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Summary. Many complex systems have characteristics which vary over time. Consider for
example, the problem of modelling a river as the seasons change or adjusting the setup of
a machine as it ages, to enable it to stay within predefined tolerances. In such cases offline
learning limits the capability of an algorithm to accurately capture a dynamic system, since
it can only base predictions on events that were encountered during the learning process.
Model updating is therefore required to allow the model to change over time and to adapt
to previously unseen events. In the sequel we introduce an extended version of the fuzzy
Bayesian prediction algorithm [6] which learns models incorporating both uncertainty and
fuzziness. This extension allows an initial model to be updated as new data becomes available.
The potential of this approach will be demonstrated on a real-time flood prediction problem
for the River Severn in the UK.

1 Introduction

Many data modelling approaches in Artificial Intelligence (AI) rely on an offline
learning strategy where a static model is learned from historical data. This type of
modelling is appropriate if the underlying dynamics of the system under considera-
tion does not change over time. However, often this is not the case as the behaviour of
a system varies and evolves over time. In this situation an offline learning approach
cannot account for these changes unless the model is completely re-learned.

2 Fuzzy Bayesian Methods

The fuzzy Bayesian learning algorithm proposed in Randon and Lawry [5] allows for
the induction of prediction models that incorporate both uncertainty and fuzziness
within an integrated framework. In the following we give a brief exposition of this
approach.

Consider the following formalization of a prediction problem: Given variables
x1, . . . ,xn+1 with universes Ω1, . . . ,Ωn+1, each corresponding to a compact interval
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Fig. 1. Trapezoidal fuzzy sets discretizing a continuous universe

of R, suppose that xn+1 is dependent on x1, . . . ,xn according to some functional map-
ping g : Ω1 × ·· ·×Ωn → Ωn+1 (i.e. xn+1 = g(x1, . . . ,xn)). In fuzzy Bayesian algo-
rithms fuzzy labels are used to partition both input and output and probability values
are then estimated for the corresponding imprecise regions of attribute space. Figure
1 illustrates how trapezoidal fuzzy sets can be used to discretize a continuous uni-
verse. Such a discretization can be generated from a crisp partition where we now
identify a fuzzy label Li with each partition interval (i.e. a bin) such that Li applies to
those elements in the interval to degree 1 and also applies to some points in neigh-
bouring intervals to a non-zero degree. Examples of labels include small, medium,
large, tall, high etc. and in the fuzzy Bayesian model the membership of x in L is
interpreted as the probability that L is a valid or appropriate label given value x. i.e.

∀x ∈Ω µL(x) = P(L|x)

Now unlike crisp partitions the labels Li overlap so that more than one label may
be appropriate to describe a particular x value, and hence we cannot directly define
probability distributions on the set LA = {L1, . . . ,Ln}. Instead, we must base our
analysis on the set of atoms generated from LA = {L1, . . . ,Ln}, each identifying a
possible state of the world and taking the form:

α =
n∧

i=1

±Li where +Li = Li and −Li = ¬Li

For example, in the case that we have only two labels L1 and L2 then there are 4
atoms; α1 = L1 ∧L2, α2 = L1 ∧¬L2, α3 = ¬L1 ∧L2 and α4 = ¬L1 ∧¬L2. In general,
if we have n labels then there are 2n atoms, however, if as in figure 1 at most two
labels can be applied to any x then only 2n−1 atoms can have non-zero probability.
For example, the atoms generated by the fuzzy labels in figure 1 are shown in figure
2. Let A denote the set of atoms with non-zero probability for at least some x ∈Ω .

For a given x ∈ Ω the distribution on atoms P(α|x) : α ∈ A can be represented
by a mass assignment mx : 2LA → [0,1] on the power set of LA as follows:

∀T ⊆ LA P(αT |x) = mx (T ) where αT =

(
∧

L∈T

L

)

∧
(
∧

L/∈T

¬L

)

For example, if LA = {L1, . . . ,Ln} then:
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Fig. 2. Probability functions P(α |x) for atoms α ∈ A where α1 = L1 ∧¬L2 ∧¬L3 ∧· · ·∧¬Ln,
α2 = L1 ∧L2 ∧¬L3 ∧·· ·∧¬Ln, α3 = ¬L1 ∧L2 ∧¬L3 ∧·· ·∧¬Ln etc

P

(

L1 ∧L2 ∧
n∧

i=3

¬Li|x
)

= mx ({L1,L2})

Intuitively mx (T ) is the probability that the set of all labels appropriate to describe
x is T . A consequence of this translation process is that the current algorithm can be
embedded in the label semantics framework as proposed by Lawry ([2] and [3]). Now
under certain circumstances label semantics can be functional, allowing a mapping
from the fuzzy label definitions µL (x) : L ∈ LA to the conditional probabilities on
atoms P(α|x) : α ∈ A . One such possibility, as discussed in Lawry [2], is that for
each x there is a natural ordering on the appropriateness of labels and that the values
of mx are evaluate so as to be consistent with this ordering. This means that the mass
assignment mx is consonant or nested and consequently can be determined from
µL (x) : L ∈ LA as follows: If µL1 (x) ≥ µL2 (x) ≥ . . . ≥ µLn (x) then:

P





n∧

j=1

L j|x



= mx ({L1, . . . ,Ln}) = µLn (x)

P





i∧

j=1

L j ∧
n∧

j=i+1

¬L j|x



= mx ({L1, . . .Li})

= µLi (x)−µLi+1 (x) : i = 1, . . . ,n−1

P





n∧

j=1

¬L j|x



= mx ( /0) = 1−µL1 (x)

and P(α|x) = 0 for all other atoms α .
In the case where for any x ∈Ω at most two labels have non-zero probability (as

in figure 1) then the above consonant mapping is simplified further so that if for a
given x ∈ Ω µLi(x) ≥ µL j(x) > 0 and µLk(x) = 0 : k �∈ {i, j} (for the labels in figure
1 either j = i +1 or j = i−1) then only two atoms have non-zero probability given
by:
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P



Li ∧L j ∧
∧

k �∈{i, j}
¬Lk|x



= mx
({

Li,L j
})

= µL j(x)

and P



Li ∧
∧

k �=i

¬Lk|x



= mx ({Li}) = µLi(x)−µL j(x)

For the membership functions shown in figure 1 the probability functions on
atoms inferred in this way are shown in figure 2 across all values of x.

In the fuzzy naïve Bayes algorithm each input universe is partitioned using trape-
zoidal fuzzy sets (as in figure 1) and the probability function for the atoms generated
as in figure 2. Let Ai denote the atoms generated for variable xi where i = 1, . . . ,n.
Then for output atom αn+1 ∈ An+1 and input atom α j ∈ A j we infer the conditional
probability P(α j|αn+1) from the training database DB = {〈x1(i), . . . ,xn(i),xn+1(i)〉 :
i = 1, . . . ,N} as follows:

P(α j|αn+1) =
∑

i∈DB P(α j|x j(i))P(αn+1|xn+1(i))
∑

i∈DB P(αn+1|xn+1(i))

From this we can use Jeffrey’s rule [1] (an extension of the theorem of total proba-
bility) to infer a marginal density conditional on αn+1 such that:

f (x j|αn+1) =
∑

α j∈A j

P(α j|αn+1) f (x j|α j)

Where assuming a noninformative uniform prior distribution on the input uni-
verse Ω j, from Bayes’ theorem we have:

∀x j ∈Ω j, α j ∈ A j f (x j|α j) =
P(α j|x j)

∫

Ω j
P(α j|x j) dx j

From this we can apply Bayes’ theorem together with the naïve Bayes condi-
tional independence assumption as in the standard Bayesian model [4] to obtain the
conditional probability P(αn+1|x1, . . . ,xn) of each output atom given a vector of input
values, as follows:

P(αn+1|x1, . . . ,xn) =
P(αn+1)

∏n
j=1 f (x j|αn+1)

∑

αn+1∈An+1
P(αn+1)

∏n
j=1 f (x j|αn+1)

Hence, given an input 〈x1, . . . ,xn〉 we can now obtain a density function on output
values using Jeffrey’s rule as follows:

f (xn+1|x1, . . . ,xn) =
∑

αn+1∈An+1

P(αn+1|x1, . . . ,xn) f (xn+1|αn+1)

A single output prediction can then be obtained by taking the expected value so that:

x̂n+1 =
∫

Ωn+1

xn+1 f (xn+1|x1, . . . ,xn)dxn+1
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3 Online Updating

In a dynamically changing prediction problem the functional mapping gt :Ω1 × . . .×
Ωn → Ωn+1 from input to output variables is time dependent. In this section we
introduce a version of the fuzzy naïve Bayes algorithm which learns incrementally
in an online manner, updating the prediction model at each step.

Suppose we now receive the data as a series where our current data index is
i−1. Given a new training example x(i) = 〈x1(i), . . . ,xn (i) ,xn+1 (i)〉 we update the
conditional probabilities for each output atom as follows:

P′ (α j|αn+1) =
|αn+1|P(α j|αn+1)+wP(α j|x j(i))P(αn+1|xn+1(i))

|αn+1|+wP(αn+1|xn+1(i))

Here P(α j|αn+1) is the current probability estimate obtained through updating on
the first i−1 examples and P′(α j|αn+1) denotes the updated probability taking into
account example i .|αn+1| indicates the degree to which output atom αn+1 has been
previously encountered during learning given by:

|αn+1| =
i−1∑

k=1

P(αn+1|xn+1(k))

w is a learning parameter controlling the updating impact of a new training example
and is typically assumed to be a decreasing function of |αn+1| with limit 1 (see figure
3). For example, one possibility is w(|αn+1|) = c

|αn+1| +1 where c is a constant con-
trolling the level of initial updating. Note that if c = 0 then after updating on all N
training examples the conditional probabilities are identical to those obtained using
the offline algorithm as described in section 2. In the absense of any data concerning
the atom αn+1 conditional probabilities are a priori assumed to be uniform so that:

P(α j|αn+1) =
1

|A j|
: α j ∈ A j
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Fig. 3. Weight function w = 100
|αn+1| +1
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Fig. 4. Fuzzy Bayesian model using offline learning to predict flow at Buildwas 33 hours in
advance from upstream flow measurements at Abermule

4 River Flow Modelling

The River Severn is situated in the west of the U.K. and is about 350km long. The
source of the river is in the Cambrian Mountains in Wales and its mouth is in the
the Bristol Channel. In this paper we look at one section of the River called The
Upper Severn which runs from Abermule near Powys, a small village in mid Wales,
to Buildwas in Shropshire. The data used in this experiment was taken from flow
gauges situated upstream at Abermule which has a catchment area of 580 km2, and
downstream at Buildwas which has a catchment area of 3717 km2. The flow data
for these gauges was obtained from level measurements by applying the rating curve
conversion. See [7] for a more detailed description of this catchment.

The offline version of fuzzy naïve Bayes was trained on 1 hourly data consisting
of 13119 examples between 01/01/1998 and 01/07/1999. The aim of the learning
process was to infer a model to predict flow levels 33 hours ahead 3 at Buildwas from
earlier flow data both at Buildwas and upstream at Abermule. Hence, the functional
mapping was assumed to take the form xB

t+33 = g(xA
t ,xB

t ) where xA
t and xB

t denote
the flow levels at time t for Abermule and Buildwas respectively. The offline model
was then tested on 1 hourly data between 07/09/2000 and 30/12/2000. As well
as the actual flow values at Buildwas, figure 4 shows the predicted value for xB

t+33

3 A 33 hour lead time was selected so as to be consistent with the study reported in [7]
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taken as the expected value of the conditional output distribution f
(
xB

t+33|xA
t ,xB

t

)
.

Also shown is a region of uncertainty associated with each prediction corresponding
to one standard deviation on either side of the mean.

The three large peaks in flow during this period resulted in a major flood event
and are not representative of peak flow in the training data. This results in relatively
poor performance of the offline algorithm at these peak values. The online algorithm
was then applied directly to the year 2000 data, with learning parameter c = 100 so
that the updating weight function corresponded to w = 100

|αn+1| +1 as shown in figure
3. The results for the online learning algorithm on the year 2000 data are then shown
in figure 5. Clearly, the overall performance is significantly improved from that of the
offline approach, with the first and the third peak being captured, albeit with some
time delay. Notice, however, that the second peak is still being significantly under-
estimated. This may be due to the influence of an upstream tributary not included in
the model, but further research is required to resolve this issue.
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Fig. 5. Fuzzy Bayesian model using online learning to predict flow at Buildwas 33 hours in
advance from upstream flow measurements at Abermule
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5 Conclusion

An online updating version of the fuzzy naïve Bayes algorithm [5] has been intro-
duced to model systems, the characteristics of which change over time. The potential
of this approach has been demonstrated on a river flow modelling problem for the
River Severn U.K.
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