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Summary. Based on the concept of fuzzy random variables, we propose an optimal repre-
sentative value for fuzzy quality data by means of a combination of a random variable with
a measure of fuzziness. Applying the classical Cumulative Sum (CUSUM) chart for these
representative values, an univariate CUSUM control chart concerning LR-fuzzy data under
independent observations is constructed.
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1 Introduction

Cumulative Sum (CUSUM) control chart proposed by Page [9] is a widely used tool
for monitoring and examining modern production processes. The power of CUSUM
control chart lies in its ability to detect small shifts in processes as soon as it oc-
curs and to identify abnormal conditions in a production process. For example, for
a given sequence of observations {Xn,n = 1,2, . . .} on normal population, the mon-
itored parameter of interest is typically the process mean, µn = E(Xn), the purpose
is to detect a small change in the process mean, one might specifies the levels µ0

and µ1 > µ0 (or µ1 < µ0) such that under normal conditions the values of µn should
fall below (or above) µ0 and the values of µn above (or below) µ1 are considered
undesirable and should be detected as soon as possible. The CUSUM chart can be
used to monitor above process with the test-statistics Sn = max{0,Sn−1 + Xn − K}
( or Tn = min{0,Tn−1 + Xn + K}) and signal if Sn > b (or Tn < −b), where b is the
control limit derived from a confidence interval assuming a Gaussian distributed ob-
servation, Xn (n ≥ 1) are the sample means at time tn and S0 = T0 = 0, and K is the
reference value. It is well-known that CUSUM chart is more sensitive than Shewhart
chart (X-chart) for detecting certain small changes in process parameters.

The random processes encountered in industrial, economic, etc. are typically
quality monitoring processes. J.M. Juran, an authority in international quality con-
trol circles, has pointed out that quality to customers, is its suitability rather than its
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conformity to certain standards. End-users seldom know what standards are. Cus-
tomers’ appraisal on quality is ways based on whether the products they have bought
are suitable or not and whether that kind of suitability will last [1].

This is a kind of quality outlook which attaches primary importance to cus-
tomers’ feeling, so vague attribute of quality appraisal criterion and appraising cus-
tomers’ psychological reactions should, by no means, be ignored.

The fuzzy set theory [16] may be an appropriate mathematical tool for dealing
with vagueness and ambiguity of the quality attribute. So it is very natural to in-
troduce the concept of fuzzy set to the concept of quality and thus fuzzy quality is
formed. As regards fuzzy quality, its “suitability” quality standard is expressed in the
form of a fuzzy set. Also an outcome of the observation on quality characteristics
may be appropriately represented by a fuzzy set because it is difficult to obtain a
precise quality description of the inspected item in some case.

There are some literature on constructions of control charts based on fuzzy ob-
servations by [14], [11], [6], [4, 5], [13], [12] and [2]. Basically, the works mentioned
above include two kinds of controlling methods , one of which is utilizing probabil-
ity hypotheses testing rule for the representative values of fuzzy quality data, and the
other is using a soft control rule based on possibility theory. However, how to deal
with optimally both randomness and fuzziness of the process quality data is still a
problem.

2 LR-fuzzy Data and the Measure of Fuzziness

2.1 LR-fuzzy Data

A fuzzy set on R, the set of all real numbers, is defined to be a mapping u : R → [0,1]
satisfying the following conditions:

(1) uα = {x|u(x) ≥ α} is a closed bounded interval for each α ∈ (0,1].
(2) u0 = suppu is a closed bounded interval.
(3) u1 = {x|u(x) = 1} is nonempty.

where suppu = cl{x|u(x) > 0}, cl denotes the closure of a set. Such a fuzzy set is
also called a fuzzy number. The following parametric class of fuzzy numbers, the
so-called LR-fuzzy numbers, are often used in applications:

u(x) =
{

L(m−x
l ), x ≤ m

R( x−m
r ), x > m

Here L : R
+ → [0,1] and R : R

+ → [0,1] are fixed left-continuous and non-increasing
function with L(0) = R(0) = 1. L and R are called left and right shape functions, m
the central point of u and l > 0, r > 0 are the left and right spread of u. An LR-fuzzy
number is abbreviated by u = (m, l,r)LR, especially (m,0,0)LR := m. Some properties
of LR-fuzzy numbers for operations are as follows:
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(m1, l1,r1)LR +(m2, l2,r2)LR = (m1 +m2, l1 + l2,r1 + r2)LR

a(m, l,r)LR =






(am,al,ar)LR, a > 0
(am,−ar,−al)RL, a < 0

0, a = 0

(m1, l1,r1)LR −m2 = (m1 −m2, l1,r1)LR

For further properties of LR-fuzzy numbers the readers are refereed to [3].
Let L(−1)(α) := sup{x ∈ R|L(x) ≥ α},R(−1)(α) := sup{x ∈ R|R(x) ≥ α}. Then

for u = (m, l,r)LR, uα = [m− lL(−1)(α),m+ rR(−1)(α)], α ∈ [0,1].
An useful approach has been summarized by Cheng [2] for generating a fuzzy

number based on a group experts’ scores on a fuzzy quality item in a quality control
process. By this approach, we may assign a fuzzy number for each outcome of a
fuzzy observation on quality monitoring process. In this paper, we assume that the
quality data collected from the fuzzy observation process can be assigned LR-fuzzy
numbers. Such data is also called LR-fuzzy data. For example, the color uniformity
of a TV set [1] under user’s suitability quality view is with a fuzzy quality standard
which could be expressed in a form of LR-fuzzy data (d0,5,5)LR, where L(x) =
R(x) = max{0,1 − x} is the shape function of a triangular fuzzy number, and d0

is the designed value of the color uniformity. For the operational simplicity and a
better description of fuzziness for fuzzy quality items, the triangular fuzzy number
are often used.

LR-fuzzy random variable X = (m, l,r)LR has been defined by Körner [7], where
m, l,r are three independent real-valued random variables with P{l ≥ 0} = P{r ≥
0} = 1. Considering the fuzzy observations on a quality monitoring process, it is
obvious that the LR-fuzzy data can be viewed as realizations of an LR-fuzzy random
variable. Assuming the observational distribution is approximately normal, then the
central variable m of an LR-fuzzy sample X = (m, l,r)LR obtained by method in [2]
from the fuzzy observation process can be viewed as a Gaussian variable, and the
spread variables l, r may be evenly distributed. The ith sample Xi is assumed to be a
group mean of size ni, {(xi1,bi1,ci1)LR, . . . ,(xini ,bini ,cini)LR}, i.e.

Xi = (
1
ni

ni∑

j=1

xi j,
1
ni

ni∑

j=1

bi j,
1
ni

ni∑

i=1

ci j)LR = (xi,bi,ci)LR,

and simply denoted by Xi = (mi, li,ri)LR. By the central limit theorem, if the group
size is relatively large, then li, ri are approximately Gaussian variables.

2.2 The Measure of Fuzziness

The LR-fuzzy quality data are not easy to be plotted on a control chart directly.
Therefore, it is necessary to convert a fuzzy data (a fuzzy sample) into a scalar (a
real random variable) for plotting, such scalar (random variable) would be an opti-
mal representative of the fuzzy data (the fuzzy sample). Some approaches for deter-
mining the representing value of a fuzzy data have been proposed in [14] and [6],
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etc.. In general, there are no absolute criteria for choosing methods on determining
the representative value. However, we usually expect a method for determining one
which is not only with lower complexity in computation but also with an optimal
representativeness.

Recalling the concept of fuzzy random variables [7],[8], [10], we are aware of
that fuzzy random variables are devoted to deal with the inherent randomness and
fuzziness of samples simultaneously. Thus, we emphasize that a representative value
should properly represent the main characteristics, randomness and fuzziness, of a
fuzzy quality sample. Such features can be abstracted easier in the case of LR-fuzzy
sample than that of other fuzzy sample because we are able to represent the random-
ness by the central variable and to represent the fuzziness of the fuzzy quality data
by employing the concept of a measure of fuzziness.

A number used for measuring the fuzziness of a fuzzy set is a very important
index when we deal with fuzzy concepts and fuzzy information. Fuzziness level of a
fuzzy set is usually determined by the fuzziness level of each possible elements of the
fuzzy set. For example, if the membership degree of one element is near 1, then the
affirmation level with respect to the element must be high, and thus fuzziness level
of the element becomes low; if the membership degree of one element is around
0.5, then its belongingness is extremely unsteady, and thus the fuzziness level of the
element becomes high, and so on. Various measuring methods have been proposed
based on the concept of measure of fuzziness [3] [17], for instance, Minkowski’s
measure of fuzziness Dp(A) for a fuzzy set A on a discrete finite domain is as follows:

Dp(A) =
2

n1/p
(

n∑

i=1

|A(xi)−A0.5(xi)|p)1/p,

where p > 0, A0.5 denotes the 0.5-level set of the fuzzy set A , and A0.5(x) denotes
the indicator of the non-fuzzy set A0.5, i.e.,

A0.5(x) := IA0.5(x) =
{

1, x ∈ A0.5

0, x /∈ A0.5

When p = 1, D1(A) is said to be Hamming’s fuzziness measure, and when p = 2,
D2(A) is called Euclid’s fuzziness measure. We employ an extension of Hamming’s
fuzziness measure to define a measure of fuzziness D(X) for the LR-fuzzy quality
sample X = (m, l,r)LR, i.e.

D(X) =
∫ +∞

−∞
|X(x)−X0.5(x)|dx

Theorem 1. Let X = (m, l,r)LR be a fuzzy quality sample, then it holds that

D(X) = l

[

L(−1)(0.5)+
∫ L(−1)(0)

L(−1)(0.5)
L(x)dx−

∫ L(−1)(0.5)

0
L(x)dx

]

+ r

[

R(−1)(0.5)+
∫ R(−1)(0)

R(−1)(0.5)
R(x)dx−

∫ R(−1)(0.5)

0
R(x)dx

]

.
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Proof. It is obvious that

X0.5(x) =
{

1, x ∈
[
m− lL(−1)(0.5),m+ rR(−1)(0.5)

]

0, x /∈
[
m− lL(−1)(0.5),m+ rR(−1)(0.5)

]

D(X) =
∫ +∞

−∞
|X(x)−X0.5(x)|dx

=
∫ m

m−lL(−1)(0.5)
(1−L(

m− x
l

))dx+
∫ m+rR(−1)(0.5)

m
(1−R(

x−m
r

))dx

+
∫ m−lL(−1)(0.5)

m−lL(−1)(0)
L(

m− x
l

)dx+
∫ m+rR(−1)(0)

m+rR(−1)(0.5)
R(

x−m
r

)dx

= l

[

L(−1)(0.5)+
∫ L(−1)(0)

L(−1)(0.5)
L(x)dx−

∫ L(−1)(0.5)

0
L(x)dx

]

+ r

[

R(−1)(0.5)+
∫ R(−1)(0)

R(−1)(0.5)
R(x)dx−

∫ R(−1)(0.5)

0
R(x)dx

]

.

This completes the proof.

Example Let u = (m0, l0,r0)LR be a triangular fuzzy data, where L(x) = R(x) =
max{0,1− x}, then

D(u) =
l0 + r0

4
.

3 Construction of a CUSUM Chart for LR-fuzzy Data

3.1 A Representative Value

We now define a representative value denoted by Rep(X) for fuzzy sample X =
(m, l,r)LR as follows:

Rep(X) = m+D(X)

Let

β1 := L(−1)(0.5)+
∫ L(−1)(0)

L(−1)(0.5)
L(x)dx−

∫ L(−1)(0.5)

0
L(x)dx

β2 := R(−1)(0.5)+
∫ R(−1)(0)

R(−1)(0.5)
R(x)dx−

∫ R(−1)(0.5)

0
R(x)dx

then
Rep(X) = m+ lβ1 + rβ2

Here, the central variable m just represents the randomness of the LR- fuzzy quality
sample X = (m, l,r)LR extremely, since by its membership X(m) = 1 it implies no
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fuzziness , and it also largely determine the location of the LR-fuzzy quality sam-
ple. On the other hand, random variable lβ1 + rβ2 properly represents the fuzziness
level of the LR-fuzzy quality sample because it is derived from a standard mea-
sure of fuzziness of a fuzzy set, which is well defined with a theoretical support-
ing. A kind of combination of the randomness with fuzziness of the fuzzy quality
sample is realized simply by arithmetic addition, thus the related computation for
obtaining the representative value becomes much easier. For a given fuzzy quality
data u = (m0, l0,r0)LR, then its representative value is Rep(u) = m0 + l0β1 + r0β2,
which is a fixed scalar. The present methods for calculating representative values in
the case of LR-fuzzy quality data somewhat have an advantage over that proposed
in [14] and [6]. For instance, calculating representative values were done in five
ways in [14] and [6]: by using the fuzzy mode as fmode = {x|A(x) = 1}, x ∈ [a,b];
the α-level fuzzy midrange as fmr(α) = 1

2 (infAα + supAα); the fuzzy median as

fmed , which satisfies
∫ fmed

a A(x)dx =
∫ b

fmed
A(x)dx = 1

2

∫ b
a A(x)dx; the fuzzy average as

favg =
∫ b

a xA(x)dx/
∫ b

a A(x)dx;and the barycentre concerned with Zadeh’s probabil-
ity measure of fuzzy events as Rep(A) =

∫ ∞
−∞ xA(x) f (x)dx/

∫ ∞
−∞A(x) f (x)dx. Where

A is a fuzzy set on some interval [a,b] ⊂ R,a < b. In general, the first two methods
are easier to calculate than the last three as well as our method, however, they only
took account of the randomness of the fuzzy sample , e.g. fmode = m when the fuzzy
sample is X = (m, l,r)LR, which obviously may lead to a biased result. The third
method used a non-standard measure of fuzziness , thus the fuzzy median may also
be a biased representative of a fuzzy sample. The last two methods are reasonable,
but the representative values derived from the methods are not easy to calculate. We
can easily check that our method is easier to calculate than the fuzzy average and
barycentre methods in the case of LR-fuzzy quality sample. We would like to point
out that the accuracy of the representative for the given fuzzy sample is more im-
portant for constructing a representing control chart devoted for monitoring fuzzy
quality, an inaccurate representative will lead to more false alarm or a wrong control
scheme deviated from the original reality of fuzzy data . Also it is a common sense
that every fuzzy data is characterized by the both randomness and fuzziness. Our
proposed representative value is considerably accurate and simply and very compre-
hensive because we fully take the randomness as well as fuzziness measured by a
standard fuzziness measure into account.

3.2 Construction of a CUSUM Chart

Using the classical CUSUM interval scheme [15], we can design a corresponding
chart for the representative values of LR-fuzzy quality samples. As that mentioned in
Subsection 2.1, the spread variable of a sample might be evenly distributed though
the central variable is Gaussian, we need sampling in groups of varying number ni of
observations each, and ni is relatively large, for instance, ni ≥ 25. Let the observation
is:

Xi j = (mi j, li j,ri j)LR, i = 1,2, . . . ,k; j = 1,2, . . . ,ni
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then xi j := Rep(Xi j) = mi j + li jβ1 + ri jβ2. The representative value of the samples
mean (group mean), denoted by xi, can be worked out by the following two ways:
(1). xi = 1

ni

∑ni
j=1 xi j = mi + liβ1 +riβ2. (2).Xi = 1

ni

∑ni
j=1 Xi j = (mi, li,ri)LR, then xi =

Rep(Xi) = mi + liβ1 + riβ2. The standard error of mean for the representative values
in group i, denoted by si, is:

si =
(

1
ni −1

ni∑

j=1

[
(mi j −mi)+(li j − li)β1 +((ri j − ri)β2)

]2
)1/2

.

Then the standard error of samples mean can be estimated by

σ̂e =
( k∑

i=1

(ni −1)s2
i /

k∑

i=1

(ni −1)
)1/2

.

Thus, we are able to construct a CUSUM control chart for the representative values
of the samples as follows:

(1) Choose a suitable reference value T , here we assume that it is the overall mean
µ̂ of the past observations.

(2) Use the standard scheme h = 5, f = 0.5.
(3) Calculate the CUSUM Sn (Here Sn is with respect to the representative values of

samples) with reference value K1 = T + f σ̂e = µ̂ +0.5σ̂e. Keep it non-negative.
Calculate the CUSUM Tn (Here Tn is with respect to the representative values of
samples) with reference value K2 = T − f σ̂e = µ̂−0.5σ̂e. Keep it non-positive.

(4) Action is signalled if some Sn ≥ hσ̂e = 5σ̂e or some Tn ≤ −hσ̂e = −5σ̂e.

This obtained CUSUM control chart is an appropriate representative CUSUM chart
for the LR-fuzzy quality data involved process.

Conclusions

We have proposed an optimal representative value for fuzzy quality sample by means
of a combination of a random variable with a measure of fuzziness. For LR- fuzzy
data this kind of representative values are more accurate and easier to calculate, so
by which the fuzzy control charts derived from using representative values meth-
ods could be improved to some sense. An accurate representative CUSUM chart for
LR-fuzzy samples is preliminarily constructed. Likewise one could construct other
control charts such as EWMA,P-chart and so on. The proposed representative value
is expected to be extended to a general case where the normal, convex and bounded
fuzzy quality data are monitored.
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