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In this paper we propose a new way of representing the distribution of a real random
variable by means of the expected value of certain kinds of fuzzifications of the orig-
inal variable. We will analyze the usefulness of this representation from a descriptive
point of view. We will show that the graphical representation of the fuzzy expected
value displays in a visible way relevant features of the original distribution, like the
central tendency, the dispersion and the symmetry. The fuzzy representation is valu-
able for representing continuous or discrete distributions, thus, it can be employed
both for representing population distributions and for exploratory data analysis.

1 Introduction

A family of fuzzy representations of real random variables has been proposed in [2].
Some of them were used to characterize the real distributions with inferential pur-
poses. Some other ones capture visual information about the distributions by focus-
ing mainly on the mean value and the variance, although these fuzzifications do not
characterize the distribution and loose valuable information in descriptive analysis.

Actually, it seems quite complex to find a fuzzification in this family allowing
to visualize properly any kind of distribution. However, on the basis on the same
intuitive ideas, we find another family of fuzzification with valuable graphical prop-
erties. The fuzzy representation of a real random variable allows us to associate the
distribution with the expected value of a fuzzy random variable. The one obtained in
this paper will be referred to as exploratory fuzzy expected value.

The exploratory fuzzy expected value will allow to represent both continuous
and discrete distribution, which leads to a double use. On one hand, population dis-
tributions will be graphically represented by displaying important features (mean
value, variability, skewness, “density”). In this sense, it can be interpreted as a kind
of “parametrical” density or distribution function.

On the other hand, it can be used with exploratory purposes. The aim of the
exploratory and descriptive analysis is to gain understanding of data, which is one
of the most important targets of the statistical analysis. Data visualization associated
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with the exploratory fuzzy expected value will allow to capture information about
important features of the data, which will allow to formulate reasonable hypotheses
that can later be checked using some of the inferential methods above-mentioned.

2 Preliminaries

Let Kc(R) be the class of the nonempty compact intervals of R and let Fc(R) be
the class of the fuzzy subsets U of R such that the α-level sets Uα ∈ Kc(R) for all
α ∈ (0,1], where Uα = {x ∈ R |U(x) ≥ α}, and U0 = cl{x ∈ R |U(x) > 0}. In this
context, the sendograph of U ∈ Fc(R) is the region enclosed by U and the x-axis on
U0, and A(U) will denote the corresponding area.

The space Fc(R) can be endowed with a semilinear structure, induced by a sum
and the product by a scalar, both based upon Zadeh’s extension principle [4], in
accordance with which the following properties can be derived (U +V )α = Uα +Vα
and (λU)α = λUα for all U,V ∈ Fc(R), λ ∈ R and α ∈ [0,1].

Given a probability space (Ω ,A ,P), a fuzzy random variable (FRV) associated
with (Ω ,A ) is intended to be, in accordance with Puri and Ralescu [3], a mapping
X :Ω →Fc(R) such that for each α ∈ [0,1] the α-level mapping Xα :Ω →Kc(R),
defined so that Xα(ω) =

(
X (ω)

)

α for all ω ∈Ω , is a random set (that is, a Borel-
measurable mapping w.r.t. the Borel σ -field generated by the topology associated
with the well-known Hausdorff metric dH on K (R)). Alternatively, an FRV is an
Fc(R)-valued random element (i.e. a Borel-measurable mapping) when the Skoro-
hod metric is considered on Fc(R) (see Colubi et al. [1]).

A fuzzy random variable X :Ω → Fc(R) is said to be integrably bounded if and
only if, max{| infX0|, |supX0|} ∈ L1(Ω ,A ,P). If X is an integrably bounded fuzzy
random variable, the expected value (or mean) of X is the unique Ẽ(X ) ∈ Fc(R)
such that

(
Ẽ(X )

)

α = Aumman’s integral of the random set Xα for all α ∈ [0,1]
(see Puri and Ralescu [3]), that is,

(
Ẽ(X )

)

α =
{

E( f )
∣
∣ f : Ω → R, f ∈ L1, f ∈ Xα a.s. [P]

}
.

3 The Exploratory Fuzzy Representation

A fuzzy representation of a random variable transforms crisp data (variable values)
into fuzzy sets (the associated FRV values). The representations in [2] are mappings
γC : R → Fc(R) which transforms each value x ∈ R into the fuzzy number whose
α-level sets are

(
γC(x)

)

α =
[

fL(x)− (1−α)1/hL(x), fR(x)+(1−α)1/hR(x)
]

for all α ∈ [0,1], where fL : R → R, fR : R → R, fL(x) ≤ fR(x) for all x ∈ R, and
hL : R → (0,+∞), hR : R → (0,+∞) are continuous and bijective. By varying func-
tions fL, fR, hL and hR it is possible to get representing fuzzy random variables
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whose expected value capture visual information about different parameters of the
distribution, however it seems complex to show jointly the most important ones.

In order to overcome this inconveniency, we will consider a new family of fuzzi-
fications based on the same idea, that is, in such a way that the fuzzy expected value
of the transformed random element capture important information about the original
distribution.

Let f : [0,∞) → [0,1] be an injective function. We define the auxiliar functional
γ f : R → Fc(R) so that,

[γ f (x)]α =






[

0,x2 + x2

(
1− f (x)

f (x)

)(
f (x)−α

f (x)

)]

if 0 ≤ α ≤ f (x)

[

0,x2

(
1−α

1− f (x)

)]

if f (x) < α ≤ 1

(1)

for all α ∈ [0,1] and x ∈ [0,∞). Term x2(1− f (x))/ f (x) has been defined to guarantee
that the area of sendograph of γ f (x) is equal to x2 (see Figure 1). This functional
depends on the square values to make the variance visible in the exploratory fuzzy
expected value.

0 x2x2 /f(x)
0

1

f(x)

Fig. 1. Representation of the fuzzy set γ f (x)

The family of exploratory fuzzy representation depends on a triple θ in a class

Θ = {(x0,a, f ) |x0 ∈ R,a ∈ R
+, f : [0,∞) → [0,1] injective}

where x0 will be a kind of ‘symmetry’ point, a a scale parameter and f the function
above defined. Thus, if sig(x) is the sign of x, γθ : R → Fc(R) is defined for θ =
(x0,a, f ) so that

γθ (x) = 1{x} + sig(x− x0)γ f

(∣
∣
∣
∣

x− x0

a

∣
∣
∣
∣

)

for all x ∈ R.
If X : Ω → R is a real-valued random variable so that EX2 < ∞ and f : [0,∞) →

[0,1] is an injective function so that ( f (X))−1 ∈ L1(Ω ,A ,P), then the exploratory
fuzzy expected value is Ẽ(γΘ ◦ X). It should be noted that condition ( f (X))−1 ∈
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L1(Ω ,A ,P) is not restrictive, because functions like f δp (x) = (px +δ )/(1+δ ) with
p ∈ (0,1) and δ > 0 for all x ∈ R verifies it irrespectively of X .

In this paper, we have considered θs = (EX ,1, f .001
.6 ) ∈Θ , which is a very simple

and useful choice. Thus, the γθs -fuzzy representation of a random variable allows us
to easily visualize features like the central tendency, variability, skewness, type of
variable (discrete/continuous), and the existence of extreme values. More precisely,
we can state that

If X is a random variable and

γθs = 1{x} + sig(x−EX)γ f .001
.6

(|x−EX |)

for all x ∈ R, where γ f is defined as in (1) and

f .001
.6 (x) =

.6x + .001
1.001

,

then

i) (Ẽ(γθs ◦X))1 = {EX} (that is, the 1-level set shows a mean value of X).
ii) A(Ẽ(γθs ◦X)) = Var(X) (that is, the area of the sendograph shows the variance

of X).
iii) The symmetry of Ẽ(γθs ◦X) is connected with the symmetry of X around its mean

value. The more skewness of X the more asymmetry of Ẽ(γθs ◦ X). Thus, the
asymmetry of the exploratory fuzzy expected value shows the skewness of X.

iv) If X is a continuous variable, then Ẽ(γθs ◦ X) will be “smooth” (excepting at
EX), whereas if it is discrete, the exploratory fuzzy expected value will show non-
smooth changes of slope in each of the values X takes on (that is, the “smooth-
ness” allows us to distinguish the discrete and continuous distributions).

v) Large values of X will be associated with large-spread 0-level sets (that is, thus
the spread of the lower α-level sets can be useful to determine the presence of
extreme values).

In the following sections we will illustrate this properties by representing the
exploratory fuzzy expected value of some relevant population/sample distributions.

4 Exploratory Analysis of Random Variables Through the Fuzzy
Representation

In this Section the graphical representation of the exploratory fuzzification of differ-
ent parametric distributions will be shown. Concretely, we will focus on the binomial,
the poisson, the exponential, the normal and the χ2 distribution. They have been cho-
sen in order to show the different features of the exploratory fuzzy expected value
that we have indicated in the preceding section. The distributions were approximated
by Monte Carlo method on the basis of 100000 simulations.

In Figure 2 we show the exploratory fuzzy expected value of two random vari-
ables with binomial distributions. In both cases n = 5, but p = .5 at the left graphic
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Fig. 2. Exploratory fuzzy expected value associated with B(5, .5) (left) and B(5, .1) (center)
distributions. Comparison (right)

and p = .1 at the center one. We can see the respective mean values at the 1-level sets.
The symmetry of the B(5, .5) and the skewness of the B(5, .1) is evident. It should
be noted that the area of the sendograph shows the variance, although to make com-
parisons we have to take into account the range of the supports. The graphic on the
right shows both fuzzy representations in the same scale. The difference in the areas,
associated to the variabilities, is clear. If the aim were to compare the two distribu-
tions irrespectively of the variance, we could make use of the scale parameter a. The
discrete character of the binomial distribution is connected with the lack of smooth-
ness of the fuzzy sets and the right spread of the 0-level of the binomial B(5, .1)
shows the presence of values far away from the mean.

In Figure 3, random variables with Poisson and exponential distributions, both
with expected value equal to 4, are represented. The most remarkable difference is
the large left-spreads with respect to the mean value of the exponential distribution,
which indicates that in the exponential distribution the values lower than the mean
have a greater density than in the Poisson distribution. In this case, since the Poisson
is discrete but not finite, the lack of smoothness is less evident than for the binomial.
We can also observe than the exponential distribution is considerably more asym-
metric and variable than the Poisson.

The χ2 distributed random variables were chosen with 1 and 2 degrees of free-
dom (see Figure 4). The left-spreads with respect to the mean values are more homo-
geneous than those for the Poisson and the exponential distributions, which indicates
that the low values w.r.t. the corresponding expected value are relatively less fre-
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Fig. 3. Exploratory fuzzy expected value associated with P(4) (left) and Exp(.25) (center)
distributions. Comparison (right)
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Fig. 4. Exploratory fuzzy expected value associated with χ2
1 (left) and χ2

2 (center) distribu-
tions. Comparison (right)
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Fig. 5. Exploratory fuzzy expected value associated with N (0,1) (left) and N (0,2) (center)
distributions. Comparison (right)

quent, mainly for the χ2
1 . The asymmetry of both distributions is evidenced and the

greater variability of the χ2
2 is easily noticed.

Finally, the exploratory fuzzy expected values corresponding to centered normal
distributions with variances 1 and 4 are shown in Figure 5. The difference with the
preceding distributions is obvious. As expected, the most similar shape to the stan-
dard normal distribution is the B(5,0.5), although we can see the difference in the
smoothness of the curve. We observe the greater variability, the greater area and, in
this case, the greater spreads for the 0-level.

5 Exploratory Data Analysis Through the Fuzzy Representation

When only data are available and the aim is to gain understanding of them, we can
also make use of the graphical representation of the fuzzy mean. To illustrate it, we
have simulated 4 samples with different sample sizes.

The exploratory fuzzy expected value associated with the first simulated samples
are presented in Figure 6. We can observe the same features that we have commented
in the preceding section. The distribution of sample 1 seems to be more skewed than
the one in sample 2. The right spread of the 0-level in sample 1 seems to point out
the presence of values quite greater than the mean. On the contrary, sample 2 seems
to be quite symmetric around its mean. The sample sizes are quite low, although the
clear lack of smoothness points out that there are repeated values, which indicates
that they could come from discrete population distributions.
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Fig. 6. Exploratory fuzzy expected value associated with sample 1 n = 10 (left) and sample 2
n = 20 (right)

In Figure 7 we present the graphical representation corresponding to the other
simulated samples. We observe that the sample 4 is strongly asymmetric, with ex-
treme values much greater than the sample mean, while sample 3 seems to be slightly
asymmetric. The range of the supports suggests that the sample 3 is quite less vari-
able than the sample 4. In this case the sample sizes are larger than in the preceding
case, and the curves seems to be quite smooth, which suggests that the population
distributions could be continuous.
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Fig. 7. Exploratory fuzzy expected value associated with sample 3 n = 30 (left) and sample 4
n = 50 (right)

Actually, sample 1 have been simulated form a B(5, .1), sample 2 from a P(4),
sample 3 from a N (0,1) and sample 4 from a χ2

2 . If we compare the population
distributions with the sample ones, we can note the similarities.
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