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Summary. A Markov chain model in generalised settings of interval probabilities is pre-
sented. Instead of the usual assumption of constant transitional probability matrix, we assume
that at each step a transitional matrix is chosen from a set of matrices that corresponds to a
structure of an interval probability matrix. We set up the model and show how to obtain inter-
vals corresponding to sets of distributions at consecutive steps. We also state the problem of
invariant distributions and examine possible approaches to their estimation in terms of convex
sets of distributions, and in a special case in terms of interval probabilities.

1 Introduction

Interval probabilities present a generalised probabilistic model where classical sin-
gle valued probabilities of events are replaced by intervals. In our paper we refer
to Weichselberger’s theory [4]; although, several other models also allow interval
interpretation of probabilities.

An approach to involve interval probabilities to the theory of Markov chains
was proposed by Kozine and Utkin [1]. They assume a model where transitional
probability matrix is constant but unknown. Instead of that, only intervals belonging
to each transitional probability are known.

In this paper we attempt to relax this model. We do this in two directions. First,
we omit the assumption of the transitional probability matrix being constant, and
second, instead of only allowing intervals to belong to single atoms, we allow them
to belong to all subsets.

Allowing non-constant transitional probability matrix makes Markov chain model
capable of modeling real situations where in general it is not reasonable to expect ex-
actly the same transitional probabilities at each step. They can, however, be expected
to belong to some set of transitional probabilities. In interval probability theory such
sets are usually obtained as structures of interval probabilities. Our assumption is
thus that transitional probability at each step is an arbitrary member of a set of tran-
sitional probability matrices generated by an interval probability matrix.
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A similar relaxation is also made to the initial distribution. Instead of a single
distribution, we allow a set of distributions forming a structure of an interval proba-
bility.

Our goal is to estimate the interval probabilities after a number of steps and to find
an invariant set of distributions. Unfortunately, it turns out that interval probabilities
are not always sufficient to represent distributions obtained after some steps, which
can form very general sets of distributions, that may not be easy to represent. The
method based on interval probabilities can thus only approximate the true sets of
distributions. To overcome this drawback, we provide a method to at least in principle
approximate the corresponding sets of distributions with convex sets of probability
distributions with arbitrary precision. In those settings, interval probabilities only
present an easy to handle special case.

2 Basic Definitions and Model Setup

First we introduce basic elements of interval probability theory due to Weichsel-
berger [4], but some of them are used here in a simplified form. Let Ω be a non-
empty set and A a σ -algebra of its subsets. The term classical probability or ad-
ditive probability will denote any set function p : A → R satisfying Kolmogorov’s
axioms. Let L and U be set functions on A , such that L ≤U and L(Ω) = U(Ω) = 1.
The interval valued function P( . ) = [L( . ),U( . )] is called an interval probability.

To each interval probability P we associate the set M of all additive probability
measures on the measurable space (Ω ,A ) that lie between L and U . This set is called
the structure of the interval probability P. The basic class of interval probabilities
are those whose structure is non-empty. Such an interval probability is denoted as an
R-field. The most important subclass of interval probabilities, F-fields, additionally
assumes that both lower bound L and upper bound U are strict according to the
structure:

L(A) = inf
p∈M

p(A) and U(A) = sup
p∈M

p(A) for every A ∈ A . (1)

The above property is in a close relation to coherence in Walley’s sense (see [3]),
in fact, in the case of finite probability spaces both terms coincide. Because of the
requirement (1) only one of the bounds L and U is needed. Usually we only take the
lower one. Thus, an F-field is sufficiently determined by the triple (Ω ,A ,L), and
therefore, we will from now on denote F-fields in this way.

Now we introduce the framework of our Markov chain model. Let Ω be a finite
set with elements {ω1, . . . ,ωm} and A := 2Ω be the algebra of its subsets. Further
let

X0,X1, . . . ,Xn, . . . (2)

be a sequence of random variables such that

P(X0 = ωi) = q(0)(ωi) =: q0
i ,
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where q(0) is a classical probability measure on (Ω ,A ) such that

L(0) ≤ q(0), (3)

where Q(0) = (Ω ,A ,L(0)) is an F-probability field. Thus q(0) belongs to the structure
M (0) of Q(0).

Further, suppose that

P
(
Xn+1 = ω j | Xn = ωi,Xn−1 = ωkn−1 , . . . ,X0 = ωk0

)
= pn+1

i (ω j) =: pn+1
i j , (4)

where pn+1
i j is independent of X0, . . . ,Xn−1 and

Li ≤ pn+1
i , (5)

where Pi = (Ω ,A ,Li), for 1 ≤ i ≤ m, is an F-probability field. Thus pn+1
i j are tran-

sitional probabilities at time n + 1; however, they do not need to be constant, but
instead, on each step they only satisfy (5), where Li are constant. Thus, the transi-
tional probabilities are not constant in the usual sense but only in the sense of interval
probabilities.

Now we shall generalise the concept of stochastic matrices to interval probabil-
ities. Let P = [P1, . . . ,Pm]T , where Pi are F-fields for i = 1, . . . ,m. We will call such
P an interval stochastic matrix. The lower bound of an interval stochastic matrix
is simply PL := [L1, . . . ,Lm], where Li is the lower bound Pi and the structure of an
interval stochastic matrix is the set M (P) of stochastic matrices p = (pi j) such that
pi ≥ Li, where pi, for i = 1, . . . ,m, is the classical probability distribution on (Ω ,A ),
generated by pi(ω j) = pi j for j = 1, . . . ,m.

Thus, the transitional probabilities are given in terms of interval stochastic matri-
ces. Under the above conditions, the probability distribution of each Xn will be given
in terms of an F-field Q(n) = (Ω ,A ,L(n)). Thus

P(Xn = ωi) = q(n)(ωi) =: qn
i ,

where q(n) is a classical probability measure on (Ω ,A ) such that

L(n) ≤ q(n).

We will call a sequence (2) with the above properties an interval Markov chain.
An advantage of presenting sets of probability measures with interval probabilities
is that only one value has to be given for each set to determine an interval probabil-
ity. Usually, this is the lower probability L(A) of an event A. In general this requires
m(2m −2) values for the transitional matrix and 2m −2 values for the initial distrib-
ution. We demonstrate this by the following example.

Example 1. Take Ω = {ω1,ω2,ω3}. The algebra A = 2Ω contains six non-trivial
subsets, which we denote by A1 = {ω1},A2 = {ω2},A3 = {ω3},A4 = {ω1,ω2},A5 =
{ω1,ω3},A6 = {ω2,ω3}. Thus, besides L( /0) = 0 and L(Ω) = 1 we have to give the
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values L(Ai) for i = 1, . . . ,6. Let the lower probability L of an interval probability Q
be represented through the n-tuple

L = (L(A1),L(A2),L(A3),L(A4),L(A5),L(A6)), (6)

and take L = (0.1,0.3,0.4,0.5,0.6,0.7). Further we represent the interval transitional
matrix P by a matrix with three rows and six columns, each row representing an
element ωi of Ω and the values in the row representing the interval probability Pi

through its lower probability Li. Take for example the following matrix:

PL =





0.5 0.1 0.1 0.7 0.7 0.4
0.1 0.4 0.3 0.6 0.5 0.8
0.2 0.2 0.4 0.5 0.7 0.7



 . (7)

In the next section we will show how how to obtain the lower probability at the
second step, given the lower bounds for Q and P.

3 Calculating Distributions at n-th Step

The main advantage of Markov chains is that knowing the probability distribution at
time n we can easily calculate the distribution at the next time. This is done simply
by multiplying the given distribution with the transitional matrix.

In the generalised case we consider a set of probability distributions and a set of
transitional matrices, given as structures of the corresponding interval probabilities.
The actual distribution as well as the actual transitional probability matrix can be any
pair of members of the two sets. Let q(0) be an initial distribution, thus satisfying (3),
and p1 a transitional probability, satisfying (5). According to the classical theory, the
probability at the next step is q(1) = q(0) p1. Thus, the corresponding set of probability
distributions on the next step must contain all the probability distributions of this
form. Consequently, in the most general form, the set of probability distributions
corresponding to Xk would be

Mk := {q(0) p1 . . . pk | q(0) ∈ M (Q(0)), pi ∈ M (P) for i = 1, . . . ,k}. (8)

But these sets of probability distributions are in general not structures of interval
probability measures. Thus, they can not be observed in terms of interval probabil-
ities. However, a possible approach using interval probabilities is to calculate the
lower and the upper envelope of the set of probabilities obtained at each step and do
the further calculations with this interval probability and its structure. The resulting
set of possible distributions at n-th step is then in general larger than Mk, and could
only be regarded as an approximate to the true set of distributions.

The advantage of the approach in terms of interval probabilities is that the calcu-
lations are in general computationally less difficult and that some calculations, such
as the calculation of invariant distributions, can be done directly through systems of
linear equations. As we shall see, the level of precision of estimates is very flexible
and can be adjusted depending on our needs and the imprecision of the data.
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Now we give such a procedure for a direct calculation of the lower bound L(n+1)

under the assumption that the set of probabilities at n-th step is given in terms of
an interval probability Q(n). Let πA be a permutation on the set {1, . . . ,m} such that
LπA(i)(A) ≥ LπA(i+1)(A) for 1 ≤ i < m − 1 and denote Ai :=

⋃i
k=1{ωπA(k)} where

A0 = /0. Define the probability measure

qπA
πA(i) = qπA(ωπA(i)) := L(n)(Ai)−L(n)(Ai−1). (9)

The set function L(n+1) is then the infimum of the set of all distributions from
the structure of Q(n) multiplied by all members of M (P). It turns out that it can be
directly calculated as

L(n+1)(A) =
m∑

i=1

qπA
i Li(A). (10)

Example 2. Let us calculate the second step probability distribution on the data of
Example 1. Let the lower bound L(0) of Q(0) be as in the previous example, L(0) =
(0.1,0.3,0.4,0.5,0.6,0.7) and let the transitional probability be given by its lower
bound PL from the same example. Further, let L(1) be the lower bound of the interval
probability distribution at step 1, Q(1). By (10) we get

L(1) = (0.19,0.23,0.28,0.56,0.62,0.64).

4 Invariant Distributions

4.1 The Invariant Set of Distributions

One of the main concepts in the theory of Markov chains is the existence of an
invariant distribution. In the classical theory, an invariant distribution of a Markov
chain with transitional probability matrix P is any distribution q such that qP =
q. In the case of ergodic Markov chain an invariant distribution is also the limit
distribution.

In our case, a single transitional probability matrix as well as initial distributions
are replaced by sets of distributions given by structures of interval probabilities. Con-
sequently, an invariant distribution has to be replaced by a set of distributions, which
is invariant for the interval transitional probability matrix P. It turns out, that there
always exists a set M such that

M = {q p | q ∈ M , p ∈ M (P)} (11)

and that for every initial set of probability distributions M0 late enough members of
sequence (8) converge to M .

For simplicity we may always assume the initial distribution to be the set of all
probability measures on (Ω ,A ), which is equal to the structure of the interval prob-
ability Q0 = [0,1]. Thus, from now on, let M0 := {q | q is a probability measure on
(Ω ,A )}. Clearly, the sequence (8) with initial set of distributions M0 includes all
sequences with any other initial set of distributions.
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Consider the following sequence of sets of probability measures:

Mi+1 := {q p | q ∈ Mi, p ∈ M (P)}, (12)

z starting with M0. The above sequence corresponds to sequence (8) with initial set
of distributions equal to M0.

It is easy to see that the sequence (12) is monotone: Mi+1 ⊆ Mi, and thus we
can define the limiting set of distributions by

M∞ :=
∞⋂

i=1

Mi. (13)

The above set is clearly non-empty, since it contains all eigenvectors of all sto-
chastic matrices from M (P) corresponding to eigenvalue 1. It is well known that
such eigenvectors always exist. Besides, this set clearly satisfies the requirement
(11). Thus, we will call the set (13) the invariant set of distributions of an in-
terval Markov chain with the interval transitional probability matrix P.

The above definition of the invariant set of an interval Markov chain gives its
construction only in terms of limits, but it says nothing about its nature, such as,
whether it is representable in terms of the structure of some interval probability or in
some other way. However, it is important that such a set always exists.

4.2 Approximating the Invariant Set of Distributions with Convex Sets
of Distributions

Since the invariant set of distributions of an interval Markov chain in general does
not have a representation in terms of a structure of an interval probability or maybe
even in terms of a convex set, we have to find some methods to at least approximate
it with such sets.

For every closed convex set M of probability distributions on (Ω ,A ) there exists
a set of linear functionals F and a set of scalars {l f | f ∈ F} such that

M = {p | p is a probability measure on (Ω ,A ), f (p) ≥ l f ∀ f ∈ F}. (14)

Example 3. If the set of functionals is equal to the natural embedding of the algebra
A then the resulting set of distributions forms the structure of an F-probability field:
fA(p) := p(A), l fA := L(A) and P = (Ω ,A ,L).

Moreover, the set of functionals may correspond to even a smaller set, like a
proper subset of A , such as the set of atoms in A yielding a structure of an interval
probability with additional properties.

Thus, every structure of an interval probability may be represented by a set of
distributions of the form (14).

Now fix a set of functionals F and an interval stochastic matrix P and define the
following sequence of sets of probability distributions, where M0 is the set of all
probability measures on (Ω ,A ):
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M0,F :=M0;

M ′
i+1,F :={q p | q ∈ Mi,F , p ∈ M (P)}

Mi+1,F :={q | f (q) ≥ inf
q′∈M ′

i+1,F

f (q′) ∀ f ∈ F}.

The way the set Mi+1,F is obtained from M ′
i+1,F is similar to the concept of natural

extension for a set of lower previsions (see e.g. [3]).
The idea of the above sequence is to replace the sets M ′

i,F , which are difficult
to handle, with sets of distributions representable by linear functionals in F . In the
special case from Example 3 such a set is the structure of some interval probability.

The following properties are useful:

(i) If F ′ ⊂ F then Mi,F ′ ⊇ Mi,F ⊇ Mi holds for every i ∈ N∪{0}, where Mi

is a member of the sequence (12).
(ii) The inclusion Mi+1,F ⊆ Mi,F holds for every i ∈ N. Thus, the sequence

(Mi,F ) is monotone and this implies existence of a limiting set of distribu-
tions for every set of functionals F :

M∞,F :=
⋂

i∈N

Mi,F .

The sets of distributions M∞,F all comprise the set M∞ and can be in some
important cases found directly through a system of linear equations.

(iii) The set M∞,F is a maximal set among all sets M with the property:

inf
q∈M

f (q) = inf
q∈M

p∈M (P)

f (q · p) ∀ f ∈ F . (15)

While the sets M∞,F only approximate the invariant set of distributions M∞ from
below, it can clearly be approximated from above by the set Me containing all eigen-
vectors of the stochastic matrices from the structure M (P).

4.3 Approximating Invariant Distributions with Interval Probabilities

The important special case of convex sets of probabilities is the case of structures
of interval probabilities. For this case the conditions (15) translate to a system of
linear equations with 2m −2 unknowns. We obtain this case by considering the linear
functionals on the set of probability measures on (Ω ,A ) of the form fA, where
fA(q) = q(A) for every probability measure q:

FA = { fA | A ∈ A }.

The set of inequalities (15) can now be rewritten in terms of lower probabilities
L and Li to obtain:

L(A) =
m∑

i=1

qπA
i Li(A) ∀A ∈ A . (16)
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Recall that qπA
i are expressible in terms of L as given by (9). The invariant set of

distributions is then the structure of the F-field Q∞ = [L,U ], where L is the minimal
solution of the above system of linear equations, as follows from (iii).

Example 4. We approximate the invariant set of distributions of the Markov chain
with interval transitional probability matrix given by the lower bound (7). We obtain
the following solution to the system of equations (16):

L(∞) = (0.232,0.2,0.244,0.581,0.625,0.6),

where L(∞) is of the form (6).
As we have pointed out earlier, the above lower bound is only an approximation

of the true lower bound for the invariant set of distributions. For comparison we give
the lower bound of the set of eigenvalues of 100,000 random matrices dominating
PL:

(0.236,0.223,0.275,0.587,0.628,0.608),

which is an approximation from above. Thus, the lower bound of the true invariant
set of distributions lies between the above approximations.
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