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Summary. We present an example how fuzzy measures and discrete Choquet integrals can
be used to model interactivities between trees within a stochastic fine root dispersal model.

1 Introduction

Fine roots are roots with diameter smaller than 2 mm which are responsible for the
soil water reception of trees. Investigations of the spatial dispersion of the fine root
biomass can help to improve the knowledge about effects trees impose on soil re-
sources. One point within this research are dispersal models where interaction be-
tween trees says something about their rivalry, for example with regard to water
resources. In this paper the multi-tree case with trees from two different species
is discussed. In this multi-tree case the total biomass of fine roots consists of the
contributions of the individual trees. Here, interactions can affect the root biomass.
Therefore, we want to describe the total mean of the fine root biomass by a weighted
sum of the individual biomass contributions where the weights depend on the in-
teractivities. From fuzzy theory it is known that fuzzy integrals are flexible tools of
aggregation considering interaction ([2]). Especially, so-called discrete Choquet in-
tegrals can be applied for the aggregation of interacting critieria which in our case
are given by the individual tree biomasses.

2 Fuzzy Measures for Modelling Interactivities

We restrict ourselves to a finite universe of discourse, say N = {1, ...,N}. Denote
P(N ) the power set of N . A fuzzy measure ν is a set function ν : P(N ) → [0,1]
with

ν( /0) = 0, ν(N ) = 1, ν(A) ≤ ν(B) for A,B ∈ P(N ) and A ⊆ B, (1)

see [1]. In general, a fuzzy measure ν is a non-additive set function. The ‘degree’ of
nonadditivity expresses the ‘degree’ of interaction between two subsets A and B from
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N . A sub-additive ν with ν(A ∪ B) ≤ ν(A) + ν(B) for
A∩B = /0 models negative synergy or redundancy whereas a super-additive ν with
ν(A∪B) ≥ ν(A)+ν(B) for A∩B = /0 describes positive synergy.

Often the elements of N are interpreted as criteria. Then sub-additivity for ex-
ample says that the evaluation ν(A∪B) of the ‘sum’ A∪B of criteria is less than the
sum of the single evaluations ν(A)+ ν(B). Using the interpretation as criteria, the
evaluation of a single criterion A = {i}, i ∈ N , is of special interest. Let us intro-
duce the so-called importance index of criterion i. Note that for i being unimportant
it is not enough that ν({i}) is small. If it happens that for some A ⊂ N the value
ν(A ∪{i}) is much greater than ν(A), then i may be important although ν({i}) is
small. Considering these effects, the importance index or Shapley value is defined
by

Φi(ν) :=
∑

A⊂N \{i}

(N −|A|−1)!|A|!
N!

[ν(A∪{i})−ν(A)], (2)

see [3]. Analogously to the concept of the importance index the interaction index
between two criteria i and j is defined by

Ii, j(ν) =
∑

A⊂N \{i, j}

(N −|A|−2)!|A|!
(N −1)!

∆i, j(A,ν) (3)

∆i, j(A,ν) := ν(A∪{i, j})−ν(A∪{i})−ν(A∪{ j})+ν(A).

If ν reduces to a probability measure µ we always have ∆i, j(A,µ) = 0, i.e. addi-
tive set functions cannot model interaction.

Consider a feature variable xxx which takes values xi for the criteria i ∈ N . For
global evaluation or for aggregation of the feature values on N suitable tools seem
to be certain means of xi, more generally: certain integrals of xxx over N . Classical
integrals are linear operators with respect to a given measure. A much more pow-
erful tool for a suitable aggregation are Choquet integrals with respect to a given
fuzzy measure ν , see [2]. For the ordered feature values x(1) ≤ ... ≤ x(N) the discrete
Choquet integral with respect to a fuzzy measure ν is defined by

Cν(xxx) :=
N∑

i=1

w[i]x(i) (4)

w[i] := ν(A(i))−ν(A(i+1)), i = 1, ...,N; A(i) := {(i),(i+1), ...,(N)}.

The set A(i) collects the indices of the N − i+1 largest feature values. Especially, it
is A(1) = N ,A(N +1) = /0.

An ordered weighted average (OWA) of the feature values is given by

OWA(xxx) =
N∑

i=1

wix(i),

N∑

i=1

wi = 1,wi ≥ 0. (5)
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Formally, OWA(xxx) = Cν(xxx) with respect to the special fuzzy measure

ν(A) =
|A|−1
∑

j=0

wN− j

i.e. w[i] with respect to ν from (4) coincides with wi. For any fuzzy measure ν with

ν(T ) = ν(S) for all sets T and S with |T | = |S| (6)

OWA(xxx) coincides with the corresponding Choquet integral. In this simple case,
the interaction index (3) is the same for any pair (i, j), given by

Ii, j(ν) =
w1 −wN

N −1
, i, j ∈ N , i �= j, (7)

see [3].
One-parametric families of fuzzy measures where the parameter controls inter-

action in a transparent way are of special interest. Let us mention here the Yager
family

νq(A) =
(

|A|
N

) 1
q

,q > 0, (8)

where q > 1 models negative synergy and q ∈ (0,1) positive synergy. The Yager
family obviously satisfies (6) and leads to the weights

w[i] =
(

N − i+1
N

)1/q

−
(

N − i
N

)1/q

; i = 1, ...,N;q ∈ (0,∞). (9)

This fuzzy measure contains all possible types of interaction though the correspond-
ing OWA is not too far away from the arithmetic mean (q = 1) which is natural for
many dispersal effects in forests.

3 A Stochastic Model for Root Dispersal and Estimation
of the Model Parameters

To describe a real root dispersal situation, a number of soil cores (with diameter 2,65
cm and volume 440 cm3) is placed in the neighbourhood of the trees which collect
a random number of root mass units (1 unit = 1 mg). At first let us consider a single
tree and M soil cores, each of area a and fixed depth and with distance r j from the
tree, j = 1, . . . ,M. For the random number n j of root mass units in soil core j we use
a special nonlinear regression model:

E(n j) = amp(r j,ϑ) =: ρ(r j;m,ϑ), j = 1, ...,M, (10)
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m mean total mass of fine roots of the tree
p(r,ϑ) probability density for the location of a single root mass unit

at distance r from the tree
ϑ unknown parameter.

The justification of (10) comes from theory of stochastic point processes which
is suppressed here (see, e.g. [4]). An often used model for p(r,ϑ) assumes log-
normality, i.e. with a normalizing constant c we have

p(r;µ ,σ2) =
c
σr

exp

(

− (lnr −µ)2

2σ2

)

,σ > 0,µ ∈ R . (11)

Much more interesting, especially with regard to interaction, is the multi-tree
case. Firstly, we restrict ourselves to the case of N trees of the same species. Consider
the model of N additive overlapping trees, i.e.

E(n j) =
N∑

i=1

ρ(ri j;mi,ϑ) =: ρN
j (m1, ...,mN ,ϑ) , (12)

where ri j is the distance of soil core j from the tree i and let mi be the total root mass
of tree i. To avoid too much parameters we use an empirical relation between mi and
dbhi, the stem diameter at breast height of tree i:

mi = m

(
dbhi

30

)β
. (13)

This relation is often used in forest sciences (see e.g. [4]) and expresses mi by the
mass m of a standard tree of dbh = 30 cm and an allometry parameter β , i.e. the N
parameters mi reduce to two parameters m and β . Now, (12) can be written as

E(n j) =
N∑

i=1

ρ(ri j;m,β ,ϑ) =
N∑

i=1

ρN
i j (m,β ,ϑ) =: ρN

j (m,β ,ϑ). (14)

Note that (14) is given by the unweighted sum of the root masses of the N trees.
But from ecological point of view this is not realistic for all cases of root disper-
sion. In some cases it seems to be more realistic to prefer the ‘most intensive’ or
‘strong’ trees, e.g. the trees closest to soil core j and to put (more or less) the re-
maining ‘weak’ trees at a disadvantage. For example, the strong tree takes up the
total soil volume at some location and forces the roots of weaker trees to use other
soil regions. On the other hand, it is conceivable that a strong tree with a number of
fine roots can afford to accept roots of other trees, maybe from the same species, at
some locations. These remarks lead in a natural way to a discrete Choquet integral
of the root intensities. Consider the ordered intensities ρN

(i j)(m,β ,ϑ) of soil core j,

i.e. ρN
(1 j)(m,β ,ϑ) ≤ ... ≤ ρN

(N j)(m,β ,ϑ) and aggregate them by (see (4))

E(n j) = N
N∑

i=1

w[i]ρN
(i j)(m,β ,ϑ) = NCν(ρρρN

j (m,β ,ϑ)), (15)
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where the weights w[ j] are defined in (4) and the vector ρρρN
j (m,β ,ϑ) contains as

elements ρ(ri j;m,β ,ϑ),1 ≤ i ≤ N.
Let us explain the fuzzy measure ν in (15). Let A ⊂ N be a subset of trees. Then

ν(A) stands for the overall root mass if the trees of A produce alone, without any
contribution of trees from N \A.

Now, let us justify the use of the discrete Choquet integral. In (15) all trees con-
tribute at least ρN

(1 j)(m,β ,ϑ) root mass units to the total root mass at j. This results

in a total root mass at least equal to NρN
(1 j)(m,β ,ϑ)ν(N ) with ν(N ) = 1. Each

tree in N \A1 contributes at least ρN
(2 j)(m,β ,ϑ) additional root mass units where A1

collects the tree with the smallest individual contribution. Therefore, the increment
of total root mass is at least equal to

N
(

ρN
(2 j)(m,β ,ϑ)−ρN

(1 j)(m,β ,ϑ)
)

ν(N \A1).

And so on. Summing up all these increments of total root mass units results exactly
in the expression of the Choquet integral (15), see (4). Note that the weight of the
smallest contribution is equal to ν(N )−ν(N \A1) given by ν(A(1))−ν(A(2) in
(4).

For a symmetric fuzzy measure fulfilling (6) (15) reduces to

E(n j) = N OWA(ρρρN
j (m,β ,ϑ)). (16)

Obviously, if the chosen weights wi of the OWA operator (see (4)) are increasing
with i than - with regard to a given soil core - ‘strong’ trees suppress ‘weak’ trees,
which expresses negative synergy. In the opposite case, if ‘weak’ trees contribute
above the average, i.e. if the wi’s are decreasing in i, we have positive synergy, see
(7).

Now, consider the more general case that root masses of trees from two species
are given. Let N1 be the number of trees from species 1 and N2 the number of trees
from species 2. We will propose a two-step approach for the total root mass consist-

ing of the masses of the two species. At the first step, the mean of the root mass n(l)
j

in a soil core j coming from species l = 1,2, can be expressed following (15):

E(n(l)
j ) = NlCνl (ρρρ

Nl
j (ml ,βl ,ϑl)) =: ρNl

j (ml ,βl ;ϑl),

where νl is the specific fuzzy measure of species l. ml is the total root mass of a
standard tree from species l, βl is the corresponding allometry parameter for this
species l. The distributional parameters for species l are given by ϑl . Obviously, νl

controls the type of interaction inside species l, the so-called intra-specific interaction
of species l. But in ecological context, interaction between species - the so-called
inter-specific interaction - is also of great interest. We will model such effects at the

second step. Proceeding from E(n(1)
j ) and E(n(2)

j ) for a given soil core j we can
describe the mean of the total root mass n j at j by an additional discrete Choquet
integral:



378 W. Näther and K. Wälder

E(n j) = 2Cν12

((

ρN1
j (m1,β1;ϑ1)),ρN2

j (m2,β2;ϑ2)
))

=: ρN1N2
j (m1,β1,ϑ1,γ1;m2,β2;ϑ2,γ2;γ12) (17)

where the inter-specific interaction is controlled by the fuzzy measure ν12.
The unknown model parameters in (17) are
ml mean total mass of a standard tree from species l with dbh = 30 cm
βl allometry parameter for species l
ϑl vector of distribution parameters in p(r) for species l
γl vector of the parameters in the fuzzy measure νl for

species l controlling intra-specific interactivities
γ12 vector of the parameters in the fuzzy measure ν12 for

the total mass controlling inter-specific interactivities.
Now, we have to estimate the parameters by the use of soil core results n j,

j = 1, ...,M. The simplest way is a least squares approximation

M∑

j=1

(

n j −ρN1N2
j (m1,β1,ϑ1,γ1;m2,β2;ϑ2,γ2;γ12)

)2
→ min.

Denote the estimated parameters by m̂l , β̂l , ϑ̂l , γ̂l and γ̂12. As usual, the goodness of
model fit can be expressed by the (mean) sum of squared residuals

S2
M :=

1
M

M∑

j=1

(

n j −ρN1N2
j (m̂1, ϑ̂1, γ̂1; m̂2, β̂2; ϑ̂2, γ̂2; γ̂12)

)2
. (18)

In our case it is also useful to regard the sum of mean squared residuals for species
l, i.e.

S2
M,l :=

1
M

Ml∑

j=1

(

n(l)
j −w[l]ρ

N1
j (m̂l , ϑ̂l , γ̂l)

)2
. (19)

For further details and remarks see [5].

4 A Real-case Study

The study was carried out in a mixed spruce and beech stand consisting of 11 beech
(species 1) and 17 spruce trees (species 2) in Germany (Saxony) near to Dresden.
The study site is part of a greater nearly homegenous spruce stand. In 2003 soil cores
were taken at 226 given sampling points with collections of the fine root biomass
from the forest floor organic and mineral horizon.

At first, fine root biomass dispersion was modelled without considering interac-
tion, i.e. inter- and intra-specific aggregations were carried out as additive sums of
the contributions of the trees. The allometry parameters β1 and β2 were taken con-
stant with value 2. Assuming a lognormal model, see (11), this leads to the following
estimates
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m̂1 = 3.32 ·106, µ̂1 = 2.45, σ̂1 = 1.11 (20)

m̂2 = 1.64 ·106, µ̂2 = 1.85, σ̂2 = 1.2

with S2
M = 2365, S2

M,1 = 1809 for species 1 (beech) and S2
M,2 = 1126 for species

2 (spruce), see (18) and (19). The empirical standard deviation of the root mass of
species 1 s1 is equal to 73.04. For species 2 s2 = 64.88 holds. We denote

ri :=

√

S2
M,i

si
(21)

and obtain r1 = 0.58 and r2 = 0.52. From statistical point of view these values are not
very good with respect to model fitting. But let us refer to some problems connected
with fine root data. Fine roots are characterized by a high spatial and temporal vari-
ability depending for example on the changing availability of resources. Therefore,
discussing investigations based on one spatio-temporal sample we have to accept
some remaining variability of the residuals.

Now, interaction effects are considered applying an OWA operator with one-
parametric fuzzy measures from the Yager family, see (8). The number of model
parameters increases to 9. We obtain the following estimates:

m̂1 = 4.67 ·106, µ̂1 = 2.73, σ̂1 = 1.3, q̂1 = 0.74 (22)

m̂2 = 9.27 ·105, µ̂2 = 1.71, σ̂2 = 0.94, q̂2 = 1.37; q̂12 = 1.38

with S2
M = 1903, S2

M,1 = 1328 and S2
M,2 = 951. This leads to r1 = 0.54 and r2 = 0.47,

see (21). Considering interactions results in visible improvement of the mean squared
error of both species and the total root mass. To sum it up it can be said that the two
species suppress each other, whereas fine root dispersal of the beeches is charac-
terized by positive synergy. Considering that the study site comprises more spruces
than beeches the supposition that positive synergy between the beeches enables their
survival against the superiority of spruces is quite logical in ecological sense. In con-
trast to this the spruces are able to develop without intra-specific support or even with
intra-specific suppression.

If the inter-specific interaction is modelled by an OWA operator, it is not possible
to decide which species the other suppresses. This can be seen regarding the interac-
tion index from (3). We obtain Φspruce = Φbeech = 0,5. In ecological sense it is not
satisfactory that the effect of suppression is equally distributed over the two species.
Therefore, if we want to model that spruces suppress beeches we need a discrete Cho-
quet integral as introduced in (17). Fortunately, it is easy to define a non-symmetric
fuzzy measure for a set of two criteria. For negative synergy a sub-additive fuzzy
measure is necessary. By

ν({spruce,beech}) = 1,ν({beech}) = w1,ν({spruce}) = w2,ν( /0) = 0 (23)

with w1,w2 ≤ 1 and w1 +w2 > 1 such a fuzzy measure is given. In this case

Φspruce =
1
2

+
1
2

(w1 −w2) and , Φbeech =
1
2

+
1
2

(w2 −w1)
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with I12 = 1−w1 −w2 < 0 holds.
Now, the discrete Choquet integral (17) can be evaluated. Model fitting leads to

m̂1 = 1.04 ·107, µ̂1 = 2.33, σ̂1 = 1.15, q̂1 = 0.73

m̂2 = 1.40 ·106, µ̂2 = 2.18, σ̂2 = 1.21, q̂2 = 1.82 (24)

ŵ1 = 0.42, ŵ2 = 0.8

with S2 = 2050,S2
M,1 = 1345 , S2

M,2 = 997, r1 = 0.54,r2 = 0.49 and

I12(ν) = −0.22,Φbeech = 0.31,Φspruce = 0.69.

Obviously, negative synergy is given for inter-specific interactions. Further, the
spruces are more important than the beeches with respect to fine root biomass dis-
persal, i.e. the spruces suppress the beeches. Analogously to the OWA case (22) the
beeches support each other whereas interaction within the spruces is shaped by neg-
ative synergy.

5 Conclusions

The paper presents only some first results and shows that modelling of interaction ef-
fects by fuzzy measures leads to ecologically meaningful results. In a future project,
we will analyze further ecologically interesting parameters, e.g. humus thickness
and quality or the shape of the tree-tops, and we expect much more clear interaction
effects.
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