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In this paper a method is introduced to simulate fuzzy random variables by using
the support function. On the basis of the support function, the class of values of a
fuzzy random variable can be ‘identified’ with a closed convex cone of a Hilbert
space, and we now suggest to simulate Hilbert space-valued random elements and to
project later into such a cone. To make easier the projection above we will consider
isotonic regression. The procedure will be illustrated by means of several examples.

1 Introduction

In the literature on fuzzy-valued random variables, there are only a few references to
modeling the distribution of these random elements. These models (for instance, see
[12]) are theoretically well stated, but they are not soundly supported by empirical
evidence, since they correspond to quite restrictive random mechanisms and hence
they are not realistic in practice (see [4]).

Nevertheless, many probabilistic and statistical studies on fuzzy random vari-
ables would be better developed if simulation studies could be carried out (cf. [8],
[9], [11]).

A similar situation arises in connection with functional data, to which a lot of at-
tention is being paid in the last years, especially in which concerns random elements
taking on values in Hilbert spaces (see, for instance, [14], [15]). The assumption of
the Hilbert space structure is very helpful for simulation purposes (see [7], [1] or
[16]).

The key idea in the methodology to be presented is first based on passing from
the space of fuzzy random variable values into the Hilbert space of the corresponding
integrable functions through the support function; then, one can generate Hilbert
space-valued random elements and project them into the convex cone of the image of
the space of fuzzy values. The projection theorem in Hilbert spaces validates the way
to proceed and theoretically it would be possible to simulate all possible distributions
on the space.
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This idea can be easily implemented from a theoretical viewpoint. In practice,
when fuzzy values to be dealt with are fuzzy sets of the one-dimensional Euclidean
space the implementation does not entail important difficulties, since the support
function of a fuzzy value is characterized by two real-valued functions on the unit
interval, namely, the one associated with the infima and that associated with the
suprema. These two functions are in the cone of the monotonic functions, and they
are subject to the constraint of the infimum being lower than the supremum for each
level. They have been analyzed in connection with some probabilistic problems (see
[2]). However, for fuzzy sets of multi-dimensional Euclidean spaces, the practical
developments become much more complex, although some alternatives to simplify
them will be commented along the paper.

In this paper a procedure to simulate fuzzy random variables for which the shape
of fuzzy values is not constrained will be introduced. In case there are some prefer-
ences on the shape of the considered fuzzy values the procedure could also adapted.

2 Preliminaries

Let Kc(Rp) be the class of the nonempty compact convex subsets of R
p endowed

with the Minkowski sum and the product by a scalar, that is, A + B = {a + b |a ∈
A, b ∈ B} and λA = {λa |a ∈ A} for all A,B ∈ Kc(Rp) and λ ∈ R. We will consider
the class of fuzzy sets

Fc(Rp) =
{

U : R
p → [0,1]

∣
∣Uα ∈ Kc(Rp) for all α ∈ [0,1]

}

where Uα is the α-level of U (i.e. Uα = {x ∈ R
p |U(x) ≥ α}) for all α ∈ (0,1], and

U0 is the closure of the support of U . The space Fc(Rp) can be endowed with the
sum and the product by a scalar based on Zadeh’s extension principle [17], which
satisfies that (U +V )α = Uα +Vα and (λU)α = λUα for all U,V ∈ Fc(Rp), λ ∈ R

and α ∈ [0,1].
The support function of a fuzzy set U ∈ Fc(Rp) is sU (u,α) = supw∈Uα 〈u,w〉 for

any u ∈ S
p−1 and α ∈ [0,1], where S

p−1 is the unit sphere in R
p and 〈·, ·〉 denotes the

inner product. The support function allows us to embed Fc(Rp) onto a cone of the
continuous and Lebesgue integrable functions L (Sp−1) by means of the mapping
s : Fc(Rp) → L (Sp−1 × [0,1]) where s(U) = sU (see [5]).

We will consider the generalized metric by Körner and Näther [10] DK , which is
defined so that

[DK(U,V )]2 =
∫

(Sp−1)2×[0,1]2

(
sU (u,α)− sV (u,α)

)(
sU (v,β )− sV (v,β )

)
dK(u,α,v,β ),

for all U,V ∈ Fc(Rp), where K is a positive definite and symmetric kernel; thus, DK

coincides with a generic L2 distance ‖ · ‖2 on the Hilbert space L (Sp−1 × [0,1]).
Let (Ω ,A ,P) be a probability space. A fuzzy random variable (FRV) in Puri &

Ralescu’s sense [13] is a mapping X : Ω → Fc(Rp) so that the α-level mappings
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Xα : Ω → Kc(Rp), defined so that Xα(ω) =
(
X (ω)

)

α for all ω ∈ Ω , are ran-
dom sets (that is, Borel-measurable mappings with the Borel σ -field generated by
the topology associated with the well-known Hausdorff metric dH on K (Rp)). Al-
ternatively, an FRV is an Fc(Rp)-valued random element (i.e. a Borel-measurable
mapping) when the Skorokhod metric is considered on Fc(Rp) (see [3]).

If X : Ω → Fc(Rp) is a fuzzy random variable such that dH
(
{0},X0

)
∈

L1(Ω ,A ,P), then the expected value (or mean) of X is the unique E(X )∈Fc(Rp)
such that

(
E(X )

)

α = Aumman’s integral of the random set Xα for all α ∈ [0,1],
that is,
(
E(X )

)

α =
{

E(X |P)
∣
∣ X : Ω → R

p, X ∈ L1(Ω ,A ,P), X ∈ Xα a.s. [P]
}
.

3 Simulation of Fuzzy Random Variables
Through Functional Random Variables

The space of fuzzy values Fc(Rp) is a closed convex cone of the Hilbert space
L (Sp−1 × [0,1]), and hence there exists a unique projection. As a consequence,
given an arbitrary f ∈ L (Sp−1 × [0,1]) there is a unique fuzzy set P( f ) = A f which
corresponds to the anti-image of the support function of the projection of f onto the
cone s(Fc(Rp)). We will denote by P : L (Sp−1× [0,1])→ s(Fc(Rp)) the projection
function.

For any random element X taking on values in L (Sp−1 × [0,1]), the mapping
s−1◦P◦X is a fuzzy random variable. In this way, if random elements of L (Sp−1 ×
[0,1]) are generated, random elements of s(Fc(Rp)) could be obtained through the
projection P. Due to the fact that s(Fc(Rp)) ⊂ L (Sp−1 × [0,1]), we can guarantee
that this method involves all the possible distributions on s(Fc(Rp)) and, since s is
an isometry, by applying s−1 we would get all the possible distributions on Fc(Rp).

The theoretical method to generate Fc(Rp)-valued fuzzy random variables con-
sists in

Step 1

Simulating random elements on L (Sp−1 × [0,1]) by following the current direc-
tions in Functional Data Analysis (i.e., by considering bases either from a given
function plus a noise term, or from discretized brownian motions, and so on).

Step 2

Projecting the simulated elements into the isometric cone of Fc(Rp).

Step 3

Identifying the fuzzy set associated with the generated support function.

This theoretical method seems to be complex to implement in practice, although
it would be feasible in some particular cases. Thus, in case p = 1, the unit sphere
Sp−1 reduces to the set {−1,1} whence the fuzzy set A ∈Fc(R) can be characterized
by means of two monotonic functions sA(−1, ·) and sA(1, ·) (see [2]) which satisfy
certain constraints (since the infimum should always be lower than the supremum).



106 G. González-Rodríguez et al.

To make the problem easy to handle, fuzzy values can be reparameterized in
terms of the left and right spreads with respect to the center of the 1-level. Once
fuzzy values are reparameterized in such a way, arbitrary functions can be generated
to construct later the function of the left spreads (for the infima) and the function
of the right spreads (for the suprema). Since these two functions are monotonic and
nonnegative, we can apply an algorithm of the isotonic regression restricted to posi-
tive values (see [6]). Later, the mid point of the 1-level would be generated at random
and, along with the spreads simulated before, the infimum and supremum functions
defining the fuzzy value would be obtained.

The ‘practical’ method to generate Fc(R)-valued fuzzy random variables we
suggest in this paper can be summarized as follows:

Step Fc(R)-1
To generate at random the mid-point of the 1-level, x0, as well as two random
functions on the Hilbert space L ([0,1]), fl , fr : [0,1] → R (there is no need for
these functions to be generated independently).

Step Fc(R)-2
To find the antitonic regressions of f ∗

l and f ∗
r to get the left and right spreads

sl ,sr : [0,1] → [0,∞), respectively.

Step Fc(R)-3
The α-levels of the fuzzy value A generated through Steps Fc(R)-1 and Fc(R)-2
would be given by Aα = [x0 − sl(α),x0 + sr(α)] (which is well-defined).

As we have commented before, the procedure above does not involve constraints
on the shape of fuzzy values to be generated, although this type of constraint (like,
for instance, to assume that x0 is deterministic, functions fi are linear functions, etc.)
could be incorporated if required.

4 Some Illustrative Examples

We now illustrate the ideas in Section 3 by means of two examples. Since Steps
Fc(R)-2 and Fc(R)-3 do not involve any random process, the differences in apply-
ing the algorithm are restricted to Step Fc(R)-1. There are many ways of simulating
random functions in the Hilbert space L ([0,1]). Some of them, as those based on
a function plus a noise term or considering a class depending on real random para-
meters, can be easily imitated in Fc(R). However, the Hilbert spaces present some
distinguishing characteristics, such as the generating basis, that can be taken into
account to simulate random elements in a wider context.

In this section two ways of simulating from generating bases the functions f1 and
f2 in Step Fc(R)-1 of the above-described procedure are detailed.

Consider a referential triangular fuzzy set Tri(−1,0,1), which is equivalent to
consider the spread functions f1(α) = f2(α) = 1−α for all α ∈ [0,1]. Since these
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spread functions correspond to linear functions, the trigonometric basis will be suit-
able to represent them. This basis is given by

ϕ j(x) =
{

1 if j = 0√
2 cos(π jx) if j = 1,2, . . .

Coefficients of the spread functions in this basis are given by

θ j =






.5 if j = 0
0 if j is an even number
2
√

2
π2 j2 if j is an odd number

For practical purposes we will consider the approximation of the function cor-
responding to the first 21 terms of the linear combination (i.e., j = 0, . . . ,20). Co-
efficients are distorted in a random way so that all the generated random functions
follow the expression

20∑

j=0

(θ j + ε j)ϕ j

where (ε0, . . . ,ε20) is a random vector.
The way of distorting the coefficients is crucial, since small perturbations can

produce shapes completely different from the original one. It should be recalled that,
in order to get well-defined fuzzy sets, we will need to apply an antitonic regression
algorithm after the simulation of the functions in L ([0,1]). Thus, if the simulated
functions are highly variable (in the sense of showing many monotonicity changes),
the antitonic regression corresponding to the spreads will have many constant parts,
and hence the obtained fuzzy set will present a lot of discontinuities. In order to
illustrate this behaviour, we will firstly consider the following:

Case A. For the left spread a sequence of independent realizations, ε l
0, . . . ,ε

l
20, are

simulated from the normal distribution N (0, .01), and for the right spread a se-
quence of independent realizations, εr

0, . . . ,εr
20, are simulated from the normal distri-

bution N (0, .1). Thus, we get two random functions

fl =
20∑

j=0

(θ j + ε l
j)ϕ j and fr =

20∑

j=0

(θ j + εr
j )ϕ j.

The mid-point of the 1-level is chosen at random from a normal distribution N (2,1).
By applying Steps Fc(R)-2 and Fc(R)-3, a random fuzzy set is obtained.

In order to compare some particular realizations of the simulated fuzzy random
variable with the expected value of such an element, we have made 10,000 simula-
tions and we have approximated the (fuzzy) mean value by Monte Carlo method. In
Figures 1 and 2 three simulated values and the corresponding mean value are shown.
We can see that, although the perturbations were chosen to follow distributions with



108 G. González-Rodríguez et al.

1 1.5 2 2.5 3 3.5
0

.5

1

1.5 2 2.5 3 3.5 4
0

.5

1

.5 1 1.5 2 2.5 3
0

.5

1

Fig. 1. Simulated values in Case A
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Fig. 2. Approximated mean value in the simulation in Case A

a relative small variability, the simulated fuzzy sets are quite different from the refer-
ential triangular fuzzy number and have many discontinuities. Nonetheless, the shape
of the expected value is quite smooth and more similar to the referential fuzzy num-
ber. The difference between this mean value and the original triangular one is mainly
due to the application of the antitonic regression algorithm (the expected value of
the antitonic regression can be different from the antitonic regression of the expected
value).

In order to obtain smoother shapes, we can simulate the perturbations in the
coefficients with a decreasing weight as follows.

Case B. For the left spread a sequence of independent realizations Ul
0, . . . ,U

l
20 from

the uniform distribution U(0,1) are simulated, and the perturbations are considered so
that ε l

0 = Ul
0, ε l

j = Ul
j · ε l

j−1 . For the right spread the same process is followed but
using the beta distribution β (5,3) instead of the uniform one. Again, the mid-point
is chosen at random from a normal distribution N (2,1) and Steps Fc(R)-2 and
Fc(R)-3 are followed to get the random fuzzy set. In Figures 3 and 4 three simu-
lated values and the corresponding mean value (approximated by 10,000 realizations
of the process) are shown. As expected, we can see smoother shapes than those in
Case A, although they are also quite different and the greater the magnitude of right
perturbations the greater the probability of discontinuities.
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Fig. 3. Simulated values in Case B
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Fig. 4. Approximated mean value in the simulation in Case B
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