplica-
tion (with λ ∈ R) is defined as

µÃ⊕B̃(z) = sup
x+y=z

min(µÃ(x),µB̃(y)) ; µλ Ã(x) = µÃ

( x
λ

)

,λ �= 0.

Note that with Minkowski addition ⊕ between sets from Kc(Rn) it holds

(Ã⊕ B̃)α = Ãα ⊕ B̃α and (λ Ã)α = λ Ãα .

For A ∈ Kc(Rn) the support function sA is defined as

sA(u) := sup
a∈A

aT u , u ∈ S
n−1,

where aT u is the standard scalar product of a and u and S
n−1 = {t ∈ R

n : ||t|| = 1}
the (n−1)-dimensional unit sphere in the Euclidean space R

n. An natural extension
of the support function of a fuzzy set Ã ∈ Fc(Rn) is:

sÃ(u,α) =

{

sÃα
(u) : α > 0

0 : α = 0
, u ∈ S

n−1,α ∈ [0,1].

Each fuzzy set Ã ∈ Fc(Rn) corresponds uniquely to its support function, i.e.
different fuzzy subsets from Fc(Rn) induce different support functions and for
Ã, B̃ ∈ Fc(Rn) and λ ∈ R

+ it holds

sÃ⊕B̃ = sÃ + sB̃ (3)

sλ Ã = λ sÃ. (4)
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So we can consider Ã, B̃ ∈ Fc(Rn) in L2(Sn−1 × [0,1]) via its support function and
we define

δ2(Ã, B̃) :=
(

n
∫ 1

0

∫

Sn−1
|sÃ(u,α)− sB̃(u,α)|2ν(du)dα

) 1
2

,

〈

Ã, B̃
〉

:=
〈
sÃ,sB̃

〉
= n
∫ 1

0

∫

Sn−1
sÃ(u,α)sB̃(u,α)ν(du)dα,

||Ã||2 := ||sÃ||2 =
(

n
∫ 1

0

∫

Sn−1
sÃ(u,α)2ν(du)dα

) 1
2

.

With δ2(Ã, B̃) = ||sÃ − sB̃||2, Fc(Rn) can be embedded isometrically and isomorph
as closed convex cone in L2(Sn−1 × [0,1]).

Now, a fuzzy random variable (frv) can be defined as a Borel measurable function

X̃ : Ω → Fc(Rn)

from (Ω ,F,P) to (Fc(Rn),B2) where B2 is the σ -algebra induced by δ2.
Then all α−cuts are compact convex random set (see Puri, Ralescu [11], too).

There are further definitions of fuzzy random variables, which are equivalent under
some constraints. For details see Krätschmer [6] [7]. The (Aumann-) expectation Eξ
of a compact convex random set ξ is defined by the collection of all “pointwise”
expectations EX , the so called Bochner-integrals, with X ∈ ξ almost surely and, i.e
(see Aumann [1], too)

Eξ = {EX : X : Ω → R
n,X −Bochner-integrable,X(ω) ∈ ξ (ω) P-a.s.}.

Krätschmer shows in [8], that Eξ ∈ Kc(Rn) if and only if ξ is integrably bounded,
i.e. if δ2(ξ ,{0}) is integrable. A frv X̃ is called integrably bounded if all α-cuts are
integrably bounded. Then there exists a unique fuzzy set EX̃ ∈ Fc(Rn), called the
Aumann expectation of X̃ , such that

(EX̃)α = E(X̃α) ; 0 < α ≤ 1. (5)

This expectation of a frv X̃ was introduced by Puri/Ralescu [11]. Further we can
define ∫

A
X̃dP := E

(

IAX̃
)

,

where IA denotes the indicator function of A ∈ F.
For an integrable bounded frv the measurable function

sX̃(.)(u,α) : Ω → R, ω �→ sX̃(ω)(u,α)

is integrable and the support function of the expectation is equal, the expectation of
the support function (Vitale [14]):

sEX̃ (u,α) = EsX̃ (u,α), u ∈ S
n−1,α ∈ (0,1]. (6)
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Following Körner [5] the variance of a frv X̃ with E||X̃ ||22 < ∞ is defined by

VarX̃ = Eδ 2
2 (X̃ ,EX̃) (7)

= E
〈
sX̃ − sEX̃ ,sX̃ − sEX̃

〉

= E||X̃ ||22 −||EX̃ ||22.

Using (5) and (6) this can be written as

VarX̃ = n
∫ 1

0

∫

Sn−1
VarsX̃ (u,α)ν(du)dα.

For more details on the expectation and variance of frv‘s see e.g. Näther [9].

3 Conditional Variance

In this section, we present the definition of the conditional variance of a frv and
prove same properties of it. As a corollary, we obtain a variance decomposition for-
mula analogously to (2). We start with the definition of the conditional expectation
of a frv.

Assumption 1
Let (Ω ,F,P) be a probability space, A a sub-σ -algebra of F and X̃ a frv with
E(||X̃ ||22) < ∞ (i.e. VarX̃ < ∞).

Definition 1 (Conditional Expectation).
Under assumption 1, the conditional expectation of a frv X̃ with respect to A is the
frv E(X̃ |A) which:

(a) E(X̃ |A) is A-measurable,

(b)
∫

A
E(X̃ |A)dP =

∫

A
X̃dP ∀A ∈ A.

Analogously to (5) it holds (see Puri and Ralescu [12])

(E(X̃ |A))α = E(X̃α |A) ; 0 < α ≤ 1. (8)

Moreover, similar to (6) it can be proven that

sE(X̃ |A)(u,α) = E(sX̃ (u,α)|A), u ∈ S
n−1,α ∈ (0,1], (9)

see M. Stojakovic\Z. Stojakovic [13] and Wünsche\Näther [15] and
Hiai\Umegaki [4]. With the equations (6) and (9) further it can be proven that

E(E(X̃ |A)) = E(X̃). (10)
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Definition 2 (Conditional Variance).
Under assumption 1, the conditional variance of X̃ wrt A is the real random variable

Var(X̃ |A) := E(δ 2
2 (X̃ ,E(X̃ |A))|A) (11)

In the following we present some properties of the conditional variance.

Assumption 2
Let X be a non-negative almost surely bounded random variable on (Ω ,F,P)
which is conditional independent (for conditional independence see, for instance
Chow/Teicher [3])) of X̃ wrt A ⊂ F.

Theorem 1. Under assumption 1 and assumption 2 it holds

Var(XX̃ |A) = E(X2|A)E(||X̃ ||22|A)−E(X |A)2||E(X̃ |A)||22. (12)

For the proofs of the theorem and the following corollary see
Näther\Wünsche[10].

As a direct conclusions of theorem 1 we obtain the following rules for the condi-
tional variance. Note that for A = { /0,Ω} the conditional variance is the variance of
the frv. Take the assumptions of theorem 1 and let be Ã ∈ Fc(Rn) and λ ∈ R. Then
it holds

Var(X̃ |A) = E(||X̃ ||22|A)−||E(X̃ |A)||22 (13)

= n
∫ 1

0

∫

Sn−1
Var(sX̃ (u,α)|A)ν(du)dα (14)

Var(λ X̃ |A) = λ 2Var(X̃ |A) (15)

Var(XÃ|A) = ||Ã||22Var(X |A) (16)

Var
(

XX̃ |A
)

= E
(
X2|A

)
Var(X̃ |A)+Var(X |A)||E(X̃|A)||22 (17)

Var
(

XX̃ |A
)

= E(X |A)2 Var(X̃ |A)+Var(X |A)E
(

||X̃ ||22|A
)

(18)

Now, we easily can obtain an analogon of variance decomposition formula (2).

Corollary 1. Under assumption 1 it holds

VarX̃ = E
(

Var
(

X̃ |A
))

+Var
(

E
(

X̃ |A
))

. (19)

4 Applications of the Variance Decomposition Formula

4.1 Wald’s Identity

Consider, for example, an insurance company with a random claim number N per
year and N individual claims C1, ..,CN which, for simplicity, are assumed to be iid.
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like C. Obviously, the company is interested in the variance of the claim sum S :=
∑N

i=1 Ci which easily can be computed by use of variance decomposition formula (2)
and which leads to the well known Wald’s identity

VarS = ENVarC +VarN(EC)2. (20)

Now, let us discuss Wald’s formula for a random number N of iid. fuzzy claims
C̃i; i = 1, ..,N; distributed like the prototype claim C̃. The claim sum

S̃ :=
N∑

i=1

C̃i

is a frv, too. Applying (19) it holds

VarS̃ = E(Var(S̃|N))+Var(E(S̃|N)). (21)

Obviously, we obtain

E(S̃|N) = E(
N∑

i=1

C̃i|N)

= NEC̃.

Using (16) (with A = { /0,Ω}), we have

Var(E(S̃|N)) = ||EC̃||22VarN. (22)

Since the C̃i are iid the variance of the sum of the C̃i is equal the sum of the variances
i.e. it holds

Var(S̃|N) = NVarC̃

=⇒ E(Var(S̃|N)) = ENVarC̃.

Hence, (21) can be written as

VarS̃ = ENVarC̃ +VarN||EC̃||22 (23)

which is the direct analogon of Wald’s identity (20).

4.2 Stratified Sampling

Consider a random characteristic X with EX = µ on a stratified sample space Ω with
the strata (decomposition) Ω1, ..,Ωk. Let µi and σ2

i be expectation and variance of X
in stratum Ωi and pi = P(Ωi); i = 1, ..,k. Then, a consequence of (2) is
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VarX =
k∑

i=1

piσ2
i +

k∑

i=1

pi(µi −µ)2 (24)

which is a well known formula in sampling theory (see e.g. Chaudhuri, Stenger [2]).
Consider a frv X̃ on a probability space (Ω ,F,P) which is stratified into strata

Ωi ∈ F; i = 1, ..,k; with
k⋃

i=1
Ωi = Ω , Ωi ∪Ω j = /0 for i �= j and P(Ωi) =: pi. Let A =

σ(Ω1, ..,Ωk) be the σ−algebra generated by the strata Ωi. Obviously, it is A ⊆ F.
Following (7) and having in mind E(E(X̃ |A)) = EX̃ we obtain

Var(E(X̃ |A)) = Eδ 2
2 (E(X̃ |A),EX̃)

=
k∑

i=1

piδ 2
2 (E(X̃ |Ωi),EX̃).

On the other hand it holds

E(Var(X̃ |A)) =
k∑

i=1

piVar(X̃ |Ωi).

Using the abbreviations µ̃ := EX̃ , µ̃i := E(X̃ |Ωi), σ2
i := Var(X̃ |Ωi); i = 1, ..,k; for-

mula (19)

VarX̃ = E
(

Var
(

X̃ |A
))

+Var
(

E
(

X̃ |A
))

can be specified as

VarX̃ =
k∑

i=1

piσ2
i +

k∑

i=1

piδ 2
2 (µ̃i, µ̃)

which is a direct generalization of formula (24).

For more details and proofs see Näther\Wünsche[10].
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