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1 Introduction

The theory of interval random variables has been introduced by the authors in [12].
Up to now, it has been used in a few applications connected with Internet servers
admission control and queueing systems.

The theory may be considered to be remotely related to the p–bound (i.e. “prob-
ability bound”) concept (see e.g. [2], [4]), using bounds on the CDF of a random
variable. For example, [13] and [15] consider some links between these theories.

Likewise, the approach based on the Evidence Theory (e.g. [7]) exhibits several
similarities.

Actually, the interval random variables theory may also be considered to be the
antitype of all approaches using set–valued probabilities – it operates on events hav-
ing certain, non–interval probabilities. Nevertheless, values of random variables, as-
signed to these events are uncertain.

Earlier papers, e.g. [12], concentrated on an application connected with the es-
timation of uncertain parameters. Suitable notions and propositions, including the
analog of Kolmogorov’s theorem were introduced.

This paper is devoted to another problem, for which the developed theory is use-
ful – numerical computation of the Laplace transform of random variable’s PDF,
which is useful e.g. in queueing theory with long–tailed distributions of service (or
interarrival) times, e.g. [5], [18].

2 Basic Notions of Probability Theory

One of the most fundamental notions is the random variable.
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Definition 1. Let the probability space (Ω , S, P) be given, where Ω is the set of
elementary events, S – the σ -field of events and P : S → [0,1] – the (σ -additive)
probability measure.

A mapping X : Ω → R is called a (real) random variable, if the inverse
images of Borel subsets of R are events (i.e. the elements of S).

This condition is necessary to define a probability distribution of the variable.
By the probability distribution we mean a function PX (X0) = P

(
{ω : X(ω) ∈

X0}
)

where X0 is a Borel subset of R.
Several important (and well–known) notions of the probability theory (like the

expected value of a random variable) are beyond the scope of this paper. What we
have to mention is the Laplace transform of the PDF.

For continuous random variables, with the PDF f (x), the Laplace transform of
the PDF may be defined as follows (see e.g. [5], [18]):

f̃ (s) =
∫ ∞

0
e−sx f (x)dx . (1)

Equation (1) may be transformed to the form of the integral w.r.t. (with respect to)
the measure P(·). Then, in the case when the random variable is non–negative, it
takes the form:

f̃ (s) =
∫

Ω
e−sX(ω) dP(ω) . (2)

3 Basics of Interval Computations

To define the notion of interval random variable, we need to have some basic notions
of intervals and their arithmetic. We follow a wide literature, like the article [8] or
books [6], [9], [17], to name just a few.

We define the (closed) interval [x,x] as a set {x ∈ R | x ≤ x ≤ x}. We denote all
intervals by brackets; open ones will be denoted as ]x,x[ and partially open as: [x,x[,
]x,x]. (We prefer this notation than using the parenthesis that are used also to denote
sequences, vectors, etc.)

We also use boldface lowercase letters to denote interval variables, e.g. x, y, z.
Following [10], IR denotes the set of all real intervals and ICrect – the set of “rectan-
gular” complex intervals (i.e. pairs of intervals for real and imaginary part).

We design arithmetic operations on intervals so that the following condition was
fulfilled: if * ∈ {+,−, ·,/}, a ∈ a, b ∈ b, then a * b ∈ a * b. We omit the actual
formulae for arithmetic operations; they can be found in a wide literature e.g. ([6],
[8], [9], [17]).

Now, we define a notion to set links between real and interval functions.

Definition 2. A function f : IR → IR is an inclusion function of f : R → R, if
for all intervals x within the domain of f the following condition is satisfied:

{ f (x) | x ∈ x} ⊆ f(x) . (3)

The definition is analogous for functions f : R
n → R

m.
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Remark 1. There is a confusion in interval community; some researchers use terms
“interval enclosure” or “interval extension” instead of “interval inclusion function”.
We also use the term “interval enclosure” below, but in a slightly different case: a
function assigning intervals to non–interval arguments (see Definition 4).

4 The Notion of an Interval Random Variable

Now, we define a “random variable” that maps the events not to real numbers, but
rather to intervals of real numbers.

Definition 3. Let the probability space (Ω , S, P) be given (as in Definition 1).
Let us define a partition of Ω into sets A(x) of the form:

AX (x) = {ω ∈Ω | X(ω) = x} , where x ∈ IX . (4)

Any mapping X : Ω → IX ⊆ ∗
IR, satisfying the condition that for each

x ∈ IX the set AX (x) is an event, is called an interval random variable.

According to [10], ∗
IR denotes the set of intervals, the endpoints of which may

be not only finite real numbers, but also −∞ or +∞.
The definition of an interval random variable differs from the definition of a real

random variable not only in the set of values. We omit here the condition about the
reverse images of the Borel sets, replacing it by a simpler one. Why ? To formulate
a relevant condition it would be necessary to define a reverse image first. And this
notion is not explicitly defined.

There are several possible definitions of a reverse image of an interval valued
function (see e.g. [11] and Section 4.1). In this paper we consider (and so we do in
the earlier works, e.g. [12], [13], [15]) only those random variables that have a finite
set IX of intervals as its possible values. This assumption allows us to define the
probability function only for interval arguments from the set IX :

PX (x) = P
(

AX (x)
)

,

for any interval x ∈ IX .
Papers [12], [13], [15] consider also several other notions (e.g. the expected value

of an interval random variable) that may be important in many applications, but are
of no importance for the considered problem.

Now, we define some notions that will allow to associate interval variables with
real variables, namely an interval enclosure and an interval discretization of a
real random variable.

Definition 4. Suppose, we have a real random variable X .
The interval random variable X that fulfills the condition:

X(ω) ∈ X(ω) ∀ω ∈Ω , (5)

will be called an interval enclosure of the random variable X .



396 B.J. Kubica and K. Malinowski

Definition 5. Suppose, we have a real random variable X . Let the values of X
be contained in the interval [a, b], where a ∈ R∪{−∞} and b ∈ R∪{+∞}.

Let us divide the interval [a, b] into n subintervals. We denote their end-
points by xi. We obtain the sequence (xi)n

i=0, where:

a = x0 < x1 < .. . < xn−1 < xn = b .

The interval random variable X will be called an interval discretization of
the random variable X , if the following conditions are fulfilled:

• X is an interval enclosure of X ,
• the set of values of X is equal to IX =

{

[xi−1, xi] i = 1, . . . ,n
}

.

Remark 2. In recent papers (e.g. [12], [13], [15]) a less restrictive condition was
used in the definition of an interval discretization. The interval discretization was
supposed to take the value xi = [xi−1, xi] with probability:

pi =
∫ xi

xi−1

f (x)dx = F(xi)−F(xi−1) ,

for each i = 1, . . . ,n.
Defining the interval discretization by the sets of elementary events instead of the

values of probability measure seems more appropriate.

Property 1. If X is an interval discretization of X , then:

P
(
{X ∈ x}

)
= P
(

AX (x)
)

∀x ∈ IX .

This property does not hold for interval enclosures that are not interval discretiza-
tions.

Remark 3. Precisely, Property 1 is fulfilled for interval discretizations of continuous
random variables. Nevertheless, it can be generalized for the case of discrete random
variables, relatively simply.

Namely, we have to consider only disjoint intervals, which means we cannot use
closed ones only. If the probability that a random variable X takes a single value x1

is nonzero, then computing probabilities: P
({

X ∈ [x0,x1]
})

and P
({

X ∈ [x1,x2]
})

,

we add P
(

{X = x1}
)

to both these quantities. We have to use either intervals [x0,x1[
and [x1,x2] or [x0,x1] and ]x1,x2].

It is well known that the distribution does not determine the random variable
uniquely. Different random variables may have exactly the same distribution, but
associate different values with different elementary events.

Obviously, the same holds for interval–valued random variables. We shall intro-
duce now a notion to represent the distribution of an interval random variable.

Definition 6. Consider a finite subset of IR, IX = {x1, . . . ,xn}.
A generalized histogram is a mapping P : IX → R+ ∪{0}, such that:

∑n

i=1
P(xi) = 1 .
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Remark 4. What is the difference between a generalized histogram and an ordinary
one ? Only such that the intervals xi, i = 1, . . . ,n do not have to be pairwise disjoint.

Obviously, each interval random variable defines a generalized histogram of the
form:

P(x) = P
(

AX (x)
)

x ∈ IX .

Remark 5. In many cases we are more interested in the distribution of a random
variable than in the assignment of values to specific elementary events. Hence, re-
searchers sometimes do not distinguish between the random variable and its distrib-
ution when it is not important. Also, we shall use notions “interval random variable”
and “generalized histogram” alternately, when elementary events are not explicitly
considered.

4.1 Interval Random Variables or Random Sets ?

Yet one more important question has to be answered: what is the relation between
the theory of interval random variables and the more general theory of set–valued
random variables, also known as random sets (e.g. [11], [16]).

A random set is a measurable mapping from the space Ω of elementary events to
some family of sets. Measurable means that all sets {ω : X(ω)∩ x �= /0} are events.

Though the interval random variables’ theory was developed independently from
the theory of random sets ([12]), it is obvious that interval random variables are a
particular case of set–valued random variables.

Nevertheless, they are an important specific case, because they are computation-
ally far more tractable and their theory is simpler. It is especially worth noting, that
for interval–valued random variables it is reasonably simple to consider unbounded
random variables (which we actually do in this paper), while papers on set–valued
random variables usually assume, they are bounded and compact (see e.g. [16].

5 TAM – Transform Approximation Method

The L –transform is well–defined and finite for the PDF of each random variable.
Unfortunately, for some probability distribution functions the Laplace transform does
not have an analytic form. According to e.g. [18], this is the case for all power–tailed
distributions (e.g. Pareto distribution) and most other long–tailed ones (including
lognormal and Weibull distributions).

The Laplace transforms, useful e.g. in M/GI/1 and GI/M/1 queueing systems
analysis (see e.g. [1]), have to be approximated somehow. Below, we present a pop-
ular method to approximate such transforms.

5.1 Transform Approximation Method

TAM (Transform Approximation Method) is described e.g. in [5], [18].
Let us consider a random variable X with the PDF f (x) and CDF F(x).
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The essence of TAM is very simple: we discretize the domain of the random
variable X (at least the set [0, +∞[), obtaining n points: x1 < x2 < .. . < xn.

Let us denote the CDF’s values in these points in the following way:

yi = F(xi) i = 1, . . . ,n .

We associate some probability masses with these points:

p1 =
y1 + y2

2
,

pn = 1− yn−1 + yn

2
, (6)

pi =
yi+1 − yi−1

2
i = 2, . . . ,n−1 .

Then we can approximate the L –transform f̃ (s) of the PDF of X by a finite sum:

f̆ (s) =
n∑

i=1

pi · e−s·xi . (7)

The above description does not specify how to choose points xi (or yi). There are
a few approaches to do it (see below), but how to do it optimally remains an open
problem.

Possible parameterizations.

The method was first developed in 1998 by Gross and Harris. The formula f̆ (s) =
1
n ·
∑n

i=1 e−s·xi , where xi = F−1
(

i
n+1

)
was used there. Such an approach is called

uniform–TAM, or shortly UTAM.
Currently, more widely used is the GTAM (geometric–TAM ), which sets: yi =

1−qi (for some q such that 0 < q < 1) and xi = F−1(yi).

6 Interval Transform Approximation Method

To introduce the interval analog of TAM, let us consider a real–valued random vari-
able X with the PDF fX (x) and CDF FX (x). Consider an interval discretization X of
X .

We can formulate the interval inclusion function for the Laplace transform of the
PDF of X . It is the function f̆X : ICrect → ICrect of the form:

f̆X (s) =
n∑

i=1

pi · e−s·xi ,

where xi = [xi−1,xi] and s =
[
s,s
]

is an interval complex variable, i.e. s and s are
complex numbers.
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We want to use this approximation for Laplace transforms of the PDFs of services
time in queueing systems. It should be especially useful when the distribution of
service time is long–tailed. In such a case (and actually each case when the time is
unbounded) one of the intervals [xi,xi+1] will be of the form: [xn−1,+∞].

So, the interval extension of the L –transform will be finite only for values of the
argument s, satisfying Res > 0.

Now, let us prove that f̆X (s) is indeed an inclusion function of f̃X (s).

Theorem 1. Let an interval random variable X be interval enclosure of a real
random variable X .

Then, for each complex s such that s ∈ s, the following condition is fulfilled:

f̃X (s) ∈ f̆X (s) .

The theorem is holds specifically for s = [s,s].

Proof.
According to (2), we obtain:

f̃X (s) =
∫

Ω
e−s·X(ω) dP(ω) .

Using the partition of Ω into sets A(xi), defined by equation (4), we can reformulate
the above integral into the form of the following sum:

f̃X (s) =
n∑

i=1

∫

A(xi)
e−s·X(ω) dP(ω) . (8)

From the definition of an interval enclosure we have that X(ω) ∈ X(ω). The rules of
interval computations (e.g. [6], [8], [9], [17]) imply that for each x ∈ xi and s ∈ s we
have: e−s·x ∈ e−s·xi .

Hence, we obtain:
( ∫

A(xi)

e−s·X(ω) dP(ω)
)

∈
(

e−s·xi

∫

A(xi)

dP(ω)
)

.

The right side simply reduces to the form:

e−s·xi · pi .

So:
( n∑

i=1

∫

A(xi)
e−sX(ω) dP(ω)

)

∈
( n∑

i=1

e−s·xi · pi

)

. (9)

Then, from (8) and (9) we obtain:

f̃X (s) ∈
n∑

i=1

e−s·xi · pi = f̆X (s) .

QED
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The Essence of the Method

Let us now refer to TAM, described in Section 5.
Having defined the notion of interval discretization and the interval inclusion of

L –transform of a random variable, it was simple to develop an interval analog of
TAM. We may call it “Interval TAM” or ITAM for short.

This approach is similar to classical TAM, except for using interval discretization
instead of a traditional one and computing the interval inclusion of the L –transform
basing on this interval discretization.

The advantages of such approach in comparison with the traditional TAM are
obvious:

• we use correct probabilities associated with the intervals, not probability masses
quite arbitrarily associated with chosen points, as in (6),

• we can naturally bound the discretization error and truncation error,
• as in other interval methods, we can bound the numerical error (see e.g. [6], [8],

[9], [17]).

7 Laplace Transform for Queueing Systems

In case of M/GI/1 systems the L –transform of the sojourn time is given by the
so–called Pollaczek–Khinchin formula (see e.g. [1]):

w̃(s) =
(1−ρ) · b̃(s) · s

s+λ ·
(
b̃(s)−1

) , (10)

where b̃(s) is the L –transform of PDF of the service time B, λ is the arrival rate and
ρ = λ ·EB.

Assume the service time to be Pareto–distributed; this is a typical power–tailed
distribution, commonly used to model various levels of computer network traffic.
The most commonly encountered form uses two parameters: the shaping parameter
α > 0 and the location parameter β > 0. A Pareto–distributed variable X has the

CDF FX (x) = 1 −
(
β
x

)α
(for x ≥ β ; otherwise FX (x) = 0) and PDF fX (x) = βα

xα+1

(also for x ≥ β ).
As it was mentioned before, PDF of a Pareto–distributed random variable posses

an L –transform (as PDFs of all random variables do), but that transform does not
have a closed analytical form. Hence, some approximation of b̃(s) has to be used, in
particular in formula (10), to get an approximation w̆(s) of w̃(s).

So, we can now approximate the Laplace transform of the sojourn time. Where
can we use such an approximation ? Obviously, we can invert it numerically, to obtain
the distribution of the sojourn time. But the next subsection describes a different
application.
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7.1 Optimization

Consider the following problem: we want to find the arrival and service rate of a
queueing system, to optimize some performance measure for users waiting for the
completion of their tasks. It can be set as the following optimization problem:

max
λ ,µ

(

Q = V (λ )−λ ·G(λ ,µ)−C(µ)
)

s.t.

0 ≤ λ ≤Λ ,

λ −µ ≤ −ε .

The meaning of the above notions is as follows:

• V (λ ) – increasing, concave and strictly differentiable is the aggregated utility of
the users,

• G(λ ,µ) – is the delay cost of the user,
• C(µ) – is the capacity cost (usually a linear structure is assumed C(µ) = c ·µ ,
• ε is a small positive number used to avoid a strict inequality λ < µ .

What about the delay cost G ? In [3] a few measures are proposed: linear cost,
polynomial cost, etc. However in the case of a Pareto–distributed service time (with
α < 2) most of them are useless: they are infinite regardless the values of parameters
λ and µ (proof given in [15], Subsection 4.1.4). The only useful measure of the delay
cost is the exponential one (see [3]), expressed as:

G =
v
k
·
(
1− w̃(k)

)
,

where v > 0 and k > 0 are some real–valued parameters, estimation of which is
beyond our interest (interval random variables might be useful there too, though;
[12].

So, L –transform of the sojourn time is explicitly used here to measure perfor-
mance of the queueing system. More details may be found in [15].

Numerical Experiments

The lack of space makes the authors to present only a limited number of experiments.
They are presented in Tables 1, 2 and 3.

Table 1 presents the results for Erlang distribution. Obviously, this is not a long–
tailed distribution and TAM does not have to be used here. We present it, however,
to show the failure of traditional real–valued TAM, which provides incorrect values
there. Intervals computed by ITAM are somewhat wide, but correct.

Table 2 presents the results for Pareto distribution. We do not know the actual
values of the L –transform, so we can only use some kind of TAM.

Finally, Table 3 shows the performance of an interval optimization algorithm,
setting the parameters of a queueing system with the Pareto service time (i.e. solving
the problem from Subsection 7.1).
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Table 1. Approximate values of the Laplace transform of the Erlang–distributed random vari-
able’s PDF (r = 2, µ = 100.000000); TAM with 100 points

s L –transform real–valued TAM ITAM

( 5.000000, -3.000000) ( 0.951203, 0.027846) ( 0.789720, 0.089621) ([ 0.579440, 1.000000],[4.705679E-009, 0.295521])
( 5.000000, -2.000000) ( 0.951543, 0.018568) ( 0.797220, 0.060250) ([ 0.594440, 1.000000],[3.163486E-009, 0.198670])
( 5.000000, -1.000000) ( 0.951746, 0.009286) ( 0.801750, 0.030276) ([ 0.603500, 1.000000],[1.589685E-009, 0.099834])
( 5.000000, 0.000000) ( 0.951814, 0.000000) ( 0.803265, 0.000000) ([ 0.606530, 1.000000],[ -0.000000, 0.000000])
( 5.000000, 1.000000) ( 0.951746, -0.009286) ( 0.801750, -0.030276) ([ 0.603500, 1.000000],[ -0.099834,-1.589685E-009])
( 5.000000, 2.000000) ( 0.951543, -0.018568) ( 0.797220, -0.060250) ([ 0.594440, 1.000000],[ -0.198670,-3.163486E-009])
( 5.000000, 3.000000) ( 0.951203, -0.027846) ( 0.789720, -0.089621) ([ 0.579440, 1.000000],[ -0.295521,-4.705679E-009])

Table 2. Approximate values of the Laplace transform of the Pareto–distributed random vari-
able’s PDF (α = 1.1, β = 1.0; TAM with 1000 discretization points

s real–valued TAM ITAM

( 0.100000, 0.000000) ( 0.733017, 0.000000) ([ 0.732661, 0.757252],[ 0.000000, 0.000000])
( 0.200000, 0.000000) ( 0.593593, 0.000000) ([ 0.593003, 0.602140],[ 0.000000, 0.000000])
( 0.500000, 0.000000) ( 0.343648, 0.000000) ([ 0.342789, 0.344802],[ 0.000000, 0.000000])
( 1.000000, 0.000000) ( 0.157934, 0.000000) ([ 0.157144, 0.158725],[ 0.000000, 0.000000])
( 2.000000, 0.000000) ( 0.040318, 0.000000) ([ 0.039914, 0.040722],[ 0.000000, 0.000000])
( 5.000000, 0.000000) ( 0.001082, 0.000000) ([ 0.001054, 0.001109],[ 0.000000, 0.000000])

( 10.000000, 0.000000) (4.183039E-006, 0.000000) ([3.974061E-006,4.392017E-006],[ 0.000000, 0.000000])

Table 3. Results of the interval branch–and–bound for the single M/P/1 queue, capacity
cost c = 1.0 and exponential delay cost with different values of v and k; ITAM with 100
discretization points

v k execution time function evaluations number of boxes that can contain a solution

10 10 0.66 sec. 73 7
10 2 25.94 sec. 3491 121
5 2 2.78 sec. 374 68

0.1 0.4 1.7 sec. 290 16

8 Conclusions

The proposed ITAM is an efficient way to approximate the Laplace transform of
PDFs of random variables. Its computation may be a bit more costly than in the case
of traditional, real–valued TAM, but it is significantly more precise and safe. It seems
to be another useful application of the presented interval random variables theory.
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