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Summary. The aim of this work is to give a summary of some of the known properties of sets
of measure-free martingales in vector lattices and Banach spaces. In particular, we consider
the relationship between such sets of martingales and the ranges of the underlying filtration of
conditional expectation operators.

1 Introduction

There are examples in the literature where certain aspects of martingale theory are
considered in a suitable framework which avoids the use of an underlying measure
space (cf. [2, 3, 4, 5, 6, 7, 8, 9, 15, 16, 17, 18]). The aim of this work is to give
a summary of some of the known properties of sets of measure-free martingales.
In particular, we consider the relationship between such sets of martingales and the
ranges of the underlying filtration of conditional expectation operators.

We assume that the reader is familiar with the terminology and notation of vector
lattices (i.e. Riesz spaces) and Banach lattices, as can be found in [12, 14, 19].

Some general notation and terminology on martingales are in order at this stage,
so as to avoid unnecessary repetition later.

Let E be a vector space. A sequence (Ti) of linear projections defined on E for
which TiTm = TmTi = Ti for each m ≥ i is called a filtration of linear projections on
E. If R(Ti) denotes the range of Ti, then a filtration of linear projections (Ti) is
a commuting family of linear projections with increasing ranges, i.e. R(Ti) ↑i. A
sequence ( fi,Ti)i∈N, where (Ti) a filtration of linear projections on E and fi ∈ R(Ti)
for each i ∈ N, is called a martingale if fi = Ti fm, for each m ≥ i.

Let E be a vector space and (Ti) a filtration of linear projections on E and
M(E,Ti) :=

{
( fi,Ti) : ( fi,Ti) is a martingale on E

}
. Then M(E,Ti) is a vector space

if we define addition and scalar multiplication by

( fi,Ti)+(gi,Ti) = ( fi +gi,Ti) and λ ( fi,Ti) = (λ fi,Ti) for each λ ∈ R.

If E is an ordered vector space and (Ti) a filtration of positive (i.e. Tix ≥ 0 for all
x ≥ 0) linear projections on E, define ≤ on M(E,Ti) by ( fi,Ti) ≤ (gi,Ti) ⇐⇒ fi ≥
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gi for all i ∈ N, and let M+(E,Ti) :=
{
( fi,Ti) : fi ≥ 0 for all i ∈ N

}
. Then M(E,Ti)

is an ordered vector space with positive cone M+(E,Ti).
If E is a vector lattice, then e ∈ E+ is called a weak order unit for E if x ∈ E+

implies that x∧ne ↑ x. If (Ω ,Σ ,µ) is a probability space, then 1, defined by 1(s) = 1
for all s ∈Ω , is a weak order unit for Lp(µ) for all 1 ≤ p < ∞.

2 Martingales in Vector Lattices

In the setting of vector lattices with weak order units, the following definition is taken
from [5], where a motivation is also given:

Definition 1. Let E be a vector lattice with weak order unit e. A positive order con-
tinuous projection T : E → E for which T (w) is a weak order unit in E for each weak
order unit w ∈ E+ and R(T ) is a Dedekind complete Riesz subspace of E, is called
a conditional expectation on E.

A proof is given in [7] that the statement “T (w) is a weak order unit in E for each
weak order unit w ∈ E+” in the preceding definition is equivalent to the statement
“T (e) = e”.

Let E be a vector lattice and (Ti) a filtration of positive linear projections on E.
Let

Moc(E,Ti) :=
{
( fi,Ti) ∈ M(E,Ti) : ( fi) is order convergent in E

}
,

Mob(E,Ti) :=
{
( fi,Ti) ∈ M(E,Ti) : ( fi) is an order bounded in E

}
.

It is easy to show that the above defined sets of martingales are ordered vec-
tor subspaces of M(E,Ti). Moreover, since order convergent sequences are order
bounded, Moc(E,Ti) ⊆ Mob(E,Ti). However, [8, Corollary 5.2] shows that equality
holds in the setting of vector lattices with weak order units:

Theorem 1. Let E be a Dedekind complete vector lattice with weak order unit e, and
let (Ti) be a filtration of conditional expectations on E. Then Moc(E,Ti) = Mob(E,Ti).

If E is a vector lattice and T : E → E is a positive linear map, then T is said to be
strictly positive if

{
x ∈ E : T (|x|) = 0

}
= {0}.

There is a connection between Moc(E,Ti) and
⋃∞

i=1 R(Ti), where the latter de-
notes the order closure of

⋃∞
i=1 R(Ti) :

Theorem 2. [8, Theorem 5.8] Let E be a Dedekind complete vector lattice with weak
order unit e and let (Ti) be a filtration of conditional expectations on E with T1 strictly
positive. Then Moc(E,Ti) is a Dedekind complete vector lattice and L : Moc(E,Ti) →
⋃∞

i=1 R(Ti), defined by L(( fi,Ti)) = lim
i

fi (order), is an order continuous surjective

Riesz isomorphism.
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Let E be a vector lattice and (Ti) a filtration of positive linear projections on E.
Let Mr(E,Ti) denote the set of all regular martingales on E; i.e., those martingales
( fi,Ti) on E for which there exist (gi,Ti),(hi,Ti) ∈ M+(E,Ti) such that fi = gi −hi.

It is readily verified that Mr(E,Ti) is an ordered vector subspace of M(E,Ti) and
Mr(E,Ti) = M+(E,Ti)−M+(E,Ti).

The simple proof given in [11] for the following result, is based on the ideas in
[8] and the main idea in the proof of [18, Theorem 7]:

Theorem 3. If E is a Dedekind [σ -Dedekind] complete vector lattice and (Tn) a fil-
tration of order [σ -order] continuous positive linear projections on E, then Mr(E,Ti)
is a Dedekind [σ -Dedekind] complete vector lattice.

3 Martingales in Banach Spaces and Banach Lattices

Let (Ω ,Σ ,µ) denote a probability space. Then, for 1 ≤ p <∞ and X a Banach space,
let Lp(µ ,X) denote the space of (classes of a.e. equal) Bochner p-integrable func-
tions f : Ω → X and denote the Bochner norm on Lp(µ ,X) by ∆p, i.e. ∆p( f ) =
(∫

Ω ‖ f‖p
X dµ
)1/p

.
If one wants to apply a measure-free approach to martingales on Lp(µ ,X)-spaces,

a measure-free approach to Banach spaces has to be considered. In [2, 3], such an
approach is followed:

Let X be a Banach space and (Ti) a filtration of contractive linear projections
on X . Define ‖ · ‖ on M(X ,Ti) by ‖( fi,Ti)‖ = supi ‖ fi‖ and let M (X ,Ti) denote the
space of norm bounded martingales on X ; i.e., M (X ,Ti) =

{
( fi,Ti) ∈ M(X ,Ti) :

‖( fi,Ti)‖ < ∞
}

. Then M (X ,Ti) is a Banach space with respect to ‖ · ‖.
Let Mnc(X ,Ti) denote the space of norm convergent martingales on X ; i.e.,

Mnc(X ,Ti) =
{
( fi,Ti) ∈ M (X ,Ti) : ( fi) is norm convergent in X

}
.

To describe Mnc(X ,Ti), the following results are used in [2]:

Proposition 1. Let X be a Banach space and let (Ti) be a filtration of contractive
linear projections on X. Then f ∈

⋃∞
i=1 R(Ti), the latter denoting the norm closure

of
⋃∞

i=1 R(Ti), if and only if ‖Ti f − f‖ → 0.

Corollary 1. Let X be a Banach space and let ( fi,Ti) be a martingale in X, where
(Ti) is a filtration of contractive linear projections on X. Then ( fi,Ti) converges to f
if and only if f ∈

⋃∞
i=1 R(Ti) and fi = Ti f for all i ∈ N.

An application in [2] of Proposition 1 and Corollary 1 yields:

Proposition 2. Let X be a Banach space and (Ti) a filtration of contractive linear
projections on X. Then L : Mnc(X ,Ti) →

⋃∞
i=1 R(Ti), defined by L(( fi,Ti)) = limi fi

(norm), is a surjective isometry.

Another application in [3] of Proposition 1 and Corollary 1 provides a proof, via
martingale techniques, for the following well known result:
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Proposition 3. Let X be a Banach space and (xi) a basic sequence in X. Then (xi) is
an unconditional basic sequence if and only if the closure of the span of (xi), denoted
[xi], can be renormed so that it is an order continuous Banach lattice with positive
cone

C(xi)
+ :=

{ ∞∑

i=1

αixi ∈ [xi] : αi ≥ 0 for each i ∈ N

}

.

Motivated by [18], Proposition 2 is specialized in [2] to Banach lattices to obtain:

Proposition 4. Let E be a Banach lattice and (Ti) a filtration of positive contractive
linear projections on E for which

⋃∞
i=1 R(Ti) is a closed Riesz subspace of E. If

L : Mnc(E,Ti) →
⋃∞

i=1 R(Ti) is defined by L(( fi,Ti)) = lim
i

fi, then Mnc(E,Ti) is a

Banach lattice and L : Mnc(E,Ti) →
⋃∞

i=1 R(Ti) is a surjective Riesz isometry.

By Corollary 1 we have

Mnc(E,Ti) =
{
( fi,Ti) ∈ Mnb(E,Ti) : ∃ f ∈ E such that fi = Ti f → f

}
.

Corollary 2. Let E be a Banach lattice and (Ti) a filtration of positive contractive
linear projections on E for which

⋃∞
i=1 R(Ti) is a closed Riesz subspace of E. Then

Mnc(E,Ti) is a Banach lattice in which the following formulas hold:

(
lim

m→∞
Tn fm,Tn

)+ =
(

lim
m→∞

Tn f +
m ,Tn

)
;

(
lim

m→∞
Tn fm,Tn

)− =
(

lim
m→∞

Tn f −
m ,Tn

)
;

(
lim

m→∞
Tn fm,Tn

)
∨
(

lim
m→∞

Tngm,Tn
)

=
(

lim
m→∞

Tn( fm ∨gm),Tn
)
; (1)

(
lim

m→∞
Tn fm,Tn

)
∧
(

lim
m→∞

Tngm,Tn
)

=
(

lim
m→∞

Tn( fm ∧gm),Tn
)
;

∣
∣
∣
(

lim
m→∞

Tn fm,Tn
)∣∣
∣ =
(

lim
m→∞

Tn| fm|,Tn
)
.

Proof. By Proposition 4, we have that Mnc(E,Ti) is a Banach lattice.
The formulas are easy to prove. Since L is a bijective Riesz homomorphism, it

follows from L(Tn| f |,Tn) = | f | = |L(Tn f ,Tn)| that (Tn| f |,Tn) = L−1(L(Tn| f |,Tn)) =
L−1(|L(Tn f ,Tn)|) = |(L−1(L(Tn f ,Tn))| = |(Tn f ,Tn)|. The other formulas follow in a
similar manner. ��

Let (Ti) be a filtration of positive contractive linear projections on a Banach lat-
tice E. As in [18], we now consider the space

Mr(E,Ti) =
{
( fi,Ti) ∈ M (E,Ti) : ∃(gi,Ti) ∈ M+(E,Ti), fi ≤ gi ∀ i ∈ N

}
,

the elements of which are called regular norm bounded martingales.
Troitski proves in [18] that the formulas in (1) also hold in Mr(E,Ti) and in

M (E,Ti). He uses less stringent assumptions on (Ti) than in Corollary 2, but he
makes additional assumptions on E:



Measure-Free Martingales with Application to Classical Martingales 125

Theorem 4. ([18, Theorems 7 and 13]) Let E be a Banach lattice and (Ti) a filtration
of positive contractive linear projections on a Banach lattice E.

(a) If E is an order continuous Banach lattice, then Mr(E,Ti) is a Dedekind com-
plete Banach lattice with lattice operations given by (1) and martingale norm
given by ‖( fn,Tn)‖ = supn ‖ fn‖.

(b) If E is a KB-space, then M (E,Ti) is a Banach lattice with lattice operations
given by (1) and martingale norm ‖( fn,Tn)‖ = supn ‖ fn‖.

It follows easily that if
⋃∞

i=1 R(Ti) is a closed Riesz subspace of E, then

Moc(E,Ti) ⊆ Mr(E,Ti) ⊆ M (E,Ti). (2)

One can say more about the inclusions in (2) under additional assumptions on E (see
[18, Proposition 16]):

Corollary 3. Let E be a Banach lattice with order continuous norm and (Ti) a fil-
tration of positive contractive linear projections on a Banach lattice E for which
⋃∞

i=1 R(Ti) is a closed Riesz subspace of E.

(a) If E is an order continuous Banach lattice, then Mnc(E,Ti) is an ideal in
Mr(E,Ti).

(b) If E is a KB-space, then Mr(E,Ti) = M (E,Ti) and Mnc(E,Ti) is a projection
band in M (E,Ti).

4 Martingales in Lp(µ,X)

Chaney and Schaefer extended the Bochner norm to the tensor product of a Ba-
nach lattice and a Banach space (see [1] and [14]). If E is a Banach lattice and
Y is a Banach space, then the l-norm of u =

∑n
i=1 xi ⊗ yi ∈ E ⊗Y is given by

‖u‖l = inf{‖
∑n

i=1 ‖yi‖‖xi‖‖ : u =
∑n

i=1 xi ⊗ yi}.
Furthermore, if E = Lp(µ) where (Ω ,Σ ,µ) is a σ -finite measure space, then we

have that E⊗̃lY is isometric to Lp(µ ,Y ).
Let E and F be Banach lattices. We denote the projective cone of E ⊗F by E+ ⊗

F+ := {
∑n

i=1 xi ⊗ yi : (xi,yi) ∈ E+ ×F+}. It was shown by Chaney and Schaefer that
E⊗̃lF is a Banach lattice with positive cone the l-closure of E+ ⊗F+.

Let E1 and E2 be Banach lattices and Y1 and Y2 Banach spaces. If S : E1 → E2

is a positive linear operator and T : Y1 → Y2 a bounded linear operator, then
∥
∥(S ⊗

T )u
∥
∥

l ≤ ‖S‖‖T‖‖u‖l for all u ∈ E1 ⊗Y1 (see [10]).
The following is proved in [2]:

Theorem 5. Let E be a Banach lattice and Y be a Banach space [lattice]. If (Si) is
a filtration of positive contractive linear projections on E with each R(Si) a closed
Riesz subspace of E, and (Ti) is a filtration of [positive] contractive linear projections
on Y [and each R(Ti) is a closed Riesz subspace of Y ], then (Si ⊗l Ti) is a filtration of
[positive] contractive linear projections on E⊗̃lY with each S(Ei)⊗̃lT (Yi) a closed
[Riesz] subspace of E⊗̃lY .
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To consider tensor product versions of some of the martingale results stated ear-
lier, we need the following result noted by Popa, [13]:

Theorem 6. Let E and F be Banach lattices.

(a) If E and F are order continuous Banach lattices, then E⊗̃lF, is an order contin-
uous Banach lattice.

(b) If E and F are KB-spaces, then E⊗̃lF is a KB-space.

The following is an l-tensor product version of Corollary 3.

Theorem 7. Let E and F be Banach lattices and let (Si) and (Ti) be filtrations of
positive contractive linear projections on E and F respectively with each R(Si) and
each R(Ti) a closed Riesz subspace of E and F respectively.

(a) If E and F are order continuous Banach lattices, then Mr(E⊗̃lF,Ti ⊗l Si) is a
Banach lattice and Mnc(E⊗̃lF,Ti ⊗l Si) is an ideal in Mr(E⊗̃lF,Ti ⊗l Si).

(b) If E and F are KB-spaces, then M (E⊗̃lF,Ti ⊗l Si) is a Banach lattice and
Mnc(E⊗̃lF,Ti ⊗l Si) is a projection band in M (E⊗̃lF,Ti ⊗l Si).

Proof (a) Since E and F are order continuous Banach lattices, E⊗̃lF is an order
continuous Banach lattice, by Popa’s result. By Proposition 5, we get that (Si ⊗l Ti)
is a filtration of positive contractive linear projections on E⊗̃lF with

⋃∞
i=1 R(Ti ⊗Si)

a closed Riesz subspace of E⊗̃lF . But then Mnc(E⊗̃αF,Ti ⊗ Si) is an ideal in the
Banach lattice Mr(E⊗̃lF,Ti ⊗l Si), by Corollary 3 (a).

(b) Since E and F are KB-spaces, E⊗̃lF is a KB-space, by Popa’s result. Similar
reasoning as in (a), but by using Corollary 3 (b), shows that Mnc(E⊗̃lF,Ti ⊗Si) is a
projection band in the Banach lattice M (E⊗̃lF,Ti ⊗Si) = Mr(E⊗̃lF,Ti ⊗Si). ��

In [2], we show that, if (Si) is a filtration of positive contractive linear projec-
tions on the Banach lattice E such that each R(Si) is a closed Riesz subspace of E
and (Ti) is a filtration of contractive linear projections on the Banach space Y, then
⋃∞

i=1 R(Si) ⊗̃l
⋃∞

i=1 R(Ti) =
⋃∞

i=1 R(Si ⊗l Ti).
In [10], it is shown that, if E is a Banach lattice and Y a Banach space, then u ∈

E⊗̃lY if and only if u =
∑∞

i=1 xi ⊗yi, where
∥
∥
∥
∑∞

i=1 |xi|
∥
∥
∥

E
<∞ and limi→∞ ‖yi‖Y = 0.

As a consequence, the following result is derived in [2].

Theorem 8. Let (Si) be a filtration of positive contractive linear projections on the
Banach lattice E such that each R(Si) is a closed Riesz subspace of E and (Ti) a
filtration of contractive linear projections on the Banach space Y . Then, in order for
M = ( fn,Sn ⊗l Tn)∞n=1 to be a convergent martingale in E⊗̃lY, it is necessary and

sufficient that, for each i ∈ N, there exist convergent martingales
(

x(n)
i ,Sn

)∞

n=1
and

(

y(n)
i ,Tn

)∞

n=1
in E and Y respectively such that, for each n ∈ N, we have

fn =
∞∑

i=1

x(n)
i ⊗ y(n)

i ,
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where ∥
∥
∥
∥
∥

∞∑

i=1

∣
∣
∣ lim
n→∞

x(n)
i

∣
∣
∣

∥
∥
∥
∥
∥

< ∞ and lim
i→∞

∥
∥
∥ lim

n→∞
y(n)

i

∥
∥
∥= 0.

As a simple consequence of Theorem 8, the following representation result is
noted in [2]:

Theorem 9. Let (Ω ,Σ ,µ) denote a probability space, (Σn)∞n=1 a filtration, X a Ba-
nach space and 1 ≤ p < ∞. Then, in order for ( fn,Σn)∞n=1 to be a convergent mar-
tingale in Lp(µ ,X), it is necessary and sufficient that, for each i ∈ N, there exist a

convergent martingale
(

x(n)
i ,Σn

)∞

n=1
in Lp(µ) and yi ∈ X such that, for each n ∈ N,

we have

fn(s) =
∞∑

i=1

x(n)
i (s)yi for all s ∈Ω ,

where
∥
∥
∥
∑∞

i=1

∣
∣
∣limn→∞ x(n)

i

∣
∣
∣

∥
∥
∥

Lp(µ)
< ∞ and limi→∞ ‖yi‖ = 0.
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