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Preface

The idea of soft computing emerged in the early 1990s from the fuzzy systems com-
munity, and refers to an understanding that the uncertainty, imprecision and igno-
rance present in a problem should be explicitly represented and possibly even ex-
ploited rather than either eliminated or ignored in computations. For instance, Zadeh
defined ‘Soft Computing’ as follows:

Soft computing differs from conventional (hard) computing in that, unlike
hard computing, it is tolerant of imprecision, uncertainty and partial truth.
In effect, the role model for soft computing is the human mind.

Recently soft computing has, to some extent, become synonymous with a hybrid
approach combining AI techniques including fuzzy systems, neural networks, and
biologically inspired methods such as genetic algorithms. Here, however, we adopt
a more straightforward definition consistent with the original concept. Hence, soft
methods are understood as those uncertainty formalisms not part of mainstream sta-
tistics and probability theory which have typically been developed within the AI and
decision analysis community. These are mathematically sound uncertainty modelling
methodologies which are complementary to conventional statistics and probability
theory.

In addition to probabilistic factors such as measurement error and other random
effects, the modelling process often requires us to make qualitative and subject judge-
ments that cannot easily be translated into precise probability values. Such judge-
ments give rise to a number of different types of uncertainty including; fuzziness
if they are based on linguistic information; epistemic uncertainty when their relia-
bility is in question; ignorance when they are insufficient to identify or restrict key
modelling parameters; imprecision when parameters and probability distributions
can only be estimated within certain bounds. Statistical theory has not traditionally
been concerned with modelling uncertainty arising in this manner but soft meth-
ods, a range of powerful techniques developed within AI, attempt to address those
problems where the encoding of subjective information is unavoidable. Therefore, a
more realistic modelling process providing decision makers with an accurate reflec-
tion of the true current state of our knowledge (and ignorance) requires an integrated
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framework incorporating both probability theory, statistics and soft methods. This
fusion motivates innovative research at the interface between computer science (AI),
mathematics and systems engineering.

This edited volume is the proceedings of the 2006 International Workshop on
Soft Methods in Probability and Statistics (SMPS 2006) hosted by the Artificial In-
telligence Group at the University of Bristol, between 5-7 September 2006. This is
the third of a series of biennial meetings organized in 2002 by the Systems Research
Institute from the Polish Academy of Sciences in Warsaw, and in 2004 by the De-
partment of Statistics and Operational Research at the University of Oviedo in Spain.
These conferences provide a forum for discussion and research into the fusion of soft
methods with probability and statistics, with the ultimate goal of integrated uncer-
tainty modelling in complex systems involving human factors.

The papers in the volume are organized into a number of key themes each ad-
dressing a different aspect of the integration of soft methods with probability and
statistics. These are identified both as being longstanding foundational problems, as
well as promising avenues of research with the potential of providing significant ad-
vances in the modelling and representation of knowledge and uncertainty. Also vital
to the development of any academic discipline is the identification and exploration of
challenging new application areas. It is only through the application of existing tools
and methodologies to the analysis of uncertainty in large-scale complex systems that
fundamental research issues can be identified and new capabilities developed.

Part I presents abstracts of four keynote presentations by Lotfi Zadeh, Gert de
Cooman, Jim Hall and Vladik Kreinovich. Prof. Zadeh’s talk provides details on the
latest developments in his theory of generalised uncertainty. Prof. de Cooman’s talk
describes a theory of linguistic probabilities based on imprecise probabilities. Prof.
Hall gives an overview of the application of soft methods in Earth Systems Engi-
neering. Prof. Kreinovich describes algorithms for statistical data processing under
interval uncertainty and investigates their complexity. Part II on Soft Methods in
Statistics and Random Information Systems presents current research leading to the
development of new statistical tools incorporating fuzziness. Part III on Probability
of Imprecisely-Valued Random Elements With Applications focusses on aspects of
probability theory incorporating imprecision. Part IV on Applications and Modelling
of Imprecise Operators considers how linguistic quantifiers can be used to describe
uncertainty. Part V on Imprecise Probability theory concerns the uncertainty mea-
sures corresponding to upper and lower probabilities and previsions. Part VI on Pos-
sibility, Evidence and Interval Methods contains papers on possibility and evidence
theory as well as interval methods. Finally, part VII presents a range of challenging
applications requiring the integration of uncertainty, fuzziness and imprecision.

Bristol, Jonathan Lawry
May 2006
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Generalized Theory of Uncertainty (GTU) – Principal
Concepts and Ideas

Lotfi A. Zadeh∗

Department of EECS, University of California, Berkeley, CA 94720-1776
zadeh@eecs.berkeley.edu

Uncertainty is an attribute of information. The path-breaking work of Shannon has
led to a universal acceptance of the thesis that information is statistical in nature.
Concomitantly, existing theories of uncertainty are based on probability theory. The
generalized theory of uncertainty (GTU) departs from existing theories in essential
ways. First, the thesis that information is statistical in nature is replaced by a much
more general thesis that information is a generalized constraint, with statistical un-
certainty being a special, albeit important case. Equating information to a generalized
constraint is the fundamental thesis of GTU.

Second, bivalence is abandoned throughout GTU, and the foundation of GTU
is shifted from bivalent logic to fuzzy logic. As a consequence, in GTU everything
is or is allowed to be a matter of degree or, equivalently, fuzzy. Concomitantly, all
variables are, or are allowed to be granular, with a granule being a clump of values
drawn together by a generalized constraint.

And third, one of the principal objectives of GTU is achievement of NL-capability,
that is, the capability to operate on information described in natural language. NL-
capability has high importance because much of human knowledge, including knowl-
edge about probabilities, is described in natural language. NL-capability is the focus
of attention in the present paper.

The centerpiece of GTU is the concept of a generalized constraint. The concept
of a generalized constraint is motivated by the fact that most real-world constraints
are elastic rather than rigid, and have a complex structure even when simple in ap-
pearance. Briefly, if X is a variable taking values in a universe of discourse, U , then
a generalized constraint on X , GC(X), is an expression of the form X isr R, where
R is a constraining relation, and r is an indexical variable which defines the modal-
ity of the constraint, that is, its semantics. The principal constraints are possibilistic
(r = blank); veristic (r = v); probabilistic (r = p); random set (r = r); fuzzy graph
(r = fg); usuality (r = u); bimodal (r = bm); and group (r = g). Generalized con-
straints may be combined, qualified, propagated and counterpropagated. A gener-

∗ Research supported in part by ONR N00014-02-1-0294, BT Grant CT1080028046, Omron
Grant, Tekes Grant, Chevron Texaco Grant and the BISC Program of UC Berkeley.

L.A. Zadeh: Generalized Theory of Uncertainty (GTU) – Principal Concepts and Ideas, Advances in Soft Computing 6,
3–4 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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alized constraint may be a system of generalized constraints. The collection of all
generalized constraints constitutes the generalized constraint language, GCL.

The fundamental theses of GTU may be expressed as the symbolic equality
I(X) = GC(X), when I(X) is the information about X . In GTU, a proposition is
viewed as an answer to a question of the form “What is the value of X?” and thus is
a carrier of information about X . In this perspective, the meaning of p, M(p), is the
information which it carries about X . An important consequence of the fundamental
thesis of GTU is what is referred to as the meaning postulate: M(I) = GC(X(p)).
This symbolic equality plays a pivotal role in GTU’s NL-capability.

A prerequisite to computation with information described in natural language
is precisiation of meaning. More specifically, if p is a proposition or a system of
propositions drawn from a natural language, then the meaning of p is precisiated
by expressing p as a generalized constraint, that is, translating p into the generalized
constraint language GCL. The object of precisiation, p, and the result of precisiation,
p*, are referred to as the precisiend and precisiand, respectively. The degree to which
the intension, that is, the attribute-based meaning of p* matches the intension of p
is referred to as the cointension of p* and p. A precisiend, p*, is cointensive if
cointension of p* and p is in some specified sense, high.

In GTU, deduction of an answer: ans(q), to a query, q, involves these modules: (a)
Precisiation module, P; (b) Protoform module, Pr; and (c) Deduction/Computation
module, D/C. The Precisiation module operates on the initial information set,
p, expressed as INL, and results in a cointensive precisiend, p*. The Protoform
module serves as an interface between the Precisiation module and the Deduc-
tion/Computation module. The input to Pr is a generalized constraint, p*, and its
output is a protoform of p*, that is, its abstracted summary, p**. The Deduc-
tion/Computation module is basically a database (catalog) of rules of deduction
which are, for the most part, rules which govern generalized constraint propagation
and counterpropagation. The principal deduction rule is the Extension Principle. The
rules are protoformal, with each rule having a symbolic part and a computational
part. The protoformal rules are grasped into modules, with each module comprising
rules which are associated with a particular class of generalized constraints, that is,
possibilistic constraints, probabilistic constraints, veristic constraints, usuality con-
straints, etc.

The paper concludes with examples of computation with uncertain information
described in natural language.



Reasoning with Vague Probability Assessments

Gert de Cooman

Ghent University, Research Group SYSTeMS, Technologiepark – Zwijnaarde 914, 9052
Zwijnaarde, Belgium
gert.decooman@UGent.be

In this lecture, I expound and comment on a model, or even more ambitiously, a the-
ory, for representing, and drawing inferences from, vague probability assessments.
The details of this theory have been published in two papers, the first [3] dealing with
its behavioural underpinnings, and the second [1, 2] with its deeper mathematical as-
pects.

In a first part, I intend to discuss the basic features of the model, and explain
how we can use so-called possibilistic previsions to mathematically represent vague
probability assessments. I shall then discuss a number of requirements, or axioms,
that can be imposed on such previsions, and the inference method, called natural
extension, that such requirements generate. This inference method allows possibilis-
tic previsions to be used as a basis for decision making, or as a prior in statistical
reasoning. In addition, I shall discuss the connections between the theory of possi-
bilistic previsions, Zadeh’s theory of fuzzy probability [5, 6], and Walley’s theory of
coherent lower previsions [4].

In a second part, the emphasis will lie on providing possibilistic previsions with
a behavioural and operationalisable interpretation. I shall discuss how the notion of a
buying function, which is a mathematical object describing a modeller’s beliefs about
whether a subject will (not) accept to buy a given gamble for a given price, leads in
certain well-defined circumstances to a hierarchical model that is mathematically
completely equivalent to that of a special class of possibilistic previsions.
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Soft Methods in Earth Systems Engineering

Jim W. Hall

Tyndall Centre for Climate Change Research, School of Civil Engineering and Geosciences,
University of Newcastle upon Tyne NE1 7RU, UK
jim.hall@ncl.ac.uk

The narrowly defined technical problems that occupied civil engineers during the last
century and a half, such as the mechanics of the materials steel, concrete and water,
have for most practical purposes been solved. The outstanding challenges relate to
interactions between technological systems, the natural environment and human so-
ciety, at a range of scales up to the global. Management of these coupled systems is
obviously a problem of decision making under uncertainty, informed by, on the one
hand, sometimes quite dense datasets but, on the other, perhaps only the vaguest of
intuitions about the behaviour of the systems in question. An extension of the scope
of engineering from a narrowly focussed technical activity to one that more con-
sciously engages with society and the natural environment means that approaches
based upon the strictures of individual decision rationality may have to be modified
as part of collective and perhaps highly contested decision processes.

The territory of Earth Systems Engineering outlined above seems to be fertile
ground for soft methods in probability and statistics. There are severe uncertainties,
often associated with human interaction with the technical and environmental sys-
tems in question. Information appears in a range of formats, including imprecise
measurements and vague linguistic statements. Decision makers and citizens may
legitimately be averse to ambiguities in the information at their disposal, particularly
if the decisions impact upon future generations as much or more than upon our own.
In highly contested decision processes the arrival of a technical expert with a solu-
tion that they claim to be ‘optimal’ according to some narrowly defined criteria of
rationality is unlikely to be helpful.

The motivation for the use of soft methods in Earth Systems Engineering may
be clear, yet their adoption in situations of practical significance is still quite lim-
ited. A brief review of some practical applications will reveal some successes and
some important outstanding challenges. Even though the studies described are far
more applied than much of what is published in the technical literature of fuzzy set
theory, possibility theory, imprecise probability theory and Dempster-Shafer theory,
these are nonetheless studies that have taken place in university Civil Engineering
departments in partnership with enlightened individuals from industry and govern-
ment. The step into ‘unsupervised’ industry practice will be achieved with the help of

J.W. Hall: Soft Methods in Earth Systems Engineering, Advances in Soft Computing 6, 7–10 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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convenient software tools of the standard, for example, now widely used for analysis
of (precise) Bayesian networks.

The applications

Slope stability analysis: Analysis of slope hydrology and soil mechanics is limited
by scarcity of data and limitations in constitutive models of soils [1][2]. Informa-
tion on soil properties is sometimes reported in the literature as intervals rather
than probability distributions. Using slopes in Hong Kong as an example, we
have demonstrated how imprecise input data, together with probabilistic infor-
mation on hydrological properties, can be propagated through a numerical model
of slope response. The analysis raises questions about the representation of de-
pendency using random relations.

Condition assessment of flood defence systems: Routine inspection of flood defence
infrastructure in the UK provides a linguistic classification of the condition of the
infrastructure. These condition grades are approximately related to the variables
that are input to reliability analysis. The linguistic classification naturally lends
itself to fuzzy representation and we have demonstrated how this information
can then be used to generate fuzzy probabilities of system failure, which can be
used as a basis for prioritisation of maintenance [3].

Model and regionalisation uncertainties in flood risk analysis: We have explored the
use of Info-Gap analysis [4] for analysis of flood risk management decisions un-
der severe model and statistical uncertainties [5]. The analysis has illustrated the
relative robustness of alternative flood management options.

Uncertainties in projections of global climate change: Analysis of uncertainties in
projections of global mean temperature is attracting considerable attention in
the global climate modelling community, but, despite severe uncertainties, is be-
ing addressed within conventional probabilistic paradigms, with a few notable
exceptions [6]. We have illustrated how uncertainties in climate sensitivity can
be represented with sets of probability measures [7] and how non-additive mea-
sures may be used to represent the vagueness associated with socio-economic
scenarios [8].

Imprecise probabilities of abrupt climate change: Working jointly with the Potsdam
Institute for Climate Impact Research we have conducted an elicitation exercise
to obtain imprecise probabilities of a set of critical ‘tipping points’ in the Earth
System. The probabilities of abrupt climate change were obtained conditional
upon global mean temperature increasing within specified corridors. The work
illustrates the severe uncertainties surrounding these critical aspects of the global
climate.

Imprecise network models: Bayesian belief networks are being increasingly used in
systems analysis and quantified risk analysis. Applications of interval version
of network models in attribution of climate change [9] and environmental risk
analysis have provided new insights for decision-makers into the sources and
implications of uncertainty.
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Some reflections

Application of soft methods to realistic practical examples has seldom been straight-
forward. Some testing challenges are etched on our memories:

Elicitation: Imprecise representations have provided an expressive framework for
representation of expert beliefs. However, it is doubtful that even experts who
are well versed in probability are fully informed about the commitments that
are being made in their statements. Whilst imprecise representation is intuitively
attractive, experts are often doubtful about the exact location of the bounds that
they provide. It is worrying that the bounding judgements experts have most
difficulty making have a pivotal influence upon the output of the analysis.

Computation of imprecise probabilities: The optimisation problems associated with
propagating sets of probability measures through computationally expensive,
non-monotonic numerical models are of course, not trivial. Whilst bounding
cases of concentrations of probability mass may be identified, justifying the
opposite bound can be far more problematic in practice. Our experience with
interval-valued belief networks has been favourable, but we have restricted our-
selves to simple network structures. The arrival of algorithms for computing
credal networks of a general structure is awaited with anticipation.

Proliferation of uncertainty: Bounding analyses have yielded disappointing amounts
of information, and, in the limit, vacuous bounds. Whilst this may be a legitimate
reflection of the state of knowledge it leaves decision-makers at a loss as to how
to proceed. The dilation of intervals in the application of Generalized Bayes Rule
is particularly disappointing.

Choice of uncertainty representation: Some situations obviously suggest a particu-
lar uncertainty representation, for example when information appears in interval
format or when decision-makers are interested in the robustness of well spec-
ified options. In other situations the choice of an appropriate representation is
contentious.

Aggregation of evidence: We have tested a variety of approaches to aggregation of
evidence from different sources [10] with disappointing outcomes. Disjunctive
approaches have provided uninformatively wide bounds whereas the conjunction
of evidence has yielded null sets.

Concluding remarks

Of course ‘hard’ probability and statistics have a longer and richer pedigree than the
methods discussed at the SMPS conference. It is hardly fair to expect the same ex-
tent of elaboration from soft methods, given their relative immaturity and the small
size of their research community. Yet probability and statistics are remarkable not
only in the richness of theory and methodology that has been developed through the
centuries but also in the remarkable and expanding number of fields of application
where the theories have become completely assimilated into human endeavour. The
reliability-based Eurocodes and the used of geostatistics are just two examples that
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come to mind. Meanwhile soft methods are still the realm of cranks and enthusi-
asts. The severe uncertainties associated with managing coupled technological and
natural systems and the heterogeneity of information that is obtained from these sys-
tems provides ample justification for departure from the conventional probabilistic
paradigm. Yet to do so requires attention both to outstanding theoretical challenges
and also to the process of applying soft methods in practice.
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1 Main Problem

Why indirect measurements? In many real-life situations, we are interested in the
value of a physical quantity y that is difficult or impossible to measure directly. Ex-
amples of such quantities are the distance to a star and the amount of oil in a given
well. Since we cannot measure y directly, a natural idea is to measure y indirectly.
Specifically, we find some easier-to-measure quantities x1, . . . ,xn which are related
to y by a known relation y = f (x1, . . . ,xn); this relation may be a simple functional
transformation, or complex algorithm (e.g., for the amount of oil, numerical solution
to an inverse problem). Then, to estimate y, we first measure the values of the quan-
tities x1, . . . ,xn, and then we use the results x̃1, . . . , x̃n of these measurements to to
compute an estimate ỹ for y as ỹ = f (x̃1, . . . , x̃n):

�

· · ·

�

�

x̃n

x̃2

x̃1

�ỹ = f (x̃1, . . . , x̃n)f

For example, to find the resistance R, we measure current I and voltage V , and
then use the known relation R = V/I to estimate resistance as R̃ = Ṽ/Ĩ.

Computing an estimate for y based on the results of direct measurements is called
data processing; data processing is the main reason why computers were invented in
the first place, and data processing is still one of the main uses of computers as
number crunching devices.

V. Kreinovich: Statistical Data Processing under Interval Uncertainty: Algorithms and Computational Complexity, Ad-
vances in Soft Computing 6, 11–26 (2006)
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Comment. In this paper, for simplicity, we consider the case when the relation be-
tween xi and y is known exactly; in some practical situations, we only known an
approximate relation between xi and y.

Why interval computations? From computing to probabilities to intervals. Measure-
ment are never 100% accurate, so in reality, the actual value xi of i-th measured
quantity can differ from the measurement result x̃i. Because of these measurement

errors ∆xi
def= x̃i − xi, the result ỹ = f (x̃1, . . . , x̃n) of data processing is, in general,

different from the actual value y = f (x1, . . . ,xn) of the desired quantity y.

It is desirable to describe the error ∆y
def= ỹ−y of the result of data processing. To

do that, we must have some information about the errors of direct measurements.
What do we know about the errors ∆xi of direct measurements? First, the manu-

facturer of the measuring instrument must supply us with an upper bound ∆i on the
measurement error. If no such upper bound is supplied, this means that no accuracy
is guaranteed, and the corresponding “measuring instrument" is practically useless.
In this case, once we performed a measurement and got a measurement result x̃i,
we know that the actual (unknown) value xi of the measured quantity belongs to the
interval xi = [xi,xi], where xi = x̃i −∆i and xi = x̃i +∆i.

In many practical situations, we not only know the interval [−∆i,∆i] of possible
values of the measurement error; we also know the probability of different values ∆xi

within this interval. This knowledge underlies the traditional engineering approach
to estimating the error of indirect measurement, in which we assume that we know
the probability distributions for measurement errors ∆xi.

In practice, we can determine the desired probabilities of different values of ∆xi

by comparing the results of measuring with this instrument with the results of mea-
suring the same quantity by a standard (much more accurate) measuring instrument.
Since the standard measuring instrument is much more accurate than the one use, the
difference between these two measurement results is practically equal to the mea-
surement error; thus, the empirical distribution of this difference is close to the de-
sired probability distribution for measurement error. There are two cases, however,
when this determination is not done:

• First is the case of cutting-edge measurements, e.g., measurements in fundamen-
tal science. When a Hubble telescope detects the light from a distant galaxy, there
is no “standard" (much more accurate) telescope floating nearby that we can use
to calibrate the Hubble: the Hubble telescope is the best we have.

• The second case is the case of measurements on the shop floor. In this case, in
principle, every sensor can be thoroughly calibrated, but sensor calibration is so
costly – usually costing ten times more than the sensor itself – that manufacturers
rarely do it.

In both cases, we have no information about the probabilities of ∆xi; the only infor-
mation we have is the upper bound on the measurement error.

In this case, after we performed a measurement and got a measurement result x̃i,
the only information that we have about the actual value xi of the measured quantity
is that it belongs to the interval xi = [x̃i −∆i, x̃i +∆i]. In such situations, the only
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information that we have about the (unknown) actual value of y = f (x1, . . . ,xn) is
that y belongs to the range y = [y,y] of the function f over the box x1 × . . .×xn:

y = [y,y] = { f (x1, . . . ,xn) |x1 ∈ x1, . . . ,xn ∈ xn}.

�

· · ·

�

�

xn

x2

x1

�y = f (x1, . . . ,xn)f

The process of computing this interval range based on the input intervals xi is
called interval computations; see, e.g., [19, 37].

Interval computations techniques: brief reminder. Historically the first method for
computing the enclosure for the range is the method which is sometimes called
“straightforward" interval computations. This method is based on the fact that inside
the computer, every algorithm consists of elementary operations (arithmetic opera-
tions, min, max, etc.). For each elementary operation f (a,b), if we know the intervals
a and b for a and b, we can compute the exact range f (a,b). The corresponding for-
mulas form the so-called interval arithmetic. For example,

[a,a]+ [b,b] = [a+b,a+b]; [a,a]− [b,b] = [a−b,a−b];

[a,a] · [b,b] = [min(a ·b,a ·b,a ·b,a ·b),max(a ·b,a ·b,a ·b,a ·b)].

In straightforward interval computations, we repeat the computations forming the
program f step-by-step, replacing each operation with real numbers by the corre-
sponding operation of interval arithmetic. It is known that, as a result, we get an
enclosure Y ⊇ y for the desired range.

In some cases, this enclosure is exact. In more complex cases (see examples
below), the enclosure has excess width.

Example. Let us illustrate the above idea on the example of estimating the range of
the function f (x) = (x−2) · (x+2) on the interval x ∈ [1,2].

We start with parsing the expression for the function, i.e., describing how a com-
puter will compute this expression; it will implement the following sequence of ele-
mentary operation:

r1 := x−2; r2 := x+2; r3 := r1 · r2.

The main idea behind straightforward interval computations is to perform the same
operations, but with intervals instead of numbers:

r1 := [1,2]− [2,2] = [−1,0]; r2 := [1,2]+ [2,2] = [3,4];

r3 := [−1,0] · [3,4] = [−4,0].

For this function, the actual range is f (x) = [−3,0].
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Comment: This is just a toy example, there are more efficient ways of computing an
enclosure Y ⊇ y.

There exist more sophisticated techniques for producing a narrower enclosure,
e.g., a centered form method. However, for each of these techniques, there are cases
when we get an excess width. Reason: as shown in [25], the problem of computing
the exact range is known to be NP-hard even for polynomial functions f (x1, . . . ,xn)
(actually, even for quadratic functions f ).

Practical problem. In some practical situations, in addition to the lower and upper
bounds on each random variable xi, we have some additional information about xi.

So, we arrive at the following problem:

• we have a data processing algorithm f (x1, . . . ,xn), and
• we have some information about the uncertainty with which we know xi (e.g.,

measurement errors).

We want to know the resulting uncertainty in the result y = f (x1, . . . ,xn) of data
processing.

In interval computations, we assume that the uncertainty in xi can be described
by the interval of possible values. In real life, in addition to the intervals, we often
have some information about the probabilities of different values within this interval.
What can we then do?

2 What is the Best Way to Describe Probabilistic Uncertainty?

In order to describe how uncertainty in xi affects y, we need to know what is the best
way to represent the corresponding probabilistic uncertainty in xi.

In probability theory, there are many different ways of representing a probabil-
ity distribution. For example, one can use a probability density function (pdf), or
a cumulative distribution function (CDF), or a probability measure, i.e., a function
which maps different sets into a probability that the corresponding random variable
belongs to this set. The reason why there are many different representations is that
in different problems, different representations turned out to be the most useful.

We would like to select a representation which is the most useful for problems
related to risk analysis. To make this selection, we must recall where the information
about probabilities provided by risk analysis is normally used.

How is the partial information about probabilities used in risk analysis? The main
objective of risk analysis is to make decisions. A standard way of making a decision
is to select the action a for which the expected utility (gain) is the largest possible.
This is where probabilities are used: in computing, for every possible action a, the
corresponding expected utility. To be more precise, we usually know, for each action
a and for each actual value of the (unknown) quantity x, the corresponding value
of the utility ua(x). We must use the probability distribution for x to compute the
expected value E[ua(x)] of this utility.
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In view of this application, the most useful characteristics of a probability dis-
tribution would be the ones which would enable us to compute the expected value
E[ua(x)] of different functions ua(x).

Which representations are the most useful for this intended usage? General idea.
Which characteristics of a probability distribution are the most useful for computing
mathematical expectations of different functions ua(x)? The answer to this question
depends on the type of the function, i.e., on how the utility value u depends on the
value x of the analyzed parameter.

Smooth utility functions naturally lead to moments. One natural case is when the
utility function ua(x) is smooth. We have already mentioned, in Section I, that
we usually know a (reasonably narrow) interval of possible values of x. So, to
compute the expected value of ua(x), all we need to know is how the function
ua(x) behaves on this narrow interval. Because the function is smooth, we can ex-
pand it into Taylor series. Because the interval is narrow, we can safely consider
only linear and quadratic terms in this expansion and ignore higher-order terms:
ua(x) ≈ c0 +c1 · (x−x0)+c2 · (x−x0)2, where x0 is a point inside the interval. Thus,
we can approximate the expectation of this function by the expectation of the corre-
sponding quadratic expression: E[ua(x)] ≈ E[c0 + c1 · (x − x0)+ c2 · (x − x0)2], i.e.,
by the following expression: E[ua(x)] ≈ c0 + c1 ·E[x− x0]+ c2 ·E[(x− x0)2]. So, to
compute the expectations of such utility functions, it is sufficient to know the first
and second moments of the probability distribution.

In particular, if we use, as the point x0, the average E[x], the second moment turns
into the variance of the original probability distribution. So, instead of the first and
the second moments, we can use the mean E and the variance V .

In risk analysis, non-smooth utility functions are common. In engineering applica-
tions, most functions are smooth, so usually the Taylor expansion works pretty well.
In risk analysis, however, not all dependencies are smooth. There is often a threshold
x0 after which, say, a concentration of a certain chemical becomes dangerous.

This threshold sometimes comes from the detailed chemical and/or physical
analysis. In this case, when we increase the value of this parameter, we see the dras-
tic increase in effect and hence, the drastic change in utility value. Sometimes, this
threshold simply comes from regulations. In this case, when we increase the value of
this parameter past the threshold, there is no drastic increase in effects, but there is
a drastic decrease of utility due to the necessity to pay fines, change technology, etc.
In both cases, we have a utility function which experiences an abrupt decrease at a
certain threshold value x0.

Non-smooth utility functions naturally lead to CDFs. We want to be able to compute
the expected value E[ua(x)] of a function ua(x) which changes smoothly until a cer-
tain value x0, then drops it value and continues smoothly for x > x0. We usually know
the (reasonably narrow) interval which contains all possible values of x. Because the
interval is narrow and the dependence before and after the threshold is smooth, the
resulting change in ua(x) before x0 and after x0 is much smaller than the change at
x0. Thus, with a reasonable accuracy, we can ignore the small changes before and
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after x0, and assume that the function ua(x) is equal to a constant u+ for x < x0, and
to some other constant u− < u+ for x > x0.

The simplest case is when u+ = 1 and u− = 0. In this case, the desired expected

value E[u(0)
a (x)] coincides with the probability that x < x0, i.e., with the correspond-

ing value F(x0) of the cumulative distribution function (CDF). A generic function
ua(x) of this type, with arbitrary values u− and u+, can be easily reduced to this
simplest case, because, as one can easily check, ua(x) = u− +(u+ −u−) ·u(0)(x) and
hence, E[ua(x)] = u− +(u+ −u−) ·F(x0).

Thus, to be able to easily compute the expected values of all possible non-smooth
utility functions, it is sufficient to know the values of the CDF F(x0) for all possible
x0.

3 How to Represent Partial Information about Probabilities

General idea. In many cases, we have a complete information about the probability
distributions that describe the uncertainty of each of n inputs.

However, a practically interesting case is how to deal with situations when we
only have partial information about the probability distributions. How can we repre-
sent this partial information?

Case of cdf. If we use cdf F(x) to represent a distribution, then full information
corresponds to the case when we know the exact value of F(x) for every x. Partial
information means:

• either that we only know approximate values of F(x) for all x, i.e., that for every
x, we only know the interval that contains F(x); in this case, we get a p-box;

• or that we only know the values of F(x) for some x, i.e, that we only know the
values F(x1), . . . , F(xn) for finitely many values x = x1, . . . ,xn; in this case, we
have a histogram.

It is also possible that we know only approximate values of F(x) for some x; in this
case, we have an interval-valued histogram.

Case of moments. If we use moments to represent a distribution, then partial infor-
mation means that we either know the exact values of finitely many moments, or that
we know intervals of possible values of several moments.

4 Resulting Problems

This discussion leads to a natural classification of possible problems:

• If we have complete information about the distributions of xi, then, to get vali-
dated estimates on uncertainty of y, we have to use Monte-Carlo-type techniques;
see, in particular, papers by D. Lodwick et al. [33, 34]

• If we have p-boxes, we can use methods proposed by S. Ferson et al. [13, 14, 15,
23, 43, 46].
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• If we have histograms, we can use methods proposed by D. Berleant et al. [6, 7,
8, 9, 10, 44, 53].

• If we have moments, then we can use methods proposed by S. Ferson,
V. Kreinovich, M. Orshansky, et al. [18, 22, 30, 41, 42].

There are also additional issues, including:

• how we get these bounds for xi?
• specific practical applications, like the appearance of histogram-type distribu-

tions in problems related to privacy in statistical databases,
• etc.

5 Case Study

Practical problem. In some practical situations, in addition to the lower and upper
bounds on each random variable xi, we know the bounds Ei = [Ei,Ei] on its mean
Ei.

Indeed, in measurement practice (see, e.g., [11]), the overall measurement error
∆x is usually represented as a sum of two components:

• a systematic error component ∆sx which is defined as the expected value E[∆x],
and

• a random error component ∆rx which is defined as the difference between the

overall measurement error and the systematic error component: ∆rx
def= ∆x−∆sx.

In addition to the bound ∆ on the overall measurement error, the manufacturers of
the measuring instrument often provide an upper bound ∆s on the systematic error
component: |∆sx| ≤ ∆s.

This additional information is provided because, with this additional informa-
tion, we not only get a bound on the accuracy of a single measurement, but we
also get an idea of what accuracy we can attain if we use repeated measurements
to increase the measurement accuracy. Indeed, the very idea that repeated measure-
ments can improve the measurement accuracy is natural: we measure the same quan-
tity by using the same measurement instrument several (N) times, and then take,

e.g., an arithmetic average x̄ = x̃(1)+...+x̃(N)

N of the corresponding measurement results

x̃(1) = x+∆x(1), . . . , x̃(N) = x+∆x(N).

• If systematic error is the only error component, then all the measurements lead
to exactly the same value x̃(1) = . . . = x̃(N), and averaging does not change the
value – hence does not improve the accuracy.

• On the other hand, if we know that the systematic error component is 0, i.e.,
E[∆x] = 0 and E[x̃] = x, then, as N → ∞, the arithmetic average tends to the
actual value x. In this case, by repeating the measurements sufficiently many
times, we can determine the actual value of x with an arbitrary given accuracy.
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In general, by repeating measurements sufficiently many times, we can arbitrarily
decrease the random error component and thus attain accuracy as close to ∆s as we
want.

When this additional information is given, then, after we performed a measure-
ment and got a measurement result x̃, then not only we get the information that the
actual value x of the measured quantity belongs to the interval x = [x̃ −∆ , x̃ +∆ ],
but we can also conclude that the expected value of x = x̃ −∆x (which is equal to
E[x] = x̃−E[∆x] = x̃−∆sx) belongs to the interval E = [x̃−∆s, x̃+∆s].

If we have this information for every xi, then, in addition to the interval y of pos-
sible value of y, we would also like to know the interval of possible values of E[y].
This additional interval will hopefully provide us with the information on how re-
peated measurements can improve the accuracy of this indirect measurement. Thus,
we arrive at the following problem:

Precise formulation of the problem. Given an algorithm computing a function
f (x1, . . . ,xn) from Rn to R, and values x1, x1, . . . , xn, xn, E1, E1, . . . , En, En, we
want to find

E
def= min{E[ f (x1, . . . ,xn)] | all distributions of (x1, . . . ,xn) for which

x1 ∈ [x1,x1], . . . ,xn ∈ [xn,xn],E[x1] ∈ [E1,E1], . . .E[xn] ∈ [En,En]};

and E which is the maximum of E[ f (x1, . . . ,xn)] for all such distributions.
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�
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In addition to considering all possible distributions, we can also consider the case
when all the variables xi are independent.

How we solve this problem. The main idea behind straightforward interval computa-
tions can be applied here as well. Namely, first, we find out how to solve this problem
for the case when n = 2 and f (x1,x2) is one of the standard arithmetic operations.
Then, once we have an arbitrary algorithm f (x1, . . . ,xn), we parse it and replace each
elementary operation on real numbers with the corresponding operation on quadru-
ples (x,E,E,x).

To implement this idea, we must therefore know how to, solve the above problem
for elementary operations.

For addition, the answer is simple. Since E[x1 +x2] = E[x1]+E[x2], if y = x1 +x2,
there is only one possible value for E = E[y]: the value E = E1 + E2. This value
does not depend on whether we have correlation or nor, and whether we have any
information about the correlation. Thus, E = E1 +E2.
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Similarly, the answer is simple for subtraction: if y = x1 − x2, there is only one
possible value for E = E[y]: the value E = E1 −E2. Thus, E = E1 −E2.

For multiplication, if the variables x1 and x2 are independent, then E[x1 · x2] =
E[x1] · E[x2]. Hence, if y = x1 · x2 and x1 and x2 are independent, there is only one
possible value for E = E[y]: the value E = E1 ·E2; hence E = E1 ·E2.

The first non-trivial case is the case of multiplication in the presence of possible
correlation. When we know the exact values of E1 and E2, the solution to the above
problem is as follows:

Theorem 1. For multiplication y = x1 · x2, when we have no information about the
correlation,

E = max(p1 + p2 −1,0) · x1 · x2 +min(p1,1− p2) · x1 · x2+

min(1− p1, p2) · x1 · x2 +max(1− p1 − p2,0) · x1 · x2;

and
E = min(p1, p2) · x1 · x2 +max(p1 − p2,0) · x1 · x2+

max(p2 − p1,0) · x1 · x2 +min(1− p1,1− p2) · x1 · x2,

where pi
def= (Ei − xi)/(xi − xi).

Theorem 2. For multiplication under no information about dependence, to find E, it
is sufficient to consider the following combinations of p1 and p2:

• p1 = p
1

and p2 = p
2
; p1 = p

1
and p2 = p2; p1 = p1 and p2 = p

2
; p1 = p1 and

p2 = p2;
• p1 = max(p

1
,1− p2) and p2 = 1− p1 (if 1 ∈ p1 +p2); and

• p1 = min(p1,1− p
2
) and p2 = 1− p1 (if 1 ∈ p1 +p2).

The smallest value of E for all these cases is the desired lower bound E.

Theorem 3. For multiplication under no information about dependence, to find E, it
is sufficient to consider the following combinations of p1 and p2:

• p1 = p
1

and p2 = p
2
; p1 = p

1
and p2 = p2; p1 = p1 and p2 = p

2
; p1 = p1 and

p2 = p2;
• p1 = p2 = max(p

1
, p

2
) (if p1 ∩p2 �= /0); and

• p1 = p2 = min(p1, p2) (if p1 ∩p2 �= /0).

The largest value of E for all these cases is the desired upper bound E.

For the inverse y = 1/x1, the finite range is possible only when 0 �∈ x1. Without
losing generality, we can consider the case when 0 < x1. In this case, we get the
following bound:

Theorem 4. For the inverse y = 1/x1, the range of possible values of E is E =
[1/E1, p1/x1 +(1− p1)/x1].

(Here p1 denotes the same value as in Theorem 1).
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Theorem 5. For minimum y = min(x1,x2), when x1 and x2 are independent, we have
E = min(E1,E2) and

E = p1 · p2 ·min(x1,x2)+ p1 · (1− p2) ·min(x1,x2)+

(1− p1) · p2 ·min(x1,x2)+(1− p1) · (1− p2) ·min(x1,x2).

Theorem 6. For maximum y = min(x1,x2), when x1 and x2 are independent, we have
E = max(E1,E2) and

E = p1 · p2 ·max(x1,x2)+ p1 · (1− p2) ·max(x1,x2)+

(1− p1) · p2 ·max(x1,x2)+(1− p1) · (1− p2) ·max(x1,x2).

Theorem 7. For minimum y = min(x1,x2), when we have no information about the
correlation between x1 and x2, we have E = min(E1,E2),

E = max(p1 + p2 −1,0) ·min(x1,x2)+min(p1,1− p2) ·min(x1,x2)+

min(1− p1, p2) ·min(x1,x2)+max(1− p1 − p2,0) ·min(x1,x2).

Theorem 8. For maximum y = max(x1,x2), when we have no information about the
correlation between x1 and x2, we have E = max(E1,E2) and

E = min(p1, p2) ·max(x1,x2)+max(p1 − p2,0) ·max(x1,x2)+

max(p2 − p1,0) ·max(x1,x2)+min(1− p1,1− p2) ·max(x1,x2).

Similar formulas can be produced for the cases when there is a strong correlation
between xi: namely, when x1 is (non-strictly) increasing or decreasing in x2.

For products of several random variables, the corresponding problem is already
NP-hard [24].

Challenges. What is, in addition to intervals and first moments, we also know second
moments (this problem is important for design of computer chips):

�

· · ·

�

�

xn,En,Vn

x2,E2,V2

x1,E1,V1

�y,E,Vf

What if, in addition to moments, we also know p-boxes?
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�

· · ·

�

�

En,Fn(x)

E2,F2(x)

E1,F1(x)

�E,F(x)f

6 Additional Results and Challenges

Estimating bounds on statistical characteristics. The above techniques assume that
we already know the moments etc. How can we compute them based on the measure-
ment results – taking into account that these results represent the actual (unknown)
values with measurement uncertainty.

For example, in the case of interval uncertainty, instead of the exact sample val-
ues, we have only interval ranges [xi,xi] for the sample values x1, . . . ,xn. In this sit-
uation, we want to compute the ranges of possible values of the population mean
µ = 1

n

∑n
i=1 xi, population variance V = 1

n

∑n
i=1(xi −µ)2, etc.

It turns out that most such problems are, in general, computationally difficult
(to be more precise, NP-hard). Even computing the range [V ,V ] of the population
variance V is an NP-hard problem [16, 17]. In many practical situations, there exist
feasible algorithms that compute the bounds of desirable statistical characteristics [4,
5, 11, 16, 17, 18, 22, 28, 40, 45, 49, 51]. For example, there exist efficient algorithms
for computing V and efficient algorithms for computing V for several reasonable
situations (e.g., when measurements are sufficiently accurate); efficient algorithms
are also known for detecting outliers [12, 27].

An important issue is whether we can perform these computations on-line, up-
dated the statistical characteristics as new measurements appear [29, 48].

When efficient algorithms are not known, we can use parallelization and quantum
computing to speed up computation [26]. In many practical situations, there are still
important open problems.

Computing amount of information. Another important problem is estimating amount
of information, i.e., entropy. The traditional Shannon’s definition described amount
of information as the average number of “yes”-“no” questions that we need to ask to
find the actual value (with given accuracy).

When we have finitely many alternatives, and we know the probabilities p1, . . . , pn

of these alternatives, then this average number of “yes”-“no” questions is described
by Shannon’s entropy formula S = −

∑n
i=1 pi · log(pi). In practice, we only have par-

tial information about the probabilities, e.g., only intervals [p
i
, pi] of possible values

of pi. Different values pi ∈ pi lead, in general, to different values S, so it is desirable
to compute the range [S,S] of possible values of S [20].
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Since entropy S is a concave function, standard feasible algorithms for minimiz-
ing convex functions (= maximizing concave ones) enable us to compute S; see, e.g.,
[20, 21]. Computing S is, in general, NP-hard [50], but for reasonable cases, feasible
algorithms are possible [1, 2, 3, 31, 50].

Decision making. Computational aspects of decision making under interval and
probabilistic uncertainty are discussed, e.g., in [52].
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1 Introduction

Statistical analysis of dependencies existing in data sets is now one of the most im-
portant applications of statistics. It is also a core part of data mining - a rapidly
developing in recent years part of information technology. Statistical methods that
have been proposed for the analysis of dependencies in data sets can be roughly di-
vided into two groups: tests of statistical independence and statistical measures of
the strength of dependence.

Numerous statistical test of independence have been developed during the last
one hundred (or even more) years. They have been developed for many parametric
(like the test of independence for normally distributed data, based on the Pearson co-
efficient of correlation ρ) and non-parametric (like the test of independence based on
the Spearman rank correlation statistic ρS) models. The relative ease of developing
such tests stems from the fact that statistical independence is a very peculiar feature
of data sets. In the case of independence, probability distributions that describe mul-
tivariate statistical data depend exclusively on the marginal probability distributions
of separate components of vectors of random variables. This feature can exist uncon-
ditionally (as it is usually assumed in statistical analysis) or conditionally (when a
value of a certain latent variable that influences the random variables of interest can
be regarded as fixed for the analyzed data set). Despite the fact that independence
can be rather frequently observed in carefully performed statistical experiments we
are of the opinion that in case of real large data sets a perfect statistical independence
exists rather seldom. On the other hand, however, the acceptance of the assumption
of independence is sometimes necessary for, e.g., computational reasons. Therefore,
there is often a practical need to soften the independence requirements by defining
the state of “near-independence”. The question arises then, how to evaluate this state
using statistical data.

The concept of “near-independence” is definitely a vague one. In contrast to the
case of independence, that is very precisely defined in terms of the theory of proba-
bility, it seems to be fundamentally impossible to define one measure of the strength
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dependence that could be used for the unique measurement of the deviation from in-
dependence. Therefore, there exist different measures of the strength of dependence
which - depending on the context - may be used for the evaluation of the state of
“near - independence”. We claim that these measures might be used for the analysis
of dependence when the state of independence is defined, using Zadeh’s terminol-
ogy, “to a degree”. Suppose that there exist a certain measure of the strength of
dependence α which in the case of independence adopts the value α0. For this par-
ticular value the independence is definitely to a degree one. However, if we know
that 0 < |α−α0| ≤ ε,ε > 0 we can talk about the independence to a degree µε de-
pending on the value of ε and a given practical context. For example, the value of the
Pearson correlation coefficient equal to 0,05 may indicate “near - independence” to
a degree of 0,5, but this value equal to 0,1 may already indicate dependence (“near -
independence to a degree of 0). This example shows that the concept of “near - in-
dependence” can be formally described using fuzzy sets. In Section 2 we present a
general framework for dealing with this problem. We propose to use the concept of
a statistical test of a fuzzy hypothesis for testing “near - independence”.

In order to obtain useful statistical procedures for testing fuzzy “near - inde-
pendence” we need statistical methods for the evaluation of statistical confidence
intervals for the measures of dependence. These methods are not so frequently pre-
sented in statistical textbooks. Therefore in Section 3 we present some interesting
results that have been published recently for the case when dependence structure is
captured by some well known Archimedean copulas. In Section 4 we propose an
alternative approach for testing “near - independence” using the Kendall τ statistic.
The conclusions are presented in Section 5 of the paper.

2 Statistical Tests of Fuzzy Independence – General Approach

In classical statistics tests of independence are usually formulated as tests of a null
hypothesis H0 : α = α0 against the alternative H1 : α �= α0, where α is a parame-
ter of the test statistic that for the case of independence adopts the value of α0. For
example, in the most frequently used model for the analysis of dependent statistical
data it is assumed that data are modeled by a multivariate normal distribution char-
acterized by the correlation coefficient ρ . In case of independence ρ is equal to zero,
so the parametric test of independence is in this case equivalent to the test of the null
hypothesis H0 : ρ = 0 against the alternative H1 : ρ �= 0.

The construction of classical tests for independence is very simple if for a given
value of the confidence level β there exist closed formulae for the confidence interval
(α̂L(β ), α̂U (β )) of the test statistic α that measures the strength of dependence. On
the significance level 1 − β we reject the null hypothesis of independence if α0 /∈
(α̂L(β ), α̂U (β )).

Now, let us consider the case when we are not interested in the precisely defined
independence (characterized by the precise value α0 of the dependence parameter α ,
but in “near-independence” characterized by its fuzzy equivalent α̃0 described by the
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membership function µ(α). The value of µ(α) tells us to what degree we consider
our data as independent.

Statistical tests of fuzzy hypotheses of a general form H : θ = θ̃0 have been
considered by many authors (see , for example, the papers by Arnold [1], Römer
and Kandel [11]). In this paper we apply the definition of a statistical test of a fuzzy
hypothesis that was proposed by Grzegorzewski and Hryniewicz [6].

Suppose that we consider a null hypothesis H : θ ∈ ΘH against an alternative
hypothesis K : θ ∈ΘK = ¬ΘH , where ΘH and ΘK are fuzzy subsets of the parame-
ter space Θ , with membership functions µH : Θ → [0,1] and µK(x) = 1 − µH(x),
respectively. We’ll transform such fuzzily formulated problem into a family of the
crisp testing problems. If suppµH is bounded, as in the case of testing fuzzy inde-
pendence, then the problem of testing H : θ ∈ΘH against K : θ ∈ΘK = ¬ΘH can be
transformed to a following family of the crisp testing problems

{
Hθ0 : θ = θ0 vs. Kθ0 : θ �= θ0, where θ0 ∈ suppµH

}
; (1)

Now let
{
ϕθ0 : X → {0,1}, where θ0 ∈ suppµH

}
denotes a family of classical

statistical tests on significance level δ for verifying crisp hypotheses (1). Then we
get a following definition [6]:

Definition 1. A function ψ : X → F ({0,1}) such that

µψ(0) =






sup
θ0∈suppµH : ϕθ0

(x)=0
µH(θ0)

if {θ0 ∈ suppµH :
ϕθ0(x) = 0

}
�= /0

0
if {θ0 ∈ suppµH :

ϕθ0(x) = 0
}

= /0

(2)

µψ(1) = 1−µψ(0) (3)

is called a fuzzy test for verifying fuzzy hypotheses H : θ ∈ΘH against K : θ ∈ΘK =
¬ΘH on significance level δ .

Therefore our fuzzy test for fuzzy hypotheses does not always lead to binary
decisions – to accept or to reject the null hypothesis – but to a fuzzy decision: ψ =
ξ/0+(1−ξ )/1, where ξ ∈ (0,1), which can be interpreted as a degree of conviction
that we should accept (ξ ) or reject (1−ξ ) the hypothesis H. Hence, in the considered
case of testing fuzzy “near-independence” it is sufficient to know confidence intervals
for a measure of dependence α , and then to use Definition 1 in order to build an
appropriate test for testing this hypothesis.

3 Parametric Methods for Measuring the Strength
of Dependence in Copulas

Mathematical models used for the description of dependent random variables are
well known for many years. Multivariate normal distribution, mentioned in the previ-
ous section, is the most popular one. However, it cannot be applied when the marginal
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distributions are not normal, as it often is the case, especially in the area of reliability
and survival models. Moreover, in certain cases multivariate data are not described
by the multivariate normal distribution despite the fact that all marginals are still nor-
mal. Therefore, statisticians have tried to find general methods for the construction
of multivariate probability distributions using the information about marginals and
the structure of dependence arriving at the notion of a copula.

Let (X1, . . . ,Xp) be a p-dimensional vector of random variables having continu-
ous marginals Fi(xi), i = 1, . . . , p. The joint probability distribution of (X1, . . . ,Xp) is
uniquely defined by its associated copula, defined for all (u1, . . . ,up) ∈ [0,1]p by

C(u1, . . . ,up) = Pr(F1(X1) ≤ u1, . . . ,Fp(Xp) ≤ up). (4)

It can be shown that many well known multivariate probability distributions can be
generated by parametric families Cα of copulas, where real- or vector-valued para-
meter α describes the strength of dependence between the components of the random
vector. Pioneering works in this area can be found, for example, in papers by Gumbel
[7], Clayton [3], Genest and McKay [4], and Marshall and Olkin [8]. The number of
papers devoted to the theory and applications of copulas in multivariate statistics that
have been published during last twenty years is huge, as copulas have found many
applications in survival analysis, analysis of financial risks, and many other areas.
For more recent results the reader should consult the book by Nelsen [9].

One of the most interesting, and often used in practice, classes of copulas is a
class of symmetric copulas, named the Archimedean copulas. They are generated
using a class Φ of functions ϕ : [0,1] → [0,∞], named generators, that have two con-
tinuous derivatives on (0,1) and fulfill the following conditions: ϕ(1) = 1, ϕ ‘(t) < 0,
and ϕ“(t) > 0 for all 0 < t < 1 (these conditions guarantee that ϕ has an inverse ϕ−1

that also has two derivatives). Every member of this class generates the following
multivariate distribution function for the random vector (X1, . . . ,Xp):

C(u1, . . . ,up) = Pr(F1(X1) ≤ u1, . . . ,Fp(Xp) ≤ up) = ϕ−1[ϕ(u1)+ · · ·+ϕ(up)] (5)

The two-dimensional Archimedean copulas that are most frequently used in practice
are defined by the following formulae (copulas and their respective generators):

• Clayton’s

C(u,v) = max
([

u−α + v−α −1
]−1/α

,0
)

,α ∈ [−1,∞)\0 (6)

ϕ(t) = (t−α −1)/α,α ∈ [−1,∞)\0 (7)

• Frank’s

C(u,v) = − 1
α

ln

(

1+
(e−αu −1)(e−αv −1)

e−α −1

)

,α ∈ (−∞,∞)\0 (8)

ϕ(t) = ln

(
1− e−α

1− e−αt

)

,α ∈ (−∞,∞)\0 (9)
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• Gumbel’s

C(u,v) = exp

(

−
[

(− lnu)1+α +(− lnv)1+α
] 1

1+α
)

,α ∈ (0,∞) (10)

ϕ(t) = (− ln(t))α+1,α ∈ (0,∞) (11)

In case of independence the dependence parameter αind adopts the value of 0 (in
Clayton’s and Frank’s copulas as an appropriate limit). The copulas mentioned above
are sometimes presented using different parametrization, and in such cases indepen-
dence is equivalent to other values of α .

In order to test fuzzy independence defined in Section 2 it is necessary to know
interval estimates of α , i.e. to know their confidence intervals. Unfortunately, we
do not have any simple formulae that can be useful for this purpose for all sample
sizes. We can only use asymptotic distributions of the estimators of α that depend
upon the method of estimation, and whose properties for smaller sample sizes can be
evaluated only by Monte Carlo methods.

In case of the known functional form of the marginal distributions Fi(xi), i =
1, . . . , p for the estimation of α we can use the general methodology of maximal like-
lihood. If the sample size is sufficiently large all estimated parameters of the copula
have a joint multivariate normal distribution with a covariance matrix obtained by
the estimation of Fisher’s information matrix. In case of general bivariate copulas
the appropriate formulae are given by Shih and Louis [12]. Significant simplification
of required computations can be achieved by using a two-stage parametric method.
In this method at the first stage we assume independence and using the maximum
likelihood method separately estimate the parameters of the marginal distribution.
Then, we substitute the parameters of the marginals with their respective estimated
values, and solve the maximum likelihood equation for the dependence parameter.
The general formulae for the bivariate case are also given in Shih and Louis [12].

The parametric methodology has, according to some authors, some serious lim-
itations. First, as we have already mentioned, it requires the knowledge of the class
of marginal probability distributions. Second, the estimator of α depends on the es-
timators of other parameters, and this - according to these authors - may distort the
information about the dependence structure. In order to avoid these problems a semi-
parametric maximum likelihood method has been proposed by Shih and Louis [12],
who proposed a semi-parametric two-stage procedure. At the first stage marginal dis-
tributions are estimated using the Kaplan-Meyer estimator, and at the second stage
the dependence parameter is estimated using the maximum likelihood method. The
formulae for the ML equations, and the asymptotic variances that are sufficient for
the construction of the confidence interval of α are given in [12].

4 Testing of Fuzzy Independence Using Kendall τ Statistic

A fundamental for the analysis of copulas result was obtained by Genest and
Rivest [5] who proved the equivalence between an Archimedean copula C(X ,Y )
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and the random variable V distributed as K(v) = v − ϕ(v)/ϕ ′(v),v ∈ (0,1). The
similar equivalence between K(v) and the probability distribution of a multivariate
Archimedean copula was proved by Barbe et al. [2]. Genest and Rivest [5] noticed
that for the Archimedean copulas the following relation holds for the population ver-
sion of a measure of association known as Kendall’s τ

τ = 4E(V )−1 = 4
∫ 1

0

ϕ(v)
ϕ ′(v)

dv (12)

From this equation we can find the following formulae for the expression of Kendall’s
τ in terms of the dependence parameter α [5]:

• Clayton’s copula

τ =
α

α +2
(13)

• Frank’s copula

τ = 1+4

(
1
α

∫ α

0

t
et −1

dt −1

)

/α (14)

• Gumbel’s copula

τ =
α

α +1
(15)

In order to estimate Kendall’s τ from bivariate data Genest and Rivest [5] introduced
the following random variables

Vi = card{(Xj,Yj) : Xj < Xi,Yj < Yi}/(n−1), i = 1, . . . ,n (16)

Then, they showed that the sample version of Kendall’s τ can be calculated from a
very simple formula

τn = 4V̄ −1 (17)

Similarly, if

Wi = card{(Xj,Yj) : Xj > Xi,Yj > Yi}/(n−1), i = 1, . . . ,n, (18)

then τn = 4W̄ −1. Moreover, Genest and Rivest [5] proved that if

S2 =
n∑

i=1

(Vi +Wi −2V̄ )2/(n−1), (19)

then the large-sample distribution of
√

n(τn − τ)/4S is standard normal. Thus, we
can easily construct the confidence interval for the observed value of Kendall’s τ .

Now, let us consider the main technical problem of this paper: verification of the
hypothesis that the dependence parameter adopts values close (in a fuzzy sense) to
zero. As it has been pointed out in Section 2 this can be achieved by the construction
of the confidence interval for that parameter or for another parameter that is explicitly
related to the dependence parameter. In the case of Gumbel’s and Frank’s copulas
the solution is straightforward. We can easily express Kendall’s τ as a function of
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the dependence parameter α , and thus to reformulate the fuzzy requirement on α
as an appropriate fuzzy requirement on τ . It is worthwhile to note that in the case
of nearly-independence, i.e. when α is close to zero, we have very simple relations:
τ ≈ α for Gumbel’s copula, and τ ≈ α/2 for Clayton’s copula. The relationship
between Kendall’s τ and the dependence parameter α in the case of Frank’s copula
requires individual analysis that is presented in the next paragraph.

The crucial point in the investigation of the relationship between the dependence
parameter α and Kendall’s τ in the case of Frank’s copula is the evaluation of the
integral in (14). Unfortunately, this integral cannot be expressed in a closed form.
Prudnikov et al. [10] propose the following expansion of this integral for small values
of the parameter α (α < ln2):

∫ α

0

x
ex −1

dx =
∞∑

k=1

1
k
(1− eα)k[ψ(1)−ψ(1+ k)],α < ln2 (20)

where ψ(x) is the Euler’s psi function that can be expressed by the following formula

ψ(x) = −0,577215..−
∞∑

k=0

(
1

k + x
− 1

k +1

)

(21)

In the interesting us case of small values of α we can expand (20) in the Taylor series
around zero arriving at a very simple relationship

τ ≈ α
9

(22)

Numerical investigations have shown that this approximate formula is very accurate
(error smaller than 1%) for α < 0.9 (i.e. for τ < 0.1), and sufficiently good (error
smaller than 5%) for α < 1.8 (i.e. for τ < 0.2). For example, for α = 0.9 the exact
value of τ is equal to 0.0992, and the approximate value is equal to 0.1. If α = 1.8,
then the exact value of τ is equal to 0.1939, and the approximate value is equal to
0.2.

The presented above analysis of the properties of Clayton’s, Frank’s, and Gum-
bel’s copulas shows that in the case of testing fuzzy near-independence we can al-
ways use a very simple statistic such as Kendall’s τ . Thus, the statistical test of
fuzzy independence can be formulated as Kendall’s test of the fuzzy hypothesis that
τ adopts the value of fuzzy zero.

5 Conclusions

In the paper we have considered the case when we are interested in the statistical
test of the hypothesis that statistical data are independent to certain degree. This
requirement can be formally represented as the statistical test of a fuzzy hypothesis
that the dependence parameter α is equal to a given fuzzy value α̃0. We have shown
that in the case of the popular models of dependence such as certain Archimedean
copulas (Clayton’s, Frank’s, and Gumbel’s) a well known Kendall’s τ statistic may
be used for the construction of simple fuzzy tests of fuzzy independence.
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Summary. The conditional variance of random variables plays an important role for well-
known variance decomposition formulas. In this paper, the conditional variance for fuzzy
random variables and some properties of it are considered. Moreover possible applications
of the variance decomposition formula are presented.

Key words: Fuzzy random variable, conditional variance, variance decomposition

1 Introduction

Conditional expectation and conditional variance play an important role in probabil-
ity theory. Let be X a random variable on the probability space (Ω ,F,P) and A ⊆ F

a sub-σ -algebra of F. Then the conditional expectation E(X |A), for example, is the
best mean squared approximation (best prediction) of X by a more rough, i.e. only
A-measurable function.

Conditioning is one of the principles of variance reduction, i.e. the “more rough”
random variable E(X |A) has a smaller variance than X ,

Var(E(X |A)) ≤ VarX .

The difference VarX − Var(E(X |A)) can be expressed mainly by the conditional
variance of X which is defined by

Var(X |A) = E((X −E(X |A))2|A) (1)

and which leads to the well known formula of variance decomposition

VarX = E(Var(X |A))+Var(E(X |A)). (2)

This formula plays an important role in applications (see section 4).
Very often we meet the situation where the random variables X has only fuzzy

outcomes. E.g. if an insurance company is interested in the claim sum X of the next
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(2006)
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year, it would be wise to assume fuzzy claims. Or if we interested in the state X
of health in a country the society of which is stratified e.g. wrt age or wrt to social
groups then it seems to be a violation to restrict X on numbers. Linguistic expres-
sions, however, lead more or less straightforward to a fuzzy valued X .

In section 2 we introduce necessary tools like frv’s and their expectation and
variance. In section 3 the conditional variance of a frv and some of its properties
are investigated and in section 4 we discusses possible applications of the variance
decomposition formula.

2 Preliminaries

A fuzzy subset Ã of R
n is characterized by its membership function µÃ : R

n → [0,1]
where µÃ(x) is interpreted as the degree to which x ∈ R

n belongs to Ã. The α-cuts of

Ã for 0 <α ≤ 1 are crisp sets and given by Ãα := {x ∈R
n : µÃ(x)≥α}. Additionally,

we call Ã0 := cl{x ∈ R
n : µÃ(x) > 0}, the support of Ã.

Let Kc(Rn) be the space of nonempty compact convex subsets of R
n and Fc(Rn)

the space of all fuzzy sets Ã of R
n with Ãα ∈Kc(Rn) for all α ∈ (0,1]. Using Zadeh’s

extension principle, addition between fuzzy sets from Fc(Rn) and scalar multiplica-
tion (with λ ∈ R) is defined as

µÃ⊕B̃(z) = sup
x+y=z

min(µÃ(x),µB̃(y)) ; µλ Ã(x) = µÃ

( x
λ

)

,λ �= 0.

Note that with Minkowski addition ⊕ between sets from Kc(Rn) it holds

(Ã⊕ B̃)α = Ãα ⊕ B̃α and (λ Ã)α = λ Ãα .

For A ∈ Kc(Rn) the support function sA is defined as

sA(u) := sup
a∈A

aT u , u ∈ S
n−1,

where aT u is the standard scalar product of a and u and S
n−1 = {t ∈ R

n : ||t|| = 1}
the (n−1)-dimensional unit sphere in the Euclidean space R

n. An natural extension
of the support function of a fuzzy set Ã ∈ Fc(Rn) is:

sÃ(u,α) =

{

sÃα
(u) : α > 0

0 : α = 0
, u ∈ S

n−1,α ∈ [0,1].

Each fuzzy set Ã ∈ Fc(Rn) corresponds uniquely to its support function, i.e.
different fuzzy subsets from Fc(Rn) induce different support functions and for
Ã, B̃ ∈ Fc(Rn) and λ ∈ R

+ it holds

sÃ⊕B̃ = sÃ + sB̃ (3)

sλ Ã = λ sÃ. (4)
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So we can consider Ã, B̃ ∈ Fc(Rn) in L2(Sn−1 × [0,1]) via its support function and
we define

δ2(Ã, B̃) :=
(

n
∫ 1

0

∫

Sn−1
|sÃ(u,α)− sB̃(u,α)|2ν(du)dα

) 1
2

,

〈

Ã, B̃
〉

:=
〈
sÃ,sB̃

〉
= n
∫ 1

0

∫

Sn−1
sÃ(u,α)sB̃(u,α)ν(du)dα,

||Ã||2 := ||sÃ||2 =
(

n
∫ 1

0

∫

Sn−1
sÃ(u,α)2ν(du)dα

) 1
2

.

With δ2(Ã, B̃) = ||sÃ − sB̃||2, Fc(Rn) can be embedded isometrically and isomorph
as closed convex cone in L2(Sn−1 × [0,1]).

Now, a fuzzy random variable (frv) can be defined as a Borel measurable function

X̃ : Ω → Fc(Rn)

from (Ω ,F,P) to (Fc(Rn),B2) where B2 is the σ -algebra induced by δ2.
Then all α−cuts are compact convex random set (see Puri, Ralescu [11], too).

There are further definitions of fuzzy random variables, which are equivalent under
some constraints. For details see Krätschmer [6] [7]. The (Aumann-) expectation Eξ
of a compact convex random set ξ is defined by the collection of all “pointwise”
expectations EX , the so called Bochner-integrals, with X ∈ ξ almost surely and, i.e
(see Aumann [1], too)

Eξ = {EX : X : Ω → R
n,X −Bochner-integrable,X(ω) ∈ ξ (ω) P-a.s.}.

Krätschmer shows in [8], that Eξ ∈ Kc(Rn) if and only if ξ is integrably bounded,
i.e. if δ2(ξ ,{0}) is integrable. A frv X̃ is called integrably bounded if all α-cuts are
integrably bounded. Then there exists a unique fuzzy set EX̃ ∈ Fc(Rn), called the
Aumann expectation of X̃ , such that

(EX̃)α = E(X̃α) ; 0 < α ≤ 1. (5)

This expectation of a frv X̃ was introduced by Puri/Ralescu [11]. Further we can
define ∫

A
X̃dP := E

(

IAX̃
)

,

where IA denotes the indicator function of A ∈ F.
For an integrable bounded frv the measurable function

sX̃(.)(u,α) : Ω → R, ω �→ sX̃(ω)(u,α)

is integrable and the support function of the expectation is equal, the expectation of
the support function (Vitale [14]):

sEX̃ (u,α) = EsX̃ (u,α), u ∈ S
n−1,α ∈ (0,1]. (6)
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Following Körner [5] the variance of a frv X̃ with E||X̃ ||22 < ∞ is defined by

VarX̃ = Eδ 2
2 (X̃ ,EX̃) (7)

= E
〈
sX̃ − sEX̃ ,sX̃ − sEX̃

〉

= E||X̃ ||22 −||EX̃ ||22.

Using (5) and (6) this can be written as

VarX̃ = n
∫ 1

0

∫

Sn−1
VarsX̃ (u,α)ν(du)dα.

For more details on the expectation and variance of frv‘s see e.g. Näther [9].

3 Conditional Variance

In this section, we present the definition of the conditional variance of a frv and
prove same properties of it. As a corollary, we obtain a variance decomposition for-
mula analogously to (2). We start with the definition of the conditional expectation
of a frv.

Assumption 1
Let (Ω ,F,P) be a probability space, A a sub-σ -algebra of F and X̃ a frv with
E(||X̃ ||22) < ∞ (i.e. VarX̃ < ∞).

Definition 1 (Conditional Expectation).
Under assumption 1, the conditional expectation of a frv X̃ with respect to A is the
frv E(X̃ |A) which:

(a) E(X̃ |A) is A-measurable,

(b)
∫

A
E(X̃ |A)dP =

∫

A
X̃dP ∀A ∈ A.

Analogously to (5) it holds (see Puri and Ralescu [12])

(E(X̃ |A))α = E(X̃α |A) ; 0 < α ≤ 1. (8)

Moreover, similar to (6) it can be proven that

sE(X̃ |A)(u,α) = E(sX̃ (u,α)|A), u ∈ S
n−1,α ∈ (0,1], (9)

see M. Stojakovic\Z. Stojakovic [13] and Wünsche\Näther [15] and
Hiai\Umegaki [4]. With the equations (6) and (9) further it can be proven that

E(E(X̃ |A)) = E(X̃). (10)
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Definition 2 (Conditional Variance).
Under assumption 1, the conditional variance of X̃ wrt A is the real random variable

Var(X̃ |A) := E(δ 2
2 (X̃ ,E(X̃ |A))|A) (11)

In the following we present some properties of the conditional variance.

Assumption 2
Let X be a non-negative almost surely bounded random variable on (Ω ,F,P)
which is conditional independent (for conditional independence see, for instance
Chow/Teicher [3])) of X̃ wrt A ⊂ F.

Theorem 1. Under assumption 1 and assumption 2 it holds

Var(XX̃ |A) = E(X2|A)E(||X̃ ||22|A)−E(X |A)2||E(X̃ |A)||22. (12)

For the proofs of the theorem and the following corollary see
Näther\Wünsche[10].

As a direct conclusions of theorem 1 we obtain the following rules for the condi-
tional variance. Note that for A = { /0,Ω} the conditional variance is the variance of
the frv. Take the assumptions of theorem 1 and let be Ã ∈ Fc(Rn) and λ ∈ R. Then
it holds

Var(X̃ |A) = E(||X̃ ||22|A)−||E(X̃ |A)||22 (13)

= n
∫ 1

0

∫

Sn−1
Var(sX̃ (u,α)|A)ν(du)dα (14)

Var(λ X̃ |A) = λ 2Var(X̃ |A) (15)

Var(XÃ|A) = ||Ã||22Var(X |A) (16)

Var
(

XX̃ |A
)

= E
(
X2|A

)
Var(X̃ |A)+Var(X |A)||E(X̃|A)||22 (17)

Var
(

XX̃ |A
)

= E(X |A)2 Var(X̃ |A)+Var(X |A)E
(

||X̃ ||22|A
)

(18)

Now, we easily can obtain an analogon of variance decomposition formula (2).

Corollary 1. Under assumption 1 it holds

VarX̃ = E
(

Var
(

X̃ |A
))

+Var
(

E
(

X̃ |A
))

. (19)

4 Applications of the Variance Decomposition Formula

4.1 Wald’s Identity

Consider, for example, an insurance company with a random claim number N per
year and N individual claims C1, ..,CN which, for simplicity, are assumed to be iid.
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like C. Obviously, the company is interested in the variance of the claim sum S :=
∑N

i=1 Ci which easily can be computed by use of variance decomposition formula (2)
and which leads to the well known Wald’s identity

VarS = ENVarC +VarN(EC)2. (20)

Now, let us discuss Wald’s formula for a random number N of iid. fuzzy claims
C̃i; i = 1, ..,N; distributed like the prototype claim C̃. The claim sum

S̃ :=
N∑

i=1

C̃i

is a frv, too. Applying (19) it holds

VarS̃ = E(Var(S̃|N))+Var(E(S̃|N)). (21)

Obviously, we obtain

E(S̃|N) = E(
N∑

i=1

C̃i|N)

= NEC̃.

Using (16) (with A = { /0,Ω}), we have

Var(E(S̃|N)) = ||EC̃||22VarN. (22)

Since the C̃i are iid the variance of the sum of the C̃i is equal the sum of the variances
i.e. it holds

Var(S̃|N) = NVarC̃

=⇒ E(Var(S̃|N)) = ENVarC̃.

Hence, (21) can be written as

VarS̃ = ENVarC̃ +VarN||EC̃||22 (23)

which is the direct analogon of Wald’s identity (20).

4.2 Stratified Sampling

Consider a random characteristic X with EX = µ on a stratified sample space Ω with
the strata (decomposition) Ω1, ..,Ωk. Let µi and σ2

i be expectation and variance of X
in stratum Ωi and pi = P(Ωi); i = 1, ..,k. Then, a consequence of (2) is
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VarX =
k∑

i=1

piσ2
i +

k∑

i=1

pi(µi −µ)2 (24)

which is a well known formula in sampling theory (see e.g. Chaudhuri, Stenger [2]).
Consider a frv X̃ on a probability space (Ω ,F,P) which is stratified into strata

Ωi ∈ F; i = 1, ..,k; with
k⋃

i=1
Ωi = Ω , Ωi ∪Ω j = /0 for i �= j and P(Ωi) =: pi. Let A =

σ(Ω1, ..,Ωk) be the σ−algebra generated by the strata Ωi. Obviously, it is A ⊆ F.
Following (7) and having in mind E(E(X̃ |A)) = EX̃ we obtain

Var(E(X̃ |A)) = Eδ 2
2 (E(X̃ |A),EX̃)

=
k∑

i=1

piδ 2
2 (E(X̃ |Ωi),EX̃).

On the other hand it holds

E(Var(X̃ |A)) =
k∑

i=1

piVar(X̃ |Ωi).

Using the abbreviations µ̃ := EX̃ , µ̃i := E(X̃ |Ωi), σ2
i := Var(X̃ |Ωi); i = 1, ..,k; for-

mula (19)

VarX̃ = E
(

Var
(

X̃ |A
))

+Var
(

E
(

X̃ |A
))

can be specified as

VarX̃ =
k∑

i=1

piσ2
i +

k∑

i=1

piδ 2
2 (µ̃i, µ̃)

which is a direct generalization of formula (24).

For more details and proofs see Näther\Wünsche[10].
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The probability density function is a fundamental concept in statistics. Specifying
the density function f of a random variable X on Ω gives a natural description of
the distribution of X on the universe Ω . When it cannot be specified, an estimate of
this density may be performed by using a sample of n observations independent and
identically distributed (X1, ...,Xn) of X .

Histogram is the oldest and most widely used density estimator for presentation
and exploration of observed univariate data. The construction of a histogram consists
in partitioning a given reference interval Ω into p bins Ak and in counting the number
Acck of observations belonging to each cell Ak. If all the Ak have the same width h,
the histogram is said to be uniform or regular. Let 1lAk be the characteristic function
of Ak, we have

Acck =
n∑

i=1

1lAk(Xi). (1)

By hypothesizing the density of the data observed in each cell to be uniform, an
estimate f̂hist(x) of the underlying probability density function f (x) at any point x of
Ak can be computed by:

f̂hist(x) =
Acck

nh
. (2)

The popularity of the histogram technique is not only due to its simplicity (no
particular skills are needed to manipulate this tool) but also to the fact that the piece
of information provided by a histogram is more than a rough representation of the
density underlying the data. In fact, a histogram displays the number of data (or ob-
servations) of a finite data set that belong to a given class i.e. in complete agreement
with the concept summarized by the label associated with each bin of the partition
thanks to the quantity Acck.

However, the histogram density estimator has some weaknesses. The approxima-
tion given by expression (2) is a discontinuous function. The choice of both reference
interval and number of cells (i.e. bin width) have quite an effect on the estimated den-
sity. The apriorism needed to set those values makes it a tool whose robustness and
reliability are too low to be used for statistical estimation.

K. Loquin and O. Strauss: Fuzzy Histograms and Density Estimation, Advances in Soft Computing 6, 45–52 (2006)
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In the last five years, it has been suggested by some authors that replacing the
binary partition by a fuzzy partition will reduce the effect of arbitrariness of par-
titioning. This solution has been studied as a practical tool for Chi-squared tests
[Run04], estimation of conditional probabilities in a learning context [VDB01],
or estimation of percentiles [SCA00] and modes [SC02]. Fuzzy partitioning has
received considerable attention in the literature especially in the field of control
and decision theory. Recently, some authors have proposed to explore the uni-
versal approximation properties of fuzzy systems to solve system of equations
[Per06, Per04, Wan98, HKAS03, Lee02].

In a first part, we will formally present the fuzzy partition as proposed in [Per06].
In section 2, a histogram based upon this previous notion will be defined, that will
be called a fuzzy histogram. In a last section, some estimators of probability density
functions will be shown, before concluding.

1 Fuzzy Partitions

1.1 Preliminary

In histogram technique, the accumulation process (see expression (1)) is linked to
the ability to decide whether the element x belongs to a subset Ak of Ω , the universe,
or not. This decision is tantamount to the question whether it is true that x ∈ Ak or not
(this is a binary question). However, in many practical cases, this question cannot be
precisely answered : there exists a vagueness in the “frontiers” of Ak. A reasonable
solution consists in using a scale whose elements would express various degrees of
truth of x ∈ Ak, and Ak becomes a fuzzy subset of Ω . Let L be this scale of truth
values. We usually put L = [0,1].

1.2 Strong Uniform Fuzzy Partition of the Universe

Here we will take an interval Ω = [a,b] (real) as the universe. Then,

Definition 1. Let m1 < m2 < ... < mp be p fixed nodes of the universe, such that
m1 = a and mp = b, and p ≥ 3. We say that the set of the p fuzzy subsets A1,A2,...,Ap,
identified with their membership functions µA1(x),µA2(x),...,µAp(x) defined on the
universe, form a strong uniform fuzzy partition of the universe, if they fulfil the fol-
lowing conditions :

for k = 1, ..., p

1. µAk(mk) = 1 (mk belongs to what is called the core of Ak),
2. if x /∈ [mk−1,mk+1], µAk(x) = 0 (because of the notation we should add : m0 =

m1 = a and mp = mp+1 = b),
3. µAk(x) is continuous,
4. µAk(x) monotonically increases on [mk−1,mk] and µAk(x) monotonically de-

creases on [mk,mk+1],
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5. ∀x ∈Ω , ∃k, such that µAk(x) > 0 (every element of the universe is treated in this
partition).

6. for all x ∈Ω ,
∑p

k=1 µAk(x) = 1
7. for k �= p, hk = mk+1 −mk = h = constant, so, mk = a+(k−1)h,
8. for k �= 1 and k �= p, ∀x ∈ [0,h] µAk(mk − x) = µAk(mk + x) (µAk is symmetric

around mk),
9. for k �= 1 and k �= p, ∀x ∈ [mk,mk+1], µAk(x) = µAk−1(x − h) and µAk+1(x) =
µAk(x−h) (all the µAk , for k = 2, ..., p−1 have the same shape, with a translation
of h. And as for µA1 and µAp , they have the same shape, but truncated, with
supports twice smaller than the other ones).

Condition 6 is known as the strength condition, which ensures a normal weight
of 1, to each element x of the universe in a strong fuzzy partition. In the same way,
conditions 7, 8 and 9 are the conditions for the uniformity of a fuzzy partition.

Proposition 1. Let (Ak)k=1,...,p be a strong uniform fuzzy partition of the universe,
then
∃KA : [−1,1]−→ [0,1] pair, such that, µAk(x)= KA( x−mk

h )1l[mk−1,mk+1] and
∫

KA(u)du =
1.

Proof. We can take KA(u) = µAk(hu + mk), ∀k. The support of KA comes from
the ones of the µAk , and the parity is deduced from a translation of the sym-

metry of the µAk . And, to end this proof,
∫ 1
−1 KA(u)du =

∫ 1
−1 µAk(hu + mk)du =

∫ mk+1
mk−1

1
hµAk(x)dx = 1.

Table 1. Strong uniform fuzzy partition examples

Crisp Triangular Cosine

µA1(x) = 1l[m1,m1+ h
2 ](x)

(m2−x)
h 1l[m1,m2](x)

1
2 (cos( π(x−m1)

h )+1)1l[m1,m2](x)
(x−mk−1)

h 1l[mk−1,mk ](x)

µAk (x) = 1l[mk− h
2 ,mk+ h

2 ](x) + 1
2 (cos( π(x−mk)

h )+1)1l[mk−1,mk+1](x)
(mk+1−x)

h 1l[mk ,mk+1](x)

µAp(x) = 1l[mp− h
2 ,mp](x)

(x−mp−1)
h 1l[mp−1,mp](x)

1
2 (cos( π(x−mp)

h )+1)1l[mp−1,mp]

KA(x) = 1l[− 1
2 , 1

2 ](x) (1−|x|)1l[−1,1](x) 0.5(cos(πx)+1)1l[−1,1](x)
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a: Cosine b: Triangular
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Fig. 1. Fuzzy partitions with Ω = [0,1] and p = 5

2 A Fuzzy-Partition Based Histogram

The accumulated value Acck is the key feature of the histogram technique. It is the
number of observations in complete agreement with the label represented by the
restriction of the real line to the interval (or bin) Ak. Due to the important arbitrariness
of the partition, the histogram technique is known as being very sensitive to the
choice of both reference interval and number of cells (or bin width). As mentioned
before, the effect of this arbitrariness can be reduced by replacing the crisp partition
by a fuzzy partition of the real line.

Let (Ak)k=1,...,p be a strong uniform fuzzy partition of Ω , the natural extension
of the expression (1) induces a distributed vote. The value of the accumulator Acck

associated to the fuzzy subset Ak is given by:

Acck =
n∑

i=1

µAk(Xi). (3)

Then, those accumulators still represent a “real” (generally not an integer) number of
observations in accordance with the label represented by the fuzzy subset Ak. More-
over, the strength (Condition 6 of Definition 1) of the fuzzy partition (Ak)k=1,...,p

implies that the sum of the Acck equals to n,1 the number of observations. Note that
the classical crisp-partition based histogram is a particular case of the fuzzy-partition
based histogram, when (Ak)k=1,...,p is the crisp partition.

We propose to illustrate the softening property of the fuzzy histogram over the
crisp histogram. Figure 2.(a) displays a crisp histogram of 35 observations drawn
from a Gaussian process with mean µ = 0.3 and variance σ2 = 1. Figure 2.(b) dis-
plays a fuzzy triangular partition based histogram of the same observations with
the same reference interval position. We have translated both crisp and fuzzy par-
titions by an amount of 30% of the bin width. As it can be seen on Figure 2.(c),

1 indeed,
∑p

k=1 Acck =
∑p

k=1

∑n
i=1 µAk (Xi) =

∑n
i=1
∑p

k=1 µAk (Xi)
∑n

i=1 1 = n
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this translation has quite an effect on the crisp-partition based histogram, while the
fuzzy-partition based histogram plotted on Figure 2.(d) still has the same general
shape. The number of observations is too small, regarding the number of fuzzy sub-
sets (p = 8) of the partition, to ensure that the convergence conditions are fulfilled
(see theorem 1).

(a) crisp-partition based histograms (b) fuzzy-partition based histograms

(c) translated crisp-partition based histograms (d) translated fuzzy-partition based histograms
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Fig. 2. Effect of the translation on a crisp ((a) and (b)) and a fuzzy ((c) and (d)) histogram

3 Fuzzy Histogram Density Estimators

Expression (2) can be used for both crisp and fuzzy histograms to estimate the den-
sity underlying a set of observations. However, since Ak is a fuzzy subset, this ex-
pression no longer holds for any x ∈ Ak, but normalized accumulators Acck

nh now have
degrees of truth inherited from the fuzzy nature of Ak (see the preliminary of the
section 1). The value Acck

nh is then more true at mk than at any other point of Ω . Our

proposal is to assign this value Acck
nh to the estimated density at each node mk of the

partition. Therefore, the estimated density can be obtained, at any point x �= mk, by
interpolation.

In this paper, we propose to use, once again, the concept of strong uniform fuzzy
partition of p fuzzy subsets to provide an interpolation of those p points.
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Proposition 2. An interpolant of a fuzzy histogram (of the points (mk,
Acck
nh )) is given

by

f̂FH(x) =
1

nh

p
∑

k=1

AcckKB(
x−mk

h
) (4)

where KB is defined as in proposition 1 for the strong uniform fuzzy partition
(Bk)k=1,...,p.

Proof. Conditions 1 and 6 of the definition 1 imply that µBk(ml) = δkl for k, l ∈
{1, ..., p}, where δkl is the Kronecker symbol, and, KB(ml−mk

h ) = µBk(ml). Then,

f̂FH(ml) = Accl
nh , for all l ∈ {1, ..., p}, which means that f̂FH goes though the p points

(mk,
Acck
nh ).

Therefore, this interpolant (which is a density estimator) has the continuity prop-
erties of the membership functions of the fuzzy partition (Bk)k=1,...,p, except at the
nodes mk, where the smoothness is not guaranteed. We can now add a convergence
property of the estimators given by expression (4). So, let the error between the un-
derlying density f (x) and the estimate f̂FH(x) be measured by the mean squared
error : MSE(x) � E f [ f̂FH(x)− f (x)]2. We have proved Theorem 1 in a paper to be
published [LS], which is in some sense, the technical part of this paper. This proof is
inspired from the demonstrations of the consistency theorems of the kernel density
estimator, that are in [Tsy04].

Theorem 1. Let us suppose

1. f : Ω → [0,1] is a density function such that f is bounded (∀x ∈ Ω , f (x) ≤
fmax < +∞) and f ′, its derivative, is bounded (∀x ∈Ω , | f ′(x)| ≤ f ′

max < +∞),
2. KA, as defined in proposition 1, verifies

∫ 1
−1 K2

A(u)du < +∞.

Then, for all x ∈Ω ,

h → 0 and nh → +∞ ⇒ MSE(x) → 0 (5)

This theorem gives a mathematical evidence that the fuzzy histogram is a proper rep-
resentation of the distribution of data, because a simple interpolation of a normalized
histogram converges (in MSE) to the underlying density. It converges under classical
conditions, which are, the reduction of the support of the membership functions, or
the growth of the number of fuzzy subsets of the partition (h → 0 or p → +∞), and
the growth of the mean number of data in each accumulator (nh → +∞).

However, the use of the membership functions of a fuzzy partition as interpola-
tion functions is not compulsory. Thus, well-known interpolation functions could be
used, e.g. the polynomial interpolation (with the Lagrange or the Newton form), or
the spline interpolation, which improves the smoothness management at the nodes.

Figure 3 shows four estimations of a bimodal gaussian distribution with para-
meters (m1 = 4,σ2

1 = 4) and (m2 = −1,σ2
2 = 1

4 ), based upon a fuzzy triangular

histogram. The circles are the interpolation points (mk,
Acck
nh ). The dashed line is the

crisp interpolation (see expression (2)). The solid line is the estimator obtained by
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Fig. 3. Density estimation by interpolation

fuzzy triangular interpolation (see expression (4)). The dotted line is a spline inter-
polation of the points (mk,

Acck
nh ).

The estimations are obtained with n = 100 observations and p = 14 fuzzy subsets
of the partition, which means that we are no longer in convergence conditions. Table
2 gives the empirical L1 errors of interpolation, i.e.

∫

Ω | f̂FH(x)− f (x)|dx, obtained
by repeating the experiment 100 times. This error is noted mError ±3∗σError, where
mError is the mean of the L1 error over the 100 experiments and σError its standard
deviation.

Note that, whatever the interpolation scheme, compared to crisp histogram den-
sity estimators, the fuzzy histogram density estimators seem to be more stable (which
can be measured by means of the standard deviation) and closer (in L1 distance) to
the underlying density (in that particular case).

Another important remark, deduced from Table 2, is that the fuzzy interpolants
appear to be a good choice, because their error magnitudes are equivalent to those of
the spline interpolant, which is known as being an optimal tool.

Table 2. L1 errors of interpolation

crisp accumulators fuzzy accumulators

crisp interpolation 0.028307±0.014664 0.024957±0.01166
triangular interpolation 0.021579±0.014963 0.020807±0.013539
cosine interpolation 0.022524±0.014832 0.021103±0.01327
spline interpolation 0.021813±0.01577 0.020226±0.0139
Lagrange interpolation 3.7349±7.893 2.2537±4.3761

4 Conclusion

In this paper, we have presented density estimators based upon a fuzzy histogram.
This latter being nothing else but a generalization of the popular crisp histogram,
when replacing the crisp partition by a fuzzy partition. Those proposed density es-
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timators consist in interpolations of the nodes’ values of the density obtained in the
usual way : Acck

nh .
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Summary. Three methods are outlined aiming at the (partial) ranking of the elements of a
poset respecting the poset order. First, we obtain a partial ranking by applying first degree
stochastic dominance to the rank probability distributions of the poset elements. Then we use
the minimum, product or Lukasiewicz copula as an artefact for pairwisely coupling rank prob-
ability distributions into bivariate distributions. They serve as a basis for generating a proba-
bilistic relation which constitutes a graded version of stochastic dominance. The transitivity of
the probabilistic relations being characterizable in the framework of cycle-transitivity, a cut-
ting level is specified that provides us with a strict partial order. Finally, we apply the graded
stochastic dominance principle directly to the mutual rank probabilities. Based on exhaustive
experiments, a conjecture on the transitivity of the associated probabilistic relation is made,
and a (partial) ranking of the poset elements is extracted.

Keywords: Copula, Cycle-transitivity, Linear extension, Mutual ranking, Poset, Probabilistic
relation, Ranking probability, Stochastic dominance, Stochastic transitivity.

1 Introduction

In a poset the elements are partially ordered: any two elements are either comparable
or incomparable. The question arises whether the partial order can be consistently
extended to a total order. Any such total order is called a linear extension of the
poset, but the decision maker who wants to rank the elements, typically needs to
select a single linear extension out of a manifold of linear extensions. His choice
should, however, not be made arbitrarily. If, for example, a particular poset element
is of low rank in most of the linear extensions, linear extensions in which that element
occasionally appears at higher rank should be discarded from the option list. Ideally,
his final choice must take into account the rank frequency distributions of all the
poset elements.

A possible way to achieve this goal is to consider for each element of P its cumu-
lative rank probability distribution (c.r.d.f.) and to establish a pairwise comparison of
elements through the comparison of their distributions, relying, for instance, on the

K. De Loof et al.: Graded Stochastic Dominance as a Tool for Ranking the Elements of a Poset, Advances in Soft
Computing 6, 53–60 (2006)
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principle of stochastic dominance. This technique amounts in a partial order that ex-
tends the partial order on P. The iterative application of this technique can eventually
generate a total order, though this is not generally the case.

A weakness of the stochastic dominance principle is that it only relies upon the
information contained in the marginal c.r.d.f.’s, and therefore ignores any possible
correlation between elements with respect to the positions they mutually occupy in
the linear extensions. One can remedy this by considering the bivariate rank proba-
bility distributions and setting up mechanisms for extracting from these joint distrib-
utions degrees of precedence between every pair of poset elements. In this paper, two
such methods are established. They are conform with a graded version of stochastic
dominance.

First, we build artificial bivariate c.r.d.f.’s by coupling the marginal c.r.d.f.’s with
a fixed copula. Three representative copulas are considered: the minimum copula TM
which describes comonotonic coupling, the product copula TP which models the in-
dependent case, and the Lukasiewicz copula TL which describes countermonotonic
coupling. In all cases, we obtain a so-called probabilistic relation. Cutting this rela-
tion at some appropriate cutting level, yields a cycle-free crisp relation. Its transitive
closure is a strict partial order that, in the case of the coupling with either TM or TL
extends the given partial order. However, to find such appropriate cutting levels, one
needs to know the type of transitivity of the probabilistic relation. For the three cou-
plings mentioned, this typing has been realized in the framework of cycle-transitivity,
previously established by some of the present authors.

Alternatively, we apply the graded stochastic dominance principle directly to the
true bivariate c.r.d.f.’s. The latter are not explicitly required as only mutual rank prob-
abilities need to be computed. On the other hand, we have not yet been able to char-
acterize the transitivity of the generated probabilistic relation. Based on experimental
results obtained on all posets containing at most 9 elements and on a random selec-
tion of posets containing up to 20 elements, we put forward a conjecture concerning
this type of transitivity and derive a cutting level that is expected to provide us with
a partial order that again extends the given partial order.

The outline of the paper is as follows. In section 2 we introduce concepts related
to posets, linear extensions, rank probabilities and mutual rank probabilities. In Sec-
tion 3, a partial ranking is obtained by applying the stochastic dominance principle.
Section 4 is concerned with artificial couplings and graded stochastic dominance.
Section 5 deals with graded stochastic dominance related to the mutual rank proba-
bilities.

2 Preliminaries

2.1 Posets and Linear Extensions

A poset is denoted by (P,≥P), where P is a set and ≥P an order relation on P, i.e. a
reflexive, antisymmetric and transitive relation whose elements are written as a ≥P b.
Two elements x and y of P are called comparable if x ≥P y or x ≤P y; otherwise they
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are called incomparable, and we write x||y. A complete order is a poset in which
every two elements are comparable. We say that x covers y, denoted as x �P y, if
x >P y and there exists no z ∈ P such that x >P z >P y. By definition x >P y if x ≥P y
and not x ≤P y. A chain of a poset P is a subset of P in which every two elements
are comparable. Dually, an antichain of a poset P is a subset of P in which every
two elements are incomparable. A poset can be conveniently represented by a so-
called Hasse diagram where x >P y if and only if there is a sequence of connected
lines upwards from y to x. An example of a Hasse diagram is shown on the left of
Figure 1.
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Fig. 1. left: Hasse diagram of a poset P; right: all linear extensions of P

An ideal of a poset (P,≤P) is a subset D ⊆ P such that x ∈ D, y ∈ P and y ≤P x
implies y ∈ D. The set of ideals forms a distributive lattice, called the lattice of ideals
of P.

A poset (Q,≤Q) is called an extension of a poset (P,≤P) if for all x,y ∈ Q, x ≤P y
imply x ≤Q y. A linear extension or complete extension is an extension that is a chain.
In Figure 1, also the five linear extensions of the poset P are given.

2.2 Rank Probabilities

The rank probability px(i) of an element x ∈ P is defined as the fraction of linear
extensions of P where x occurs at position i. Letting i run over all positions from 1 to
|P|, the function px is called the rank probability distribution of the element x. Note
that we have identified a space of random events with the set of all linear extensions
of a given poset P considered equally likely. To each element x of P is associated a
discrete random variable X taking values in the set {1,2, . . . , |P|}. In Table 1 the rank
probabilities are given for the poset of Figure 1.

Counting the number of linear extensions of a poset P with a specific element
x ∈ P on position i (i = 1,2, . . . , |P|) amounts to the problem of counting the number
of paths in the ideal lattice representation containing the edges labelled x at height
i, a problem that is easily solved by careful counting. Based on this equivalence,
we have developed in [2] an algorithm that efficiently computes the rank probability
distributions of all the elements in the poset in essentially two passes of the lattice of
ideals. Its run time is proportional to the number of edges in the ideal lattice.
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2.3 Mutual Rank Probabilities

The mutual rank probability Prob(X > Y ) of two elements (x,y) ∈ P2 is defined as
the fraction of linear extensions of P where element x is ranked higher than element
y. The rank of an element of P in a linear extension is its position number in the
chain. The mutual rank probability Prob(X > Y ) can be immediately computed from
the bivariate probability distribution px,y of (x,y), px,y(i, j) denoting the joint prob-
ability that x occurs at position i and y at position j in a linear extension of P. In [2]
we have proposed an efficient algorithm that gradually builds up a two-dimensional
table initialized with zeroes, and which, after execution of the algorithm, contains all
mutual rank probabilities Prob(x > y). The main idea is to traverse the ideal lattice
recursively in a depth-first manner.

In Table 2 the mutual rank probabilities of the poset of Figure 1 are presented
in matrix form. Note that this matrix has zeroes everywhere on the diagonal and is
reciprocal, i.e. any matrix element is the 1-complement of the diagonally opposite
element. These properties clearly reflect that two elements of a poset cannot share
the same position in a linear extension.

Table 1. Rank probabilities.

X \ i 1 2 3 4 5 6

a 1 0 0 0 0 0

b 0 2
5

2
5

1
5 0 0

c 0 3
5

2
5 0 0 0

d 0 0 0 2
5

3
5 0

e 0 0 1
5

2
5

2
5 0

f 0 0 0 0 0 1

Table 2. Mutual rank probabilities.

X \ Y a b c d e f

a 0 0 0 0 0 0
b 1 0 3

5 0 1
5 0

c 1 2
5 0 0 0 0

d 1 1 1 0 3
5 0

e 1 4
5 1 2

5 0 0
f 1 1 1 1 1 0

3 Stochastic Dominance

Let us consider the c.r.d.f. FX of x ∈ P defined by FX (s) =
∑

i≤s px(i). A well-known
concept for comparing two random variables is that of stochastic dominance [5],
which is particularly popular in financial mathematics. A random variable X with
c.d.f. FX stochastically dominates in first degree a random variable Y with c.d.f. FY ,
denoted as X ≥FSD Y , if for any real t it holds that FX (t) ≤ FY (t). The condition for
first degree stochastic dominance is rather severe, as it requires that the graph of the
function FX lies entirely beneath the graph of the function FY . The need to relax this
condition has led to other types of stochastic dominance, such as second degree and
third degree stochastic dominance.

Clearly, the relation ≥FSD yields a partial order on P. If in the given poset P two
elements x and y are comparable, say x >P y, then in all linear extensions of P, x is
ranked higher than y and FX lies entirely beneath FY , whence x >FSD y. The converse,
however, is not generally true as it can happen for incomparable elements x and y that
x >FSD y, in other words, elements that are incomparable at the level of the poset can
become comparable at the level of the partial order induced by first degree stochastic
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dominance. Hence, we obtain a partial order that extends >P. This procedure can
be repeated until convergence. Full ranking of the elements can be achieved if the
limiting partial order is a linear order (chain). However, this is not generally true [7].

4 Graded Stochastic Dominance

The principle of stochastic dominance relies upon the information contained in the
marginal rank probability distributions only. More information concerning the rank
of the elements in the linear extensions of P is contained in the bivariate c.r.d.f. but,
as far as we know, the stochastic dominance principle has not been extended to deal
with this additional information.

A first method for generating a graded stochastic dominance relation is based
on the construction of artificial bivariate c.r.d.f.’s from the marginal c.r.d.f.’s. To that
aim, we fix copula that is representative for a coupling with positive, negative or
zero-correlation.

4.1 Copulas

Copulas were introduced in statistics to express the coupling of two univariate c.d.f.’s
into a single bivariate c.d.f. [6]. Today, there is a renewed interest in copulas, also
out of the scope of probability theory.

A binary operator C : [0,1]2 → [0,1] is a copula if it has neutral element 1, ab-
sorbing element 0 and the so-called property of moderate growth, i.e. for all x1 ≤ x2

and all y1 ≤ y2, it holds that

C(x1,y1)+C(x2,y2) ≥ C(x1,y2)+C(x2,y1) .

Any copula is (pointwisely) situated between the Lukasiewicz copula TL defined by
TL(u,v) = max(u + v − 1,0) and the minimum copula TM defined by TM(u,v) =
min(u,v), i.e. for any copula C it holds that TL ≤ C ≤ TM. Another important copula
is the product copula TP defined by TP(u,v) = uv.

Sklar’s theorem says that for any random vector (X ,Y ) there exists a copula CXY

s.t. FX ,Y (x,y) = CXY (FX (x),FY (y)). This shows that a copula captures the depen-
dence structure irrespective of the marginals. If two random variables are coupled by
means of TM (resp. TL) they are called comonotonic (resp. countermonotonic). With
the copula TP, the bivariate c.d.f. is the product of the univariate marginal c.d.f.’s,
implying that the random variables are independent. Considering the three bivariate
c.d.f.’s of three random variables (X ,Y,Z), the compatibility problem states that not
all combinations of copulas are possible. In particular, CXY ,CY Z and CXZ can be all
equal to TM or all equal to TP, but they cannot be all equal to TL.

4.2 Cycle-Transitivity

Let Q be a probabilistic relation on A, and a,b,c any three elements of A. We define
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αabc = min{Q(a,b),Q(b,c),Q(c,a)} ,

βabc = median{Q(a,b),Q(b,c),Q(c,a)} ,

γabc = max{Q(a,b),Q(b,c),Q(c,a)} .

The relation Q is called cycle-transitive w.r.t. an upper bound function (u.b.f.) U
if for any a,b,c ∈ A it holds that

L(αabc,βabc,γabc) ≤ αabc +βabc + γabc −1 ≤ U(αabc,βabc,γab)

with the lower bound function function (l.b.f.) L defined by L(α,β ,γ) = 1−U(1−
γ,1−β ,1−α).

Various types of transitivity of probabilistic relations fit into this framework[1];
we consider only a few here. A probabilistic relation Q that is cycle-transitive
w.r.t. the u.b.f. U12(α,β ,γ) = α + β −αβ is called product-transitive. It is equiv-
alent with stating that for any a,b,c ∈ A3 it holds that Q(a,c) ≥ Q(a,b)Q(b,c).
Cycle-transitivity w.r.t. the u.b.f. U23(α,β ,γ) = β + γ −βγ is also known as dice-
transitivity [3]. We will also consider cycle-transitivity w.r.t. the u.b.f. U13(α,β ,γ) =
α + γ−αγ . Cycle-transitivity w.r.t. the u.b.f. UM(α,β ,γ) = β is equivalent to min-
transitivity. At the other end, there is cycle-transitivity w.r.t. the u.b.f. UL(α,β ,γ) =
1, which is equivalent to TL-transitivity, in many contexts, the weakest possible type
of transitivity, requiring Q(a,b)+Q(b,c)+Q(c,a)≤ 2 for any a,b,conA. Finally, we
mention cycle-transitivity w.r.t. the u.b.f. Ups(α,β ,γ) = γ , which is also known as
partial stochastic transitivity and is equivalent to requiring that for any a,b,c ∈ A for
which Q(a,b) > 1/2 and Q(b,c) > 1/2, it holds that Q(a,c) ≥ min(Q(a,b),Q(b,c)).

4.3 The Graded Stochastic Dominance Relation

In [3] we have established a method for comparing pairwisely random variables in a
pairwise manner. We defined a degree of preference between two random variables.
This method can be used in the present context as with each x ∈ P we associate a
random variable X .

If for each pair of random variables (X ,Y ) is given a function FX ,Y that has all
the properties of a binary c.d.f., then we can construct a relation Q by Q(x,y) =
Prob(X >Y ) wich clearly depends on these functions FX ,Y . The relation Q is a prob-

abilistic relation as it satisfies Q(x,y)+ Q(y,x) = 1. Q(x,y) can also be interpreted
as the degree by which x stochastically dominates y. If x >P y, then Q(x,y) = 1, in
agreement with X >FSD Y . This explains why the probabilistic relation can be called
a graded stochastic dominance relation.

4.4 Artificial Couplings

We construct functions FX ,Y by artificially coupling all pairs of random variables
(X ,Y ) by means of a same copula C ∈{TM,TP,TL}, i.e. FX ,Y (u,v) =C(FX (u),FY (v)).
Clearly, because C is a copula, these functions can be regarded as bivariate c.d.f.’s and
we can compute the probabilistic relation Q. We will provide Q with a superscript
referring to this copula. In [3], we have proven that
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– if C = TM, then QM is cycle-transitive w.r.t. the u.b.f. UL (TL-transitive);
– if C = TP, then QP is cycle-transitive w.r.t. the u.b.f. U23 (dice-transitive);
– if C = TL, then QL is cycle-transitive w.r.t. the u.b.f. Ups (partial stochastic tran-

sitive).

Knowing the type of transitivity, we are able to determine for each case the minimal
cutting level δ , such that the graph of the crisp relation obtained from Q by setting
its elements strictly smaller than δ equal to 0 and its other elements equal to 1, is
free from cycles. In particular, for the three couplings of interest, the minimum value
of the cutting level δ is:

– if C = TM then δM =
|P|−1

|P| ;

– if C = TP then δP = 1− 1
4cos2(π/(|P|+2))

;

– if C = TL then δL = 1/2+ ε , (arbitrarily small ε > 0 ).

Since x >P y implies QM(x,y) = 1, cutting QM at the level 1 yields the crisp relation
>P, whereas cutting it at the level δM yields a cycle-free relation whose transitive
closure is a strict partial order that extends >P. Similarly, x >P y implies QL(x,y) >
1/2 so that cutting QL at the level δM yields a cycle-free relation whose transitive
closure is a strict partial order that extends >P. Finally, as x >P y implies QP(x,y) >
1/2, the transitive closure of the cycle-free relation obtained by cutting QP at the
level δP is not necessarily an extension of >P. For our actual purposes, the artificial
coupling with TP is therefore not recommendable.

5 Ranking Based on the Mutual Ranking Probabilities

Instead of defining artificial bivariate c.r.d.f.’s for the computation of Q, we can
identify Q directly with the relation built from the mutual ranking probabilities, i.e.
Q(x,y) = Prob(X > Y ) for all (x,y) ∈ P2. However, as the characterizing type of
transitivity of the probabilistic relation Q is not known, we cannot directly advance
an appropriate cutting level δ .

It can be easily proven that Q is at least TL-transitive. Moreover, in [4] it has been
pointed out that Q is proportional-transitive in the sense that there exists a threshold
λ < 1 such that for all a,b,c ∈ A it holds that Q(a,b) ≥ λ ∧ Q(b,c) ≥ λ implies
Q(a,c) ≥ λ . The sharpest value of λ presently known is approximately 0.78 (see
[8]).

We have analyzed all posets with at most 9 elements and a random selection of
posets containing up to 20 elements within the framework of cycle-transitivity and
have checked their transitivity w.r.t. a variety of u.b.f.’s. These experimental results
allow us to conjecture the following.

Conjecture: The probabilistic relation Q is cycle-transitive w.r.t. the u.b.f. U23 (dice-
transitivity).
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In fact, all our experiments indicate that Q might have an even stronger type
of transitivity, namely cycle-transitivity w.r.t. the u.b.f. U13. However, under the as-
sumption that the weaker conjecture formulated above is true, we can use the above-
mentioned cutting level δP to generate first a cycle-free crisp relation and then a strict
partial order that extends >P.
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Summary. We show that the best test for fuzzy hypotheses in the Bayesian framework is
equivalent to Neyman-Pearson lemma in the classical statistics.
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1 Introduction

In this work we try to clarify the relations between simple crisp hypothesis testing
in the Bayesian and fuzzy framework. To do this in a rigorous and simple way, we
start first by presenting these approaches using the same notations, then we give a
simple example and finally we show the relation which exists among them in the
next sections.

Let X be a random variable with probability density function (pdf) f (x|θ), de-
noted by X ∼ f (x|θ), where θ is an unknown parameter. A hypothesis H is called
simple if distribution (pdf) of X does not depend on unknown parameter under H,
[22]. For example, the following hypotheses are simple

{
H0 : θ = θ0

H1 : θ = θ1
, (1)

where θ0 and θ1 are known fixed numbers.
Now assume that X ∼ f (x) and

f (x) =
∫

R

f (x|θ) π(θ) dθ , (2)

where π(θ) is a prior pdf for the random parameter θ . The hypotheses
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{

H0 : θ ∼ π0(θ)
H1 : θ ∼ π1(θ)

, (3)

where π0(θ) and π1(θ) are known pdfs, called simple random hypotheses.
There is also another case of hypotheses. Similar to the above two cases the

observations are crisp (ordinary), but we may have some fuzzy knowledge about the
unknown parameter under the hypotheses. These fuzzy hypotheses can be expressed
by membership functions. Let X be a random variable with pdf f (x|θ). Then the
hypotheses

{
H0 : θ is approximately m0(θ)
H1 : θ is approximately m1(θ)

or

{
H0 : θ � m0(θ)
H1 : θ � m1(θ)

, (4)

where m0 and m1 are known membership functions, called fuzzy hypotheses.
The best test can be found for simple versus simple hypothesis by the Neyman-

Pearson lemma. A few authors had tried to find the best test for testing fuzzy hy-
potheses with crisp data, Arnold [1, 2] and Taheri and Behboodian [26]. In this paper
we show that the best test function for testing random and fuzzy hypotheses in (3)
and (4), based on crisp data, are equal if π0 = m0 and π1 = m1. On the other hand,
we show that, the best test function for testing crisp and random hypotheses in (1)
and (3) are equal if the distribution of X under each hypothesis Hi, i = 0,1 for crisp
and random hypotheses are equal.

We recall that, some authors work on testing fuzzy hypotheses and hypothesis
testing with fuzzy observations. We classify some of previous works in hypothesis
testing in Table 1.

Table 1. Trends on hypothesis testing for fixed sample size.

Crisp Observations Fuzzy Observations
Crisp ... Casals et al. (1986,1989) [11, 9]

Hypotheses in Fisher (1925) [16] Gil & Casals (1988) [18]
Classical Neyman & Pearson (1933) [23] Bandemer & Näther (1992) [4]

Framework ... Filzmoser & Viertl (2003) [15]
Fuzzy Watanabe & Imaizumi (1993) [29] Saade & Schwarzlander [25]

Hypotheses in Arnold (1995,1996,1998) [1, 3, 2] Saade (1994) [24]
Classical Taheri & Behboodian (1999) [26] Kang et al. (2001) [21]

Framework Arnold & Gerke (2003) [3] Grzegorzewski (2002) [19]

Crisp ... Casals et al. (1986) [12]
Hypotheses in Box & Tiao (1973) [7] Frühwirth-Schnatter (1993) [17]

Bayesian Cox & Hinkley (1974) [13]
Framework ...

Fuzzy Delgado et al. (1985) [14] Casals & Gil (1990) [10]
Hypotheses in Taheri & Behboodian (2001) [27] Casals (1993) [8]

Bayesian Taheri & Behboodian (2002) [28]
Framework
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To make our point clear we propose to consider the following artificial example.
Suppose we are interested in evaluating the diameters of washers produced by a
factory and we know that the distribution of the difference of such diameters from
a norm diameter, is normal, N(θ ,σ2), where σ2 is known. For example, we test the
hypotheses

{
H0 : θ = 0
H1 : θ = 0.01

or






H0 : f (x) = 1√
2πσ2 e

−1
2σ2 x2

H1 : f (x) = 1√
2πσ2 e

−1
2σ2 (x−0.01)2 , (5)

if we are interested in finding a positive shift. Now, consider testing prior distribution
for random parameter θ based on an observation of X with pdf (2), where X |θ has
a normal distribution with known variance, N(θ ,τ2), and θ has normal distribution

with pdf π(θ) = 1√
2π e

−1
2 (θ−µ)2

and µ is an unknown fixed parameter. We want to
test 





H0 : θ ∼ 1√
2π e

−1
2 θ2

H1 : θ ∼ 1√
2π e

−1
2 (θ−0.01)2

or (6)






H0 : f (x) =
∫

R

1√
2πτ2 e

−1
2τ2 (x−θ)2

1√
2π e

−1
2 θ2

dθ = 1√
2π(τ2+1)

e
−x2

2(τ2+1)

H1 : f (x) =
∫

R

1√
2πτ2 e

−1
2τ2 (x−θ)2 1√

2π e
−1
2 (θ−0.01)2

dθ = 1√
2π(τ2+1)

e
−(x−0.01)2

2(τ2+1)

Note that, the hypotheses (5) and (6) are equal if σ2 = τ2 +1.
Finally, we want to test the following fuzzy hypotheses
{

H0 : There is no shift
H1 : There is a positive shift

or

{
H0 : θ is approximately 0

H1 : θ is approximately 0.01
,

which may be interpreted by
{

H0 : θ � m0(θ) = 100((0.01+θ)I[−0.01,0) + (0.01−θ)I[0,0.01](θ))
H1 : θ � m1(θ) = 100(θ I[0,0.01)(θ)+(0.02−θ)I[0.01,0.02](θ))

(7)

In Figure 1, we plot three types of hypotheses in this example. We can see that, crisp
hypotheses can be considered as a special case of random or fuzzy hypotheses; and
a random hypothesis is the same as fuzzy hypothesis if their corresponding prior and
membership function is equal.

2 The Best Test

Lemma 1. (Neyman-Pearson) Let X be a random vector with unkown pdf f (x), (X ∼
f (x)). For testing
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Fig. 1. The graphs of crisp, random and fuzzy hypotheses for H0 and H1 (left and right graphs
in each figure respectively)

{
H0 : f (x) = f0(x)
H1 : f (x) = f1(x)

, (8)

where f0 and f1 are known pdfs. Any test with test function

ϕ(x) =
{

1 if f1(x) > k f0(x)
0 if f1(x) < k f0(x)

(9)

for some k ≥ 0 is most powerful of its size.

See e.g., [22], for a complete version of Neyman-Pearson lemma. We recall that a
MP test ϕ(x), for a given α (probability of type I error) maximizes the power under
H1, where power is equal to 1−β and β is the probability type II error. For simplicity
sake (without loss of generality) we assume that all functions (except ϕ(x)) in this
section are continuous.

2.1 Crisp Hypotheses

If X ∼ f (x|θ), where θ is an unknown real parameter, then the following hypotheses
are the same {

H0 : f (x|θ) = f (x|θ0)
H1 : f (x|θ) = f (x|θ1)

⇐⇒
{

H0 : θ = θ0

H1 : θ = θ1
, (10)

where θ0 and θ1 are fixed known numbers. Note that (10) is a particular case of (8)
when f0(x) = f (x|θ0) and f1(x) = f (x|θ1). We can define the probability of type I
error as follow:

α =
∫

Rn
ϕ(x) f (x|θ0) dx = E[ϕ(X)|θ = θ0], (11)

and the probability of type II error, β , by the same way:

β =
∫

Rn
(1−ϕ(x)) f (x|θ1) dx = E[(1−ϕ(X))|θ = θ1]. (12)
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2.2 Random Hypotheses

If X ∼ f (x) =
∫

R
f (x|θ) π(θ) dθ , where θ is a random parameter (in the Bayesian

framework) with unknown pdf π , then we call the hypotheses
{

H0 : θ ∼ π0(θ)
H1 : θ ∼ π1(θ)

(13)

simple versus simple random hypothesis (π0 and π1 are two known prior pdfs). In
this case we can simplify the problem of testing by calculating marginal pdf of f (x)
under H0 and H1 (call f0(x) and f1(x) respectively) as follows

f0(x) =
∫

R

f (x|θ) π0(θ) dθ and f1(x) =
∫

R

f (x|θ) π1(θ) dθ . (14)

Theorem 1. By (14), the hypotheses (13) and (8) are the same, and the best test for
testing (13) is given by the Neyman-Pearson lemma, (9).

The probability of type I (or II) error, in (11), can be calculated by

α =
∫

Rn
ϕ(x) f0(x) dx

=
∫

Rn
ϕ(x)

∫

R

f (x|θ) π0(θ) dθ dx

=
∫

R

π0(θ)
∫

Rn
ϕ(x) f (x|θ) dx dθ

=
∫

R

π0(θ) E(ϕ(X)|θ) dθ . (15)

Let π0 and π1 be two unnormalized priors, Gelman et al. (2004) page 62, such that
∫

R

π0(θ) dθ = M < ∞ and
∫

R

π1(θ) dθ = N < ∞. (16)

Then, such as (15), the probability of type I and II errors, in (11) and (12), are equal
to

α =
1
M

∫

R

π0(θ) E[ϕ(X)|θ ] dθ , (17)

β =
1
N

∫

R

π1(θ) E[(1−ϕ(X))|θ ] dθ . (18)

2.3 Fuzzy Hypotheses

Some of statisticians, specially Bayesians, claim that the hypotheses such as (10) are
not realistic, e.g.

“It is rare and perhaps impossible to have a null hypothesis that can be ex-
actly modeled as θ = θ0”, Berger and Delampady [5].
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They suggest the following hypotheses instead of (10):
{

H0 : |θ −θ0| ≤ ε
H1 : |θ −θ1| > ε

, where ε is small and crisp.

Even if some of the statisticians (e.g. Zellner [30]) do not agree with this extension,
the people of fuzzy community are agree with this point of view and they extend this
idea and propose the following hypotheses

{
H0 : |θ −θ0| is small
H1 : |θ −θ1| is large

,

which consider to be closer to the real world problems, [26]. In this proposition small
and large are expressed by two membership functions. That is, instead of testing (10)
they test the fuzzy hypotheses denoted by:
{

H0 : θ � m0(θ)
H1 : θ � m1(θ)

, where m0 and m1 are known membership functions. (19)

We recall the following definitions of Taheri and Behboodian [26], which had proved
the Neyman-Pearson lemma for testing (19), based on them.

Definition 1. Any hypothesis of the form “H : θ is m(θ)” (or H : θ � m(θ)) is
called a fuzzy hypothesis; where m(θ) is a membership function, a function from
R to [0,1].

Definition 2. Let ϕ(X) be a test function, and let
∫

R

m0(θ) dθ = M < ∞ and
∫

R

m1(θ) dθ = N < ∞.

The probability of type I error of ϕ(X) is

αϕ =
1
M

∫

R

m0(θ) E[ϕ(X)|θ ] dθ ,

and the probability of type II error of ϕ(X) is

βϕ =
1
N

∫

R

m1(θ) E[(1−ϕ(X))|θ ] dθ .

Definition 3. A test ϕ is said to be a test of (significance) level α if αϕ ≤ α , where
α ∈ [0,1], and we call αϕ the size of ϕ .

Definition 4. A test ϕ of level α is said to be a best test of level α , if βϕ ≤ βϕ∗ for
all tests ϕ∗ of level α .

Theorem 2. Let X be a random vector, with pdf f (x|θ), where θ is an unknown
parameter. For testing (19), any test with test function

ϕ(x) =
{

1 if
∫

R
f (x|θ) m1(θ) dθ > k

∫

R
f (x|θ) m0(θ) dθ

0 if
∫

R
f (x|θ) m1(θ) dθ < k

∫

R
f (x|θ) m0(θ) dθ (20)

for some k ≥ 0, is the best test of its size.
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Let π0 and π1 be unnormalized priors with range [0,1]. Then the probability of type
I and II errors in Definition 2 and {(16), (17), (18)} are exactly the same.

Theorem 3. Let m0 and m1 be unnormalized priors with range [0,1]. Then the best
test function for testing random hypotheses (13) and fuzzy hypotheses (19) are equal
to (20).

Therefore, we can prove the Neyman-Pearson lemma for testing fuzzy hypotheses
(19), Theorem 2, by Theorem 1.

3 Conclusion
We showed that there is no difference between simple versus simple and simple ran-
dom versus simple random hypotheses testing and then we showed that the best test
function for random and fuzzy hypotheses are equal. That is, the best test for fuzzy
hypotheses in the Bayesian framework is the Neyman-Pearson lemma in the classical
statistics. But they may have different meanings.
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1 Introduction

As a matter of fact in many real situations uncertainty is not only present in form of
randomness (stochastic uncertainty) but also in form of fuzziness (imprecision), for
instance due to the inexactness of measurements of continuous quantities. From the
probabilistic point of view the unavoidable fuzziness of measurements has (amongst
others) the following far-reaching consequence: According to the classical Strong
Law of Large Numbers (SLLN), the probability of an event B can be regarded as the
limit of the relative frequencies of B induced by a sequence of identically distributed,
independent, integrable random variables (Xn)n∈N (with probability one).

Incorporating into considerations the fact that a realistic sample of a d-dimensional
continuous quantity consists of d-dimensional fuzzy vectors, it is first of all neces-
sary to generalize relative frequencies to the case of fuzzy samples, which yields
so-called fuzzy relative frequencies and furthermore mandatory to consider and ana-
lyze fuzzy-valued ’probabilities’ as generalization of classical probabilities.

In the sequel the definition of fuzzy relative frequencies and the most important
properties of fuzzy relative frequencies regarded as fuzzy-valued set functions are
stated. After that it is shown that similar to fuzzy relative frequencies every fuzzy ran-
dom vector X� naturally induces a fuzzy-valued ’probability’, which will be called
fuzzy probability distribution induced by X�.

Finally a SLLN for these fuzzy probability distributions will be stated.

Remark: All symbols used throughout the paper without explicit definition are ex-
plained at the end of the paper in the List of Symbols.

2 Fuzzy Relative Frequencies

Given a sample x�
1, · · · ,x�

n ∈ F d
c of d-dimensional fuzzy vectors and a partition

K1,K2, · · · ,Kj of R
d the first important thing concerning frequencies and histograms
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(2006)
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that has to be considered is, that it may happen, that an element x�
i is not contained

in a single class but partially lies in different classes.
In order to get a grip on this classification problem one can proceed as follows:
For every α ∈ (0,1] and every set K ⊆ R

d define the lower relative frequency of
level α , denoted by hn,α(K), and the upper relative frequency of level α , denoted by
hn,α(K), by:

hn,α(K) :=
#
{

i : [x�
i ]α ∩K �= /0

}

n (1)

hn,α(K) :=
#
{

i : [x�
i ]α ⊆ K

}

n

Thus the lower relative frequency of level α counts all i ∈ {1,2, · · · ,n} for which the
α-cut of x�

i is contained in the set K and divides by n, whereas the upper relative
frequency of level α counts all i ∈ {1,2, · · · ,n} for which the α-cut of x�

i has non-
empty intersection with the set K and divides by n.

Since obviously hn,α(K) ≤ hn,α(K) holds for every n ∈ N, for every α ∈ (0,1]
and every K ⊆ R

d , it follows immediately that
(
[hn,α(K),hn,α(K)]

)

α∈(0,1] is a family
of compact non-empty intervals (for n and K fixed) in α .

Furthermore (again for n and K fixed) it follows immediately from the definition
that hn,α(K) increases if α increases and that hn,α(K) decreases if α increases. Con-
sequently

(
[hn,α(K),hn,α(K)]

)

α∈(0,1] is a family of compact non-empty intervals that
decreases if α increases, i.e.

[
hn,α(K),hn,α(K)

]
⊇
[
hn,β (K),hn,β (K)

]

holds for α ≤ β and α,β ∈ (0,1].
It can be seen easily that unfortunately in general

(
[hn,α(K),hn,α(K)]

)

α∈(0,1] is
not a family of α-cuts of a fuzzy number, but at least there exists a fuzzy number
denoted by h�

n(K) ∈ F 1
c (in fact the convex hull as in equation (8)) and a finite set

N ⊆ (0,1], such that
[h�

n(K)]α =
[
hn,α(K),hn,α(K)

]
(2)

holds for all α ∈ (0,1]\N.
In other words, building the convex hull of

(
[hn,α(K),hn,α(K)]

)

α∈(0,1] does not

change the intervals [hn,α(K),hn,α(K)] for every α ∈ (0,1]\N (compare for instance
[5]).

For every K ⊆ R
d the fuzzy number h�

n(K) will be called the fuzzy relative fre-
quency of the set K induced by the sample x�

1, · · · ,x�
n ∈ F d

c .
Regarding the fuzzy relative frequency h�

n(·) as fuzzy-valued set function on
p(Rd) it has the following properties, which are easy to prove (notation as explained
in the List of Symbols):

Lemma 1. Suppose that x�
1,x

�
2, . . . ,x

�
n ∈ F d

c is a fuzzy sample of size n and that B,C
are arbitrary subsets of R

d, then:
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1. supp
(
h�

n(B)
)
⊆ [0,1]

2. h�
n(R

d) = 1{1}, h�
n( /0) = 1{0} (Crisp extremal events)

3. B ⊆ C ⊆ R ⇒ h�
n(B) � h�

n(C) (Monotonicity)

4. B∩C= /0 ⇒ h�
n(B∪C) ⊆ h�

n(B)⊕h�
n(C) (Sub/Superadditivity)

5. h�
n(B

c) = 1{1} �h�
n(B)

Having in mind both the Strong Law of Large Numbers (compare [1]) and the fact
that h�

n(B) is a fuzzy number for every set B ⊆ R
d it is inevitable to consider fuzzy-

valued ’probabilities’ as generalizations of classical probabilities. Of course the
question immediately arises, which properties a fuzzy-valued mapping P

� : A → F
on a σ -algebra A should fulfill in order to be called fuzzy-valued ’probability’, how-
ever Lemma 1 suggests what properties a meaningful notion at least must satisfy.

In the sequel such a notion will be called fuzzy probability distribution and it will
be demonstrated how an arbitrary fuzzy random vector X� (similar to the relative fre-
quencies) induces a fuzzy probability distribution on the Borel σ -field B(Rd) of R

d .
(For so-called fuzzy probability distributions induced by fuzzy probability densities
compare [9].)

3 Fuzzy Random Vectors

If (Ω ,A ,P) is a probability space and X� : Ω → F d
c (d ≥ 1) is a fuzzy-vector-

valued function on Ω , then the following abbreviation will be used for every ω ∈Ω
and every α ∈ (0,1]:

Xα(ω) := [X�(ω)]α =
{

x ∈ R
d :
(
X�(ω)

)
(x) ≥ α

}
(3)

Furthermore the graph Γ (Xα) is for every α ∈ (0,1] defined by

Γ (Xα) :=
{
(ω,x) : ω ∈Ω and x ∈ Xα(ω)

}
⊆Ω ×R

d . (4)

Definition 1. Let (Ω ,A ,P) be a probability space and B(Rd) denote the Borel
subsets of R

d. Then a function X� :Ω → F d
c is called (d-dimensional) fuzzy random

vector if
{ω ∈Ω : Xα(ω)∩B �= /0} ∈ A (5)

holds for every B ∈ B(Rd) and every α ∈ (0,1].

Remark: If X� satisfies Definition 1 and d = 1 then X� is called fuzzy random vari-
able.

It is well known from the theory of multifunctions (compare [3]) and the theory
of random sets (compare [6]) that there exists a multitude of measurability conditions
equivalent to (5) in Definition 1 if the probability space (Ω ,A ,P) is complete. So
for instance the following result holds (compare [6]):

Lemma 2. Let (Ω ,A ,P) be a complete probability space. Then for a fuzzy vector-
valued mapping X� : Ω → F d

c the following conditions are equivalent:
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1. X� is a d-dimensional fuzzy random vector.
2. Xα is Effros-measurable measurable for every α ∈ (0,1], i.e. for G open

{ω ∈Ω : Xα(ω)∩G �= /0} ∈ A holds for every α ∈ (0,1].
3. Γ (Xα) defined according to (4) is measurable for every α ∈ (0,1], i.e. Γ (Xα) ∈

A ⊗B(Rd) holds for every α ∈ (0,1].
4. For every α ∈ (0,1] the mapping Xα : Ω → K d

c is measurable with respect to
B((K d

c ,δH)).

The following definition of independence will be used:

Definition 2 (Independence of fuzzy random vectors).
Suppose that (Ω ,A ,P) is a complete probability space and that X� : Ω → F d

c and
Y � : Ω → F d

c are d-dimensional fuzzy random vectors. Then X� and Y � are said
to be independent if for arbitrary Borel sets B1,B2 ∈ B(Rd) the following equality
holds for every α ∈ (0,1]:

P
(
Xα(ω) ⊆ B1 ,Yα(ω) ⊆ B2

)
= P

(
Xα(ω) ⊆ B1

)
·P
(
Yα(ω) ⊆ B2) (6)

4 Fuzzy Probability Distributions Induced by Fuzzy Random
Variables and Fuzzy Random Vectors

Every d-dimensional fuzzy random vector X� :Ω →F d
c induces families (πα)α∈(0,1]

and (πα)α∈(0,1] of real-valued functions on B(Rd) in the following way: For every
α ∈ (0,1] and every B ∈ B(Rd) define

πα(B) := P
(
{ω ∈Ω : Xα(ω)∩B �= /0}

)

(7)πα(B) := P
(
{ω ∈Ω : Xα(ω) ⊆ B}

)
.

Obviously for every B ∈ B(Rd) and α ∈ (0,1] πα(B) ≤ πα(B) holds.
Using the fact that P is a probability measure, this shows that [πα(B),πα(B)] is

a nonempty, compact subinterval of [0,1] for every α ∈ (0,1] and every B ∈ B(Rd).
Suppose for the moment that B ∈ B(Rd) is fixed and that α,β ∈ (0,1],α ≤ β

holds, then it follows that Xα(ω) ⊇ Xβ (ω) for every ω ∈Ω , and that

{ω ∈Ω : Xα(ω) ⊆ B} ⊆ {ω ∈Ω : Xβ (ω) ⊆ B},

which shows that πα(B) ≤ πβ (B). Moreover

{ω ∈Ω : Xβ (ω)∩B �= /0} ⊆ {ω ∈Ω : Xα(ω)∩B �= /0},

which gives that πβ (B) ≤ πα(B).
This proves that for fixed B ∈ B(Rd),

(
[πα(B),πα(B)]

)

α∈(0,1] is a nested,
monotonically decreasing family of non-empty compact intervals in α .

Unfortunately in general
(
[πα(B),πα(B)]

)

α∈(0,1] is not a family of α-cuts of a
fuzzy number as the following simple counter-example shows easily:
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Example 1. Suppose that (Ω ,A ,P) is an arbitrary probability space and let η� ∈
F 1

c be the triangular fuzzy number with α-cuts [η�]α = [α − 1,1 −α] for every
α ∈ (0,1]. Define X� : Ω → F 1

c by simply setting X�(ω) = η� for every ω ∈ Ω .
Obviously X� is a fuzzy random variable (the measurability condition obviously is
fulfilled). Choosing B = [− 1

2 , 1
2 ] ∈ B(R) gives

[πα(B),πα(B)] =

{

[0,1] if α < 1
2

{1} if α ≥ 1
2 .

If
(
[πα(B),πα(B)]

)

α∈(0,1] was a family of α-cuts of a fuzzy number, then

[πβ (B),πβ (B)] =
⋂

α<β

[πα(B),πα(B)]

would hold for every β ∈ (0,1]. Choosing β = 1
2 therefore would give

[π 1
2
(B),π 1

2
(B)] =

⋂

α< 1
2

[πα(B),πα(B)] = [0,1],

which is a contradiction to [π 1
2
(B),π 1

2
(B)] = {1}.

Nevertheless one can easily construct a fuzzy number denoted by P
�(B) ∈ F 1

c for
every B ∈ B(Rd) by again simply building the convex hull, i.e. for x ∈ R define

(
P

�(B)
)
(x) :=

{
0 if x �∈ [πα(B),πα(B)] ∀α ∈ (0,1]
sup{α ∈ (0,1] : x ∈ ([πα(B),πα(B)]} otherwise .

(8)

It is well known (compare [5]) that the α-cuts

[P�(B)]α =: [pα(B), pα(B)] (9)

of P
�(B) coincide with [πα(B),πα(B)] for λ -almost every α ∈ (0,1].
Building the convex hull for every B ∈ B(Rd) defines a fuzzy-valued mapping

P
� : B(Rd) → F 1

c that satisfies all properties stated in Lemma 1 on B(Rd), which
is now going to be proved in three steps:

Lemma 3. Suppose that (Ω ,A ,P) is an arbitrary probability space and that X� :
Ω → F d

c is a fuzzy random vector. Then the families (πα)α∈(0,1] and (πα)α∈(0,1],
defined according to (7), fulfill the following assertions.

1. πα(Rd) = πα(Rd) = 1, πα( /0) = πα( /0) = 0 ∀α ∈ (0,1]
2. If A,B ∈ B(Rd),A ⊆ B, then πα(A) ≤ πα(B) and πα(A) ≤ πα(B) holds for all
α ∈ (0,1].

3. For every α ∈ (0,1] πα is superadditive and πα is subadditive, i.e.
πα(A ∪ B) ≥ πα(A)+πα(B) and πα(A ∪ B) ≤ πα(A)+πα(B) holds if A,B ∈
B(Rd) and A∩B = /0.
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4. For every A ∈ B(Rd) and every α ∈ (0,1] the identities πα(Ac) = 1 − πα(A)
and πα(Ac) = 1−πα(A) hold.

Proof: The last assertion for example is an immediate consequence of the following
identities:

πα(Ac) = P
(
{ω ∈Ω : Xα(ω) ⊆ Ac} = 1−P

(
{ω ∈Ω : Xα(ω) �⊆ Ac}

)

= 1−P
(
{ω ∈Ω : Xα(ω)∩A �= /0}

)
= 1−πα(A)

πα(Ac) = P
(
{ω ∈Ω : Xα(ω)∩A �= /0}=1−P

(
{ω ∈Ω : Xα(ω)∩Ac = /0}

)

= 1−P
(
{ω ∈Ω : Xα(ω) ⊆ A}

)
= 1−πα(A)

The other assertions can be proved similarly. �

Remark: In fact more properties of πα and πα can be proved.

The properties of πα and πα can be transfered to pα and pα respectively by using
the following simple lemma.

Lemma 4. Let α be an arbitrary but fixed real number in (0,1] and suppose that
(αn)n∈N is a strictly increasing sequence in (0,1) that converges to α . Then the
following equality holds for every B ∈ B(Rd) :

[pα(B), pα(B)] =
⋂

β<α

[πα(B),πα(B)] =
∞⋂

n=1

[παn
(B),παn(B)]

(10)

=
[

lim
n→∞

παn
(B), lim

n→∞
παn(B)

]

Proof: The first equality is an immediate consequence of the definition of the convex
hull, the second equality follows directly from the properties of the sequence (αn)n∈N

and the third equality can be proved easily. �

Theorem 1. Suppose that (Ω ,A ,P) is an arbitrary probability space and that X� :
Ω → F d

c is a fuzzy random vector. For every B ∈ B(Rd) and every α ∈ (0,1] let
πα(B) and πα(B) be defined according to (7), P

�(B) defined according to (8) and
pα(B) and pα(B) defined according to (9).

Then P
� : B(Rd) → F 1

c fulfills all the properties of h�
n stated in Lemma 1.

Proof: For example if B,C ∈ B(Rd) with B ⊆C and α ∈ (0,1] arbitrary, then apply-
ing Lemma 3 and equation (10) immediately shows that

pα(B) = lim
n→∞

παn(B) ≤ lim
n→∞

παn(C) = pα(C) and

pα(B) = lim
n→∞

παn
(B) ≤ lim

n→∞
παn

(C) = pα(C)

which proves monotonicity.
The other assertions can be proved in a similar manner. �
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Definition 3. Under the above assumptions P
� will be called fuzzy probability dis-

tribution induced by X�.

Before stating a SLLN for fuzzy probability distributions induced by fuzzy random
vectors and fuzzy relative frequencies define the metric δ �

H,p(·, ·) by

δ �
H,p(A

�,B�) :=
(∫

(0,1]

(
δH([A�]α , [B�]α)

)p
dλ (α)

)1/p

(11)

for every pair A�,B� ∈ F d
c for which the integral exists (compare [5] and [8]).

Using this metric the following result can be proved:

Theorem 2 (SLLN for fuzzy relative frequencies).
Suppose that (Ω ,A ,P) is a complete probability space, that X�,X�

1 ,X�
2 , · · · are

pairwise independent, identically distributed d-dimensional fuzzy random vectors,
and that B ∈ B(Rd) is an arbitrary Borel set.

Then there exists a set N ∈ A , fulfilling P(N) = 0, such that for every ω ∈ Nc

the following identity holds (p ∈ [1,∞) arbitrary):

lim
n→∞

δ �
H,p

(
h�

n(B,ω) , P
�(B)
)

= 0 (12)

Proof: The paper with the corresponding proof is on the verge of submission.
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5 List of symbols

⊕ . . . . . . . . . . . . . . . Common sum of fuzzy numbers (and fuzzy vectors),
defined via the Minkowski sum of the α-cuts

� . . . . . . . . . . . . . . . Common difference of fuzzy numbers (and fuzzy vectors),
defined via the Minkowski difference of the α-cuts

[ · ]α . . . . . . . . . . . . . α-cut of a fuzzy number or of a fuzzy vector

# . . . . . . . . . . . . . . . Cardinality of a set

1A . . . . . . . . . . . . . . Indicator function of the set A

A1 ⊗A2 . . . . . . . . . Product σ -algebra

[a,c] � [b,d] . . . . . Semiordering of intervals, defined by
[a,c] � [b,c] :⇐⇒ a ≤ b and c ≤ d

B(Rd) . . . . . . . . . . . Borel σ -algebra on R
d

B
(
(K d

c ,δH)
)
. . . . .Borel σ -algebra generated by the Hausdorff metric δH
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on K d
c

δH . . . . . . . . . . . . . . Hausdorff metric

F 1
c . . . . . . . . . . . . . . Set of all fuzzy numbers x� having non-empty compact

intervals as α-cuts for every α ∈ (0,1]
F d

c . . . . . . . . . . . . . . Set of all d-dimensional fuzzy vectors x� having non-
empty compact convex sets α-cuts for every α ∈ (0,1]

K d . . . . . . . . . . . . . . Family of all non-empty compact subsets of R
d

K d
c . . . . . . . . . . . . . . Family of all non-empty compact convex subsets of R

d

p(Rd) . . . . . . . . . . . Power set of R
d

supp(·) . . . . . . . . . . Support of a fuzzy number or of a fuzzy vector

ξ � � η� . . . . . . . . . . Semiordering of fuzzy numbers, defined by
ξ � � η� :⇐⇒ [ξ �]α � [η�]α for every α ∈ (0,1]

ξ � ⊆ η� . . . . . . . . . . Inclusion of fuzzy numbers, defined by
ξ � ⊆ η� :⇐⇒ [ξ �]α ⊆ [η�]α for every α ∈ (0,1]
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1 Introduction

Fuzzy Set Theory has been developed during the second half of last century, with
a starting point in L.A. Zadeh seminal paper [14]. From that moment on, there has
been a harsh debate between scientifics supporting it and others believing that it
was an unnecesary mathematical construct, generally opposing it to Probability The-
ory. Those researchers usually complained about the alleged lack of mathematical
soundness of Fuzzy Logic and its applications. For a succint review on this debate,
see Section 1 of [2].

The truth is that, at least in the framework of time series analysis, the applications
of Fuzzy Logic concepts have been characteristically naive in terms of their mathe-
matical and statistical foundations. Fuzzy-based models tailored (or just applied) to
forecast time series have bloomed in the last decades, and many of them have at least
one thing in common: their almost complete ignorance of the proposals, tools and
ideas of the Statistical time series modelling approach.

Although there have been signs of some advantages in the Soft-Computing
framework for time series over the traditional one, this should not at all mean a
complete disregard of the latter. In fact, hybridizing concepts and technologies is one
of the core ideas of Soft-Computing, so a deep look into the Statistical time series
approach should be a priority for any Soft-Computing researcher trying to face the
problem of forecasting future values of a time series.

In this paper, we prove the global identifiability of a fuzzy rule-based model for
time series modelling. This is a first step in a new look into time series modelling
via Soft-Computing. The final aim is to develop a sound statistical framework for
fuzzy models to gather the benefits of the traditional approach and of the new devel-
opments.

J.L. Aznarte M. and J.M. Benítez: On the Identifiability of TSK Additive Fuzzy Rule-Based Models, Advances in Soft
Computing 6, 79–86 (2006)
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2 Fuzzy Rule-Based Models. Notation

Let us start by defining the notation used throughout this paper. Henceforth we will
refer to yt as the value at time t of a time series {yt}. x̃t ∈ IRD will refer to a D× 1
vector of lagged values of yt and/or exogenous variables. In order to further ease the
reading, xt ∈ IRD+1 is defined as xt = [1, x̃′

t ]
′ , where the first element is sometimes

called intercept.
The general nonlinear stochastic model is expressed as

yt =Ψ(x̃t ;ψ)+ εt , (1)

where Ψ(x̃t ;ψ) is a nonlinear function of the variables x̃t with parameter vector ψ .
As usual, {εt} is a sequence of independently normally distributed random variables
with zero mean and variance ς2.

Fuzzy rule-based models (FRBM) are usually divided into two main types: the
Mamdani model [5] and the Takagi-Sugeno-Kang (TSK) model [11]. These two
types differ in the shape of the fuzzy rules employed, more precisely, in the con-
sequents of those rules. The functional (usually linear) consequents of TSK-type
models are considered to be a crucial factour determining their better approximation
capabilities, and hence they have been traditionally preferred to Mamdani models for
function approximation and time series forecasting. In this work, we will center out
attention in TSK FRBM.

A fuzzy rule of type TSK has the following shape:

Rk : IF x1 IS Ak
1 ∧ x2 IS Ak

2 ∧ . . . ∧ xD IS Ak
D THEN y = f k(x). (2)

This rule is premised on the vector x ∈ IRD. Ak
d is a fuzzy set in the input variable xd

in the kth rule domain, and ∧ is a fuzzy conjunction operator (for more information
on Fuzzy Logic-related concepts, see for example [4]).

The consequent f k(x) of these rules, which can be seen as a varying singleton,
is a function describing the global input-output relathionship in a localized input-
output space, that is, describes a part of the input-output map. This consequent is
usually of a linear form, i.e.,

f k(x) = bk ′x = bk
0 +bk

1x1 +bk
2x2 + . . .+bk

DxD. (3)

The so-called firing strength of the kth rule is obtained by taking the fuzzy con-
junction of the membership functions of a rule’s IF-part, that is,

µk(x) = µk
1(x1)∧µk

2(x2)∧·· ·∧µk
D(xD), (4)

where µk
d(xd) is the membership degree of xd to the fuzzy set Ak

d .
The inference procedure associated to such rules uses the fuzzy implication op-

erator, →, to obtain the fuzzy set represented by each rule, and the fuzzy disjunction
operator, ∨, to join the mapped regions for all K rules in the output space. To obtain
the final output of the model, a weighted average gravity method is usually used.
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Depending on the choices made for the conjunction, implication and disjunction
operators, different classes of the fuzzy model can be derived. In this work, we shall
center our attention in the class using multiplicative conjunction, multiplicative im-
plication and additive disjunction. The final defuzzified output of the system is hence

yo =
K∑

k=1

µ̃k(x) f k(x), (5)

where µ̃k(x) = µk(x)
∑K

k′=1 µ
k′ (x)

.

The membership function, µk
d , can be chosen amongst several types, attending

to diverse criteria. Traditionally, the most common have been triangular, trapezoidal,
sigmoid, Gaussian... The latter is given by

µk
d(xd ;ck

d ,σ
k
d ) =

1
√

2πσ k
d

exp

(

− (xd − ck
d)

2

2σ k
d

)

. (6)

2.1 TSK FRBM for Univariate Time Series Analysis

If used to model a univariate time series {yt}, we shall write the output of the FRBM
as

yt =
K∑

k=1

µ̃k(xt) f k(xt)+ εt . (7)

Note that the presence of the error term εt is not common in the fuzzy literature, being
usual in the probabilistic approach to time series. Notwithstanding, in this context we
should consider the FRBM as a nonlinear stochastic model (1), and hence we must
admit that not all the variability of the series can be explained by it. The unexplained
remainder is the series {εt}. The parameter vector of this nonlinear stochastic model
is

ψ = [ψ ′
µ ,ψ ′

f ]
′ = [ψ ′

µ1 , . . . ,ψ ′
µK ,ψ ′

f 1 , . . . ,ψ ′
f K ], (8)

where ψµk = [ck
1,σ

k
1 , . . . ,ck

D,σ k
D] are known as nonlinear parameters and ψ f k = bk =

[bk
1, . . . ,b

k
D] as linear parameters.

We can now rewrite the model as

yt =
K∑

k=1

µ̃(xt ;ψµk) f (xt ;ψ f k)+ εt . (9)

As it was noted [1], when applied in the time series framework, the consequent
f k(xt) of a TSK fuzzy rule is equivalent to a linear AR model of order D, and the
whole model can be seen as a generalisation of the smooth transition autoregressive
(STAR) model [12] or as equivalent to the NCSTAR [7]. We will now use the results
in [1] to derive the necessary and sufficient conditions for identifiability of FRBM.



82 J.L. Aznarte M. and J. Manuel Benítez

3 Identifiability of FRBMs

If we consider the use of FRBM as Statistical modelling, we can see it as a procedure
to specify the probability of the observations by a family of distributions, indexed by
parameters. This procedure includes the statistical inference, the simulation and the
prediction. All these depend on identifiable models, so it is important to study the
identifiability conditions for FRBM.

For example, we must explicitly specify the sources of uniqueness of the model in
order to guarantee convergence of the mean squared error (MSE) estimator function.
This issue has been deeply studied in the nonlinear statistical models framework,
including the feedforward neural network [6] and some derived models [9, 8].

Here we will adapt those results for the FRBM model, stating under which condi-
tions identifiability is guaranteed. In order to do so, we will first discuss the concepts
of minimality [10] or “nonredundancy” [3] and the concept of model reducibility.

Definition 1. An FRBM model is minimal (or nonredundant) if its input-output map
cannot be obtained from another FRBM with fewer rules.

One of the sources of unidentifiability in an FRBM is the presence of irrelevant
rules, that can be removed without affecting its modelling capabilities. Obviously,
the minimality condition holds only for irreducible models.

Definition 2. An FRBM model is reducible if one of the following conditions hold:

i. Some of the consequents of the rules vanish (bk → 0 for some k).
ii. Some of the membership functions vanish (σ k

d → 0 for some k,d).

Furthermore, we can define the property of identifiability as

Definition 3. An FRBM is identifiable if there are no two sets of parameters such
that the corresponding input-output maps are identical.

There are two properties of FRBM that cause unidentifiability:

(P. 1) The interchangeability of the rules. The order in which rules are considered is
totally irrelevant for the computations of the model but affects the search in the
parameter space (giving place to multiple local maxima for the log-likelihood
function).

(P. 2) The presence of irrelevant rules, i.e., if there is at least one rule with zero
consequent (bk = 0 for some k) or if the conjunction of the membership functions
is zero for at least one rule (σ k

d = 0 for some k,d).

If we ensure that the model is irreducible, then we know that the only way to
change the input-output map is through property (P. 1). This can be achieved in the
style of [8] by applying a “specific-to-general” model building strategy based on
statistical inference through Lagrange Multiplier (LM) linearity tests.

As it was proved in [3, 10], an irreducible model is minimal. This equivalence
implies that there are no means, apart from the conditions stated in Definition 2 of



On the Identifiability of TSK Additive Fuzzy Rule-Based Models 83

reducibility, to further reduce the number of rules of a FRBM without changing the
functional input-output map.

The problem of interchangeability of rules (P. 1) can be prevented by establish-
ing a unique order among them. This might be ensured by defining (and forcing) a
lexicographical order, ≺, among the rule antecendent parts. We first establish an or-
der among every variable’s membership functions, which is induced by the order of
their location parameters ck

d (not caring about their width σ k
d ). This order is usually

given by their linguistic definition. Then, to compare (and sort) the rules, we apply
the lexicographical order, which would result in the following Restriction:

µ(xt ;ψµk) ≺ µ(xt ;ψµk+1), k = 1, . . . ,K (R. 1)

This restriction defines a complete ordering for rules, which would allow us to write
Ri ≺ Ri+1.

By imposing (R. 1), we prevent the interchangeability of rules. We can thus guar-
antee that, if irrelevant rules do not exist, the model is identifiable and minimal.

In order to formally state the sufficient conditions under which the FRBM model
is globally identifiable, and following [9], we need the following assumptions.

Assumption 1 The linear parameters bk do not vanish for any k. Furthermore, σ k
d >

0 ∀d,∀k.

Assumption 2 The covariate vector xt has an invariant distribution that has a den-
sity everywhere positive in an open ball.

Assumption 1 prevents from the effects of property (P. 2) and Assumption 2 avoids
problems related to multicollinearity.

We will also make use of the following

Lemma 1. The family of n-dimensional Gaussian cumulative distribution functions
is linearly independent.

Proof. Trivial in light of Proposition 2 and Theorem of [13].

Theorem 1. Under restriction (R. 1) and Assumptions 1 and 2, the TSK additive
FRBM is globally identifiable.

Proof. Let us suppose two vector of parameters, ψ = [ψ ′
µ ,ψ ′

f ]
′ and ψ = [ψµ

′,ψ f
′]′

such that
K∑

i=1

µ̃(xt ;ψµ i) f (xt ;ψ f i) =
K∑

j=1

µ̃(xt ;ψµ j) f (xt ;ψ f j). (10)

To prove global identifiability of the FRBM we need to show that, under re-
striction (R. 1) and the assumptions, (10) is satisfied if and only if ψµk = ψµk and
ψ f k = ψ f k for k = 1, . . . ,K.

Assumption 1 clearly excludes the possibility of (10) being true when both sides
of the equality are zero, so we shall study the other possibilities.
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To ease the notation, we will note µi(xt) = µ̃(xt ;ψµ i), µ j(xt) = µ̃(xt ;ψµ j),
bixt = f (xt ;ψ f i) and bixt = f (xt ;ψ f j) henceforth in this proof. We can thus rewrite
(10) as:

K∑

i=1

µi(xt)bixt −
K∑

j=1

µ j(xt)b jxt = 0 (11)

This equality can be true under two different situations:

i) If every µi(xt) is different from every µ j(xt), then we know that bixt = b jxt = 0,
by Lemma 1.
Obviously, this would contradict Assumption 1.

ii) There exist i1, j1 such that µi1(xt) = µ j1(xt).
We know that µl(xt) �= µm(xt) for l �= m and µl(xt) �= µm(xt) for l �= m. Hence,
we could write (11) as

(
bi1 −b j1

)
xtµi1(xt)+

K∑

i=1
i�=i1

bixtµi(xt)−
K∑

j=1
j �= j1

b jxtµ j(xt) = 0 (12)

This equation is similar to (11) in that it would be true under the same two
situations. Hence, following the same rationale, we could further write it as

(
bi1 −b j1

)
xtµi1(xt)+

(
bi2 −b j2

)
xtµi2(xt)+

K∑

i=1
i�=i1
i�=i2

bixtµi(xt)−
K∑

j=1
j �= j1
j �= j2

a jxtµ j(xt) = 0 (13)

Hence, we can proceed inductively (in k steps) up to
(
bi1 −b j1

)
xtµi1(xt)+ . . .+

(
biK −b jK

)
xtµiK (xt) = 0, (14)

which, as all the µik(xt) are distinct and hence linearly independent, forces bik =
b jk for every k, resulting in ψ =ψ . It also remarkable that, in 14, actually ik = jk
for k = 1, . . . ,K because restriction (R. 1) holds, q.e.d.

We can also provide an alternative proof as follows: [2] stated the functional
equivalence between fuzzy rule-based systems and Gaussian mixtures. In particular,
TSK rule-based systems were proven to be equivalent to Gaussian mixtures of equal
priors. Using this result, and knowing that Proposition 2 in [13] guarantees the iden-
tifiability of Gaussian mixtures, restriction (R. 1) gives as a result identifiable fuzzy
rule-based systems. ��

Theorem 1 applies to all FRBMs of the type mentioned in section 2, i.e., those
that use TSK type rules, Gaussian membership functions and multiplicative conjunc-
tion and implication toghether with additive disjunction. This is the most common
configuration for time series modelling.
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The extention to other types of membership functions is straightforward as long
as we can derive a result similar to Lemma 1. For example, if we were to prove
identifiability for a FRBM whose membership function were the Cauchy density
function,

µ(xd ;α,u) =
α

π(α2 +(x−u)2)
, (15)

where ψµk = [α,u], we would follow the same schema except that we would have a
Lemma equivalent to Lemma 1 by relying on Proposition 4 of [13].

Another example would be an FRBM which used as membership functions the
difference of two sigmoids, in the spirit of the regime switching model of [9]. This
membership function is defined in the multidimensional case as

µ(xt ;ψµk) = −
(

1

1+ exp
(
γk(dk ·xt −β k

1 )
) − 1

1+ exp
(
γk(dk ·xt −β k

2 )
)

)

(16)

where ψµk = [γk,dk
1, . . . ,d

k
D,β k

1 ,β k
2 ]. In light of Lemma A.1 of [9], such a FRBM

would be globally identifiable as well.
Another question worth to study is the effect of the restrictions posed by Theorem

1 concerning the input space fuzzy partitions allowed. One might think that the rule
ordering restriction can somehow limit the validity of the result to just some cases of
TSK FRBM.

As the reader might know, there are two main ways to partition the input space in
the fuzzy subspaces which are covered by each rule. One alternative, called grid par-
tition consists in setting a number of one-dimensional membership functions on each
dimension and use as many rules as combinations of different membership functions
there are. This results in every part of the input space covered by at least one rule.
The other alternative is called patched partition and places multidimensional mem-
bership functions only in relevant parts of the space.

Actually, the ordering restriction allows for two rules to share at most all the one-
dimensional membership functions but one. This is the usual situation when we have
a grid type input space partition. Of course, it also allows for no multidimensional
membership functions being shared amongst two rules, which is the case for patched
type partition. Hence both main input space fuzzy partitioning schemes are covered
by Theorem 1.

4 Conclusions

Due to their good performance, many models originated from the Soft-Computing
area are increasingly being applied to time series modelling. They provide new per-
spectives and estimation procedures. However, authors in this area have not usally
paid too much attention to important and desirable Statistical properties, like identi-
fiability.

In our continuous work for a better and profitable merge of knowledge from
both areas (Soft-Computing and Statistics), we address the identifiability of a wide
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class of Fuzzy Rule-Based Models. We have provided a formal proof of their global
identifiability. This result will be completed with future research towards formally
stating the properties of Soft-Computing approaches for time series modelling and
forecast.
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A new measure of skewness for real random variables is proposed in this paper. The
measure is based on a fuzzy representation of real-valued random variables which
can be used to characterize the distribution of the original variable through the ex-
pected value of the ‘fuzzified’ random variable. Inferential studies concerning the
expected value of fuzzy random variables provide us with a tool to analyze the asym-
metry degree from random samples. As a first step, we propose an asymptotic test of
symmetry. We present some examples and simulations to illustrate the behaviour of
the proposed test.

1 Introduction

In González-Rodríguez et al. [6] a family of useful fuzzy representations of real-
valued random variables was introduced. Fuzzy representations map each real value
into a fuzzy one such that the fuzzification of a real-valued random element leads
to a fuzzy random variable (in Puri and Ralescu’s sense [15]). The (fuzzy) expected
values of some of these fuzzifications (which will be referred to as characterizing
fuzzy representations) capture the whole information about the distribution of the
original random variable. In this way, the distance between the distributions of two
random variables can be quantified through the distance between the expected values
of their characterizing fuzzy representations.

Since a random variable X has a symmetric distribution about θ ∈ R if, and
only if, X − θ and θ −X are identically distributed, we introduce a measure of the
skewness based on a distance between the ‘characterizing fuzzy expected values’ of
X − θ and θ − X . This measure will be illustrated by means of some examples in
Section 3.

G. González-Rodríguez et al.: An Asymptotic Test for Symmetry of Random Variables Based on Fuzzy Tools, Advances
in Soft Computing 6, 87–94 (2006)
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In the last years some inferential studies concerning the expected value of fuzzy
random variables have been developed (see, for instance, [4], [5], [7], [8], [9], [10],
[11], [12], [13] and [14]). Given that the proposed skewness measure is based on
certain (fuzzy) expected values, some of these studies could be useful to analyze
its inferential properties. As a first approach, we introduce an asymptotic test of
symmetry. In order to illustrate the empirical behaviour of this test some simulation
results are shown.

2 Preliminaries

Let Kc(R) be the class of the nonempty compact intervals of R, and let Fc(R) be
the class of the normal upper semicontinuous fuzzy sets of R with bounded closure
of the support, that is,

Fc(R) =
{

U : R → [0,1]
∣
∣Uα ∈ Kc(R) for all α ∈ [0,1]

}

where Uα is the α-level of U (i.e. Uα = {x ∈ R |U(x) ≥ α}) for all α ∈ (0,1],
and U0 = cl{x ∈ R |U(x) > 0}. Zadeh’s extension principle [16] allows us to de-
fine on Fc(R) a sum and a product by a scalar compatible with the usual arithmetic
in Kc(R), namely, (U +V )α = Uα +Vα and (λU)α = λUα for all U,V ∈ Fc(R),
λ ∈ R and α ∈ [0,1].

The support function of a fuzzy set U ∈ Fc(R) is sU (u,α) = supw∈Uα 〈u,w〉 for
all u ∈ {−1,1} and α ∈ [0,1], where 〈·, ·〉 denotes the inner product. The support
function allows to embed Fc(R) onto a cone of continuous and Lebesgue integrable
functions L ({−1,1}× [0,1]) by means of the mapping s : Fc(R) → L ({−1,1}×
[0,1]) where s(U) = sU (see Diamond and Kloeden, [3]).

The (ϕ,W )-distance was introduced by Bertoluzza et al. [1] and it is defined by

Dϕ
W (U,V ) =

√∫

[0,1]

∫

[0,1]
[ fU (α,λ )− fV (α,λ )]2 dW (λ )dϕ(α)

for all U,V ∈ Fc(R), with fU (α,λ ) = λ supUα +(1−λ ) infUα . The weight mea-
sures W and ϕ can be formalized as probability measures on ([0,1],B[0,1]) (B[0,1] be-
ing the Borel σ -field on [0,1]), W is assumed to be associated with a non-degenerate
distribution and ϕ is assumed to correspond to a strictly increasing distribution func-
tion on [0,1].

Let (Ω ,A ,P) be a probability space. A mapping X : Ω → Fc(R) is a fuzzy
random variable (FRV) in Puri and Ralescu’s sense (see Puri and Ralescu [15])
if for each α ∈ [0,1] the α-level mappings Xα : Ω → Kc(R), defined so that
Xα(ω) =

(
X (ω)

)

α for all ω ∈Ω , are random sets (that is, Borel-measurable map-
pings w.r.t. the Borel σ -field generated by the topology associated with the well-
known Hausdorff metric dH on K (R)). Alternatively, an FRV is an Fc(R)-valued
random element (i.e. a Borel-measurable mapping) when the Skorohod metric is
considered on Fc(R) (see Colubi et al. [2]).
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The expected value (or mean) of an integrably bounded FRV X (that is, X
verifying that max{infX0,supX0} ∈ L1(Ω ,A ,P)), is the unique Ẽ(X ) ∈ Fc(R)
such that

(
Ẽ(X )

)

α = Aumman’s integral of the random set Xα for all α ∈ [0,1]
(see Puri and Ralescu [15]), that is,

(
Ẽ(X )

)

α =
{

E( f )
∣
∣ f : Ω → R, f ∈ L1, f ∈ Xα a.s. [P]

}
.

Consider the mapping γC : R → Fc(R) which transforms each value x ∈ R into
the fuzzy number whose α-level sets are

(
γC(x)

)

α =
[

fL(x)− (1−α)1/hL(x), fR(x)+(1−α)1/hR(x)
]

for all α ∈ [0,1], where fL : R → R, fR : R → R, fL(x) ≤ fR(x) for all x ∈ R, and hL :
R → (0,+∞), hR : R → (0,+∞) are continuous and bijective. In González-Rodríguez
et al. [6] it is proved that if X : Ω → R is a random variable and fL(X), fR(X) ∈
L1(Ω ,A ,P), then Ẽ

(
γC ◦X

)
characterizes the distribution of X .

3 A Measure of the Skewness of a Random Variable

A random variable X : Ω → R is symmetric around θ ∈ R if, and only if, X −θ and
θ −X are identically distributed. Consequently, if fL(X), fR(X) ∈ L1(Ω ,A ,P), we
have that X is symmetric around θ if, and only if, Ẽ

(
γC ◦ (X − θ)

)
= Ẽ
(
γC ◦ (θ −

X)
)

and hence Dϕ
w(Ẽ
(
γC ◦ (X − θ)

)
, Ẽ
(
γC ◦ (θ − X)

)
= 0. Intuitively, the greater

this distance the lower the symmetry of X . Thus, in order to quantify the degree of
skewness of X we define the γC-skewness measure as

kγC = Dϕ
w(Ẽ
(
γC ◦ (X −θ)

)
, Ẽ
(
γC ◦ (θ −X)

)
.

Example: In this context, a useful choice of characterizing fuzzy representation
(which will be denoted by γ0) is the one determined by fL(x) = fR(x) = 0, and

hL(x) =






1
1+ x

if x ≥ 0

1− x if x < 0

and

hR(x) =
1

hL(x)
for all x ∈ R

In order to compare graphically and numerically the skewness through this fuzzi-
fication, we have considered three distributions. As an example of symmetric distri-
bution, we have assumed X1 to be normally distributed as an N (4,1). To represent
a skewed distribution, we have assumed X2 behaving as a χ2

4 random variable, and
to consider an intermediate situation, we have supposed X3 to be a mixture of the
preceding distributions with mixing proportion p = .5.
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The expected value of the three variables is 4, thus we will focus on the symmetry
around θ = 4.

In Figures 1, 2 and 3 we represent (on the right side) the characterizing expected
values of Xi −4 in comparison with 4−Xi through γ0, as well as the distance between
them, for i = 1,2,3. In addition, as a reference we have also represented (on the left)
the density functions of these variables.

1 4 7
0

.2

.4

-1 0 1
0

.5

1

Fig. 1. N (4,1) distribution: density function (left) and characterizing expected values (right)
of X1 −4 and 4−X1 (kγ0 = 0)

0 5 10 15
0

.1

.2

-1 0 1
0

.5

1

Fig. 2. χ2
4 distribution: density function (left) and characterizing expected values (right) of

X2 −4 and 4−X2 (kγ0 = .0754)

0 4 8 12
0

.05

.15

.25

.35

-1 0 1
0

.5

1

Fig. 3. .5-mixture of an N (4,1) and a χ2
4 distribution: density function (left) and characteriz-

ing expected values (right) of X3 −4 and 4−X3 (kγ0 = .03858)
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It should be noted that one of the main contributions of the applied fuzzification
is to express the skewness by means of the distance between two expected values,
which will make easier the inferential treatment. We observe clearly the effect of the
skewness on the difference between the characterizing expected values correspond-
ing to each distribution.

4 An Asymptotic Test of Symmetry of a Random Variable

In Section 3 we have indicated that a random variable X is symmetric around θ
if, and only if, Ẽ

(
γC ◦ (X − θ)

)
= Ẽ
(
γC ◦ (θ − X)

)
provided that fL(X), fR(X) ∈

L1(Ω ,A ,P). Thus, if we choose a fuzzification such that fL(X), fR(X)∈ L1(Ω ,A ,P),
it is equivalent testing H0 : X is symmetric than testing that fuzzy random variables
γC ◦ (X −θ) and γC ◦ (θ −X) have the same expected value, that is,

H0 : X is symmetric vs H1 : X is not symmetric

⇔ H0 : Ẽ
(
γC ◦ (X −θ)

)
= Ẽ
(
γC ◦ (θ −X)

)

vs H1 : Ẽ
(
γC ◦ (X −θ)

)
�= Ẽ
(
γC ◦ (θ −X)

)
.

As a result we can employ the developments in [7] concerning the test for the
equality of the expected values of two dependent fuzzy random variables to obtain
the following testing procedure for symmetry.

Theorem 1. Let (Ω ,A ,P) be a probability space, X : Ω → R a random variable,
γC a fuzzy representation so that fL(X), fR(X) ∈ L1(Ω ,A ,P) and (X1, . . . ,Xn) be a
sequence of independent random elements distributed as X. If Dϕ

W (γC ◦ (X −θ),γC ◦
(X − θ)) ∈ L1(Ω ,A ,P) is nondegenerate, to test at the nominal significance level
α ∈ [0,1]

H0 : X is symmetric vs H1 : X is not symmetric

the null hypothesis H0 should be rejected if

√
n k̂n

γC =
√

n Dϕ
w

(
γC ◦ (Xn −θ),γC ◦ (θ −Xn)

)
> zα ,

where Xn denotes the sample mean of X, and zα is the 100(1 −α) fractile of the
distribution of a Gaussian variable on L ({−1,1}× [0,1]) with mean 0 and co-
variance function C(u,β1,v,βx) = Cov((sγC◦(X−θ) − sγC◦(θ−X))(u,β1), (sγC◦(X−θ) −
sγC◦(θ−X))(v,β2)) for all (u,β1),(v,β2) ∈ {−1,1}× [0,1].

In [7] several methods to apply in practice the testing procedure are analyzed,
as well as an algorithm and some simulations that show a quite good behaviour
for moderate/large samples irrespectively of the dependence degree between the in-
volved fuzzy random variables. In this setting we can express the testing algorithm
as follows:
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Asymptotic testing procedure

Step 1: Compute the value of the statistic T =
√

n Dϕ
w
(
Ĝn(X −θ), Ĝn(θ −X)

)

Step 2: Obtain a random sample (X∗
1 , . . . ,X∗

m) from (X1, . . . ,Xn) and compute the
value T =

√
n Dϕ

w
(
γC ◦(X∗

m −θ)+γC ◦(θ−Xn),γC ◦(Xn −θ)+γC ◦(θ−X
∗
m)
)
.

Step 3: Repeat step 2 a large number b of times and approximate the p−value as the
proportion of values in {T ∗

1 , . . . ,T ∗
b } greater than T .

5 Simulation Studies

In order to show the empirical behaviour of the proposed test, we have simulated
samples from the populations considered in Example 1. Specifically, ???

Each simulation corresponds to 10,000 iterations of the test at a nominal signifi-
cance level .05 for different sample sizes n. Both measures W and ϕ involved in the
the distance have been chosen to be the Lebesgue one on [0,1]. In order to approxi-
mate the Gaussian process, we have considered m = 10,000. In Table 1 we see that,
moderate/large samples are required to order to obtain suitable results, as usual for
the asymptotic test in [7].

Table 1. Empirical percentage of rejections under H0.

n = 30 n = 100 n = 300

p = .0 6.39 5.78 4.96

6 Concluding Remarks

This paper means an introductory work for analyzing the skewness of a real distri-
bution by means of certain fuzzy representations. In order to illustrate the effect of
the fuzzy representations, we have shown a simple one, but they can be chosen to
reflect the asymmetry depending on different parameters. It seems to be useful to
take advantage of the versatility of the family of fuzzy representations in connection
with this topic both from a descriptive and an inferential point of view. Further in-
vestigations in this respect are being carried out. In addition, although the behaviour
of the γC-skewness measure in the cases analyzed in this paper seems suitable, it is
essential to make comparison with other approaches in the literature.
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In this paper we propose a new way of representing the distribution of a real random
variable by means of the expected value of certain kinds of fuzzifications of the orig-
inal variable. We will analyze the usefulness of this representation from a descriptive
point of view. We will show that the graphical representation of the fuzzy expected
value displays in a visible way relevant features of the original distribution, like the
central tendency, the dispersion and the symmetry. The fuzzy representation is valu-
able for representing continuous or discrete distributions, thus, it can be employed
both for representing population distributions and for exploratory data analysis.

1 Introduction

A family of fuzzy representations of real random variables has been proposed in [2].
Some of them were used to characterize the real distributions with inferential pur-
poses. Some other ones capture visual information about the distributions by focus-
ing mainly on the mean value and the variance, although these fuzzifications do not
characterize the distribution and loose valuable information in descriptive analysis.

Actually, it seems quite complex to find a fuzzification in this family allowing
to visualize properly any kind of distribution. However, on the basis on the same
intuitive ideas, we find another family of fuzzification with valuable graphical prop-
erties. The fuzzy representation of a real random variable allows us to associate the
distribution with the expected value of a fuzzy random variable. The one obtained in
this paper will be referred to as exploratory fuzzy expected value.

The exploratory fuzzy expected value will allow to represent both continuous
and discrete distribution, which leads to a double use. On one hand, population dis-
tributions will be graphically represented by displaying important features (mean
value, variability, skewness, “density”). In this sense, it can be interpreted as a kind
of “parametrical” density or distribution function.

On the other hand, it can be used with exploratory purposes. The aim of the
exploratory and descriptive analysis is to gain understanding of data, which is one
of the most important targets of the statistical analysis. Data visualization associated

A. Colubi et al.: Exploratory Analysis of Random Variables Based on Fuzzifications, Advances in Soft Computing 6,
95–102 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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with the exploratory fuzzy expected value will allow to capture information about
important features of the data, which will allow to formulate reasonable hypotheses
that can later be checked using some of the inferential methods above-mentioned.

2 Preliminaries

Let Kc(R) be the class of the nonempty compact intervals of R and let Fc(R) be
the class of the fuzzy subsets U of R such that the α-level sets Uα ∈ Kc(R) for all
α ∈ (0,1], where Uα = {x ∈ R |U(x) ≥ α}, and U0 = cl{x ∈ R |U(x) > 0}. In this
context, the sendograph of U ∈ Fc(R) is the region enclosed by U and the x-axis on
U0, and A(U) will denote the corresponding area.

The space Fc(R) can be endowed with a semilinear structure, induced by a sum
and the product by a scalar, both based upon Zadeh’s extension principle [4], in
accordance with which the following properties can be derived (U +V )α = Uα +Vα
and (λU)α = λUα for all U,V ∈ Fc(R), λ ∈ R and α ∈ [0,1].

Given a probability space (Ω ,A ,P), a fuzzy random variable (FRV) associated
with (Ω ,A ) is intended to be, in accordance with Puri and Ralescu [3], a mapping
X :Ω →Fc(R) such that for each α ∈ [0,1] the α-level mapping Xα :Ω →Kc(R),
defined so that Xα(ω) =

(
X (ω)

)

α for all ω ∈Ω , is a random set (that is, a Borel-
measurable mapping w.r.t. the Borel σ -field generated by the topology associated
with the well-known Hausdorff metric dH on K (R)). Alternatively, an FRV is an
Fc(R)-valued random element (i.e. a Borel-measurable mapping) when the Skoro-
hod metric is considered on Fc(R) (see Colubi et al. [1]).

A fuzzy random variable X :Ω → Fc(R) is said to be integrably bounded if and
only if, max{| infX0|, |supX0|} ∈ L1(Ω ,A ,P). If X is an integrably bounded fuzzy
random variable, the expected value (or mean) of X is the unique Ẽ(X ) ∈ Fc(R)
such that

(
Ẽ(X )

)

α = Aumman’s integral of the random set Xα for all α ∈ [0,1]
(see Puri and Ralescu [3]), that is,

(
Ẽ(X )

)

α =
{

E( f )
∣
∣ f : Ω → R, f ∈ L1, f ∈ Xα a.s. [P]

}
.

3 The Exploratory Fuzzy Representation

A fuzzy representation of a random variable transforms crisp data (variable values)
into fuzzy sets (the associated FRV values). The representations in [2] are mappings
γC : R → Fc(R) which transforms each value x ∈ R into the fuzzy number whose
α-level sets are

(
γC(x)

)

α =
[

fL(x)− (1−α)1/hL(x), fR(x)+(1−α)1/hR(x)
]

for all α ∈ [0,1], where fL : R → R, fR : R → R, fL(x) ≤ fR(x) for all x ∈ R, and
hL : R → (0,+∞), hR : R → (0,+∞) are continuous and bijective. By varying func-
tions fL, fR, hL and hR it is possible to get representing fuzzy random variables
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whose expected value capture visual information about different parameters of the
distribution, however it seems complex to show jointly the most important ones.

In order to overcome this inconveniency, we will consider a new family of fuzzi-
fications based on the same idea, that is, in such a way that the fuzzy expected value
of the transformed random element capture important information about the original
distribution.

Let f : [0,∞) → [0,1] be an injective function. We define the auxiliar functional
γ f : R → Fc(R) so that,

[γ f (x)]α =






[

0,x2 + x2

(
1− f (x)

f (x)

)(
f (x)−α

f (x)

)]

if 0 ≤ α ≤ f (x)

[

0,x2

(
1−α

1− f (x)

)]

if f (x) < α ≤ 1

(1)

for all α ∈ [0,1] and x ∈ [0,∞). Term x2(1− f (x))/ f (x) has been defined to guarantee
that the area of sendograph of γ f (x) is equal to x2 (see Figure 1). This functional
depends on the square values to make the variance visible in the exploratory fuzzy
expected value.

0 x2x2 /f(x)
0

1

f(x)

Fig. 1. Representation of the fuzzy set γ f (x)

The family of exploratory fuzzy representation depends on a triple θ in a class

Θ = {(x0,a, f ) |x0 ∈ R,a ∈ R
+, f : [0,∞) → [0,1] injective}

where x0 will be a kind of ‘symmetry’ point, a a scale parameter and f the function
above defined. Thus, if sig(x) is the sign of x, γθ : R → Fc(R) is defined for θ =
(x0,a, f ) so that

γθ (x) = 1{x} + sig(x− x0)γ f

(∣
∣
∣
∣

x− x0

a

∣
∣
∣
∣

)

for all x ∈ R.
If X : Ω → R is a real-valued random variable so that EX2 < ∞ and f : [0,∞) →

[0,1] is an injective function so that ( f (X))−1 ∈ L1(Ω ,A ,P), then the exploratory
fuzzy expected value is Ẽ(γΘ ◦ X). It should be noted that condition ( f (X))−1 ∈
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L1(Ω ,A ,P) is not restrictive, because functions like f δp (x) = (px +δ )/(1+δ ) with
p ∈ (0,1) and δ > 0 for all x ∈ R verifies it irrespectively of X .

In this paper, we have considered θs = (EX ,1, f .001
.6 ) ∈Θ , which is a very simple

and useful choice. Thus, the γθs -fuzzy representation of a random variable allows us
to easily visualize features like the central tendency, variability, skewness, type of
variable (discrete/continuous), and the existence of extreme values. More precisely,
we can state that

If X is a random variable and

γθs = 1{x} + sig(x−EX)γ f .001
.6

(|x−EX |)

for all x ∈ R, where γ f is defined as in (1) and

f .001
.6 (x) =

.6x + .001
1.001

,

then

i) (Ẽ(γθs ◦X))1 = {EX} (that is, the 1-level set shows a mean value of X).
ii) A(Ẽ(γθs ◦X)) = Var(X) (that is, the area of the sendograph shows the variance

of X).
iii) The symmetry of Ẽ(γθs ◦X) is connected with the symmetry of X around its mean

value. The more skewness of X the more asymmetry of Ẽ(γθs ◦ X). Thus, the
asymmetry of the exploratory fuzzy expected value shows the skewness of X.

iv) If X is a continuous variable, then Ẽ(γθs ◦ X) will be “smooth” (excepting at
EX), whereas if it is discrete, the exploratory fuzzy expected value will show non-
smooth changes of slope in each of the values X takes on (that is, the “smooth-
ness” allows us to distinguish the discrete and continuous distributions).

v) Large values of X will be associated with large-spread 0-level sets (that is, thus
the spread of the lower α-level sets can be useful to determine the presence of
extreme values).

In the following sections we will illustrate this properties by representing the
exploratory fuzzy expected value of some relevant population/sample distributions.

4 Exploratory Analysis of Random Variables Through the Fuzzy
Representation

In this Section the graphical representation of the exploratory fuzzification of differ-
ent parametric distributions will be shown. Concretely, we will focus on the binomial,
the poisson, the exponential, the normal and the χ2 distribution. They have been cho-
sen in order to show the different features of the exploratory fuzzy expected value
that we have indicated in the preceding section. The distributions were approximated
by Monte Carlo method on the basis of 100000 simulations.

In Figure 2 we show the exploratory fuzzy expected value of two random vari-
ables with binomial distributions. In both cases n = 5, but p = .5 at the left graphic
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Fig. 2. Exploratory fuzzy expected value associated with B(5, .5) (left) and B(5, .1) (center)
distributions. Comparison (right)

and p = .1 at the center one. We can see the respective mean values at the 1-level sets.
The symmetry of the B(5, .5) and the skewness of the B(5, .1) is evident. It should
be noted that the area of the sendograph shows the variance, although to make com-
parisons we have to take into account the range of the supports. The graphic on the
right shows both fuzzy representations in the same scale. The difference in the areas,
associated to the variabilities, is clear. If the aim were to compare the two distribu-
tions irrespectively of the variance, we could make use of the scale parameter a. The
discrete character of the binomial distribution is connected with the lack of smooth-
ness of the fuzzy sets and the right spread of the 0-level of the binomial B(5, .1)
shows the presence of values far away from the mean.

In Figure 3, random variables with Poisson and exponential distributions, both
with expected value equal to 4, are represented. The most remarkable difference is
the large left-spreads with respect to the mean value of the exponential distribution,
which indicates that in the exponential distribution the values lower than the mean
have a greater density than in the Poisson distribution. In this case, since the Poisson
is discrete but not finite, the lack of smoothness is less evident than for the binomial.
We can also observe than the exponential distribution is considerably more asym-
metric and variable than the Poisson.

The χ2 distributed random variables were chosen with 1 and 2 degrees of free-
dom (see Figure 4). The left-spreads with respect to the mean values are more homo-
geneous than those for the Poisson and the exponential distributions, which indicates
that the low values w.r.t. the corresponding expected value are relatively less fre-
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-20 -10 0 10 20 30 40
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Fig. 3. Exploratory fuzzy expected value associated with P(4) (left) and Exp(.25) (center)
distributions. Comparison (right)
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Fig. 4. Exploratory fuzzy expected value associated with χ2
1 (left) and χ2

2 (center) distribu-
tions. Comparison (right)
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Fig. 5. Exploratory fuzzy expected value associated with N (0,1) (left) and N (0,2) (center)
distributions. Comparison (right)

quent, mainly for the χ2
1 . The asymmetry of both distributions is evidenced and the

greater variability of the χ2
2 is easily noticed.

Finally, the exploratory fuzzy expected values corresponding to centered normal
distributions with variances 1 and 4 are shown in Figure 5. The difference with the
preceding distributions is obvious. As expected, the most similar shape to the stan-
dard normal distribution is the B(5,0.5), although we can see the difference in the
smoothness of the curve. We observe the greater variability, the greater area and, in
this case, the greater spreads for the 0-level.

5 Exploratory Data Analysis Through the Fuzzy Representation

When only data are available and the aim is to gain understanding of them, we can
also make use of the graphical representation of the fuzzy mean. To illustrate it, we
have simulated 4 samples with different sample sizes.

The exploratory fuzzy expected value associated with the first simulated samples
are presented in Figure 6. We can observe the same features that we have commented
in the preceding section. The distribution of sample 1 seems to be more skewed than
the one in sample 2. The right spread of the 0-level in sample 1 seems to point out
the presence of values quite greater than the mean. On the contrary, sample 2 seems
to be quite symmetric around its mean. The sample sizes are quite low, although the
clear lack of smoothness points out that there are repeated values, which indicates
that they could come from discrete population distributions.
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Fig. 6. Exploratory fuzzy expected value associated with sample 1 n = 10 (left) and sample 2
n = 20 (right)

In Figure 7 we present the graphical representation corresponding to the other
simulated samples. We observe that the sample 4 is strongly asymmetric, with ex-
treme values much greater than the sample mean, while sample 3 seems to be slightly
asymmetric. The range of the supports suggests that the sample 3 is quite less vari-
able than the sample 4. In this case the sample sizes are larger than in the preceding
case, and the curves seems to be quite smooth, which suggests that the population
distributions could be continuous.
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Fig. 7. Exploratory fuzzy expected value associated with sample 3 n = 30 (left) and sample 4
n = 50 (right)

Actually, sample 1 have been simulated form a B(5, .1), sample 2 from a P(4),
sample 3 from a N (0,1) and sample 4 from a χ2

2 . If we compare the population
distributions with the sample ones, we can note the similarities.
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In this paper a method is introduced to simulate fuzzy random variables by using
the support function. On the basis of the support function, the class of values of a
fuzzy random variable can be ‘identified’ with a closed convex cone of a Hilbert
space, and we now suggest to simulate Hilbert space-valued random elements and to
project later into such a cone. To make easier the projection above we will consider
isotonic regression. The procedure will be illustrated by means of several examples.

1 Introduction

In the literature on fuzzy-valued random variables, there are only a few references to
modeling the distribution of these random elements. These models (for instance, see
[12]) are theoretically well stated, but they are not soundly supported by empirical
evidence, since they correspond to quite restrictive random mechanisms and hence
they are not realistic in practice (see [4]).

Nevertheless, many probabilistic and statistical studies on fuzzy random vari-
ables would be better developed if simulation studies could be carried out (cf. [8],
[9], [11]).

A similar situation arises in connection with functional data, to which a lot of at-
tention is being paid in the last years, especially in which concerns random elements
taking on values in Hilbert spaces (see, for instance, [14], [15]). The assumption of
the Hilbert space structure is very helpful for simulation purposes (see [7], [1] or
[16]).

The key idea in the methodology to be presented is first based on passing from
the space of fuzzy random variable values into the Hilbert space of the corresponding
integrable functions through the support function; then, one can generate Hilbert
space-valued random elements and project them into the convex cone of the image of
the space of fuzzy values. The projection theorem in Hilbert spaces validates the way
to proceed and theoretically it would be possible to simulate all possible distributions
on the space.

G. González-Rodríguez et al.: A Method to Simulate Fuzzy Random Variables, Advances in Soft Computing 6, 103–110
(2006)
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This idea can be easily implemented from a theoretical viewpoint. In practice,
when fuzzy values to be dealt with are fuzzy sets of the one-dimensional Euclidean
space the implementation does not entail important difficulties, since the support
function of a fuzzy value is characterized by two real-valued functions on the unit
interval, namely, the one associated with the infima and that associated with the
suprema. These two functions are in the cone of the monotonic functions, and they
are subject to the constraint of the infimum being lower than the supremum for each
level. They have been analyzed in connection with some probabilistic problems (see
[2]). However, for fuzzy sets of multi-dimensional Euclidean spaces, the practical
developments become much more complex, although some alternatives to simplify
them will be commented along the paper.

In this paper a procedure to simulate fuzzy random variables for which the shape
of fuzzy values is not constrained will be introduced. In case there are some prefer-
ences on the shape of the considered fuzzy values the procedure could also adapted.

2 Preliminaries

Let Kc(Rp) be the class of the nonempty compact convex subsets of R
p endowed

with the Minkowski sum and the product by a scalar, that is, A + B = {a + b |a ∈
A, b ∈ B} and λA = {λa |a ∈ A} for all A,B ∈ Kc(Rp) and λ ∈ R. We will consider
the class of fuzzy sets

Fc(Rp) =
{

U : R
p → [0,1]

∣
∣Uα ∈ Kc(Rp) for all α ∈ [0,1]

}

where Uα is the α-level of U (i.e. Uα = {x ∈ R
p |U(x) ≥ α}) for all α ∈ (0,1], and

U0 is the closure of the support of U . The space Fc(Rp) can be endowed with the
sum and the product by a scalar based on Zadeh’s extension principle [17], which
satisfies that (U +V )α = Uα +Vα and (λU)α = λUα for all U,V ∈ Fc(Rp), λ ∈ R

and α ∈ [0,1].
The support function of a fuzzy set U ∈ Fc(Rp) is sU (u,α) = supw∈Uα 〈u,w〉 for

any u ∈ S
p−1 and α ∈ [0,1], where S

p−1 is the unit sphere in R
p and 〈·, ·〉 denotes the

inner product. The support function allows us to embed Fc(Rp) onto a cone of the
continuous and Lebesgue integrable functions L (Sp−1) by means of the mapping
s : Fc(Rp) → L (Sp−1 × [0,1]) where s(U) = sU (see [5]).

We will consider the generalized metric by Körner and Näther [10] DK , which is
defined so that

[DK(U,V )]2 =
∫

(Sp−1)2×[0,1]2

(
sU (u,α)− sV (u,α)

)(
sU (v,β )− sV (v,β )

)
dK(u,α,v,β ),

for all U,V ∈ Fc(Rp), where K is a positive definite and symmetric kernel; thus, DK

coincides with a generic L2 distance ‖ · ‖2 on the Hilbert space L (Sp−1 × [0,1]).
Let (Ω ,A ,P) be a probability space. A fuzzy random variable (FRV) in Puri &

Ralescu’s sense [13] is a mapping X : Ω → Fc(Rp) so that the α-level mappings
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Xα : Ω → Kc(Rp), defined so that Xα(ω) =
(
X (ω)

)

α for all ω ∈ Ω , are ran-
dom sets (that is, Borel-measurable mappings with the Borel σ -field generated by
the topology associated with the well-known Hausdorff metric dH on K (Rp)). Al-
ternatively, an FRV is an Fc(Rp)-valued random element (i.e. a Borel-measurable
mapping) when the Skorokhod metric is considered on Fc(Rp) (see [3]).

If X : Ω → Fc(Rp) is a fuzzy random variable such that dH
(
{0},X0

)
∈

L1(Ω ,A ,P), then the expected value (or mean) of X is the unique E(X )∈Fc(Rp)
such that

(
E(X )

)

α = Aumman’s integral of the random set Xα for all α ∈ [0,1],
that is,
(
E(X )

)

α =
{

E(X |P)
∣
∣ X : Ω → R

p, X ∈ L1(Ω ,A ,P), X ∈ Xα a.s. [P]
}
.

3 Simulation of Fuzzy Random Variables
Through Functional Random Variables

The space of fuzzy values Fc(Rp) is a closed convex cone of the Hilbert space
L (Sp−1 × [0,1]), and hence there exists a unique projection. As a consequence,
given an arbitrary f ∈ L (Sp−1 × [0,1]) there is a unique fuzzy set P( f ) = A f which
corresponds to the anti-image of the support function of the projection of f onto the
cone s(Fc(Rp)). We will denote by P : L (Sp−1× [0,1])→ s(Fc(Rp)) the projection
function.

For any random element X taking on values in L (Sp−1 × [0,1]), the mapping
s−1◦P◦X is a fuzzy random variable. In this way, if random elements of L (Sp−1 ×
[0,1]) are generated, random elements of s(Fc(Rp)) could be obtained through the
projection P. Due to the fact that s(Fc(Rp)) ⊂ L (Sp−1 × [0,1]), we can guarantee
that this method involves all the possible distributions on s(Fc(Rp)) and, since s is
an isometry, by applying s−1 we would get all the possible distributions on Fc(Rp).

The theoretical method to generate Fc(Rp)-valued fuzzy random variables con-
sists in

Step 1

Simulating random elements on L (Sp−1 × [0,1]) by following the current direc-
tions in Functional Data Analysis (i.e., by considering bases either from a given
function plus a noise term, or from discretized brownian motions, and so on).

Step 2

Projecting the simulated elements into the isometric cone of Fc(Rp).

Step 3

Identifying the fuzzy set associated with the generated support function.

This theoretical method seems to be complex to implement in practice, although
it would be feasible in some particular cases. Thus, in case p = 1, the unit sphere
Sp−1 reduces to the set {−1,1} whence the fuzzy set A ∈Fc(R) can be characterized
by means of two monotonic functions sA(−1, ·) and sA(1, ·) (see [2]) which satisfy
certain constraints (since the infimum should always be lower than the supremum).
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To make the problem easy to handle, fuzzy values can be reparameterized in
terms of the left and right spreads with respect to the center of the 1-level. Once
fuzzy values are reparameterized in such a way, arbitrary functions can be generated
to construct later the function of the left spreads (for the infima) and the function
of the right spreads (for the suprema). Since these two functions are monotonic and
nonnegative, we can apply an algorithm of the isotonic regression restricted to posi-
tive values (see [6]). Later, the mid point of the 1-level would be generated at random
and, along with the spreads simulated before, the infimum and supremum functions
defining the fuzzy value would be obtained.

The ‘practical’ method to generate Fc(R)-valued fuzzy random variables we
suggest in this paper can be summarized as follows:

Step Fc(R)-1
To generate at random the mid-point of the 1-level, x0, as well as two random
functions on the Hilbert space L ([0,1]), fl , fr : [0,1] → R (there is no need for
these functions to be generated independently).

Step Fc(R)-2
To find the antitonic regressions of f ∗

l and f ∗
r to get the left and right spreads

sl ,sr : [0,1] → [0,∞), respectively.

Step Fc(R)-3
The α-levels of the fuzzy value A generated through Steps Fc(R)-1 and Fc(R)-2
would be given by Aα = [x0 − sl(α),x0 + sr(α)] (which is well-defined).

As we have commented before, the procedure above does not involve constraints
on the shape of fuzzy values to be generated, although this type of constraint (like,
for instance, to assume that x0 is deterministic, functions fi are linear functions, etc.)
could be incorporated if required.

4 Some Illustrative Examples

We now illustrate the ideas in Section 3 by means of two examples. Since Steps
Fc(R)-2 and Fc(R)-3 do not involve any random process, the differences in apply-
ing the algorithm are restricted to Step Fc(R)-1. There are many ways of simulating
random functions in the Hilbert space L ([0,1]). Some of them, as those based on
a function plus a noise term or considering a class depending on real random para-
meters, can be easily imitated in Fc(R). However, the Hilbert spaces present some
distinguishing characteristics, such as the generating basis, that can be taken into
account to simulate random elements in a wider context.

In this section two ways of simulating from generating bases the functions f1 and
f2 in Step Fc(R)-1 of the above-described procedure are detailed.

Consider a referential triangular fuzzy set Tri(−1,0,1), which is equivalent to
consider the spread functions f1(α) = f2(α) = 1−α for all α ∈ [0,1]. Since these
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spread functions correspond to linear functions, the trigonometric basis will be suit-
able to represent them. This basis is given by

ϕ j(x) =
{

1 if j = 0√
2 cos(π jx) if j = 1,2, . . .

Coefficients of the spread functions in this basis are given by

θ j =






.5 if j = 0
0 if j is an even number
2
√

2
π2 j2 if j is an odd number

For practical purposes we will consider the approximation of the function cor-
responding to the first 21 terms of the linear combination (i.e., j = 0, . . . ,20). Co-
efficients are distorted in a random way so that all the generated random functions
follow the expression

20∑

j=0

(θ j + ε j)ϕ j

where (ε0, . . . ,ε20) is a random vector.
The way of distorting the coefficients is crucial, since small perturbations can

produce shapes completely different from the original one. It should be recalled that,
in order to get well-defined fuzzy sets, we will need to apply an antitonic regression
algorithm after the simulation of the functions in L ([0,1]). Thus, if the simulated
functions are highly variable (in the sense of showing many monotonicity changes),
the antitonic regression corresponding to the spreads will have many constant parts,
and hence the obtained fuzzy set will present a lot of discontinuities. In order to
illustrate this behaviour, we will firstly consider the following:

Case A. For the left spread a sequence of independent realizations, ε l
0, . . . ,ε

l
20, are

simulated from the normal distribution N (0, .01), and for the right spread a se-
quence of independent realizations, εr

0, . . . ,εr
20, are simulated from the normal distri-

bution N (0, .1). Thus, we get two random functions

fl =
20∑

j=0

(θ j + ε l
j)ϕ j and fr =

20∑

j=0

(θ j + εr
j )ϕ j.

The mid-point of the 1-level is chosen at random from a normal distribution N (2,1).
By applying Steps Fc(R)-2 and Fc(R)-3, a random fuzzy set is obtained.

In order to compare some particular realizations of the simulated fuzzy random
variable with the expected value of such an element, we have made 10,000 simula-
tions and we have approximated the (fuzzy) mean value by Monte Carlo method. In
Figures 1 and 2 three simulated values and the corresponding mean value are shown.
We can see that, although the perturbations were chosen to follow distributions with
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Fig. 1. Simulated values in Case A
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Fig. 2. Approximated mean value in the simulation in Case A

a relative small variability, the simulated fuzzy sets are quite different from the refer-
ential triangular fuzzy number and have many discontinuities. Nonetheless, the shape
of the expected value is quite smooth and more similar to the referential fuzzy num-
ber. The difference between this mean value and the original triangular one is mainly
due to the application of the antitonic regression algorithm (the expected value of
the antitonic regression can be different from the antitonic regression of the expected
value).

In order to obtain smoother shapes, we can simulate the perturbations in the
coefficients with a decreasing weight as follows.

Case B. For the left spread a sequence of independent realizations Ul
0, . . . ,U

l
20 from

the uniform distribution U(0,1) are simulated, and the perturbations are considered so
that ε l

0 = Ul
0, ε l

j = Ul
j · ε l

j−1 . For the right spread the same process is followed but
using the beta distribution β (5,3) instead of the uniform one. Again, the mid-point
is chosen at random from a normal distribution N (2,1) and Steps Fc(R)-2 and
Fc(R)-3 are followed to get the random fuzzy set. In Figures 3 and 4 three simu-
lated values and the corresponding mean value (approximated by 10,000 realizations
of the process) are shown. As expected, we can see smoother shapes than those in
Case A, although they are also quite different and the greater the magnitude of right
perturbations the greater the probability of discontinuities.
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Summary. Friedman’s test is traditionally applied for testing independence between k or-
derings (k > 2). In the paper we show how to generalize Friedman’s test for situations with
missing information or non-comparable outputs. This contribution is a corrected version of
our previous paper [8].

Keywords: Friedman’s test, IF-sets, missing data, ranks, testing independence.

1 Introduction

Suppose we observe k sets (k > 2) of rankings of n subjects and we want do decide
whether there is any association or dependence between this rankings. A typical
example is a situation with k judges or experts, called observers, each of whom is
presented with the same set of n objects to be ranked. Then Friedman’s test will
provide a nonparametric test of independence of their rankings.

Classical Friedman’s test have been constructed for unambiguous rankings (i.e.
for k linear orderings). However, in a real life we often meet ambiguous answers or
even situations when one or more observers cannot rank all the objects (i.e. we have
partial orderings only). In the paper we have proposed how to generalize Friedman’s
test to situations when not all elements could be univocally ordered.

The paper is organized as follows: In Sec. 2 we recall the classical Friedman’s
test. Then we show how to apply IF-sets for modelling ambiguous orderings (Sec.
3). And finally, in Sec. 4, we suggest how to generalize Friedman’s test for such
orderings.

2 Friedman’s Test – A Classical Approach

Let X = {x1, . . . ,xn} denote a finite universe of discourse. Suppose that elements
(objects) x1, . . . ,xn are ordered according to preferences of k observers A1, . . . ,Ak.

E. Mrówka and P. Grzegorzewski: Friedman’s Test for Ambiguous and Missing Data, Advances in Soft Computing 6,
111–118 (2006)
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Then our data could be presented in the form of a two-way layout (or matrix) M with
k rows and n columns. Let Ri j, i = 1,2, . . . ,k, j = 1,2, . . . ,n, denote the rank given
by ith observer to the jth object. Then Ri1,Ri2, . . . ,Rin is a permutation of the first
n integers while R1 j,R2 j, . . . ,Rk j is a set of rankings given to object number j by
successive observers.

Suppose we are interested in testing the null hypothesis that there is no associa-
tion between rankings given by k observers. If the jth object x j has the same prefer-
ence relative to all other objects x1, . . . ,x j−1,x j+1, . . .xn in the opinion of each of the
k observers, then all ranks in the jth column will be identical. Therefore, the ranks in
each column are indicative for the agreement among observers. Let R = (R1, ...,Rn)
denote observed column totals, i.e.

R j =
k∑

i=1

Ri j, j = 1, ...,n, (1)

and let R̄ denote the average column total. It can be shown that R̄ equals R
∗ = k(n+1)

2
for perfect agreement between rankings. Then the sum of squares of deviations be-
tween actually observed column total and average column total for perfect agreement
is given by:

S (R) =
n∑

j=1

[

R j −
k (n+1)

2

]2

. (2)

It can be shown that for any sets of k rankings S ranges between zero and k2n
(n2 − 1)/12, with the maximum value attained where there is a perfect agreement
and the minimum value attained when each observer’s rankings are assigned com-
pletely at random. Therefore, S maybe used to test the null hypothesis H that the
rankings are independent (see, e.g., [3]). In practise we use a linear function of sta-
tistic (2) defined as follows

Q =
12S

kn(n+1)
. (3)

If the null hypothesis holds then statistic (3) approaches the chi-square distribution
with n−1 degrees of freedom as k increases. Numerical comparisons have shown this
to be a good approximation as long as k > 7 (see [3]). Therefore, we reject the null
hypothesis if Q ≥ χ2

n−1,α , where χ2
n−1,α is a crital value of the chi-square distribution

with n−1 degrees of freedom corresponding to assumed significance level α . A test
based on Q is called Friedman’s test.

Friedman’s test could be used provided all objects are univocally classified by all
observers. However, it may happen that one or more observers cannot rank all the
objects under study (e.g. he is not familiar with all elements) or they have problems
with specifying their preferences. A way-out is then to remove all objects which
are not ordered by all of the observers and not to include them into considerations
but this approach involves always a loss of information. Moreover, if the number
of ill-classified objects is large, eliminating them would be preclusive of applying
Friedman’s test. Below we show how to generalize the classical Friedman’s test to
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make it possible to infer about possible association between rankings with missing
information or non-comparable outputs.

3 IF-Sets in Modelling Rankings

In this section we show how to apply IF-sets in modelling orderings or rankings. A
method given below seems to be useful especially if not all elements under consider-
ation could be ranked (see [5–7]). Let us recall (see [1]) that an IF-set C in a universe
of discourse X is given by a set of ordered triples

C = {〈x,µC(x),νC(x)〉 : x ∈ X}, (4)

where µC,νC : X → [0,1] are functions such that

0 ≤ µC(x)+νC(x) ≤ 1 ∀x ∈ X . (5)

The numbers µC(x) and νC(x) represent the degree of membership and degree of
nonmembership of the element x ∈ X to C, respectively. For each element x ∈ X we
can compute the, so called, IF-index of x in C defined by

πC(x) = 1−µC(x)−νC(x), (6)

which quantifies the amount of indeterminacy associated with xi in C. It is seen
immediately that πC(x) ∈ [0,1] ∀x ∈ X .

In our approach we will attribute an IF-set to the ordering corresponding to each
observer. For simplicity of notation we will further on identify orderings expressed
by the observers with the corresponding IF-sets A1, . . . ,Ak. Thus, for each i = 1, . . . ,k
let

Ai = {
〈
x j,µAi(x j),νAi(x j)

〉
: x j ∈ X} (7)

denote an intuitionistic fuzzy subset of the universe of discourse X = {x1, . . . ,xn},
where membership function µAi(x j) indicates the degree to which x j is the most
preferred element by ith observer, while nonmembership function νAi(x j) shows the
degree to which x j is the less preferred element by ith observer. The main prob-
lem now is to determine these membership and nonmembership functions when the
only available information are orderings that admit ties and elements that cannot be
ranked.

However, for each observer one can always specify two functions wAi ,bAi : X →
{0,1, . . . ,n − 1} defined as follows: for each given x j ∈ X let wAi(x j) denote the
number of elements x1, . . . ,x j−1,x j+1, . . . ,xn surely worse than x j, while bAi(x j) let
be equal to the number of elements surely better than x j in the ordering correspond-
ing to the preferences expressed by observer Ai. Then, using functions wAi(x j) and
bAi(x j), we may determine the requested membership and nonmembership functions

as µAi(x j) =
wAi

(x j)
n−1 and νAi(x j) =

bAi
(x j)

n−1 .
Our IF-sets A1, . . . ,Ak have some interesting properties. For example, πAi(x j) = 0

for each x j ∈ X if and only if all elements are ranked by ith observer and there are no
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ties. Conversely, if there is an element x j ∈ X such that πAi(x j) > 0 then there are ties
or non-comparable elements in the ordering made by ith observer. Moreover, more
ties or elements that are not comparable with the others, then bigger values of the
IF-index are observed. One may also notice that πAi(x j) = 1 if and only if element
x j ∈ X is either non-comparable with all other elements or all elements x1, . . . ,xn have
obtained the same rank in the ordering made by ith observer. Hence, it seems that IF-
sets might be used as a natural and useful tool for modelling nonlinear orderings.

4 Generalization of Friedman’s Test

According to (2) the test statistic for testing independence might be expressed in a
following way

S (R) = d(R,R
∗), (8)

where d(R,R
∗) denotes a distance between the observed column totals R = (R1, . . . ,Rn)

and the average column totals R
∗

obtained for perfect agreement between rankings.
Now to construct a straightforward generalization of Friedman’s test for orderings
containing elements that cannot be ranked by all observers, we have to find coun-
terparts of R and R

∗
and a suitable measure of distance between these two objects

(see [7]). As we have suggested in the previous section, we would consider appropri-
ate IF-sets A1, . . . ,Ak for modelling ill-defined rankings. Thus instead of R will also
consider an IF-set A, defined as follows

A = {
〈
x j,µA(x j),νA(x j)

〉
: x j ∈ X}, (9)

where the membership and nonmembership functions µA and νA are given by
µA(x j) = 1

k

∑k
i=1 µAi(x j), and νA(x j) = 1

k

∑k
i=1 νAi(x j), respectively.

If there is a perfect agreement within the group of observers and all objects are
ranked without ties, then the resulting IF-set is of a form

A∗ = {
〈
x j,µA∗(x j),νA∗(x j)

〉
: x j ∈ X}, (10)

such that the membership function is given by µA∗(x j1) = n−1
n−1 = 1, µA∗(x j2) = n−2

n−1 ,

µA∗(x j3) = n−3
n−1 , . . . , µA∗(x jn−1) = 1

n−1 , µA∗(x jn) = 0, where x j1 , . . . ,x jn is a permuta-
tion of elements x1, . . . ,xn and the nonmembership function is νA∗(x j) = 1−µA∗(x j)
for each j = 1, . . . ,n. Therefore, for perfect agreement between rankings, instead of
the average column totals R

∗
we obtain an IF-set

A
∗ = {

〈
x j,µA

∗(x j),νA
∗(x j)

〉
: x j ∈ X} (11)

such that µA
∗(x1) = . . . = µA

∗(xn) = 1
2 and νA

∗(x1) = . . . = νA
∗(xn) = 1

2 . Now, af-

ter substituting R and R
∗

by IF-sets A and A
∗
, respectively, we have to choose a

suitable distance between these two IF-sets. Several measures of distance between
IF-sets were considered in the literature (see, e.g. [4]). In this paper we will apply
a distance proposed by Atanassov [2], i.e. such function d : IFS(X) × IFS(X) →
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R
+ ∪ {0} which for any two IF-subsets B = {

〈
x j,µB(x j),νB(x j)

〉
: x j ∈ X} and

C = {
〈
x j,µC(x j),νC(x j)

〉
: x j ∈ X} of the universe of discourse X = {x1, . . . ,xn}

is defined as

d(B,C) =
n∑

j=1

[

(µB(x j)−µC(x j))
2 +(νB(x j)−νC(x j))

2
]

. (12)

For actual observed rankings, modelled by IF-sets A1, . . . ,Ak, test statistic is a
distance (12) between IF-set A obtained from (9) and A

∗
obtained from (11) and is

given by

S̃(A) = d(A,A
∗) =

n∑

j=1

[(

µA(x j)−
1
2

)2

+
(

νA(x j)−
1
2

)2
]

. (13)

It can be shown that a following lemma holds:

Lemma 1. For any A ∈ IFS there exist two intuitionistic fuzzy sets A� and A� such
that:

min
{

S̃(A�), S̃(A�)
}

≤ S̃(A) ≤ max
{

S̃(A�), S̃(A�)
}

(14)

where

A� = {
〈
x j,µA(x j),νA(x j)+πA(x j)

〉
: x j ∈ X}, (15)

A� = {
〈
x j,µA(x j)+πA(x j),νA(x j)

〉
: x j ∈ X}. (16)

Hence our test statistic S̃(A) based on ill-defined data is bounded by two other
statistics S̃(A�) and S̃(A�) corresponding to situations with perfect rankings. Indeed,
for each x j ∈ X

µA�(x j) = 1− vA�(x j) ⇒ πA�(x j) = 0 (17)

µA�(x j) = 1− vA�(x j) ⇒ πA�(x j) = 0 (18)

which means that A� and A� describe situations when all elements are univocally
classified. Therefore, there exist two systems of rankings (in a classical sense) R�

and R� and one-to-one mapping transforming A� and A� onto R� and R�, respectively.
Thus both statistics

T1 (A) =
6k(n−1)2

n(n+1)
S̃
(

A�
)

, (19)

T2 (A) =
6k(n−1)2

n(n+1)
S̃
(

A�
)

, (20)

are chi-square distributed with n − 1 degrees of freedom. Unfortunately, T1 and T2

are not independent. According to (14) we get a following inequality

Tmin ≤ T (A) ≤ Tmax (21)
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where

Tmin = min{T1 (A) ,T2 (A)} , (22)

Tmax = max{T1 (A) ,T2 (A)} , (23)

T (A) =
6k(n−1)2

n(n+1)
S̃ (A) . (24)

Traditionally, in hypothesis testing we reject the null hypothesis if test statistic
belongs to critical region or accept it otherwise. In our problem with missing data
a final decision would be based on these two statistics T1 and T2. Let us denote by
qmin
α and qmax

α the critical values of Tmin and Tmax, respectively, i.e. we find them as
the solutions of the equations P

(
Tmin > qmin

α
)

= α and P(Tmax > qmax
α ) = α , respec-

tively, when the null hypothesis holds.. The results were obtained via Monte Carlo
simulations. Some critical values are shown in Table 1 and Table 2.

Numerical comparisons have shown that Tmin and Tmax approaches the gamma
distribution as k increases. Additionally those approximations work well if the num-
ber of missing or ill defined data does not exceed the number of correctly classified
data. Moreover, we can find regression formulae showing how the parameters of
shape λmin and λmax corresponding to approximate distributions of Tmin and Tmax de-
pend on the number of observers k, number of objects n and number of ill defined
data m, e.g.:
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Fig. 1. Decision region

λmin = 362.684−9.7702n−5.7933k +2.8427m, (25)

λmax = 378.743−9.7426n−6.1272k +2.8512m. (26)

It is worth noting that for both distributions the parameter of scale β is constants and
is equal to βmin = 1.3848 and βmax = 1.6076, respectively.

Going back to our hypothesis testing problem, we should reject H on the signif-
icance level α if T (A) ≥ qmax

α while there are no reasons for rejecting H (i.e. we
accept H) if T (A) < qmin

α These two situations are quite obvious. However, it may
happen that qmin

α ≤ T (A) < qmax
α . In such a case we are not completely convinced

neither to reject nor to accept H (see Fig. 1).
Thus instead of a binary decision we could indicate a degree of conviction that

one should accept or reject H. The measure describing degree of necessity for reject-
ing H is given by following formula:

Ness(reject H) =






1 if qmin ≥ T (A)
qmax−T (A)
qmax−qmin

if qmin < T (A) ≤ qmax

0 if qmax < T (A)
(27)

Simultaneously we get another measure

Poss(accept H) = 1−Ness(reject H) (28)

describing the degree of possibility for accepting H.
Thus, Ness(reject H) = 1 means that the null hypothesis should be rejected

and hence there is no possibility for accepting H while Ness(reject H) = ξ ∈ (0,1)
shows how strong our data are for or against (1− ξ ) the null hypothesis H. Filially
Ness(reject H) = 0 means that there is no reason for rejecting null hypothesis H.

5 Conclusion

In the paper we have proposed how to generalize the well-known Friedman’s test to
situations in which not all elements could be ordered. We have discussed Friedman’s
test as a nonparametric tool for testing independence of k variates. However, this
very test could be also applied as nonparametric two-way analysis of variance for the
balanced complete block design. In this case kn subjects are grouped into k blocks
each containing n subjects and within each block n treatments are assigned randomly
to the matched subjects. In order to determine whether the treatment effects are all
the same, Friedman’s test could be used. It should be stressed that our generalized
version of Friedman’s test also works for two-way analysis of variance by ranks with
missing data.
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Summary. The aim of this work is to give a summary of some of the known properties of sets
of measure-free martingales in vector lattices and Banach spaces. In particular, we consider
the relationship between such sets of martingales and the ranges of the underlying filtration of
conditional expectation operators.

1 Introduction

There are examples in the literature where certain aspects of martingale theory are
considered in a suitable framework which avoids the use of an underlying measure
space (cf. [2, 3, 4, 5, 6, 7, 8, 9, 15, 16, 17, 18]). The aim of this work is to give
a summary of some of the known properties of sets of measure-free martingales.
In particular, we consider the relationship between such sets of martingales and the
ranges of the underlying filtration of conditional expectation operators.

We assume that the reader is familiar with the terminology and notation of vector
lattices (i.e. Riesz spaces) and Banach lattices, as can be found in [12, 14, 19].

Some general notation and terminology on martingales are in order at this stage,
so as to avoid unnecessary repetition later.

Let E be a vector space. A sequence (Ti) of linear projections defined on E for
which TiTm = TmTi = Ti for each m ≥ i is called a filtration of linear projections on
E. If R(Ti) denotes the range of Ti, then a filtration of linear projections (Ti) is
a commuting family of linear projections with increasing ranges, i.e. R(Ti) ↑i. A
sequence ( fi,Ti)i∈N, where (Ti) a filtration of linear projections on E and fi ∈ R(Ti)
for each i ∈ N, is called a martingale if fi = Ti fm, for each m ≥ i.

Let E be a vector space and (Ti) a filtration of linear projections on E and
M(E,Ti) :=

{
( fi,Ti) : ( fi,Ti) is a martingale on E

}
. Then M(E,Ti) is a vector space

if we define addition and scalar multiplication by

( fi,Ti)+(gi,Ti) = ( fi +gi,Ti) and λ ( fi,Ti) = (λ fi,Ti) for each λ ∈ R.

If E is an ordered vector space and (Ti) a filtration of positive (i.e. Tix ≥ 0 for all
x ≥ 0) linear projections on E, define ≤ on M(E,Ti) by ( fi,Ti) ≤ (gi,Ti) ⇐⇒ fi ≥

S.F. Cullender et al.: Measure-Free Martingales with Application to Classical Martingales, Advances in Soft Computing
6, 121–128 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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gi for all i ∈ N, and let M+(E,Ti) :=
{
( fi,Ti) : fi ≥ 0 for all i ∈ N

}
. Then M(E,Ti)

is an ordered vector space with positive cone M+(E,Ti).
If E is a vector lattice, then e ∈ E+ is called a weak order unit for E if x ∈ E+

implies that x∧ne ↑ x. If (Ω ,Σ ,µ) is a probability space, then 1, defined by 1(s) = 1
for all s ∈Ω , is a weak order unit for Lp(µ) for all 1 ≤ p < ∞.

2 Martingales in Vector Lattices

In the setting of vector lattices with weak order units, the following definition is taken
from [5], where a motivation is also given:

Definition 1. Let E be a vector lattice with weak order unit e. A positive order con-
tinuous projection T : E → E for which T (w) is a weak order unit in E for each weak
order unit w ∈ E+ and R(T ) is a Dedekind complete Riesz subspace of E, is called
a conditional expectation on E.

A proof is given in [7] that the statement “T (w) is a weak order unit in E for each
weak order unit w ∈ E+” in the preceding definition is equivalent to the statement
“T (e) = e”.

Let E be a vector lattice and (Ti) a filtration of positive linear projections on E.
Let

Moc(E,Ti) :=
{
( fi,Ti) ∈ M(E,Ti) : ( fi) is order convergent in E

}
,

Mob(E,Ti) :=
{
( fi,Ti) ∈ M(E,Ti) : ( fi) is an order bounded in E

}
.

It is easy to show that the above defined sets of martingales are ordered vec-
tor subspaces of M(E,Ti). Moreover, since order convergent sequences are order
bounded, Moc(E,Ti) ⊆ Mob(E,Ti). However, [8, Corollary 5.2] shows that equality
holds in the setting of vector lattices with weak order units:

Theorem 1. Let E be a Dedekind complete vector lattice with weak order unit e, and
let (Ti) be a filtration of conditional expectations on E. Then Moc(E,Ti) = Mob(E,Ti).

If E is a vector lattice and T : E → E is a positive linear map, then T is said to be
strictly positive if

{
x ∈ E : T (|x|) = 0

}
= {0}.

There is a connection between Moc(E,Ti) and
⋃∞

i=1 R(Ti), where the latter de-
notes the order closure of

⋃∞
i=1 R(Ti) :

Theorem 2. [8, Theorem 5.8] Let E be a Dedekind complete vector lattice with weak
order unit e and let (Ti) be a filtration of conditional expectations on E with T1 strictly
positive. Then Moc(E,Ti) is a Dedekind complete vector lattice and L : Moc(E,Ti) →
⋃∞

i=1 R(Ti), defined by L(( fi,Ti)) = lim
i

fi (order), is an order continuous surjective

Riesz isomorphism.
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Let E be a vector lattice and (Ti) a filtration of positive linear projections on E.
Let Mr(E,Ti) denote the set of all regular martingales on E; i.e., those martingales
( fi,Ti) on E for which there exist (gi,Ti),(hi,Ti) ∈ M+(E,Ti) such that fi = gi −hi.

It is readily verified that Mr(E,Ti) is an ordered vector subspace of M(E,Ti) and
Mr(E,Ti) = M+(E,Ti)−M+(E,Ti).

The simple proof given in [11] for the following result, is based on the ideas in
[8] and the main idea in the proof of [18, Theorem 7]:

Theorem 3. If E is a Dedekind [σ -Dedekind] complete vector lattice and (Tn) a fil-
tration of order [σ -order] continuous positive linear projections on E, then Mr(E,Ti)
is a Dedekind [σ -Dedekind] complete vector lattice.

3 Martingales in Banach Spaces and Banach Lattices

Let (Ω ,Σ ,µ) denote a probability space. Then, for 1 ≤ p <∞ and X a Banach space,
let Lp(µ ,X) denote the space of (classes of a.e. equal) Bochner p-integrable func-
tions f : Ω → X and denote the Bochner norm on Lp(µ ,X) by ∆p, i.e. ∆p( f ) =
(∫

Ω ‖ f‖p
X dµ
)1/p

.
If one wants to apply a measure-free approach to martingales on Lp(µ ,X)-spaces,

a measure-free approach to Banach spaces has to be considered. In [2, 3], such an
approach is followed:

Let X be a Banach space and (Ti) a filtration of contractive linear projections
on X . Define ‖ · ‖ on M(X ,Ti) by ‖( fi,Ti)‖ = supi ‖ fi‖ and let M (X ,Ti) denote the
space of norm bounded martingales on X ; i.e., M (X ,Ti) =

{
( fi,Ti) ∈ M(X ,Ti) :

‖( fi,Ti)‖ < ∞
}

. Then M (X ,Ti) is a Banach space with respect to ‖ · ‖.
Let Mnc(X ,Ti) denote the space of norm convergent martingales on X ; i.e.,

Mnc(X ,Ti) =
{
( fi,Ti) ∈ M (X ,Ti) : ( fi) is norm convergent in X

}
.

To describe Mnc(X ,Ti), the following results are used in [2]:

Proposition 1. Let X be a Banach space and let (Ti) be a filtration of contractive
linear projections on X. Then f ∈

⋃∞
i=1 R(Ti), the latter denoting the norm closure

of
⋃∞

i=1 R(Ti), if and only if ‖Ti f − f‖ → 0.

Corollary 1. Let X be a Banach space and let ( fi,Ti) be a martingale in X, where
(Ti) is a filtration of contractive linear projections on X. Then ( fi,Ti) converges to f
if and only if f ∈

⋃∞
i=1 R(Ti) and fi = Ti f for all i ∈ N.

An application in [2] of Proposition 1 and Corollary 1 yields:

Proposition 2. Let X be a Banach space and (Ti) a filtration of contractive linear
projections on X. Then L : Mnc(X ,Ti) →

⋃∞
i=1 R(Ti), defined by L(( fi,Ti)) = limi fi

(norm), is a surjective isometry.

Another application in [3] of Proposition 1 and Corollary 1 provides a proof, via
martingale techniques, for the following well known result:
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Proposition 3. Let X be a Banach space and (xi) a basic sequence in X. Then (xi) is
an unconditional basic sequence if and only if the closure of the span of (xi), denoted
[xi], can be renormed so that it is an order continuous Banach lattice with positive
cone

C(xi)
+ :=

{ ∞∑

i=1

αixi ∈ [xi] : αi ≥ 0 for each i ∈ N

}

.

Motivated by [18], Proposition 2 is specialized in [2] to Banach lattices to obtain:

Proposition 4. Let E be a Banach lattice and (Ti) a filtration of positive contractive
linear projections on E for which

⋃∞
i=1 R(Ti) is a closed Riesz subspace of E. If

L : Mnc(E,Ti) →
⋃∞

i=1 R(Ti) is defined by L(( fi,Ti)) = lim
i

fi, then Mnc(E,Ti) is a

Banach lattice and L : Mnc(E,Ti) →
⋃∞

i=1 R(Ti) is a surjective Riesz isometry.

By Corollary 1 we have

Mnc(E,Ti) =
{
( fi,Ti) ∈ Mnb(E,Ti) : ∃ f ∈ E such that fi = Ti f → f

}
.

Corollary 2. Let E be a Banach lattice and (Ti) a filtration of positive contractive
linear projections on E for which

⋃∞
i=1 R(Ti) is a closed Riesz subspace of E. Then

Mnc(E,Ti) is a Banach lattice in which the following formulas hold:

(
lim

m→∞
Tn fm,Tn

)+ =
(

lim
m→∞

Tn f +
m ,Tn

)
;

(
lim

m→∞
Tn fm,Tn

)− =
(

lim
m→∞

Tn f −
m ,Tn

)
;

(
lim

m→∞
Tn fm,Tn

)
∨
(

lim
m→∞

Tngm,Tn
)

=
(

lim
m→∞

Tn( fm ∨gm),Tn
)
; (1)

(
lim

m→∞
Tn fm,Tn

)
∧
(

lim
m→∞

Tngm,Tn
)

=
(

lim
m→∞

Tn( fm ∧gm),Tn
)
;

∣
∣
∣
(

lim
m→∞

Tn fm,Tn
)∣∣
∣ =
(

lim
m→∞

Tn| fm|,Tn
)
.

Proof. By Proposition 4, we have that Mnc(E,Ti) is a Banach lattice.
The formulas are easy to prove. Since L is a bijective Riesz homomorphism, it

follows from L(Tn| f |,Tn) = | f | = |L(Tn f ,Tn)| that (Tn| f |,Tn) = L−1(L(Tn| f |,Tn)) =
L−1(|L(Tn f ,Tn)|) = |(L−1(L(Tn f ,Tn))| = |(Tn f ,Tn)|. The other formulas follow in a
similar manner. ��

Let (Ti) be a filtration of positive contractive linear projections on a Banach lat-
tice E. As in [18], we now consider the space

Mr(E,Ti) =
{
( fi,Ti) ∈ M (E,Ti) : ∃(gi,Ti) ∈ M+(E,Ti), fi ≤ gi ∀ i ∈ N

}
,

the elements of which are called regular norm bounded martingales.
Troitski proves in [18] that the formulas in (1) also hold in Mr(E,Ti) and in

M (E,Ti). He uses less stringent assumptions on (Ti) than in Corollary 2, but he
makes additional assumptions on E:
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Theorem 4. ([18, Theorems 7 and 13]) Let E be a Banach lattice and (Ti) a filtration
of positive contractive linear projections on a Banach lattice E.

(a) If E is an order continuous Banach lattice, then Mr(E,Ti) is a Dedekind com-
plete Banach lattice with lattice operations given by (1) and martingale norm
given by ‖( fn,Tn)‖ = supn ‖ fn‖.

(b) If E is a KB-space, then M (E,Ti) is a Banach lattice with lattice operations
given by (1) and martingale norm ‖( fn,Tn)‖ = supn ‖ fn‖.

It follows easily that if
⋃∞

i=1 R(Ti) is a closed Riesz subspace of E, then

Moc(E,Ti) ⊆ Mr(E,Ti) ⊆ M (E,Ti). (2)

One can say more about the inclusions in (2) under additional assumptions on E (see
[18, Proposition 16]):

Corollary 3. Let E be a Banach lattice with order continuous norm and (Ti) a fil-
tration of positive contractive linear projections on a Banach lattice E for which
⋃∞

i=1 R(Ti) is a closed Riesz subspace of E.

(a) If E is an order continuous Banach lattice, then Mnc(E,Ti) is an ideal in
Mr(E,Ti).

(b) If E is a KB-space, then Mr(E,Ti) = M (E,Ti) and Mnc(E,Ti) is a projection
band in M (E,Ti).

4 Martingales in Lp(µ,X)

Chaney and Schaefer extended the Bochner norm to the tensor product of a Ba-
nach lattice and a Banach space (see [1] and [14]). If E is a Banach lattice and
Y is a Banach space, then the l-norm of u =

∑n
i=1 xi ⊗ yi ∈ E ⊗Y is given by

‖u‖l = inf{‖
∑n

i=1 ‖yi‖‖xi‖‖ : u =
∑n

i=1 xi ⊗ yi}.
Furthermore, if E = Lp(µ) where (Ω ,Σ ,µ) is a σ -finite measure space, then we

have that E⊗̃lY is isometric to Lp(µ ,Y ).
Let E and F be Banach lattices. We denote the projective cone of E ⊗F by E+ ⊗

F+ := {
∑n

i=1 xi ⊗ yi : (xi,yi) ∈ E+ ×F+}. It was shown by Chaney and Schaefer that
E⊗̃lF is a Banach lattice with positive cone the l-closure of E+ ⊗F+.

Let E1 and E2 be Banach lattices and Y1 and Y2 Banach spaces. If S : E1 → E2

is a positive linear operator and T : Y1 → Y2 a bounded linear operator, then
∥
∥(S ⊗

T )u
∥
∥

l ≤ ‖S‖‖T‖‖u‖l for all u ∈ E1 ⊗Y1 (see [10]).
The following is proved in [2]:

Theorem 5. Let E be a Banach lattice and Y be a Banach space [lattice]. If (Si) is
a filtration of positive contractive linear projections on E with each R(Si) a closed
Riesz subspace of E, and (Ti) is a filtration of [positive] contractive linear projections
on Y [and each R(Ti) is a closed Riesz subspace of Y ], then (Si ⊗l Ti) is a filtration of
[positive] contractive linear projections on E⊗̃lY with each S(Ei)⊗̃lT (Yi) a closed
[Riesz] subspace of E⊗̃lY .
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To consider tensor product versions of some of the martingale results stated ear-
lier, we need the following result noted by Popa, [13]:

Theorem 6. Let E and F be Banach lattices.

(a) If E and F are order continuous Banach lattices, then E⊗̃lF, is an order contin-
uous Banach lattice.

(b) If E and F are KB-spaces, then E⊗̃lF is a KB-space.

The following is an l-tensor product version of Corollary 3.

Theorem 7. Let E and F be Banach lattices and let (Si) and (Ti) be filtrations of
positive contractive linear projections on E and F respectively with each R(Si) and
each R(Ti) a closed Riesz subspace of E and F respectively.

(a) If E and F are order continuous Banach lattices, then Mr(E⊗̃lF,Ti ⊗l Si) is a
Banach lattice and Mnc(E⊗̃lF,Ti ⊗l Si) is an ideal in Mr(E⊗̃lF,Ti ⊗l Si).

(b) If E and F are KB-spaces, then M (E⊗̃lF,Ti ⊗l Si) is a Banach lattice and
Mnc(E⊗̃lF,Ti ⊗l Si) is a projection band in M (E⊗̃lF,Ti ⊗l Si).

Proof (a) Since E and F are order continuous Banach lattices, E⊗̃lF is an order
continuous Banach lattice, by Popa’s result. By Proposition 5, we get that (Si ⊗l Ti)
is a filtration of positive contractive linear projections on E⊗̃lF with

⋃∞
i=1 R(Ti ⊗Si)

a closed Riesz subspace of E⊗̃lF . But then Mnc(E⊗̃αF,Ti ⊗ Si) is an ideal in the
Banach lattice Mr(E⊗̃lF,Ti ⊗l Si), by Corollary 3 (a).

(b) Since E and F are KB-spaces, E⊗̃lF is a KB-space, by Popa’s result. Similar
reasoning as in (a), but by using Corollary 3 (b), shows that Mnc(E⊗̃lF,Ti ⊗Si) is a
projection band in the Banach lattice M (E⊗̃lF,Ti ⊗Si) = Mr(E⊗̃lF,Ti ⊗Si). ��

In [2], we show that, if (Si) is a filtration of positive contractive linear projec-
tions on the Banach lattice E such that each R(Si) is a closed Riesz subspace of E
and (Ti) is a filtration of contractive linear projections on the Banach space Y, then
⋃∞

i=1 R(Si) ⊗̃l
⋃∞

i=1 R(Ti) =
⋃∞

i=1 R(Si ⊗l Ti).
In [10], it is shown that, if E is a Banach lattice and Y a Banach space, then u ∈

E⊗̃lY if and only if u =
∑∞

i=1 xi ⊗yi, where
∥
∥
∥
∑∞

i=1 |xi|
∥
∥
∥

E
<∞ and limi→∞ ‖yi‖Y = 0.

As a consequence, the following result is derived in [2].

Theorem 8. Let (Si) be a filtration of positive contractive linear projections on the
Banach lattice E such that each R(Si) is a closed Riesz subspace of E and (Ti) a
filtration of contractive linear projections on the Banach space Y . Then, in order for
M = ( fn,Sn ⊗l Tn)∞n=1 to be a convergent martingale in E⊗̃lY, it is necessary and

sufficient that, for each i ∈ N, there exist convergent martingales
(

x(n)
i ,Sn

)∞

n=1
and

(

y(n)
i ,Tn

)∞

n=1
in E and Y respectively such that, for each n ∈ N, we have

fn =
∞∑

i=1

x(n)
i ⊗ y(n)

i ,
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where ∥
∥
∥
∥
∥

∞∑

i=1

∣
∣
∣ lim
n→∞

x(n)
i

∣
∣
∣

∥
∥
∥
∥
∥

< ∞ and lim
i→∞

∥
∥
∥ lim

n→∞
y(n)

i

∥
∥
∥= 0.

As a simple consequence of Theorem 8, the following representation result is
noted in [2]:

Theorem 9. Let (Ω ,Σ ,µ) denote a probability space, (Σn)∞n=1 a filtration, X a Ba-
nach space and 1 ≤ p < ∞. Then, in order for ( fn,Σn)∞n=1 to be a convergent mar-
tingale in Lp(µ ,X), it is necessary and sufficient that, for each i ∈ N, there exist a

convergent martingale
(

x(n)
i ,Σn

)∞

n=1
in Lp(µ) and yi ∈ X such that, for each n ∈ N,

we have

fn(s) =
∞∑

i=1

x(n)
i (s)yi for all s ∈Ω ,

where
∥
∥
∥
∑∞

i=1

∣
∣
∣limn→∞ x(n)

i

∣
∣
∣

∥
∥
∥

Lp(µ)
< ∞ and limi→∞ ‖yi‖ = 0.
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Summary. This note aims at presenting the most general framework for a class U of ran-
dom upper semicontinuous functions, namely random elements whose sample paths are upper
semicontinuous (u.s.c.) functions, defined on some locally compact, Hausdorff and second
countable base space, extending Matheron’s framework for random closed sets. It is shown
that while the natural embedding process does not provide compactness for U , the Lawson
topology does.

1 Introduction

Among many applications, random sets, i.e. random elements taking sets as values,
are appropriate models for coarse data analysis (e.g. Nguyen, 2006). More generally,
perception-based information can be viewed as realizations of random fuzzy sets,
i.e. random elements whose values are fuzzy subsets (e.g. Nguyen, 2005). Unlike
general stochastic processes, and similar to random vectors, the theory of random
closed sets of a locally compact, Hausdorff and second countable topological space
(LCHS), as developed by Matheron (1975), is tractable due to the Choquet theorem
characterizing their distributions at a simpler level, via the concept of capacity func-
tionals. As such, when extending random closed sets to fuzzy sets, it is desirable
to consider fuzzy sets whose membership functions are generalizations of indicator
functions of closed sets, i.e. upper semicontinuous functions. While general stochas-
tic processes can have their sample paths as u.s.c. functions with values in the ex-
tended real line, we focus here our attention to the range of the unit interval [0,1] in
view of the theory of fuzzy sets.

The efforts in defining random fuzzy sets of R
d as bona fide random elements

taking values in function spaces were started since the mid 1980’s (see Li et al, 2002)
with no relation to Matheron’s topology on the space of closed sets. While the space
of closed sets of a LCHS space, equipped with Matheron’s topology (the hit-or-miss
topology), is compact and second countable (hence metrizable, and thus a separa-
ble metric space, idealistic for developing probability theory, see Dudley, 1989), the
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extension to fuzzy sets was not fully developed, but only up to the case of gener-
alizations of random compact sets (see Li et al, 2002), i.e. the study of appropriate
topologies on the space of u.s.c. functions (with values in [0,1]) seems lacking. It
is conceivable that Matheron’s hit-or-miss topology on the space of closed sets of a
LCHS space could be extended to the space of u.s.c. functions (via identification of
sets with their indicator functions) preserving all desirable properties, namely com-
pactness and second countability. It is surprising that this has not been done satisfac-
torily, as far as we know! The purpose of our Note is to clarify the above situation by
indicating a concrete topology (from lattice theory) for the space of u.s.c. functions
leading to a satisfactory framework for random (closed) fuzzy sets.

2 A Survey of Literature

The problem we are investigating is somewhat similar to that of extending the topo-
logical space C[0,1] (the space of continuous functions, defined on [0,1], with the
sup norm, the space of sample paths of, say, Brownian motion) to the bigger space
D[0,1] of functions which are right continuous and having left limits (sample paths
of processes with jumps) where the Skorohod topology is separable and metrizable
(see Billingsley, 1968).

Throughout, E denotes a locally compact, Hausdorff and second countable topo-
logical space (LCHS), and (Ω ,A ,P) a probability space. The spaces of closed, open
and compact subsets of E are denoted as F ,G ,K , respectively. Note that E is
metrizable. To define random elements with values in F , one looks for some topol-
ogy τ for F and considers its associated borel σ -field B(τ). For various topologies
on F for general topological spaces, see Beer (1993). Matheron (1975) considered
the hit-or-miss topology, denoted as τ , (or the Fell topology, see Molchanov, 2005)
which is suitable for establishing Choquet theorem. This topology is generated by
the base consisting of

F K
G1,...,Gn

= F K ∩FG1 ∩·· ·∩FGn , for n ∈ N, K ∈ K , Gi ∈ G ,

where F K = {F ∈ F : F ∩K = ∅} and FG = {F ∈ F : F ∩G �= ∅}. For n = 0, the
above elements mean F K .

It is shown by Matheron that this topology makes F a compact and second
countable topological space (hence metrizable). For E = R

d , for example, a met-
ric compatible with Matheron’s topology is the Hausdorff-Buseman metric (see
e.g. Molchanov, 2005) dHB(A,B) = supx∈E e−ρ(0,x)|ρ(x,A) − ρ(x,B)|, where ρ is
some metric compatible with the topology of E and ρ(x,A) denotes the distance
from x to the closed set A.

Now we wish to extend the concept of random closed sets to that of random
fuzzy sets, in fact to random “closed” fuzzy sets. As fuzzy sets are defined as gen-
eralizations of ordinary (crisp) sets, by generalizing indicator functions of ordinary
sets, i.e. for each subset A of E, its indicator function is

1A : E → {0,1}, 1A(x) = 1 or 0 according to x ∈ A or x /∈ A,
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we identify ordinary subsets with their indicator functions, and define a fuzzy subset
of E as a function from E to the unit interval [0,1]. Since the indicator function f of a
closed set is upper semicontinuous (u.s.c.) functions on E, i.e. for any α ≥ 0, the α-
level set Aα( f ) = {x ∈ E : f (x) ≥α} is a closed, we call the space of u.s.c. functions,
defined on E, with values in [0,1] the space of closed fuzzy sets of E, and denote it
from now on as U (E). By identification, F ⊆ U . It is desirable to define a topology
η on U extending Matheron topology on F and making U a separable metric space.
Moreover, if B(η) is the borel σ -field generated by such a topology, it is desirable
that a map X : Ω → U is A /B(η)-measurable if and only if for each α ≥ 0, the
set-valued map Xα(ω) = {x ∈ E : X(ω)(x) ≥ α} is a random closed set in the sense
of Matheron.

In the study of random u.s.c. functions, e.g. Teran (2005), the base space E is
in general a Banach space. But even for the case of R

d , the separable metric is only
obtained for some subclasses of U (E). Note that the recent work of Colubi et al
(2002) is about u.s.c. functions defined on [0,1] with values in E and not about ran-
dom u.s.c. fuzzy sets although they did consider random compact fuzzy sets.

3 Topologies on U (E)

In the following, U (E) denotes the space of u.s.c. functions on E with values either
in the extended real line R

∗, or [0,1]. As in Ogura and Li (2004), it is first natural
to search for a topology on U (E) by an embedding process. This is carried out as
follows. It is well-known that any function f : E → [0,1] (or more generally to R) is
determined completely by its α-sets Aα( f ), in fact, for α ∈ Q1 = Q∩ [0,1], where
Q denotes the rationals. In other words, the mapping Ψ : U (E) →

∏

α∈Q1

Fα , the

countable product of identical copies Fα of F , sending f to (Aα( f ),α ∈ Q1), is an
embedding. Now equip

∏

α∈Q1

Fα with the product topology of the (Fα ,τ)’s. One can

induce on U a topology γ via the relative topology of its imageΨ(U ) in
∏

α∈Q1

Fα .

Note that fn → f in U iff and only if Aα( fn) → Aα( f ) in F for all α ∈ Q1.

Remark. Using epigraphs of u.s.c. functions, U can be also embedded into the space
of closed sets of the product space E ×R, Molchanov (2005).

A subbase for the induced topology on U consists of

U K(α) = { f : Aα( f )∩K = ∅} and UG(α) = { f : Aα( f )∩G �= ∅},
K ∈ K ,G ∈ G , α ∈ Q1.

This can be seen as follows. Let γ be the induced topology on U and γ ′ be the
topology generated by the above subbase. The embeddingΨ is continuous under γ ′.
Thus, γ ′ ⊆ γ , but γ being the smallest topology making Ψ continuous, we have that
γ = γ ′. �
Remark. The map ( f ,g) → f ∨g is continuous. Indeed, let fn → f and gn → g. Then
Aα( fn) → Aα( f ) and Aα(gn) → Aα(g) for all α ∈ Q. Since the union of random
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closed sets is continuous under the hit-or-miss topology (Matheron, 1975), we have
Aα( fn ∨gn) = Aα( fn)∪Aα(gn) → Aα( f )∪Aα(g) = Aα( f ∨g ), i.e. fn ∨gn → f ∨g.
�

While the countable product space
∏

α∈Q1

Fα is compact and second countable

(hence metrizable), the induced topology on U (E) does not make U (E) a compact
space. Indeed :

Theorem 1.Ψ(U ) is not closed in the product topology of
∏

α∈Q1

Fα .

This negative result can be proved by a counter-example !
Let fn ∈Ψ(U ) such that Aα( fn) → Mα , for all α ∈ Q1. Observe that if fn → f ∈

Ψ(U ), then, for all α , Mα = Aα( f ) and Mα = ∩β<αMβ for all α ∈ Q1. Let x1, x2

be two distinct points in E, and {αn} ⊂ Q1 be such that α1 < α2 < ... → αo ∈ Q1.
Define the u.s.c. functions fn by fn(x1) = 1, fn(x2) = αn and fn(x) = 0 for x �= x1, x2,
n ≥ 1. Then obviously, Aα( fn) = {x1}, {x1,x2}, E, according to α ∈ (αn,1], α ∈
(0,αn] or α = 0, respectively. Then (Aα( fn), α ∈ Q1) → (Mα , α ∈ Q1) where Mα =
{x1}, {x1,x2}, E, for α ∈ [αo,1]∩Q1, (0,αo)∩Q1 or α = 0, respectively. Clearly,
Mα �= ∩β<αMβ for α = αo. �

LetΨ[0,1] be the embedding of U into the product space
∏

α∈[0,1]
Fα . One can then

induce on U another topology γ∗ via the relative topology of its imageΨ[0,1](U ) in
∏

α∈[0,1]
Fα . We thus have two topologies γ and γ∗ in U . �

Theorem 2. The topology γ is strictly coarser than γ∗.
This can also be proved by the following counter-example.
LetΨQ1 andΨ[0,1] be the embeddings of U into the two product spaces

∏

α∈Q1

Fα

and
∏

α∈[0,1]
Fα , respectively. Let x1, x2 be two distinct points in E, and β ∈ (0,1)\Q1.

Consider the u.s.c. function fo defined by fo(x1) = 1, fo(x2) = β and fo(x) = 0 other-
wise. Then Aα( fo) = {x1}, {x1,x2}, E, according to α ∈ (β ,1], α ∈ (0,β ] or α = 0.
Now, let G = {x ∈ E : ρ(x1,x) < ρ(x1,x2)/2}, which is an open set in E (where ρ
denotes some compatible metric on E). Then FG is a neighborhood of Aβ ( fo) =
{x1,x2} in the Matheron topology so that the set V = { f ∈ U : Aβ ( f ) ∈ FG} is a
neighborhood of fo in the topology γ∗. However, one can see that any neighborhood
of fo in the topology γ is not included in V . This means that the topology γ is strictly
coarser than γ∗. �

As in Ogura and Li (2004), one may want to take a general dense subset Q of
[0,1] which includes 0 and 1 in place of Q1 or [0,1] in the above. In this case, one
gets another topology γQ via the relative topology of the image ΨQ(U ) in

∏

α∈Q
Fα ,

where ΨQ is the embedding of U into the product space
∏

α∈Q
Fα . The argument in

the counter-example above also proves

Corollary. If Q1 \Q2 �= /0 and Q2 \Q1 �= /0, then the topologies γQ1 and γQ2 are not
comparable each other.
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Theorem 3. The restriction of γ to F ∗ = {1F : F ∈ F} coincides with the hit-or-miss
topology τ .

Proof. Clearly a subbase of the relative topology for F ∗consists of sets of the forms

{1F : F ∈ F K} and {1F : F ∈ FG} with K ∈ K , G ∈ G .

Thus F ∗ is homeomorphic to F under the identification F → 1F .

Theorem 4. A map X : Ω → U is A /B(γ) measurable if and only if all level
sets map Aα(X) : Ω → F are A /B(τ) measurable, where Aα(X)(ω) = {x ∈ E :
X(ω)(x) ≥ α}, α ∈ [0,1].

Proof. (i) Assuming that X is a random element. Then ΨQ1 ◦X is measurable. Now
the projection πα :

∏

α∈Q1

Fα → Fα is measurable (continuous), so is πα ◦ΨQ1 ◦X =

Aα(X). For α ∈ [0,1]\Q1, Aα(X) = ∩β<α,β∈Q1
Aβ (X) and hence measurable.

(ii) Suppose Aα(X) is measurable for all α . Then the map ΨQ1 ◦ X : Ω →
(
∏

α∈Q1

Fα ,
∏

α∈Q1

B(τ )) is measurable as well. By second countability, we have B(
∏

α∈Q1

Fα) =
∏

α∈Q1

B(τ ) and the results follows. �

The above investigations lead to a separable, metrizable space U as a subspace
of
∏

α∈Q1

Fα . However, as the Matheron’s topology on F (E) is precisely the Law-

son topology on the continuous lattice F (E) making it a Hausdorff, compact and
second countable space, see Gierz et al (2003), it is interesting to find out whether
the Lawson topology on the continuous lattice U (E) could provide the same proper-
ties, namely compactness and second countability for it. It turns out that the answer
is yes ! While the following results are buried in Gierz et al (2003), we think they
should be made known to the probability community in some explicit way (see how-
ever Noberg, 1992). For that purpose, we will here describe topologies on lattices
and state clearly the Lawson topology for the continuous lattice U (E) for the LCHS
space E.

Let (L,≤) be a partially ordered set (poset). When L is a lattice, the meet and join
operations will be denoted as ∧ and ∨, respectively. A lattice L is complete if every
subset of L has a sup and an inf. Recall that the relation “way-below” is defined
as follows. For x,y in a poset L, x is said to be way-below y, in symbol, x << y,
if for all directed subsets D of L (i.e. for each u,v ∈ D, there is a z ∈ D such that
with u,v ≤ z) for which supD exists, if y ≤ supD, then there exists a z ∈ D with
x ≤ z. A complete lattice L is called a continuous lattice if it satisfies the axiom of
approximation, i.e. for all x ∈ L, the set {y ∈ L : y << x} is directed and x = sup{y ∈
L : y << x}. Note that, the lattice of open sets (or closed sets) O(E) (or F (E)) is
a continuous lattice. In the following E always denotes a LCHS topological space.
The space L (E) (resp. U (E)) of lower semicontinuous functions on E with values
in the extended real line (resp. u.s.c. functions) is a continuous lattice.

To facilitate the reading from Gierz et al (2003), we will state results in terms of
open sets and lower semicontinuous functions. The reader simply needs to translate
in terms of closed sets and upper semicontinuous functions.
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The Lawson topology on a continuous lattice L is the smallest topology contain-
ing the following sets

{y ∈ L : x << y} and {y ∈ L : x � y}, x ∈ L

The following facts can be found in Gierz et al (2003).

Theorem: If L is a continuous lattice, then the Lawson topology is the unique Haus-
dorff, compact topology on L making the meet operation ∧ : L×L → L continuous.

In view of the bijection between the O(E) and F (E), the Lawson topology on
F (E) is the hit-or-miss topology of Matheron. Consider O(E) as a sublattice of
L (E) (via identification of indicator functions of sets), the Lawson topology on
O(E) is the subspace of the Lawson topology on L (E). Furthermore, O(E) is a
closed subspace of L (E).

Theorem 5. The Lawson topology on U (E) is Hausdorff, compact and second count-
able.

Final remark. It is clear that the purpose of this Note is to suggest the use of the Law-
son topology (in lattice theory) to define random u.s.c. functions, and in particular,
random fuzzy closed sets, in its most elegant framework. Exactly like random closed
sets on LCHS spaces, this Lawson topology makes the space of u.s.c. functions a
Hausdorff, compact and second countable topological space. It is also clear that, in
immediate future research, details and measurability considerations with respect to
Lawson topology need to be worked out. This should set up the right framework for
studying Choquet theorem for u.s.c. random functions.

Acknowledgments

We thank J. Harding for mentioning to us the connections with continuous lattices.

References

[1] Beer, G. (1993), Topologies on Closed and Closed Convex Sets,Kluwer Acad-
emic, Dordrecht.

[2] Billingsley, P. (1968), Convergence of Probability Measures, J.Wiley, New
York.

[3] Colubi, A., Dominguez-Menchero, Lopez-Diaz, M. and Ralescu, D.
(2002), A D[0,1] representation of random upper semicontinuous functions,
Proc. Amer. Math. Soc. 130(11), 3237-3242.

[4] Dudley, R. (1989), Real Analysis and Probability, Wadsworth and Brooks/Cole,
Belmon.

[5] Gierz, G., Hofmann, K. H., Keimeil, K., Lawson, J. D., Mislove, M. W. and
Scott, D. S. (2003), Continuous Lattices and Domains. Cambridge Univ. Press,
Cambridge, UK.



A Note on Random Upper Semicontinuous Functions 135

[6] Li, S., Ogura, Y. and Kreinovich, V. (2002), Limit Theorems and Applications of
Set-Valued and Fuzzy Set-Valued Random Variables, Kluwer Academic, Dor-
dreccht.

[7] Matheron, G. (1975), Random Sets and Integral Geometry, J.Wiley, New York.
[8] Molchanov, I. (2005), Theory of Random Sets, Springer-Verlag.
[9] Nguyen, H. T. (2005), On modeling of perception-based information for intelli-

gent technology and statistics, J. of Taiwan Intelligent Technology and Applied
Statistics 3(2), 25-43.

[10] Nguyen, H. T. (2006), An Introduction to Random Sets, Chapman and
Hall/CRC.

[11] Norberg, T. (1992), On the existence of ordered coupling of random sets-with
applications, Israel Journal of Mathematics (77), 241-264.

[12] Ogura, Y. and Li, S. (2005), On limit theorems for random fuzzy sets includ-
ing large deviation principles, In Soft Methodology and Random Information
Systems (Lopez-Dias, M. et al, eds.), Springer-Verlag, 32-44.

[13] Teran, P. (2005), A large deviation principle for random upper semicontinuous
functions, Proc. Amer. Math. Soc. 134(2), 571-580.



Optional Sampling Theorem and Representation
of Set-Valued Amart

Shoumei Li1∗ and Li Guan2

1 Department of Applied Mathematics, Beijing University of Technology, 100 Pingleyuan,
Chaoyang District, Beijing, 100022, P.R.China
lisma@bjut.edu.cn

2 guanli@mails.bjut.edu.cn

Summary. In this paper, we shall prove some properties of set-valued asymptotic martingale
(amart for short) and provide an optional sampling theorem. We also prove a quasi Risez
decomposition theorem for set-valued amarts. Then we shall discuss the existence of selections
of set-valued amarts and give a representation theorem.

1 Introduction

It is well known that classical martingale theory plays an important role in proba-
bility theory and applications. By the development of stopping time techniques, it
is allowed the generalization of martingale concepts. The outcome of this effort was
the introduction and detailed study of vector-valued asymptotic martingale (amart for
short) and uniform amart. Readers may mainly refer to papers of those of Bellow [4]
and [5], Chacon and Sucheston [6], Edgar-Sucheston [7]-[9]. Especially we would
like to mention that Edgar and Sucheston discussed the properties, almost sure con-
vergence theorems and the Riesz decomposition theorems of vector-valued amarts in
[7] and [9], which are relative to our this paper.

For the theory of set-valued martingale, many good results have been obtained.
For examples, representation theorem of set-valued martingales was proved by Luu
by means of martingale selections [16]; convergence theorems of set-valued martin-
gales, submartingales and supermartingales under various settings were obtained by
many authors, such as Hess [10], Hiai and Umegaki [11], Korvin and Kleyle [12],
Li and Ogura [13] and [14], Papageorgiou [20] and [21], Wang and Xue [24]. The
concept of a set-valued unform amart was introduced by Luu [18], and he obtained
the representation theorem of set-valued uniform amart. Luu also introduced the con-
cept of set-valued L1-amart and got many good results in [17] and [19]. Papageorgiou
[22] discussed convergence of set-valued uniform amarts in the sense of Kuratowski-
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Mosco, and also obtained the weak convergence theorems of set-valued amarts. In
[23], Zhang, Wang and Gao discussed equivalent definitions of a set-valued amart.

As we have known that in vector-valued case, there are an optional sampling
theorem and Risez decomposition theorem (cf. [7]. Can we get the similar results for
set-valued amarts? Does there exist an amart selection of a set-valued amart? Can we
provide a sequence of amart selections of a set-valued amart so that the set-valued
amart can be represented by this sequence of amart selections? These are what shall
focus on in this paper.

This paper is organized as follows. In section 2, we shall briefly introduce some
concepts and notations on set-valued random variables. In section 3, we shall prove
some basic properties of set-valued amart, and then state optimal sampling theorem
of set-valued amarts. We shall also provide a quasi Risez decomposition theorem for
set-valued amarts. In section 4, we shall give the representation theorem of compact
convex set-valued amarts. Since the page limitation, we omit the proofs of theorems
here. If readers are interested in the whole paper, please contact us.

2 Preliminary on Set-Valued Random Variables

Throughout this paper, we assume that (Ω ,A ,µ) is a nonatomic complete probabil-
ity space, (X,‖ · ‖) is a real separable Banach space with its dual space X∗, K(X) is
the family of all nonempty closed subsets of X, Kb(X) is the family of all nonempty
bounded closed subsets of X, Kc(X) is the family of all nonempty closed convex sub-
sets of X, and Kk(X) (Kk(X) , resp.) is the family of all nonempty compact (compact
convex, resp.) subsets of X.

Let A and B be two nonempty subsets of X and let λ ∈ R, the set of all real
numbers. We define addition and scalar multiplication by

A+B = {a+b : a ∈ A,b ∈ B},

λA = {λa : a ∈ A}.
The Hausdorff metric on Kb(X) is defined by

dH(A,B) = max{sup
a∈A

inf
b∈B

‖a−b‖, sup
b∈B

inf
a∈A

‖a−b‖} (1)

for A, B ∈ Kb(X). The equivalent definition of Hausdorff metric is

dH(A,B) = max{inf{λ : B ⊂ A+λ}, inf{λ : A ⊂ B+λ}}, (2)

where A+λ = {x : d(x,A) ≤ λ}.

The metric space (Kb(X),dH) is complete, Kbc(X),Kk(X) and Kkc(X) are closed
subsets of (Kb(X),dH), and Kk(X) and Kkc(X) are separable (cf. [15], Theorems
1.1.2 and 1.1.3). For an A in Kb(X), let ‖A‖K = dH({0},A). For more properties of
the Hausdorff metric, readers could refer to [3].
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For each A ∈ Kb(X), define the support function by

s(x∗,A) = sup
a∈A

< x∗,a >, x∗ ∈ X
∗,

where X∗ is the dual space of X.
A set-valued mapping F : Ω → K(X) is called set-valued random variable (or

measurable) if, for each open subset O of X, F−1(O) = {ω ∈ Ω : F(ω) ∩ O �=
/0} ∈ A . For two set-valued random variables F,G, F = G if and only if F(ω) =
G(ω) i.e.(µ).

A set-valued random variable F is called integrably bounded (cf. [11] or [15])
if
∫

Ω ‖F(ω)‖Kdµ < ∞. Let L1[Ω ;K(X)] denote the space of all integrably bounded
random variables, and L1[Ω ,A 0,µ ;K f (X)] denote the space of all A 0-measurable
integrably bounded random variables taking values in K f (X), where “f” can be
“c”, “k”, “kc” etc., and A 0 is a sub-σ -filed of A . If A 0 = A , we may write
L1[Ω ;K f (X)] for short.

For each set-valued random variable F , the expectation of F , denoted by E[F ], is
defined by

E[F ] =
{∫

Ω
f dµ : f ∈ SF

}

,

where
∫

Ω f dµ is the usual Bochner integral in L1[Ω ,X], the family of integrable X-
valued random variables, and SF = { f ∈ L1[Ω ;X] : f (ω)∈ F(ω),a.e.(µ)}. This kind
of integral is called Aumann integral (cf. [1]) in literature. For more concepts such as
conditional expectation of a set-valued random variable, set-valued martingale and
more results, readers can refer to [11] and [15].

Assume that {A n : n ∈ N} is an increasing sequence of sub-σ -fields of A such
that A = σ(

⋃

n≥1 A n).

A function τ : Ω → N
⋃

{+∞} is said to be a stopping time with respect to {A n :
n ∈ N}, if for each n ≥ 1,{τ = n} =: {ω ∈ Ω : τ(ω) = n} ∈ A n. The set of all
stopping times is denoted by T ∗. And we say that τ1 ≤ τ2 if and only if τ1(ω)≤ τ2(ω)
for all ω ∈ Ω . Let T denote the set of all bounded stopping times, and T (σ) = {τ :
τ ≥ σ ,τ ∈ T}. Given τ ∈ T , we define

A τ = {A ∈ A : A
⋂

{τ = n} ∈ F n,n ≥ 1}.

Then A τ is a sub-σ -field of A . If Xn ∈ L1[Ω ;K(X)] for any n ∈ N, we define
Xτ(ω) = Xτ(ω)(ω) for all ω ∈Ω . Then Xτ : Ω → K(X) is A τ -measurable.

3 Properties, Optional Sampling Theorem and a Quasi Risez
Decomposition of Set-Valued Amart

In this section, we shall first prove some basic properties of set-valued amart. We
introduce the following definition of set-valued amarts.
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Definition 3.1 An adapted set-valued sequence {Fn,A n : n ∈ N} ⊂ L1[Ω ;K(X)] is
called a set-valued amart, if the net {

∫

Ω Fτdµ}τ∈T convergent in the sense of dH .
If for any x∗ ∈ X∗, {s(x∗,Fn),A n : n ∈ N} is a real-valued amart, we call

{Fn,A n : n ≥ 1} is a set-valued weak amart. The next following Theorem tell us
the relationship between set-valued amart and set-valued weak amart.

Theorem 3.2 If {Fn,A n : n ∈ N} is a set-valued amart in L1[Ω ;Kc(X)], then it is a
set-valued weak amart.

It is clear that a linear combination of set-valued amarts is a set-valued amart. We
next prove that finite union and intersection of set-valued amarts are also amarts. We
need to prepare two Lemmas for it.

Lemma 3.3 If {A,B,An,Bn : n ∈N}⊂ Kb(X), lim
n→∞

dH(An,A)= 0 and lim
n→∞

dH(Bn,B)=
0, then

(i) for any given nonempty set C, we have lim
n→∞

dH(An ∩C,A∩C) = 0,

(ii) lim
n→∞

dH(An ∩Bn,An ∩B) = 0,

(iii) lim
n→∞

dH(An ∩Bn,A∩B) = 0.

Lemma 3.4 If {A,B,An,Bn : n ∈ N} ⊂ Kb(X), lim
n→∞

dH(An,A) = 0, and lim
n→∞

dH

(Bn,B) = 0, then
(i) For any given set C ∈ Kb(X), we have lim

n→∞
dH(An ∪C,A∪C) = 0,

(ii) lim
n→∞

dH(An ∪Bn,An ∪B) = 0,

(iii) lim
n→∞

dH(An ∪Bn,A∩B) = 0.

Theorem 3.5 Let {Fn,A n : n ≥ 1} and {Gn,A n : n ≥ 1} be set-valued adapted L1-
bounded sequences.

(a) If {
∫

Fτdµ}τ∈T and {
∫

Gτdµ}τ∈T are bounded, then {
∫

Fτ ∪Gτdµ}τ∈T and
{
∫

Fτ ∩Gτdµ}τ∈T are bounded.
(b) If {Fn,A n : n ≥ 1} and {Gn,A n : n ≥ 1} are amarts, then {Fn ∪Gn,A n : n ≥

1} and {Fn ∩Gn,A n : n ≥ 1} are amarts.

Theorem 3.6 Let {Fn,A n : n ≥ 1} be a set-valued amart, then {
∫

Ω Fτdµ : τ ∈ T} is
bounded.

We next prove an “optional sampling theorem”.

Theorem 3.7 Let {Fn,A n : n ≥ 1} be a set-valued amart and let {τk : k ≥ 1} be a
nondecreasing sequence of bounded stopping times. Define Gk = Fτk , then {Gk,A τk :
k ∈ N} is a set-valued amart.

Corollary 3.8 (Optional stopping theorem) Let {Fn : n ≥ 1} be a set-valued amart,
σ a stopping time (possibly infinite). Then Gn = Fn∧σ is a set-valued amart.

By Theorem 3.2 of [7], we know that if { fn,A n : n ≥ 1} is a vector-valued amart
in L1[Ω ,X], then fn has Riesz decomposition, i.e. fn = mn + pn with {mn,A n : n ≥ 1}
a martingale and pn → 0 in L1, in addition, {pn : n ≥ 1} is uniformly integral and
pn → 0 a.e.. {pn : n ≥ 1} is called a potential.



Optional Sampling Theorem and Representation of Set-Valued Amart 141

Since the space K(X) is not a linear space with respect to the addition and mul-
tiplication, it is difficult to obtain the Riesz decomposition for a set-valued amart.
Now we prove a quasi Risez decomposition theorem of a set-valued amart.

Theorem 3.9 If {Fn,A n : n ≥ 1} ⊂ L1[Ω ;Kkc(X)] is a set-valued amart satisfies
Fn(ω) ⊂ G(ω), a.e. with G ∈ L1[Ω ;Kkc(X)], then there exists a set-valued martin-
gale {Mn,A n : n ≥ 1} and {Zn : n ≥ 1} such that

Fn(ω) ⊂ Mn(ω)+Zn(ω), a.e.

‖Zn‖K → 0 (n → ∞).

Corollary 3.10 Under the Assumption as Theorem 3.9, then there exists a set-
valued martingale {Mn,A n : n ≥ 1} ⊂ L1[Ω ;Kkc(X)] such that the sequence {ρn =
dH(Fn,Mn),A n : n ≥ 1} is a potential.

4 Representation Theorem for Closed Convex Set-Valued Amarts

Definition 4.1 A sequence { fn,A n : n ≥ 1} is called an amart selection of {Fn,A n :
n ≥ 1} if

(i) fn ∈ SFn(A n) for all n ∈ N.
(ii) { fn,A n : n ≥ 1} is an amart in L1[Ω ,X].

In this case we write { fn} ∈ AMS({Fn}), and AMS({Fn}) denotes the set of all
amart selections of {Fn,A n : n ∈ N}.

Example 4.2 Let { fn,A n : n ∈ N} be an X-valued amart and {rn,A n : n ∈ N} be a
real-valued amart. Take a bounded closed convex subset B of X. Define

Fn = fn + rnB,

then {Fn,A n : n ∈ N} is a set-valued amart.
It is easy to see that every sequence {gn : n ∈ N}, defined by gn = fn + rnx for

some x ∈ B, is an amart selection of {Fn,A n : n ∈ N}.

We shall have the natural question: does {Fn,A n : n ≥ 1} always have X-valued
amart selections? The following theorem will answer this question by using Steiner
method in finite dimensional space.

Theorem 4.3 Assume X is a d-dimensional Banach space and {Fn,A n : n ≥ 1} ⊂
L1[Ω ,A ,µ ;Kbc(X)] is a set-valued amart. Then it admits an amart selection.

To get further representation theorem, we need the following Lemmas and nota-
tions.

Lemma 4.4 Let {Fn,A n : n ≥ 1} ⊂ L1[Ω ;Kc(X)] be a set-valued amart, then for
any A ∈ A , {IAFn,A n : n ≥ 1} is a set-valued amart.

Let {Fn,A n : n ≥ 1} ⊂ L1[Ω ;Kc(X)] is a set-valued amart and {rn,A n : n ≥ 1}
a potential. Denote
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AMS(Fn,rn) = {{ fn} ∈ AMS(Fn) : ‖pn(ω)‖ ≤ rn(ω), a.e.,

pn is the potential in the Riesz decomposition of fn}.

Lemma 4.5(cf. [19]) If A 1 ⊂ A 0 are two sub-σ -fields of A , F ∈ L1[Ω ,Kc(X)],
G ∈ L1[Ω ,A 0,Kc(X)] and θ : Ω → R

+\{0} is a A 1-measurable function, then for
each f ∈ SF(A 1), we can find g ∈ SG(A 0) such that

‖ f (ω)−E[g(ω)|A 1]‖ ≤ dH(F(ω),E[G(ω|A 1)])+θ(ω), a.e..

Consequently, if G is A 1-measurable then there is some g ∈ SG(A 1) such that

‖ f (ω)−g(ω)‖ ≤ dH(F(ω),E[G(ω|A 1)])+θ(ω), a.e..

Theorem 4.6 If {Fn,A n : n ≥ 1} ⊂ L1[Ω ;Kkc(X)] is a set-valued amart satis-
fies Fn(ω) ⊂ G(ω),a.e. with G ∈ L1[Ω ;Kkc(X)], then there is a positive potential
{rn,A n : n ≥ 1} such that for k ≥ 1

SFk(A k) = πk(AMS(Fn,rn)),

where for every { fn : n ≥ 1} ∈ AS(Fn,rn), πk({ fn}) = fk (the usual projection to the
kth element of the sequence { fn : n ≥ 1}).

Remark 4.7 From the proof of above theorem, we can see that there exist amart
selections for a set-valued amart under the conditions of Theorem, even if X is an
infinite dimensional Banach space.

Now we are ready to state the following representation theorem of a set-valued
amart.

Theorem 4.8 If {Fn,A n : n ≥ 1} ⊂ L1[Ω ;Kkc(X)] is a set-valued amart satisfies
Fn(ω) ⊂ G(ω),a.e. with G ∈ L1[Ω ;Kkc(X)], then there exist a positive potential
{rn,A n : n ≥ 1} and a sequence { f k

n : k ≥ 1} ⊂ AMS(Fn,rn) such that for every
n ≥ 1,Fn(ω) = cl{ f k

n (ω) : k ≥ 1} for all ω ∈Ω .
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Summary. We extend some topologies on the space of upper semicontinuous functions with
compact support to those on that of general upper semicontinuous functions and see that graph-
ical topology and modified Lp topology are the same. We then define random upper semicon-
tinuous functions using their topological Borel field and finally give a Choquet theorem for
random upper semicontinuous functions.

1 Introduction

In the study of random upper semicontinuous (u. s. c. in brief) functions, one some-
times restrict the random functions to take values in [0,1]. Those are called random
fuzzy sets or fuzzy set valued random variable, and conceives some applications such
as data analysis for imprecise or incomplete data. The mathematical treatment of
such u. s. c. functions begun in late 70’s, and since then various interesting topologies
as well as the notions of random variables are proposed. Among them, the uniform
Hausdorff topology (sometimes denoted by d∞ or dU ) is the strongest and regarded
as most important. However, it is too strong for some purposes. For example, it does
not provide a separable space and its Borel field is so large that one might find dif-
ficulty to check the measurability. This is one of the reason that various topologies
have been proposed. The Lp topology was already given in an early work by Puri
and Ralescu [11], and the graphical and Skorohod topology in [9] and [2] respec-
tively. For a systematic study of such topologies, one is referred to [10], although the
concerned u. s. c. functions there are restricted to those with compact supports.

On the other hand, in the study random sets, the Choquet theorem was success-
fully used by Matheron[4], who exploited Fell topology (hit and error topology) on
the space of closed sets (see also [5]). This suggests us to study u. s. c. functions
without the compact support restriction, which also extends the area of applications.

The object of this paper is to inspect those topologies above on the space of
general u. s. c. functions taking values in [0,1] and obtain a Choquet theorem. For

∗ Partially supported by Grant-in-Aid for Scientific Research 17540123.

Y. Ogura: On a Choquet Theorem for Random Upper Semicontinuous Functions, Advances in Soft
Computing 6, 145–151 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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this purpose, we first review the Fell topology on a LCHS (locally compact Haus-
dorff second countable) space in Section 2. In Section 3, we extend some topologies
on the space of u. s. c. functions with compact support to those on that of general
u. s. c. functions and see that graphical topology and the modified Lp topology are
the same (see Section 3 below for the definition). In the last Section 4, we first study
the topological Borel fields for the topologies given in Section 2. We then define
random u. s. c. functions properly and finally obtain a Choquet theorem for them.

We close this section with noting that a forthcoming paper [7] will provide the
proofs left in this paper. Also in [8], we refer to Lawson topology in continuous
lattice theory, which conceives another approach to the Choquet theorem than in this
article.

2 Topologies on the Space of Closed Sets

Let S be a LCHS space with a compatible metric ρS. Let also

F (S) the space of all closed subsets of S,

F ′(S) the space of all non-empty closed subsets of S,

K (S) the space of all compact subsets of S,

G (S) the space of all open subsets of S.

For a family H of subsets of S, denote

H K = {A ∈ H : A∩K = /0}, HG = {A ∈ H : A∩G �= /0}.

Definition 1. The Fell topology on F (S) has a sub-base F (S)G for all G ∈ G (S)
and F (S)K for all K ∈ K (S).

The closed set space F (S) is a compact metric space but F ′(S) is not closed in
F (S). As a compatible metric, the Huasdorff-Buseman metric

dS
HB(A,B) = sup

x∈S
e−ρS(0,x)|ρS(x,A)−ρS(x,B)|,

where ρS(x,A) = infy∈AρS(x,y), is introduced (see [5]). We understand that this is
for the case where S is a Banach space (actually of finite dimensional in our case),
because the origin 0 appears in the formula. In that case, the metric is compatible
with the Fell topology in F ′(S). However, we could not find any good convention
for ρS(x, /0) with which the metric is compatible with the Fell topology in F (S). For
a construction of a comaptible metric, see [12].

3 Topologies on the Space of Upper Semicontinuous Functions

Let E be a LCHS space with a compatible metric ρE and I = [0,1]. We endow the
product space I ×E with the product topology. For the convenience of the following
arguments, we use the maximum metric
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ρ I×E((α,x),(β ,y)) = |α−β |∨ρE(x,y),2

which is compatible with the product topology. Let U = U (E) be the space of
u. s. s. functions u on a closed set Du in E taking values in I, which is refered to the
space of fuzzy sets. We denote by U ′ = U ′(E) the space of all normal u. s. s. func-
tions, that is all u ∈ U satisfying u(x) = 1 for some x ∈ E. Let D = D(I;F (E)) be
the space of all functions from I to F (E) which is decreasing in I (with respect to
the set inclusion order in E), and left continuous in (0,1] (note that u has right limit
in [0,1) automatically). We denote by G = G(I ×E) the space of all closed graphs
in I ×E, that is, the space of all closed sets G in I ×E such that Gα = G

⋂
({α}×E)

is decreasing in α ∈ I. Clearly U is identified with D through the map L : U → D
defined by

L(u)(α) = {x ∈ Du : u(x) ≥ α}, α ∈ I,

and with G through the map G : U → G given by

G(u) = {(α,x) ∈ I ×Du : 0 ≤ α ≤ u(x)}.

We sometimes denote u(α) = L(u)(α), where no confusion occurs. Thus G(u) has
another expression G(u) = ∪α∈I({α}× u(α)). Finally, for each u ∈ U and K ∈
K (E), the u. s. c. function u � K is defined as the restriction of u to the domain
Du ∩K. Thus, u�K(α) = u(α)∩K, α ∈ I, and G(u�K) = G(u)∩ (I ×K).

The topologies on U can be defined from those in D or G through the identica-
tions. The strongest topology is that induced by the uniform norm of the Hausdorff-
Fell distance, that is

dU (u1,u2) = ‖dE(u1(·),u2(·))‖I .
3

Then dU is a metric on U and the metric space (U ,dU ) is complete but not separable
in general. To define the Skorohod metric, denote byΛ the class of strictly increasing
continuous mappings of I onto itself. Then the Skorohod metric dS is defined by

dS(u1,u2) = inf
λ∈Λ

{‖λ −1‖I ∨‖dE(u1 ◦λ (·),u2(·))‖I},

where 1 is the identical mapping. Following [1], we define the Billingsley metric

dB(u1,u2) = inf
λ∈Λ

{‖λ‖0 ∨‖dE(u1 ◦λ (·),u2(·))‖I},

where ‖λ‖0 = supα<β

∣
∣
∣
∣log

λ (β )−λ (α)
β −α

∣
∣
∣
∣.

The proof of the following assertions will be given in our forthcoming paper [7].

Lemma 1. Let E be a metric space.
(1) If E contains three distinct points, then the space U is not complete

under dS.
(2) If E has an accumulation point, then the space U is neither locally

compact under dS nor under dB.
2 a∨b stands for the maximum of a and b, respectively.
3 For a map x : I → R. we denote ‖x‖I = supα∈I |x(α)|.
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We next introduce dQ-metric and the graphical metric. Let Q = {αk : k ∈ N} be
a countable dense subset of I including 0. Then the dQ-metric is defined by

dQ(u1,u2) :=
∞∑

k=1

2−k(dE(u1(αk),u2(αk))∧1).

This is actually a metric on U , since dQ(u1,u2) = 0 implies u1 = u2. The topology
induced by dQ is same as that by the product space

∏

α∈Q F (E)α , where F (E)α is
a copy of F (E), and is studied more in detail in [8] in the case where Q = Q∩ I. In
our our forthcoming paper [7], we will also show

Theorem 1. (1) The space (U ,dQ) is a LCHS space.
(2) The space (U ′,dQ) is not a locally compact space.

The graphical topology on G (and so on U by the identification above) is defined
as the relative topology of the Fell topology on F (I × E). Since the Fell topology
on F (I ×E) is metrizable, so is graphical topology on G. We denote a comaptible
metric by dG.

Theorem 2. (1) For any countable dense subset Q of I including 0, the topology
on U induced by dQ is stronger than the graphical topology.

(2) The topology on U induced by dS is stronger than the graphical topology.

We will next concern the dp-metric for p ≥ 1. Although the usual Lp metric dp is
given by

dp(u1,u2) =
(∫

I
dE

H(u1(α),u2(α))pdα
)1/p

,

we would like to introduce the modified Lp metric:

d0
p(u1,u2) =

(∫

I
dE(u1(α),u2(α))pdα +dE(u1(0),u2(0))p

)1/p

.

Theorem 3. The graphical topology and that induced by the modified Lp metric
d0

p are the same.

4 Choquet Theorem for Random Upper Semicontinuous
Functions

We start with some definitions of various σ -fields.

Definition 2. The cylindrical σ -field C = C (U ) is the σ -field generated by the
family

{u ∈ U : u(α) ∈ A}, α ∈ I, A ∈ B(F (E)),

where B(F (E)) is the topological Borel field of F (E) with Fell topology.
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Definition 3. (1) For a metric d in U , B0
d is the σ -field generated d-open balls.

(2) For a metric d on U , Bd is the σ -field generated d-open sets.

We then have the following

Theorem 4. For each countable dense subset Q of [0,1) including 0, it holdsp

C = B0
dS

= BdS = B0
dB

= BdB = B0
dG

= BdG

= B0
d0

p
= Bd0

p
= B0

dQ
= BdQ ,

which we simply denote by B.

We now define random u. s. c. functions.

Definition 4. A map X : Ω → U is called a random u. s. c. function or random
fuzzy set (fuzzy set valued random variable) on a probability space (Ω ,A ,PPP)
if it is A /B-measurable.

For a LCHS space S, a set function T : K (S) → [0,1] is called an alternating
Choquet capacity of infinite order on S if it satisfies

(i) T ( /0) = 0,

(ii) lim
n

T (Kn) = T (K) for all decreasing sequence {Kn}⊂K (S) with
⋂

n

Kn = K,

(iii) T

( n⋂

j=1

Kj

)

≤
∑

/0�=I⊂{1,2, ,...,n}
(−1)|I|+1T

(
⋃

i∈I

Ki

)

for all n ≥ 2 and K1, K2, . . . , Kn ∈

K (S).

Then the celebrated Choquet theorem says

Theorem A. ([4, 5]) Let S be a LCHS space. Then, a functional T : K (S) →
[0,1] is a capacity functional of a unique random set X : Ω → F (S) on a
probability space (Ω ,A ,PPP) which satisfies

T (K) = PPP(K ∩X �= /0), K ∈ K (S),

if and only if T is an alternating Choquet capacity of infinite order on S.

For a K ∈ F (I ×E), we define the upper shadow K+ of K by

K+ =
⋃

(α,x)∈K

[α,1]×{x}

Now we have the following

Theorem 5. Let E be a LCHS space. Then, a functional T : K (I×E)→ [0,1] is
a capacity functional of a unique random set X :Ω → F (I×E) on a probability
space (Ω ,A ,PPP) which satisfies
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T (K) = PPP(K ∩X �= /0), K ∈ K (I ×E),

if and only if T is an alternating Choquet capacity of infinite order on I ×
E. Further, G−1 ◦ X is a random u. s. c. function, that is G−1 ◦ X is A /B-
measurable and satisfies PPP(G−1 ◦X ∈ U ) = 1, if and only if T satisfies

T (K) = T (K+), K ∈ K (I ×E). (1)

Proof. Since I × E is also a LCHS space, the first part of Theorem follows from
Theorem A. Further, the sufficiency in the second part is also clear. Hence, we have
only to show the necessity in the second part. We thus assume (1) and will show
that X is A /B(G)-measurable and satisfies PPP(G−1 ◦X ∈ U ) = 1, where B(G) is
the topological Borel field on G with respect to the relative topology of the Fell
topology on F (I ×E). The measurability is clear from the definitions. To show the
latter assertion, take a countable base {Vi}i∈N of the topology on E. Since E is locally
compact, we may assume that each Vi has compact closure V̄i. Similarly, since I is a
compact metric space, we can also take s countable base {Ui}i∈N of the Euclidean
topology on I. Obviously closure Ūi in I is compact. Let now Ki j = Ūi ×V̄j, i, j ∈ N.
Then it is a countable base of I ×E. Hence, for each closed set F ∈ F (I ×E) \G,
we can find a i, j ∈ N such that

F ∩Ki j = /0, F ∩K+
i j �= /0.

This leads us to

PPP(X /∈ G) ≤
∑

i, j∈N

PPP(X ∩Ki j = /0, X ∩K+
i j �= /0).

Since PPP(X ∩Ki j = /0, X ∩K+
i j �= /0) = T (K+

i j )−T (Ki j) = 0, we have PPP(X /∈ G) = 0,

which implies PPP(PPP(G−1 ◦X ∈ U ) = PPP(X ∈ G) = 1. �
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Summary. We present a general law of large numbers in a (separable complete) metric space
endowed with an abstract convex combination operation. Spaces of fuzzy sets are shown to
be particular cases of that framework. We discuss the compatibility of the usual definition
of expectation with the abstract one. We close the paper with two applications to the theory
of fuzzy random variables (fuzzy random variables and level-2 fuzzy random variables in a
metric, maybe non-Banach space).

1 Convex Combination (CC) Spaces

Let (E,d) be a metric space with a convex combination operation [·, ·]

(λ1, . . . ,λn,u1, . . . ,un) �→ [λ1,u1; . . . ;λn,un]

(where n ≥ 2, λi > 0,
∑

λi = 1, ui ∈ E) yielding an element of E for each tuple
of weights and points of E. Note that [λ1,u1; . . . ;λn,un] and the shorthand [λi,ui]ni=1
have the same intuitive meaning as the more familiar λ1u1 + . . .+λnun and

∑n
i=1λiui,

but E is not assumed to have an addition.
We will say that E is a convex combination space (CC space) if the following

axioms are satisfied:

(i) (Commutativity) [λi,ui]ni=1=[λσ(i),uσ(i)]ni=1 for every permutation σ of {1, . . . ,n};

(ii) (Associativity) [λi,ui]n+2
i=1 = [λ1,ui; . . . ;λn,un;

λn+1 +λn+2, [
λn+ j

λn+1+λn+2
;un+ j]2j=1];

(iii) (Continuity) If u,v ∈ E and λ (k) → λ ∈ (0,1) as k → ∞, then

[λ (k),u;1−λ (k),v] → [λ ,u;1−λ ,v] ;

(iv) (Negative curvature) For all u1,u2,v1,v2 ∈ E and λ ∈ (0,1),

d([λ ,u1;1−λ ,u2], [λ ,v1;1−λ ,v2]) ≤ λd(u1,v1)+(1−λ )d(u2,v2)

P. Terán and I. Molchanov: A General Law of Large Numbers, with Applications, Advances in Soft Com-
puting 6, 153–160 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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(v) (Convexification) For each u ∈ E, there exists limn→∞[n−1,u]ni=1, which will be
denoted by Ku (or KEu if there is ambiguity).

We prove in [9] that these axioms suffice to construct an expectation operator E
which satisfies the law of large numbers.

Theorem 1. Let E be a separable complete CC space. Then E admits an expec-
tation operator E such that

(a) If X =
∑

j IΩ j u j is a simple function, then EX = [P(Ω j),Ku j] j;
(b) E extends by continuity to all Borel functions X ∈ L1

E (i.e. such that
Ed(u,X) < ∞ for some u ∈ E);

(c) If X ∈ L1
E and {Xi}i∈N are pairwise i.i.d. as X , then [n−1,Xi]ni=1 → EX almost

surely.

With this theorem, it suffices to check axioms (i) through (v) in order to prove
a law of large numbers in a concrete space. These axioms are considerably weaker
than those defining a Banach space, and include some spaces of sets, fuzzy sets,
probability measures and metric spaces with geometric averages (see [9, Section 9]
for detailed examples).

Theorem 2. ([9], Theorem 6.2) Let E be a separable complete CC space. Then,
the space K = K (E) with the convex combinations

[λi,Ai]ni=1 = {[λi,ui]ni=1 | ui ∈ Ai for all i}

and the Hausdorff metric dH is a separable complete CC space where KK is
given by

KK A = coKE(A) = co{KE u | u ∈ A}
and the SLLN holds.

Example 1. Let X be a random compact set in a separable Banach space E. Then KE
is the identity so KK is the convex hull mapping. From the uniqueness of the limit
in the law of large numbers, its expectation in the CC sense reduces to the Aumann
expectation of coX .

2 Spaces of Fuzzy Sets are CC Spaces

If E is a CC space, the operations in K can be further uplifted to F in the usual
manner, and the larger space can be endowed with the metrics dp and d∞. In this
section we prove that those are CC spaces again.

Theorem 3. Let E be a CC space. Then, the space F = F (E) with the convex
combination operation given by

([λi,ui]ni=1)α = [λi,(ui)α ]ni=1, α ∈ (0,1]
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and the metric
d∞(u,v) = sup

α∈(0,1]
dH(uα ,vα)

is a CC space where KF is given by

(KF u)α = KK uα = coKE(uα), α ∈ (0,1].

Proof. Properties (i) and (ii) are immediate.
As to (iii), we have to show that

sup
α∈(0,1]

dH([λ (k),uα ;1−λ (k),vα ], [λ ,uα ;1−λ ,vα ]) → 0.

It clearly suffices to prove

sup
A∈K (u0),C∈K (v0)

dH([λ (k),A;1−λ (k),C], [λ ,A;1−λ ,C]) → 0.

Reasoning by contradiction, assume the contrary. Then there exists a subsequence
{k′}k, some ε > 0 and sets Ak′ ∈ K (u0),Ck′ ∈ K (v0) such that

ε < dH([λ (k′),Ak′ ;1−λ (k′),Ck′ ], [λ ,Ak′ ;1−λ ,Ck′ ]).

By the compactness of u0 and v0, the family K (u0) × K (v0) is compact in the
Vietoris topology and so in the Hausdorff metric. Then we take a further subsequence
{k′′}k such that Ak′′ → A, Ck′′ →C for some A ∈ K (u0),C ∈ K (v0). By the triangle
inequality,

ε < dH([λ (k′′),Ak′′ ;1−λ (k′′),Ck′′ ], [λ (k′′),A;1−λ (k′′),C])+

dH([λ (k′′),A;1−λ (k′′),C], [λ ,A;1−λ ,C])+

dH([λ ,A;1−λ ,C], [λ ,Ak′ ;1−λ ,Ck′]) = (I)+(II)+(III).

But
(I) ≤ λ (k′′)dH(Ak′′ ,A)+(1−λ (k′′))dH(Ck′′ ,C) → 0,

similarly (III) → 0 and finally (II) → 0, using the CC properties (iii), (iv) of K .
This is a contradiction, so (iii) is proven.
Negative curvature of F follows easily from that of K :

d∞([λ ,u1;1−λ ,u2], [λ ,v1;1−λ ,v2]) =

sup
α∈(0,1]

dH([λ ,(u1)α ;1−λ ,(u2)α ], [λ ,(v1)α ;1−λ ,(v2)α ]) ≤

sup
α∈(0,1]

(λdH((u1)α ,(v1)α)+(1−λ )dH((u2)α ,(v2)α)) ≤

≤ λd∞(u1,v1)+(1−λ )d∞(u2,v2).
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Finally, in order to prove the existence of KF we need to prove

d∞([n−1,u]ni=1,KF u) → 0.

It suffices to show that

sup
A∈K (u0)

dH([n−1,A]ni=1,KK A) → 0.

By a similar compactness argument, we obtain a value ε > 0, a subsequence {n′′}n

and sets An′′ ,A ∈ K (u0) such that

dH(An′′ ,A) → 0

and
ε < dH([(n′′)−1,An′′ ]n

′′
i=1,KK An′′) ≤

dH([(n′′)−1,An′′ ]n
′′

i=1, [(n
′′)−1,A]n

′′
i=1)+dH([(n′′)−1,A]n

′′
i=1,KK A])

+dH(KK A,KK An′′) = (IV )+(V )+(VI).

Then
(IV ) ≤ n′′ · (n′′)−1dH(An′′ ,A) → 0,

summand (V) goes to 0 by the CC property (v) of K and

(V I) ≤ dH(A,An′′) → 0

using [9, Proposition 3.6].

Remark 1. Notice that property (v) is a generalization of [1, Lemma 6].

As regards the metric dp, the result is as follows.

Theorem 4. Let E be a CC space. Then, the space F with the same convex
combination operation and the metric

dp(u,v) = (
∫ 1

0
dH(uα ,vα)pdα)1/p

is a CC space where KF is given by

(KF u)α = KK uα .

Proof. Properties (i), (ii), (iii), (v) follow from those of (F , [·, ·],d∞). It just remains
to prove (iv), but

dp([λ ,u1;1−λ ,u2], [λ ,v1;1−λ ,v2]) =

‖dH([λ ,(u1)·;1−λ ,(u2)·], [λ ,(v1)·;1−λ ,(v2)·])‖p ≤
≤ ‖λdH((u1)·,(v1)·)+(1−λ )dH((u2)·,(v2)·)‖p ≤
≤ λ‖dH((u1)·,(v1)·)‖p +(1−λ )‖dH((u2)·,(v2)·)‖p

= λdp(u1,v1)+(1−λ )dp(u2,v2).

The topological properties of Fc with those structures are the same as in the
Banach case, namely

1. (Fc,d∞) is non-separable in general, but it is complete if E is so.
2. (Fc,dp) is separable if E is so, but it is not complete.
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3 On the Notion of Expectation

Our definition of expectation in a CC space requires the space to be separable and
complete, so that every random element can be approximated by simple functions
and limits of expectations of simple functions are well-behaved.

Since Fc fails to have both properties with the usual metrics, it may be more
convenient to define an expectation à la Puri-Ralescu [5], namely as a (necessarily
unique) solution EX ∈ F to the equations

(EX)α = EXα , α ∈ (0,1].

We will say that X is Puri-Ralescu integrable if its Puri-Ralescu expectation exists.
A mapping satisfying (i) and (ii) below will be called a fuzzy random variable.

Theorem 5. Let E be a separable complete CC space. Let X be an F -valued
mapping on a measurable space. Then, the following conditions are equivalent:

(i) Xα is dH-Borel for every α ∈ (0,1],
(ii)X is dp-Borel.

Moreover, if the Puri-Ralescu expectation of a fuzzy random variable X exists,
then X ∈ L1

(Fc,dp) and its CC expectation is the same.

Proof. The proof of the first part is the same as in [2, Theorem 6.4]. For the second
part, we use the notations EPR and ECC with obvious meaning.

If EPRX exists, in particular X0 ∈ L1
K . Taking an arbitrary u ∈ E, we have

Edp(X , I{u}) = E[
∫ 1

0
dH(Xα ,{u})pdα)1/p] ≤ EdH(X0,{u}) < ∞

so indeed X ∈ L1
(F ,dp).

As regards expectations, assume first that X =
∑r

j=1 IΩ j u j is a simple function.
Then

ECCX = [P(Ω j),KF u j]rj=1

so
(ECCX)α = [P(Ω j),KK (u j)α ]rj=1 = EXα

and we deduce ECCX = EPRX .
Let now X be arbitrary and {Xn}n be a sequence of simple functions converging

to X in the sense of L1
(F ,dp), namely Edp(Xn,X) → 0.

By construction, dp(ECCXn,ECCX) → 0. But ECC(Xn) = EPR(Xn) and we know
that

dp(EPRXn,EPRX) = (
∫ 1

0
dH((EPRXn)α ,(EPRX)α)pdα)1/p =

= (
∫ 1

0
dH(E(Xn)α ,EXα)pdα)1/p
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By the non-expansiveness of the expectation in the CC space K , the latter is
bounded above by

(
∫ 1

0
[EdH((Xn)α ,Xα)]pdα)1/p ≤ (

∫ 1

0
E[dH((Xn)α ,Xα)]pdα)1/p

= Edp(Xn,X) → 0.

The uniqueness of the limit yields EPRX = ECCX .

Remark 2. It should be noted that L1
(F ,dp) must be understood as the family of all

F -valued elements of the L1 space constructed using the completion of (F ,dp). A
direct construction is not possible because (F ,dp) is not a complete CC space itself.

A fuzzy random variable can be integrable in the completion of (F ,dp) without
being Puri-Ralescu integrable.

4 SLLN for Fuzzy Random Variables in Non-Banach Spaces

Some versions of the Strong Law of Large Numbers have been proven for fuzzy
random variables with the uniform metric d∞, see e.g. [1, 4, 3, 6]. However all those
results ultimately rely on the SLLN for Banach spaces. The results we have proven
so far show that one does not really have to depend on Banach space results to prove
the SLLN.

Theorem 6. Let E be a separable complete CC space. Let {Xn}n be a sequence
of pairwise independent fuzzy random variables, identically distributed as X .
Then,

[n−1,Xi]ni=1 → EX

almost surely, in the sense of d∞.

Proof. The proof uses the same device as in [4, Theorem 2] to reduce the proof to
the K -valued case. The latter follows from Theorem 2.

Remark 3. If E is a Banach space, then KE is trivially the identity mapping and we
recover the LLNs in [1, 4].

5 SLLN for Level-2 Fuzzy Random Variables

For a related application, consider level-2 fuzzy sets, namely elements of F (F ).
Level-2 fuzzy sets are increasingly used in database modelling and other applica-
tions (see [10] and references therein) but no formalization of level-2 fuzzy random
variables exists in the literature. In fact, since F does not embed into a Banach space,
the usual tools cannot provide limit theorems in this case.

What we are doing here is to take F itself as the underlying CC space. Its struc-
ture is thus just a level more complicated than that of F : instead of uplifting the
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operations and metric of (E,d) to (F ,d∞), we use the obtained operations of F and
the metric d∞ and uplift them in the same way. We denote the uplifted d∞ metric by
d∞,∞.

Remark 4. The convex hull at the second level (convex hull of subsets of F ) is not
at all obtained by taking the fuzzy convex hull of each element. As an example, take
A = {I{0}, I{2}}: although A is formed by two convex fuzzy sets, it is not convex itself
because, for instance, I{1} appears as a convex combination of them.

Theorem 7. Let X be a d∞,∞-Borel level-2 fuzzy random variable and {Xn}n be
pairwise independent and identically distributed as X . Then,

n∑

i=1

n−1Xn → EX

almost surely in the sense of d∞,∞.

Proof. If X is Borel, then under the Continuum Hypothesis its range is essentially
separable, see [8, 7]. Since (F (F ),d∞,∞) is complete, we can modify X in a null
set so that the closure of its range becomes a separable complete CC space. Then
Theorem 1 applies.
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1 Introduction

Production planning consists of the simultaneous determination of the production,
inventory and capacity levels of a company on a finite planning horizon with the ob-
jective of minimizing the total costs generated by production plans. Fuzzy set theory
has been used to model systems that are difficult to define accurately (Bellman and
Zadeh 1970; Dubois and Prade 1980; Zimmermann 1996). This theory represents
an attractive tool to support the production planning research when the dynamics of
the manufacturing environment limits the specification of the model objectives, con-
straints and parameters. Guiffrida and Nagi (1998) provide an exhaustive literature
survey on the fuzzy set theory applications in production management research.

It is necessary to distinguish between flexibility in constraints and goals and un-
certainty of the data or epistemic uncertainty. Flexibility is modelled by fuzzy sets
and may reflect the fact that constraints or goals are linguistically formulated, their
satisfaction is a matter of tolerance and degrees or fuzziness (Bellman and Zadeh
1970). Epistemic uncertainty is concerned with ill-known parameters modelled by
fuzzy intervals in the setting of possibility theory (Zadeh 1978; Dubois and Prade
1988). This paper aims to formulate a model for mid-term production planning
problem in a multi-product, multi-level and multi-period manufacturing environ-
ment with fuzziness in demand and available capacity. An approach widely studied
in the literature that allows avoiding the imprecision is the use of Soft Computing
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methodologies, and in particular, the use of flexible constraints in the problem for-
mulation. This work uses an approach of fuzzy linear programming based on fuzzy
constraints to generate an optimal fuzzy solution. In this context, the survey work
by Kacprzyk and Orlovsky (1987) and Delgado et al. (1994) show some possibilities
of how fuzziness can be accommodated within linear programming. In this paper,
the main goal is to determine the master production schedule, stock levels, delayed
demand, and capacity usage levels over a given planning horizon in such a way as to
hedge against the fuzziness of demand and capacity constraints. Therefore, we focus
on the demands and capacities, it is clear that the uncertainty can be the result of a
certain imprecision in satisfying the constraints. The contribution of this paper to the
modelling and optimization domain is a practical application of known flexible pro-
gramming. Other applications of flexible programming in production planning prob-
lems can be found in Miller et al. (1997), Pendharkar (1997), Dubois et al. (2003),
Itoh et al. (2003), Melian and Verdegay (2005) and Mula et al. (2006).

The rest of this paper is organized as follows. In Section 2, a model for mid-
term production planning with fuzzy constraints is presented. In Section 3, the fuzzy
model is transformed into an equivalent crisp model. Section 4 uses a real-numerical
example to illustrate the fuzzy model proposed. The conclusions are discussed in
Section 5.

2 Formulation of the Problem

A linear programming model for the capacity constrained material requirement plan-
ning (MRP) problem originally proposed in Mula et al. (2006) and called MRPDet
is adopted as the basis of this work. MRPDet is a model for the optimization of the
mid-term production planning problem in a multi product, multi level and multi pe-
riod manufacturing environment. Let us consider the following fuzzy formulation of
the MRPDet model. Decision variables and parameters for the model are defined in
Table 1.

Minimize

z =
I∑

i=1

T∑

t=1

(cpiPit + ciiINV Tit + crdiRdit)+
R∑

r=1

T∑

t=1

(ctocrtTocrt + ctexrtTexrt) (1)

Subject to

INV Ti,t−1 +Pi,t−T Si +RPit − INV Ti,t −Rdi,t−1 −
I∑

j=1
αi j(Pjt +RPjt)

+Rdit � dit i = 1 . . .I, t = 1 . . .T

(2)

−INVTi,t−1 −Pi,t−T S −RPit + INVTi,t +Rdi,t−1 +
I∑

j=1
αi j(Pjt +RPjt)

−Rdit � dit i = 1 . . .I, t = 1 . . .T

(3)
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I∑

i=1
ARirPit +Tocrt −Texrt � CAPrt r = 1 . . .R, t = 1 . . .T (4)

−
I∑

i=1
ARirPit −Tocrt +Texrt � −CAPrt r = 1 . . .R, t = 1 . . .T (5)

RdiT=0 i = 1 . . .I (6)

Pit, INVTit, Rdit, Tocrt, Texrt≥0 i = 1 . . .I,r = 1 . . .R, t = 1 . . .T (7)

Eq. (1) shows the total costs to be minimized. The balance equations for the inven-
tory are given by the group of constraints (2). These equations take into account
the backlogs of the demand which behave as a negative inventory. It is important to
highlight the consideration of the parameter RP it that guarantees the continuity of
the MRP along the successive explosions carried out during a given planning hori-
zon. The production in every period is limited by the availability of a group of shared
resources. The Eq. (3) considers the limits of capacity of these resources. The sym-
bol � represents the fuzzy version of ≤ and means “essentially less than or similar
to”. These constraints show that the planner wants to make the left hand side of the
constraints smaller or similar to the right hand side “if it is possible”. A constraint
has also been added (4) to finish with the delays in the last period (T ) of the planning
horizon. The model also contemplates the non negativity constraints (5) for the deci-
sion variables. Finally, the decision variables P it, INVT it and Rd it will be defined as
continuous or integer variables depending on the manufacturing environment where
the model is applied.

Table 1. Decision variables and model parameters

Sets

T Set of periods (t = 1. . .T )
I Set of products (i = 1. . . I )
J Set the parent products in the bill of materials (j = 1. . .J )
R Set of resources (r = 1. . .R)
Decision Variables Data

P it Quantity to produce of i on t d it Demand of i on t
INVT it Inventory of i at the end of t α ij Quantity of i to produce a unit of j
Rd it Delayed demand of i at the end of t TS i Lead time of the product i
Tocrt Undertime hours of r on t INVT i0 Inventory of i on period 0
Tex rt Overtime hours of r on t Rd i0 Delayed demand of i on period 0

RP it Programmed receptions of i on t

Objetive Function cost coefficients Technological coefficients

cpi Production cost of a unit of i ARir Time of r for unit of production of i
ci i Inventory cost of a unit of i ARir Available capacity of r on t
crd i Delayed demand cost of a unit of i
ctocrt Undertime hour cost of r on t
ctex rt Overtime hour cost of r on t
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3 Fuzzy Linear Programming Model

This model attempts to solve the mid-term production planning problem where the
market demand and the available capacity are considered fuzzy data.

In order to determine the fuzzy set of the solution, Orlovski (1977) suggests to
calculate, for all the α-levels of the solution space, the optimal values corresponding
to the objective function and to consider as the fuzzy set of the solution the optimal
values of the function objective, with the degree of membership similar to the α-level
of the solution space.
Werners (1987) defines the α-level sets of the solution space as
Rα = {x|x ∈ X ,µR(x) ≥ α} and the set of optimal solutions for each set of the α-
level as N(α) = {x|x ∈ Rα , f (x) = supx′∈Rα f (x′)}. The fuzzy set of the solution is
defined by the membership function:

µopt(x) =






supα i f x ∈ UN(α)
α>0

x∈N(α)

0 Otherwise

(8)

where 0 ≤α ≤ 1 is a cut value. To solve the problem α is settled down parametrically
to obtain the value of the objective function for each one of those α � [0, 1]. Thus,
α is equal to 1 when the constraint is perfectly accomplished (no violation) and
decreases to zero according to greater violations. For not admissible violations the
accomplishment degree will be zero. This membership function can be formulated
as follows:

µi(x) =






0 i f
n∑

i=1
Bix > di + pi

1− ((
n∑

i=1
Bix−di)/pi) i f pi ≤

n∑

i=1
Bix ≤ di + pi

1 i f
n∑

i=1
Bix ≤ di

(9)

The membership function of the fuzzy set of “the optimal values of the objective
function” is defined as:

µ f (r) =






supµopt(x) i f r ∈ R1 ∧ f −1(r) �= extO

x∈ f −1(r)

0 Otherwise

(10)

where f (x ) is the objective function with functional values r.
In the case of the linear programming, the determination of the values r and

µopt(x) can be obtained by using parametric programming (Chanas, 1983). Given
the fuzzy model in Section 3, the equivalent parametric linear programming model
is formulated as follows:
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Minimize

z =
I∑

i=1

T∑

t=1

(cpiPit + ciiINV Tit + crdiRdit)+
R∑

r=1

T∑

t=1

(ctocrtTocrt + ctexrtTexrt (11)

Subject to

INV Ti,t−1 +Pi,t−T S +RPit − INVTi,t −Rdi,t−1 −
I∑

j=1
αi j(Pjt +RPjt)

+Rdit ≤ dit + p2it − p2itα i = 1 . . .I, t = 1 . . .T

(12)

−INVTi,t−1 −Pi,t−T S −RPit + INVTi,t +Rdi,t−1 +
I∑

j=1
αi j(Pjt +RPjt)

−Rdit ≤ −dit + p2it − p2itα i = 1 . . .I, t = 1 . . .T

(13)

I∑

i=1
ARirPit +Tocrt −Texrt ≤ CAPrt + p3rt − p3rtα

r = 1 . . .R, t = 1 . . .T

(14)

−
I∑

i=1
ARirPit −Tocrt +Texrt ≤ −CAPrt + p3rt − p3rtα

r = 1 . . .R, t = 1 . . .T

(15)

RdiT=0 i = 1 . . .I (16)

Pit, INVTit, Rdit, Tocrt, Texrt≥0 i = 1 . . .I,r = 1 . . .R, t = 1 . . .T (17)

In the Eqs. (12) and (13), d it is an estimated value which corresponds to the inferior
limit of the tolerance interval for the demand of the product i in the period t. While
p2 it represents the maximum extension of d it in the tolerance interval of the demand.
In the Eqs. (14) and (15), CAP rt is an estimated value which corresponds to the
inferior limit of the tolerance interval for the available capacity of the resource r in
the period t. On the other hand, p3 rt represents the maximum extension of CAP rt in
the tolerance interval of the available capacity.

The result of this model is, however, a fuzzy set and the planner have to decide
that pair (α, z ) considers optimal if he wants to obtain a crisp solution.
If we substitute the membership function (9) by the following (Hamacher et al.
1978):

µi(x) =






1− ti
pi

i f
n∑

i=1
Bix = di + ti and ti ≥ 0

1 i f
n∑

i=1
Bix ≤ di

(18)

where p i is the acceptable maximum value of the violation t i in the fuzzy constraint
i. The Eqs. (12), (13), (14) and (15) can also be written as (19), (20), (21) and (22),
respectively:

INV Ti,t−1 +Pi,t−T S +RPit − INVTi,t −Rdi,t−1 −
I∑

j=1
αi j(Pjt +RPjt)

+Rdit ≤ dit +θ p2it i = 1 . . .I, t = 1 . . .T

(19)
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−INVTi,t−1 −Pi,t−T S −RPit + INVTi,t +Rdi,t−1 +
I∑

j=1
αi j(Pjt +RPjt)

−Rdit ≤ −dit +θ p2it i = 1 . . .I, t = 1 . . .T

(20)

I∑

i=1
ARirPit +Tocrt −Texrt ≤ CAPrt +θ p3rt

r = 1 . . .R, t = 1 . . .T

(21)

−
I∑

i=1
ARirPit −Tocrt +Texrt ≤ −CAPrt +θ p3rt

r = 1 . . .R, t = 1 . . .T

(22)

4 Numerical Example

The model has been implemented with a high level language for mathematical pro-
gramming models, the modelling language MPL (2004). Resolution has been carried
out with the optimization solver CPLEX (1994). Finally, the input data and outputs
of the models are managed through a Microsoft Access 2000 database.

This section uses a real example to illustrate the performance of the fuzzy model.
The proposed model is applied in a company dedicated to the assembly of seats for
automobiles. The hypotheses to carry out the computational experiment are sum-
marized as follows: the study considers a single part; the decision variables P it,
INVT it, and Rd it are integer; the external demand only exists for the final prod-
uct; delayed demand for the final product is considered; an only productive resource
restricts the production: the assembly line; the parameters p2 and p3 required by
the fuzzy model have been defined following company criteria; it has been consid-
ered a six months planning horizon with a weekly period planning; the performance
measures are: production, inventory, delayed demand and overtime costs.

The company receives weekly from the automobile assembler the demand infor-
mation with a planning horizon for six months. However, these demand forecasts are
rarely precise (see Mula et al. 2005). Therefore, this section will validate if the fuzzy
model for production planning, proposed in this paper, can be a useful tool for the
decision making process of the production planners.

Table 2 summarizes the evaluation results, with a fuzziness level in the demands
and available capacities equal to α , according to a group of parameters defined in
Mula et al. (2006): (i) the service level; (ii) the levels of inventory; (iii) the planning
nervousness respect to the planned period and the planned quantity; and (iv) the total
costs.

Table 3 shows the computational efficiency of the crisp model, MRPDet (see
Mula et al. 2006), and the fuzzy MRP model proposed in this work. Both of the
models can obtain the optimal solution of the mixed integer linear programming
with a null number of iterations in the first MRP execution (Release 1). Obviously,
the number of iterations can change in the rest of MRP executions depending on the
input data. On the other hand, the fuzzy MRP model has a larger number of con-
strains but same number of variables and integer variables, which is not implying a
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Table 2. Evaluation of the results

α Service Number of Planning Planning Total
(θ = 1−α) level minimun nervousness nervousness costs

% inventory (Period) (Quantity) e
levels

0 99.25% 46 0.5 13.25 4111577.90
0.1 99.27% 9 0.5 14.65 4113786.06
0.2 99.28% 9 0.5 14.85 4112890.28
0.3 99.30% 9 0.5 14.9 4098756.63
0.4 99.32% 9 0.5 15.05 4083810.06
0.5 99.34% 9 0.4 5.05 4065984.25
0.6 99.37% 9 0.4 15.15 4045561.22
0.7 99.39% 9 0.35 15.1 028525.18
0.8 99.40% 9 0.35 14.8 4016677.67
0.9 99.42% 8 0.35 14.8 4004564.22
1 99.44% 8 0.35 14.05 3988276.07

Table 3. Efficiency of the computational experiments for a MRP execution (first week)

Model Iterations Variables Integer Constraints Elements Array CPU
non Zero density time

(%) (Secons)
MRPDet 0 4237 5612 2797 8239 0.07 0.86
Fuzzy MRP 0 4237 5612 2857 8477 0.07 3.63*

*This value corresponds to one α

greater requirements of information storage. Finally, the fuzzy model has not caused
an explosive growth of the CPU time.

5 Conclusions

In many manufacturing environments, such as the automobile industry, the produc-
tion planning decisions have to be made under conditions of uncertainty in parame-
ters as important as market demand or capacity data. Due to the unavailability and
fuzziness of information it is extremely difficult to exactly generate production plans
under a dynamic environment. For improving these production plans a fuzzy pro-
duction planning model is developed in this paper. The main advantages of the fuzzy
MRP model proposed are: (i) a fuzzy complete decision considers other election pos-
sibilities besides the maximization variant, which can help managers to foresee the
effects of the uncertainty in demands and capacities; and (ii) the size of the modeling
problem has not been increased with respect to the crisp model, MRPDet, which
has not caused a decrement of the computational efficiency. Finally, the testing of
the proposed fuzzy model for all the products and resources of the company will be
the aim of a forthcoming work.
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Summary. Proportional bounding quantifiers like “Between p1 and p2 percent” are poten-
tially useful for expressing linguistic summaries of data. Given p1, p2, existing methods
for data summarization based on fuzzy quantifiers can be used to assign a quality score to
the summary. However, the problem remains how the optimal choice of p1, p2 in the range
0 ≤ p1 ≤ p2 ≤ 100% can be established. Moreover, the proposed quality indicators are rather
heuristic in nature. The paper presents a method for computing the optimal bounding quan-
tifier which best summarizes the given data. Specifically, the most specific quantifier will be
chosen which results in the highest validity score of the summary given a constraint on the
the percentage range p2 − p1. The method not only assigns validity scores to the quantifiers
of interest but also determines the best choice of quantifier in O(N logm) time, where N is the
size of the base set and m the number of different membership grades in the fuzzy arguments.

1 Introduction

A framework for generating linguistic summaries from imprecise data and for evalu-
ating their usefulness has been developed by Yager [8, 10, 7] and refined by Kacprzyk
and Strykowski [6]. We assume a finite base set E �= ∅ of individuals of interest, and
a description of these individuals by fuzzy sets X ∈ P̃(E). In practice, the data will
likely be described by a set A of attributes a : E −→Va which assign an attribute value
a(e) to each individual. The fuzzy sets on E, in turn, will only indirectly be given by
fuzzy sets declared on the attribute values. Thus, a fuzzy set X ′ ∈ P̃(Va) declared on
the attribute range of a ∈ A gives rise to the associated fuzzy set X ∈ P̃(E) defined
by µX (e) = µX ′(a(e)). The attribute-based description of the data in a database will
not be of relevance in this paper, however, so that we drop it for simplicity. From this
simplified viewpoint, then, a linguistic summary has the form “Q objects are X’s”
or “Q X1’s are X2’s” (with an associated ‘validity’ or ‘truthfulness’ score τ ∈ [0,1]).
Q ∈ {almost all,many, . . .} is called the ‘quantity in agreement’ of the summary.

While existing data summarization systems are mostly based on Zadeh’s Σ -count
or FG-count approach [11] or on Yager’s OWA operators [9], we will assume a
broader framework which avails us with a uniform analysis of all kinds of linguistic
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Table 1. Main types of linguistic quantifiers

Type Example Definition
absolute unrestrictive There are more than 3 Y ’s Q(Y ) = q(|Y |)
absolute More than 3 Y1’s are Y2’s Q(Y1,Y2) = q(|Y1 ∩Y2|)
exception All except 3 Y1’s are Y2’s Q(Y1,Y2) = q(|Y1 \Y2|)

proportional Two of three Y1’s are Y2’s Q(Y1,Y2) =

{

f ( |Y1∩Y2|
|Y1| ) |Y1| > 0

v0 else
cardinal comparative More Y1’s than Y2 are Y3 Q(Y1,Y2,Y3) = q(|Y1 ∩Y3|, |Y2 ∩Y3|)

quantifiers [4, 3, 5]. This framework is inspired by the linguistic Theory of Gen-
eralized Quantifiers (TGQ) [1]. It extends the notion of a (two-valued) generalized
quantifier to fuzzy arguments and gradual quantification results in the obvious way:

Definition 1. An nary fuzzy quantifier on a base set E �= ∅ is a mapping Q̃ :
P̃(E)

n
−→ [0,1] (E needs not be finite).

Expressing an NL quantifier of interest in terms of a fuzzy quantifier is not an easy
task, though – mainly because a simple cardinality-based definition is no longer pos-
sible when the arguments of the quantifier are fuzzy. We therefore introduce so-called
semi-fuzzy quantifiers which serve as a simplified description of the target quantifier.

Definition 2. An nary semi-fuzzy quantifier on a base set E �= ∅ is a mapping
Q : P(E)n −→ [0,1].

Semi-fuzzy quantifiers are easier to define than fuzzy quantifiers because one needs
not describe their interpretation for fuzzy arguments. The specification of an NL
quantifier in terms of a semi-fuzzy quantifier will be linked to the target fuzzy quan-
tifier (which also accepts fuzzy arguments) by a quantifier fuzzification mechanism.

Definition 3. A quantifier fuzzification mechanism (QFM) F assigns a fuzzy
quantifier F (Q) : P̃(E)

n
−→ [0,1] to each semi-fuzzy quantifier Q : P(E)n −→

[0,1].

Table 1 lists the main types of semi-fuzzy quantifiers which are also of interest for
data summarization. In this paper, we will restrict attention to proportional bounded
quantifiers , i.e. quantifiers defined by

rate[r1,r2](Y1,Y2) =

{

1 : Y1 �= ∅∧ |Y1∩Y2|
|Y1| ∈ [r1,r2]

0 : else

These quantifiers are of apparent utility for expressing summaries like “between p1

and p2 percent of the X1’s are X2’s” (r1 = p1/100, r2 = p2/100) or “at least p percent
of the X1’s are X2’s” (r1 = p/100, r2 = 1).
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From the perspective of natural language use (i.e. pragmatics), truthfulness of
Q(Y1,Y2) only indicates a possible use of Q – which might represent a very un-
usual case of applying Q, however. In other words, the truth score τ = F (Q)(X1,X2)
which judges the validity of the summary “Q X1’s are X2’s”, is not restrictive enough
to guide quantifier selection to the most appropriate choice of Q. Consider at least
eighty percent, for example. Clearly the corresponding quantifier should also be true
if all X1’s are X2’s. However, only the quantifier all is appropriate for describing
this situation, while at least eighty percent has a very low appropriateness grade in
this case. Existing approaches to linguistic data summarization have introduced var-
ious quality indicators for quantifier selection to solve this problem. While Yager
[10] uses only the validity score and a metric for informativeness, Kacprzyk and
Strykowski [6] use a multi-dimensional measure based on the degree of truth, the
degree of imprecision, the degree of covering, the degree of ‘appropriateness’ and
the length of the summary. The proposed quality indicators are rather heuristic in
nature, though, while in this paper, we target at a more principled solution.

Hence let X1,X2 ∈ P̃(E) be given. We further assume a fixed model of fuzzy
quantification, i.e. a QFM F (see below). The summary generation is controlled by
a constraint δmax ∈ [0,1) which specifies the maximal admissible percentage range
r2 − r1 (a summary “between 20% and 90% of the X1’s are X2’s” might be pretty
odd, for example). We search for an optimal choice of Q∗ = rate[r∗1 ,r∗2 ], r∗1 ≤ r∗2, with

a. r∗2 − r∗1 ≤ δmax.
b. For all r′1 ≤ r′2 with r′2 − r′1 ≤ δmax, F (rate[r′1,r′2])(X1,X2) ≤ F (Q∗)(X1,X2).
c. If F (rate[r′1,r′2])(X1,X2) = F (Q∗)(X1,X2), then r′1 ≤ r∗1 and r∗2 ≤ r′2.

The first condition asserts that the percentage span r∗2 −r∗1 of the optimal quantifier is
within the limits given by δmax, i.e. the summary is sufficiently specific. The second
condition asserts that Q∗ is an optimal choice of such a quantifier, which results in the
highest validity score. The third condition ensures that Q∗ is the narrowest choice of
all quantifiers optimal with respect to the validity score. Let me now explain how Q∗

can actually be computed. In order to simplify presentation, we will further assume
that F (Q∗)(X1,X2) > 1

2 , i.e. summaries with low truth scores will be ignored.

2 Choosing the Model F

We need a concrete, well-motivated choice of F to determine the validity score
τ = F (Q)(X1,X2) of the summary. The following construction will assign a suitable
choice of fuzzy connectives to the given QFM.

Definition 4. Let F be a QFM and f : {0,1}n −→ [0,1] a (semi-fuzzy) truth
function. The induced fuzzy truth function F̃ ( f ) : [0,1]n −→ [0,1] is defined
by F̃ ( f ) = F ( f ◦η−1)◦ η̃, where η : {0,1}n −→P({1, . . . ,n}) and η̃ : [0,1]n −→
P̃({1, . . . ,n}) are defined by η(y1, . . . ,yn) = {i : yi = 1} and µη̃(x1,...,xn)(i) = xi,
respectively.
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The fuzzy set operations ∪̃ : P̃(E)
2
−→ P̃(E) (fuzzy union) and ¬̃ : P̃(E) −→

P̃(E) (fuzzy complement) will be defined element-wise in terms of fuzzy disjunc-
tion ∨̃ = F̃ (∨) and fuzzy negation ¬̃ = F̃ (¬). Based on these induced fuzzy con-
nectives and fuzzy set operations, we can define a class of well-behaved models.

Definition 5. A QFM F is called a determiner fuzzification scheme (DFS) if it
satisfies the following conditions for all semi-fuzzy quantifiers Q : P(E)n −→
[0,1] and fuzzy arguments X1, . . . ,Xn ∈ P̃(E):

(a)F (Q) = Q if n = 0;
(b) F (Q)(Y ) = Q(Y ) for crisp Y ∈ P(E), n = 1;
(c) F (πe) = π̃e for all E �= ∅, e ∈ E, where πe(Y ) = 1 iff e ∈ Y and π̃e(X) =

µX (e);
(d)F (Q′)(X1, . . . ,Xn) = ¬̃F (Q)(X1, . . . ,Xn−1, ¬̃Xn) whenever the semi-fuzzy

quantifier Q′ is defined by Q′(Y1, . . . ,Yn) = ¬̃Q(Y1, . . . ,Yn−1,¬Yn) for all crisp
Yi;

(e) F (Q′)(X1, . . . ,Xn+1) = F (Q)(X1, . . . ,Xn−1,Xn ∪̃Xn+1) whenever Q′ is defined
by Q′(Y1, . . . ,Yn+1) = Q(Y1, . . . ,Yn−1,Yn ∪Yn+1) for all crisp Yi;

(f) F (Q)(X1, . . . ,Xn)≥F (Q)(X1, . . . ,Xn−1,X ′
n) if Xn ⊆ X ′

n given that Q(Y1, . . . ,Yn)
≥ Q(Y1, . . . ,Yn−1,Y ′

n) for all crisp Yi, Yn ⊆ Y ′
n;

(g) F (Q◦×n
i=1F̂ ( fi)) = F (Q)◦×n

i=1 f̂i for all fi : E ′ −→ E, where f̂ (Y ) = { f (e) :
e ∈ Y} for all crisp Y and µF̂ ( f )(X)(e) = F (πe ◦ f̂ )(X).

The choice of postulates (a) through (g) was based on a large catalogue of semantic
desiderata from which a minimal (independent) system of core requirements was
then distilled. The total list of desiderata validated by these models is discussed in
[5]. A DFS will be called a standard DFS if it induces the standard set of fuzzy
connectives min, max and 1− x.

Table 2 lists three general constructions of models which result in the classes
of FΩ , Fξ and MB DFSes.1 The FΩ -DFSes form the broadest class of standard
DFSes currently known. All practical FΩ -DFSes belong to the more regular Fξ
class, though. The MB-DFSes can be characterized as the subclass of those Fξ
models which propagate fuzziness (in the sense of being compatible with a natural
fuzziness order). The most prominent example is the following standard DFS MCX,
which generalizes the Zadeh’s FG-count approach:

MCX(Q)(X1, . . . ,Xn) =






1
2 + 1

2 sup{γ : ⊥(γ) ≥ 1
2 + 1

2γ} : ⊥(0) > 1
2

1
2 − 1

2 sup{γ : '(γ) ≤ 1
2 − 1

2γ} : '(0) < 1
2

1
2 : else

abbreviating '(γ) = 'Q,X1,...,Xn(γ) and ⊥(γ) = ⊥Q,X1,...,Xn(γ). In the following, it is
sufficient to consider the model F = MCX only because all standard DFSes coincide

1 Here, X≥α denotes the α-cut and X>α the strict α-cut, respectively. Moreover, med1/2(x,y)
is the fuzzy median, i.e. the second-largest of the three values x, y, 1

2 .



Optimal Selection of Proportional Bounding Quantifiers 177

Table 2. Known classes of standard models: an overview

Type Construction
FΩ -DFS From supervaluation results of three-valued cuts:

Xmin
γ =






X
≥ 1

2 + 1
2 γ

γ ∈ (0,1]

X
>

1
2

γ = 0
Xmax
γ =






X
>

1
2 − 1

2 γ
γ ∈ (0,1]

X
≥ 1

2
γ = 0

Tγ (Xi) = {Y : Xmin
γ ⊆ Y ⊆ Xmax

γ }
SQ,X1,...,Xn(γ) = {Q(Y1, . . . ,Yn) : Yi ∈ Tγ (Xi), i = 1, . . . ,n}
FΩ (Q)(X1, . . . ,Xn) = Ω(SQ,X1,...,Xn)

Fξ -DFS From suprema and infima of supervaluations:
'Q,X1,...,Xn(γ) = supSQ,X1,...,Xn(γ) ⊥Q,X1,...,Xn(γ) = infSQ,X1,...,Xn(γ)
Fξ (Q)(X1, . . . ,Xn) = ξ ('Q,X1,...,Xn ,⊥Q,X1,...,Xn)

MB-DFS From fuzzy median of supervaluation results:
Qγ (X1, . . . ,Xn) = med1/2('Q,X1,...,Xn(γ),⊥Q,X1,...,Xn(γ))
MB(Q)(X1, . . . ,Xn) = B(Qγ (X1, . . . ,Xn)γ∈[0,1])

with MCX for two-valued quantifiers, and because proportional bounding quantifiers
are two-valued quantifiers.

3 Implementation of Proportional Bounding Quantifiers

In order to describe the method for optimal quantifier selection, we must recall
the computational analysis of quantitative quantifiers in Fξ models developed in
[3]. In the following, we assume a finite base set E �= ∅ of cardinality |E| = N.
For given fuzzy arguments X1, . . . ,Xn ∈ P̃(E), the set of relevant cutting levels is
given by Γ (X1, . . . ,Xn) =

{
2µXi(e)−1 : µXi(e) ≥ 1

2

}
∪
{

1−2µXi(e) : µXi(e) < 1
2

}
∪

{0,1}. The computation of quantifiers will be based on an ascending sequence of cut-
ting levels 0 = γ0 < γ1 · · ·< γm−1 < γm = 1 with {γ1, . . . ,γm}⊇Γ (X1, . . . ,Xn) (usually
we will have an equality here). For γ = 0, . . . ,m−1, we abbreviate γ j = γ j+γ j+1

2 . We
further let 'j = 'Q,X1,...,Xn(γ j) and ⊥ j = ⊥Q,X1,...,Xn(γ j). As a prerequisite for imple-
menting the quantifier selection, let us rewrite MCX as a function of the finite sample
Γ (X1, . . . ,Xn) of (three-valued) cut levels.

Proposition 1. Let Q : P(E)n −→ [0,1], X1, . . . ,Xn ∈ P̃(E) and 0 = γ0 < γ1 <
· · · < γm−1 < γm = 1 be given, Γ (X1, . . . ,Xn) ⊆ {γ0, . . . ,γm}. For j ∈ {0, . . . ,m−1}
let B j = 2⊥ j −1 if ⊥0 ≥ 1

2 and B j = 1−2'j otherwise. Further let

Ĵ = { j ∈ {0, . . . ,m−1} : B j ≤ γ j+1} , ĵ = min Ĵ .

Then
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MCX(Q)(X1, . . . ,Xn) =






1
2 + 1

2 max(γ ĵ,B ĵ) : ⊥0 > 1
2

1
2 − 1

2 max(γ ĵ,B ĵ) : '0 < 1
2

1
2 : else.

These formulas enable us to evaluate fuzzy quantifications in MCX (and for two-
valued quantifiers like rate[r1,r2], in arbitrary standard DFSes). The computation of 'j

and ⊥ j must be optimized, though, because a naive implementation which considers
each Yi ∈ Tγ j

(Xi) will not achieve sufficient performance. To this end, we observe
that for proportional bounding quantifiers, 'j and ⊥ j can be rewritten as

'j = max{q(c1,c2) : (c1,c2) ∈ R j} ⊥ j = min{q(c1,c2) : (c1,c2) ∈ R j}

R j = {(|Y1|, |Y1 ∩Y2|) : Yi ∈ Tγ(Yi)} q(c1,c2) =
{

1 : c1 > 0∧ c2
c1

∈ [r1,r2]
0 : else.

In numeric terms, the relation R j can be precisely described as follows:

R j = {(c1,c2) : �1 ≤ c1 ≤ u1,max(�2,c1 −u3) ≤ c2 ≤ min(u2,c1 − �3)}, (1)

where �s = |Zs|min
γ = |(Zs)

min
γ | and us = |Zs|max

γ = |(Zs)
max
γ |, γ = γ j, depend on Z1 =

X1, Z2 = X1 ∩ X2 and Z3 = X1 ∩¬X2, assuming the standard fuzzy intersection and
complement.2 We conclude that

'j = max{q(c1,c2) : �1 ≤ c1 ≤ u1,max(�2,c1 −u3) ≤ c2 ≤ min(u2,c1 − �3)}
= max{q′(c1) : �1 ≤ c1 ≤ u1}

⊥ j = min{q(c1,c2) : �1 ≤ c1 ≤ u1,max(�2,c1 −u3) ≤ c2 ≤ min(u2,c1 − �3)}

=

{

1 : �1 > 0∧ r1 ≤ �2
�2+u3

∧ u2
u2+�3

≤ r2

0 : else

where
q′(c1) =






q(c1,min(u2,c1 − �3)) : min(u2,c1 − �3) < r1
q(c1,max(�2,c1 −u3)) : max(�2,c1 −u3) > r1
q(c1,r1) : else.

In order to compute a quantification result based on this formula, one must consider
every choice of j (i.e. m cutting levels) and (at worst) N = |E| choices of c1. Thus,
the complexity of evaluating a proportional bounding quantifier is O(Nm).

4 Optimal Quantifier Selection

Given X1,X2 ∈ P̃(E), we define rate bound mappings rmin,rmax : [0,1] −→ [0,1]:

2 The efficient computation of �s( j) and us( j) from the histogram of Zs is explained in [5, 3].
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rmin(γ) =

{
�2

�2+u3
: �1 > 0

0 : �1 = 0
rmax(γ) =

{
u2

u2+�3
: �1 > 0

1 : �1 = 0

where �s = �s( j) and us = us( j) are defined as (1), and j = max{ j : γ j ≤ γ} for
{γ0, . . . ,γm}=Γ (X1, . . . ,Xn), 0 = γ0 < γ1 < · · ·< γm−1 < γm = 1. Abbreviating rmin

j =
rmin(γ j), rmax

j = rmax(γ j), it is easily shown from the above analysis of 'j and ⊥ j

that for a proportional bounding quantifier rate[r1,r2] with r2 − r1 ∈ [0,1),

⊥ j =

{

1 : r1 ≤ rmin
j ∧ rmax

j ≤ r2

0 : else
(2)

In particular, choosing r1 = rmin
j and r2 = rmax

j will result in ⊥ j = 1 > 1
2 + 1

2γ j, i.e.

MCX(rate[rmin
j ,rmax

j ])(X1,X2) ≥ 1
2 + 1

2γ j+1 > 1
2 . Hence let j∗ = max{ j = 0, . . . ,m−1 :

rmax
j − rmin

j ≤ δmax}, r∗1 = rmin
j∗ and r∗2 = rmax

j∗ . If r∗2 − r∗1 > δmax, then no summariza-
tion based on bounding quantifiers is possible because X1,X2 are too fuzzy. In the
normal case that r∗2 − r∗1 ≤ δmax, however, the choice of r∗1 and r∗2 will be optimal. To
see this, suppose that MCX(rate[r1,r2])(X1,X2) ≥ MCX(Q∗)(X1,X2), Q∗ = rate[r∗1 ,r∗2 ].

Because MCX(Q∗)(X1,X2) > 1
2 , we also have MCX(Q′)(X1,X2) > 1

2 , where Q′ =
rate[r1,r2]. Now consider ⊥∗ = ⊥Q∗,X1,X2 and ⊥′ = ⊥Q′,X1,X2

. Since Q∗ and Q′ are
two-valued, ⊥∗ and ⊥′ are also two-valued. Moreover ⊥∗ and ⊥′ are monotonically
non-increasing. Thus MCX(rate[r1,r2])(X1,X2) ≥ MCX(Q∗)(X1,X2) is only possible
if ⊥′ ≥ ⊥∗, since MCX preserves inequations of ⊥′ and ⊥∗. We see from ⊥′ ≥ ⊥∗

that ⊥′
j∗ ≥ ⊥∗

j∗ = 1, i.e. r1 ≤ r∗1 and r∗2 ≤ r2. Now suppose that MCX(Q′)(X1,X2) >

MCX(Q∗)(X1,X2). Then MCX(Q′) = 1
2 + 1

2γ
′ for γ ′ > γ j∗+1. In particular, ⊥′

j∗+1 = 1,

i.e. r1 ≤ rmin
j∗+1 and rmax

j∗+1 ≤ r2. By definition of j∗, r2 − r1 ≥ rmax
j∗+1 − rmin

j∗+1 > δmax, i.e.
Q′ exceeds the δmax limit. Thus in fact MCX(Q′)(X1,X2) = MCX(Q∗)(X1,X2) and
r1 ≤ r∗1, r∗2 ≤ r2, confirming the optimality of Q∗.

Apparently, the result can be computed in at most m steps ( j = 0, . . . ,m − 1).
Computation of ⊥ j given j is possible in constant time, see (2). Therefore, the opti-
mal choice of r1 and r2 can be computed in O(m) time. However, the computation
of the cardinality coefficients must also be considered. The method for determining
�s( j) and us( j) described in [5, 3] requires a pre-computation of the histograms of
X1,X2, which has complexity O(N logm). In practice, this is sufficient to compute
optimal bounding quantifiers even for large base sets.

Finally we consider an example of quantifier selection. Let us assume that
E = {a,b,c,d,e, f ,g,h, i}, X1 = 1/a + 0.9/b + 0.8/c + 0.8/d + 0.7/e + 0.7/ f +
0.1/g + 1/h + 0.9/i, X2 = 0.05/a + 0.9/b + 0.7/c + 1/d + 1/e + 0.8/ f + 0.1/g +
0.5/h + 0.1/i. The corresponding minimum and maximum rates and the results of
the quantifier selection method for several choices of δmax are shown in Figure 1.
Here, τ = MCX(Q∗)(X1,X2) is the resulting validity score of the summary. Notice
that a summary like “Between 62.5% and 75% of the X1’s are X2’s” might be mis-
leading because it gives an illusion of precision which is not justified by the data.
We therefore suggest a subsequent linguistic fitting of the selected quantifier which
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Fig. 1. Example plot of rmin and rmax and results of quantifier selection

should be adapted to a reasonable granularity scale. For example, assuming a 5%
granularity scaling, the result for δmax = 0.2 should better be expressed as “Between
60% and 75% of the X1’s are X2’s”.

5 Conclusions

This paper was concerned with the problem of quantifier selection in fuzzy data sum-
marization. For the important class of proportional bounding quantifiers, we have
presented an efficient algorithm which computes the optimal quantifier in O(N logm)
time. Improving upon existing work on fuzzy data summarization, the new method
uses a straightforward optimality criterion rather than heuristic quality indicators;
the method is guaranteed to determine the optimal quantifier; and the optimal selec-
tion can be established very quickly. The resulting quantifier should be fitted to the
quality of the data to improve the linguistic appropriateness of the summary. The rel-
ative proportion coefficients rmin and rmax on which the computation of the optimal
quantifier is based, are interesting in their own right as a graphical representation of
relative proportions found in imprecise data.
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1 Introduction

Dynamics, or variability over time, is crucial in virtually all real world processes.
Among many formal approaches to the description of dynamic behavior is the use
of time series, notably those composed of a sequence of real numbers that represent
how values of a quantity, variable, etc. evolve over time. Time series are then used
for many diverse purposes exemplified by decision making, prediction, etc. However,
in all these situations first we have to grasp the very meaning of a particular time
series in the sense of what is going on with the quantity or variable whose values it
represents.

Unfortunately, this is a difficult task. First, nontrivial time series are usually long
and maybe beyond human comprehension. Second, real time series rarely exhibit an
obvious behavior exemplified by a steady growth. Usually, their behavior is variable
and complicated like, e.g., after a long period of a strong growth there is a short
period of an almost steady value, then a very long period of a slight decrease, etc.
Notice that such a description of time series does carry much information to a human
being but is, first, difficult to represent using traditional formal means (e.g. statisti-
cal), and, second, is difficult to derive by using conventional tools and techniques.
Needless to say that such a description of trends is a kind of summarization.

We propose how to derive a human consistent summarization of time series in
terms of trends observed in the data. Although we relate to some traditional ap-
proaches to the discovery and assessment of trends, exemplified by various concepts
of variability that are somehow rooted in statistics, we employ a different approach.

Basically, we follow the philosophy of the so-called paradigm of computing with
words and perceptions due to Zadeh and Kacprzyk [6] which postulates that since
for a human being the only fully natural means of communication and articulation is
natural language, then the use of natural language based tools, techniques, reports,
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etc. should be more human consistent than the use of “artificial” numbers, functions,
numerical algorithms, etc., and hence might help solve even complicated problems.

In our context we advocate (fuzzy) linguistic data summaries in the sense of
Yager [12] (cf. also Kacprzyk and Yager [4], and Kacprzyk, Yager and Zadrożny [5]).
Such summaries, e.g. “most employees are middle aged” for a personnel database,
make it possible to grasp the very meaning of even a huge data set by summarizing
it by a short natural language like sentence. Fuzzy logic with linguistic quantifiers is
here indispensable. We show how to derive (fuzzy) linguistic summaries of time se-
ries trends exemplified by “most trends are increasing”, “most of slowly decreasing
trends have a large variability”, etc. We use Zadeh’s [13] simple fuzzy logic based
calculus of linguistically quantified propositions, using our modification of Sklansky
and Gonzalez’s [11] technique to extract elementary trends to be aggregated.

It seems that the method proposed can often be, on the one hand, a viable tech-
nique for the description of trends that can effectively and efficiently supplement well
established traditional techniques with roots in statistics. On the other hand, since it
is heavily based on the use of natural language, it can provide simple, easily com-
prehensive and human-consistent description of trends in time series. The technique
proposed can be easily implemented in human centric systems.

2 Characterization of Time Series

In our approach a time series {(xi,yi)} is approximated by a piecewise linear function
f such that for a given ε > 0, there holds | f (xi)− yi| ≤ ε , for each i.

Among many algorithms that find such approximations (cf. [1, 3]), the Sklansky
and Gonzalez [11] one seems to be a good choice due to its simplicity and efficiency.
We modified it as follows. The algorithm constructs the intersection of cones starting
from a point pi of the time series and including a circle of radius ε around the sub-
sequent data points pi+ j, j = 1, . . . until this intersection becomes empty. If for pi+k

the intersection is empty, then the points pi, pi+1, . . . , pi+k−1 are approximated by a
straight line segment, and to approximate the remaining points we construct a new
cone starting at pi+k−1. Figure 1 presents the idea of the algorithm. The family of
possible solutions, i.e., straight line segments to approximate points is indicated with
a gray area. This method is fast as it requires only a single pass through the data.

We characterize the trends, meant as the straight line segments of the above de-
scribed uniform ε-approximation, using the following three features: (1) duration,
(2) dynamics of change, and (3) variability.

In what follows we will briefly discuss these factors.

Dynamics of change
Under the term dynamics of change we understand the speed of changes. It can
be described by the slope of a line representing the trend, (cf. α in Fig. 1). Thus,
to quantify dynamics of change we may use the interval of possible angles α ∈
〈−90;90〉.

However it might be impractical to use such a scale directly while describing
trends. Therefore we may use a fuzzy granulation in order to meet the users’ needs
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Fig. 3. A visual representation of angle gran-
ules defining dynamics of change

and task specificity. The user may construct a scale of linguistic terms corresponding
to various directions of a trend line as, e.g.: quickly decreasing, decreasing, slowly
decreasing, constant, slowly increasing, increasing, quickly increasing.

Figure 3 illustrates the lines corresponding to the particular linguistic terms. In
fact, each term represents a fuzzy granule of directions. There are many methods of
constructing such a fuzzy granulation (cf. [2]), alternatively the user may define a
membership functions of particular linguistic terms depending on his or her needs.

We map a single value α (or the whole interval of the angles corresponding to
the gray area in Figure 1) characterizing the dynamics of change of a trend identified
using modified Sklansky and Gonzalez method, into a fuzzy set best matching given
angle. Then we will say that a given trend is, e.g., “decreasing to a degree 0.8”,
if µdecreasing(α) = 0.8, where µdecreasing is the membership function of a fuzzy set
representing the linguistic term “decreasing” that is a best match for the angle α
characterizing the trend under consideration.

Duration
Duration describes the length of a single trend corresponding to a line segment of
the linear uniform ε-approximation. Again we will treat it as a linguistic variable. An
example of its linguistic labels is “long” defined as a fuzzy set, whose membership
function might be assumed as in Figure 2, where OX is the axis of time measured
with units that are used in the time series data under consideration.

The actual definitions of linguistic terms describing the duration depend on the
perspective assumed by the user. He or she, analyzing the data, may adopt this or
another time horizon implied by his or her needs. The analysis may be a part of a
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policy, strategic or tactical planning, and thus, may require a global or local look,
respectively.

Variability
Variability refers to how “spread out” (in the sense of values taken on) a group of
data is. There are five frequently used statistical measures of variability:
• the range
• the interquartile range (IQR)
• the variance
• the standard deviation
• the mean absolute deviation (MAD)
We propose to measure the variability of a trend as the distance of the data points
covered by this trend from their linear uniform ε-approximation that represents given
trend. For this purpose we may bisect the cone and then compute the distance be-
tween the point and this ray.

Again the measure of variability is treated as a linguistic variable and expressed
by linguistic terms (labels) modeled by fuzzy sets.

3 Linguistic Summaries

A linguistic summary, as presented in [9, 10] is meant as a natural language like
sentence that subsumes the very essence of a set of data. This set is assumed to be
numeric and is usually large, not comprehensible in its original form by the human
being. In Yager’s approach (cf. Yager [12], Kacprzyk and Yager [4], and Kacprzyk,
Yager and Zadrożny [5]) we assume that (1) Y = {y1, . . . ,yn} is a set of objects
(records) in a database, e.g., the set of workers; and (2) A = {A1, . . . ,Am} is a set
of attributes characterizing objects from Y , e.g., salary, age, etc. in a database of
workers, and A j(yi) denotes a value of attribute A j for object yi.

A linguistic summary of a data set D consists of:

• a summarizer S, i.e. an attribute together with a linguistic value (fuzzy predicate)
defined on the domain of attribute A j (e.g.“low” for attribute “salary”);

• a quantity in agreement Q, i.e. a linguistic quantifier (e.g. most);
• truth (validity) T of the summary, i.e. a number from the interval [0,1] assessing

the truth (validity) of the summary (e.g. 0.7); usually, only summaries with a high
value of T are interesting;

• optionally, a qualifier R, i.e. another attribute together with a linguistic value
(fuzzy predicate) defined on the domain of attribute Ak determining a (fuzzy
subset) of Y (e.g. “young” for attribute “age”).

Thus, a linguistic summary may be exemplified by

T (most of employees earn low salary) = 0.7 (1)

A richer linguistic summary may include a qualifier (e.g. young) as, e.g.,
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T (most of young employees earn low salary) = 0.75 (2)

Thus, basically, the core of a linguistic summary is a linguistically quantified
proposition in the sense of Zadeh [13]. A linguistically quantified proposition, cor-
responding to (1) may be written as

Qy’s are S (3)

and the one corresponding to (2) may be written as

QRy’s are S (4)

Then, the component of a linguistic summary, T , i.e., its truth (validity), directly
corresponds to the truth value of (3) or (4). This may be calculated by using either
original Zadeh’s calculus of linguistically quantified propositions (cf. [13]), or other
interpretations of linguistic quantifiers.

4 Trend Summarization

In order to characterize the summaries of trends we will refer to Zadeh’s concept
of a protoform (cf., Zadeh [14]). Basically, a protoform is defined as a more or less
abstract prototype (template) of a linguistically quantified proposition. Then, sum-
maries mentioned above might be represented by protoforms of the following form:

• We may consider a short form of summaries:

Q trends are S (5)

like e.g., “Most of trends have a large variability”;
• We may also consider an extended form of the summary represented by the fol-

lowing protoform:
QR trends are S (6)

and exemplified by “Most of slowly decreasing trends have a large variability”.

Using Zadeh’s [13] fuzzy logic based calculus of linguistically quantified propo-
sitions, a (proportional, nondecreasing) linguistic quantifier Q is assumed to be a
fuzzy set in the interval [0,1] as, e.g.

µQ(x) =






1 for x>0.8
2x−0.6 for 0.3 < x < 0.8
0 for x<0.3

(7)

The truth values (from [0,1]) of (5) and (6) are calculated, respectively as

truth(Qy’s are S) = µQ
[

1
n

∑n
i=1µS(yi)

]
(8)
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truth(QRy’s are S) = µQ

[∑n
i=1(µR(yi)∧µS(yi))
∑n

i=1 µR(yi)

]

(9)

Both the fuzzy predicates S and R are assumed above to be of a rather simplified,
atomic form referring to just one attribute. They can be extended to cover more so-
phisticated summaries involving some confluence of various attribute values as, e.g,
“slowly decreasing and short”.

5 Example

Let us assume that we have discovered from some given data trends listed in Table
1. We assume the granulation of dynamics of change depicted in Figure 3.

Table 1. Example of trends

Dynamics of change Duration Variability
id (α in degrees) (Time units) ([0,1])
1 25 15 0.2
2 -45 1 0.3
3 75 2 0.8
4 -40 1 0.1
5 -55 1 0.7
6 50 2 0.3
7 -52 1 0.5
8 -37 2 0.9
9 15 5 0.0

We can consider the following trend summarization:

Most of trends are decreasing

In this summary most is the linguistic quantifier Q. The membership function is
as in (7).

“Trends are decreasing” has a summarizer S with the membership function of
“decreasing” given in (10).

µS(x) =






0 for α ≤ −65
0.066α +4.333 for −65 < α < −50
1 for −50 ≤ α ≤ −40
−0.05α−1 for −40 < α < −20
0 for α ≥ −20

(10)

The truth is computed via (8), n is the number of all trends, here n = 9:

truth(Most of the trends are decreasing) = µQ
[

1
n

∑n
i=1µS(yi)

]
= 0.389

If we consider an extended form, we may have the following summary:
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Most of short trends are decreasing

Again, most is the linguistic quantifier Q with the membership function defined
as (7). “The trends are decreasing” is a summarizer S as in the previous example.
“The trend is short” is the qualifier R. We define the membership function µR as
follows:

µR(t) =






1 for t ≤ 1
− 1

2 t + 3
2 for 1 < t < 3

0 for t ≥ 3

The truth is computed via (9):

truth(Most of short trends are decreasing) =

µQ

[∑n
i=1(µR(yi)∧µS(yi))
∑n

i=1 µR(yi)

]

= 0.892

These summaries are based on trend frequency of a given type identified in data.
Thus, many short trends can influence or even dominate long, although rare trends.
A further research is needed to solve this problem.

6 Concluding Remarks

We showed how to derive (fuzzy) linguistic summaries of time series exemplified by
“most trends are increasing”, “most of slowly decreasing trends have a large vari-
ability”, etc. using Zadeh’s [13] fuzzy logic based calculus of linguistically quan-
tified propositions as a “soft” aggregation tool of elementary trends extracted by
Sklansky and Gonzalez’s [11] technique. The method proposed can find applications
in all kinds of human centric systems, notably decision support systems.

For the future, one of promising directions would be the use of other aggregation
techniques that make it possible to obtain a more sophisticated representation of
time series. Moreover, other, more sophisticated linguistic summaries of trends in
time series are conceivable and will be a subject of further research.
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1 Introduction

Modelling of fuzzy temporal quantified statements is of great interest for real time
systems. In [1] use of fuzzy proportional quantifiers to model temporal statements
(sentences involving occurrence of events within a time framework) has been pro-
posed. By using these proportional quantifiers a semantics can be associated to ex-
pressions like “medium or high temperature values were measured together to
risky high pressure values in the last few seconds”. Nevertheless evaluation of a
number of temporal statements cannot be modelled with these quantifiers, as “As-
sociation between risky high pressures and high temperatures has been very
high in the last few seconds”. We will see how evaluation of these similarity or
correlation expressions between two signals can be modelled by using similarity
quantifiers.

The issue of computational efficiency is also addressed in the paper. It is usual in
real time systems that situations of interest are evaluated involving operations on the
values of signals in temporal windows made up of even several thousand points. In
this case, the algorithms that efficiently evaluate expressions using the quantification
model defined in [3] are sketched.

The remainder of the paper is organized as follows. Firstly, we introduce the
fuzzy quantification field and the use of fuzzy quantification in temporal reasoning.
Secondly, we show the use of similarity quantifiers in the temporal domain. The
paper ends with sketching of the algorithms that allow us to evaluate similarity fuzzy
temporal expressions and some conclusions.

2 Fuzzy Quantifiers and Fuzzy Temporal Rules

In this paper we follow the framework presented in [4, 5] to evaluate fuzzy quantified
sentences (FQSs), defined as sentences involving fuzzy quantifiers and a number of
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www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006



192 F. Díaz-Hermida et al.

fuzzy properties. Evaluation of a FQS consist of calculating a degree of fulfilment of
the sentence for a given universe.

In order to evaluate FQSs fuzzy quantifiers are needed. An n-ary fuzzy quantifier
Q̃ on a base set E �= ∅ is a mapping Q̃ : P̃ (E)n −→ [0,1] which to each choice
of X1, . . . ,Xn ∈ P̃ (E) assigns a gradual result Q̃(X1, . . . ,Xn) ∈ [0,1] (P̃ (E) is the
fuzzy powerset of E). Fuzzy quantifiers are the generalization of classic quantifiers
(mappings Q : P (E)n −→ {0,1} of the crisp powerset of E into the bivalued logical
set {0,1}) to the fuzzy case.

It is very difficult to achieve consensus for defining a suitable expression to eval-
uate a FQSs. To overcome this problem semi-fuzzy quantifiers, which are a half-
way point between classic quantifiers and fuzzy quantifiers, are described [4, 5].
Formally, an n-ary semi-fuzzy quantifier Q on a base set E �= ∅ is a mapping
Q : P (E)n −→ [0,1] which assigns a gradual result Q(Y1, . . . ,Yn) ∈ [0,1] to each
choice of crisp sets Y1, . . . ,Yn ∈ P (E).

For instance, the semi-fuzzy quantifier associated to the expression “nearly all”
may be defined as:

nearly_all(Y1,Y2) =

{

S0.6,0.8

(
|Y1∩Y2|

|Y1|

)

Y1 �= ∅

1 Y1 = ∅

where S0.6,0.8 (x) → [0,1] is the S’s Zadeh function shown in Figure 1.

0.6
x

0.40.2

1

0.8

0.6

0.4

0.2

0 0.8 1

Fig. 1. S Zadeh’s function of paramters 0.6,0.8.

Semi-fuzzy quantifiers are much more intuitive and easier to define than fuzzy
quantifiers, although they do not resolve by their own the problem of evaluating
FQSs. In order to evaluate a FQS quantifier fuzzification mechanisms (QFMs)
[4, 5] are needed that enable us to transform semi-fuzzy quantifiers into fuzzy quan-
tifiers, i.e. mappings with domain in the universe of semi-fuzzy quantifiers and range
in the universe of fuzzy quantifiers:

F : (Q : P (E)n → [0,1]) �→
(

Q̃ : P̃ (E)n → [0,1]
)

As an example of application we will use in this paper the QFM model3 defined
in [3]:

3 This model is not a QFM in the full sense, because the integral can be undefined for some
non-finite quantifiers [3].
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F I (Q)(X1, . . . ,Xn) =
∫ 1

0
. . .

∫ 1

0
Q
(

(X1)≥α1
, . . . ,(Xn)≥αn

)

dα1 . . .dαn (1)

where (Xi)≥αi
denotes the alpha cut αi of the fuzzy set Xi ∈ P̃ (E).

Fuzzy quantification has been proposed to improve the expressiveness of tem-
poral rules in the field of fuzzy temporal reasoning [1]. Temporal rules are used for
describing the occurrence of events that are described by means of temporal evo-
lution of signals, temporal relationships among them and/or spatial (as opposed to
non-temporal) relationships among the signals values, thus noticeably enhancing the
expressivity of usual fuzzy rules in knowledge-based systems. Fuzzy temporal rules
have been successfully used in intelligent control for implementation of behaviours
in robotics such as mobile obstacles avoidance, wall following or landmarks detec-
tion, intelligent monitoring in medical domains and many other fields of application
[1].

These propositions describe an event of interest for a particular system. The aim
in this context is to calculate a degree of fulfillment for the proposition, based on
the historic of signal values, the relationships among them (usually expressed by
means of temporal and/or spatial operators) and also the time reference that frames
the occurrence of the event of interest (temporal window).

The concept of signal in this context has to be understood in a broad sense. Apart
of the usual meaning of signals in monitoring/control processes (“pressure(t)”,
“temperature(t)”, ...) other types of signals are consistent in this framework. For
instance, in a given process it may be of interest to consider “high_pressures(t)”
or “low_temperatures(t)” interpreted as the degree of membership to fuzzy sets
“high”/“low” of the pressure/temperature value at time point t. The process of calcu-
lating these signals from the historic values of “pressure” and “temperature” has been
defined as a fuzzy filtering operation (e.g., high_pressures(t) = µhigh(pressure(t))).
For the sake of simplicity we will call these fuzzy signals, in order to reflect they
take values in [0,1].

Proportional quantifiers are used in fuzzy temporal rules to model the persistence
of events in the temporal window. Examples of temporal propositions or Fuzzy Tem-
poral Statements involving proportional quantifiers are:

“About the eighty percent or more of the temperature values were high in
the last month”.
“Medium or high temperature values were associated to risky high pressure
values in about the eighty percent or more of the time points in the last two
minutes”.

Whilst universal quantifier (“all”) requests the complete occurrence of the event
throughout the temporal window and existential quantifier (“in” or “exist”) requests
the occurrence of the event in a particular point of the temporal window, proportional
quantifiers allow a partial occurrence of the event. Modelling of proportional quanti-
fiers can be addressed by applying any QFM endowed with adequate properties to a
semi-fuzzy quantifier that adequately describes the quantified expression.
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For example, the following proportional semi-fuzzy quantifier can be used for
modelling the temporal expression “about the eighty percent or more of the tem-
perature values were high in the last month”:

Q(T,S) =

{

S0.6,0.8

(
|S∩T |
|T |

)

T �= ∅

1 T = ∅

where T represents a crisp temporal reference, S a crisp set of high temperature
values, and S0.6,0.8 (x) is a Zadeh’s S-function that models the quantifier “about 80%
or more”. In order to construct the fuzzy quantifier from semi-fuzzy quantifier Q
to be applied to the fuzzy temporal window “the last month” and the fuzzy signal
“high temperatures” an appropiate QFM must be used (e.g., the one defined in
expression 1).

Also, to model the expression “medium or high temperature values were as-
sociated to risky high pressure values in about the eighty percent or more of
the instants of the last two minutes” the following semi-fuzzy quantifier can be
used:

Q(T,S1,S2) =

{

S0.6,0.8

(
|S1∩S2∩T |

|T∩S1|

)

T ∩S1 �= ∅

1 T ∩S1 = ∅

where S1 represents crisp signal “medium or high temperature” and S2 represents
crisp signal “risky high pressure values”, T represents temporal window “in the
last two minutes”, and the S function models the quantifier “about 80% or more”.
By applying a QFM to Q we can construct the fuzzy quantifier that can be used for
computing the degree of fulfilment of the Fuzzy Temporal Statement with the fuzzy
time window and the fuzzy signals.

We will use the previous example to explain other important aspect of the eval-
uation of temporal expressions. When we use this kind of expressions in real time
systems, the temporal window is usually related to the “current time point ”; that is,
the temporal window advances with the arrival of new information to the system. In
Figure 2 we show an example for fuzzy pressure and fuzzy temperature signals. The
time window “in the last two minutes” is modelled by a fuzzy number. As time
advances, new time points should be considered by the system and also the temporal
window advances too. We can think that the pressure and the temperature values are
continuosly monitored in a real time system and, in each control iteration, new sig-
nal values arrive to the system thus making it necessary to recompute the condition
expressed by the fuzzy temporal statement.

3 Using Similarity Quantifiers in Fuzzy Temporal Statements

Althoug the use of fuzzy quantifiers we have shown in previous section is very in-
teresting, there are expressions that do not fit previous semantics that can be very
useful for applications. In [2] we have presented a classification of semi-fuzzy quan-
tifiers of undoubted interest for applications. Now a new type of semi-fuzzy quanti-
fiers is being considered: similarity quantifiers. These quantifiers let us to measure
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-180s -150s -120s -90s -60s -30s 0s

Fuzzy temporal restriction

-210s

the last two minutes

fuzzy pressure

fuzzy temperature

Fig. 2. Fuzzy signals “riskly high pressure” and “medium or high temperature” and
temporal constraint “the last two minutes”

the similarity between two sets. When we extend these ideas to the temporal field,
the similarity quantifiers can be used to measure the similarity between two signals
considered within a temporal window. Some examples of expressions that can be
evaluated using this kind of quantifiers are:

“Rainy days and moderately cold days were associated in January”
“High values of the asset market and small interest values were associated
in the nineties”
“The correlation between the risky high pressures and the high temperatures
has been very high in the last few seconds”

These examples involving similarity quantifiers state an association between the
two signals within the temporal window; that is, proportional quantifiers measure the
degree to which one of the signals is contained into the other. Similarity quantifiers
measure the overlapping between the two signals. The semi-fuzzy quantifiers we
are going to use to model these situation help us to make it clearer the requested
semantics for similarity operators.

In the following we present two semi-fuzzy quantifiers that can be used to model
previous examples:

• Basic temporal similarity semi-fuzzy quantifier:

Q(T,S1,S2) =

{

f n
(

|S1∩S2∩T |
|(S1∪S2)∩T |

)

(S1 ∪S2)∩T �= ∅

1 (S1 ∪S2)∩T = ∅

(2)

where T is a crisp temporal restriction, S1 and S2 are crisp signals and f n : [0,1] →
[0,1] is a fuzzy number. We should note that |S1∩S2|

|S1∪S2| is a similarity measure between
the crisp signals S1 and S2 that is widely used in the fields of signal processing and
information retrieval (known as Jaccard index). Temporal window T delimits the
range of interest.
In |S1∩S2∩T |

|(S1∪S2)∩T | only positive values of the signals are considered. For example, if
|S1 ∩S2| = 0 and |S1 ∪S2| = 1 in the temporal window T then the two signals are
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considered completely different when we restrict us to T . For example, if the tempo-
ral window T contains one thousand points then S1 are S2 are equal in 999 negative
values but |S1∩S2∩T |

|(S1∪S2)∩T | = 0.

• Simple matching temporal semi-fuzzy quantifier:

Q(T,S1,S2) =






f n

(
|S1∩S2∩T |+|S1∩S2∩T |

|T |

)

T �= ∅

1 T = ∅

In this quantifier we simultaneously consider positive and negative signal val-
ues to define the similarity between the signals. We should note here that
|S1∩S2|+|S1∩S2|

|E| is also a similarity measure between crisp signals S1 and S2 that is
widely used in the fields of signal processing and information retrieval.

By using an appropriate QFM these semi-fuzzy quantifiers can be converted into
fuzzy ones. If we use the one defined on expression 2 we obtain:

F I (Q)(T,S1,S2) =
∫ 1

0

∫ 1

0

∫ 1

0
Q
(

(T )≥α1
,(S1)≥α2

,(S2)≥α3

)

dα1dα2dα3 (3)

In this way we can evaluate examples like the ones at the beginning of this section,
in which a fuzzy temporal window and fuzzy signals are involved.

Expression 3 can be approximated by using numerical integration. By dividing
the integral interval (0,1]3 into the set of intervals:

(i×h, i× (h+1)]× ( j ×h, j × (h+1)]× (k×h,k× (h+1)]

where h is the size of the integration step, and 0 ≤ i, j,k < 1/h. Let n = 1/h be the
number of intervals in the (0,1] interval. In this way, expression 3 is approximated
by

F I (Q)(T,S1,S2) ≈
n−1∑

i=0

n−1∑

j=0

n−1∑

k=0

Q
(

(T )≥(i+ 1
2 )×h ,(S1)≥( j+ 1

2 )×h ,(S2)≥(k+ 1
2 )×h

)

h3

(4)
where we have approximated the integral in each interval by its result in the medium
point of the interval.

4 Efficient Evaluation of Similarity Temporal Expressions

Now we briefly sketch the ideas that let us to apply efficiently expression 4 when
we assume the temporal window is related to the the current time point; that is, the
temporal window T “moves forward” when a new time point is processed by the
system. We will assume that the fuzzy temporal restriction and the fuzzy signals are
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stored in sorted vectors, and that the temporal window is defined by using a convex
fuzzy number.

Although we focus on the semi-fuzzy temporal quantifier defined on expression
2, similar ideas can be used to develop algorithms for other temporal expressions.

As the semi-fuzzy temporal quantifier defined on expression 2 only depends on
the cardinalities |S1 ∩S2 ∩T | and |T ∩ (S1 ∪S2)| a ternary array can be used to store
this pair of cardinalities for each integration interval; that is, for each set of alpha-
cuts levels αi,α j,αk used to approximate the integral. This cardinality array can be
straighforwardly initialized in O

(
M ×n2

)
time, where M is the size of the support

of the temporal constraint and n is the number of intervals we are using to approx-
imate the integral (the number of alpha-cuts). Once this array has been calculated
evaluation of expression 4 can be trivially done.

This array can be updated in O
(
n3
)

with the arrival of new information. Since
the temporal window is related to the current time point (e.g., “in the last two
minutes”) the temporal window advances just a single time point when a new time
point arrives to the system. The finite set of alpha cuts of the temporal window also
advances a single time point too. The “oldest point” in each alpha cut of the temporal
constraint is removed and a new point is added as a consequence of the time advance.

By checking the signal values in the time point that is removed of the alpha cut
and in the time point that is added to the alpha cut the cardinality array can be updated
in O
(
n3
)

time and thus temporal expression can also be recalculated in O
(
n3
)
.4

5 Conclusions

In this paper we have proposed two models for similarity quantifiers that can be
used in the field of temporal knowledge representation for modelling similarity ex-
pressions between signals. Both models are directly based on two crisp similarity
indexes that are based on well-known and widely used definitions in the fields of
signal processing and information retrieval.

The approximation we have presented, based on fuzzy quantifiers, expands the
set of temporal expressions previously considered in [1], where only proportional
quantifiers were used.

By using the QFM approach coherence with the modelling of other temporal
quantified expressions is maintained. Moreover, the crisp semantics of semi-fuzzy
quantifiers is very clear and easily understandable, and it is easily combined with the
studied set of similarity indexes.

Moreover, we have sketched the ideas that let us efficiently evaluate temporal
expression when we use these quantifiers. Also generalization of other similarity,
dissimilarity or association indexes is straighforward. Although our work has been
focused on similarity quantifiers, the ideas we have presented are easily adapted to

4 For example, if we use 5 alpha-cuts to approximate the integral only 53 = 125 operations
are needed to recompute the cardinality array. This enables us to eliminate the dependence
on the size of the temporal reference in the computation.
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other types of quantifiers, and also to some other quantifier fuzzification mecha-
nisms. Therefore, proposal of similar efficient mechanisms for other QFM will be
our immediate aim.
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Summary. In this paper, a theory of conditional coherent lower previsions for arbitrary ran-
dom quantities, including unbounded ones, is introduced, based on Williams’s [13] notion of
coherence, and extending at the same time unconditional theories studied for unbounded ran-
dom quantities known from the literature. We generalize a well-known envelope theorem to
the domain of all contingent random quantities. Finally, using this duality result, we prove
equivalence between maximal and Bayes actions in decision making for convex option sets.

1 Introduction

Williams’s and Walley’s theories of conditional lower previsions [13, 12] provide a
wide and unifying framework to study various imprecise probability models known
in the literature, such as lower and upper probabilities, possibility measures [7, 4],
credal sets [8], risk measures [1], and many others [12]. For reasons of mathematical
convenience, these theories deal with bounded random quantities only. Nevertheless,
unbounded random quantities occur often in practice. To give but a few examples,
unbounded costs occur regularly in optimal control theory (see for instance Chevé
and Congar [2]). In reliability theory, one typically asks about the time to failure
of a component (see for instance Utkin [11]), which is unbounded from above. For
applications like these, a generalization to arbitrary random quantities is necessary.

To some extent, such generalizations have already been studied in the literature.
Crisma, Gigante and Millossovich [3] studied previsions for arbitrary random quan-
tities, and these previsions may also assume the values +∞ and −∞. Troffaes and
De Cooman [9, 10] have constructed an extension for coherent lower previsions de-
fined on bounded random quantities to a larger set of random quantities, using a limit
procedure similar to Dunford integration, and also studied how unconditional lower
previsions can be handled to encompass arbitrary random quantities, including un-
bounded ones. However, these theories only deal with unconditional assessments and
inferences. Moreover, duality results, which, roughly said, express imprecise models
by means of precise ones through an envelope theorem, have been limited to domains
where lower previsions do not assume infinite values. The aims of this paper are: (i)

M.C.M. Troffaes: Conditional Lower Previsions for Unbounded Random Quantities, Advances in Soft
Computing 6, 201–209 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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to bring conditioning into the picture, and (ii) to arrive at duality results on the full
domain of random quantities.

Section 2 recalls Williams’s theory and links it to Walley’s. Section 3 suggests a
new generalization to arbitrary random quantities, also mentioning the duality result
and proving an equivalence between maximal and Bayes actions. Due to limitations
of space, most proofs have been omitted, and we stick to a summary and brief dis-
cussion of the main results.

2 Conditional Lower Previsions

Let’s recall the most important definitions and results from Williams’s technical re-
port [13], and link them to Walley’s behavioral theory [12].

Let ω be a random variable taking values in some set Ω , called the possibility
space. Denote by℘◦(Ω) the set of all non-empty subsets of Ω . We shall denote a set
and its indicator by the same symbol. A real-valued function of ω is called a random
quantity.

Let L (Ω) be the set of all bounded Ω–R-mappings, i.e., all bounded random
quantities. A real-valued mapping P on a subset of L (Ω)×℘◦(Ω) is called a con-
ditional lower prevision. For ( f ,A) ∈ domP, the real value P( f ,A), or, P( f |A)
using the more traditional notation, is interpreted as a supremum buying price for
f contingent on A: prior to observing ω , we agree to receive f (ω) and pay any
x < P( f |A) once ω has been observed and ω ∈ A, nothing if ω �∈ A. Briefly, A( f −x)
is an acceptable random quantity for all x < P( f |A).

Every conditional lower prevision P has a conditional upper prevision P associ-
ated with it: P( f |A) := −P(− f |A). So, P is defined on domP = {( f ,A) : (− f ,A) ∈
domP}. The real value P( f |A) is the infimum selling price for f contingent on A.

2.1 Coherence

The following definition of coherence is due to Williams [13] and can be behaviorally
motivated using Walley’s axioms of desirability [12, S2.2.3];1 also see Sect. 3.2 fur-
ther on. By sup( f |A) and inf( f |A) we denote the supremum and infimum of f (ω)
over ω ∈ A.

Definition 1 (Williams [13], p. 5, Eq. (A*)). Say that P is coherent if

sup
( n∑

i=1

λiBi
(

fi −P( fi|Bi)
)
−λ0B0

(
f0 −P( f0|B0)

)∣∣
∣B0 ∪·· ·∪Bn

)

≥ 0 (1)

for all n ∈ N, all non-negative λ0, . . . , λn ∈ R, and all ( f0,B0), . . . , ( fn,Bn) ∈
domP.

1 . . . if we add a monotonicity axiom: if f is desirable and g ≥ f then g is desirable.
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In contradistinction to Walley coherence [12, 7.1.4(b)], Williams coherence does
not guarantee P to be conglomerable with respect to any partition in {B ⊆Ω : ∃ f ∈
L (Ω) s.t. ( f ,B) ∈ domP}. Although there are compelling reasons for accepting in-
finite combinations of gambles contingent on events that form a partition [12, S6.3.3,
S6.8.4], for this paper we prefer to use Williams coherence, as the resulting theory is
mathematically much easier to handle, especially regarding natural extension. This
means however that we should be careful and only accept finite combinations of bets
from a conditional lower prevision that is coherent in the sense of Def. 1.

The “only if” part of the following theorem is due to Williams [13, 1.0.4, p. 6].
The “if” part is easily proved. Condition (iv) (which I have formulated slightly dif-
ferently than Williams) is a generalization of the generalized Bayes rule [12, S6.4].
For a field F , let F ◦ denote F without /0.

Theorem 1. Suppose that the conditional lower prevision P is defined on K ×
F ◦, where F is a field, and K is a linear subspace of L (Ω) that contains
at least F , and which satisfies A f ∈ K whenever A ∈ F and f ∈ K . Then P
is coherent if and only if

(i) P( f |A) ≥ inf( f |A),
(ii) P(λ f |A) = λP( f |A) for all λ ∈ R, λ ≥ 0,
(iii) P( f +g|A) ≥ P( f |A)+P(g|A), and
(iv) P(A( f −P( f |A))|B) = 0,

for all f and g in K , and all A and B in F such that /0 �= A ⊆ B.

2.2 Previsions

When infimum selling prices coincide with supremum buying prices, that is, if
domP = domP and P( f |A) = P( f |A) for all ( f ,A) ∈ domP, then we say that P is
self-conjugate, denote both P and P by P (we drop the bar), and call P a conditional
prevision. They correspond to de Finetti’s fair prices [5].

Theorem 2. Suppose that the conditional prevision P is defined on K ×F ◦,
where F is a field, and K is a linear subspace of L (Ω) that contains at
least F , and which satisfies A f ∈ K whenever A ∈ F and f ∈ K . Then P is
coherent if and only if

(i) P( f |A) ≥ inf( f |A),
(ii) P(λ f |A) = λP( f |A) for all λ ∈ R,
(iii) P( f +g|A) = P( f |A)+P(g|A), and
(iv) P(A f |B) = P( f |A)P(A|B),

for all f and g in K , and all A and B in F such that /0 �= A ⊆ B.

Thm. 2 says coherent conditional previsions correspond to conditional expecta-
tions: they remain within the appropriate bounds, are linear mappings, and satisfy (a
conditional version of) Bayes rule [6].
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3 Generalizing to Unbounded Random Quantities

Let R(Ω) be the set of all random quantities on Ω , i.e., all Ω–R-mappings. An R∪
{−∞,+∞}-valued mapping P on a subset of R(Ω)×℘◦(Ω) is called an extended
conditional lower prevision. It is interpreted again as a supremum buying price.
Thus, if P( f |A) = −∞, then we will never buy f contingent on A, and if P( f |A) =
+∞, then we will buy f contingent on A for any price.

As before, we associate an extended conditional upper prevision P with P,
defined on domP = {( f ,A) : (− f ,A) ∈ domP}, and P( f |A) = −P(− f |A). We say
that P is self-conjugate if P = P, in which case we denote it by P and call it an
extended conditional prevision.

3.1 Avoiding Partial Loss

Following Walley [12] it is instructive not only to introduce a notion of coherence,
but also to introduce a notion of avoiding partial loss. For our generalization, we
cannot write terms of the form Bi( fi −P( fi|Bi)) as in Def. 1, because if P( fi|Bi) is
not finite, Bi( fi −P( fi|Bi)) is not a real-valued random quantity. Fortunately, there’s
a workaround:

Definition 2. We say that P avoids partial loss if

sup
( n∑

i=1

λiBi
(

fi − xi
)∣∣
∣B1 ∪·· ·∪Bn

)

≥ 0 (2)

for all n ∈ N, all non-negative λ1, . . . , λn ∈ R, all ( f1,B1), . . . , ( fn,Bn) ∈ domP
and all xi ∈ R, xi < P( fi|Bi).

Let’s explain. Suppose Eq. (2) is violated for some n ∈ N, non-negative λ1, . . . ,
λn ∈ R, ( f1,B1), . . . , ( fn,Bn) ∈ domP and xi < P( fi|Bi). We are disposed to accept
Bi( fi − xi), hence,

∑n
i=1λiBi

(
fi − xi

)
as well. But, if Eq. (2) is violated, then this

acceptable random quantity is uniformly negative contingent on B1 ∪·· ·∪Bn, which
means that

∑n
i=1λiBi

(
fi −xi

)
incurs a sure loss contingent on B1 ∪·· ·∪Bn. Because

the sure loss is only contingent on a subset, it is called a partial loss, following Walley
[12, S7.1.2].

Note that, if P( fi|Bi) = −∞, then there’s no xi ∈ R, such that xi < P( fi|Bi), and
hence, the corresponding term does not enter the definition. Next, let’s generalize
Def. 1 to extended conditional lower previsions.

3.2 Coherence

Definition 3. We say that P is coherent if

sup
( n∑

i=1

λiBi
(

fi − xi
)
−λ0B0

(
f0 − x0

)∣∣
∣B0 ∪·· ·∪Bn

)

≥ 0 (3)

for all n ∈ N, all non-negative λ0, . . . , λn ∈ R, all ( f0,B0), . . . , ( fn,Bn) ∈ domP,
all xi ∈ R, xi < P( fi|Bi) and all x0 ∈ R, x0 > P( f0|B0).
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Let’s explain. Suppose Eq. (3) is violated. The case λ0 = 0 has already been
argued for (Sec. 3.1). Assume λ0 > 0. Again,

∑n
i=1λiBi

(
fi − xi

)
is an acceptable

random quantity. But, if Eq. (3) is violated, then
n∑

i=1

λi
λ0

Bi
(

fi − xi
)
≤ B0

(
f0 − x0

)

which means that also B0
(

f0 −x0
)

is acceptable. But x0 > P( f0|B0): we are disposed
to increase the supremum buying price for f0 contingent on B0.

Theorem 3. Suppose that the extended conditional lower prevision P is defined
on K ×A , where A is closed under finite unions, and K is a linear subspace
of R(Ω) containing at least A , and satisfying A f ∈ K whenever A ∈ A and
f ∈ K . Then P is coherent if and only if

(i) P( f |A) ≥ inf( f |A),
(ii) P(λ f |A) = λP( f |A) for all λ ∈ R, λ ≥ 0,
(iii) P( f +g|A) ≥ P( f |A)+P(g|A) whenever the right hand side is well defined,

and

(iv) P(A( f −µ)|B)

{

≥ 0, if µ < P( f |A)
≤ 0, if µ > P( f |A)

, for all µ ∈ R.

for all f and g in K , and all A and B in A such that /0 �= A ⊆ B.

3.3 Previsions

Clearly, an extended conditional prevision avoids partial loss if and only if it is co-
herent. Also,

Theorem 4. Suppose that the extended conditional prevision P is defined on
K ×A , where A is closed under finite unions, and K is a linear subspace
of R(Ω) containing at least A , and satisfying A f ∈ K whenever A ∈ A and
f ∈ K . Then P is coherent if and only if

(i) P( f |A) ≥ inf( f |A),
(ii) P(λ f |A) = λP( f |A) for all λ ∈ R,
(iii) P( f +g|A) = P( f |A)+P(g|A) whenever the right hand side is well defined,

and
(iv) P(A f |B) = P( f |A)P(A|B) if P( f |A) ∈ R or P(A|B) > 0,

P(A f |B) ≥ 0 if P( f |A) = +∞ and P(A|B) = 0, and
P(A f |B) ≤ 0 if P( f |A) = −∞ and P(A|B) = 0.

for all f and g in K , and all A and B in A such that /0 �= A ⊆ B.

It is evident from Thm. 4 that coherent extended conditional previsions also be-
have as a conditional expectation. The only new constraints are the inequalities in
(iv). Still, they can be given a simple intuitive (but non-sense) interpretation in terms
of Bayes rule: if P( f |A) is non-negative and very large, and P(A|B) very small, then
P(A f |B) = P( f |A)P(A|B) can range anywhere within the set of non-negative real
numbers; similar for the other inequality.
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3.4 Natural Extension

As in the unconditional case [10], we can again establish that a conditional extended
lower prevision has a least-committal coherent extension (or natural extension) to the
whole set R(Ω)×℘◦(Ω) if and only if it avoids partial loss. Note that this would
not hold if we had based our study on Walley’s definition of coherence [12, S8.1.2];
see Walley’s examples [12, p. 410, ll. 18–22].

Definition 4. An extended conditional lower prevision Q is called a behavioral
extension of an extended conditional lower prevision P if domP ⊆ domQ and
P( f |B) ≤ Q( f |B) for any ( f ,B) ∈ domP.

Definition 5. Let P be an extended conditional lower prevision, and let domP ⊆
K ⊆ R(Ω)×℘◦(Ω). The point-wise smallest coherent behavioral extension of
P to K , if it exists, is called the natural extension of P to K , and is denoted
by EK

P . By EP we denote ER(Ω)×℘◦(Ω)
P .

In the next theorem we define another function E, which coincides with the nat-
ural extension exactly when P avoids sure loss. We can even make a stronger state-
ment.

Theorem 5. Let P be an extended conditional lower prevision, and let domP ⊆
K ⊆ R(Ω)×℘◦(Ω). For any f ∈ R(Ω) and B ∈℘◦(Ω), define E( f |B) as the
supremum value of α ∈ R for which there are n ∈ N, non-negative λ1, . . . ,
λn ∈ R, ( f0,B0), . . . , ( fn,Bn) ∈ domP, and xi < P( fi|Bi) such that

sup
( n∑

i=1

λiBi
(

fi − xi
)
−B
(

f −α
)∣∣
∣B∪B1 ∪·· ·∪Bn

)

< 0 (4)

The following conditions are equivalent.

(i) E is a coherent extended conditional lower prevision on R(Ω)×℘◦(Ω).
(ii) The natural extension of P to K exists and is equal to E restricted to

K .
(iii) P has at least one coherent behavioral extension.
(iv) P has at least one behavioral extension that avoids partial loss.
(v) P avoids partial loss.

3.5 Duality

Let P(Ω) denote the set of all coherent extended conditional previsions defined on
R(Ω)×℘◦(Ω). The set of coherent extended conditional previsions on R(Ω)×
℘◦(Ω) that dominate P is denoted by

M(P) := {Q ∈ P(Ω) : P ≤ Q} (5)

The following result has a rather long proof. Suffice it to say that it can be proved
using the same classical technique to prove the Hahn-Banach theorem, in partic-
ular, invoking Zorn’s lemma on a set of intelligently constructed successive finite
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extensions—only increasing the domain by a finite number of elements. The reason
why Zorn renders the existence of finite extensions sufficient for the existence of
extensions to any domain is precisely because coherence itself involves only finite
sums.

Theorem 6. The following statements hold.

(i) P avoids partial loss if and only if M(P) �= /0.
(ii) If P avoids partial loss, then for all f ∈ R(Ω) and B ∈℘◦(Ω),

EP( f |B) = min{Q( f |B) : Q ∈ M(P)}. (6)

3.6 Equivalence of Bayes and Maximal Actions

For the sake of simplicity, in this section we shall only consider unconditional ex-
tended lower previsions: they are defined on subsets of R(Ω)×{Ω}, P(·) denotes
P(·|Ω), EP(·) denotes EP(·|Ω), and EP(·) denotes −EP(−·).

Within a set K of random quantities, f ∈ K is called maximal if it is undom-
inated in K with respect to this partial order: f > g if we wish to pay a strictly
positive price to exchange f for g, that is, if EP( f − g) > 0. Thus, f is maximal in
K exactly when EP( f −g) ≥ 0 for all g ∈ K . Similarly, f is called a Bayes action
if it maximizes Q over K for at least one Q in M(P).

A nice application of the above duality theorem is in decision making: if the set
of options is convex, maximal actions are exactly the Bayes actions. This is well-
known for coherent lower previsions on bounded random quantities (see for instance
Walley [12, S3.9.5]). It holds for extended lower previsions as well.

Theorem 7. Let P be an unconditional extended lower prevision that avoids
partial loss. Let K be a convex subset of R(Ω), and let f be a fixed element
of K . Then EP( f −g) ≥ 0 for all g ∈ K if and only if there is a Q in M(P)
such that Q( f −g) ≥ 0 for all g ∈ K .

Proof. Define R on R(Ω) as follows. Let J be the set

J = { f −g : g ∈ K and EP( f −g) < 0}.

Define R(h) = 0, for all h ∈ J , and let R(h) = EP(h) for all h ∈ R(Ω)\J . Let’s
first show that R avoids partial loss. We must establish that

sup
[ n∑

i=1

λi
(
hi − xi

)
+

m∑

j=1

µ j
(

f −g j − y j
)]

≥ 0 (7)

for all n, m ∈ N, all non-negative λ1, . . . , λn, µ1, . . . , µm ∈ R, all h1, . . . , hn ∈
R(Ω)\J , all xi ∈ R, xi < EP(hi), all g1, . . . , gm ∈ K , and all y j ∈ R, y j < 0.

Let µ =
∑m

j=1 µ j. By Thm. 5, EP is coherent, so Equation (7) holds if µ = 0. If
µ > 0, let α j = µ j/µ , and rewrite Equation (7) as
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sup
[ n∑

i=1

λi
(
hi − xi

)
−µ
(

− f +
∑m

j=1α jg j −
(
−
∑m

j=1α jy j
))]

≥ 0.

Again by the coherence of EP the above inequality must hold, because EP(− f +
∑m

j=1α jg j) = −EP( f −
∑m

j=1α jg j) ≤ 0 by assumption and convexity of K , and
−
∑m

j=1α jy j > 0.
Thus, R avoids partial loss. By Thm. 6, M(R) is non-empty. Let Q ∈M(R). Then

Q( f −g) ≥ R( f −g) = 0 for all g ∈ K . Also, Q(h) ≥ R(h) ≥ EP(h) ≥ P(h) for all
h ∈ domP, and hence Q ∈ M(P).
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Summary. We consider lower probabilities on finite possibility spaces as models for the un-
certainty about the state. These generalizations of classical probabilities can have some in-
teresting properties; for example: k-monotonicity, avoiding sure loss, coherence, permutation
invariance. The sets formed by all the lower probabilities satisfying zero or more of these
properties are convex. We show how the extreme points and rays of these sets – the extreme
lower probabilities – can be calculated and we give an illustration of our results.

Key words: Lower probabilities, extreme points, imprecise probabilities.

1 Introduction

We use and work on theories of imprecise probabilities. This means that we use con-
cepts such as lower (and upper) probabilities to represent uncertainty. Calculating
them often entails solving optimization problems. These can be hard, sometimes so
hard that approximations seem the only option in practice. We are picky about the
kind of approximation, however; it must be conservative. This means that the approx-
imating lower (and upper) probabilities must be less precise than – or dominated by –
the ones they approximate.

We were – and still are – aware of very few methods for making such conservative
approximations. The useful ones are fewer still. One of the ideas for a new approx-
imation approach is what led to the results communicated in this paper – which is
not about approximations. The idea was, that perhaps we could write an arbitrary
lower probability (that is hard to calculate directly) as a series of some special lower
probabilities (that should be easier to calculate; breaking off the series would then
constitute an approximation). The germ for this idea entered our minds when we read
a paper by Maaß [10], where he mentions what in our terminology became extreme
lower probabilities.

To get started, let us clear up some terminology and introduce the basic concepts,
notation, and assumptions.

A lower probability P is a concept used in almost all the theories that make up the
field of imprecise probabilities; it generalizes the classical concept of a probability

E. Quaeghebeur and G. de Cooman: Extreme Lower Probabilities, Advances in Soft Computing 6, 211–221
(2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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P. Important examples of such theories are the ones described by Dempster [6] and
Shafer [13], Fine [7], Walley [15], and Weichselberger [16].

Alhough the definition and interpretation of a lower probability differ between
the theories, the idea is similar. Like a probability, it is a real-valued set function
defined on the set℘(Ω) of all events (subsets A, B, C) of a possibility space Ω of
states (elements ω).1 We are uncertain about the state.

A probability P is (i) positive: for any event A, P(A) ≥ 0, (ii) normed: P(Ω) = 1,
and (iii) additive: for any disjunct events B and C, P(B∪C) = P(B)+P(C). Similarly,
a lower probability P has to satisfy some properties, but these are weaker than those
for probabilities. A lower probability is usually required to be (i) normed, and (iii)
super-additive: for any disjunct events B and C, P(B ∪C) ≥ P(B) + P(C). In this
paper, we do not assume a priori that a lower probability satisfies any property (not
even positivity).

A probability P dominates a lower probability P if P(A) ≤ P(A) for all events
A. A probability P is called degenerate when it is 1 on a singleton.

The set of all lower probabilities defined on some possibility space is convex.
This is also the case for the set of all lower probabilities additionally satisfying
some interesting properties. Any closed convex set is fully determined by its ex-
treme points and extreme rays, and vice-versa [12, Thm 18.5]: all elements of the
set can be written as a linear combination of (i) the extreme rays, and (ii) a convex
combination of extreme points. The extreme points and extreme rays of a convex set
of lower probabilities are its extreme lower probabilities.

If you can see that a triangle can be described by its three vertices, you have
understood the main idea behind extreme lower probabilities. Of course, we will be
talking about things that are a bit more complicated than triangles.

In this paper, we restrict ourselves to finite possibility spaces Ω , of cardinality
|Ω | = n ∈ N.2 We will look at sets of lower probabilities satisfying some interesting
properties; for example 2-monotonicity: for any events B and C, P(B ∪C)+ P(B ∩
C) ≥ P(B)+P(C). It turns out that for finite possibility spaces, not surprisingly, the
number of extreme points is finite. We show how the extreme points can be calculated
for these cases and illustrate this.

The rest of this paper is structured as follows. In the next section, we will outline
the approach we took to calculating extreme lower probabilities: calculating a set of
constraints, and using these to compute extreme points. Then, we look at how we
can obtain manageable sets of constraints for the properties that interest us. Finally,
before concluding, we give an illustration of our results, with comments added.

1 An upper probability P can be defined using its so-called conjugate lower probability P:
for any event A, P(A) = 1 − P(Ω \ A). Because ℘(Ω) is closed under complementation,
we can – and do so here – work with lower probabilities only.

2 Notation for number sets: N, Q, and R respectively denote the nonnegative integers, the
rationals, and the reals. To denote common subsets of these, we use predicates as subscripts;
e.g., R>0 = {r ∈ R|r > 0} denotes the strictly positive reals.
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2 On Constraints and Vertex Enumeration

A (lower) probability can satisfy a variety of interesting properties; most can be
expressed using sets of linear constraints. (We do not consider things like indepen-
dence and conditioning.) The introduction featured three simple examples: additivity,
super-additivity, and 2-monotonicity. In general, these constraints are linear inequal-
ities; equalities are expressed using two inequalities.

Sometimes, not all constraints are necessary: a constraint can be implied by an-
other constraint, or a set of other constraints. A so-called redundant constraint can
be removed from the set of constraints. If a constraint makes another one redundant,
we call the former more stringent than the latter.

It is useful to look at this problem in a geometrical framework. Lower probabil-
ities can be viewed as points in a 2n-dimensional vector space – one dimension per
subset in ℘(Ω). A linear inequality then generally corresponds to a half-space de-
limited by a hyperplane. With some property, there corresponds a set of half-spaces,
and the intersection of these is the convex set of all lower probabilities satisfying that
property.

The geometrical approach is illustrated in Fig. 1 below using a toy example.
We consider n = 1, so the dimension of the vector space is 2 (this is actually the
only one we can draw directly). The constraints are given using a set of hyperplanes
{hi|i = 1, . . . ,6}, the ‘hairs’ indicate the half-spaces the constraints correspond to.
Constraints h3 and h6 are redundant; the former because of h1 and h2, the latter
because h5 is more stringent. The set of points satisfying the constraints is filled.

P (∅)

P (Ω)

h1

h2

h5 h6h4h3

w

v

Fig. 1. Illustration of constraints and vertices.

Figure 1 also shows the vertices – v, for example – of the convex set defined by
the set of half-spaces (constraints). These are the geometrical equivalent of what we
call extreme lower probabilities.

In general, the vertex enumeration problem – finding the vertices correspond-
ing to a given set of half-spaces – is hard: no polynomial time algorithm (in dimen-
sion, number of constraints, and number of vertices) is known [8]. To get a feeling
for the complexity, realize that not only all intersections of nonredundant constraints
have to be found, but we must also decide which of these to discard (such as w).

To obtain the set of constraints for different cardinalities and for the various prop-
erties we looked at, we have written our own program, constraints [11]. The
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properties in question will be described in the next section, where we will also give
the theorems that form the basis of this program.

We have used publicly available programs (redund, lrs, and cdd) to remove
redundant constraints and do vertex enumeration. They are maintained by Avis [1]
and Fukuda [9].

3 From Properties to Constraints

Although for some properties – such as avoiding sure loss (see below) and addi-
tivity plus positivity plus normalization – it is possible to obtain the corresponding
extreme points directly, we were not able to do this for the most interesting ones
(k-monotonicity and coherence). For these, we use the vertex enumeration approach
described in the previous section: generate the constraints corresponding to the prop-
erty of interest and then use vertex enumeration to obtain the corresponding extreme
lower probabilities. With this approach it is also easy to combine properties; one just
has to combine the corresponding sets of constraints. The (big) downside is that it
cannot be used in practice for ‘large’ possibility spaces – large here means n ≥ 5.

We will now look at how we can obtain the constraints for some interesting prop-
erties. At this point we assume nothing about lower probabilities, not even that they
are positive, normed, or super-additive.

Most of the results we mention in this section are either not hard to obtain or not
entirely new. The most innovative part of this research was the combination of these
results with vertex enumeration.

3.1 k-Monotonicity

In the theory of Dempster [6] and Shafer [13] lower probabilities are completely
monotone. This is an extreme case of a mathematically interesting type of property:
k-monotonicity, where k ∈ N>0.

A formal definition (adapted from De Cooman et al. [5]): a lower probability
P is k-monotone if and only if for all � = 1, . . . ,k − 1, any event A and any �-tuple
of events (Bi|i ∈ N<�), it holds that

∑

I⊆N<�
(−1)|I|P(A ∩

⋂

i∈I Bi) ≥ 0, where the
convention

⋂

i∈ /0 Bi = Ω is used. You can see that a k-monotone lower probability is
also �-monotone, for � = 1, . . . ,k−1. We have seen the case k = 2 in the introduction
(in a different, but equivalent form).

Monotonicity is the same as 1-monotonicity: P(B) ≤ P(A) for any event A and
all B ⊆ A. Completely monotone means k-monotone for all k ∈ N>0.

The above definition gives rise to a lot of redundant constraints. A lot of con-
straints are equivalent or are trivially satisfied. Removing them allowed us to formu-
late the following definition, leading to a more efficient program.

Theorem 1 (constraints for k-monotonicity). A lower probability P is k-monotone
if and only if it is monotone, and for all nonempty events A and all A ⊆
℘(A)\{A, /0} such that
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(i) 0 < |A | ≤ k,
(ii)

⋃

B∈A B = A, and such that
(iii) no event C ∈ A exists for which C =

⋂

B∈A B,

it holds that P(A)+
∑

B⊆A (−1)|B|P(
⋂

B∈B B) ≥ 0.

We close this subsection with some remarks. It is a consequence of a result by
Chateauneuf and Jaffray [2, Cor. 1] that k-monotonicity for some k ≥ n is equivalent
to complete monotonicity. Note that P( /0) = 0 and P(Ω) = 1 are not included in
k-monotonicity; they are commonly added, however.

3.2 Avoiding Sure Loss

Avoiding sure loss is a property that is useful in the behavioral theory of Walley
[15, S2.4.1].3 A lower probability P avoids sure loss if and only if for all B ⊆℘(Ω),
and all λ ∈ (R≥0)B , it holds that

∑

B∈B λBP(B) ≤ sup
∑

B∈B λBIB, where IB is the
indicator function of B, which is 1 for ω ∈ B and 0 elsewhere.

If we only require a lower probability to avoid sure loss, the extreme lower prob-
abilities can be determined by reasoning. Because a lower probability avoids sure
loss if and only if it is dominated by a probability [15, S3.3.3], the set of extreme
lower probabilities consists of the degenerate probabilities as extreme points and all
negative main directions as extreme rays.

If we want to use vertex enumeration to obtain the extreme lower probabilities,
the problem arises that the definition gives an infinite number of constraints (because
λ is real-valued). This is of course unmanageable for any computer. This situation
is inevitable when the usual assumption of positivity is made and the extreme lower
probabilities cannot be determined by reasoning.

Luckily – by removing redundant constraints –, we can reduce the set of con-
straints for avoiding sure loss to a finite set. It was shown by Walley [15, SA.3] that
in the definition, to get the most stringent constraints, we only need to consider (i) B
such that {IB|B ∈ B} is a linearly independent set and

⋃

B∈B B =Ω , and (ii) λ such
that the function on right hand side is the constant function 1.

Walley [15, SA.3] assumes positivity (P is in the first orthant). When we want
to do the vertex enumeration approach without this assumption (as we do here), we
need to add extra constraints for the cases where some (or all) of the components
of P are negative. This can be done by taking every original constraint, and creating
a new one for each of the 22n

possible orthants P can be located in. We do this by
setting the λB for which P(B) < 0 to 0.

The above and some other, minor, changes result in the following theorem.

Theorem 2 (constraints for avoiding sure loss). A lower probability P avoids
sure loss if and only if P( /0) ≤ 0 and for all

(i) B such that
⋃

B∈B B = Ω and {IB|B ∈ B} is a linearly independent set,

3 In Walley’s theory [15], lower previsions – expectation operators – play a central role.
Here, we restrict ourselves to the less general lower probabilities.
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(ii) λ ∈ (Q∩ ]0,1])B such that
∑

B∈B λBIB = 1, and
(iii) binary masks β ∈ {0,1}B,

it holds that
∑

B∈B βBλBP(B) ≤ 1.

3.3 Coherence

Coherent lower probabilities are at the core of Walley’s theory [15, S2.6.4]. Weich-
selberger [16] uses the term F-probability for the same concept. A lower proba-
bility P is coherent if and only if for all events A, all B ⊆℘(Ω) \ {A}, and all
λ ∈ (R≥0){A}∪B , it holds that

∑

B∈B λBP(B)−λAP(A) ≤ sup(
∑

B∈B λBIB −λAIA).
Coherence implies avoiding sure loss and monotonicity, but not 2-monotonicity.

The above definition is similar enough to the one for avoiding sure loss to allow
the same techniques for the removal of redundant constraints to be applied, up to
some technicalities. Because coherence implies positivity, we need not use binary
masks. Working this out results in the following theorem.

Theorem 3 (constraints for coherence). A lower probability P is coherent if and
only if P( /0) = 0, P(Ω) = 1, and

(a) for all events A it holds that 0 ≤ P(A) ≤ 1;
(b) for all

(i) events A and B ⊆℘(Ω)\{A} such that {IB|B ∈ B} is a linearly inde-
pendent set and

⋃

B∈B B = A, and
(ii) λ ∈ (Q∩ ]0,1])B such that

∑

B∈B λBIB = IA,
it must hold that

∑

B∈B λBP(B) ≤ P(A);
(c) for all

(i) events A and B ⊆℘(Ω)\{A} such that {IA}∪{IB|B ∈ B} is a linearly
independent set and

⋃

B∈B B = Ω , and
(ii) λ ∈ (Q>0)

{A}∪B such that
∑

B∈B λBIB −λAIA = 1,
it must hold that

∑

B∈B λBP(B)−λAP(A) ≤ 1.

3.4 Permutation Invariance

As a last property, we look at (weak) permutation invariance [4]. It is the odd
duck of the lot; whereas all the previous properties allow for lower probabilities that
express a quite broad a range of uncertainty models, permutation invariance restricts
them to some very specific ones. We mention it to show how easy it can be to add
the constraints for another property.

A lower probability is invariant under permutations of the elements of the pos-
sibility space if and only if, for any event A and all events B resulting from some
permutation, P(A) = P(B). Let us give an example for n = 3: consider the permuta-
tion (1 → 3,2 → 1,3 → 2), then A = {1,2} becomes B = {1,3}.

We can characterize permutation invariance as follows [16, S4.3.1].

Theorem 4 (constraints for permutation invariance). A lower probability P is
permutation invariant if and only if for all k = 1, . . . ,n − 1, any one event
A such that |A| = k, and for all other events B with |B| = k, it holds that
P(B) = P(A).
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4 Results

We are not the first to hunt for extreme lower probabilities. However, as far as we
know, we are as of yet the most systematic. ([11] contains a list of results.)

For n = 4 Shapley [14] gives a list with 37 of the 41 – he omits the 4 degenerate
probabilities – 2-monotone extreme lower probabilities. For n = 5, we have found all
117983 for this case. For n ≤ 4, we have found the extreme (permutation invariant)
k-monotone lower probabilities for all k.

In an example, Maaß [10] mentions the 8 extreme coherent lower probabilities
for n = 3. We give a graphical representation of them in Fig. 2 using their corre-
sponding credal sets. Let us clarify: The set of all probabilities that dominate some
lower probability is called its credal set (cfr. core in game theory [14]). All probabil-
ities can be represented as a point of the (n−1)-dimensional unit simplex – a regular
triangle for n = 3 – and so coherent lower probabilities can be represented by their
credal set, which is a convex subset of this unit simplex [15, S3.6.1]. The vertices of
the simplex correspond to the degenerate probabilities, so to the states – here a, b,
and c.

∞
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0
00

0
00

0
1

a

b

c

∞
3×

0
00

0
10

0
1 ∞

3×

0
10
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1 2

1×
0
00

0
11

1
2

Fig. 2. The credal sets of the 8 extreme coherent lower probabilities for n = 3.

In Fig. 2, we only give the border of the credal sets and show only one element of
each permutation class. At the top right, we indicate the following: the total number
of elements of the permutation class (e.g., 4×), if it is permutation invariant (�), and
k-monotonicity for k ∈ N>1 (∞ for complete monotonicity, 2 for 2-monotonicity).
Along the simplex’s left edge, we give a vector that is proportional to the extreme
coherent lower probability (component order: /0 {a}{b}{c} {a,b}{a,c}{b,c} Ω ).
Remember that P(Ω) = 1.

As convex combinations preserve monotonicity, we can immediately see from
Fig. 2 that for n = 3, all coherent lower probabilities are 2-monotone. This was al-
ready known, but it illustrates how these computational results can help in finding
theoretical results. (For n = 2, all are completely monotone.)

Once we implemented our program, finding all 402 extreme coherent lower prob-
abilities for n = 4 was easy.4 Figure 3 shows the corresponding credal sets, as well
as those for the 16 extreme 3-monotone lower probabilities, in the same way we did
for n = 3 in Fig. 2. The unit simplex is now a regular tetrahedron, so we had to use a
projection from three dimensions to two.

4 For n = 5, we know 1 743 093 of the extreme coherent lower probabilities. These have
been found by a computer in our lab, after some months of vertex enumeration. A hardware
failure cut this gargantuan task short.
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Fig. 3. The credal sets for n = 4 of the extreme coherent lower probabilities (all except last of
top row) and extreme 3-monotone lower probabilities (top row).
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Take Ω = {a,b,c,d}. In this case, the component order is /0 {a}{b}{c}{d}
{a,b}{a,c}{a,d}{b,c}{b,d}{c,d} {a,b,c}{a,b,d}{a,c,d}{b,c,d}Ω .

With Fig. 3 as a guide, we can give some observations and results.
Using results from Choquet [3, Ch. 7], it can be proven that the extreme com-

pletely monotone lower probabilities are the vacuous lower probabilities (cfr. una-
nimity games in game theory) with respect to events: P is vacuous with respect to
A if P(B) = 1 for A ⊆ B and 0 otherwise.5 These correspond to the first three (Fig. 2)
and first four (Fig. 3) permutation classes shown. The last of these classes corre-
sponds to the degenerate probabilities, which are all the extreme (classical) proba-
bilities.

We have observed that the extreme completely monotone probabilities are al-
ways included in the extreme coherent proabilities. This is not the case for all of
the extreme k-monotone and permutation invariant lower probabilities. An example
for n = 4 is the only non-completely monotone lower probability of the extreme
3-monotone lower probabilities (shown in Fig. 3).

Notice that, except for the degenerate probabilities, all credal sets touch all tetra-
hedron faces. This is so because it can be shown that the degenerate probabilities are
the only extreme coherent lower probabilities that can be nonzero in singletons.

5 Conclusions

Although we have not intensively pursued our initial goal – finding conservative ap-
proximations for lower and upper probabilities –, it did lead us to this interesting
research. Obtaining sets of extreme lower probabilities for many cases and formu-
lating a systematic approach to calculating them are the main results of the research
presented in this paper.

Apart from these results, this topic also allows one to become familiar with dif-
ferent ways of looking at lower probabilities and their properties. A lower probability
can be seen as a set function satisfying some properties, as a convex combination of
some special set functions, as a point of a convex subset of a vector space, and – for
coherent ones – as a credal set. They can be k-monotone, avoid sure loss, be coherent,
be permutation invariant, etc.

And last but not least, this topic can lead to beautiful figures.
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We establish an intimate connection between Bayesian and credal nets. Bayesian nets
are precise graphical models, credal nets extend Bayesian nets to imprecise probabil-
ity. We focus on traditional belief updating with credal nets, and on the kind of belief
updating that arises with Bayesian nets when the reason for the missingness of some
of the unobserved variables in the net is unknown. We show that the two updating
problems are formally the same.

1 Introduction

Imagine the following situation. You want to use a graphical model to formalize
your uncertainty about a domain. You prefer precise probabilistic models and so you
choose the Bayesian network (BN) formalism [5] (see Sect. 2.1). You take care to
precisely specify the graph and all the conditional mass functions required. At this
point you are done with the modelling phase, and start updating beliefs about a target
variable conditional on the observation of some variables in the net. The remaining
variables are not observed, i.e., they are missing. You know that some of the missing
variables are simply missing at random (MAR), and so they can easily be dealt
with by traditional approaches. Yet, there is a subset of missing variables for which
you do not know the process originating the missingness.

This innocuous-looking detail is going to change the very nature of your model:
while you think you are working with BNs, what you are actually using are credal
networks. Credal networks (CNs, see Sect. 2.2) are graphical models that generalize
Bayesian nets to sets of distributions [3], i.e., to imprecise probability [6].

The implicit passage from Bayesian to credal nets is based on two steps. First, the
above conditions, together with relatively weak assumptions, give rise to a specific
way to update beliefs called conservative inference rule (CIR, see Sect. 3) [7]. CIR
is an imprecise-probability rule: it leads, in general, to imprecise posterior probabil-
ities for the target variable, even if the original model is precise. The second step is
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done in this paper: we show the formal equivalence between CIR-based updating in
BNs, and traditional credal-network updating (see Sect. 4 and App. A) based on the
popular notion of strong independence [3].

CIR and CNs have been proposed with quite different motivations in the litera-
ture: CIR as an updating rule for the case of partial ignorance about the missingness
(or incompleteness) process; CNs as a way to relax the strict modelling requirements
imposed by precise graphical models. The main interest in our result is just the es-
tablished connection between two such seemingly different worlds. But the result
appears also to be a basis to use algorithms for CNs to solve CIR-based updating
problems.

2 Bayesian and Credal Networks

In this section we review the basics of Bayesian networks and their extension to
convex sets of probabilities, i.e., credal networks. Both the models are based on a
collection of random variables X, which take values in finite sets, and a directed
acyclic graph G , whose nodes are associated to the variables of X.

For both models, we assume the Markov condition to make G represent proba-
bilistic independence relations between the variables in X: every variable is indepen-
dent of its non-descendant non-parents conditional on its parents. What makes BNs
and CNs different is a different notion of independence and a different characteriza-
tion of the conditional mass functions for each variable given the possible values of
the parents, which will be detailed next.

Regarding notation, for each Xi ∈ X, ΩXi is the possibility space of Xi, xi a generic
element of ΩXi , P(Xi) a mass function for Xi and P(xi) the probability that Xi = xi.
A similar notation with uppercase subscripts (e.g., XE ) denotes arrays (and sets) of
variables in X. The parents of Xi, according to G , are denoted by Πi and for each
πi ∈ΩΠi , P(Xi|πi) is the conditional mass function for Xi given the joint value πi of
the parents of Xi.

2.1 Bayesian Networks

In the case of Bayesian networks, the modelling phase involves specifying a condi-
tional mass function P(Xi|πi) for each Xi∈X and πi∈ΩΠi ; and the standard notion of
probabilistic independence is assumed in the Markov condition. A BN can therefore
be regarded as a joint probability mass function over X ≡ (X1, . . . ,Xn), that factorizes
as follows: P(x) =

∏n
i=1 P(xi|πi), for each x ∈ΩX, because of the Markov condition.

The updated belief about a queried variable Xq, given some evidence XE =xE , is:

P(xq|xE) =

∑

xM

∏n
i=1 P(xi|πi)

∑

xM ,xq

∏n
i=1 P(xi|πi)

, (1)

where XM ≡ X \ ({Xq} ∪ XE), the domains of the arguments of the sums are left
implicit and the values of xi and πi are consistent with (xq,xM,xE). Despite its hard-
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ness in general, Eq. (1) can be efficiently solved for polytree-shaped BNs with stan-
dard propagation schemes based on local computations and message propagation [5].
Similar techniques apply also for general topologies with increased computational
time.

2.2 Credal Networks

CNs relax BNs by allowing for imprecise probability statements. There are many
kinds of CNs. We stick to those consistent with the following:1

Definition 1. Consider a finite set of BNs with the same graph G , over the
same variables X, i.e., a pair 〈G ,P(X)〉, where P(X) is the array of the joint
mass functions associated to the set of BNs. Define a credal network as the
convex hull of such mass functions: i.e., K(X) ≡ CH{P̃(X)}P̃∈P.

We define a credal set as the convex hull of a collection of mass functions over a
vector of variables. In this paper we assume this collection to be finite; therefore a
credal set can be geometrically regarded as a polytope. Such a credal set contains
an infinite number of mass functions, but only a finite number of extreme mass
functions: those corresponding to the vertices of the polytope. It is possible to show
that inference based on a credal set is equivalent to that based only on its vertices [6].
Clearly K(X) is a credal set over X [we similarly denote by K(X) a credal set over
X]. The vertices of K(X) are generally a subset of the original set of BNs and the CN
is said equivalent to this finite set of BNs.

Note that K(X) in Def. 1 is not specified via local pieces of probabilistic infor-
mation, and so we say that the corresponding CN is globally specified. When the
construction of K(X) emphasizes locality, we talk of locally specified CNs. We can
specify CNs locally in two ways. In the first, each probability mass function P(Xi|πi)
is defined to belong to a finite set of mass functions [whose convex hull K(Xi|πi) is
a credal set by definition, which is said to be local]. We talk of separately specified
credal nets in this case. In the second, the generic probability table P(Xi|Πi), i.e., a
function of both Xi and Πi, is defined to belong to a finite set of tables, denoted by
K(Xi|Πi). In this case we talk of extensive specification. In both cases, the multiplic-
ity of local mass functions or tables gives rise to a multiplicity of joint mass functions
over X by simply taking all the combinations of the local pieces of knowledge. Such
joint mass functions are just those making up the finite set of BNs in Def. 1.

Belief updating with CNs is defined as the computation of the posterior credal
set for a queried variable Xq, conditionally on evidence about some other variables
XE :

K(Xq|xE) ≡ CH
{

P̃(Xq|xE)
}

P̃∈P . (2)

1 By Def. 1 we are implicitly assuming the notion of strong independence in the Markov
condition for CNs, see [3]. K(X) is usually called the strong extension.
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3 Conservative Inference Rule

The most popular approach to missing data in the literature and in the statistical prac-
tice is based on the so-called missing-at-random assumption. MAR allows missing
data to be neglected, thus turning the incomplete data problem into one of complete
data. Unfortunately, MAR embodies the idea that the process responsible for the
missingness (i.e., the missingness process) is not selective, which is not realistic in
many cases. De Cooman and Zaffalon have developed an inference rule based on
much weaker assumptions than MAR, which deals with near-ignorance about the
missingness process [4]. This result has been expanded by Zaffalon [7] to the case
of mixed knowledge about the missingness process: for some variables the process
is assumed to be nearly unknown, while it is assumed to be MAR for the others. The
resulting updating rule is called conservative inference rule (CIR).

To show how CIR-based updating works, we partition the variables in X in four
classes: (i) the queried variable Xq, (ii) the observed variables XE , (iii) the unobserved
MAR variables XM , and (iv) the variables XI made missing by a process that we
basically ignore. CIR leads to the following credal set as our updated beliefs about
the queried variable:

K(Xq||XI xE) ≡ CH
{

P(Xq|xE ,xI)
}

xI∈ΩXI
, (3)

where the superscript on the double conditioning bar is used to denote beliefs updated
with CIR and to specify the set of missing variables XI assumed to be non-MAR, and
clearly P(Xq|xE ,xI) =

∑

xM
P(Xq,xM|xE ,xI).

4 Equivalence Between CIR-Based Updating in Bayesian Nets
and Credal Nets Updating

In this section we prove the formal equivalence between updating with CIR on BNs
and standard updating on CNs, defining two distinct mappings from a generic in-
stance of the first problem in a corresponding instance of the second (see Sect. 4.1)
and vice versa (see Sect. 4.2). Fig. 1 reports the correspondence scheme with the
names of the mappings that will be introduced next. According to CIR assumptions
[7], we focus on the case of BNs assigning positive probability to each event.

4.1 From Bayesian to Credal Networks

First let us define the B2C transformation, mapping a BN 〈G ,P(X)〉, where a subset
XI of X is specified, in a CN. For each variable X ∈ XI , B2C prescribes to: (i) add to
X an auxiliary child node2 X ′, associated to a binary variable with possible values
x′ and ¬x′; and (ii) extensively specify the probability table P(X ′|X), to belong to the
following set of |ΩX | tables:

2 This transformation takes inspirations from Pearl’s prescriptions about boundary conditions
for propagation [5, Sect. 4.3].
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globally
specified

extensively
specified

separately
specified

CCM’

CCM

CCM

B2CCREDAL NETS CIR-BASED BNs

Fig. 1. Relations between updating on CNs and CIR-updating in BNs

{[ 100 . . .0
011 . . .1

]

, . . . ,

[
0 . . .010 . . .0
1 . . .101 . . .1

]

, . . . ,

[
000 . . .01
111 . . .10

]}

. (4)

Each table in Eq. (4) specifies a conditional probability for the state x′ of X ′ (corre-
sponding to the first row of the table), which is zero conditionally on any state of X
except a single one, different for any table. The B2C transformation, clearly linear in
the input size, is the basis for the following:

Theorem 1. Consider a CIR instance on a Bayesian network 〈G ,P(X)〉. Let
XI be the array of the unobserved non-MAR variables. Let K(Xq||XI xE) be the
credal set returned by CIR for a queried variable Xq given the evidence XE =xE .
If K(Xq|xE ,x′

I) is the posterior credal set for Xq in the credal net 〈G ′,P(X′)〉
obtained from 〈G ,P(X)〉 by a B2C transformation with the nodes XI specified,
conditional on the evidences XE = xE and X ′

I = x′
I, then: 3

K(Xq||XI xE) = K(Xq|xE ,x′
I). (5)

4.2 From Credal to Bayesian Networks

For globally specified CNs we define a transformation that returns a BN given a CN
〈G ,P(X)〉 as follows. The BN is obtained: (i) adding a transparent node X ′′ that
is parent of all the nodes in X (see Fig. 2 left) and such that there is a one-to-one
correspondence between the elements of ΩX ′′ and those of P; and (ii) setting for
each Xi ∈ X and x′′ ∈ ΩX ′′ : P(Xi|Πi,x′′) ≡ P̃(Xi|Πi), where Πi are the parents of Xi

in the CN and P̃ is the element of P corresponding to x′′.
In the case of locally specified CNs, we consider a slightly different transforma-

tion, where: (i) we add a transparent node X ′′
i for each Xi ∈ X, that is parent only of

Xi (see Fig. 2 right) and such that there is a one-to-one correspondence between the
elements of ΩX ′′

i
and the probability tables P(Xi|Πi) in the extensive4 specification

of K(Xi|Πi); and (ii) we set for each Xi ∈ X: P(Xi|Πi,x′′
i ) ≡ P̃(Xi|Πi), where Πi are

3 Th. 1 can be extended also to CIR instances modeling incomplete observations where the
value of the observed variable is know to belong to a generic subset of the possibility space,
rather than missing observations for which the universal space is considered. We skip this
case for lack of space.

4 Separately specified credal sets can be extensively specified, considering all the probability
tables obtained from the combinations of the vertices of the original credal sets. Although
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X1 X2

X X3

X4

X1 X1 X2 X2

X3 X3

X4 X4

Fig. 2. The Bayesian networks returned by CCM’ (left) and CCM (right). Transparent nodes
are gray, while the nodes of the original CN are white

the parents of Xi in the CN and P̃(Xi|Πi) is the probability table of K(Xi|Πi) relative
to x′′

i . Note that no prescriptions are given about the unconditional mass functions for
the transparent nodes in both the transformations, because irrelevant for the results
we will obtain. The second is the so-called CCM transformation [1] for CNs, while
the first is simply an extension of CCM to the case of globally specified CNs and
will be denoted as CCM’. These transformations are the basis for the following:

Theorem 2. Let K(Xq|xE) be the posterior credal set of a queried variable Xq,
given some evidence XE = xE , for a CN 〈G ,P(X)〉. Let also 〈G ′,P′(X′)〉 be the
BN obtained from 〈G ,P(X)〉 through CCM’ (or CCM if the CN is not globally
specified). Denote as K(Xq||X

′′
xE) the CIR-based posterior credal set for Xq in

the BN obtained assuming what follows: the nodes in XE instantiated to the
values xE , the transparent nodes, denoted as X ′′ also if CCM is used, to be
not-MAR and the remaining nodes MAR. Then:

K(Xq|xE) = K(Xq||X
′′
xE). (6)

5 Conclusions and Outlook

We have proved the formal equivalence between two updating problems on different
graphical models: CIR-based updating on BNs and traditional updating with CNs.
The result follows easily via simple transformations of the graphical models. An
important consequence of the established link between BNs and CNs is that under
realistic conditions of partial ignorance about the missingness process, working with
BNs is actually equivalent to working with CNs. This appears to make CNs even
more worthy of investigation than before.

The result makes it also possible in principle to solve CIR-based updating on
BNs, for which there are no algorithms at presents, by means of algorithms for CNs.

correct, this transformation gives rise to an exponential explosion of the number of tables.
An alternative transformation, described in [2], might avoid this problem, as suggested by
a reviewer.
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Unfortunately, the main corpus of algorithms for CNs considers the case of sepa-
rately specified CNs, while CIR problems on BNs correspond to extensively speci-
fied CNs (see Fig. 1). Future work should therefore involve developing generaliza-
tions of the existing algorithms for CNs to the extensive case.

A Proofs of the Theorems

Proof of Theorem 1 According to Eq. (3) and Eq. (2) respectively, we have:

K(Xq||XI xE) = CH{P(Xq|xE , x̃I)}x̃I∈ΩXI
(7)

K(Xq|xE ,x′
I) = CH{P̃(Xq|xE ,x′

I)}P̃∈P. (8)

An obvious isomorphism holds between P and ΩXI : that follows from the cor-
respondence, for each Xi ∈ XI, between the conditional probability tables for
P(X ′

i |Xi) as in Eq. (4) and the elements of ΩXi . Accordingly, we denote by
x̃I the element of ΩXI corresponding to P̃ ∈ P. The thesis will be proved by
showing, for each P̃ ∈ P, P̃(Xq|xE) = P(Xq|xE , x̃I). For each xq ∈ΩXq :

P(xq|xE , x̃I) =
∑

xM

P(xq,xM|xE , x̃I) ∝
∑

xM

P(xq,xM,xE , x̃I) (9)

P̃(xq|xE ,x′
I) =

∑

xM ,xI

P̃(xq,xM,xI |xE ,x′
I) ∝
∑

xM ,xI

P̃(xq,xM,xI ,xE ,x′
I). (10)

According to the Markov condition:

P̃(xq,xM,xI ,xE ,x′
I) =

∏

i:Xi∈XI

[

P̃(x′
i|xi) · P̃(xi|πi)

]

·
∏

j:Xj∈X′\(XI∪X ′
I )

P̃(x j|π j), (11)

with the values of x′
i, xi, πi, x j and π j consistent with (xq,xM,xE ,xI ,x′

I).
According to Eq. (4), P(x′

i|xi) is zero for each xi ∈ΩXi except for the value
x̃i, for which is one. The sum over xi ∈ΩXi of the probabilities in Eq. (11) is
therefore reduced to a single non-zero term. Thus, taking all the sums over Xi

with Xi ∈ XI:
∑

xI

P̃(xq,xM,xI ,xE ,x′
I)=
∏

i:Xi∈XI

P(x̃i|πi)·
∏

j:Xj∈X\XI

P(x j|π j) = P(xq,xM,xE , x̃I), (12)

with the values of πi, x j and π j consistent with (xq,xM,xE , x̃I). But Eq. (12)
allows us to rewrite Eq. (9) as Eq. (10) and conclude the thesis. �

Proof of Theorem 2 Consider a globally specified CN, for which CCM’ should
be used and X ′′ denotes a single transparent node. According to Eq. (3):

K(Xq||X
′′
xE) = CH{P(Xq|xE ,x′′)}x′′∈ΩX ′′ . (13)
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Setting XM ≡ X\ (XE ∪{Xq}), for each xq ∈ΩXq :

P(xq|xE ,x′′) =
∑

xM

P(xq,xM|xE ,x′′) ∝
∑

xM

P(xq,xM,xE ,x′′). (14)

According to the Markov condition and CCM’ definition, we have:

P(xq,xM,xE ,x′′) = P(x′′) ·
n∏

i=1

P(xi|πi,x
′′) ∝

n∏

i=1

P̃(xi|πi) = P̃(xq,xM,xE), (15)

where P̃ is the element of P associated to x′′ ∈ ΩX ′′ . The sum over xM of
the probabilities in Eq. (15) is proportional to P̃(xq|xE). Thus, P̃(Xq|xE) =
P(Xq|xE ,x′′) for each (P̃,x′′)∈P×ΩX ′′ , that proves the thesis. Analogous con-
siderations can be done for locally defined CNs transformed by CCM. �
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Summary. We shall present a first explorative study of the variation of the parameter s of the
imprecise Dirichlet model when it is used to build classification trees. In the method to build
classification trees we use uncertainty measures on closed and convex sets of probability dis-
tributions, otherwise known as credal sets. We will use the imprecise Dirichlet model to obtain
a credal set from a sample, where the set of probabilities obtained depends on s. According to
the characteristics of the dataset used, we will see that the results can be improved varying the
values of s.

1 Introduction

The problem of classification (an important problem in the field of machine learn-
ing) may generally be defined in the following way: we have a set of observations,
called the training set, and we wish to obtain a set of laws in order to assign a value of
the variable to be classified (also called class variable) to each new observation. The
set used to verify the quality of this set of laws is called the test set. Classification
has important applications in medicine, character recognition, astronomy, banking,
etc. A classifier may be represented using a Bayesian network, a neural network, a
classification tree, etc. Normally, these methods use the probability theory in order
to estimate the parameters with a stopping criterion in order to limit the complexity
of the classifier.

Our starting point shall be a classification procedure based on the use of classifi-
cation trees, which use closed and convex sets of probability distributions, otherwise
known as credal sets, and uncertainty measures on these. A classification tree is a
structure that is easy to understand and an efficient classifier. It has its origin in
Quinlan’s ID3 algorithm [18]. As a basic reference, we should mention the book by
Breiman et al. [11]. We shall apply decision trees for classification and we shall use
the imprecise Dirichlet model (IDM) [22] in order to estimate the probabilities of
membership to the respective classes defined by the variable to be classified.

∗ This work has been supported by the Spanish Ministry of Science and Technology under
the Algra project (TIN2004-06204-C03-02).

J. Abellán et al.: Varying Parameter in Classification Based on Imprecise Probabilities, Advances in
Soft Computing 6, 231–239 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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In Abellán and Moral [2, 4], we studied how to quantify the uncertainty of a set
of probabilities by extending the measures which are used in the theory of evidence,
Dempster [12] and Shafer [20]. We shall consider two main origins of uncertainty:
conflict and non-specificity. In Abellán and Moral [3, 4] and Abellán, Klir and Moral
[8], we present functions which verify the fundamental properties associated with
these types of functions (Dubois and Prade [13], Klir and Wierman [17]).

In Abellán and Moral [7] an extended method is defined by modifying the tree
construction method used in Abellán and Moral [5]. In this work, the relationships
of a single variable in the dataset were sought with the variable to be classified. The
variable which most reduces the uncertainty of the classification was introduced. If
no variable reduces the uncertainty, it stops. In Abellán and Moral [7] instead of
searching for the relationships of a single variable, we also consider how each pair
of variables in the dataset affects the variable to be classified, introducing the vari-
able which either individually or jointly with another most reduces the uncertainty. In
this way, we search for more complex relationships which only come to light when a
study is made of how two variables jointly affect the variable to be classified, but are
not revealed by either of the two variables separately. Another variation introduced
in Abellán and Moral [7] is the use of maximum entropy of a credal set as a measure
of total uncertainty. A conflict measure favors branching and with a non-specificity
measure the complexity of the model is limited. With this function of total uncer-
tainty we have obtained the best results. In recent results (Abellán, Klir and Moral
[8]) we have managed to separate maximum entropy into components which coher-
ently quantify conflict and non-specificity.

In this paper, we carry out a series of experiments to analyze the success of the
method exposed in Abellán and Moral [7] varying the parameter s of the IDM. We
will apply different values of s for the method on several known data sets and we
will see that the variation of success depending of s is different for each data set.

In Section 2 of this article, we shall present necessary notations and definitions
for understanding the classification method used. In Section 3, we shall describe the
method in detail. In Section 4, we shall check our procedure varying parameters with
a series of datasets which are widely used in classification.

2 Notations and Prior Knowledge

The study of the uncertainty measures in the Dempster-Shafer theory is the starting
point for the study of these measures in the context of more general theories. In any
of these theories, it is justifiable that a measure capable of measuring the uncertainty
represented by a credal set must quantify the parts of conflict and non-specificity
([3, 4, 15, 17]).

Recently, in Abellán and Moral [7] and Klir and Smith [16], the authors justified
the use of maximum entropy on credal sets as a good measure of total uncertainty.
The problem lies in separating these functions into others which really do measure
the conflict and non-specificity parts represented by the use of a credal set for repre-
senting the information. More recently, in Abellán, Klir and Moral [8], they managed
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to split maximum entropy into functions capable of coherently measuring the con-
flict and non-specificity of a credal set P , and they also propose algorithms in order
to facilitate their calculation in order-2 capacities, Abellán and Moral [6, 9].

In any classification problem, we must consider that we have a dataset D with the
values of a set L of discrete or discretized variables {Xi| i = 1, . . . ,η}, also called
attribute variables. Each variable has as its states, a set of cases belonging to a finite

set ΩXi = {x1
i ,x

2
i , ...,x

|ΩXi |
i }. Our aim will be to create a classification tree from the

data D , of the variable to be classified C, with states in the set ΩC = {c1,c2, ...,ck}.

Definition 1. Let {Xi| i = 1, . . . ,η} be a set of discrete variables with states
in the finite sets ΩXi , respectively. We shall call any m-tuple a configura-

tion of {X1, . . . ,Xη}: (Xh1 = x
th1
h1

,Xh2 = x
th2
h2

, ...,Xhm = x
thm
hm

), where x
th j
h j

∈ ΩXh j
,

j ∈ {1, ...,m}, h j ∈ {1, ...,η} and h j �= hv with j �= v. In other words, a con-
figuration is a set of values of the variables of {X1, . . . ,Xη}.

Definition 2. Given a dataset and a configuration σ of the set {X1, . . . ,Xη}, we
shall consider a credal set Pσ

C for a variable C in relation to σ defined by the

set of probability distributions, p, such that p j = p({C = c j}) ∈
[

nσc j
N+s ,

nσc j
+s

N+s

]

,

for each j ∈ {1, ...,k}, obtained on the basis of the imprecise Dirichlet model,
Walley [22]. Here nσc j

is the number of occurrences of the configuration {C =
c j}∩σ in the dataset, N is the number of observations compatible with the
configuration σ and s > 0 is a hyperparameter. We shall denote this interval
as
[
P(c j|σ),P(c j|σ)

]
.

Noting sP as the credal set associated with a set of fixed frequencies {nc j , j =
1, . . . ,η} for a s value, it can be checked that s1 ≤ s2 ⇐⇒ s1P ⊆ s2P . The value s
represents the strength of the prior ignorance about the probabilities of each state c j

and determines how fast the lower and upper probabilities converge as more data are
taken (a greater value of s produces more cautious inferences). For the IDM, Walley
[22] suggests a value for s between s = 1 and s = 2. In Bernard [10] we can find
arguments to use values s > 1 when k > 2.

In the literature, when Dirichlet prior is used in a precise Bayesian approach,
different values for s have been proposed in base of some principles: s −→ 0, s = 1,
s = k

2 , s = k (see [10]). When one of the last two values are used in the IDM, it does
not satisfy the representation invariance principle [22], but here we want to study
the performance at the light of the results in an empirical study, even if this principle
is not verified.

3 The Classification Method

The method starts with a tree with a single node. The procedure shall be described
as a recursive algorithm [6], which is started with the root node with no label asso-
ciated to it. Each node will have a list L ∗ of possible labels of variables which can
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be associated to it. The procedure will initially be started with the complete list of
variables.

We will consider that we have two functions implemented: Inf1(σ ,Xi) and
Inf2(σ ,Xi,Xj ), computing respectively the values:

Inf1(σ ,Xi) =




∑

xi∈Ui

rσxi
TU(Pσ∩(Xi=xi))



 ,

Inf2(σ ,Xi,Xj) =




∑

xi∈Ui,x j∈Uj

rσxi,x j
TU(Pσ∩(Xi=xi,Xj=x j))



 ,

where rσxi
is the relative frequency with which Xi takes value xi in D [σ ] (the part of

the dataset compatible with σ ), rσxi,x j
is the relative frequency with which Xi and Xj

take values xi and x j, respectively, in D [σ ], σ ∩ (Xi = xi) is the result of adding the
value Xi = xi to configuration σ (analogously for σ ∩ (Xi = xi,Xj = x j)), and TU is
any total uncertainty measure on credal sets.

If No is a node and σ a configuration associated with it, Inf1 tries to measure
the weighted average total uncertainty of the credal sets associated with the children
of this node if variable Xi is added to it (and there is a child for each one of the
possible values of this node). The average is weighted by the relative frequency of
each one of the children in the data set. Inf2 is similar, but considers adding two
variables in one step: assigning Xi to the first node and then assigning Xj to all the
children of the first node. It measures the average of the total uncertainty of the credal
sets associated to the grandchildren (the result of this function does not depend on
the order).

The basic idea is very simple and it is applied recursively to each one of the nodes
we obtain. For each one of these nodes, we consider whether the total uncertainty of
the credal set at this node can be decreased by adding one or two nodes. If this is the
case, then we add a node with a maximum decrease of uncertainty. If the uncertainty
cannot be decreased, then this node is not expanded and it is transformed into a leaf
of the resulting tree.
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Procedure BuilTree(No,L ∗)

1. If L ∗ = /0, then Exit
2. σ ←− σ ∩{No}
3. Compute TU(Pσ )
4. Compute α = minXi∈L ∗ Inf1(σ ,Xi), β = minXi,Xj∈L ∗ Inf2(σ ,Xi,Xj)
5. If Min{α,β} ≥ TU(Pσ ) then Exit
6. Else

7. If α ≤ β then Xk ←− arg(α)
8. Else

9. Let {Xi,Xj} = arg(β )
10. Xk ←− arg(Min{Inf1(σ ,Xi),Inf1(σ ,Xj)})

11. L ∗ ←− L ∗ −Xk

12. No ←− Xk

13. For each possible value xk of Xk

14. Add a node Nok

15. Make Nok a child of No
16. Call BuilTree(Nok,L ∗)

In the above algorithm, Xk is the branching variable of node No. The intuitive
idea is that when we assign this variable to No, we divide the database associated
with this node among its different children. In each one of the children, we can have
more precise average knowledge about C but based on a smaller sample.

Parameter s can be used to control the complexity of the resulting model. Smaller
values of s will produce larger trees. With very large s the resulting tree will be small.

Decision in the Leaves

In order to classify a new case with values of all the variables except the one in
C, we start from the tree’s root node and we continue the path indicated to us by
the values of the new case. If we are at a node with variable Xi and this variable
takes state xr

i in this case, then we choose the offspring corresponding to this value.
This process is repeated until we reach a leaf node and using the associated credal
set, we can find the corresponding value of the variable to be classified C, using the
maximum frequency criterion. Another criterion that could be used is the interval
dominance criterion (strong dominance) [5]. This criterion generally implies a partial
order and in certain situations it is not possible to specify any value for the variable
which is being classified. The state C = ch shall be chosen having verified that ∀i �= h
P(ci|σ) < P(ch|σ)

When there is no dominant value, the result could be the set of non-dominated
states of C, (states ci for those for which there is no other dominating state according
to the previous inequality). In this regard, we obtain a credal classifier [23], with
which a set of non-dominated states is obtained and a single state or nothing as in
our case. The application of this criterion shall avoid the loss of information that we
would obtain by leaving unclassified those cases where there are states of C with
frequencies which are much higher than the others but which our criterion does not
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allow to be classified. To compare the results with the ones of other known method
to build classification trees, we use the maximum frequency criterion in this paper.
As this criterion is used, apart from determining the structure of the tree, parameter s
will not have an additional effect in the final classification. If a credal classifier were
used, then larger s with give rise to more unclassified cases.

4 Experimentation

We have applied the methods on some known and different datasets, obtained
from the UCI repository of machine learning databases, available online at
ftp://ftp.ics.uci.edu/pub/machine-learning-databases.

The datasets were: Cmc (Contraceptive method choice), Flare2 (astronomy),
German (financial); Car (vehicles); Tae (teaching); Monks1 (artificial); Tic-tac-
toe (games) and Balance-scale (psychological).

Some of the datasets had missing observations and in some cases, they had non-
discrete variables. The cases with missing values were eliminated and the continuous
variables were discretized using MLC++ software, available at http://www.sgi.com/
tech/mlc. The entropy measure was used for discretization. The number of intervals
is not fixed, and is obtained following Fayyad and Irani’s procedure [14]. Also, previ-
ously we have randomized the data when the dataset was ordered by attributes. Table
I presents a brief description of these datasets. We can see the number of cases in the
training set (Tr), the number in the test set (Ts), the number of attribute variables in
the dataset (η), the number of different states of the variable to be classified (k) and
the range of states of the attribute variables (R.attr), i.e. the minimum and maximum
number of states of the attribute variables.

The algorithms were implemented with Java language (version 1.5) using maxi-
mum entropy as the total uncertainty measure on IDM probability intervals. A simple
algorithm for the computation of upper entropy can be found in [1]. This measure
is chosen on the basis of arguments which have been widely discussed in Klir and
Smith [16], Abellán and Moral [7] and Abellán, Moral and Klir [8].

We would also like to compare the results with other standard method, using the
same datasets and the same pre-processing. In Table 2, therefore, we present in each
column Es the results obtained on the datasets test sets varying the values of parame-
ter s. We have considered the following set of values for s {0.5,1,1.5,2,2.5,3,3.5,4,
5,6,8, k

2}. To use as reference, in this table, we have inserted column J48, that cor-
responds to an improved version of the C4.5 method of Quinlan [19], based on the
ID3 [18], which uses a classification tree with classic probabilities2.

Observing the results of Table 2 we can appreciate that for the datasets (1), (2)
and (3), we obtain better results with values of s ≥ 4. For datasets (4), (6) and (7)
the results are better for s < 1. This allow us to wonder if it is reasonable for our
supervised classification problem to consider values for s in [1,2] as some authors
suggest when the IDM is used ([22, 10]). The best average obtained is for s = 1.5
and s = k

2 . Now, as s = 1.5 obtains the greatest performance and it is a fixed value, this

2 J48 method can be obtained via weka software, available in http://www.cs.waikato.
ac.nz/ ml/weka/
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is our actual proposal for s. However, this result is not close to the average obtained
taking the best results possible for every dataset (77.1). A possible explanation is
that larger values of s are good when the number of attributes is high. Perhaps this
is due to the necessity of making a more strict control of the size in this case, due to
the possibility of overfitting due to the fact that we have more candidate variables for
each node of the tree. This allow us to consider in the future a more general possible
relation between the characteristics of each data set (number of attribute variables,
number of states of the attribute variables, size of the dataset,..) with the parameter s
and to study whether a value of s = 1.5 with some additional control about the model
size depending of the number of attributes can provide optimal results.

Table 1. Description of the datasets

Dataset Tr Ts η k R.attr Dataset Tr Ts η k R.attr
(1)Cmc 986 487 8 3 2-4 (5)Tae 101 50 5 3 2-26
(2)Flare2 714 352 10 9 2-7 (6)Monks1 122 434 6 2 2-4
(3)German 670 330 24 2 2-5 (7)Tic-tac-toe 641 317 9 2 3-3
(4)Car 1157 571 6 4 3-4 (8)Balance-scale 418 207 4 3 5-5

Table 2. Percentages of correct classifications in the test set

Dataset J48 E0.5 E1 E1.5 E2 E2.5 E3 E3.5 E4 E5 E6 E8 Ek/2

(1) 52.2 47.0 48.9 49.7 50.9 51.3 52.6 52.4 52.4 56.7 56.1 56.1 49.7
(2) 85.2 82.1 85.5 85.8 85.8 85.5 85.5 86.4 86.4 86.4 84.7 84.7 86.4
(3) 72.9 67.0 71.5 71.2 72.1 72.1 73.0 73.0 72.7 73.9 73.6 73.3 71.5
(4) 90.9 91.2 88.4 87.4 86.9 85.8 86.2 84.8 79.5 77.6 75.7 75.7 86.9
(5) 42.0 50.0 52.0 54.0 50.0 50.0 50.0 42.0 42.0 42.0 42.0 42.0 54.0
(6) 80.0 100.0 94.4 94.5 91.7 91.7 91.7 91.7 80.4 79.4 72.1 74.7 94.4
(7) 81.4 88.0 85.8 86.1 86.1 81.4 79.8 79.8 80.1 79.8 81.1 78.2 85.8
(8) 65.2 53.6 64.3 64.3 66.2 59.9 58.9 58.9 58.9 57.0 57.0 57.0 64.3

Average 71.2 72.4 73.9 74.1 73.7 72.2 72.2 71.1 69.1 69.1 67.8 67.7 74.1

5 Conclusions

We have presented a first explorative study of the results of our classification method
varying parameters. We have proved that for each dataset it is possible to improve the
result changing the value of the total prior strength. But more studies and experiments
are necessary to ascertain the ideal relationship between the value of s and some
characteristics of each data set, such that: number of states of the class variable,
number of attribute variables, size of dataset, etc.
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Summary. We review a recently introduced nonparametric predictive approach for compar-
ison of groups of proportions data, using interval probability. We particularly focus on cases
where groups have zero of few successes. These inferences are for events that m ≥ 1 future
observations from a particular group will include more successes than m future observations
from each other group.

1 Introduction

We use Coolen’s [5] predictive upper and lower probabilities [16, 17] to compare
future numbers of successes in Bernoulli trials for k ≥ 2 independent groups, using
data consisting of observed numbers of trials and the numbers of successes in these
trials. In [6] we presented nonparametric predictive methods for pairwise and multi-
ple comparisons for such proportions data, the latter restricted to the event that the
number of successes out of m future trials for one group is greater than (or equal to)
the corresponding number for each of the other groups. We briefly review this ap-
proach, and focus on data with few successes as may occur in comparison of highly
reliable technical units or of highly effective medicines. In such cases, inference
based on established methods is often deemed unsatisfactory. Classical frequentist
methods typically test for differences in parameters representing underlying success
probabilities, and rarely indicate differences if all groups involved have zero or few
successes. Bayesian inference in case of zero or few successes tends to be sensitive
to chosen prior distributions [8]. As our method uses upper and lower probabilities,
it may not provide inferences which appear to be as strong as those based on estab-
lished methods, but we claim that the explicit representation of indeterminacy is an
advantage of our method, and it is of great relevance to study the way in which our
upper and lower probabilities depend on the data and the choice of m, the number of
future observations per group considered.
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Computing 6, 241–248 (2006)
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2 Nonparametric Predictive Comparison of Proportions

Coolen [5] presented and justified upper and lower probabilities for nonparametric
prediction of Bernoulli random quantities, Coolen and Coolen-Schrijner [6] used
these to derive upper and lower probabilities for nonparametric predictive compar-
ison of proportions. We briefly state the key results from these two papers, after
which we focus on the use of these results in cases where the data contain zero or
few successes. We refer to [5, 6] for more detailed presentation, justification and
discussion of these results, but we wish to remark that this inferential method [5]
uses Hill’s assumption A(n) [13], and defines direct predictive upper and lower prob-
abilities [1, 11, 12] for future observations, based on available data. The upper and
lower probabilities in [5, 6] fit in the framework of nonparametric predictive infer-
ence (NPI) [1], and hence have strong internal consistency properties [1, 6].

Suppose that we have a sequence of n + m exchangeable Bernoulli trials [10],
each with success and failure as possible outcomes, and data consisting of s successes
observed in n trials. Let Y b

a denote the random quantity representing the number of
successes in trials a to b, then a sufficient representation of the data for our inferences
is Y n

1 = s, due to the exchangeability of all trials. We are interested in the number of
successes in trials n + 1 to n + m. Let Rt = {r1, . . . ,rt}, with 1 ≤ t ≤ m + 1 and
0 ≤ r1 < r2 < .. . < rt ≤ m, and let

(s+r0
s

)
= 0. Then the NPI upper probability for

the event Y n+m
n+1 ∈ Rt , given data Y n

1 = s, for s ∈ {0, . . . ,n}, is [5]

P(Y n+m
n+1 ∈ Rt |Y n

1 = s) =
(

n+m
n

)−1 t∑

j=1

[(
s+ r j

s

)

−
(

s+ r j−1

s

)](
n− s+m− r j

n− s

)

The corresponding lower probability is derived via

P(Y n+m
n+1 ∈ Rt |Y n

1 = s) = 1−P(Y n+m
n+1 ∈ {0,1, . . . ,m}\Rt |Y n

1 = s)

This is justified in [5], and agrees with the fact that these upper and lower probabili-
ties are F-probability in the theory of interval probability [1, 6, 17]. These upper and
lower probabilities are based on an assumed underlying representation of Bernoulli
data as realisations of real-valued continuously distributed random quantities, anal-
ogous to the representation used by Bayes [2], which allows predictive inference to
be based on Hill’s assumption A(n) [5, 13]. As in [6], it implies that, for our NPI
comparisons of proportions, we only need upper probabilities for events Y n+m

n+1 ≥ y
and Y n+m

n+1 < y. For y ∈ {0,1, . . . ,m} and 0 < s < n,

P(Y n+m
n+1 ≥ y|Y n

1 = s) =
(

n+m
n

)−1




(
s+ y

s

)(
n− s+m− y

n− s

)

+
m∑

l=y+1

(
s+ l −1

s−1

)(
n− s+m− l

n− s

)




and for y ∈ {1, . . . ,m+1} and 0 < s < n,
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P(Y n+m
n+1 < y|Y n

1 = s) =
(

n+m
n

)−1
[(

n− s+m
n− s

)

+
y−1
∑

l=1

(
s+ l −1

s−1

)(
n− s+m− l

n− s

)]

If the data are all successes (s = n) or failures (s = 0), then for y ∈ {0,1, . . . ,m},

P(Y n+m
n+1 ≥ y|Y n

1 = n) = 1 and P(Y n+m
n+1 ≥ y|Y n

1 = 0) =

(n+m−y
n

)

(n+m
n

)

and for y ∈ {1, . . . ,m+1},

P(Y n+m
n+1 < y|Y n

1 = n) =

(n+y−1
n

)

(n+m
n

) and P(Y n+m
n+1 < y|Y n

1 = 0) = 1

In [6] we presented the theory for comparing k ≥ 2 groups of proportions data
within the NPI framework, with interest in the event that the number of successes in
m future trials in group i is greater than (or equal to) the maximum of the number
of successes in m future trials for each of the k − 1 other groups. For k = 2 this
procedure is called ‘pairwise comparison’. For k ≥ 3 such a simultaneous ‘multiple
comparison’ of one group with all other groups cannot directly be inferred from
corresponding pairwise comparisons, and is often advocated for problems where one
is explicitly interested in distinguishing a ‘best’ group. Throughout, we assume the
groups to be fully independent [6]. In a straightforward manner, we add an index i
to notation when referring to group i ∈ {1, . . . ,k}, and we use the notation j �= i for
j ∈ {1, . . . ,k}\i and (n,s) to denote all data for the k groups. In [6] we derived the
upper probability

P(Y ni+m
i,ni+1 > max

j �=i
Y

n j+m
j,n j+1|(n,s)) =

m∑

y=0



∆(y)
∏

j �=i

P(Y n j+m
j,n j+1 < y|Y n j

j,1 = s j)



 ,

with ∆(y) = P(Y ni+m
i,ni+1 ≥ y|Y ni

i,1 = si)−P(Y ni+m
i,ni+1 ≥ y+1|Y ni

i,1 = si)

The corresponding lower probability and the upper and lower probabilities for this
event with ‘>’ replaced by ‘≥’ are derived similarly. In Section 3, we will use
P(i > max

j �=i
j) as short-hand notation for the upper probability above, whereas for

pairwise comparisons between groups i and j we just use P(i > j) (and similarly for
other upper and lower probabilities).

3 Proportions Data with Few Successes

The upper and lower probabilities for comparisons of proportions data [6], given in
Section 2, normally need to be computed numerically, but this is straightforward as it
only involves finite sums and products. However, it does complicate analytical study
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of these upper and lower probabilities, where particular interest is in their depen-
dence on the data and on the choice of m. We mostly illustrate such dependences
via examples in [6], where it is shown that the choice of m is highly relevant due to
both the inherent randomness involved with sampling Bernoulli random quantities
and the fact that imprecision, i.e. the difference between corresponding upper and
lower probabilities, tends to increase with m. Also, imprecision in these predictive
inferences tends to decrease if the number of available data grows, although one must
be careful as imprecision tends to be smaller when upper and lower probabilities are
close to zero or one than when these are nearer 0.5. For data with zero or few suc-
cesses, we illustrate some pairwise and multiple comparisons in the example below.
If pairwise comparisons (k = 2) involve a group with zero successes, some of these
upper and lower probabilities reduce to simple general forms,

P(Y n1+m
1,n1+1 > Y n2+m

2,n2+1|Y
n1
1,1 = 0,Y n2

2,1 = 0) =
m

n1 +m

P(Y n1+m
1,n1+1 > Y n2+m

2,n2+1|Y
n1
1,1 = 0,Y n2

2,1 = s2) = 0 for all s2 ∈ {0, . . . ,n2}
P(Y n1+m

1,n1+1 ≥ Y n2+m
2,n2+1|Y

n1
1,1 = s1,Y

n2
2,1 = 0) = 1 for all s1 ∈ {0, . . . ,n1}

P(Y n1+m
1,n1+1 ≥ Y n2+m

2,n2+1|Y
n1
1,1 = 0,Y n2

2,1 = 0) =
n2

n2 +m

These results are based on the idea, in line with intuition and the underlying repre-
sentation of the Bernoulli random quantities [5] as mentioned in Section 2, that if
no success has been observed for a particular group, it cannot be excluded that no
success can ever be observed for that group. We see that imprecision increases with
m.

Example. We illustrate NPI comparison of proportions data with few successes, us-
ing data on tumors in mice (Table 1) that were used by Tamura and Young [14] to
illustrate an estimator for the Beta-Binomial distribution. These data are from 26
studies (i = 1, . . . ,26), ni is the number of mice in Study i of which si tested positive
for having a tumor.

Table 1. Tumors in mice data

i (ni,si) i (ni,si) i (ni,si) i (ni,si)

1 (12,0) 8 (17,0) 15 (22,2) 21 (47,4)
2 (12,0) 9 (20,1) 16 (20,2) 22 (54,6)
3 (10,0) 10 (19,1) 17 (20,3) 23 (49,8)
4 (10,1) 11 (19,1) 18 (20,3) 24 (20,2)
5 (20,0) 12 (17,1) 19 (18,3) 25 (49,6)
6 (20,0) 13 (15,1) 20 (20,4) 26 (49,10)
7 (19,0) 14 (25,2)

For pairwise comparisons, these data are suitable for illustrating the effect of
different ni if the corresponding si are zero. Table 2 illustrates this effect, as the
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Table 2. (Study 1 vs Study 2) compared to (Study 1 vs Study 5)

m : 1 3 5 10 50 1 3 5 10 50

P(1 > 2) 0.077 0.200 0.294 0.455 0.806 P(1 ≥ 2) 1 1 1 1 1
P(1 > 2) 0 0 0 0 0 P(1 ≥ 2) 0.923 0.800 0.706 0.545 0.194
P(1 > 5) 0.077 0.200 0.294 0.455 0.806 P(1 ≥ 5) 1 1 1 1 1
P(1 > 5) 0 0 0 0 0 P(1 ≥ 5) 0.952 0.870 0.800 0.667 0.286

data for Study 1 and Study 2 are both (12,0) and for Study 5 they are (20,0). We
have to keep in mind here that such data imply that it cannot be logically excluded
that in such groups there would never appear a mouse which tests positive, which is
reflected in some of the lower probabilities being equal to 0 for all m, and some of the
upper probabilities being equal to 1 for all m. It is clear that the choice of m greatly
influences these predictive upper and/or lower probabilities, which is mostly due to
the decreasing chance of equal numbers of successes in the two groups considered
when m increases.

The lower probabilities for the event ‘1 ≥ 2′ are smaller than the corresponding
lower probabilities for ‘1 ≥ 5′, for all m, which is caused by n2 < n5, so imprecision
is logically related to the amount of information available. The upper probabilities
for the events ‘1 > 2′ and ‘1 > 5′ are identical, for all m. These upper probabilities
correspond to the situation where for Studies 2 and 5 there would never be any mice
that test positive, hence for both events these are just the NPI-based upper probabili-
ties of at least 1 positive test result out of m further tested mice for Study 1. For the
values in Table 2, P(1 > 2) is equal to 1−P(1 ≥ 2), which is caused by the fact that
here P(2 ≥ 1) = P(1 ≥ 2), as we have precisely the same information from Studies
1 and 2. As Studies 1 and 5 did not give the same observations, there such a relation
does not hold, but of course as always we have P(5 > 1) = 1−P(1 ≥ 5), so we can
derive all upper and lower probabilities for such pairwise comparisons between these
studies from the entries in Table 2.

Table 3 gives our NPI-based upper and lower probabilities for comparison of
Study 3, with data (10,0), to Study 26, with data (49,10), and for comparison of
Study 5, with data (20,0), to Study 26. The effect of n5 > n3 is clearly seen in
the upper probabilities for ‘3 > 26′ and ‘5 > 26′, all of which are of course pretty
small values. Note that, due to the randomness involved and the decreasing chance of
having the same numbers of mice testing positive in two studies when m increases,

Table 3. (Study 3 vs Study 26) compared to (Study 5 vs Study 26)

m : 1 3 5 10 50 1 3 5 10 50

P(3 > 26) 0.073 0.134 0.156 0.167 0.148 P(3 ≥ 26) 0.818 0.609 0.494 0.354 0.183
P(3 > 26) 0 0 0 0 0 P(3 ≥ 26) 0.780 0.482 0.304 0.104 0.0002
P(5 > 26) 0.038 0.072 0.083 0.081 0.044 P(5 ≥ 26) 0.810 0.569 0.428 0.255 0.064
P(5 > 26) 0 0 0 0 0 P(5 ≥ 26) 0.780 0.482 0.304 0.104 0.0002
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the values for these upper probabilities first increase but then decrease if m becomes
larger. The corresponding lower probabilities for the events ‘3 ≥ 26′ and ‘5 ≥ 26′

are identical, which is caused by the fact that these are both equal to the NPI-based
lower probability of 0 positives out of m further tested mice for Study 26, as these
lower probabilities correspond to the possible situation that, for both Studies 3 and
5, no mice might ever test positive.

Table 4 gives the multiple comparisons upper and lower probabilities for events
‘i > max j �=i j′, for m = 50. The lower probabilities for studies that revealed no tu-
mors, to lead to the largest future number of mice with tumors, is zero, which agrees
with our earlier observations, and relates to the fact that there is no evidence against
the possibility that mice in such studies would never develop tumors. The corre-
sponding lower probabilities for events ‘i ≥ max j �=i j′, which we have not reported
here, are non-zero but of course very small, as for these studies this relates only to
the event that all studies had zero tumors in m future tests. The values ni strongly
influence the imprecision, which clearly shows when comparing the upper proba-
bilities for Studies 3 (with n3 = 10) and 5 (with n5 = 20). Studies 20 and 26 have
the highest upper and lower probabilities, with the smaller number of mice observed
in Study 20 (n20 = 20, n26 = 49) reflected by larger imprecision. It is also interest-
ing to compare Studies 24 and 25 ((n24,s24) = (20,2), (n25,s25) = (49,6)), where
even though a smaller proportion of mice with tumors was observed in Study 24, its
upper and lower probabilities of leading to the maximum future proportion of mice
with tumors are greater than for Study 25, which is due to the fact that for Study
25 there is substantially more evidence making it less likely that this study would
lead to the maximum future proportion. This occurs because both Studies 24 and 25
are pretty unlikely to lead to the maximum future proportion, Study 24 also has sub-
stantially more imprecision than Study 25 due to its smaller number of observations.
For smaller values of m (not shown), the larger upper probabilities as in Table 4 are

Table 4. Multiple comparisons with m = 50

i P(i > max
j �=i

j) P(i > max
j �=i

j) i P(i > max
j �=i

j) P(i > max
j �=i

j)

1 0 0.0252 14 0.0027 0.0328
2 0 0.0252 15 0.0052 0.0523
3 0 0.0418 16 0.0082 0.0721
4 0.0215 0.1744 17 0.0307 0.1626
5 0 0.0043 18 0.0307 0.1626
6 0 0.0043 19 0.0482 0.2191
7 0 0.0053 20 0.0844 0.3035
8 0 0.0080 21 0.0010 0.0127
9 0.0012 0.0236 22 0.0027 0.0249

10 0.0015 0.0284 23 0.0193 0.1036
11 0.0015 0.0284 24 0.0082 0.0721
12 0.0026 0.0413 25 0.0048 0.0389
13 0.0045 0.0611 26 0.0566 0.2213
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smaller, mostly because again it would be more likely for numbers of successes out
of m observations, for two or more groups, to be equal.

4 Discussion

As shown in Section 3, the choice of m can make a big difference to the apparent
conclusions from our pairwise and multiple comparisons. In practice, we would rec-
ommend not to restrict attention to a single value of m, but to present results for
a variety of m-values. Of course, if one has a specific interest in a particular value
of m, for example when decisions must be made clearly related to such a specific
value, then our method can be used in a straightforward manner. A nice feature of
our method is that its explicit predictive nature allows it to be used easily for decision
making, where costs or utilities can directly be linked to future numbers of successes
for the different groups. If one has imperfect information about such costs or utili-
ties, which might well be the case as these are related to future realisations, one could
include imprecise values of such costs or utilities in the decision processes, bringing
the approach within the realms of ‘information-gap decision theory’ [4].

In this paper, events of the form Y n1+m
1,n1+1 > Y n2+m

2,n2+1 were considered. Comparisons

could also be based on lower and upper previsions [16] for Y n1+m
1,n1+1 −Y n2+m

2,n2+1, which
is relatively straightforward in our NPI framework. Because the lower and upper
probabilities for these random quantities depend on m, so will such lower and upper
previsions. This could well lead to quite different conclusions. It will be interesting
to compare both these methods in a further study, whereas in practice it might be
sensible to report on the outcomes of both simultaneously.

In [7] we present further related methods for multiple comparisons for propor-
tions data, considering the NPI-based upper and lower probabilities that a selected
subset of the k groups contains (all) the ‘best’ group(s). Such subset selection meth-
ods have been widely studied in the statistics literature [3, 15], but rarely from an ex-
plicitly predictive perspective as in [7]. Coolen and van der Laan [9] presented NPI-
based selection methods for real-valued random quantities. Several possible uses of
such inferential methods have been suggested [3], e.g. screening experiments where,
to end up with a small number of preferred treatments, one starts with all those
available, and after several observations wishes to continue with only a subset of all
treatments, which should be very likely to contain (all) the best treatment(s). The
specific features in case of data sets containing few successes carry over in a logical
manner to such NPI-based subset selection methods for proportions data.
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Summary. Several methods for the practical representation of imprecise probabilities exist
such as Ferson’s p-boxes, possibility distributions, Neumaier’s clouds, and random sets. In
this paper some relationships existing between the four kinds of representations are discussed.
A cloud as well as a p-box can be modelled as a pair of possibility distributions. We show
that a generalized form of p-box is a special kind of belief function and also a special kind of
cloud.

1 Introduction

Many uncertainty calculi can be viewed as encoding families of probabilities. Repre-
senting such families in a practical way can be a real challenge, and several proposals
have been made to do so, under various assumptions. Among these proposals are p-
boxes[6], possibility distributions [3], clouds [8] and random sets [1].

Possibility theory, p-boxes, and clouds use nested confidence sets with upper
and lower probability bounds. This way of representing imprecise subjective proba-
bilistic knowledge is very natural, and corresponds to numerous situations where an
expert is asked for confidence intervals. In this paper, we investigate or recall vari-
ous links existing between these representations, illustrating the fact that they are all
closely related.

Section 2 reviews the different kinds of representations considered in this paper,
and generalizes the notion of p-boxes. In section 3, we show that a generalized p-box
(which encompasses usual p-boxes) can be encoded by a belief function, and we then
give a practical method to build it. Finally, section 4 recalls briefly some results on
clouds and possibility theory, before examining the relationship between clouds and
generalized p-boxes more closely.
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2 Imprecise Probability Representations

2.1 Upper and Lower Probabilities

A family P of probabilities on X induces lower and upper probabilities on sets
A [12]. Namely P(A) = infP∈P P(A) and P(A) = supP∈P P(A). Let PP,P(A) =
{P|∀A ⊆ Xmeasurable, P(A)≤ P(A)≤ P(A)}. It should be noted that PP,P is convex
and generally larger than the original family P , since lower and upper probabilities
are projections of P on sets A. Representing either P or PP,P on a computer can
be tedious, even for one-dimension problems. Simpler representations can be very
useful, even if it implies a loss in generality.

2.2 Random Sets

Formally, a random set is a set-valued mapping from a (here finite) probability space
to a set X . It induces lower and upper probabilities on X [1]. Here, we use mass
functions [10] to represent random sets. A mass function m is defined by a mapping
from the power set P(X) to the unit interval, s.t.

∑

A⊆X m(A) = 1. A set E with
positive mass is called a focal set. Each focal set is viewed as the disjunction of its
elements and represents a piece of incomplete information. Plausibility and belief
functions can then be defined from this mass function :

Bel(A) =
∑

E,E⊆A

m(E) and Pl(A) = 1−Bel(Ac) =
∑

E,E∩A�= /0

m(E).

The set PBel = {P|∀A ⊆ X measurable, Bel(A) ≤ P(A) ≤ Pl(A)} is the special prob-
ability family induced by the belief function.

2.3 Quantitative Possibility Theory

A possibility distribution π is a mapping from X to the unit interval (hence a fuzzy
set) such that π(x) = 1 for some x ∈ X . Several set-functions can be defined from a
possibility distribution π [3]:

• Possibility measures: Π(A) = supx∈Aπ(x)
• Necessity measures: N(A) = 1−Π(Ac)
• Guaranteed possibility measures: ∆(A) = infx∈Aπ(x)

Possibility degrees express the extent to which an event is plausible, i.e., consis-
tent with a possible state of the world. Necessity degrees express the certainty of
events and ∆ -measures the extent to which all states of the world where A occurs are
plausible. They apply to so-called guaranteed possibility distributions [3] generally
denoted by δ .

A possibility degree can be viewed as an upper bound of a probability degree [4].
Let Pπ = {P,∀A ⊆ X measurable, P(A) ≤Π(A)} be the set of probability measures
encoded by π . A necessity (resp. possibility) measure is a special case of belief (resp.
plausibility) function when focal sets are nested.
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2.4 Generalized Cumulative Cistributions

Let Pr be a probability function on the real line with density p. The cumulative
distribution of Pr is denoted F p and is defined by F p(x) = Pr((−∞,x]).

Interestingly the notion of cumulative distribution is based on the existence of
the natural ordering of numbers. Consider a probability distribution (probability vec-
tor) α = (α1 . . .αn) defined over a finite domain X of cardinality n; αi denotes the
probability Pr(xi) of the i-th element xi, and

∑n
j=1α j = 1. Then no obvious notion

of cumulative distribution exists. In order to make sense of this notion over X one
must equip it with a complete preordering ≤R, which is a reflexive, complete and
transitive relation. An R-downset is of the form {xi : xi ≤R x}, and denoted (x]R.

Definition 1 The generalized R-cumulative distribution of a probability distri-
bution on a finite, completely preordered set (X ,≤R) is the function Fα

R : X →
[0,1] defined by Fα

R (x) = Pr((x]R).

Consider another probability distribution β = (β1 . . .βn) on X . The correspond-
ing R-dominance relation of α over β can be defined by the pointwise inequality
Fα

R < Fβ
R . In other words, a generalized cumulative distribution can always be con-

sidered as a simple one, up to a reordering of elements.
In fact any generalized cumulative distribution Fα

R with respect to a weak or-
der >R on X , of a probability measure Pr, with distribution α on X , can be
viewed as a possibility distribution πR whose associated measure dominates Pr, i.e.
maxx∈A Fα

R (x) ≥ Pr(A),∀A ⊆ X . This is because a (generalized) cumulative distrib-
ution is constructed by computing the probabilities of events Pr(A) in a nested se-
quence of downsets (xi]R [2].

2.5 Generalized p-box

A p-box [6] is defined by a pair of cumulative distributions F ≤ F on the real line
bounding the cumulative distribution of an imprecisely known probability function
with density p. Using the results of section 2.4, we define a generalized p-box as
follow

Definition 2 A R-p-box on a finite, completely preordered set (X ,≤R) is a pair
of R-cumulative distributions Fα

R (x) and Fβ
R (x), s.t. Fα

R (x)≤ FR(x)≤ Fβ
R (x) with

β a probability distribution R-dominated by α

The probability family induced by a R-p-box is Pp−box = {P|∀x, Fα
R (x) ≤ FR(x) ≤

Fβ
R (x)} If we choose R and consider the sets Ai = (xi]R,∀xi ∈ X with xi ≤R x j iff

i < j, we define a family of nested confidence sets /0 ⊆ A1 ⊆ A2 ⊆ . . . ⊆ An ⊂ X . The
family Pp−box can be encoded by the constraints

αi ≤ P(Ai) ≤ βi i = 1, . . . ,n (1)

with α1 ≤ α2 ≤ . . . ≤ αn ≤ 1 and β1 ≤ β2 ≤ . . . ≤ βn ≤ 1. If X is the real line and
Ai = (−∞,xi], it is easy to see that we find back the usual definition of p-boxes.
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2.6 Clouds

This section recalls basic definitions and results due to Neumaier [8], cast in the
terminology of fuzzy sets and possibility theory. A cloud is an Interval-Valued Fuzzy
Set F such that (0,1) ⊆ ∪x∈X F(x) ⊆ [0,1], where F(x) is an interval [δ (x),π(x)]. In
the following it is defined on a finite set X or it is an interval-valued fuzzy interval
(IVFI) on the real line (then called a cloudy number). In the latter case each fuzzy set
has cuts that are intervals. When the upper membership function coincides with the
lower one, (δ = π) the cloud is called thin. When the lower membership function is
identically 0, the cloud is said to be fuzzy.

A random variable x with values in X is said to belong to a cloud F if and only if
∀α ∈ [0,1]:

P(δ (x) ≥ α) ≤ 1−α ≤ P(π(x) > α) (2)

under all suitable measurability assumptions. Obviously, a fuzzy cloud is a possibil-
ity distribution.

If X is a finite set of cardinality n, a cloud can be defined by the following con-
straints :

P(Bi) ≤ 1−αi+1 ≤ P(Ai) and Bi ⊆ Ai i = 1, . . . ,n (3)

Where 1 = α1 > α2 > .. . > αn = 0 and A1 ⊆ A2 ⊆ . . . ⊆ An;B1 ⊆ B2 ⊆ . . . ⊆ Bn.
The confidence sets Ai and Bi are respectively the α-cuts of fuzzy sets π and δ
(Ai = {xi,π(xi) > αi+1} and Bi = {xi,δ (xi) ≥ αi+1}).

3 Generalized p-boxes are Belief Functions

In this section, we show that Pp−box, the probability family described in section 2.5
can be encoded by a belief function. In order to achieve this, we reformulate the con-
straints given by equations (1).
Consider the following partition of X : E1 = A1,E2 = A2\A1, . . . ,En = An\An−1,En+1 =
X \An

The constraints on the confidence sets Ai can be rewritten

αi ≤
i∑

k=1

P(Ei) ≤ βi i = 1, . . . ,n (4)

The proof that a belief function encoding Pp−box exists follows in four points

a. The family Pp−box is always non-empty
b. Constraints induce P(

⋃ j
k=i Ek) = max(0,α j −βi−1)

c. Construction of a belief function s.t. Bel(
⋃ j

k=i Ek) = P(
⋃ j

k=i Ek)
d. For any subset A of X , Bel(A) = P(A), then Pp−box = PBel follows.
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3.1 P is Non-empty

Consider the case where αi = βi, i = 1, . . . ,n in equation (4). A probability distri-
bution s.t. P(E1) = α1;P(E2) = α2 −α1; . . . ;P(En) = αn −αn−1;P(En+1) = 1−αn

always exists and is in Pp−box. Hence, Pp−box �= /0. Every other cases being a re-
laxation of this one, Pp−box always contains at least one probability.

3.2 Lower Probabilities on Sets (
⋃ j

k=i Ek)

Using the partition given in section 3, we have P(
⋃ j

k=i Ek) =
∑ j

k=i P(Ek). Equations

(4) induce the following lower and upper bounds on P(
⋃ j

k=i Ek)

Proposition 1 P(
⋃ j

k=i Ek) = max(0,α j −βi−1);P(
⋃ j

k=i Ek) = β j −αi−1

Proof To obtain P(
⋃ j

k=i Ek), we must minimize
∑ j

k=i P(Ek). From equation (4), we
have

α j ≤
i−1∑

k=1

P(Ek)+
j
∑

k=i

P(Ek) ≤ β j and αi−1 ≤
i−1∑

k=1

P(Ek) ≤ βi−1

Hence
∑ j

k=i P(Ek)) ≥ max(0,α j − βi−1) and this lower bound max(0,α j − βi−1)
is always reachable : if α j > βi−1, take P s.t. P(Ai−1) = βi−1,P(

⋃ j
k=i Ek) = α j −

βi−1,P(
⋃n+1

k= j+1 Ek) = 1−α j. If α j ≤ βi−1, take P s.t. P(Ai−1) = βi−1,P(
⋃ j

k=i Ek) =
0,P(
⋃n+1

k= j+1 Ek) = 1−βi−1. Proof for P(
⋃ j

k=i Ek) = β j −αi−1 follows the same line.

3.3 Building the Belief Function

We now build a belief function s.t. Bel(
⋃ j

k=i Ek) = P(
⋃ j

k=i Ek), and in section 3.4,
we show that this belief function is equivalent to the lower envelope of Pp−box. We
rank the αi and βi increasingly and rename them as

α0 = β0 = γ0 = 0 ≤ γ1 ≤ . . . ≤ γ2n ≤ 1 = γ2n+1 = βn+1 = αn+1

and the successive focal elements Fl with m(Fl) = γl − γl−1. The construction of the

belief function can be summarized as follow :

If γl−1 = αi, then Fl = Fl−1 ∪ Ei+1 (5)

If γl−1 = βi, then Fl = Fl−1 \Ei (6)

equation (5) means that elements in Ei+1 are added to the previous focal set after
reaching αi, and equation (6) means that elements in Ei are deleted from the previous
focal set after reaching βi.

3.4 PBel is Equivalent to Pp−box

To show that PBel = Pp−box, we show that Bel(A) = P(A) ∀A ⊆ X
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Lower probability on sets Ai

Looking at equations (5,6) and taking γl = αi, we see that focal elements F1, . . . ,Fl

only contain sets Ek s.t. k ≤ i, hence ∀ j = 1, . . . , l,Fj ⊂ Ai. After γl , the focal ele-
ments Fl+1, . . . ,F2n contain at least one element Ek s.t. k > i. Summing the weights
m(F1), . . . ,m(Fl), we have Bel(Ai) = γl = αi.

Sets of the type P(
⋃ j

k=i Ek)

From section 3.2, we have P(
⋃ j

k=i Ek) = max(0,α j −βi−1). Considering equations
(5,6) and taking γl =α j, we have that focal elements Fl+1, . . . ,F2n contain at least one
element Ek s.t. k > j, hence the focal elements Fj �⊂

⋃ j
k=i Ek for j = l + 1, . . . ,2n.

Taking then γm = βi−1, we have that the focal elements F1, . . . ,Fm contain at least
one element Ek s.t. k < i, hence the focal elements Fj �⊂

⋃ j
k=i Ek for j = 1, . . . ,m.

If m < l (i.e. γl = α j ≥ βi−1 = γm), then, for j = m+1, . . . , l, the focal elements
Fj ⊂

⋃ j
k=i Ek, and we have Bel(

⋃ j
k=i Ek) = γl − γm = α j − βi−1. Otherwise, there

is no focal element Fl , l = 1, . . . ,2n s.t. Fl ⊂
⋃ j

k=i Ek and we have Bel(
⋃ j

k=i Ek) =
P(
⋃ j

k=i Ek) = 0.

Sets made of non-successive Ek

Consider a set of the type A = (
⋃i+l

k=i Ek ∪
⋃ j

k=i+l+m Ek) with m > 1 (i.e. there’s a
“hole” in the sequence, since at least Ei+l+1 /∈ A).

Proposition 2 P(
⋃i+l

k=i Ek ∪
⋃ j

k=i+l+m Ek) = Bel(
⋃i+l

k=i Ek))+Bel(
⋃ j

k=i+l+m Ek)

Sketch of proof The following inequalities gives us a lower bound on P

inf
(

P(
i+l⋃

k=i

Ek ∪
j
⋃

k=i+l+m

Ek)
)

≥ inf P(
i+l⋃

k=i

Ek)+ inf P(
j
⋃

k=i+l+m

Ek)

we then use a reasoning similar to the one of section 3.2 to show that this lower
bound is always reachable. The result can then be easily extended to a number n of
“holes” in the sequence of Ek. This completes the proof and shows that Bel(A) =
P(A) ∀A ∈ X , so PBel = Pp−box.

4 Clouds and Generalized p-boxes

Let us recall the following result regarding possibility measures (see [2]):

Proposition 3 P ∈ Pπ if and only if 1−α ≤ P(π(x) > α),∀α ∈ (0,1]
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Consider a cloud (δ ,π), and define π = 1 − δ . Note that P(δ (x) ≥ α) ≤ 1 −α is
equivalent to P(π ≥ β ) ≥ 1−β , letting β = 1−α . So it is clear from equation (2)
that probability measure P is in the cloud (δ ,π) if and only if it is in Pπ ∩Pπ . So a
cloud is a family of probabilities dominated by two possibility distributions (see [5]).
It follows that

Proposition 4 A generalized p-box is a cloud

Consider the definition of a generalized p-box and the fact that a generalized
cumulative distribution can be viewed as a possibility distribution πR dominat-
ing the probability distribution Pr (see section 2.4). Then, the set of constraints
(P(Ai) ≥ αi)i=1,n from equation (1) generates a possibility distribution π1 and the set
of constraints (P(Ac

i ) ≥ 1 − βi)i=1,n generates a possibility distribution π2. Clearly
Pp−box = Pπ1 ∩Pπ2 , and corresponds to the cloud (1 − π2,π1). The converse is
not true.

Proposition 5 A cloud is a generalized p-box iff {Ai,Bi, i = 1, . . . ,n} form a
nested sequence of sets (i.e. there’s a complete order with respect to inclu-
sion)

Assume the sets Ai and B j form a globally nested sequence whose current ele-
ment is Ck. Then the set of constraints defining a cloud can be rewritten in the form
γk ≤ P(Ck) ≤ βk, where γk = 1−αi+1 and βk = min{1−α j+1 : Ai ⊆ B j} if Ck = Ai;
βk = 1−αi+1 and γk = max{1−α j+1 : A j ⊆ Bi} if Ck = Bi.

Since 1 = α1 > α2 > .. . > αn = 0, these constraints are equivalent to those of a
generalized p-box. But if ∃ B j,Ai with j > i s.t. B j �⊂ Ai and Ai �⊂ B j, then the cloud
is not equivalent to a p-box.

In term of pairs of possibility distributions, a cloud is a p-box iff π1 and π2 are
comonotonic.

When the cloud is thin (δ = π), cloud constraints reduce to P(π(x) ≥ α) =
P(π(x) > α) = 1 −α . On finite sets these constraints are contradictory. The clos-
est approximation corresponds to the generalized p-box such that αi = P(Ai),∀i. It
allocates fixed probability weights to elements Ei of the induced partition. In the con-
tinuous case, a thin cloud is non trivial. A cumulative distribution function defines a
thin cloud containing the only random variable having this cumulative distribution.
A continuous unimodal possibility distribution π on the real line induces a thin cloud
(δ = π) which can be viewed as a generalized p-box and is thus a (continuous ) be-
lief function with uniform mass density, whose focal sets are doubletons of the form
{x(α),y(α)} where {x : π(x) ≥ α} = [x(α),y(α)]. It is defined by the Lebesgue
measure on the unit interval and the multimapping α −→ {x(α),y(α)}. It is indeed
clear that Bel(π(x) ≥ α) = 1−α . There is an infinity of probability measures dom-
inating this belief function.

5 Conclusions and Open Problems

There are several concise representations of imprecise probabilities. This paper high-
lights some links existing between clouds, possibility distributions, p-boxes and be-
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lief functions. We generalize p-boxes and show that they can be encoded by a belief
function (extending results from [7, 9]). Another interesting result is that generalized
p-boxes are a particular case of clouds, which are themselves equivalent to a pair of
possibility distributions.

This paper shows that at least some clouds can be represented by a belief func-
tion. Two related open questions are : can a cloud be encoded by a belief function as
well? can a set of probabilities dominated by two possibility measures be encoded
by a belief function ? and if not, can we find inner or outer approximations following
a principle of minimal commitment? Another issue is to extend these results to the
continuous framework of Smets [11].
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1 Two Foci of Uncertainty

In the first years of the 19th century Gauss and Legendre independently invented
least-squares estimation in order to estimate planetary orbits. Based on complete
confidence in Newtonian dynamics, they overcame the challenge of noisy and in-
consistent astronomic observations [4]. Least-squares estimation is the paradigm of
optimal estimation and system identification.

Gauss and Legendre where justified in focussing entirely on data error because
Newtonian celestial mechanics has such tremendous fidelity to the truth, which is for-
tunate for the history of statistics. In contrast, modern estimation problems in vast do-
mains of social and technological sciences are characterized by egregiously incom-
plete, mis-specified or simply erroneous models. For instance, in macro-economic
modelling

there is genuine uncertainty about how good a model is, even within the sam-
ple. Moreover, since the economy if evolving, we can take it for granted that
the data generation process will change in the forecast period, causing any
model of it to become mis-specified over that period, and this is eventually
the main problem in economic forecasting. [1, p.246]

Two foci of uncertainty are present in these estimation problems: noisy data as well
as fundamental errors in model structure. The least-squares paradigm of optimality –
maximize fidelity of model to data by minimizing an error function – is not directly
applicable to this situation.

A basic theorem of info-gap theory asserts the irrevocable trade-off between en-
hancing fidelity of a model to data, and ameliorating the structural errors in the model
itself [2]. Robustness to model error decreases as the analyst demands greater fidelity
to the data; maximal fidelity entails minimal robustness to model mis-specification.

What this means is that parameter estimation cannot, realistically, be as good
as the data themselves suggest, when models are wrong in unknown ways. Thus
the key insight of Gauss and Legendre – let the data themselves dictate the fidelity
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to the model – is inappropriate when the model structures which underlie the es-
timation are uncertain. The implication is that fidelity to data should be satisficed
rather than optimized. Satisficed (sub-optimal) fidelity rarely entails a unique esti-
mate, so there remains an additional degree of freedom in the estimation process
which can be devoted to maximizing the robustness to model uncertainty. In this pa-
per we demonstrate these ideas for a particular class of problems, based on info-gap
decision theory.

2 Info-Gap Robust Estimation

In many situations one wishes to estimate the parameters of a probability density
function (pdf) based on observations. A common approach is to select those parame-
ter values which maximize the likelihood function for the class of pdfs in question.
We will develop a simple example, based on info-gap decision theory [2], to show
how to deal with the situation in which the form of the pdf is uncertain. This is a spe-
cial case of system identification when the structure of the system model is uncertain.
A simple example is found in [3, section 11.4].

Consider a random variable x for which a random sample has been obtained,
X = (x1, . . . ,xN). Let p̃(x|λ ) be a pdf for x, whose parameters are denoted by λ . The
likelihood function is the product of the pdf values at the observations because the
observations are statistically independent of one another:

L(X , p̃) =
N∏

i=1

p̃(xi|λ ) (1)

The maximum likelihood estimate of the parameters is the value of λ which maxi-
mizes L(X , p̃):

λ � = argmax
λ

L(X , p̃) (2)

But now suppose that the form of the pdf is not certain. Let p̃(x|λ ) be the most
reasonable choice of the form of the pdf, for instance p̃ might be the normal or
exponential distribution, but the actual form of the pdf is unknown. We will still
estimate the parameters λ of the nominal pdf p̃(x|λ ), but we wish to choose those
parameters to satisfice the likelihood and to be robust to the info-gaps in the shape
of the actual pdf which generated the data, or which might generate data in the future.

Let P be the set of all normalized and non-negative pdfs on the domain of x.
Thus the actual pdf must belong to P . Let U (α, p̃) denote an info-gap model for
uncertainty in the actual form of the pdf. For instance the envelope-bound info-gap
model is the following unbounded family of nested sets of pdfs:

U (α, p̃) = {p(x) : p(x) ∈ P, |p(x)− p̃(x|λ )| ≤ αψ(x)} , α ≥ 0 (3)

where ψ(x) is the known envelope function and the horizon of uncertainty, α , is
unknown. At any horizon of uncertainty, U (α, p̃) is a set of pdfs. These sets are
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nested by α and become more inclusive as α increases. The family of these nested
sets is unbounded so there is no worst case or most extreme pdf.

Now the question is, given the random sample X , and the info-gap model for
uncertainty in the form of the pdf, how should we choose the parameters of the
nominal pdf p̃(x|λ )?

We would like to choose parameter values for which the likelihood is high. How-
ever, since the form (not only the parameters) of the pdf is uncertain, we wish to
choose λ so that the likelihood is robust to the info-gaps in the shape of the pdf. The
robustness of parameter values λ is the greatest horizon of uncertainty α up to which
all pdfs in U (α, p̃) have at least a critical likelihood Lc:

α̂(λ ,Lc) = max

{

α :

(

min
p∈U (α,p̃)

L(X , p)
)

≥ Lc

}

(4)

A large value of α̂(λ ,Lc) implies that fidelity at least as good as Lc will be obtained
with parameters λ even if the form of the estimated pdf, p̃(x|λ ), errs greatly. On the
other hand, a small value of α̂(λ ,Lc) means that the fidelity could be less than Lc if
p̃(x|λ ) errs even a little.

The basic trade-off relation referred to earlier states that robustness decreases (α̂
gets smaller) as fidelity improves (Lc gets smaller):

Lc < L′
c implies α̂(λ ,Lc) ≤ α̂(λ ,L′

c) (5)

Furthermore, as mentioned earlier, the fidelity anticipated from the best model and
the data has zero robustness to model error:

Lc = L[X , p̃(x, |λ )] implies α̂(λ ,Lc) = 0 (6)

This is true for any choice of parameters λ , so it is true for the direct optimal estimate
λ � in eq.(2).

To develop an expression for the robustness, define µ(α) as the inner minimum
in eq.(4). For the info-gap model in eq.(3) we see that µ(α) is obtained for the
following choices of the pdf at the data points X :

p(xi) =
{

p̃(xi)−αψ(xi) if α ≤ p̃(xi)/ψ(xi)
0 else

(7)

Define:

αmax = min
i

p̃(xi)
ψ(xi)

(8)

Since µ(α) is the product of the densities in eq.(7) we find:

µ(α) =






N∏

i=1

[p̃(xi)−αψ(xi)] if α ≤ αmax

0 else

(9)
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According to the definition of the robustness in eq.(4), the robustness of likelihood-
aspiration Lc is the greatest value of α at which µ(α) ≥ Lc. Since µ(α) strictly de-
creases as α increases, we see that the robustness is the solution of µ(α) = Lc. In
other words, µ(α) is the inverse of α̂(λ ,Lc):

µ(α) = Lc implies α̂(λ ,Lc) = α (10)

Consequently a plot of µ(α) vs. α is the same as a plot of Lc vs. α̂(λ ,Lc). Thus,
eq.(9) provides a convenient means of calculating robustness curves.

3 Example

Robustness curves are shown in Fig. 1 based on eqs. (9) and (10). The nominal pdf
is exponential, p̃(x|λ ) = λ exp(−λx), and the envelope function is constant, ψ(x) =
1. An exponentially distributed random sample containing N = 20 data points is
generated with λ = 3. The maximum-likelihood estimate (MLE) of λ , based on
eq. (2), is λ � = 1/x where x = (1/N)

∑N
i=1 xi is the sample mean. Robustness curves

are shown for three values of λ , namely, 0.9λ �, λ �, and 1.1λ �.
Given a sample, X , the likelihood function for exponential coefficient λ is

L[X , p̃(x|λ )]. Each robustness curve in Fig. 1, α̂(λ ,Lc) vs. Lc, reaches the horizon-
tal axis when Lc equals the likelihood, as expected from eq. (6). In other words, the
robustness of the estimated likelihood is zero for any value of λ .

λ � is the MLE of the exponential coefficient. Consequently, for any λ , L
[X , p̃(x|λ �)] ≥ L[X , p̃(x|λ )]. Thus α̂(λ �,Lc) reaches the horizontal axis to the right
of α̂(λ ,Lc).

For the specific random sample whose robustness curves are shown in Fig. 1, the
robustness of the MLE, λ �, is greater than the robustness of the lower value, 0.9λ �, at
all likelihood aspirations Lc. In other words, λ � is a better robust-satisficing choice

Critical likelihood, log10 Lc

Fig. 1. Robustness curves. λ � = 3.4065.

L×/L[X , p̃(x\λ )]

Fig. 2. Loci of intersection of robustness
curves α̂(λ �,Lc) and α̂(1.1λ �,Lc).
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than 0.9λ � at any Lc. However, the robustness curves for λ � and 1.1λ � cross at
(L×, α̂×), indicating that the MLE is preferable at large Lc and low robustness, while
1.1λ � is preferred elsewhere. The crossing of robustness curves entails the reversal
of preference between λ � and 1.1λ �.

This pattern is repeated for all of 500 random samples: α̂(λ �,Lc) dominates
α̂(0.9λ �,Lc), while α̂(λ �,Lc) and α̂(1.1λ �,Lc) cross. The coordinates of the in-
tersection of α̂(λ �,Lc) and α̂(1.1λ �,Lc) are plotted in Fig. 2 for 500 robustness
curves, each generated from a different 20-element random sample. In each case,
λ � is the MLE of that sample. The vertical axis is the robustness at the intersection,
α̂×, divided by the maximum robustness for that sample, αmax, defined in eq. (8).
The horizontal axis is the likelihood-aspiration at the intersection, L×, divided by the
maximum likelihood for the sample, L[X , p̃(x|λ �)].

The center of the cloud of points in Fig. 2 is about (0.5, 0.2). What we learn from
this is that the robustness curves for λ � and 1.1λ � typically cross at a likelihood
aspiration of about half the best-estimated value, and at a robustness of about 20% of
the maximum robustness. We also see that curve-crossing can occur at much higher
values of Lc, and that this tends to be at very low robustness. This happens when
L[X , p̃(x|1.1λ �)] is only slightly less than L[X , p̃(x|λ �)]. Curve-crossing can also
occur at much lower Lc and higher robustness, typically because L[X , p̃(x|1.1λ �)] is
substantially less than L[X , p̃(x|λ �)].

Note that the data in this example are generated from an exponential distribution,
so there is nothing in the data to suggest that the exponential distribution is wrong.
The motivation for the info-gap model of eq. (3) is that, while the past has been
exponential, the future may not be. The robust-satisficing estimate of λ accounts
not only for the historical evidence (the sample X) but also for the future uncertainty
about the relevant family of distributions.

In short, the curve-crossing shown in Fig. 1 is typical, and info-gap robust-
satisficing provides a technique for estimating the parameters of a pdf when the form
of the pdf is uncertain.
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1 Introduction

In the Theory of Evidence it is assumed that there is an exact amount of information
that makes the evidences of the focal sets (i.e. their masses) sum to 1. But it is not
difficult to think of situations where this is not the case and the mass assignments
sum less or more than 1.

The first situation happens when there is a lack of information. In the special
case when the focal sets are nested (consonant) we obtain non-normalized possibility
distributions and there are several standard ways to normalize them which in fact are
equivalent to reassigning the masses of evidence to the subsets of our universe [2].
The general case deserves a deeper attention.

When the mass of the focal sets sum more than 1, we have to handle an excess of
information. This can happen, for example, if we get it from different sources, since
we can obtain redundant or contradictory information in this way.

In these cases it would be interesting to have some reasonable procedures to add
or remove information or equivalently to relocate the excess or defect of masses of
the focal sets.

For this purpose, in this paper a plausibility distribution on a universe X (with
perfect mass assignment) will be split into a family of (non-normalized) possibility
distributions. In the case of imperfect mass assignment, we can deal with pieces of
information separately and we can add or remove some or some parts of them to
obtain a mass summing to 1.

In the next Section the fact that Possibility Theory fuzzifies the case when there
is only one focal set (with mass 1) in our universe and that a plausibility distribution
can be seen as a sum of (non-normalized) possibility distributions will be shown.
The results of this Section will be used to normalize mass assignments that do not
add 1 in Section 4. Previously, in Section 3 normalization of possibility distributions
will be revisited from this point of view. Section 5 contains a possible application of
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the previous results to Approximate Reasoning and especially to interpolation and
defuzzfication of fuzzy outputs in fuzzy control.

2 Plausibility and Possibility Distributions

A plausibility distribution Pl can be split in possibility ones in a way that it can be
thought as the union of them in a logic system based on the Lukasiewicz connectives.
Let us recall that the t-norm TL and t-conorm SL of Lukasiewicz TL are defined for
all x,y ∈ [0,1] by TL(x,y) = Max(x+ y−1,0) and SL(x,y) = Min(x+ y,1).

As usual in fuzzy logic, the semantics for the connectives “and” and “or” will
be given by Lukasiewicz t-norm and t-conorm, the implication by the residuation
(T̂L(x|y) = Min(1−x+y,1)) of Lukasiewicz t-norm, the negation by the strong nega-
tion n(x) = 1−x and the quantifers ∃ and ∀ by the suprem and infimum respectively.

Possibility distributions generalize (fuzzify) plausibility distributions when there
is only a focal set B in the universe of discourse X .

Indeed, in this case Pl(A) = 0 or 1 ∀A ⊂ X . Considering the set Pl of subsets of
X that are plausible we have

A ∈ Pl if and only if ∃x ∈ X | x ∈ B∧ x ∈ A.

If instead of B we consider a normalized fuzzy subset µB of X , then the previous
formula becomes Pl(A) = supx∈X TL(µB(x),A(x)) where A(x) is the characteristic
function of A. Since A is a crisp set, last formula is equivalent to

Pl(A) = supx∈AµB(x)

which is the possibility of A wrt µB.
In a similar way it can be shown that the necessity of A fuzzifies the belief of A

when there is only one focal set.
Let us see what happens when there are more than one focal set. We will study

the case with two focal sets that can be easily generalized to any finite number. Let
B and C be the two focal sets in X . Then m(B)+ m(C) = 1. B and C are pieces of
evidence and therefore a set will be plausible when some of its elements satisfy at
least on of them. This can be written

A ∈ Pl if and only if (∃x ∈ X | x ∈ B∧ x ∈ A)∨ (∃y ∈ X | y ∈ C ∧ y ∈ A).

If we fuzzify the previous formula associating to B and C the fuzzy subsets µB

and µC defined as follows respectively,

µB(x) =
{

m(B) if x ∈ B
0 otherwise

µC(x) =
{

m(C) if x ∈ C
0 otherwise.

we get Pl(A) = supx∈X TL(µB,A(x))+ supy∈X TL(µC,A(y)), which is indeed the defi-
nition of Pl(A).



Theory of Evidence with Imperfect Information 269

In a similar way, the belief of A can be thought from this point of view.
Given a focal set B of X , supx∈AµB(x) can be interpreted as the possibility of A

wrt B (or conditioned to B). This is, knowing the piece of evidence B, supx∈AµB(x)
gives the possibility of A. The total plausibility of A is then the sum of all the possi-
bilities wrt all the focal sets B of X and the sum can be viewed as the ’or’ connective
modeled by the Lukasiewicz t-conorm.

More general, if we consider a (non-normalized) possibility distribution Posµ
generated by a fuzzy subset µ of X , then Posµ(A) is the possibility of A wrt µ . If we
have n fuzzy subsets µ1,µ2, ,µn of heights hµ1 ,hµ2 , ,hµn with

∑n
i=1 hµi = 1, we can

define a plausibility distribution by simple adding (i.e. applying the disjunction):

Pl(A) = Posµ1(A)+Posµ2(A)+ ...+Posµn(A).

We can consider the question in the opposite way: A given plausibility distribu-
tion can be split in a sum of possibility ones (in many different ways). Indeed, let F
be the set of focal elements of X and let us consider a (maximal) chain c1 in F . Since
the elements of c1 are nested, they generate a non-normalized possibility distribution
Posc1 . Now remove the elements of c1 from F and select another (maximal) chain c2

from F − c1. Repeating this process we will get a family of chains c1,c2, ,ck parti-
tioning F (ci ∩c j = /0 if i �= j, and c1,∪c2 ∪ ∪ck = F). Then the following proposition
can be trivially proved.

Proposition 1. Pl(A) =
∑k

i=1 Posck(A) ∀A ⊂ X .

This permits us to define the dimension of a random set.

Definition 1. The minimum number of chains needed in the previous process
will be called the dimension of (X ,F).

Then (X ,F) is equivalent to give k fuzzy subsets of X (or, equivalently, k non-
normalized possibility distributions).

This concept can help us to understand the structure of (X ,F).

Proposition 2. The dimension of (X ,F) is 1 if and only if F is nested or equiv-
alently if it generates a possibility distribution.

Proposition 3. If F generates a probability distribution, then the dimension of
(X ,F) is equal to the cardinality of F.

3 Normalizing Possibility Distributions

It is well-known that any normal fuzzy subset of a universe X generates a possibil-
ity distribution and in this paper the terms possibility distribution and (normalized)
fuzzy subset will be indistinctly used. Nevertheless, in many cases there is a need
of dealing with non-normalized fuzzy subsets that generate non-normalized possi-
bility distributions. In these cases, it is assumed that there is a lack of information
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or evidence, which implies that the masses assigned to the focal sets sum a value y1

smaller than 1. The lack of mass 1 − y1 is usually assigned to the empty set. If we
want to obtain a normalized possibility distribution from a non-normalized one µ ,
we must relocate the mass 1− y1, which is equivalent to normalize the fuzzy subset
µ . There are many ways to do that (see e.g. [2]).

If µ is a non-normalized possibility distribution on a set X with non-zero values
y1,y2, ...,yn with yi > yi+1, the focal sets are Mi = {x ∈ X |µ(x) ≥ yi} for i = 1, ...,n
and the mass assigned to Mi is mi = yi − yi+1 and the empty set M0 has mass m0 =
1− y1.

In [2] a valid normalization of µ is defined as a distribution corresponding to
a reassignment of masses to the focal elements such that the new masses of Mi are
mi +ui for all i = 1,2, ...,n with

∑n
i=1 ui = m0 and 0 ≤ ui ≤ 1 for all i = 1,2, ...n.

Following the ideas of the last section, this means that we add to our possibility
distribution the one corresponding to the values ui.

Probably the three most used normalization procedures for possibility distribu-
tions are the following ones.

Definition 2. The minimal normalization of a fuzzy subset µ of X with greatest
value y1 is the fuzzy subset µ of X defined for all x ∈ X by

µ̂(x) =
{
µ(x) if µ(x) �= y1

1 otherwise.

In other words, µ̂ is obtained from µ by replacing the greatest value y1 by
1.

Definition 3. The maximal normalization µ̂ of µ is obtained by adding 1− y1

(the lack of evidence)to all non-zero values yi of µ (i.e.: ŷi = yi +1−y1 for all
i = 1,2, ...,n).

Definition 4. The product-related normalization µ̂ of µ is obtained by dividing
all its values by the greatest one y1.

Taking the last Section into account, these methods correspond to adding the
following possibility distributions to our universe.

Proposition 4. Let µ be a fuzzy subset of X with greatest value y1. The minimal
normalization of µ is obtained by adding the fuzzy subset µ ′ of X defined by

µ ′(x) =
{

1− y1 if µ(x) = y1

0 otherwise.

Proposition 5. Let µ be a fuzzy subset of X with greatest value y1. The maximal
normalization of µ is obtained by adding the fuzzy subset µ ′ of X defined by

µ ′(x) =
{

1− y1 if x belongs to the support of µ
0 otherwise.

Proposition 6. Let µ be a fuzzy subset of X with greatest value y1. The product
related normalization of µ is obtained by adding the fuzzy subset µ ′ of X
defined for all x ∈ X by µ ′(x) = 1−y1

y1
µ(x).
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4 Normalizing Plausibility Distributions
with Imperfect Information

Let us generalize the results of the last Section when there is a mass assignment to
the focal sets that does not sum to 1. Let F be the set of focal sets on a universe
X . If B is a focal set let m(B) be its mass and let m0 = 1−

∑

B⊂F m(B) be the lack
of information. Let Pl be the associated plausibility measure. According to Proposi-
tion 3.1., there exist k possibility distributions Pos1, ...,Posk such that for all A ⊂ X
Pl(A) = Pos1(A) + ... + Posk(A). Let hi be the height of the fuzzy subset µi of X
associated to Posi for all i = 1, ...,k and h =

∑k
i=1 hi.

4.1 Lack of Information

Let us first study when the masses sum less than 1.

Definition 5. With the previous notations a valid normalization P̂l of Pl when
m0 > 0 is a plausibility measure corresponding to a reassignment of masses
to the focal sets such that the new masses of B ⊂ F are m(B) + m′(B) with
∑

B⊂F m′(B) = m0 and for all B ⊂ F 0 ≤ m′(B) ≤ 1.

The minimal, maximal and product-related normalizations of possibility distrib-
utions can be then generalized to this case obtaining valid normalizations of plausi-
bility measures.

Definition 6. With the previous notations, the minimal normalization of Pl is
obtained by shifting the greatest values of the fuzzy subsets µi corresponding
to the possibility distributions Posi to hi +1−h

Proposition 7. With the previous notations, the minimal normalization of Pl is
obtained by adding the possibility measures corresponding to the fuzzy subsets

µ ′
i , i = 1, ...,k defined by µ ′

i (x) =
{

1−h
k if µi(x) = hi

0 otherwise.

Definition 7. With the previous notations, the maximal normalization of Pl is
obtained by adding 1−h to all the values of the supports of the fuzzy subsets
µi.

Proposition 8. With the previous notations, the maximal normalization of Pl
is obtained by adding the possibility measure corresponding to the fuzzy subset

µ ′ defined by µ ′(x) =
{

1−h if x is in the support of some µi i = 1, ...,k
0 otherwise.

Definition 8. With the previous notations, the product related of Pl is obtained
by dividing the fuzzy subsets µi by h.

Proposition 9. With the previous notations, the product related normalization
of Pl is obtained by adding the possibility measures corresponding to the fuzzy
subsets µ ′

i defined for all x ∈ X by µ ′
i (x) = 1−h

h µi(x).
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It interesting to note that the minimal, maximal and product-related normaliza-
tions are valid ones.

Also it is worth noticing that after a valid normalization the dimension of X
remains unchanged since the set of focal sets is the same.

4.2 Excess of Information

If the amount of mass is greater than 1, we have to remove some of it to normalize
our plausibility measure.

The procedure is very similar to the one used in the previous subsection, but we
have to be aware that some possibility distributions in which Pl is split can contain
less mass than is needed to remove. Let us suppose for example that Pl is split into
three possibility distributions of heights 0.8, 0.7 and 0.1. This makes h = 1.6, which
means that in the minimal case, for instance, we would need to lower the heights
of these fuzzy sets by removing 1.6−1

3 = 0.2 which exceeds the height of the third
fuzzy subset. Therefore, in the case of the maximal and minimal normalization this
situation has to be taken into account. (Note that this can not happen in the product-
related normalization).

The definition of valid normalization is dual to Definition 5.

Definition 9. With the previous notations a valid normalization P̂l of Pl when
m0 < 0 is a plausibility measure corresponding to a reassignment of masses
to the focal sets such that the new masses of B ⊂ F are m(B)− m′(B) with
∑

B⊂F m′(B) = m0 and for all B ⊂ F 0 ≤ m′(B) ≤ 1.

The minimal and maximal normalizations with excess of information can be done
in this way

Definition 10. Let Pl be a plausibility measure split into k possibility distrib-
utions Pos1, ...,Posk corresponding to fuzzy subset µ1, ...,µk of X with heights
h1, ...,hk with h =

∑k
i=1 hi > 1. The minimal normalization of Pl is obtained

in the following way: Remove all possibility distributions with hi < (h− 1)/k.
Calculate the sum of heights h′ of the remaining fuzzy subsets µi1 , ....µil and
replace them by the fuzzy subsets µ ′

i j
(x) = Min( h′−1

l ,µi j) j = 1, ..., l.

Definition 11. Let Pl be a plausibility measure split into k possibility distrib-
utions Pos1, ...,Posk corresponding to fuzzy subset µ1, ...,µk of X with heights
h1, ...,hk with h =

∑k
i=1 hi > 1. The maximal normalization of Pl is obtained

in the following way: Remove all possibility distributions with hi < (h− 1)/k.
Calculate the sum of heights h′ of the remaining fuzzy subsets µi1 , ....µil and
replace them by the fuzzy subsets µ ′

i j
(x) = Max(µi j − h′−1

l ,0) j = 1, ..., l.

5 An Application to Interpolative Reasoning

In this Section we will develop an approach to Interpolative Reasoning using the
results of the previous ones.
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Let us suppose that the input and output spaces of a rule-based model are in-
tervals [a,b] and [c,d] of the real line partitioned into n and m triangular fuzzy
subsets µ1, ...,µn and ν1, ...,νm respectively such that there are n + 2 points a =
x0 = x1 < x2 < ... < xn = xn+1 = b with µi = [xi−1,xi,xi+1] and m + 2 points
c = y0 = y1 < y2 < ... < yn = yn+1 = d with νi = [yi−1,yi,yi+1]. Let us consider
a set of rules R1, ...,Rn of the form

Rule Ri : If X is µi Then y is νr(i) where r : {1,2, ...,n} → {1,2, ...m}.

In order to assure continuity in the reasoning, we will assume that |r(i)− r(i −
1)| ≤ 1 ∀i = 1, ...,n (i.e., the fuzzy subsets of the outputs of two correlative rules are
not disjoint).

Let x be a point in [xi,xi+1]. Applying the i-th Rule to x, we obtain the fuzzy sub-
set Min(νr(i),µi(x)). The two fuzzy subsets Min(νr(i),µi(x)) and Min(νr(i+1),µi+1(x))
generate a perfect plausibility measure Pl since µi(x))+µi+1(x) = 1.

Proposition 10. If νr(i) �= νr(i+1), there exists exactly one point y in [c,d] with
Pl(y) = 1.

The rules Ri are rough local descriptions of a map f . In this case it seems reason-
able to take the value of y with Pl(y) = 1 as the image of x.

Proposition 11. If νr(i) �= νr(i+1), then the map f is linear in the interval [i, i+1].

If νr(i) = νr(i+1), then there is not only a point y in [c,d], but an interval of points
y with Pl(y) = 1.

Example 1. Let us consider the following rule-base system: [a,b] = [0,3] [c,d] =
[3,5], [0,3] partitioned into the fuzzy subsets S = [0,0,1], M = [0,1,2], L = [1,2,3],
XL = [2,3,3] and [3,5] into S = [3,3,4], M = [3,4,5], L = [4,5,5] with the following
rules:

Rule R1 : If x is S Then y is S

Rule R2 : If x is M Then y is M

Rule R3 : If x is L Then y is M

Rule R4 : If x is XL Then y is L

The following figure shows for every value x ∈ [0,3] the corresponding values y
in [3,5] with Pl(y) = 1.
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6 Concluding Remarks

Plausibility distributions have been split into a families of non-normalized possibil-
ity distributions. This permits to add or remove some information in case the mass
assignment do not sum to 1. The normalization of possibility distributions has been
revisited and generalized to plausibility ones.

It would be interesting to find some way to determine “good” splits and easy
algorithms to generate them.

Also Possibility Theory has been reinterpreted as the fuzzification of Evidence
Theory when there is only one focal set with mass 1.
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The aim of this paper is to define the product operation on the family of IF-events
and the notion of joint IF-observable. We formulate the version of conditional IF-
probability on IF-events, too.

1 Introduction

In recent years the theory of IF-sets introduced by Atanassov ([1]) has been studied
by many authors. An IF-set A on a space Ω is a couple (µA,νA), where µA : Ω →
[0,1], νA :Ω → [0,1] are functions such that µA(ω)+νA(ω) ≤ 1 for each ω ∈Ω (see
[1]). The function µA is called the membership function, the function νA is called the
non membership function. In [3] Grzegorzewski and Mrówka defined the probability
on the family of IF-events N = {(µA,νA) ; µA,νA are S − measurable and µA +
νA ≤ 1} as a mapping P from the family N to the set of all compact intervals
in R by the formula P((µA,νA)) =

[∫

Ω µA dP,1−
∫

Ω νA dP
]
, where (Ω ,S ,P) is

probability space. This IF-probability was axiomatically characterized by B. Riečan
(see[11]).

More general situation was studied in [12], where the author introduced the no-
tion of IF-probability on the family

F = {( f ,g) ; f ,g ∈ T ,T is a Lukasiewicz tribe and f +g ≤ 1}

as a mapping P from the family F to the family J of all closed intervals 〈a,b〉
such that 0 ≤ a ≤ b ≤ 1. Variant of Central limit theorem and Weak law of large
numbers were proved as an illustration of method applied on these IF-events. It can
see in the papers [8], [9].

More general situation was used in [7]. The authors defined the IF-probability on
the family M = {(a,b) ∈ M,a+b ≤ u}, where M is σ -complete MV-algebra, which
can be identified with the unit interval of a unique �-group G with strong unit u, in
symbols,

M = Γ (G,u) = (〈0,u〉,0,u,¬,⊕,*)

K. Lendelová: Conditional IF-probability, Advances in Soft Computing 6, 275–283 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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where 〈0,u〉 = {a ∈ G ; 0 ≤ a ≤ u}, ¬a = u− a, a⊕ b = (a + b)∧ u, a* b = (a +
b−u)∨0 (see [14]). We say that G is the �-group (with strong unit u) corresponding
to M.

By an �-group we shall mean a lattice-ordered Abelian group. For any �-group
G, an element u ∈ G is said to be a strong unit of G, if for all a ∈ G there is an integer
n ≥ 1 such that nu ≥ a.

The independence of IF-observables, the convergence of IF-observables and the
Strong law of large numbers were studied on this family of IF-events, see [5], [6].

In this paper we define the product operation on the family F of IF-events

F = {( f ,g) ; f ,g ∈ T ,T is Lukasiewicz tribe and f +g ≤ 1}

and formulate the version of conditional IF-probability on this family. In Section
2 we introduce the operations on F and J , where J is the family of all closed
intervals 〈a,b〉 such that 0 ≤ a ≤ b ≤ 1.

2 Basic Notions

Now we introduce operations on F . Let A = (a1,a2), B = (b1,b2). Then we define

A⊕B = (a1 ⊕b1,a2 *b2) =
(
(a1 +b1)∧1,(a2 +b2 −1)∨0

)
,

A*B = (a1 *b1,a2 ⊕b2) =
(
(a1 +b1 −1)∨0,(a2 +b2)∧1

)
.

If An = (an1,an2), then we write

An ↗ A ⇐⇒ an1 ↗ a1, an2 ↘ a2.

IF-probability P on F is a mapping from F to the family J of all closed
intervals 〈a,b〉 such that 0 ≤ a ≤ b ≤ 1. Here we define

〈a,b〉+ 〈c,d〉 = 〈a+ c,b+d〉,

〈an,bn〉 ↗ 〈a,b〉 ⇐⇒ an ↗ a, bn ↗ b.

By an IF-probability on F we understand any function P : F → J satisfying
the following properties:

(i) P((1,0)) = 〈1,1〉 = 1 ; P((0,1)) = 〈0,0〉 = 0;
(ii) if A*B = (0,1) and A,B ∈ F , then P(A⊕B) = P(A)+P(B);
(iii) if An ↗ A, then P(An) ↗ P(A).

IF-probability P is called separating, if

P
(
(a1,a2)

)
= 〈P�(a1),1−P�(a2)〉,

where the functions P�,P� : T → [0,1] are probabilities. The next important notion
is notion of IF-observable.

By IF-observable on F we understand any mapping x : B(R) → F satisfying
the following conditions:
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(i) x(R) = (1,0);
(ii) if A∩B = O, then x(A)* x(B) = (0,1) and x(A∪B) = x(A)⊕ x(B);
(iii) if An ↗ A, then x(An) ↗ x(A).

If we denote x(A) =
(
x�(A),1−x�(A)

)
for each A ∈ B(R), then x�,x� : B(R) →

T are observables, see [9].

3 The Family of IF-events with Product

We introduce the notion of product operation on the family of IF-events F and show
an example of this operation.

Definition 1. We say that a binary operation · on F is product if it satisfying
the following conditions:

(i) (1,0) · (a1,a2) = (a1,a2) for each (a1,a2) ∈ F ;
(ii) the operation · is commutative and associative;
(iii) if (a1,a2)* (b1,b2) = (0,1) and (a1,a2),(b1,b2) ∈ F , then

(c1,c2) ·
(
(a1,a2)⊕ (b1,b2)

)
=
(
(c1,c2) · (a1,a2)

)
⊕
(
(c1,c2) · (b1,b2)

)

and
(
(c1,c2) · (a1,a2)

)
*
(
(c1,c2) · (b1,b2)

)
= (0,1)

for each (c1,c2) ∈ F ;
(iv) if (a1n,a2n) ↘ (0,1), (b1n,b2n) ↘ (0,1) and (a1n,a2n),(b1n,b2n) ∈ F , then

(a1n,a2n) · (b1n,b2n) ↘ (0,1).

Now we show an example of product operation on F .

Theorem 1. The operation · defined by

(x1,y1) · (x2,y2) = (x1 · x2,y1 + y2 − y1 · y2)

for each (x1,y1),(x2,y2) ∈ F is product operation on F .

Proof. (i) Let (a1,a2) is an element of family F . Then

(1,0) · (a1,a2) = (1.a1,0+a2 −0 ·a2) = (a1,a2).

(ii) The operation · is commutative and associative.
(iii) Let (a1,a2)* (b1,b2) = (0,1). Then

(c1,c2) ·
(
(a1,a2)⊕ (b1,b2)

)
= (c1,c2) · (a1 ⊕b1,a2 *b2) =

= (c1,c2) ·
(
(a1 +b1)∧1,(a2 +b2 −1)∨0

)
=

= (c1,c2) · (a1 +b1,a2 +b2 −1) =
= (a1c1 +b1c1,a2 +b2 +2c2 −1−a2c2 −b2c2)
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and
(
(c1,c2) · (a1,a2)

)
⊕
(
(c1,c2) · (b1,b2)

)
=

= (c1a1,c2 +a2 − c2a2)⊕ (c1b1,c2 +b2 − c2b2) =
=
(
c1a1 ⊕ c1b1,(c2 +a2 − c2a2)* (c2 +b2 − c2b2)

)
=

=
(
(c1a1 + c1b1)∧1,(a2 +b2 +2c2 −1−a2c2 −b2c2)∨0

)
=

= (a1c1 +b1c1,a2 +b2 +2c2 −1−a2c2 −b2c2).

Hence (c1,c2) ·
(
(a1,a2)⊕(b1,b2)

)
=
(
(c1,c2) ·(a1,a2)

)
⊕
(
(c1,c2) ·(b1,b2)

)
. More-

over
(
(c1,c2) · (a1,a2)

)
*
(
(c1,c2) · (b1,b2)

)
=

= (c1a1,c2 +a2 − c2a2)* (c1b1,c2 +b2 − c2b2) =
=
(
c1a1 * c1b1,(c2 +a2 − c2a2)⊕ (c2 +b2 − c2b2)

)
= (0,1).

(iv) Let (a1n,a2n) ↘ (0,1), (b1n,b2n) ↘ (0,1). Since a1n ↘ 0, a2n ↗ 1, b1n ↘ 0
and b2n ↗ 1, then

(a1n,a2n) · (b1n,b2n) = (a1nb1n,a2n +b2n −a2nb2n) ↘ (0,1).

The next important notion is a notion of joint observable.

Definition 2. Let x,y : B(R)→F be two IF-observables. The joint IF-observable
of the IF-observables x,y is a mapping h : B(R2) → F satisfying the following
conditions:

(i) h(R2) = (1,0);
(ii) if A,B ∈ B(R2) and A∩B = /0, then h(A∪B) = h(A)⊕h(B) and

h(A)*h(B) = (0,1);
(iii) if A,A1, . . . ∈ B(R2) and An ↗ A, then h(An) ↗ h(A);
(iv) h(C ×D) = x(C) · y(D) for each C,D ∈ B(R).
Theorem 2. To each two IF-observables x,y : B(R) → F there exists their joint
IF-observable.

Proof. In [13] Theorem 3.3.

4 Conditional IF-probability

In classical probability space (Ω ,S ,P) we have two possibilities to define condi-
tional probability of A ∈ S

a. P(A|S0), where S0 ⊂ S is a σ -algebra, is a version of conditional probability
of A with respect to S0, if P(A|S0) : Ω → R is S0-measurable and

∫

B

P(A|S0) dP = P(A∩B)

for every B ∈ S0.
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b. p(A|ξ ), where ξ : Ω → R is a random variable, is a version of conditional prob-
ability of A with respect to ξ , if p(A|ξ ) : R → R is a Borel function such that

∫

B

p(A|ξ ) dPξ = P(A∩ξ−1(B))

for every B ∈ B(R).

We take the second case for definition conditional IF-probability on family F of
IF-events with product · defined by

(x1,y1) · (x2,y2) = (x1 · x2,y1 + y2 − y1 · y2)

for each (x1,y1),(x2,y2)∈F . We show some properties of conditional IF-probability
in this section, too.

Definition 3. Let (a1,a2) be an element of family F of IF-events with product
· given by formula

(x1,y1) · (x2,y2) = (x1 · x2,y1 + y2 − y1 · y2)

for (x1,y1),(x2,y2)∈F . Let y : B(R)→F be an IF-observable, y(A)=
(
y�(A),1−

y�(A)
)
, A ∈ B(R). A function p

(
(a1,a2)|y

)
: B(R) → J is a version of the

conditional IF-probability of (a1,a2) with respect to y, if there exists the Borel
functions p�(a1|y�),p�(1−a2|y�) : R → R such that

〈∫

B

p�(a1|y�) dP�,

∫

B

p�(1−a2|y�) dP�

〉

= P
(
(a1,a2) · y(B)

)

for every B ∈ B(R). Then

p
(
(a1,a2)|y

)
(B) =

〈
p�(a1|y�)(B),p�(1−a2|y�)(B)

〉
.

Theorem 3. The function p�(a1|y�) : R → R from Definition 3 is a version of
conditional probability of a1 with respect y� and the function p�(1−a2|y�) is a
version of conditional probability of 1−a2 with respect y�.

Proof. By Definition 3 we obtain
〈∫

B

p�(a1|y�) dP�,

∫

B

p�(1−a2|y�) dP�

〉

= P
(
(a1,a2) · y(B)

)
=

= P
(
(a1,a2) · (y�(B),1− y�(B))

)
= P

(
(a1y�(B),1− (1−a2)y�(B))

)
=

=
〈
P�
(
a1y�(B)

)
,P�
(
(1−a2)y�(B)

)〉
.

Hence
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∫

B

p�(a1|y�) dP� = P�
(
a1y�(B)

)
,

∫

B

p�(1−a2|y�) dP� = P�
(
(1−a2)y�(B)

)
.

Lemma 1. The function p
(
(a1,a2)|y

)
from Definition 3 exists and if g,h are

two versions of conditional IF-probability of (a1,a2) with respect to y, then
g = h P ◦ y-almost everywhere.

Proof. Existence of functions p�(a1|y�) : R → R and p�(1−a2|y�) implies exis-
tence of function p

(
(a1,a2)|y

)
.

Let f ,g : B(R) → J , f (A) = 〈 f �(A), f �(A)〉, g(A) = 〈g�(A),g�(A)〉 be two ver-
sions of conditional IF-probability, where A ∈ B(R). From Theorem 3 and from
definition and properties of conditional probability we have

f � = g� P� − almost everywhere

f � = g� P� − almost everywhere

Hence f = g P ◦ y-almost everywhere.

Theorem 4. Let F be family of IF-events and · be the product given by

(x1,y1) · (x2,y2) = (x1 · x2,y1 + y2 − y1 · y2)

for each (x1,y1),(x2,y2) ∈ F . Let (a1,a2) ∈ F , y : B(R) → F be an IF-
observable. Then p

(
(a1,a2)|y

)
has the following properties:

(i) p
(
(0,1)|y

)
= 〈0,0〉 = 0, p

(
(1,0)|y

)
= 〈1,1〉 = 1 P ◦ y-almost everywhere;

(ii) 0 ≤ p
(
(a1,a2)|y) ≤ 1 P ◦ y-almost everywhere;

(iii) if
∞⊙

i=1
(a1i,a2i) = (0,1), then p

( ∞⊕

i=1
(a1i,a2i)

∣
∣
∣y
)

=
〈 ∞∑

i=1
p�(a1i|y�),

∞∑

i=1
p�(1 −

a2i|y�)
〉

P ◦ y-almost everywhere.

Proof.
By Definition 3 we have P

(
(a1,a2) ·y(B)

)
=
〈∫

B
p�(a1|y�) dP�,

∫

B
p�(1−a2|y�)

dP�
〉
.

(i) If (a1,a2) = (0,1), then

P
(
(0,1) · y(B)

)
= P

(
(0,1)

)
= 〈0,0〉 =

〈∫

B

0 dP�,

∫

B

0 dP�

〉

.

Hence p
(
(0,1)|y

)
= 〈0,0〉 = 0.

If (a1,a2) = (1,0), then
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P
(
(1,0) · y(B)

)
= P(y(B)) = (P ◦ y)(B) =

〈∫

B

1 dP�,

∫

B

1 dP�

〉

.

(ii) If B ∈ B(R), then

0 = 〈0,0〉 = P
(
(a1,a2) · y( /0)

)
≤ P

(
(a1,a2) · y(B)

)
=

=
〈∫

B

p�(a1|y�) dP�,

∫

B

p�(1−a2|y�) dP�

〉

≤ P
(
(a1,a2) · y(R)

)
≤ 〈1,1〉 = 1

and

(P ◦ y)
(
{t ∈ R ; p

(
(a1,a2)|y

)
< 〈0,0〉 = 0}

)
= (P ◦ y)(B0) = 〈0,0〉 = 0,

(P ◦ y)
(
{t ∈ R ; p

(
(a1,a2)|y) > 〈1,1〉 = 1}

)
= (P ◦ y)(B1) = 〈0,0〉 = 0.

In the reverse cases

(P ◦ y)(B0) > 0, (P ◦ y)(B1) > 0

we get contradictions
∫

B0

p�(a1|y�) dP� < 0 ,

∫

B1

p�(a1|y�) dP� > 1,

∫

B0

p�(1−a2|y�) dP� < 0 ,

∫

B1

p�(1−a2|y�) dP� > 1

respectively.

(iii) Let
∞⊙

i=1
(a1i,a2i) = (0,1). Then

P

(( ∞⊕

i=1

(a1i,a2i)
)

· y(B)
)

= P

( ∞⊕

i=1

(
(a1i,a2i) · y(B)

)
)

=

=
∞∑

i=1

P
(
(a1i,a2i) · y(B)

)
=

=
∞∑

i=1

〈∫

B

p�(a1i|y�) dP�,

∫

B

p�(1−a2i|y�) dP�

〉

=

=

〈∫

B

∞∑

i=1

p�(a1i|y�) dP�,

∫

B

∞∑

i=1

p�(1−a2i|y�) dP�

〉

.
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5 Conclusion

The paper is concerned in the probability theory on IF-events with product. We define
the notion of product operation · and joint IF-observable. We formulate the version
of conditional IF-probability on family of IF-events.
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One of the important problems of IF-sets theory ([1])is the creation of the probability
theory on the family F of all IF-events. We present here two ways how to solve
this problem. The first one is an embedding of F to a convenient MV-algebra. The
second is a substituting the notions of an MV-algebra by a more general notions of
so-called L-lattice.

1 IF-events

Consider a measurable space (Ω ,S ),S be a σ -algebra, T be the family of all
S -measurable functions f : Ω → [0,1],

F = {(µA,νA);µA,νA : Ω → [0,1],µA,νA are S -measurable, µA +νA ≤ 1}.

There are at least two ways how to define probability on F . They were discov-
ered independently (see the following examples)

Example 1(Grzegorzewski, Mrowka [5]). The probability P(A) of an IF event A is
defined as the interval

P(A) = [
∫

Ω
µAd p,1−

∫

Ω
νAd p].

Example 2(Gersternkorn, Manko [4]). The probability P(A) of an IF - event A is
defined as the number

P(A) =
1
2
(
∫

Ω
µAd p+1−

∫

Ω
νAd p).

Based on Example 1 the following axiomatic definition of probability was intro-
duced ([8]) as a function from F to the family J of all compact subintervals of the
unit interval

Definition . An IF - probability on F is a mapping P : F → J satisfying the
following conditions:

B. Riečan: On Two Ways for the Probability Theory on IF-sets, Advances in Soft Computing 6, 285–290
(2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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(i) P((0,1)) = [0,0],P((1,0)) = [1,1];
(ii) P((µA,νA)) + P((µB,νB)) = P((µA,νA) ⊕ (µB,νB)) + P((µA,νA) *

(µB,νB)) for any (µA,νA),(µB,νB) ∈ F ;
(iii) (µAn ,νAn) ↗ (µA,νA) =⇒ P((µAn ,νAn)) ↗ P((µA,νA)).
(Recall that [a,b] + [c,d] = [a + c,b + d], and [an,bn] ↗ [a,b] means that an ↗

a,bn ↗ b. On the other hand (µAn ,νAn) ↗ (µA,νA) means that µAn ↗ µA, and νAn ↘
νA.)

In the present time there is known the general form of all IF-probabilities ([9]).
Of course, the representation of the probability P : F → J is considered in the
form

P(A) = [ f (
∫

µAdP,
∫

νAdP),g(
∫

µAdP,
∫

νAdP)].

Theorem 1. ([10]) To any probability P : F → J there exist α,β ∈ [0,1],α ≤ β
such that

P((µA,νA)) = [(1−α)
∫
µAdP+α(1−

∫
νAdP),(1−β )

∫
µAdP+β (1−

∫
νAdP)].

It is easy to see that the examples 1 and 2 are special cases of the preceding
characterization. In the first case α = 0 and β = 1, in the second example α = β = 1

2 .
Of course, in the probability theory on MV-algebras some mappings are consid-

ered with the set R of all real numbers as the range. Therefore we must to decompose
an F -valued function into R-valued functions.

Definition. A function p : F → [0,1] will be called a state if the following conditions
are satisfied:

(i) p((0,1)) = 0, p((1,0)) = 1;
(ii) p((µA,νA)⊕(µB,νB))+ p((µA,νA)*(µB,νB))= p((µA,νA))+ p((µB,νB))
for any (µA,νA),(µB,νB) ∈ F ;
(iii) (µAn ,νAn) ↗ (µA,νA) =⇒ p((µAn ,νAn)) ↗ p((µA,νA)).

Theorem 2. Let P : F → J be a mapping. Denote P(A) = [P�(A),P�(A)] for
any A ∈ F . Then P is a probability if and only if P�,P� are states.

Now we are able to work with R-valued functions and then to return to J -valued
functions.

2 Embedding

An MV-algebra ([2], [3], [11], [12]) is a system (M,⊕,*,¬,0,1) (where ⊕,*, are
binary operations, ¬ is a unary operation, 0,1 are fixed elements) such that the fol-
lowing identities are satisfied: ⊕ is commutative and associative, a⊕0 = a,a⊕1 =
1,¬(¬a) = a,¬0 = 1,a⊕ (¬a) = 1,¬(¬a⊕b)⊕b = ¬(a⊕¬b)⊕a,a*b = ¬(¬a⊕
¬b). Every MV-algebra is a distributive lattice, where a∨b = a⊕ (¬(a⊕¬b)), 0 is
the least element, and 1 is the greatest element of M.
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Example 3. An instructive example is the unit interval [0,1] endowed with the oper-
ations a⊕b = (a+b)∧1,a*b = (a+b−1)∨0,¬a = 1−a.

A very important tool for studying MV -algebras is the Mundici theorem ([2, 3])
stating that to any MV -algebra M there exists a lattice ordered group G with a strong
unit u (i.e. to any a ∈ G there exists n ∈ N such that na ≥ u) such that

M = [0,u],
a⊕b = (a+b)∧u,
a*b = (a+b−u)∨0,
¬a = u−a.
In Example 3 the corresponding l-group is (R,+,≤) where + is the usual sum of

real numbers, and ≤ is the usual ordering, u = 1.

Theorem 3 . Define M = {(µA,νA);µA,νA are S -measurable, µA,νA : Ω → [0,1]}
together with operations

(µA,νA)⊕ (µB,νB) = (µA ⊕µB,νA *νB),
(µA,νA)* (µB,νB) = (µA *µB,νA ⊕νB),
¬(µA,νA) = (1−µA,1−νA).
Then the system (M ,⊕,*,¬,0,1) is an MV - algebra.
Proof. Consider the set G = {( f ,g); f ,g : Ω → R, f ,g are measurable }. The

ordering ≤ is induced by the IF-ordering, hence ( f ,g) ≤ (h,k) ⇐⇒ f ≤ h,g ≥ k.
Evidently (G ,≤) is a lattice, ( f ,g)∨(h,k) = ( f ∨h,g∧k),( f ,g)∧(h,k) = ( f ∧h,g∨
k). Now we shall define the group operation + by the following formula:

( f ,g)+(h,k) = ( f +h,g+ k−1).
It is not difficult to see that + is commutative and associative, and (0,1) is the

neutral element. The inverse element to ( f ,g) is the couple (− f ,2−g), since
( f ,g)+(− f ,2−g) = ( f − f ,g+2−g−1) = (0,1),
therefore
( f ,g)− (h,k) = ( f ,g)+(−h,2− k) = ( f −h,g− k +1).
If we put u = (1,0), then M = {( f ,g) ∈ G ;(0,1) ≤ ( f ,g) ≤ (1,0)} = {( f ,g) ∈

G ;0 ≤ f ≤ 1,0 ≤ g ≤ 1} with the MV -algebra operations, i.e.
( f ,g)⊕ (h,k) = (( f ,g)+(h,k))∧ (1,0) = ( f +h,g+k−1)∧ (1,0) = (( f +h)∧

1,(g+g−1)∨0) = ( f ⊕h,g* k),
and similarly
( f ,g)* (h,k) = ( f *h,g⊕ k).

Theorem 4 . To any state p : F → [0,1] there exists exactly one state p̄ : M → [0,1]
such that p̄|F = p.

Proof. Given p and ( f ,g) ∈ M put p̄(( f ,g) = p(( f ,0))− p((0,1−g)). It is not
difficult to prove that p̄ is a state on M . The rest of the proof is then clear.

By a similar technique the problem of observables can be solved.

Definition. An IF-observable is a mapping x : B(R) → J (B(R) being the family
of all Borel subsets of R) satisfying the following properties:

(i) x(R) = (1Ω ,0Ω );
(ii) A,B ∈ B(R),A∩B = /0 =⇒ x(A)* x(B) = (0,1),x(A∪B) = x(A)⊕ x(B);
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(iii) An ↗ A =⇒ x(An) ↗ x(A).

Definition. The joint IF observable of IF observables x,y : B(R) → F is a mapping
h : B(R2) → F satisfying the following conditions

(i) h(R2) = (1Ω ,0Ω );
(ii) A,B ∈ B(R2),A∩B = /0 =⇒ x(A)*h(B) = (0,1),h(A∪B) = h(A)⊕h(B);
(iii) An ↗ A =⇒ h(An) ↗ h(A).
(iv) h(C ×D) = x(C).y(B)
for any C,D ∈ B(R). (Here ( f ,g).(h,k) = ( f .h,g.k).)
Proof.

Theorem 5. To any two IF observables x,y : B(R) → F there exists their joint IF
observable.

Proof. Put x(A) = (x�(A),1−x�(A)),y(B) = (y�(B),1−y�(B)), and for fixed ω ∈
Ω

λ �
ω(A) = x�(A)(ω),λ �

ω(A) = x�(A)(ω),

κ�
ω(B) = y�(B)(ω),κ�

ω(B) = y�(B)(ω).

Then λ �
ω ,λ �

ω ,κ�
ω ,κ�

ω : B(R) → [0,1] are probability measures. For C ∈ B(R2) define

h(C) = (h�(C),1−h�(C)),

where
h�(C)(ω) = λ �

ω ×κ�
ω(C),

h�(C)(ω) = λ �
ω ×κ�

ω(C)

For to prove that h(C) ∈ F it is necessary to show that h�(C)+ 1 − h�(C) ≤ 1,
hence h�(C) ≤ h�(C). Of course, we know x�(A) ≤ x�(A),y�(B) ≤ y�(B), hence λ �

ω ≤
λ �
ω ,κ�

ω ≤ κ�
ω for any ω ∈Ω . We have

h�(C)(ω) = λ �
ω ×κ�

ω(C) =
∫

R
κ�
ω(Cu)dλ �

ω(u) ≤

≤
∫

R
κ�
ω(Cu)dλ �

ω(u) ≤
∫

R
κ�
ω(Cu)dλ �

ω(u) = h�(C)(ω).

The existence of the joint observable hn,(n = 1,2, ...) can be used for the defining
of functions of observables x1, ...,xn, e.g. 1

n

∑n
i=1(n = 1,2, ...). Namely

1
n

n∑

i=1

= hn ◦g−1
n

where gn(u1, ...,un) = 1
n

∑n
i=1 ui The motivation is taken from random vectors, where

( 1
n

∑n
i=1 ξi)−1(A) = (gn ◦Tn)−1(A) = T−1

n (g−1
n (A)),Tn(ω) = (ξ1(ω), ...,ξn(ω)).

Since F ⊂ M , the whole probability theory on MV-algebras is now applicable
to our system F .
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3 L-lattices

All basic facts in this section has been presented in the paper [6] and the thesis [7].
The used methods are surprising generalizations of the methods used in [26].

Definition. An L-lattice (Lukasiewicz lattice) is a structure L = (L,≤,⊕,*,0L,
1L), where (L,≤) is a lattice, 0L is the least and 1L the greatest element of the lattice
L, and ⊕,* are binary operations on L.

Example 4. Any MV -algebra is an L-lattice.

Example 5. The set F of all IF-events defined on a measurable space (Ω ,S ) is an
L-lattice.

Definition. A probability on an L-lattice L is a mapping p : L → 0,1] satisfying the
following three conditions:

(i) p(1L) = 1, p(0L) = 0;
(ii) if a*b = 0L, then p(a⊕b) = p(a)+ p(b);
(iii) if an ↗ a, then p(an) ↗ p(a).
An observable is a mapping x : B(R) → L satisfying the following conmditions:
(i) x(R) = 1L;
(ii) if A∩B = /0, then x(A)* x(B) = 0L and x(A∪B) = x(A)⊕ x(B);
(iii) if An ↗ A, then x(An) ↗ x(A).
It is quite surprising that there are given no conditions about the binary operations

⊕,*. Of course, here it is used the fact that the main importance in the probability
theory has the probability distribution of a random variable (see the following theo-
rem).

Theorem 6. Let x : B(R) → L be an observable, p : L → [0,1] a probability. Then
the composite mapping p◦ x : B(R) → [0,1] is a probability measure on B(R).

The key to the possibility to successfully create the probability theory on L-
lattices is in the notion of independency.

Definition. Observables x1, ...,xn are independent, if there exists and n-dimensional
observable hn : B(R) → L such that

(p◦hn)(A1 × ...×An) = (p◦ x1)(A1) · ... · (p◦ xn)(An)

for all A1, ...,An ∈ B(R).
Now the existence of the joint distribution can be used similarly as in MV-

algebras. Of course, in the MV-algebra M the existence of the joint observable can
be proved, here we only assume that it exits.

4 Conclusion

We presented here two effective methods how to reach new results of the probability
theory on IF - events. The first one (Section 2) was successfully applied in [9], the
second one (Section 3) in [6] and [7].
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Summary. Several problems are connected, in the literature, to causality: prediction, expla-
nation, action, planning and natural language processing... In a recent paper, Halpern and
Pearl introduced an elegant definition of causal (partial) explanation in the structural-model
approach, which is based on their notions of weak and actual cause [5]. Our purpose in this
paper is to partially modify this definition, rather than to use a probability (quantitative mod-
elisation) we suggest to affect a degree of possibility (a more qualitative modelisation) which
is nearer to the human way of reasoning, by using the possibilistic logic. A stratification of all
possible partial explanations will be given to the agent for a given request, the explanations
in the first strate are more possible than those belonging to the other strates. We compute the
complexity of this strafication.

1 Introduction

Causation is a deeply intuitive and familiar relation, gripped powerfully by common
sense, or so it seems. But as is typical in philosophy, deep intuitive familiarity has
not led to any philosophical account of causation that is at once clean and precise
[3]. A source of difficulties seems to be that the notion of causality is bound to other
ideas like that of explanation. In a recent paper, Halpern and Pearl propose a new
definition of explanation and partial explanation, using structural equations to model
counterfactuals, the definition is based on the notion of actual cause. Essentially, an
explanation is a fact that is not known for certain, but if found true, would constitute
an actual cause of the fact to be explained, regardless of the agent’s initial uncertainty
[4, 5].

Our purpose in this paper is to partially modify this definition, i. e., rather than to
use a probability (quantitative modelisation) we suggest to affect a degree of possi-
bility (qualitative modelisation) which is nearer to the human reasoning [7]. A strat-
ification of all possible partial explanations will be given to the agent for a given
request (the explanations will be ordered in a set of strates), the explanations in the
first strate are more possible than those belonging to the other strates. We compute
the complexity of this stratification.
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The paper is organized as follows. We present in the section 2, the structural ap-
proach, the definition of actual cause and the definition of the explanation. In section
3 we suggest to affect a degree of possibility to the definition advocated by Halpern
and Pearl and then we carry out a more qualitative reasoning. We propose a strat-
ification of all possible partial explanations; this stratification reflects a hierarchy
of priority between partial explanations.In Section 4, we analyze the complexity of
the algorithm of stratification. Finally, in section 5, we conclude and we give some
perspectives of this work.

2 Structural Approach

Halpern and Pearl propose a definition of cause (actual cause) within the frame-
work of structural causal models. Specifically, they express stories as a structural
causal model (or more accurately, a causal world), and then provide a definition for
when one event causes another, given this model of the story [4, 5]. Structural models
are a system of equations over a set of random variables. We can divide the variables
into two sets: endogenous (each of which has exactly one structural equation that de-
termines their value) and exogenous (whose values are determined by factors outside
the model, and thus have no corresponding equation). Capital letters X ,Y , etc. will
denote variables and sets of variables, and the lower-case letters x,y, etc. denote val-
ues of the sets of variables X ,Y . Formally, a signature S is a tuple (U,V,R), where U
is a set of exogenous variables, V is a set of endogenous variables, and R associates
with every variable Y ∈ U ∪V a nonempty set R(Y ) of possible values for Y (that is,
the set of values over which Y ranges).

A causal model (or structural model ) over signature S is a tuple M = (S,F),
where F associates with each variables X ∈ V a function denoted FX such that FX :
(×u∈U R(U))× (×Y∈V−{X}R(Y )) → R(X).FX determines the values of X given the
values of all the other variables in U ∈ V . Causal models can be depicted as a causal
diagram: a directed graph whose nodes correspond to the variables in V with an
edge from X to Y if FY depends on the value of X . Given a causal model M = (S,F),
a (possibly empty) vector X of variable in V , and vectors x and u of values for the
variables in X and U , respectively, we can define a new causal model denoted MX←x

over the signature SX = (U,V − X ,R|V−X ). MX←x is called a submodel of M by
[6], R|V−X is the restriction of R to the variables in V − X . Intuitively, this is the
causal model that results when the variables in X are set to x by some external action
that effects only the variables in X . Formally MX←x = (SX ,FX←x), where FX←x

Y is
obtained from FY by setting the values of the variables in X to x.

Given a signature S = (U,V,R), a formula of the form X = x, for X ∈ V and
x ∈ R(X), is called primitive event. A basic causal formula (over S) is one of
the form [Y1 ← y1, ...,Yk ← yk]ϕ where : ϕ is a Boolean combination of primitive
events, Y1, ...,Yk are distinct variables in V , yi ∈ R(Yi). Such formula is abbreviated
as [Y ← y]ϕ . A basic causal formula is a boolean combination of basic formulas.
A causal formula ψ is true or false in a causal model, given a context. We write
(M,u) |= ψ if ψ is true in the causal model M given the context u.
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Definition 1. Let M = (U,V,F), be a causal model. Let X ⊆V , X = x is an actual
cause of ϕ if the following three conditions hold:

• (AC1): (M,u) |= X = x∧ϕ (that is, both X = x and ϕ are true in the actual
world).

• (AC2): There exists a partition (Z,W ) of V with X ⊆V,W ⊆V\X and some
setting (x′,w′) of the variables in (X ,W ) such that if (M,u) |= Z = z∗, then
both of the following conditions hold :
a. (M,u) |= [X ← x′,W ← w′]¬ϕ. In worlds, changing (X ,W ) from (x,w) to

(x′,w′) changes ϕ from true to false.
b. (M,u) |= [X ← x,W ← w′,Z′ ← z∗]ϕ.for all subsets Z′of Z.

• (AC3): X is minimal.

2.1 Explanation

Essentially, an explanation is a fact that is not known to be certain but, if found to be
true, would constitute an actual cause of the fact to be explained, regardless of the
agent’s initial uncertainty. An explanation is relative to the agent’s epistemic state,
in that case, one way of describing an agent’s state is by simply describing the set of
contexts the agent considers possible [4, 5].

Definition 2. (Explanation) Given a structural model M, X = x is an explana-
tion of ϕ relative to a set K of contexts if the following conditions hold:

• EX1: (M,u) |= ϕ for each u ∈ K. (that is, ϕ must hold in all contexts the
agent considers possible. The agent considers what he is trying to explain
as an established fact).

• EX2: X = x is a weak cause (without the minimal condition AC3) of ϕ in
(M,u) for each u ∈ K such that (M,u) |= X = x.

• EX3: X is minimal; no subset of X satisfies EX2.
• EX4: (M,u) |= ¬(X = x) for some u ∈ K and (M,u′) |= (X = x) for some

u′ ∈ K.

Halpern and Pearl propose a sophisticated definition for actual causality based on
structural causal models, however although this definition works on many previously
problematic examples, it still does not fit with intuition on all examples, moreover
the explanation proposed in this approach is not qualitative. To handle this problem,
we propose an improvement of this definition in the next section.

3 Possibilistic Explanation

Possibilistic logic offers a convenient tool for handling uncertain or prioritized for-
mulas and coping with inconsistency [1]. Propositional logic formulas are thus as-
sociated with weight belonging to a linearly ordered scale. In this logic, at the se-
mantic level, the basic notion is a possibility distribution denoted by π , which is
a mapping from a set of informations Ω to the interval[0,1]. π(ω) represents the
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possibility degree of the interpretation ω with the available beliefs. From a possi-
bility distribution π , two measures defined on a set of propositional or first order
formulas can be determined: one is the possibility degree of formula ϕ , denoted
Π(ϕ) = max{π(ω) : ω |= Ω}, the other is the necessity degree of formula ϕ is de-
fined as N(ϕ) = 1−Π(¬ϕ), for more details see [7, 8].

In order to give a more qualitative character to the previous explanation, we sug-
gest to affect a degree of possibility rather than a degree of probability. A new defin-
ition of explanation using the possibilistic logic is proposed. It offers an ordering set
of possible explanations. The agent’s epistemic state will be represented by describ-
ing the set of the interpretations that the agent considers possible.

Definition 3. (Possibilistic explanation) Let ω be an interpretation that the
agent considers possible (ω ∈ Ω). Given a structural model M,X = x is an
explanation of ϕ relative to a set Ω of possible interpretations if the following
conditions hold:

• EX1′: (M,ω) |= ϕ for each ω ∈ Ω . (that is, ϕ must be satisfied in all
interpretation the agent considers possible).

• EX2′: X = x is a weak cause of ϕ in (M,ω) for each ω ∈ Ω such that
(M,ω) |= X = x.

• EX3′: X is minimal; no subset of X satisfies EX2′.
• EX4′: (M,ω) |= ¬(X = x) for some ω ∈ Ω and (M,ω ′) |= X = x for some

ω ′ ∈Ω .

Not all explanations are considered equally good. Some explanations are more plau-
sible than others. We propose to define the goodness of an explanation by introducing
a degree of possibility (by including priority levels between explanations). The mea-
sure of possibility of an explanation is given by:

Π(X = x) = max{π(ω) : ω |= X = x,ω ∈Ω}

There is a situations where we can’t find a complete explanation of an event ( rel-
ative to Ω ). But we can find a complete explanation relative to a sub-set Ω ′ of Ω .
That explanation is a partial explanation relative Ω In the next section we give our
definition a partial explanation and it’s goodness.

Definition 4. (partial explanation) Let π be a possibility distribution, i.e., a
mapping from a set of interpretations Ω that the agent considers possible
into the interval [0,1]. Let ΩX=x,ϕ be the largest subset such that X = x is an
explanation of ϕ (it consists of all interpretations in Ω except those where
X = x is true but is not a weak cause of ϕ).

ΩX=x,ϕ =Ω−{ω :ω ∈Ω |ω |= X = x, ω |=ϕ and X = x is not a weak cause o f ϕ}

• X = x is a partial explanation of ϕ with the goodness Π(ΩX=x,ϕ |X = x) =
max{π(ω) : ω |= X = x,ω ∈ΩX=x,ϕ} .

• X = x is a α−partial explanation of ϕ relative to π and Ω , if ΩX=x,ϕ exists and
Π(ΩX=x,ϕ |X = x) ≥ α .
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• X = x is an partial explanation of ϕ relative to π and Ω , iff X = x is a α−partial
explanation of ϕ and α ≥ 0.

Partial explanations will be ordered, in a set of strates Sα1 ∪ ... ∪ Sαn for a given
request.

• The Sα1 will contain the complete explanations if there exists,
• X = x is in the strate Sαi, if Π(ΩX=x,ϕ |X = x) = αi,
• Let X = x be a partial explanation in the strate Sαi and Y = y a partial explanation

in the strate Sα j. X = x is a partial explanation more plausible than the partial
explanation Y = y, if Π(ΩX=x,ϕ |X = x) = αi > Π(ΩY=y,ϕ |X = x) = α j.

Example 1. Suppose I see that Victoria is tanned and I seek an explanation. Suppose
that the causal model includes variables for “Victoria took a vacation”, “It is sunny in
the Canary Islands”, “Victoria went to a tanning”. The set of Omega includes inter-
pretations for all settings of these variables compatible with Victoria being tanned.
Note that, in particular, there is an interpretation where Victoria both went to the
Canaries (and didn’t get tanned there, since it wasn’t sunny) and to a tanning salon.
Victoria taking a vacation is not an explanation (relative to Omega), since there is
an interpretation where Victoria went to the Canary Islands but it was not sunny,
and the actual cause of her tan is the tanning salon, not the vacation. However, intu-
itively it is “almost” satisfied, since it is satisfied by every interpretation in Omega,
in which Victoria goes to the Canaries. “Victoria went to the Canary Islands” is a
partial explanation of “Victoria being tanned”. There is a situation where we can’t
find a complete explanation (it is inexplicable).

The usual definition of a conditional distribution of possibility is:

π(ω|ϕ) =






1 if Π(ϕ) = π(ω)
π−(ϕ) if = π−(ω) < Π(ϕ) and ¬(ω |= ϕ)

0 else

Conditioner with ϕ consists on a revision of degree of possibility associated to dif-
ferent interpretations, after having the certain information ϕ . ( ϕ is a certain infor-
mation, so interpretations that falsifie ϕ are impossibles).
We propose the measure of explanatory power of X = x to be Π−(ΩX=x,ϕ |X = x) =
max{π−(ω) : ω |= X = x,ω ∈ΩX=x,ϕ}.

3.1 Algorithm of Generation of Strates

The main idea of our algorithm is to provide a set of choices of ordered partial ex-
planations for a given request of the agent.

Let ϕ be a request for which the agent seeks an explanation. Let V be the set of
endogenous variables and let X ⊆ V −{Yi}, ∀Yi ∈ ϕ be a set of possible variables
that may formulate the explanation. For all subset X ′ of X , decide if there exists
an attribution of values which makes it a partial explanation. If it is the case, then
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compute Π(ΩX ′=x′,ϕ |X ′ = x′). Once that is done, add this partial explanation to the
appropriate strate if it exists. If not, create a new strate which will contain this partial
explanation. Finally, insert the new strate in its appropriate order according to the
existing strates. This algorithm gives us all the partial explanations. This structure
facilitates the search of a new explanation when we have a new consideration of the
agent as an adaptation with the evolution of the agent believes.

Algorithm of Generation of strates

Input {S = ϕ ,V,ϕ ,Ω ,R(X)}
begin

a. X = V −{Yj}, ∀Yj, Yj is a variable in ϕ
b. for all X ′ ⊆ X do

begin
a) Decide if there exist x′ ∈ R(X ′), such that X ′ = x′ is an α-partial explanation of ϕ

relative to Ω .
b) if X ′ = x′ is an α-partial explanation then

begin
i. Compute Π(ΩX ′=x′,ϕ |X ′ = x′) ; Let αi = Π(ΩX ′=x′,ϕ |X ′ = x′)

ii. If the strate Sαi exists then Add {X ′ = x′} to the strate Sαi

else
begin
A. Create a new strate Sαi

B. Add {X ′ = x′} to the strate Sαi

C. Insert the strate Sαi in the good order
D. S = S∪Sαi

end
end

end

end
Output S = ∪Sαi

4 Complexity of Stratification of Possibilistic Explanations

The complexity of our algorithm is driven from the results given by Eiter and
Lukasiewicz [2]. An analysis of the computational complexity of Halpern and Pearl’s
(causal) explanation in the structural approach is given in a recent paper by Eiter and
Lukasiewicz [2].

An explanation of an observed event ϕ is a minimal conjunction of primitive
events that causes ϕ even when there is uncertainty about the actual situation at hand.
The main idea of the stratification is to compute all the possible partial explanations.
This problem can be reduced to that of computing the set of all partial explanations
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which is equivalent to computing the set of all valid formulas among a Quantified
Boolean Formulas QBF = ∃A ∀C ∃D y, where ∃A ∀C ∃D y is a reduction of guessing
some X ′ ⊆ X and x′ ∈ R(x) and deciding whether X ′ = x′ is α-partial explanation.
All complexity results from the two propositions:

Proposition 1. For all X ,Y ∈ V and x ∈ R(X), the values FY and FX←x
Y , given

an interpretation ω ∈Ω , are computable in polynomial time.

Proposition 2. Let X ⊆V and x ∈ R(X). Given ω ∈Ω and an event ϕ, deciding
whether (M,ω) |= ϕ and (M,ω) |= [X ← x]ϕ (given x) hold can be done in
polynomial time.

Given M = (U,V,F), X ⊆ V , an event ϕ , a set of interpretations Ω such that
(M,ω) |= ϕ for all interpretations ω ∈ Ω , for all X ′ ⊆ X guessing an attribution of
values x′ of X ′ ( x′ ∈ R(X ′))such that X ′ = x′ is a partial explanation of ϕ . After that
we compute the explanatory power of the partial explanation X ′ = x′, once that done

we insert it in the appropriate strate. Computing the set of strates is FP
ΣP

2
‖ -Complete.

Recall that X ′ = x′ is a partial explanation of ϕ iff (a) X ′ = x′ is an explanation of ϕ
relative to Ωϕ

X ′=x′ and (b) Π(ΩX ′=x′ |X ′ = x′) ≥ 0; To recognize partial explanation,
we need to know the set of interpretations Ωϕ

X ′=x′ . Ω
ϕ
X ′=x′ is the set of all ω ∈ Ω

such that either (i) (M,ω) |= ¬(X ′ = x′) or (ii) (M,ω) |= (X ′ = x′) and X ′ = x′ is
a weak cause of ϕ under ω . Deciding (i) is polynomial, and deciding (ii) is in NP,
Ωϕ

X ′=x′ can be computed efficiently with parallel calls to a NP− oracle, computing
Ωϕ

X=x is in PNP
‖ . Once Ωϕ

X ′=x′ is given, deciding (a) is possible with two NP−oracle

calls and deciding (b) is polynomial. Hence, the problem is in PNP
‖ . Deciding whether

X ′ = x′ is an α-partial explanation of ϕ is in PNP
‖ . Hence, guessing some X ′ ⊆ X and

x′ ∈ R(X ′) and deciding whether X ′ = x′ is an α-partial explanation of ϕ is in ΣP
2 .

The complexity of our algorithm is inherited from the complexity of guessing
a partial explanation ( is a ΣP

2 -complete) and of the complexity of the explanatory
power (PNP

‖ ), this complexity is lies to the problem of computing ΩX ′=x′,ϕ . The cal-

culus of strate, is a problem of guessing all X ′ ⊆ X and verifying the existence of par-

tial explanation which is FP
ΣP

2
‖ -complete, and computing there explanatory power,

so that the stratification problem is FP
ΣP

2
‖ -complete.

5 Conclusion and Perspectives

In this paper we have presented a partial modification of the notion of explanation
related to the counterfactual idea. We have suggested the use of the possibilistic logic
which provides a priority level between the explanations. We prefer the use of possi-
bility instead of probability because possibility reflects better the human reasoning,
which is rather qualitative than quantitative.

We have proposed a stratification of all partial explanation for a given request.
This stratification facilitates the task of searching a new explanation when we have
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a new consideration of the agent (an evolution of the agent beliefs). We gave an
analysis of the computational complexity of this stratification. As perspectives, we
plan to extend this work to deal with the problem of responsibility and blame.
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Summary. A Markov chain model in generalised settings of interval probabilities is pre-
sented. Instead of the usual assumption of constant transitional probability matrix, we assume
that at each step a transitional matrix is chosen from a set of matrices that corresponds to a
structure of an interval probability matrix. We set up the model and show how to obtain inter-
vals corresponding to sets of distributions at consecutive steps. We also state the problem of
invariant distributions and examine possible approaches to their estimation in terms of convex
sets of distributions, and in a special case in terms of interval probabilities.

1 Introduction

Interval probabilities present a generalised probabilistic model where classical sin-
gle valued probabilities of events are replaced by intervals. In our paper we refer
to Weichselberger’s theory [4]; although, several other models also allow interval
interpretation of probabilities.

An approach to involve interval probabilities to the theory of Markov chains
was proposed by Kozine and Utkin [1]. They assume a model where transitional
probability matrix is constant but unknown. Instead of that, only intervals belonging
to each transitional probability are known.

In this paper we attempt to relax this model. We do this in two directions. First,
we omit the assumption of the transitional probability matrix being constant, and
second, instead of only allowing intervals to belong to single atoms, we allow them
to belong to all subsets.

Allowing non-constant transitional probability matrix makes Markov chain model
capable of modeling real situations where in general it is not reasonable to expect ex-
actly the same transitional probabilities at each step. They can, however, be expected
to belong to some set of transitional probabilities. In interval probability theory such
sets are usually obtained as structures of interval probabilities. Our assumption is
thus that transitional probability at each step is an arbitrary member of a set of tran-
sitional probability matrices generated by an interval probability matrix.

D. Škulj: Finite Discrete Time Markov Chains with Interval Probabilities, Advances in Soft Computing
6, 299–306 (2006)
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A similar relaxation is also made to the initial distribution. Instead of a single
distribution, we allow a set of distributions forming a structure of an interval proba-
bility.

Our goal is to estimate the interval probabilities after a number of steps and to find
an invariant set of distributions. Unfortunately, it turns out that interval probabilities
are not always sufficient to represent distributions obtained after some steps, which
can form very general sets of distributions, that may not be easy to represent. The
method based on interval probabilities can thus only approximate the true sets of
distributions. To overcome this drawback, we provide a method to at least in principle
approximate the corresponding sets of distributions with convex sets of probability
distributions with arbitrary precision. In those settings, interval probabilities only
present an easy to handle special case.

2 Basic Definitions and Model Setup

First we introduce basic elements of interval probability theory due to Weichsel-
berger [4], but some of them are used here in a simplified form. Let Ω be a non-
empty set and A a σ -algebra of its subsets. The term classical probability or ad-
ditive probability will denote any set function p : A → R satisfying Kolmogorov’s
axioms. Let L and U be set functions on A , such that L ≤U and L(Ω) = U(Ω) = 1.
The interval valued function P( . ) = [L( . ),U( . )] is called an interval probability.

To each interval probability P we associate the set M of all additive probability
measures on the measurable space (Ω ,A ) that lie between L and U . This set is called
the structure of the interval probability P. The basic class of interval probabilities
are those whose structure is non-empty. Such an interval probability is denoted as an
R-field. The most important subclass of interval probabilities, F-fields, additionally
assumes that both lower bound L and upper bound U are strict according to the
structure:

L(A) = inf
p∈M

p(A) and U(A) = sup
p∈M

p(A) for every A ∈ A . (1)

The above property is in a close relation to coherence in Walley’s sense (see [3]),
in fact, in the case of finite probability spaces both terms coincide. Because of the
requirement (1) only one of the bounds L and U is needed. Usually we only take the
lower one. Thus, an F-field is sufficiently determined by the triple (Ω ,A ,L), and
therefore, we will from now on denote F-fields in this way.

Now we introduce the framework of our Markov chain model. Let Ω be a finite
set with elements {ω1, . . . ,ωm} and A := 2Ω be the algebra of its subsets. Further
let

X0,X1, . . . ,Xn, . . . (2)

be a sequence of random variables such that

P(X0 = ωi) = q(0)(ωi) =: q0
i ,
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where q(0) is a classical probability measure on (Ω ,A ) such that

L(0) ≤ q(0), (3)

where Q(0) = (Ω ,A ,L(0)) is an F-probability field. Thus q(0) belongs to the structure
M (0) of Q(0).

Further, suppose that

P
(
Xn+1 = ω j | Xn = ωi,Xn−1 = ωkn−1 , . . . ,X0 = ωk0

)
= pn+1

i (ω j) =: pn+1
i j , (4)

where pn+1
i j is independent of X0, . . . ,Xn−1 and

Li ≤ pn+1
i , (5)

where Pi = (Ω ,A ,Li), for 1 ≤ i ≤ m, is an F-probability field. Thus pn+1
i j are tran-

sitional probabilities at time n + 1; however, they do not need to be constant, but
instead, on each step they only satisfy (5), where Li are constant. Thus, the transi-
tional probabilities are not constant in the usual sense but only in the sense of interval
probabilities.

Now we shall generalise the concept of stochastic matrices to interval probabil-
ities. Let P = [P1, . . . ,Pm]T , where Pi are F-fields for i = 1, . . . ,m. We will call such
P an interval stochastic matrix. The lower bound of an interval stochastic matrix
is simply PL := [L1, . . . ,Lm], where Li is the lower bound Pi and the structure of an
interval stochastic matrix is the set M (P) of stochastic matrices p = (pi j) such that
pi ≥ Li, where pi, for i = 1, . . . ,m, is the classical probability distribution on (Ω ,A ),
generated by pi(ω j) = pi j for j = 1, . . . ,m.

Thus, the transitional probabilities are given in terms of interval stochastic matri-
ces. Under the above conditions, the probability distribution of each Xn will be given
in terms of an F-field Q(n) = (Ω ,A ,L(n)). Thus

P(Xn = ωi) = q(n)(ωi) =: qn
i ,

where q(n) is a classical probability measure on (Ω ,A ) such that

L(n) ≤ q(n).

We will call a sequence (2) with the above properties an interval Markov chain.
An advantage of presenting sets of probability measures with interval probabilities
is that only one value has to be given for each set to determine an interval probabil-
ity. Usually, this is the lower probability L(A) of an event A. In general this requires
m(2m −2) values for the transitional matrix and 2m −2 values for the initial distrib-
ution. We demonstrate this by the following example.

Example 1. Take Ω = {ω1,ω2,ω3}. The algebra A = 2Ω contains six non-trivial
subsets, which we denote by A1 = {ω1},A2 = {ω2},A3 = {ω3},A4 = {ω1,ω2},A5 =
{ω1,ω3},A6 = {ω2,ω3}. Thus, besides L( /0) = 0 and L(Ω) = 1 we have to give the
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values L(Ai) for i = 1, . . . ,6. Let the lower probability L of an interval probability Q
be represented through the n-tuple

L = (L(A1),L(A2),L(A3),L(A4),L(A5),L(A6)), (6)

and take L = (0.1,0.3,0.4,0.5,0.6,0.7). Further we represent the interval transitional
matrix P by a matrix with three rows and six columns, each row representing an
element ωi of Ω and the values in the row representing the interval probability Pi

through its lower probability Li. Take for example the following matrix:

PL =





0.5 0.1 0.1 0.7 0.7 0.4
0.1 0.4 0.3 0.6 0.5 0.8
0.2 0.2 0.4 0.5 0.7 0.7



 . (7)

In the next section we will show how how to obtain the lower probability at the
second step, given the lower bounds for Q and P.

3 Calculating Distributions at n-th Step

The main advantage of Markov chains is that knowing the probability distribution at
time n we can easily calculate the distribution at the next time. This is done simply
by multiplying the given distribution with the transitional matrix.

In the generalised case we consider a set of probability distributions and a set of
transitional matrices, given as structures of the corresponding interval probabilities.
The actual distribution as well as the actual transitional probability matrix can be any
pair of members of the two sets. Let q(0) be an initial distribution, thus satisfying (3),
and p1 a transitional probability, satisfying (5). According to the classical theory, the
probability at the next step is q(1) = q(0) p1. Thus, the corresponding set of probability
distributions on the next step must contain all the probability distributions of this
form. Consequently, in the most general form, the set of probability distributions
corresponding to Xk would be

Mk := {q(0) p1 . . . pk | q(0) ∈ M (Q(0)), pi ∈ M (P) for i = 1, . . . ,k}. (8)

But these sets of probability distributions are in general not structures of interval
probability measures. Thus, they can not be observed in terms of interval probabil-
ities. However, a possible approach using interval probabilities is to calculate the
lower and the upper envelope of the set of probabilities obtained at each step and do
the further calculations with this interval probability and its structure. The resulting
set of possible distributions at n-th step is then in general larger than Mk, and could
only be regarded as an approximate to the true set of distributions.

The advantage of the approach in terms of interval probabilities is that the calcu-
lations are in general computationally less difficult and that some calculations, such
as the calculation of invariant distributions, can be done directly through systems of
linear equations. As we shall see, the level of precision of estimates is very flexible
and can be adjusted depending on our needs and the imprecision of the data.
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Now we give such a procedure for a direct calculation of the lower bound L(n+1)

under the assumption that the set of probabilities at n-th step is given in terms of
an interval probability Q(n). Let πA be a permutation on the set {1, . . . ,m} such that
LπA(i)(A) ≥ LπA(i+1)(A) for 1 ≤ i < m − 1 and denote Ai :=

⋃i
k=1{ωπA(k)} where

A0 = /0. Define the probability measure

qπA
πA(i) = qπA(ωπA(i)) := L(n)(Ai)−L(n)(Ai−1). (9)

The set function L(n+1) is then the infimum of the set of all distributions from
the structure of Q(n) multiplied by all members of M (P). It turns out that it can be
directly calculated as

L(n+1)(A) =
m∑

i=1

qπA
i Li(A). (10)

Example 2. Let us calculate the second step probability distribution on the data of
Example 1. Let the lower bound L(0) of Q(0) be as in the previous example, L(0) =
(0.1,0.3,0.4,0.5,0.6,0.7) and let the transitional probability be given by its lower
bound PL from the same example. Further, let L(1) be the lower bound of the interval
probability distribution at step 1, Q(1). By (10) we get

L(1) = (0.19,0.23,0.28,0.56,0.62,0.64).

4 Invariant Distributions

4.1 The Invariant Set of Distributions

One of the main concepts in the theory of Markov chains is the existence of an
invariant distribution. In the classical theory, an invariant distribution of a Markov
chain with transitional probability matrix P is any distribution q such that qP =
q. In the case of ergodic Markov chain an invariant distribution is also the limit
distribution.

In our case, a single transitional probability matrix as well as initial distributions
are replaced by sets of distributions given by structures of interval probabilities. Con-
sequently, an invariant distribution has to be replaced by a set of distributions, which
is invariant for the interval transitional probability matrix P. It turns out, that there
always exists a set M such that

M = {q p | q ∈ M , p ∈ M (P)} (11)

and that for every initial set of probability distributions M0 late enough members of
sequence (8) converge to M .

For simplicity we may always assume the initial distribution to be the set of all
probability measures on (Ω ,A ), which is equal to the structure of the interval prob-
ability Q0 = [0,1]. Thus, from now on, let M0 := {q | q is a probability measure on
(Ω ,A )}. Clearly, the sequence (8) with initial set of distributions M0 includes all
sequences with any other initial set of distributions.



304 D. Škulj

Consider the following sequence of sets of probability measures:

Mi+1 := {q p | q ∈ Mi, p ∈ M (P)}, (12)

z starting with M0. The above sequence corresponds to sequence (8) with initial set
of distributions equal to M0.

It is easy to see that the sequence (12) is monotone: Mi+1 ⊆ Mi, and thus we
can define the limiting set of distributions by

M∞ :=
∞⋂

i=1

Mi. (13)

The above set is clearly non-empty, since it contains all eigenvectors of all sto-
chastic matrices from M (P) corresponding to eigenvalue 1. It is well known that
such eigenvectors always exist. Besides, this set clearly satisfies the requirement
(11). Thus, we will call the set (13) the invariant set of distributions of an in-
terval Markov chain with the interval transitional probability matrix P.

The above definition of the invariant set of an interval Markov chain gives its
construction only in terms of limits, but it says nothing about its nature, such as,
whether it is representable in terms of the structure of some interval probability or in
some other way. However, it is important that such a set always exists.

4.2 Approximating the Invariant Set of Distributions with Convex Sets
of Distributions

Since the invariant set of distributions of an interval Markov chain in general does
not have a representation in terms of a structure of an interval probability or maybe
even in terms of a convex set, we have to find some methods to at least approximate
it with such sets.

For every closed convex set M of probability distributions on (Ω ,A ) there exists
a set of linear functionals F and a set of scalars {l f | f ∈ F} such that

M = {p | p is a probability measure on (Ω ,A ), f (p) ≥ l f ∀ f ∈ F}. (14)

Example 3. If the set of functionals is equal to the natural embedding of the algebra
A then the resulting set of distributions forms the structure of an F-probability field:
fA(p) := p(A), l fA := L(A) and P = (Ω ,A ,L).

Moreover, the set of functionals may correspond to even a smaller set, like a
proper subset of A , such as the set of atoms in A yielding a structure of an interval
probability with additional properties.

Thus, every structure of an interval probability may be represented by a set of
distributions of the form (14).

Now fix a set of functionals F and an interval stochastic matrix P and define the
following sequence of sets of probability distributions, where M0 is the set of all
probability measures on (Ω ,A ):
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M0,F :=M0;

M ′
i+1,F :={q p | q ∈ Mi,F , p ∈ M (P)}

Mi+1,F :={q | f (q) ≥ inf
q′∈M ′

i+1,F

f (q′) ∀ f ∈ F}.

The way the set Mi+1,F is obtained from M ′
i+1,F is similar to the concept of natural

extension for a set of lower previsions (see e.g. [3]).
The idea of the above sequence is to replace the sets M ′

i,F , which are difficult
to handle, with sets of distributions representable by linear functionals in F . In the
special case from Example 3 such a set is the structure of some interval probability.

The following properties are useful:

(i) If F ′ ⊂ F then Mi,F ′ ⊇ Mi,F ⊇ Mi holds for every i ∈ N∪{0}, where Mi

is a member of the sequence (12).
(ii) The inclusion Mi+1,F ⊆ Mi,F holds for every i ∈ N. Thus, the sequence

(Mi,F ) is monotone and this implies existence of a limiting set of distribu-
tions for every set of functionals F :

M∞,F :=
⋂

i∈N

Mi,F .

The sets of distributions M∞,F all comprise the set M∞ and can be in some
important cases found directly through a system of linear equations.

(iii) The set M∞,F is a maximal set among all sets M with the property:

inf
q∈M

f (q) = inf
q∈M

p∈M (P)

f (q · p) ∀ f ∈ F . (15)

While the sets M∞,F only approximate the invariant set of distributions M∞ from
below, it can clearly be approximated from above by the set Me containing all eigen-
vectors of the stochastic matrices from the structure M (P).

4.3 Approximating Invariant Distributions with Interval Probabilities

The important special case of convex sets of probabilities is the case of structures
of interval probabilities. For this case the conditions (15) translate to a system of
linear equations with 2m −2 unknowns. We obtain this case by considering the linear
functionals on the set of probability measures on (Ω ,A ) of the form fA, where
fA(q) = q(A) for every probability measure q:

FA = { fA | A ∈ A }.

The set of inequalities (15) can now be rewritten in terms of lower probabilities
L and Li to obtain:

L(A) =
m∑

i=1

qπA
i Li(A) ∀A ∈ A . (16)
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Recall that qπA
i are expressible in terms of L as given by (9). The invariant set of

distributions is then the structure of the F-field Q∞ = [L,U ], where L is the minimal
solution of the above system of linear equations, as follows from (iii).

Example 4. We approximate the invariant set of distributions of the Markov chain
with interval transitional probability matrix given by the lower bound (7). We obtain
the following solution to the system of equations (16):

L(∞) = (0.232,0.2,0.244,0.581,0.625,0.6),

where L(∞) is of the form (6).
As we have pointed out earlier, the above lower bound is only an approximation

of the true lower bound for the invariant set of distributions. For comparison we give
the lower bound of the set of eigenvalues of 100,000 random matrices dominating
PL:

(0.236,0.223,0.275,0.587,0.628,0.608),

which is an approximation from above. Thus, the lower bound of the true invariant
set of distributions lies between the above approximations.
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1 Introduction

According to Wittgenstein [17], (2.0201, 5.0, 5.32):
- The truthness of every complex statement can be infered from the thuthness of

its elementary constituents.
- The truthness of a statement results from the statements’ truth-function

(Wahrheitsfunktionen).
- Truth-functions of complex statements results from successive applications of a

finite number of truth-operations (Wahrheitsoperationen) to elementary constituents.
This is known as the principle of Compositionality, which plays a central role in

analytical philosophy, see [3], and is related to the semantic theory of truth, devel-
oped by Alfred Tarski.

The principle of compositionality also exists in far more concrete mathematical
contexts, such as in reliability engineering, see [1] and [2], (1.4):

“One of the main purposes of a mathematical theory of reliability is to
develop means by which one can evaluate the reliability of a structure when
the reliability of its components are known. The present study will be con-
cerned with this kind of mathematical development. It will be necessary for
this purpose to rephrase our intuitive concepts of structure, component, relia-
bility, etc. in more formal language, to restate carefully our assumptions, and
to introduce an appropriate mathematical apparatus.”

W. Borges and J.M. Stern: Evidence and Compositionality, Advances in Soft Computing 6, 307–315 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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When brought into the realm of parametric statistical hypothesis testing, the prin-
ciple states that a meaningful complex statement, H, concerning θ = (θ 1, . . . ,θ k) ∈
Θ = (Θ 1 × . . .×Θ k) is a logical composition of statements, H1, . . . ,Hk, concerning
the elementary components, θ 1 ∈Θ 1, . . . ,θ k ∈Θ k, respectively. Within this setting,
means to evaluate the truthness of H, as well as that of each of its elementary com-
ponents, H1, . . . ,Hk, is provided by the mathematical apparatus of the Full Bayesian
Significance Test (FBST) procedure, a coherent Bayesian significance test for sharp
hypotheses introduced in [9]. For detailed definitions, interpretations, implementa-
tion and applications, see the authors’ previous articles, [8] and [16]. Further general
references on the subject include [7-12] and [15].

It is of interest, however, to know what can be said about the truthness of H from
the knowledge of the truethness of each of its elementary components, H1, . . .Hk.
This is precisely what the authors explore in the present paper, within the indepen-
dent setup.

2 The FBST Structure

By a FBST Structure, we mean a quintuple M = {Θ ,H, p0, pn,r} , where
- Θ is the parameter space of an underlying statistical model (S,Σ(S),Pθ ); The

Full Bayesian Significance Test (FBST) has been introduced by Pereira and Stern
[9], as a coherent Bayesian significance test for sharp hypotheses. For detailed def-
initions, interpretations, implementation and applications, see the authors’ previous
articles.

In this paper we analyze the relationship between the credibility, or truth value,
of a complex hypothesis, H, and those of its elementary constituents, H j, j = 1 . . .k.

- H : θ ∈ ΘH = {θ ∈ Θ |g(θ) ≤ 0 ∧ h(θ) = 0} is the Hypothesis, stating that
the parameter lies in the (null) setΘH , defined by inequality and equality constraints
in terms of vector functions g and h in the parameter space. In the present con-
text, however, the statement H will be considered sharp or precise, in the sense that
dim(ΘH) < dim(Θ), i.e., with at least one equality constraint in force. We shall often
write, for simplicity, H for the set ΘH .

- p0, pn and r are the Prior, the Posterior and the Reference probability den-
sities on Θ , all with respect to the same σ -finite measure µ on a measurable space
(Θ ,Σ(Θ)).

Within a FBST structure, the following definitions are essential:
- The posterior Surprise function, s(θ), relative to the structure’s reference den-

sity, r(θ), and its constrained and unconstraind suprema are defined as:

s(θ) =
pn(θ)
r(θ)

, s∗ = s(θ ∗) = supθ∈H s(θ) , ŝ = s(θ̂) = supθ∈Θ s(θ) .

- The Highest Relative Surprise Set (HRSS) at level v, T (v), and its comple-
ment, T (v), are defined as:

T (v) = {θ ∈Θ |s(θ) ≤ v} , T (v) =Θ −T (v) .
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- The Truth Function of M, W : R+ �→ [0,1], and the Truth Value of H in M,
ev(H), are defined as:

W (v) =
∫

T (v)
pn(θ)µ(dθ) , ev(H) = W (s∗) .

Since ev(H) = W (s∗), the pair (W,s∗) will be referred to as the Truth Summary
of the structure M. The truth function, W , plays the role of a posterior cumulative
surprise distribution and is sometimes refered as that. The function W (v) = 1−W (v),
is refered to as the Untruth Function of M, and ev(H) = W (s∗) = 1 − ev(H) is
refered to as the Untruth Value, or evidence-value against H.

The tuth value of H plays the role of a quantitative measurement of the truthness
of H. Since the Tangential Set, T = T (s∗), contains the points of the parameter
space with higher surprise, relative to the reference density, than any point in H,
small values of ev(H) indicate that the hypothesis traverses high density regions,
favoring the hypothesis. When r(θ) is the (possibly improper) uniform density, i.e.,
r(θ) ∝ 1, T is the Posterior’s Highest Density Probability Set (HDPS) tangential to
H. In the statistical jargon ev(H) is commonly refered to as the evidence value, or
e-value, supporting H.

The role of the reference density in the FBST is to make ev(H) implicitly invari-
ant under suitable transformations of the coordinate system of the parameter space.
The natural choices for reference density are an uninformative prior, interpreted as a
representation of no information in the parameter space, or the limit prior for no ob-
servations, or the neutral ground state for the Bayesian operation. Standard (possibly
improper) uninformative priors include the uniform and maximum entropy densities,
see [5] for a detailed discussion.

As we mentioned in the introduction, our results concern complex hypotheses in
independent setups. The precise meaning of this framework is that the FBST struc-
tures M = {Θ ,H, p0, pn,r} and M j = {Θ j,H j, p j

0, p j
n,r j}, j = 1, . . .k, bear the fol-

lowing relationships between their elements:
- the parameter space,Θ , of the underlying statistical model, (S,Σ(S),Pθ ), is the

product space Θ 1 ×Θ 2 × . . .×Θ k;
- H, is a logical composition (conjunctions/disjunctions) of H1,H2 . . .Hk;
- pn and r, are probability densities with respect to the product measure µ = µ1 ×

µ2 × . . .× µk on (Θ ,Σ(Θ)), where µ j denote the σ -finite measure on (Θ j,Σ(Θ j))
with respect to which p j

0, p j
n and r j are densities ; and

- the probability densities pn and r are such that

pn(θ) =
∏k

j=1
p j

n(θ j) and r(θ) =
∏k

j=1
r j(θ j) , θ = (θ 1, . . . ,θ k) ∈Θ .
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Fig. 1. Truth functions W (v), v ∈ [0, ŝ ], normalized s.t. ŝ = 1 Subplots 1,2: W j, s∗ j, and
ev(H j), for j = 1,2; Subplot 3: W 1 ⊗W 2, s∗1s∗2, ev(H1 ∧H2) and bounds; Subplot 4: Struc-
ture M3 is an independent replica of M2, ev(H1) < ev(H2), but ev(H1 ∧H3) > ev(H2 ∧H3).
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3 Inequalities for the Truth-Values of Conjunctions

In this section we consider the case of a conjunctive composite hypothesis, that is, the
case in which H is equivalent to H1 ∧H2 ∧ . . .∧H j, and show that in the independent
setup an answer to the question of whether the truth value of H can be expressed in
terms of the truth values of its elementary constituents can only be given in the form
of upper and lower bounds. The following lemmas will be needed to prove the main
result of this section:

Lemma 1: For any conjunctin H = H1 ∧H2 ∧ . . .Hk, we have

s∗ = supθ∈H s(θ) =
∏k

j=1
supθ j∈H j s j(θ j) =

∏k

j=1
s∗ j .

Proof: Since for θ ∈ H, s j(θ j) ≤ s∗ j, for 1 ≤ j ≤ k, s(θ) =
∏k

j=1 s j(θ j) ≤
∏k

j=1 s∗ j

so that s∗ ≤
∏k

j=1 s∗ j. However, for ε > 0 and s =
∏k

j=1(s
∗ j −ε), there must exist θ ∈

∧k
j=1 H j such that s(θ) =

∏k
j=1 s j(θ j) >

∏k
j=1(s

∗ j − ε). So, supθ∈H s(θ) >
∏k

j=1

(s∗ j − ε), and the result follows by making ε → 0.

Lemma 2: If W j, 1 ≤ j ≤ k, and W are the truth functions of M j,1 ≤ j ≤ k, and M,
respectively, the following inequality holds:

∏k

j=1
W j(v j) ≤ W (

∏k

j=1
v j) ,

Proof: Let G : Rk
+ �→ [0,1] be defined as

G(v1, . . . ,vk) =
∫

{s1(θ1)≤v1,...,sk(θ k)≤vk}
pn(θ)µ(dθ) .

Since s =
∏k

j=1 s j, µ =
∏k

j=1 µ j, and
{

s1(θ 1) ≤ v1, . . . ,sk(θ k) ≤ vk
}

⊆
{∏k

j=1 s j(θ j) ≤
∏k

j=1 v j
}

=
{

s(θ) ≤
∏k

j=1 v j
}

, it follows that
∏k

j=1 W j(v j) = G(v1, . . . ,vk) ≤ W (
∏k

j=1 v j) .

Lemma 3: For any conjunction H = H1 ∧H2 ∧ . . .∧Hk, we have

∏k

j=1
ev(H j) ≤ ev(H1 ∧H2 ∧ . . .∧Hk) and

∏k

j=1
ev(H j) ≤ ev(H1 ∧H2 ∧ . . .∧Hk) .

Proof: In the inequality of Lemma 2, replacing each v j by s∗ j, 1 ≤ j ≤ k, and then
using Lemma 1, the first result follows. The same argument proves the other asser-
tion.

Lemma 3 give us lower bounds for the truth and untruth values of any conjunc-
tion H = H1 ∧ H2 ∧ . . .Hk, respectively in terms of the truth and untruth values of
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the elementary constituent hypotheses. Upper bound for the same values are easily
obtained. More precisely,

Theorem 1: For any conjunction H = H1 ∧H2 ∧ . . .∧Hk, we have
∏k

j=1 ev(H j) ≤ ev(H1 ∧H2 ∧ . . .∧Hk) ≤ 1−
∏k

j=1(1− ev(H j)) and
∏k

j=1 ev(H j) ≤ ev(H1 ∧H2 ∧ . . .∧Hk) ≤ 1−
∏k

j=1(1− ev(H j)) .

In the null-or-full support case, that is, when, for 1 ≤ j ≤ k, s∗ j = 0 or s∗ j = ŝ j,
and the truth values of the simple constituent hypotheses are either 0 or 1, the bounds
in proposition 2 are sharp. In fact, it is not hard to see that the composition rule of
classical logic holds, that is,

ev(H1 ∧ . . .∧Hk) =
{

1 , if s∗1 = ŝ1 . . .s∗k = ŝk ;
0 , if, for some j = 1 . . .k, s∗ j = 0 .

In the example below, illustrated by Figure 1, we show that the inequality in theo-
rem 1 can, in fact be strict. Appendix A presents a Matlab function giving thr Mellin
convolution of discretized (stepwise) distributions, used to generate all examples.

Example 1: In the third, first and second subplots of Figure 1, we have the graphs
of truth functions corresponding, respectively, to the complex hypothesis H1 ∧ H2

and to its elementary constituents, H1 and H2. Note that while ev(H1) = 0.5 and
ev(H2) = 0.7, ev(H1 ∧ H2) = 0.64, which is strictly grater than ev(H1)ev(H2) =
0.35.

4 The Truth Operation for Conjunctions

In this section we will also consider the case of a conjunctive composite hypothesis,
H = H1 ∧ H2 ∧ . . .∧ H j., within an independent setup. The investigation, however,
concerns the question of whether the truth function of the FBST structure corre-
sponding to H can be obtained from the truth functions of the FBST structures cor-
responding to its elementary constituents.

Given two probability distribution functions G1 : R+ �→ [0,1] and G2 : R+ �→
[0,1], their Mellin convolution, G1 ⊗G2, is the distribution function defined by

G1 ⊗G2(v) =
∫ ∞

0

∫ v/y

0
G1(dx)G2(dy) =

∫ ∞

0
G1(v/y)G2(dy) .

The Mellin convolution output, G1 ⊗ G2 is the probability distribution function
of the product of two independent random variables, X and Y , with distribution func-
tions, G1 and G2, respectively, see [11] and [16]. Consequently, commutativeness
and associativeness of Mellin convolution, ⊗, follows immediately.

Lemma 4: For any conjunction H = H1 ∧H2 ∧ . . .Hk,

W =
⊗

1≤ j≤k
W j = W 1 ⊗W 2 ⊗ . . .⊗W k(v) .
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Proof: This lemma follows straight from the definition of W .
Due to the above result, we shall refer to the Mellin convolution, in the present

context, as the Truth Operation.
Together with the truth operation, the elementary truth summaries, (W j,s∗ j), 1 ≤

j ≤ k, efficiently synthetize the independent setup information, in the sense that the
truth value of any conjunction H = H1 ∧H2 ∧ . . .Hk can be obtained. More precisely:

Theorem 2: If (W j,s∗ j), 1 ≤ j ≤ k, are the truth summaries of the elementary con-
tituents of a conjunction,

H =
∧

1≤ j≤k
H j , then ev(H) = W (s∗) =

⊗

1≤ j≤k
W j
(
∏k

j=1
s∗ j
)

.

Proof: Immediate, from Lemmas 2 and 4.

5 Disjunctive Normal Form

Let us now consider the case where H is Homogeneous and expressed in Disjunctive
Normal Form, that is:

H =
∨q

i=1

∧k

j=1
H(i, j) , M(i, j) = {Θ j,H(i, j), p j

0, p j
n,r

j} .

Let us also define s∗(i, j) and ŝ(i, j) as the respective constrained and unconstrained
suprema of s(θ (i, j)) on the elementary hypotheses H(i, j).

Theorem 3:

ev(H) = ev

(
∨q

i=1

∧k

j=1
H(i, j)

)

= W

(

supq
i=1

∏k

j=1
s∗(i, j)

)

=

maxq
i=1 W

(
∏k

j=1
s∗(i, j)

)

= maxq
i=1 ev

(
∧k

j=1
H(i, j)

)

.

Proof: Since the supremum of a function over the (finite) union of q sets, is the max-
imum of the suprema of the same function over each set, and W is non-decreasing,
the result follows.

Theorem 3 discloses the Possibilistic nature of the FBST truth value, i.e., the
e-value of a disjunction is the maximum e-value of the disjuncts, [12-14].

6 Final Remarks

It is worth mentioning that the present article does not abridge the most general
composition cases of nested or heterogeneous (independent) structures, within which
composite hypotheses are simultaneously assessed in heterogeneous sub-structures
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of (possibly) different dimensions. The following example indicates that this is not a
trivial matter:

Example 2: Let m = argmax j=1,2 ev(H j) and H be equivalent to (H1 ∨ H2)∧ H3.
Is it true that ev(H) = max{ev(H1 ∧ H3),ev(H2 ∧ H3)} = ev(Hm ∧ H3) ? Interest-
ingly the answer is in the negative. In the third and forth subplots of Figure 1 we
have the graphs of the Truth Functions corresponding, respectively, to the complex
hypothesis H1 ∧H3 and H2 ∧H3, where the structure M3 is an independent replica
of M2. Observe that ev(H1) = 0.5 < ev(H2) = 0.7, while ev(H1 ∧ H3) = 0.64 >
ev(H2 ∧H3) = 0.49.

Forthcomming papers extend the results obtained herein to the conditional in-
dependence setup. Such estensions allow us to develop efficient significance testing
procedures for multinomial Dirichlet and Bayesian networks models, see [4] and
[10]. Forthcomming papers also detail the implementation of Markov Chain Monte
Carlo computational procedures for estimating the truth function, W (v),0 ≤ v ≤ ŝ.
Such procedures require only minor adaptations, with small computational overhead,
in the MCMC procedures for estimating ev(H) = W (s∗), see [6].
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Appendix A: Mellin Convolution Matlab Function

function [z,kk]= mellc(x,y,ii,jj); * if (i==ii & j==jj)
%z(1,j)= coord in [0,max_t s(t)] * skk= z(1,k); end
%z(1,kk)= s* , max surprise over H * end end %for_i for_j
%z(2,j)= prob mass at z(1,j), M * z(3,:)= z(2,:);
%z(3,j)= cumulative distribution, W * [s,ind]= sort(z(1,1:nm)’);
n= size(x,2); m=size(y,2); nm= n*m; * z= z(1:3,ind); kk= 1;
z= zeros(3,nm); k=0; skk=0; * for k=2:nm
for i=1:n for j=1:m * z(3,k)= z(3,k)+z(3,k-1);

k= k+1; * if ( z(1,k)<=skk )
z(1,k)= x(1,i)*y(1,j); * kk= k; end
z(2,k)= x(2,i)*y(2,j); * end %for_k
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1 Introduction

Vague or imprecise concepts are fundamental to natural language. Human beings
are constantly using imprecise language to communicate each other. We usually say
‘John is tall and strong’ but not ‘John is exactly 1.85 meters in height and he can
lift 100kg weights’. Humans have a remarkable capability to perform a wide variety
of physical and mental tasks without any measurements. This capability partitionsof
objects into granules, with a granule being a clump of objects drawn together by
indistinguishability, similarity, proximity or function [8]. We will focus on develop-
ing an understanding of how we can use vague concepts to convey information and
meaning as part of a general strategy for practical reasoning and decision making.

We may notice that labels are used in natural language to describe what we see,
hear and feel. Such labels may have different degrees of vagueness. For example,
when we say Mary is young and she is female, the label young is more vague than
the label female because people may have more widely different opinions on being
young than being female. For a particular concept, there could be more than one
label that is appropriate for describing this concept, and some labels could be more
appropriate than others. A random set framework, Label Semantics, was proposed
to interpret these facts [3]. In such a framework, linguistic expressions or labels such
as small, medium and large are used for modelling. These labels are usually de-
fined by overlapping fuzzy sets which are used to cover the universes of continuous
variables. Different from Computing with Words [9], fuzzy labels are usually pre-
defined and used for building intelligent systems such as decision tree [4, 5], naive
Bayes learning [7] and rule induction systems [6] without involving the computing
of semantic meanings of these labels.

In this paper, we extended the label semantics framework with high level fuzzy
labels. In previous research of label semantics, fuzzy labels are used to describe a
numerical data element and the corresponding appropriateness degree for using a
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University of California, Berkeley, CA 94720, USA.
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particular fuzzy label is just the membership of this data element belonging to the
fuzzy label. Due to the vagueness and impreciseness of the real-world, numerical
values are not always available. Here, we extend the label semantics framework to
use higher level labels to describe some vague concepts which are also defined by
intervals or fuzzy sets. The rest of the paper is structured as follows. Section 2 intro-
duces the label semantics framework, based on which, the idea of high level fuzzy
labels is disussed and supported with an example in section 3.

2 Label Semantics For Uncertainty Modeling

Label semantics is a methodology of using linguistic expressions or fuzzy labels to
describe numerical values. For a variable x into a domain of discourse Ω we identify
a finite set of fuzzy labels L = {L1, · · · ,Ln} with which to label the values of x. Then
for a specific value x ∈Ω an individual I identifies a subset of L , denoted DI

x to stand
for the description of x given by I, as the set of labels with which it is appropriate
to label x. If we allow I to vary across a population V with prior distribution PV ,
then DI

x will also vary and generate a random set denoted Dx into the power set of
L denoted by S . We can view the random set Dx as a description of the variable
x in terms of the labels in L . The frequency of occurrence of a particular label, say
S, for Dx across the population then gives a distribution on Dx referred to as a mass
assignment on labels2. More formally,

Definition 1 (Label Description) For x ∈Ω the label description of x is a ran-
dom set from V into the power set of L , denoted Dx, with associated distrib-
ution mx, which is referred to as mass assignment:

∀S ⊆ L , mx(S) = PV ({I ∈ V |DI
x = S}) (1)

where mx(S) is called the mass associated with a set of labels S and
∑

S⊆L

mx(S) = 1 (2)

Intuitively mass assignment is a distribution on appropriate label sets and
mx(S) quantifies the evidence that S is the set of appropriate labels for x.

For example, an expression such as ‘the score on a dice is small ’, as asserted
by individual I, is interpreted to mean DI

SCORE = {small}, where SCORE denotes the
value of the score given by a single throw of a particular dice. When I varies across a
population V , different sets of labels could be given to describe the variable SCORE,
so that we obtain the random set of DSCORE into the power set of L .

2 Since S is the power set of L, the logical representation S ∈ S can be written as S ⊆ L .
The latter representation will be used through out this thesis. For example, given L =
{L1,L2}, we can obtain S = { /0,{L1},{L2},{L1,L2}}. For every element in S : S ∈ S ,
the relation S ⊆ L will hold.



High Level Fuzzy Labels for Vague Concepts 319

In this framework, appropriateness degrees are used to evaluate how appropri-
ate a label is for describing a particular value of variable x. Simply, given a particular
value α of variable x, the appropriateness degree for labeling this value with the label
L, which is defined by fuzzy set F , is the membership value of α in F . The reason
we use the new term ‘appropriateness degrees’ is partly because it more accurately
reflects the underlying semantics and partly to highlight the quite distinct calculus
based on this framework [3]. This definition provides a relationship between mass
assignments and appropriateness degrees.

Definition 2 (Appropriateness Degrees)

∀x ∈Ω , ∀L ∈ L µL(x) =
∑

S⊆L :L∈S

mx(S)

For example, given a set of labels defined on the temperature outside: LTemp =
{low, medium, high}. Suppose 3 of 10 people agree that ‘medium is the only appro-
priate label for the temperature of 15◦ and 7 agree ‘both low and medium are appro-
priate labels’. According to def. 1, the mass assignment for 15◦ is m15(medium) =
0.3, and m15(low, medium) = 0.7 or formally:

m15 = {medium} : 0.3, {low,medium} : 0.7

More details about the theory of mass assignment can be found in [1]. In this
example, we have that the appropriateness of medium as a description of 15◦ is
µmedium(15)= 0.7+0.3 = 1, and that of low is µlow(15) = 0.7.

It is certainly true that a mass assignment on Dx determines a unique appropri-
ateness degree for µL for any L ∈ L , but generally the converse does not hold. For
example, given L = {L1,L2,L3} and µL1 = 0.3 and µL2 = 1. We could obtain an
infinite family of mass assignments:

{L1,L2} : α, {L2} : β , {L2,L3} : 0.7−β , {L1,L2,L3} : 0.3−α

for any α and β satisfying: 0 ≤ α ≤ 0.3, 0 ≤ β ≤ 0.7. Hence, the first assumption
we make is that the mass assignment mx are consonant and this allows us to determine
mx uniquely from the appropriateness degrees on labels as follows:

Definition 3 (Consonant Mass Assignments on Labels) Let {β1, · · · ,βk} =
{µL(x)|L ∈ L ,µL(x) > 0} ordered such that βt > βt+1 for t = 1,2, · · · ,k−1 then:

mx = Mt : βt −βt−1, for t = 1,2, · · · ,k−1,

Mk : βk, M0 : 1−β1

where M0 = /0 and Mt = {L ∈ L |µL(x) ≥ βt} for t = 1,2 . . . ,k.

For the previous example, given µL1(x) = 0.3 and µL2(x) = 1, we can calculate
the consonant mass assignments as follows: The appropriateness degrees are ordered
as {β1,β2} = {1,0.3} and M1 = {L2}, M2 = {L1,L2}. We then can obtain
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mx = {L2} : β1 −β2,{L1,L2} : β2 = {L2} : 0.7,{L1,L2} : 0.3

Because the appropriateness degrees are sorted in def. 3 the resulting mass assign-
ments are “nested”. Clearly then, there is a unique consonant mapping to mass as-
signments for a given set of appropriateness degree values. The justification of the
consonance assumption can be found in [1, 3]. Notice that in some cases we may
have non-zero mass associated with the empty set This means that some voters be-
lieve that x cannot be described by any labels in L . For example, if we are given
µL1(x) = 0.3 and µL2(x) = 0.8, then the corresponding mass assignment is:

{L2} : 0.5,{L1,L2} : 0.3, /0 : 0.2

where the associated mass for the empty set is obtained by 1−β1 = 0.2.

3 High Level Label Description

In this section, we will consider how to use a high level fuzzy label to describe
another fuzzy label. Here the term high level does not mean a hieracrhial structure.
We will actually consider two set of fuzzy labels which are independently defined
on the same universe. If the cardinality of a set of labels L is denoted by |L |. We
then can say L1 higher level labels of L2 if L1 < L2. We will acutally consider
the methodology of using one set of fuzzy labels to represent the other set of fuzzy
labels.

For example, a fuzzy concept about_m is defined by an interval on [a, b] (see
the left-hand side figure of Fig. 1), so that the appropriateness degree of using fuzzy
label small to label about_m is:

µsmall(about_m) =
1

b−a

∫ b

a
µsmall(u)du (3)

If the vagueness of the concept about_m depends on the interval denoted by δ where
the length of the interval |δ | = b−a. We then can obtain:

µsmall(about_m) =
1
|δ |

∫

u∈δ
µsmall(u)du (4)

usmall(x) usmall(x)

uabout_m(x)

small

delta

 k u ma b

about_m small

u    m b

about_m

a

Fig. 1. The appropriateness degree of using small to label vague concept about_m is defined
by the ratio of the area covered by both labels to the area covered by about_m only.
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If about_m is defined by other fuzzy labels rather than an interval, for example, a
triangular fuzzy set (e.g., the right-hand side figure of Fig. 1). How can we define the
appropriateness degrees?

We begin by considering a data element x ∈ [a,b], the function µabout_m(x) rep-
resents the degree of x belonging to the fuzzy label F . Function µsmall(x) defines the
appropriateness degrees of using label small to describe x 3. We essentially hope to
obtain the appropriateness degrees of using small to label about_m. We then con-
sider the each elements belonging to about_m. If µabout_m(x) = 1, which means x is
absolutely belonging to about_m, then the appropriateness degree is just µsmall(x).
However, if µabout_m < µsmall(x), we can only say it is belonging to about_m in cer-
tain degrees. Logically, fuzzy operation AND is used, and in practical calculation,
the min(·) function is employed. The appropriateness is then defined by:

µsmall(about_m) =

∫

u∈δ min(µsmall(u),µabout_m(u))du
∫

u′∈δ µabout_m(u′)du′ (5)

where function min(x,y) returns the minimum value between x and y. Equation 4 is
a special case of equation 5 where the following equations always hold:

µsmall(u) = min(µsmall(u),µabout_m(u))

|δ | =
∫

u∈δ
µabout_m(u)du

Definition 4 Given a vague concept (or a fuzzy label) F and a set of labels
L = {L1, . . . ,Lm} defined on a continuous universe Ω . The appropriateness
degrees of using label L (L ∈ L ) to describe F is:

µL(F) =

∫

u∈δ min(µL(u),µF(u))du
∫

u′∈δ µF(u′)du′ (6)

where δ is the universe covered by fuzzy label F.

Given appropriateness degrees, the mass assignment can be obtained from the appro-
priateness degrees by the consonance assumption. Equation 5 is a general form for
all kinds of fuzzy sets which are not limited to an interval or a triangular fuzzy sets.

Example 1. Figure 1 gives a set of isosceles triangular fuzzy labels F1, . . . ,F8 and
two high level fuzzy label small and large defined on the same universe. The mem-
bership functions (the non-zero part) for F5, F6 and small are defined as follows:

PS → y =
5
2

x−3, PT → y = −5
2

x+5

QR → y =
5
2
(x−0.4)−3, QU → y = −5

2
(x−0.4)+5

OU → y = −5
6

x+2

3 Here we interpret µ(·) in different manners: membership function and appropriateness de-
grees, though they are mathematically the same.
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x

        delta

u

Fff
F1      F2          F3        F4          F5            F6           F7          F8

small large

0.75

0.25

QP

S TR U

O

P

R

Q

T

Fig. 2. The relations between fuzzy labels.

As we can see from Fig. 2: µF5(x) = 0.75 and µF6(x) = 0.25 given x = 1.7. According
to definition 4 we can obtain:

µsmall(F5) = 0.8, µlarge(F5) = 1

µsmall(F6) = 0.5, µlarge(F6) = 1

So that the corresponding consonant mass assignments (see definition 3) are:

mF5 = {small, large} : 0.8,{large} : 0.2

mF6 = {small, large} : 0.5,{large} : 0.5

High level labels small and large can be used to describe x = 1.7 by the following
steps.

mx = {F5,F6} : 0.25,{F5} : 0.5, /0 : 0.25

F5 and F6 can be represented by the mass assignments of high level fuzzy labels:
small and large. Considering the term {F5,F6}, it means that both two labels F5 and
F6 are appropriate for labeling x with a certain degree. It defines a area covered both
by F5 and F6 (see Fig. 2) which is an interval between R and T . Therefore, according
to def. 4 we can obtain the mass assignment for {F5,F6}:

m{F5,F6} = {small, large} : 0.5,{large} : 0.5
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Finally, we obtain:

mx = ({small, large} : 0.5,{large} : 0.5) : 0.25,

({small, large} : 0.8,{large} : 0.2) : 0.5, /0 : 0.25

= {small, large} : 0.525,{large} : 0.225, /0 : 0.25

From the above example, if we use small and large to describe x directly. By the
function of small we can obtain u = 7

12 so that the mass assignments are:

mx = {small, large} :
7

12
,{large} :

5
12

which is different from the result presented in example 1. It is because precision is
lost by using two level of fuzzy labels. In our example, x is firstly repressed by F5
and F6 which is precise. However, the description of x by small and large through
F5 and F6 is not precise any more, because F5 and F6 are not exact representation
of x by involving uncertainties decided by δ . As we can see from the Fig. 3: the
appropriateness degrees of using high level labels to describe low level concepts are
depending on the uncertainty parameter δ . For example, given a data element m:

|µsmall(F(δ1))−µsmall(m)| < |µsmall(F(δ2))−µsmall(m)| < |µsmall(F(δ3))−µsmall(m)|

So that:
µsmall(m) = lim

δ→0
µsamll(F(δ ))

where F is the function of the fuzzy label (a function of δ -either an interval, triangu-
lar fuzzy set or other type of fuzzy set) centered on m.

m

u

small

delta 1

delta 2

delta 3

m

u

small

delta 1
delta 2

delta 3

Fig. 3. The appropriateness degree of using small depends on the width of the vague concept
of about_m.

4 Conclusions

In this paper, a methodology of using high level fuzzy labels to describe vague con-
cepts or low level fuzzy labels is proposed based on label semantics framework. An
example is given to show how to calcuate the mass assigments of high level fuzzy
labels on a vague concept.
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We deal with DNA combinatorial code constructions, as found in the literature, tak-
ing the point of view of possibilistic information theory and possibilistic coding
theory. The possibilistic framework allows one to tackle an intriguing information-
theoretic question: what is channel noise in molecular computation? We examine
in detail two representative DNA string distances used for DNA code constructions
and point out the merits of the first and the demerits of the second. The two string
distances are based on the reverse Hamming distance as required to account for hy-
bridisation of DNA strings.

1 Introduction

Assume that an input word is chosen out of a list, or codebook, and is sent through
a noisy communication channel; a distorted version of the input word is received
at the output end of the channel. Several rational behaviours can be envisaged, ac-
cording to the context. The observer can decode to the input word in the list whose
diversity or distortion from the output is minimum; or: the observer of the output
can decode to the input word whose similarity to the output is maximum; or: the
observer can decode to the input word such that the likelihood of having observed
the output is maximum; or: the observer can decode to the input word such that the
possibility of having observed right that output is maximum. All these approaches,
even if maximum likelihood is definitely less powerful, can be conveniently lodged
under the shed of possibilistic information theory and possibilistic coding the-
ory, as were put forward in [11], [12], [13], [14]. So far, this theoretical framework
had been applied to devising error-correcting telephone keyboards and to the prob-
lem of ensuring safety in a telephone network with sensitive users [8], [2]; below,
we show that it can consistently and conveniently lodge unusual forms of coding,
as is DNA word design (for which cf. e.g. [4], [9], [10]), and it allows one to an-
swer an intriguing question of a subtle information-theoretic nature: what is noise in
molecular computation, or more specifically in DNA word design?

L. Bortolussi and A. Sgarro: Possibilistic Channels for DNA Word Design, Advances in Soft Computing 6,
327–335 (2006)
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Below, Sections 2 and 3 deal with possibilistic coding up to the formulation of
our main problem: what is channel noise in DNA word design? In Section 4 we deal
with two representative cases, i.e. DNA code constructions based on checking the
reverse Hamming distance between codewords, and those based on checking both
Hamming distances, direct and reverse. Only this compound DNA string distance
passes the “possibilistic control” (theorem 1), and allows a satisfactory definition of
what channel noise may be in biological computation, while pure reverse Hamming
distance fails (theorem 2). The last section contains a short biological reminder on
DNA word design and a few concluding remarks. In this paper we consider only
crisp codes, be it from the “soft” point of view of possibility theory; fuzzy DNA
codebooks and their biological adequacy have been discussed in [3].

2 Channel Models

An input-word set X and an output-word set Z are given. A codebook C , or simply
a code, is a subset of the input set, and its elements are called codewords; C ⊂ X .
The channel is specified through a matrix with rows headed to X and columns
headed to Z , and whose entries α(x,z) are non-negative real numbers. In this paper
we shall cover explicitly two3 cases:

Possibilistic matrix (the maximum entry in each row of the matrix is 1): its elements
are transition possibilities from inputs to outputs.
Distortion matrix (the minimum entry in each row of the matrix is 0): its elements
specify the distortion between input and output.

These matrices implicitly describe the noise which affects channel transmission.
The decoding strategies are: in the case of transition possibilities decode to the input
codeword in C which maximises the value in the matrix column headed to the output
received; instead, one minimises the matrix value in the case of distortions. So, the
first decoding strategy is a maximising strategy, while the second is a minimising
strategy. The underlying implicit assumption is that the smaller the possibility (the
higher the distortion, respectively), the less “likely” it is to occur during channel
transmission, and this in a very uncommittal sense of the word “likely”, cf. [11],
[13], [14]. In case of ties one declares a detected decoding error; unfortunately, one
can incur also into undetected decoding errors, even if the possibility of such events
should be small for a good code.

Examples. In standard coding theory, one decodes by minimising Hamming dis-
tance, that is the number of positions in which the input sequence and the output
sequence differ (both sequences are assumed to have the same length). The corre-
sponding transition possibility is the frequency of positions where input and output

3 We apologise for this redundancy: we might have stuck to possibilities only, as in [11],
but we are confident that this redundancy will make the paper easily readable by a larger
audience, inclusive of coding theorists and computational biologists.
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sequences coincide; cf. below. In Shannon theory, instead, one minimises transition
(conditional) probabilities, as arranged in a stochastic matrix. In [11], where the the-
oretical and practical bearing of the possibilistic approach to coding is discussed and
vindicated, one mimics the Shannon-theoretic approach, after replacing transition
probabilities by transition possibilities (probabilistic channels by possibilistic chan-
nels, probabilistic noise by possibilistic noise). An even more general possibilistic
framework would be a “bayesian-like” generalisation: assume one has a possibility
vector on the input set X , and a transition possibility matrix from X to Z . Form
a joint possibilistic matrix by taking minima between prior possibilities and the cor-
responding transition possibilities: then one decodes to codewords which must have
both a large prior possibility and a large transition possibility. In this case the matrix
would be normal, but not all of its rows (“normal” means that the maximum entry is
1, cf. e.g. [6]).

Actually, what matters in these matrices is not the actual numeric values, but
rather their mutual order. More specifically, two possibilistic matrices (two distor-
tion matrices, respectively) are equivalent if there is a strictly increasing one-to-
one correspondence β (x,z) = f

(
α(x,z)

)
, between their entries α(x,z) and β (x,z); a

possibilistic matrix and a distortion matrix are equivalent when the one-to-one cor-
respondence f is strictly decreasing.

Proposition. Take a codebook C . Decode according to two equivalent matrices.
The first decoder makes a detected error or an undetected error, respectively,
iff the second decoder makes an error, detected or undetected, respectively.

(The straightforward proof is omitted). A distortion matrix can be soon converted
to an equivalent possibilistic matrix. In practice, we shall have to deal only with
words which are strings of the same length n, with the distortion spanning the inte-
gers from 0 to n, and so we shall always consider jointly a distortion matrix d(x,z)
and the possibilistic matrix defined by the transition possibilities:

π(z|x) = 1−n−1 d(x,z) (1)

In the case of decoding by maximum possibility we are ready to incur only into de-
coding errors which correspond to negligible transition possibilities π; if the decod-
ing strategy is minimum distortion, we are ready to incur only into decoding errors
which correspond to exorbitant distortions d = n(1−π).

3 Optimal Code Constructions for Possibilistic Channels

The confusability and the distinguishability between two input sequences x and y
are defined, respectively, as:

γ(x,y) = max
z

π(z|x)∧π(z|y) , δ (x,y) = min
z

d(x,z)∨d(y,z)
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(∨ and ∧ are alternative notations for max and min). The maximum confusability
γC of the code C and its minimum distinguishability δC are the maximum con-
fusability and the minimum distinguishability between any two distinct codewords,
respectively. Of course:

γ(x,y) = 1−n−1δ (x,y) , γC = 1−n−1δC

The operational meanings of δC and of γC from the viewpoint of coding are given
by the following reliability criterion:

Reliability criterion ( [13], [14]). The maximum confusability γC is the highest
possibility which is not always corrected when decoding by maximum possibility,
while possibilities > γC are always corrected. Equivalently: the minimum dis-
tinguishability δC is the lowest distortion which is not always corrected when
decoding by minimum diversity, while distortions < δC are always corrected.

The classical optimisation problem of channel coding (optimal code construc-
tions) is maximising the code’s size subject to a specified reliability constraint, which
in our case is that all “large” possibilities, or all “small” distortions, respectively,
should be properly4 corrected. Maximising the code size is the same as maximis-
ing its transmission rate n−1 log2 |C |, i.e. the number of information bits carried
by each transmitted symbol (for this and for other basic notions of information and
coding theory the reader is referred e.g. to [7]). We stress that the constraints with
respect to which one optimises should not be expressed in terms of transition possi-
bilities or distortions, but rather in terms of confusabilities, or distinguishabilities, as
the reliability criterion makes it clear:

γC ≤ ρ or δC ≥ λ = n(1−ρ) , 0 ≤ ρ ≤ 1

In the case when the distortion is the Hamming distance dH(x,y), the distinguisha-
bility and the confusability are soon found to be:

δH(x,y) =
⌈dH(x,y)

2

⌉

, γH(x,y) = n−1
⌊

n
1+π(y|x)

2

⌋

and so they are (weakly) increasing functions of the distortion and of the transi-
tion possibility, respectively. Given this monotonic dependence, one can construct
reliable codes as one does in algebraic coding, that is with respect to reliability
constraints expressed in terms of the minimum Hamming distance between distinct
codewords, rather than constraints on confusabilities or distinguishabilities, as one
may and should do in full generality. In other words, the Hamming distance acts
also as a very convenient pseudo-distinguishability between codewords5 and not

4 Due to the maxitive nature of possibilities, this is the same as checking decoding error
possibilities, exactly as one checks decoding error probabilities in Shannon theory, cf. [11].

5 Since the monotonicity is only weak, by checking distances rather than distinguishabilities
one ends up solving a more general combinatorial problem, and one found also “spurious”
solutions. Such spurious solutions are made good use of for error detection rather than error
correction, but we cannot deepen this point here; cf. [14].
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only as a distortion between input sequences and output sequences. In the literature
of DNA word design [4], [5], [9], [10] one is interested in code constructions where
one checks suitable DNA string distances, out of which we shall consider two (repre-
sentative) examples. Can one solve in a satisfactory way the inverse problem of con-
structing possibilistic channels (of describing suitable channel noise) which would
“explain” those constructions, as one can do in the usual Hamming case of coding
theory? Or: can these DNA distances be seen as suitable pseudo-distinguishabilities
for a suitable noisy channel? As argued in next section, one of the two DNA distances
will faithfully mirror the usual Hamming case, while the second will turn out to be
totally unmanageable. It is no coincidence, we deem, that the second case is less
justifiable also from a strictly biological point of view.

4 The Inverse Problem of Channel Noise in DNA Word Design

DNA word design is an “odd” form of coding used in molecular computation, where,
based on biological facts (cf. section 5), one exhibits maximum-size code construc-
tions relative to constraints of the form d(x,y) ≥ λ for a suitable DNA string dis-
tance d. An information-theoretic problem arises: what is the nature of the biolog-
ical channel one is implicitly envisaging, or, equivalently: what sort of “biological
noise” are we fighting against when we use these code constructions? Thinking of
the above arguments, we can re-formulate the question as follows: can d(x,y) be
interpreted as a pseudo-distinguishability, i.e.: can one exhibit a transition possibil-
ity π(z|x) between inputs and outputs such that the corresponding distinguishability
function δ (x,y) is a non-trivial and non-decreasing function of d(x,y)? The possi-
bilistic framework6 allows one to answer these questions in a sensible way. We shall
discuss two types of code constructions found in the literature: the answer will be
positive in one case, which is better justified also from the biological point of view,
and negative in the other.

We shall deal only with two DNA distortions, which however are very represen-
tative, the reverse Hamming distance and a variation thereof:

dR(x,y) and dH∧R(x,y) = dH(x,y)∧dR(x,y)

Here dH(x,y) is the usual Hamming distance, while the reverse Hamming distance
is dR(x,y) = dH(x,y∗), with y∗ mirror image of y. In practice, in the case of dR,
codewords in a good code should have a large reverse Hamming distance, while
they should have both a large Hamming distance and a large reverse Hamming dis-
tance7 in the case of dH∧R. We recall that dH∧R(x,y) is a pseudometric; one has

6 Maximum likelihood is enough to account for usual code constructions, as those in [7],
by referring to symmetric channels. The maximum likelihood approach, however, does not
appear to be the right model for “odd” codes as the ones of DNA word design.

7 The reason why we do not discuss explicitly complementarity and self-hybridisation are
given in the last section.
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dH∧R(x,y) = 0 when x = y or when x and y are mirror images of each other. Nothing
so tame happens in the case of dR, which violates the triangle inequality.

Below we shall try to “explain” the corresponding DNA code constructions by
exhibiting a suitable possibilistic noisy channel and a suitable noise-fighting decoder.
To achieve this, let us begin by the friendlier case, and let us compute the confusabil-
ity γH∧R and the distinguishability δH∧R corresponding to the string distance dH∧R

taken as the distortion between inputs and outputs. We decode the output z by mini-
mum distortion, and so we are implicitly assuming that it is “unlikely” (i.e. possible
only to a small degree) that z has both a large Hamming distance and a large reverse
Hamming distance from the codeword c actually sent over the channel.

Theorem 1. Decode the output z by minimising dH∧R(c,z), c ∈ C ; the corre-
sponding distinguishability and confusability functions are:

δH∧R(x,y) =
⌈dH∧R(x,y)

2

⌉

, γH∧R(x,y) = n−1
⌊

n
1+π(y|x)

2

⌋

This is exactly the same situation as found with usual Hamming distances and
the codes of algebraic coding (as for the straightforward proof, cf. similar computa-
tions to find distinguishability functions in [14]). In practice, this means that a possi-
bilistic channel based on the transition possibilities π(z|x) = 1−n−1dH∧R(x,z) and
the corresponding noise quite adequately “explain” the code constructions based on
checking the pseudometric dH∧R, as are those found in the literature.

Now, let us think of a DNA word design construction where one controls only
the minimum reverse Hamming distance between codewords. The situation is less
friendly, because if we decide to decode by minimum reverse Hamming distance,
the corresponding distinguishability function turns out to be a non-decreasing func-
tion of the usual Hamming distance, and not of the reverse Hamming distance, as a
simple computation shows. In other words, against this sort of noise one would need
the usual codes of coding theory, and not those codes of DNA word design which
we are trying to “explain”. So, the following problem is relevant:

Problem: Exhibit a transition possibility π(y|x) ≥ 0 whose distinguishability
function Ξ(x,y) is a non-decreasing and non-trivial function of the reverse
Hamming distance dR(x,y). Equivalently, exhibit a distortion ξ (x,y) joint with
π(x,y) as in (1).

Note that we are not even insisting that the distortion ξ used for decoding should
be in any way “similar” to dH . Unfortunately one has the following negative result
(assuming f (0) = 0 as we do below is no real loss of generality):

Theorem 2. Let π(y|x) be a transition possibility such that its distinguisha-
bility function Ξ(x,y) is a non-decreasing function f of the reverse Ham-
ming distance dR(x,y), f (0) = 0. Under such hypotheses, Ξ is trivial, in the
sense that Ξ ≡ 0 when n is even, while, when n is odd, Ξ(x,y) = 0 whenever
dR(x,y) ≤ n−1. Moreover, if the joint distortion ξ (x,y) is constrained to verify
the triangle inequality, then Ξ ≡ 0 even for n odd.
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Proof. For all x ∈ X , one has dR(x,x∗) = 0, hence Ξ(x,x∗) = f (0) = 0. But
this means that ∃z̃ ∈ X such that ξ (x, z̃) = ξ (x∗, z̃) = 0. Therefore Ξ(x,x) =
minz∈X ξ (x,z) = 0, and so each string has distinguishability zero from itself. Now,
if x is a string such that dR(x,x) = m, one has f (m) = f (dR(x,x)) = Ξ(x,x) = 0;
as dR(x,x) can assume all even values from 0 to n, one may take m = n for n even
and m = n− 1 for n odd; so, the non-decreasing function f maps the integer inter-
val [0,n] to 0 for n even, and the integer interval [0,n − 1] to 0 for n odd. Binary
examples with n as low as 3

(
and with ξ symmetric, ξ (x,x) = 0 ∀x

)
show that one

can have Ξ(x,y) �= 0 for dR(x,y) = n. Instead, if ξ is constrained to verify the tri-
angle inequality, one has ξ (x,y) ≤ 2Ξ(x,y) (cf. [14]), and so ξ (x,y) = 0 whenever
dR(x,y) ≤ n− 1; now, for n = 3,5, . . . one can always find a z at reverse Hamming
distance ≤ n − 1 from both x and y; e.g. take z with the first digit equal to the last
digit of x and with the last digit equal to the first digit of y; this implies Ξ ≡ 0 even
for n odd. �

In practice, the theorem means that within the possibilistic framework, ample
as it is, code constructions based on checking reverse Hamming distances have no
counterparts in terms of noisy channels and channel decoders; no possibilistic matrix
π(z|x) exists which would adequately support those constructions.

5 A Short Reminder on DNA Word Design

In the last ten years, a new computational paradigm emerged from a very uncommon
place, i.e. wet labs of biologists. The fact that DNA contains all the basic informa-
tion necessary to build very complex living organisms convinced Adlemann that it
could also be used as a computational entity. In his milestone paper of 1994 [1], he
proposed a computational model based on very simple manipulations of DNA that
can be performed in a wet lab. This model is Turing-complete and bases its power
on the massive parallelism achievable by using DNA. Moreover, one of the basic op-
erations performed is the hybridisation of complementary DNA strings. Specifically,
DNA strings are oriented strings over the alphabet Σ = {a,c,g, t}, where a-t and c-g
are complementary letters. Two such strings are said to be complementary if they
have the same length and if one can be generated by reversing the other and comple-
menting each of its letters. Physically, complementary DNA strings can hybridise,
i.e. they can attach one to the other, forming the famous double helix. Actually, hy-
bridisation can occur also between strings that are not perfect complements, but close
to it. In DNA computations, data is coded by short strings of DNA in such a way that
hybridisations occurring determine the output of the “algorithm” [10]. Therefore,
one of the main concerns is to avoid that “spurious” hybridisations occur, leading
straight to the so-called DNA word design problem.

DNA word design (cf. [9, 4]) consists of identifying sets of DNA strings of a
given length, called DNA codes, satisfying some constraints, usually related to dis-
tances between codewords. In particular, the main concern of DNA word design is
to identify maximal set of strings satisfying the constraints, cf. Sections 3 and 4.
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In the body of the paper complementarity has been forgotten out of simplic-
ity, since it does not really change the mathematical problem, but makes notations
and formulations heavier; cf. also [5]. Seemingly, we have forgotten also about self-
hybridisation, i.e. we have forgotten to check that the codewords should not “resem-
ble” their own mirror images. Notice however that in Section 4 we have never used
the assumptions that the input space is made of all the strings of length n: the con-
straint on the reverse Hamming distance between a codeword and itself has a nature
of its own, and may be conveniently used to restrict the input space for possible
codewords only to those strings whose self-distance is large enough with respect to
a prescribed threshold.
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Motivated by a preliminary series of expert interviews we consider a possibility mea-
sure for the subjective uncertainty on climate model parameter values. We consider 5
key uncertain parameters in the climate model CLIMBER-2 that represents a system
of thousands of ordinary differential equations. We derive an emulator for the model
and determine the model’s mapping of parameter uncertainty on output uncertainty
for climate sensitivity. Climate sensitivity represents a central climate system char-
acteristic important for policy advice, however subject to huge uncertainty. While
the ratio of output/input uncertainty induced by a single-parameter perturbation re-
sembles the respective ratio when using a standard probability measure, we find the
ratio qualitatively larger in the 5-dimensional situation. We explain this curse of di-
mension effect by a Gaussian analogue toy system.

1 Introduction

The climate modeling community faces a shift in statistical paradigm from fre-
quentists’ classical methods towards Bayesian updating. In particular, since 2001,
Bayesian methods are being used when analyzing the key climate system or climate
model characteristic, the climate sensitivity (CS). CS denotes the system’s equilib-
rium response in global mean surface temperature when doubling the atmospheric
(preindustrial) concentration of carbon dioxide. Over the last years, uncertainty
analysis of CS has become a hot topic as uncertainty in CS comprises a major frac-
tion of uncertainty in the mapping from greenhouse gas emissions to global warming
impacts.

To our impression, Bayesian methods are used in this context for three reasons:
(1) they allow for probability measures in CS, useful for further use in decision-
analytic frameworks, (2) the Bayesian method allows for an elegant inclusion of
subjective prior knowledge on model parameters, (3) Bayesian methods – opera-
tionalized through some sort of (Markov Chain) Monte Carlo-type techniques [5] –
are more straightforward to implement than powerful classical tests on CS in multi-
variate nonlinear settings such as climate models.

H. Held and T.S. von Deimling: Transformation of Possibility Functions in a Climate Model of In-
termediate Complexity, Advances in Soft Computing 6, 337–345 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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While Bayesian learning on CS has been published for several implementations,
unease with the structure of subjective knowledge and its adequate representation
is growing. E.g. Frame et al. [6] highlight Bertrand’s paradox: given the case of
absent prior knowledge, the Bayesian school asks for “non-informative” priors, in
general uniform distributions. Suppose we feel uninformed on the parameter x, then
we are so on y ≡ x2 as well and should assume a uniform distribution on y as well,
incompatible with a non-uniform Jacobian between x and y.

Here we consider possibility measures (e.g. [1, 2, 4, 12]) as particular variant of
imprecise probability measures [11] to represent subjective knowledge, for the fol-
lowing reasons: (1) They resolve Bertrand’s paradox by avoiding the need of Jaco-
bians. (2) The measure can be conveniently expressed through a possibility function
in analogy to a probability density function (pdf) for the probability measure. (3)
We elicited 7 experts in the climate modeling community1 on the structure of their
knowledge on uncertain parameters. Inter alia we asked to specify a subjective pdf
for a given parameter. Then we proposed bets in order to test for consistency with the
pdf specified. A larger fraction of the individuals said that in fact they could imagine
to bet even higher on the center of their previously specified pdf than it would be
appropriate in a fair bet. We will discuss below that possibilities can account for this
empirical result. (4) In the same survey it became clear that it might be desirable
to consider nonlinear transformation of a parameter rather than the parameter itself,
while admittedly the choice of that transformation might be clear only in very fuzzy
terms. As possibility functions do not need Jacobians when mapped (see also (1)),
they respond in a much more robust way than pdfs to fuzziness in transformation.

In summary, we consider possibility functions in an explorative manner to repre-
sent model users’ uncertain prior knowledge on model parameters. We ask what the
effects of this more imprecise (as against a pdf) representation on the output quantity
of interest would be in order to generate an impression on how “assuming” the ex-
pert really is. Furthermore, this also serves as a showcase for Bayesian learning with
vanishing information content in the likelihood, a situation often faced in data-sparse
decision situations.

2 Basic Properties of Possibility Measures

Any measure discussed in the remainder of this article may live on a σ algebra B on
R

n,n ∈ N. A possibility measure Π [1, 2, 4, 12] represents a class P of probability
measures P with [3]

P = {P|∀A∈B P(A) ≤Π(A)} (1)

and there exists always a (generating) possibility function π : R
n → [0,1] with

∃x∈Rn π(x) = 1 and ∀A∈B Π(A) = sup
x∈A

π(x). (2)

1 Details will be published elsewhere.
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For that reason, it is sufficient to study the properties of the function π .
We now ask how P transforms under a mapping f : R

n → R.2

In [8] it is shown that under weak conditions3 the transformed class f (P), gen-
erated by transforming each member of that class according to the standard rules of
probability theory, represents again a possibility measure π ′ with

∀y∈ f (Rn) π ′(y) = sup
x∈ f −1(y)

π(x) (3)

Note that no Jacobian of f is needed as it would be the case for pdfs. This simple
transformation rule makes possibility measures particularly attractive.

Below we will need the following Lemma [8] that at the same time provides an
attractive interpretation of possibility functions:

Lemma 1. Let P the class of probability measures induced by the possibility
function π according to Eqs. 1 and 2. Then

P = {P | ∀a∈[0,1] P({x|π(x) ≤ a}) ≤ a}.

This implies that for any member P of the class P the measure outside the α-
cut of π must be α or less, consequently within the α-cut or more. This is the very
feature which would be in line with the finding of our expert elicitation were experts
would not exclude that the measure in the central areas of the parameter intervals
specified could also be larger than their pdf would allow for.

3 Sampling and Emulating the Climate Model

The data used in this article where taken from a numerical experiment that was de-
signed for standard Bayesian learning of the CLIMBER-2 climate model [9], [7].
The 5 model parameters that were regarded as most influential on CS were perturbed
over a range that the authors of the model would find plausible. That way, a 5000
member ensemble along a Latin Hypercube Scheme was set up. In later experiments
[10], 11 parameters were perturbed over wider ranges. However, for the present con-
ceptual study we stay with the 5-parameter experiment as the pdf derived is more
structured and in that sense more interesting. Among the 5 parameters were horizon-
tal and vertical ocean diffusivity as well as cloud parameters. As some of them were
varied over orders of magnitude, they were logarithmically transformed and then
scaled by an affine transformation such that any of their sampling intervals would be
mapped onto [0,1]. The vector of the so transformed parameters will be denoted by
the vector x = (x1, ...,x5) in the following. For any i, xi was sampled according to

a β (7/4,7/4)(xi)-distribution (see Fig. 1, upper graph) ∝ x3/4
i (1− x3/4

i ), combined
under a Latin Hypercube scheme.

2 The following statement holds for arbitrary dimension, however, is not needed for this
article in which we focus on the single output quantity CS.

3 The statement given below holds e.g. if R
n where replaced by a finite approximation.
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Fig. 1. β (7/4,7/4) distribution (top graph) and possibility substitute (bottom graph). The
possibility function is chosen such that the β measure is contained in the class spanned by the
possibility measure and that the β measure at the same time represents the “least localized”
member (see text) of that class.

We can use 5000 realizations of (x, CS(x)). However, in order to implement Eq. 3,
these data are not directly suited – no optimization algorithm could meaningfully
operate on them.

Hence we emulate the model by a polynomial fit of 9th order, involving 2002
monomes. Here we intend to present a conceptual study and hence are satisfied if our
emulator reproduces some gross features. We check that the histograms generated
from the 5000 realizations of x look very similar for both the original model and the
emulator (see Fig. 2).
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Fig. 2. Comparison of CS histograms for the original model (top graph) and the emulator (bot-
tom graph). For this article, the agreement is sufficient, in particular the emulator reproduces
the bimodality.
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4 Mapping Single-Parameter Uncertainty

As multi-dimensional, nonlinear mapping is intricate to interpret, we start by ana-
lyzing the effects of a single parameter. For that we choose the “most influential”
parameter on CS (which turns out to be the 4th component of our parameter vector)
in also setting up a linear fit for f and asking for the component with the maximum
gradient (in CS) modulus.

We study the influence of x4 by fixing the remaining parameters to the maximum
of their pdf, i.e. to 1/2. In Fig. 3, top graph, we display the transfer function from x4

to CS that turns out to be markedly nonlinear and also bijective. We sample x4 ∼ β
and obtain a bimodal pdf for CS as a result (center graph). As the input pdf was
unimodal, the bimodality is a direct consequence of the Jacobian being non-constant,
i.e. the mapping being nonlinear.
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Fig. 3. Analysis of the effects of a single parameter according to the emulator transfer func-
tion. We fix ∀i�=4 xi := 1/2, i.e. to the maximum of the input β -distribution. Then we sample
x4 according to the β -distribution. The top graph displays the nonlinear bijective mapping
x4 → CS. Due to extrema in the Jacobian, a bimodal structure is induced in the sampled pdf
of CS. The related possibility function of CS displays roughly the same spread, however, no
bimodality.

We now would like to use the same x4-restricted transfer function in order to
study the propagation of a possibility function. The point is to choose a possibility
function for x4 that suits the expert’s knowledge better than β . On the one hand, the
experts feel comfortable with a β -function. Hence P should contain β . On the other
hand, according to the expert’s betting behavior, P should also contain elements
that allocate more probability measure to the mode of β . Both can be achieved if we
define π such that P accommodates β as a limiting case according to Lemma 1:
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∀a∈[0,1] P({x|π(x) ≤ a}) = a. (4)

Given the symmetry of β w.r.t. 1/2, this is achieved by choosing

∀x∈[0,1/2] πx(x) := 2

x∫

0

dx′β (x′) and ∀x∈]1/2,1] πx(x) := 2

1∫

x

dx′β (x′). (5)

πx is depicted in Fig 1, bottom graph. We calculate the possibility function for
CS, πCS by involving the transfer function f4 in Fig. 3, top graph. As f4 is bijective,
Eq. 3 reduces to

πCS(CS) = πx( f −1
4 (CS)) (6)

the result of which is displayed in Fig. 3, bottom graph. According to the last
Eq., not involving a Jacobian, πCS must be unimodal as πx is unimodal.

5 The Multivariate Case

Our model represents a multi-dimensional mapping, as several parameters are found
influential on model output CS: according to our linear fit (set up solely to rank pa-
rameters), the modulus of the gradient of CS, normalized by the largest component,
reads (1,> 0.80,> 0.25,> 0.04,> 0.01). Hence we regard it as necessary to set up
a multi-dimensional possibility function.

The multivariate input pdf for x was chosen as β (x1) · ... ·β (x5). How could we
generalize that to a possibility measure? It is not obvious how to generalize our
single-parameter procedure for generating π to the multivariate case.

In order to transform the multivariate situation into an efficiently one-dimensional
one, we map ∀i xi to zi such that the pdf of zi is a standard normal distribution N(zi),
and as a consequence, the pdf in z := (z1, ...,z5) displays radial symmetry. Then we
can apply the ideas of the previous Section to the radial coordinate || : R

5 → R
+
0 ,

|z| :=
√
∑5

i=1 z2
i . The bijective mapping between xi and zi is then determined by

∀i

xi∫

1/2

dxi β (xi) =

zi∫

0

dzi N(zi). (7)

In analogy to Eq. 5 we then require

∀z∈R5 πz(z) :=
∫

|z′|≥|z|

dz′ N(z′1) · ... ·N(z′5) =

∞∫

|z|
dr r4 e− 1

2 r2

∞∫

0
dr r4 e− 1

2 r2
. (8)

As the mapping from x on z is bijective, πx(x) = πz(z(x)). When we numerically
implement Eq. 3 we obtain Fig. 4. Why is the multivariate case output possibility so
much less informative than the output pdf?
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Fig. 4. Numerical results for πCS in the multivariate case, generated from πz. The result of a
numerical optimization provides a lower boundary for the exact πCS. Obviously the possibility
function is much broader than the pdf. The upcoming Section provides an explanation.

6 The Curse of Dimension

We elucidate this phenomenon by considering the toy model Y =
∑n

i=1 Zi, Z1, ...,

Zn iid ∼ N. Then
√

< var(Y ) > =
√

n. In analogy to the previous Section, we define
πZ . Then we define a width δY in the output possibility function πY by πY (±δY ) =
1/2 (bearing in mind that the maximum of any possibility function equals 1 by con-
struction). How does δY scale with n? Let y ∈ R and ∀z∈Rn z ≡ (z1, ...,zn). Then
πY (y) = supz∈{z|y=∑ n

i=1 zi} πZ(z) = πZ(arg infz∈{z|y=∑ n
i=1 zi} |z|) = πZ(y(1, ...,1)/n) =

∞∫

y/
√

n

dr rn−1 e− 1
2 r2

/
∞∫

0
dr rn−1 e− 1

2 r2
. If we request πY (y = δY ) = 1/2 then we can show that

∀n∈N>3 ∃c(n)∈[1,1.1] δY (n) = c(n)
√

n(n−1) and lim
n→∞

δY (n)
√

n(n−1)
= 1. (9)

In summary,
√

< var(Y ) > =
√

n, while δY ≈ n.
Hence, the curse of dimension affects the width of possibility by a factor of

√
n

more than the standard deviation of the probability measure.

7 Conclusion

We have propagated climate model parameter uncertainty to climate sensitivity un-
certainty. When making 1D uncertainty more imprecise by generalizing to a pos-
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sibility measure, width in pdf and possibility are mapped quite similarly in the 1D
case.

Quite the contrary, by assuming radially symmetric possibility measures in 5D
parameter space, we find a markedly larger spread of uncertainty for the possibility
measure (as against pdf). For a linear toy model we can attribute this to the fact that
the possibility width scales with ∼ n as against ∼ √

n for the pdf case.
Future work has to analyze whether our imprecise approach was too conservative

or whether it in fact represents what the prior knowledge on an model output quantity
is when influenced in a multi-variate manner.
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Fuzzy Logic for Stochastic Modeling

Özer Ciftcioglu and I. Sevil Sariyildiz

Delft University of Technology, Berlageweg 1, 2628 CR Delft, The Netherlands

Exploring the growing interest in extending the theory of probability and statistics
to allow for more flexible modeling of uncertainty, ignorance, and fuzziness, the
properties of fuzzy modeling are investigated for statistical signals, which benefit
from the properties of fuzzy modeling. There is relatively research in the area, mak-
ing explicit identification of statistical/stochastic fuzzy modeling properties, where
statistical/stochastic signals are in play. This research makes explicit comparative in-
vestigations and positions fuzzy modeling in the statistical signal processing domain,
next to nonlinear dynamic system modeling.

1 Introduction

The concept computing with words is a fundamental contribution of fuzzy logic [1]
to the paradigm of artificial intelligence (AI). Computing with words became feasi-
ble via the utilization of linguistic variables, where the words can be interpreted as
semantic labels in relation to the fuzzy sets, which are the basic conceptual elements
of fuzzy logic. Consequently, comprehensible computer representation of the do-
main issues can be created. On one side, dealing with fuzzy qualities quantitatively
is a significant step in AI. On the other side, due to the same fuzzy qualities, the
interpretability issues arise [2]. While fuzzy logic contributes to science in dealing
with domain related fuzzy issues, it is natural to anticipate that fuzzy logic associated
with the probability theory and statistics can better deal with fuzziness of the domain
issues, spanning the exact sciences and the soft sciences.

The statistical aspects of fuzzy modeling have received relatively less attention
than computing with words or soft computing. In dealing with the latter two aspects
Mamdani type of fuzzy models are more convenient [3], addressing soft issues espe-
cially in soft domains. In contrast to this, the Takagi-Sugeno (TS) type fuzzy model
[4] is presumably more convenient in engineering systems where the fuzzy logic
consequents are local linear models rather than fuzzy sets. In this way, the defuzzi-
fication process is greatly simplified making fuzzy logic more pragmatic approach
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in applications where data-driven modeling is a natural choice. In this research sto-
chastic signals with TS fuzzy modeling are considered, since such signals are rich
in probabilistic and statistical information that can be exploited by means of fuzzy
logic. In particular, the fuzzy model is considered as the representation of a general
nonlinear dynamic system.

2 Fuzzy Modeling

Takagi-Sugeno (TS) type fuzzy modeling [4] consists of a set of fuzzy rules as local
input-output relations in a linear form thus:

Ri : If xl is Ail and . . .xn is Ain (1)

T hen ŷi = aix+bi, i = 1,2, . . . . . . ,K

where Ri is thei-th rule, x= [x1,x2, . . . ..,xn]T ∈ X is the vector of input variables; Ai1,
Ai2,. . . ,Ain are fuzzy sets and yi is the rule output; K is the number of rules. The output
of the model is calculated through the weighted average of the rule consequents,
which gives

ŷ =

K∑

i=1
βi(x)ŷi

K∑

i=1
βi(x)

(2)

In (2), β i(x) is the degree of activation of the i-th rule

βi(x) = π j=1
n µAi j

(x j), i = 1,2, . . . . . .K (3)

where µAi j(x j) is the membership function of the fuzzy set Ai j at the input (an-
tecedent) of Ri. To form the fuzzy system model from the data set with N data sam-
ples, given byX = [x 1,x2 , . . . . . . . . . ,xN ]T ,Y = [y1,y2, . . . . . . , yN ]T where each
data sample has a dimension of n (N >> n). First the structure is determined and
afterwards the parameters of the structure are identified. The number of rules char-
acterizes the structure of a fuzzy system. The number of rules is determined by clus-
tering methods. Fuzzy clustering in the Cartesian product-space X ×Y is applied for
partitioning the training data. The partitions correspond to the characteristic regions
where the system’s behaviour is approximated by local linear models in the multidi-
mensional space. Given the training data T and the number of clusters K, a suitable
clustering algorithm [5] is applied. One of such clustering algorithms is known as
Gustafson-Kessel (GK) [6]. As result of the clustering process a fuzzy partition ma-
trix U is obtained. The fuzzy sets in the antecedent of the rules is identified by means
of the partition matrix U which has dimensions [N×K], whereN is the size of the
data set and K is the number of rules. The ik-th element of µ ik∈[0,1] is the member-
ship degree of the i-th data item in cluster k; that is, the i-th row of U contains the
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point wise description of a multidimensional fuzzy set. One-dimensional fuzzy sets
Ai j are obtained from the multidimensional fuzzy sets by projections onto the space
of the input variables x j. This is expressed by the point-wise projection operator of
the form µAi j(x jk)=proj j (µ ik) [7]. The point-wise defined fuzzy sets Ai j are then
approximated by appropriate parametric functions. The consequent parameters for
each rule are obtained by means of linear least square estimation. For this, consider
the matrices X=[x1,. . . , xN]T, X e[X,1] (extended matrix [N×(n+1)] ) ; Λ i (di-
agonal matrix dimension of [N×N] ) and XE=[(Λ 1Xe); (Λ2X e);. . . . . . (ΛKX e)]
([N×K(n+1)] ), where the diagonal matrix Λ i consists of normalized membership
degree as its k-th diagonal element

nβi(xk) =
βi(xk)

k∑

j=1
β j(xk)

(4)

The parameter vector ϑ dimension of [K×(n+1)] is given by ϑ=[ϑ 1T ϑ 2T
. . . . . . . . .ϑ kT ]T where ϑ iT=[aiT bi] (1≤ i ≤ K). Now, if we denote the input
and output data sets as XE and Y respectively, then the fuzzy system can be repre-
sented as a regression model of the matrix form Y = XE ϑ+e .

3 Dynamic System Modeling

For the investigation of fuzzy modeling with stochastic excitations, a nonlinear sys-
tem

y(t) = 1− e−x(t)/τ (5)

is considered. Here x(t) is the system variable. For a data driven fuzzy modeling
approach, the system representation is cast into a recursive form as

y(t) = a(t)y(t −1) +u(t) (6)

where the time varying AR coefficient a(t) and the input u(t) are given by

a = e−[x2(t)−x1(t)]/τ and u(t) = 1− e−[x2(t)−x1(t)]/τ (7)

For fuzzy modeling, first the system variable x(t) is considered as band limited white
noise and the system response is obtained from (5) for 200 samples. Based on this
data the TS fuzzy model of the system is established for three clusters, i.e. three
local models. The membership functions and the system performance are shown in
Fig. 1. In the lower plot the true model output and the fuzzy model output is shown
together. There is some difference between these outputs and this is constructive for
the generalization capability of the model for unknown (test) inputs. In the model τ
is taken as τ =20. Figure 2 represents the model performance for the test data. The
true and the estimated model outputs are shown together in the upper plot.

The model inputs corresponding to these outputs are shown in the figure as mid-
dle and lower plots, respectively. From Figs. 1 and 2 it is seen that the fuzzy model
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Fig. 2. True model output and its estimation by fuzzy modeling (upper); input to nonlinear
system used for fuzzy model formation (middle); input to nonlinear system used for testing
fuzzy model performance (lower)

has satisfactory performance for stochastic inputs. The data samples of system vari-
able x(t),which form the data-driven model, are from band-limited white noise. The
system test input stems from perception measurements of a virtual agent reported
elsewhere [8] where the present nonlinear system is representative of openness per-
ception subject to measurement. It should be noted that, the test inputs to the system
have wide frequency range. However, the nonlinear system behaves as a nonlinear
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low-pass filter so that three local models give satisfactory estimated system outputs,
matching the true counterparts rather satisfactorily.

In order to investigate the pattern representation capabilities of fuzzy modeling
a block of a time-series signal and its wavelet transform is considered. The time-
series signal is a in particular band-limited white noise, and the number of clusters
considered is five. For this case, the membership functions and the fuzzy model rep-
resentation of the wavelet coefficients are shown in Fig. 3. Membership functions
(upper) and the model outputs as true outputs and their estimated counterparts are
also shown in the figure. The difference is significant due to the low number of fuzzy
sets used for approximation. The above reported computer experiments show that TS
fuzzy modeling is effective in modeling nonlinear dynamic systems and representa-
tion of patterns. In the nonlinear dynamic system representation, since the system is
restricted to the lower frequency region, the Gaussian-shaped membership functions
are capable of representing the system adequately. However in the pattern representa-
tion, since the frequency band is wide as the time-series data is band-limited white, in
place of shaped Gaussian membership functions, the membership functions obtained
directly from the clustering process are used. Otherwise, the shaped Gaussians are
not enough narrow to represent the local variations. In other words, the local varia-
tions can not be represented by a restricted number of local linear models defined by
the number of clusters.
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Fig. 3. Membership functions (upper) and model outputs as true outputs and their estimated
counterparts involving five fuzzy sets

A similar situation obtains is the case of multivariable fuzzy modeling, where
the membership functions are directly employed from the clustering. In this case the
cause is different but the consequence is the same. Namely, there is an irrecover-
able projection error due to projected and shaped membership functions from the
clustered data, which prevents accurate representation of the dynamic model in mul-
tidimensional space [9]. By considering such basic features of fuzzy modeling, the
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fuzzy logic can be conveniently associated with the probabilistic entities, as this is
stochastic signals and patterns, in this work.

4 Probability Density Functions

The probability density function (pdf) of the stochastic outputs of the fuzzy model
can be computed from the pdf of the inputs. By studying both pdfs, one can obtain
important information about the nature of the nonlinearity of the dynamic system.
The pdf computations can be carried out as follows. Consider the nonlinear dynamic
system given by y = g(x). To find fy(y) for a given xwe solve the equation y = g(x)for
x in terms of y. If x1,x2 ,. . . ., x n, ..are all its real roots, x1=g(y1) x2= g(y2)
=. . . . . . xn= g(yn) = . . . . Then

fy(y) =
fx(x1)
|g′(x1)|

+ . . .+
fx(x2)
|g′(x2)|

+ . . .+
fx(xn)
|g′(xn)|

+ ·· (8)

According to the theorem above, we consider the nonlinear dynamic system given as
(5).

y = g(x) = 1− e−x/τ and fy(y) =
τ

1− y
fx(x1) (9)

Then, if we assume uniform density between 0 and 1, for fx(x), the pdf of the system
output is

fy(y) =
τ

1− y
(0 ≤ y ≤ 1− exp(1/τ)) (10)

which satisfies
∫ 1−e1/τ

0 fy(y)dy = 1. The same computations for input with Gaussian
pdf with a shift of x0 yields

fy(y) =
τ√

2π σ
1

1− y
exp

[

−1
2
(ln
(

1
1− y

)τ
− xo)/σ2

]2

(11)

The variation of fy(y) given in (10) and (11) are sketched in Fig. 4.
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Fig. 4. Uniform probability and Gaussian density functions (pdf) at the model input and the
ensuing pdfs at the model output
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The pdf of u(t) given by (7) is computed as follows.

u(t) = 1− e−[x2(t)−x1(t)]/τ (12)

We define a new variable w as w = x2 − x1.

fw(w) =
∫ +∞

−∞
fx1(w− x2) fx2(−x2)dx2

We assume x1 and x2 have uniform density, as this was the case in our research,
fw(w) is obtained as seen in Fig. 5.

fx (x1)

T

fx (x2)

T

1 2 fw (w)

T fw =  x2 - x1

0 x1x1=T 0 x2x2=T 0 ww=Tw=-T

Fig. 5. Probability density function (pdf) of a random variable, which represents the difference
of two other random variables with uniform density functions

From Fig. 5 we note that

fw(w) = − w
T 2 +

1
T

(w > 0) and fw(w) =
w
T 2 +

1
T

(w < 0) (13)

Using the theorem (8) we obtain for u ≤ 0 and for u ≥ 0, respectively

f−u(u) =
fw(w1)
|g′(w1)|

=
τ

T 2 ln( 1
1−u )τ + τ

T

1−u
(14)

f+u(u) =
fw(w1)
|g′(w1)|

=
− τ

T 2 ln( 1
1−u )τ + τ

T

1−u
(15)

are obtained, so that

∫ 0

1−eT/τ
f−u(u) du+

∫ 1−e−T/τ

0
f+u(u) du = 1 (16)

The input u(t) to nonlinear system is seen in Figs. 2 and 3. The same calculations
for the time varying autoregressive (AR) model coefficient a in (6) yields,

fa1(a) =
τ

T a

[
1
T

ln(
1
a
)τ +1

]

for a ≤ 1, and (17)

f1a(a) =
τ

T a

[

− 1
T

ln(
1
a
)τ +1

]

for a ≥ 1

∫ 1

e−T/τ
fa1(a) da +

∫ eT/τ

1
fa1(a) da = 1 (18)
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The pdfs of u and a are shown in Fig. 6 for τ = 2 and T = 10.
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Fig. 6. Pdf s of model input u (left) and autoregressive model parameter a(right)

5 Discussion and Conclusions

TS fuzzy modeling is an essential means for the representation of nonlinear dynamic
systems for identification, control etc. Such system dynamics are represented by a
relatively small number of fuzzy sets compared to other approaches. For nonlinear
dynamic system identification, the probability density of stochastic model inputs and
outputs can reveal important information about the unknown system. In this respect,
the capabilities of fuzzy modeling and its behavior with stochastic excitations are
demonstrated in this work. Effective associations of probabilistic data can be made
with fuzzy logic and these associations can be exploited in a variety of ways. Ex-
emplary research can be seen in visual perception studies, where a theory of visual
perception is developed as given in reference 8.
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A CUSUM Control Chart for Fuzzy Quality Data
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Summary. Based on the concept of fuzzy random variables, we propose an optimal repre-
sentative value for fuzzy quality data by means of a combination of a random variable with
a measure of fuzziness. Applying the classical Cumulative Sum (CUSUM) chart for these
representative values, an univariate CUSUM control chart concerning LR-fuzzy data under
independent observations is constructed.

Key words: statistical process control; Cumulative sum chart; representative
values; fuzzy sets.

1 Introduction

Cumulative Sum (CUSUM) control chart proposed by Page [9] is a widely used tool
for monitoring and examining modern production processes. The power of CUSUM
control chart lies in its ability to detect small shifts in processes as soon as it oc-
curs and to identify abnormal conditions in a production process. For example, for
a given sequence of observations {Xn,n = 1,2, . . .} on normal population, the mon-
itored parameter of interest is typically the process mean, µn = E(Xn), the purpose
is to detect a small change in the process mean, one might specifies the levels µ0

and µ1 > µ0 (or µ1 < µ0) such that under normal conditions the values of µn should
fall below (or above) µ0 and the values of µn above (or below) µ1 are considered
undesirable and should be detected as soon as possible. The CUSUM chart can be
used to monitor above process with the test-statistics Sn = max{0,Sn−1 + Xn − K}
( or Tn = min{0,Tn−1 + Xn + K}) and signal if Sn > b (or Tn < −b), where b is the
control limit derived from a confidence interval assuming a Gaussian distributed ob-
servation, Xn (n ≥ 1) are the sample means at time tn and S0 = T0 = 0, and K is the
reference value. It is well-known that CUSUM chart is more sensitive than Shewhart
chart (X-chart) for detecting certain small changes in process parameters.

The random processes encountered in industrial, economic, etc. are typically
quality monitoring processes. J.M. Juran, an authority in international quality con-
trol circles, has pointed out that quality to customers, is its suitability rather than its

D. Wang: A CUSUM Control Chart for Fuzzy Quality Data, Advances in Soft Computing 6, 357–364
(2006)
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conformity to certain standards. End-users seldom know what standards are. Cus-
tomers’ appraisal on quality is ways based on whether the products they have bought
are suitable or not and whether that kind of suitability will last [1].

This is a kind of quality outlook which attaches primary importance to cus-
tomers’ feeling, so vague attribute of quality appraisal criterion and appraising cus-
tomers’ psychological reactions should, by no means, be ignored.

The fuzzy set theory [16] may be an appropriate mathematical tool for dealing
with vagueness and ambiguity of the quality attribute. So it is very natural to in-
troduce the concept of fuzzy set to the concept of quality and thus fuzzy quality is
formed. As regards fuzzy quality, its “suitability” quality standard is expressed in the
form of a fuzzy set. Also an outcome of the observation on quality characteristics
may be appropriately represented by a fuzzy set because it is difficult to obtain a
precise quality description of the inspected item in some case.

There are some literature on constructions of control charts based on fuzzy ob-
servations by [14], [11], [6], [4, 5], [13], [12] and [2]. Basically, the works mentioned
above include two kinds of controlling methods , one of which is utilizing probabil-
ity hypotheses testing rule for the representative values of fuzzy quality data, and the
other is using a soft control rule based on possibility theory. However, how to deal
with optimally both randomness and fuzziness of the process quality data is still a
problem.

2 LR-fuzzy Data and the Measure of Fuzziness

2.1 LR-fuzzy Data

A fuzzy set on R, the set of all real numbers, is defined to be a mapping u : R → [0,1]
satisfying the following conditions:

(1) uα = {x|u(x) ≥ α} is a closed bounded interval for each α ∈ (0,1].
(2) u0 = suppu is a closed bounded interval.
(3) u1 = {x|u(x) = 1} is nonempty.

where suppu = cl{x|u(x) > 0}, cl denotes the closure of a set. Such a fuzzy set is
also called a fuzzy number. The following parametric class of fuzzy numbers, the
so-called LR-fuzzy numbers, are often used in applications:

u(x) =
{

L(m−x
l ), x ≤ m

R( x−m
r ), x > m

Here L : R
+ → [0,1] and R : R

+ → [0,1] are fixed left-continuous and non-increasing
function with L(0) = R(0) = 1. L and R are called left and right shape functions, m
the central point of u and l > 0, r > 0 are the left and right spread of u. An LR-fuzzy
number is abbreviated by u = (m, l,r)LR, especially (m,0,0)LR := m. Some properties
of LR-fuzzy numbers for operations are as follows:
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(m1, l1,r1)LR +(m2, l2,r2)LR = (m1 +m2, l1 + l2,r1 + r2)LR

a(m, l,r)LR =






(am,al,ar)LR, a > 0
(am,−ar,−al)RL, a < 0

0, a = 0

(m1, l1,r1)LR −m2 = (m1 −m2, l1,r1)LR

For further properties of LR-fuzzy numbers the readers are refereed to [3].
Let L(−1)(α) := sup{x ∈ R|L(x) ≥ α},R(−1)(α) := sup{x ∈ R|R(x) ≥ α}. Then

for u = (m, l,r)LR, uα = [m− lL(−1)(α),m+ rR(−1)(α)], α ∈ [0,1].
An useful approach has been summarized by Cheng [2] for generating a fuzzy

number based on a group experts’ scores on a fuzzy quality item in a quality control
process. By this approach, we may assign a fuzzy number for each outcome of a
fuzzy observation on quality monitoring process. In this paper, we assume that the
quality data collected from the fuzzy observation process can be assigned LR-fuzzy
numbers. Such data is also called LR-fuzzy data. For example, the color uniformity
of a TV set [1] under user’s suitability quality view is with a fuzzy quality standard
which could be expressed in a form of LR-fuzzy data (d0,5,5)LR, where L(x) =
R(x) = max{0,1 − x} is the shape function of a triangular fuzzy number, and d0

is the designed value of the color uniformity. For the operational simplicity and a
better description of fuzziness for fuzzy quality items, the triangular fuzzy number
are often used.

LR-fuzzy random variable X = (m, l,r)LR has been defined by Körner [7], where
m, l,r are three independent real-valued random variables with P{l ≥ 0} = P{r ≥
0} = 1. Considering the fuzzy observations on a quality monitoring process, it is
obvious that the LR-fuzzy data can be viewed as realizations of an LR-fuzzy random
variable. Assuming the observational distribution is approximately normal, then the
central variable m of an LR-fuzzy sample X = (m, l,r)LR obtained by method in [2]
from the fuzzy observation process can be viewed as a Gaussian variable, and the
spread variables l, r may be evenly distributed. The ith sample Xi is assumed to be a
group mean of size ni, {(xi1,bi1,ci1)LR, . . . ,(xini ,bini ,cini)LR}, i.e.

Xi = (
1
ni

ni∑

j=1

xi j,
1
ni

ni∑

j=1

bi j,
1
ni

ni∑

i=1

ci j)LR = (xi,bi,ci)LR,

and simply denoted by Xi = (mi, li,ri)LR. By the central limit theorem, if the group
size is relatively large, then li, ri are approximately Gaussian variables.

2.2 The Measure of Fuzziness

The LR-fuzzy quality data are not easy to be plotted on a control chart directly.
Therefore, it is necessary to convert a fuzzy data (a fuzzy sample) into a scalar (a
real random variable) for plotting, such scalar (random variable) would be an opti-
mal representative of the fuzzy data (the fuzzy sample). Some approaches for deter-
mining the representing value of a fuzzy data have been proposed in [14] and [6],
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etc.. In general, there are no absolute criteria for choosing methods on determining
the representative value. However, we usually expect a method for determining one
which is not only with lower complexity in computation but also with an optimal
representativeness.

Recalling the concept of fuzzy random variables [7],[8], [10], we are aware of
that fuzzy random variables are devoted to deal with the inherent randomness and
fuzziness of samples simultaneously. Thus, we emphasize that a representative value
should properly represent the main characteristics, randomness and fuzziness, of a
fuzzy quality sample. Such features can be abstracted easier in the case of LR-fuzzy
sample than that of other fuzzy sample because we are able to represent the random-
ness by the central variable and to represent the fuzziness of the fuzzy quality data
by employing the concept of a measure of fuzziness.

A number used for measuring the fuzziness of a fuzzy set is a very important
index when we deal with fuzzy concepts and fuzzy information. Fuzziness level of a
fuzzy set is usually determined by the fuzziness level of each possible elements of the
fuzzy set. For example, if the membership degree of one element is near 1, then the
affirmation level with respect to the element must be high, and thus fuzziness level
of the element becomes low; if the membership degree of one element is around
0.5, then its belongingness is extremely unsteady, and thus the fuzziness level of the
element becomes high, and so on. Various measuring methods have been proposed
based on the concept of measure of fuzziness [3] [17], for instance, Minkowski’s
measure of fuzziness Dp(A) for a fuzzy set A on a discrete finite domain is as follows:

Dp(A) =
2

n1/p
(

n∑

i=1

|A(xi)−A0.5(xi)|p)1/p,

where p > 0, A0.5 denotes the 0.5-level set of the fuzzy set A , and A0.5(x) denotes
the indicator of the non-fuzzy set A0.5, i.e.,

A0.5(x) := IA0.5(x) =
{

1, x ∈ A0.5

0, x /∈ A0.5

When p = 1, D1(A) is said to be Hamming’s fuzziness measure, and when p = 2,
D2(A) is called Euclid’s fuzziness measure. We employ an extension of Hamming’s
fuzziness measure to define a measure of fuzziness D(X) for the LR-fuzzy quality
sample X = (m, l,r)LR, i.e.

D(X) =
∫ +∞

−∞
|X(x)−X0.5(x)|dx

Theorem 1. Let X = (m, l,r)LR be a fuzzy quality sample, then it holds that

D(X) = l

[

L(−1)(0.5)+
∫ L(−1)(0)

L(−1)(0.5)
L(x)dx−

∫ L(−1)(0.5)

0
L(x)dx

]

+ r

[

R(−1)(0.5)+
∫ R(−1)(0)

R(−1)(0.5)
R(x)dx−

∫ R(−1)(0.5)

0
R(x)dx

]

.
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Proof. It is obvious that

X0.5(x) =
{

1, x ∈
[
m− lL(−1)(0.5),m+ rR(−1)(0.5)

]

0, x /∈
[
m− lL(−1)(0.5),m+ rR(−1)(0.5)

]

D(X) =
∫ +∞

−∞
|X(x)−X0.5(x)|dx

=
∫ m

m−lL(−1)(0.5)
(1−L(

m− x
l

))dx+
∫ m+rR(−1)(0.5)

m
(1−R(

x−m
r

))dx

+
∫ m−lL(−1)(0.5)

m−lL(−1)(0)
L(

m− x
l

)dx+
∫ m+rR(−1)(0)

m+rR(−1)(0.5)
R(

x−m
r

)dx

= l

[

L(−1)(0.5)+
∫ L(−1)(0)

L(−1)(0.5)
L(x)dx−

∫ L(−1)(0.5)

0
L(x)dx

]

+ r

[

R(−1)(0.5)+
∫ R(−1)(0)

R(−1)(0.5)
R(x)dx−

∫ R(−1)(0.5)

0
R(x)dx

]

.

This completes the proof.

Example Let u = (m0, l0,r0)LR be a triangular fuzzy data, where L(x) = R(x) =
max{0,1− x}, then

D(u) =
l0 + r0

4
.

3 Construction of a CUSUM Chart for LR-fuzzy Data

3.1 A Representative Value

We now define a representative value denoted by Rep(X) for fuzzy sample X =
(m, l,r)LR as follows:

Rep(X) = m+D(X)

Let

β1 := L(−1)(0.5)+
∫ L(−1)(0)

L(−1)(0.5)
L(x)dx−

∫ L(−1)(0.5)

0
L(x)dx

β2 := R(−1)(0.5)+
∫ R(−1)(0)

R(−1)(0.5)
R(x)dx−

∫ R(−1)(0.5)

0
R(x)dx

then
Rep(X) = m+ lβ1 + rβ2

Here, the central variable m just represents the randomness of the LR- fuzzy quality
sample X = (m, l,r)LR extremely, since by its membership X(m) = 1 it implies no
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fuzziness , and it also largely determine the location of the LR-fuzzy quality sam-
ple. On the other hand, random variable lβ1 + rβ2 properly represents the fuzziness
level of the LR-fuzzy quality sample because it is derived from a standard mea-
sure of fuzziness of a fuzzy set, which is well defined with a theoretical support-
ing. A kind of combination of the randomness with fuzziness of the fuzzy quality
sample is realized simply by arithmetic addition, thus the related computation for
obtaining the representative value becomes much easier. For a given fuzzy quality
data u = (m0, l0,r0)LR, then its representative value is Rep(u) = m0 + l0β1 + r0β2,
which is a fixed scalar. The present methods for calculating representative values in
the case of LR-fuzzy quality data somewhat have an advantage over that proposed
in [14] and [6]. For instance, calculating representative values were done in five
ways in [14] and [6]: by using the fuzzy mode as fmode = {x|A(x) = 1}, x ∈ [a,b];
the α-level fuzzy midrange as fmr(α) = 1

2 (infAα + supAα); the fuzzy median as

fmed , which satisfies
∫ fmed

a A(x)dx =
∫ b

fmed
A(x)dx = 1

2

∫ b
a A(x)dx; the fuzzy average as

favg =
∫ b

a xA(x)dx/
∫ b

a A(x)dx;and the barycentre concerned with Zadeh’s probabil-
ity measure of fuzzy events as Rep(A) =

∫ ∞
−∞ xA(x) f (x)dx/

∫ ∞
−∞A(x) f (x)dx. Where

A is a fuzzy set on some interval [a,b] ⊂ R,a < b. In general, the first two methods
are easier to calculate than the last three as well as our method, however, they only
took account of the randomness of the fuzzy sample , e.g. fmode = m when the fuzzy
sample is X = (m, l,r)LR, which obviously may lead to a biased result. The third
method used a non-standard measure of fuzziness , thus the fuzzy median may also
be a biased representative of a fuzzy sample. The last two methods are reasonable,
but the representative values derived from the methods are not easy to calculate. We
can easily check that our method is easier to calculate than the fuzzy average and
barycentre methods in the case of LR-fuzzy quality sample. We would like to point
out that the accuracy of the representative for the given fuzzy sample is more im-
portant for constructing a representing control chart devoted for monitoring fuzzy
quality, an inaccurate representative will lead to more false alarm or a wrong control
scheme deviated from the original reality of fuzzy data . Also it is a common sense
that every fuzzy data is characterized by the both randomness and fuzziness. Our
proposed representative value is considerably accurate and simply and very compre-
hensive because we fully take the randomness as well as fuzziness measured by a
standard fuzziness measure into account.

3.2 Construction of a CUSUM Chart

Using the classical CUSUM interval scheme [15], we can design a corresponding
chart for the representative values of LR-fuzzy quality samples. As that mentioned in
Subsection 2.1, the spread variable of a sample might be evenly distributed though
the central variable is Gaussian, we need sampling in groups of varying number ni of
observations each, and ni is relatively large, for instance, ni ≥ 25. Let the observation
is:

Xi j = (mi j, li j,ri j)LR, i = 1,2, . . . ,k; j = 1,2, . . . ,ni
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then xi j := Rep(Xi j) = mi j + li jβ1 + ri jβ2. The representative value of the samples
mean (group mean), denoted by xi, can be worked out by the following two ways:
(1). xi = 1

ni

∑ni
j=1 xi j = mi + liβ1 +riβ2. (2).Xi = 1

ni

∑ni
j=1 Xi j = (mi, li,ri)LR, then xi =

Rep(Xi) = mi + liβ1 + riβ2. The standard error of mean for the representative values
in group i, denoted by si, is:

si =
(

1
ni −1

ni∑

j=1

[
(mi j −mi)+(li j − li)β1 +((ri j − ri)β2)

]2
)1/2

.

Then the standard error of samples mean can be estimated by

σ̂e =
( k∑

i=1

(ni −1)s2
i /

k∑

i=1

(ni −1)
)1/2

.

Thus, we are able to construct a CUSUM control chart for the representative values
of the samples as follows:

(1) Choose a suitable reference value T , here we assume that it is the overall mean
µ̂ of the past observations.

(2) Use the standard scheme h = 5, f = 0.5.
(3) Calculate the CUSUM Sn (Here Sn is with respect to the representative values of

samples) with reference value K1 = T + f σ̂e = µ̂ +0.5σ̂e. Keep it non-negative.
Calculate the CUSUM Tn (Here Tn is with respect to the representative values of
samples) with reference value K2 = T − f σ̂e = µ̂−0.5σ̂e. Keep it non-positive.

(4) Action is signalled if some Sn ≥ hσ̂e = 5σ̂e or some Tn ≤ −hσ̂e = −5σ̂e.

This obtained CUSUM control chart is an appropriate representative CUSUM chart
for the LR-fuzzy quality data involved process.

Conclusions

We have proposed an optimal representative value for fuzzy quality sample by means
of a combination of a random variable with a measure of fuzziness. For LR- fuzzy
data this kind of representative values are more accurate and easier to calculate, so
by which the fuzzy control charts derived from using representative values meth-
ods could be improved to some sense. An accurate representative CUSUM chart for
LR-fuzzy samples is preliminarily constructed. Likewise one could construct other
control charts such as EWMA,P-chart and so on. The proposed representative value
is expected to be extended to a general case where the normal, convex and bounded
fuzzy quality data are monitored.
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Summary. Automatic segmentation of text strings, in particular entity names, into structured
records is often needed for efficient information retrieval, analysis, mining, and integration.
Hidden Markov Model (HMM) has been shown as the state of the art for this task. However,
previous work did not take into account the synonymy of words and their abbreviations, or
possibility of their misspelling. In this paper, we propose a fuzzy synset-based HMM for text
segmentation, based on a semantic relation and an edit distance between words. The model
is also to deal with texts written in a language like Vietnamese, where a meaningful word
can be composed of more than one syllable. Experiments on Vietnamese company names are
presented to demonstrate the performance of the model.

1 Introduction

Informally speaking, text segmentation is to partition an unstructured string into a
number of continuous sub-strings, and label each of those sub-strings by a unique
attribute of a given schema. For example, a postal address consists of several seg-
ments, such as house number, street name, city name, zip code, and country name.
Other examples include paper references and company names. As such, automatic
segmentation of a text is often needed for further processing of the text on the ba-
sis of its content, namely, information retrieval, analysis, mining, or integration, for
instance.

The difficulty of text segmentation is due to the fact that a text string does not
have a fixed structure, where segments may change their positions or be missing in
the string. Moreover, one word, in particular an acronym, may have different mean-
ings and can be assigned to different attributes. For example, in a paper reference,
its year of publication may be put after the author names or at the end, and the pub-
lisher name may be omitted. For dealing with that uncertainty, a probabilistic model
like HMM has been shown to be effective, for general text ([5]) as well as specific-
meaning phrases like postal addresses or bibliography records ([1], [3]).

V. Ha-Thuc et al.: A Fuzzy Synset-Based Hidden Markov Model for Automatic Text Segmentation,
Advances in Soft Computing 6, 365–372 (2006)
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However, firstly, the above-mentioned HMMs did not consider the synonymous
words in counting their common occurrence probabilities. That affects not only the
performance of text segmentation, but also information retrieval later on. Secondly,
the previous work did not tolerate word misspelling, which is often a case. The seg-
mentation performance would be better if a misspelled word could be treated as
its correct one, rather than an unknown word. Besides, the segmentation task is more
difficult with a language like Vietnamese, where a meaningful word can be composed
of more than one syllable. For example, “công ty” in Vietnamese means “company”.

In this paper, we propose an HMM that overcomes those limitations. Firstly,
words having the same meaning are grouped into one synonym set (synset), and the
emission probability for each state is distributed over those synsets instead of individ-
ual words. Secondly, the probability is fuzzified by using a string matching distance
measure such as edit distance to deal with the word misspelling noise. Thirdly, the
standard Viterbi algorithm is extended to group syllables into words for Vietnamese
or an alike language.

The paper is organized as follows. Section 2 summarizes the basic notions of
HMM and its application to text segmentation. Section 3 present our proposed fuzzy
synset-based HMM and its extension for multi-syllable words. Experimental results
are presented in Section 4. Finally, Section 5 concludes the paper with some remarks
and suggestion for future work.

2 HMMs for Text Segmentation

2.1 Hidden Markov Models

An HMM is a probabilistic finite state automaton ([8]), consisting of the following
parameters:

• A set of one start state, one end state, and n immediate states
• An n× n transition matrix, where the ij th element is the probability of making a

transition from state i to state j.
• A vocabulary set Vs for each immediate state s, containing those words that can be

emitted from s.
• An emission probability p distributed over Vs for each immediate state s, where

p(w|s) measures the probability for s emitting word w in Vs.

These four parameters are learned from data in the training phase. Then in the
testing phase, given a text, the most probable path of states, from the start state to the
end, can be computed, where each state emits and corresponds to a word of the text
in that sequence.

2.2 Learning Parameters

Learning the HMM parameters requires only a single pass over the training data
set ([3]). Each training instance is a sequence of state-word pairs. The learned set
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of immediate states simply comprises all states appearing in the training data. The
vocabulary set of each state can also be learned easily as the set of all words paired
with that state in the training data.

Let Ni j be the number of transitions made from state i to state j, and Ni be the
total number of transitions made from state i, according to the training data. The
transition probability from state i to state j is learned as follows:

ai j = Ni j/Ni

For the emission probability distribution of state s, suppose that the vocabulary
set Vs ={w1, w2 . . . wM} and the raw frequency, i.e., number of occurrence times, of
each wi in state s in the training data is fi. Then, the probability that s emits wi is
computed as below:

p(wi|s) = fi/
∑

j=1,M
f j

The above formula would assign probability of zero to those words that do not
appear in training data, causing the overall probability for a text string to be zero. So
the model would not be applicable to a text string containing one or more unknown
words. To avoid this, a non-zero probability is assigned to an unknown word with
respect to a state, and the emission probability distribution of that state is adjusted
accordingly. Such a smoothing technique is the Laplace one, as follows:

p(“unknown” |s) = 1/(
∑

j=1,M
fi +M +1)

p(wi |s) = ( fi +1)/(
∑

j=1,M
fi +M +1)

One can see that
∑

j=1,n ai j= 1 and
∑

i=1,M p(wi|s)+ p (“unknown word” |s) = 1,
satisfying the normalized conditions.

2.3 Text Segmentation

For text segmentation, given an input string u = w1,w2...wm and an HMM having
n immediate states, the most probable state sequence, from the start state to the end
state, that generates u can be obtained by the Viterbi algorithm as follows ([8]). Let
0 and (n+1) denote the start and end states, and Prs(i) be the probability of the most
probable path for w1,w2...wi (i ≤ m) ending at state s (i.e., s emits wi). As such,
Pr0(0) = 1 and Pr j(0) = 0 if j �= 0.
Then Prs(i) can be recursively defined as follows:

Prs(i) = Maxt=1,n{Prt(i−1)×ats}× p(wi |s)
where ats is the transition probability from state t to state s, and the maximum is
taken over all immediate states of the HMM. The probability of the most probable
path that generates u is given by:

Pr(u) = Maxt=1,n{Prt(m)×at(n+1)}
This probability function can be computed using dynamic programming in

O(mn2) time.
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3 Fuzzy Synset-Based HMMs

3.1 A Case Study: Vietnamese Company Names

For testing the performance of our proposed model as presented in the following
sections, we have chosen the domain of Vietnamese company names. Figure 1 shows
the HMM learned from our training data, where each immediate state corresponds to
a field that a company name may contain:

• Kind of Company such as “công ty” (company), “nhà máy” (factory), . . .
• Kind of Possession such as “TNHH” (Ltd.), “c

?

ô ph`ân” (stock), “tu nh`ân”
(private), “liên doanh” (joint-venture), . . .

• Business Aspect such as “xǎng d`âu” (petroleum), “du li.ch” (tourism), “yt”
(medical). . .

• Proper Name such as “Sài Gòn”, “Microsoft”, “Motorola”, . . .

Kind of 
Company 

Kind of 
Possession 

Business 
Aspect 

Proper Name 

0.7 

0.3 
0.3 

0.4 

0.3 

0.6 

0.4 

0.9 

0.1 

1.0 

Fig. 1. An HMM for Vietnamese Company Names

3.2 Synset-Based HMMs

As mentioned above, synonymous words should be treated as the same in seman-
tic matching as well as in counting their occurrences. For example, in Vietnamese,
“trách nhiêm hũu ha. n”, “TN hũu ha. n”, and “TNHH ” are full and acronyms of
the same word meaning “Ltd.”. So we propose synset-based HMMs in which words
having the same meaning are grouped into a synset. Each training instance is a se-
quence of state-word-synset triples created manually. The probability of a synset
emitted by a state is defined as the sum of the probabilities of all words in that synset
emitted by the state, as exemplified in Table 1. Then, the model would operate on a
given text as if each word in the text were replaced by its corresponding synset.

Since one ambiguous word may belong to different synsets, the one with the
highest emission probability will be chosen for a particular state. For example, “TN ”
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Table 1. Emission Probabilities in a Synset-Based HMM

Word w p(w| state = Kind of Synset W p(W | state = Kind of
Possession) Possession)

trách nhiê.m 0.05 trách nhiê.m
hũu ha.n hũh ha.n 0.4
TNHH 0.25 TNHH
TN hũu ha.n 0.1 TN hũu ha.n

c ?ô phần 0.15 c ?ô phần 0.3
CP 0.15 CP
tu nhân 0.2 tu nhân 0.3
TN 0.1 TN

in the two following company names has different meanings, where in the former it
is an abbreviation of “tu nhân” (private) and in the latter of “thiên nhiên” (natural):

Công ty TN Duy Lo. i
company private proper name

Cty nuóc khoáng TN La Vie
company mineral water natural proper name

Figure 2 illustrates the most probable paths of the two names in the proposed
synset-based HMM, found by using the Viterbi algorithm. We note that using synsets
also helps to fully match synonymous words emitted from the same state, such as
“Công ty” and “Cty” in this example.

Kind of 
Organization 

Kind of 
possession Proper Name

“Công ty”  “TN”  “Duy L i”

Kind of 
Organization 

Business
Aspect Proper Name 

“Cty”  “TN”  “La Vie”

Business
Aspect

“n c khoáng”

Fig. 2. A Synset-Based HMM Resolves Ambiguous Words

3.3 Fuzzy Extension

The conventional HMM as presented above does not tolerate erroneous data. If a
word is misspelled, not in the vocabulary set of a state, it is treated as an unknown
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word with respect to that state. For instance, “cômg ty” and “Micorsoft” are mis-
spellings of “công ty” and “Microsoft”, respectively. The idea of our proposed fuzzy
HMMs is that, if a word w is not contained in the vocabulary set Vs of a state s, but
its smallest edit distance ([2]) to the words in Vs is smaller than a certain threshold,
then it is considered as a misspelling. In the synset-based case, the distance of w to
a synset in Vs is defined as the minimum of the distances of w to each word in that
synset. Therefore, the fuzzy emission probability of w with respect to s is computed
as follows:

if (w ∈ W in Vs) then
fp(w|s) = p(W |s)

else {
W0 = ArgminW∈V sdistance(w, W )

// distance(w, W ) = Minx∈W editDist(w, x)
if (distance(w, W0) < thresholds ) then
fp(w|s) = p(W0|s) // w might be misspelled from W0

else
fp(w|s) = p(“unknown”|s)// w is an unknown word

}

3.4 Extension for Vietnamese

The fact that a Vietnamese word may comprise more than one syllable makes word
segmentation and part-of-speech tagging difficult ([6], [7]), as compared to English
where words are separated by spaces. For example, the Vietnamese words “xuȯsng”,
“công ty”, “tông công ty” contain one, two and three syllables respectively. There-
fore, in order to segment company names, for instance, using the HMM present
above, one would have to pre-process it to group syllables into words first.

Here we propose to do both steps in one HMM, by modifying the Viterbi algo-
rithm as follows. Assume that the maximal number of syllables that form a word is
K, in particular 4 for Vietnamese. The probability Prs(i) of the most probable path
for a syllable sequence e1e2...ei ending at state s, among n immediate states of the
HMM, is defined by:

Prs(i) = Max j=1,K{Maxt=1,n{Prt(i− j)×ats} ×p(ei− j+1... ei−1ei| s)}

That is j(1 ≤ j ≤ K) syllables may form a word ending at state s, which maxi-
mizes Prs(i). The time complexity of the algorithm is O(Kmn2), for a syllable se-
quence of length m.

4 Experimental Results

The accuracy of a name segmentation method is defined to be the percentage of
names correctly segmented in a testing set. We have evaluated the proposed synset-
based HMM over a set of company names randomly extracted from several Viet-
namese websites. Figure 3 shows that its accuracy is about 5% higher than the
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: Conventional HMM
: Synset-Based HMM

Fig. 3. Comparison between Conventional and Synset-Based HMMs

conventional HMM, being over 80% with 300 training instances. In a domain where
the vocabulary sets contain many synonymous words, the improvement could be
higher.

To obtain noisy data sets, we use a tool that randomly generates misspelled words
from their original correct ones. The noise level of a data set is defined as the ratio of
the number of erroneous characters per the total number of characters of a word, for
every word in the set. Figure 4 compares the performances of a synset-based HMM
and its fuzzy extension over three data sets with different noise levels.

Noise Level

Fig. 4. Comparison between a Synset-Based HMM and its Fuzzy Extension
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The experiment results show that a synset-based HMM works quite well on clean
data, but its accuracy decreases with noisy data. Introducing fuzzy emission proba-
bilities helps to reduce the misspelling effect.

5 Conclusion

We have presented an enhancement of HMMs for text segmentation whose emission
probabilities are defined on synsets rather than individual words. It not only improves
the accuracy of name segmentation, but also is useful for further semantic processing
such as name matching. For dealing with misspelled words, we have introduced the
notion of fuzzy emission probability defined on edit distances between words. Lastly,
we have modified the Viterbi algorithm to segment text in Vietnamese and alike
languages, where a meaningful word may comprise more than one syllable.

Conducted experiments have shown the advantage of the proposed fuzzy synset-
based HMM. Other string distance measures are worth trying in calculating fuzzy
emission probabilities. The model is being applied in VN-KIM, a national key
project on Vietnamese semantic web, to automatically recognize named-entities in
web pages and matching them for knowledge retrieval ([4]). These are among the
topics that we suggest for further work.
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Summary. We present an example how fuzzy measures and discrete Choquet integrals can
be used to model interactivities between trees within a stochastic fine root dispersal model.

1 Introduction

Fine roots are roots with diameter smaller than 2 mm which are responsible for the
soil water reception of trees. Investigations of the spatial dispersion of the fine root
biomass can help to improve the knowledge about effects trees impose on soil re-
sources. One point within this research are dispersal models where interaction be-
tween trees says something about their rivalry, for example with regard to water
resources. In this paper the multi-tree case with trees from two different species
is discussed. In this multi-tree case the total biomass of fine roots consists of the
contributions of the individual trees. Here, interactions can affect the root biomass.
Therefore, we want to describe the total mean of the fine root biomass by a weighted
sum of the individual biomass contributions where the weights depend on the in-
teractivities. From fuzzy theory it is known that fuzzy integrals are flexible tools of
aggregation considering interaction ([2]). Especially, so-called discrete Choquet in-
tegrals can be applied for the aggregation of interacting critieria which in our case
are given by the individual tree biomasses.

2 Fuzzy Measures for Modelling Interactivities

We restrict ourselves to a finite universe of discourse, say N = {1, ...,N}. Denote
P(N ) the power set of N . A fuzzy measure ν is a set function ν : P(N ) → [0,1]
with

ν( /0) = 0, ν(N ) = 1, ν(A) ≤ ν(B) for A,B ∈ P(N ) and A ⊆ B, (1)

see [1]. In general, a fuzzy measure ν is a non-additive set function. The ‘degree’ of
nonadditivity expresses the ‘degree’ of interaction between two subsets A and B from

W. Näther and K. Wälder: Applying Fuzzy Measures for Considering Interaction Effects in Fine
Root Dispersal Models, Advances in Soft Computing 6, 373–381 (2006)
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N . A sub-additive ν with ν(A ∪ B) ≤ ν(A) + ν(B) for
A∩B = /0 models negative synergy or redundancy whereas a super-additive ν with
ν(A∪B) ≥ ν(A)+ν(B) for A∩B = /0 describes positive synergy.

Often the elements of N are interpreted as criteria. Then sub-additivity for ex-
ample says that the evaluation ν(A∪B) of the ‘sum’ A∪B of criteria is less than the
sum of the single evaluations ν(A)+ ν(B). Using the interpretation as criteria, the
evaluation of a single criterion A = {i}, i ∈ N , is of special interest. Let us intro-
duce the so-called importance index of criterion i. Note that for i being unimportant
it is not enough that ν({i}) is small. If it happens that for some A ⊂ N the value
ν(A ∪{i}) is much greater than ν(A), then i may be important although ν({i}) is
small. Considering these effects, the importance index or Shapley value is defined
by

Φi(ν) :=
∑

A⊂N \{i}

(N −|A|−1)!|A|!
N!

[ν(A∪{i})−ν(A)], (2)

see [3]. Analogously to the concept of the importance index the interaction index
between two criteria i and j is defined by

Ii, j(ν) =
∑

A⊂N \{i, j}

(N −|A|−2)!|A|!
(N −1)!

∆i, j(A,ν) (3)

∆i, j(A,ν) := ν(A∪{i, j})−ν(A∪{i})−ν(A∪{ j})+ν(A).

If ν reduces to a probability measure µ we always have ∆i, j(A,µ) = 0, i.e. addi-
tive set functions cannot model interaction.

Consider a feature variable xxx which takes values xi for the criteria i ∈ N . For
global evaluation or for aggregation of the feature values on N suitable tools seem
to be certain means of xi, more generally: certain integrals of xxx over N . Classical
integrals are linear operators with respect to a given measure. A much more pow-
erful tool for a suitable aggregation are Choquet integrals with respect to a given
fuzzy measure ν , see [2]. For the ordered feature values x(1) ≤ ... ≤ x(N) the discrete
Choquet integral with respect to a fuzzy measure ν is defined by

Cν(xxx) :=
N∑

i=1

w[i]x(i) (4)

w[i] := ν(A(i))−ν(A(i+1)), i = 1, ...,N; A(i) := {(i),(i+1), ...,(N)}.

The set A(i) collects the indices of the N − i+1 largest feature values. Especially, it
is A(1) = N ,A(N +1) = /0.

An ordered weighted average (OWA) of the feature values is given by

OWA(xxx) =
N∑

i=1

wix(i),

N∑

i=1

wi = 1,wi ≥ 0. (5)
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Formally, OWA(xxx) = Cν(xxx) with respect to the special fuzzy measure

ν(A) =
|A|−1
∑

j=0

wN− j

i.e. w[i] with respect to ν from (4) coincides with wi. For any fuzzy measure ν with

ν(T ) = ν(S) for all sets T and S with |T | = |S| (6)

OWA(xxx) coincides with the corresponding Choquet integral. In this simple case,
the interaction index (3) is the same for any pair (i, j), given by

Ii, j(ν) =
w1 −wN

N −1
, i, j ∈ N , i �= j, (7)

see [3].
One-parametric families of fuzzy measures where the parameter controls inter-

action in a transparent way are of special interest. Let us mention here the Yager
family

νq(A) =
(

|A|
N

) 1
q

,q > 0, (8)

where q > 1 models negative synergy and q ∈ (0,1) positive synergy. The Yager
family obviously satisfies (6) and leads to the weights

w[i] =
(

N − i+1
N

)1/q

−
(

N − i
N

)1/q

; i = 1, ...,N;q ∈ (0,∞). (9)

This fuzzy measure contains all possible types of interaction though the correspond-
ing OWA is not too far away from the arithmetic mean (q = 1) which is natural for
many dispersal effects in forests.

3 A Stochastic Model for Root Dispersal and Estimation
of the Model Parameters

To describe a real root dispersal situation, a number of soil cores (with diameter 2,65
cm and volume 440 cm3) is placed in the neighbourhood of the trees which collect
a random number of root mass units (1 unit = 1 mg). At first let us consider a single
tree and M soil cores, each of area a and fixed depth and with distance r j from the
tree, j = 1, . . . ,M. For the random number n j of root mass units in soil core j we use
a special nonlinear regression model:

E(n j) = amp(r j,ϑ) =: ρ(r j;m,ϑ), j = 1, ...,M, (10)
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m mean total mass of fine roots of the tree
p(r,ϑ) probability density for the location of a single root mass unit

at distance r from the tree
ϑ unknown parameter.

The justification of (10) comes from theory of stochastic point processes which
is suppressed here (see, e.g. [4]). An often used model for p(r,ϑ) assumes log-
normality, i.e. with a normalizing constant c we have

p(r;µ ,σ2) =
c
σr

exp

(

− (lnr −µ)2

2σ2

)

,σ > 0,µ ∈ R . (11)

Much more interesting, especially with regard to interaction, is the multi-tree
case. Firstly, we restrict ourselves to the case of N trees of the same species. Consider
the model of N additive overlapping trees, i.e.

E(n j) =
N∑

i=1

ρ(ri j;mi,ϑ) =: ρN
j (m1, ...,mN ,ϑ) , (12)

where ri j is the distance of soil core j from the tree i and let mi be the total root mass
of tree i. To avoid too much parameters we use an empirical relation between mi and
dbhi, the stem diameter at breast height of tree i:

mi = m

(
dbhi

30

)β
. (13)

This relation is often used in forest sciences (see e.g. [4]) and expresses mi by the
mass m of a standard tree of dbh = 30 cm and an allometry parameter β , i.e. the N
parameters mi reduce to two parameters m and β . Now, (12) can be written as

E(n j) =
N∑

i=1

ρ(ri j;m,β ,ϑ) =
N∑

i=1

ρN
i j (m,β ,ϑ) =: ρN

j (m,β ,ϑ). (14)

Note that (14) is given by the unweighted sum of the root masses of the N trees.
But from ecological point of view this is not realistic for all cases of root disper-
sion. In some cases it seems to be more realistic to prefer the ‘most intensive’ or
‘strong’ trees, e.g. the trees closest to soil core j and to put (more or less) the re-
maining ‘weak’ trees at a disadvantage. For example, the strong tree takes up the
total soil volume at some location and forces the roots of weaker trees to use other
soil regions. On the other hand, it is conceivable that a strong tree with a number of
fine roots can afford to accept roots of other trees, maybe from the same species, at
some locations. These remarks lead in a natural way to a discrete Choquet integral
of the root intensities. Consider the ordered intensities ρN

(i j)(m,β ,ϑ) of soil core j,

i.e. ρN
(1 j)(m,β ,ϑ) ≤ ... ≤ ρN

(N j)(m,β ,ϑ) and aggregate them by (see (4))

E(n j) = N
N∑

i=1

w[i]ρN
(i j)(m,β ,ϑ) = NCν(ρρρN

j (m,β ,ϑ)), (15)
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where the weights w[ j] are defined in (4) and the vector ρρρN
j (m,β ,ϑ) contains as

elements ρ(ri j;m,β ,ϑ),1 ≤ i ≤ N.
Let us explain the fuzzy measure ν in (15). Let A ⊂ N be a subset of trees. Then

ν(A) stands for the overall root mass if the trees of A produce alone, without any
contribution of trees from N \A.

Now, let us justify the use of the discrete Choquet integral. In (15) all trees con-
tribute at least ρN

(1 j)(m,β ,ϑ) root mass units to the total root mass at j. This results

in a total root mass at least equal to NρN
(1 j)(m,β ,ϑ)ν(N ) with ν(N ) = 1. Each

tree in N \A1 contributes at least ρN
(2 j)(m,β ,ϑ) additional root mass units where A1

collects the tree with the smallest individual contribution. Therefore, the increment
of total root mass is at least equal to

N
(

ρN
(2 j)(m,β ,ϑ)−ρN

(1 j)(m,β ,ϑ)
)

ν(N \A1).

And so on. Summing up all these increments of total root mass units results exactly
in the expression of the Choquet integral (15), see (4). Note that the weight of the
smallest contribution is equal to ν(N )−ν(N \A1) given by ν(A(1))−ν(A(2) in
(4).

For a symmetric fuzzy measure fulfilling (6) (15) reduces to

E(n j) = N OWA(ρρρN
j (m,β ,ϑ)). (16)

Obviously, if the chosen weights wi of the OWA operator (see (4)) are increasing
with i than - with regard to a given soil core - ‘strong’ trees suppress ‘weak’ trees,
which expresses negative synergy. In the opposite case, if ‘weak’ trees contribute
above the average, i.e. if the wi’s are decreasing in i, we have positive synergy, see
(7).

Now, consider the more general case that root masses of trees from two species
are given. Let N1 be the number of trees from species 1 and N2 the number of trees
from species 2. We will propose a two-step approach for the total root mass consist-

ing of the masses of the two species. At the first step, the mean of the root mass n(l)
j

in a soil core j coming from species l = 1,2, can be expressed following (15):

E(n(l)
j ) = NlCνl (ρρρ

Nl
j (ml ,βl ,ϑl)) =: ρNl

j (ml ,βl ;ϑl),

where νl is the specific fuzzy measure of species l. ml is the total root mass of a
standard tree from species l, βl is the corresponding allometry parameter for this
species l. The distributional parameters for species l are given by ϑl . Obviously, νl

controls the type of interaction inside species l, the so-called intra-specific interaction
of species l. But in ecological context, interaction between species - the so-called
inter-specific interaction - is also of great interest. We will model such effects at the

second step. Proceeding from E(n(1)
j ) and E(n(2)

j ) for a given soil core j we can
describe the mean of the total root mass n j at j by an additional discrete Choquet
integral:
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E(n j) = 2Cν12

((

ρN1
j (m1,β1;ϑ1)),ρN2

j (m2,β2;ϑ2)
))

=: ρN1N2
j (m1,β1,ϑ1,γ1;m2,β2;ϑ2,γ2;γ12) (17)

where the inter-specific interaction is controlled by the fuzzy measure ν12.
The unknown model parameters in (17) are
ml mean total mass of a standard tree from species l with dbh = 30 cm
βl allometry parameter for species l
ϑl vector of distribution parameters in p(r) for species l
γl vector of the parameters in the fuzzy measure νl for

species l controlling intra-specific interactivities
γ12 vector of the parameters in the fuzzy measure ν12 for

the total mass controlling inter-specific interactivities.
Now, we have to estimate the parameters by the use of soil core results n j,

j = 1, ...,M. The simplest way is a least squares approximation

M∑

j=1

(

n j −ρN1N2
j (m1,β1,ϑ1,γ1;m2,β2;ϑ2,γ2;γ12)

)2
→ min.

Denote the estimated parameters by m̂l , β̂l , ϑ̂l , γ̂l and γ̂12. As usual, the goodness of
model fit can be expressed by the (mean) sum of squared residuals

S2
M :=

1
M

M∑

j=1

(

n j −ρN1N2
j (m̂1, ϑ̂1, γ̂1; m̂2, β̂2; ϑ̂2, γ̂2; γ̂12)

)2
. (18)

In our case it is also useful to regard the sum of mean squared residuals for species
l, i.e.

S2
M,l :=

1
M

Ml∑

j=1

(

n(l)
j −w[l]ρ

N1
j (m̂l , ϑ̂l , γ̂l)

)2
. (19)

For further details and remarks see [5].

4 A Real-case Study

The study was carried out in a mixed spruce and beech stand consisting of 11 beech
(species 1) and 17 spruce trees (species 2) in Germany (Saxony) near to Dresden.
The study site is part of a greater nearly homegenous spruce stand. In 2003 soil cores
were taken at 226 given sampling points with collections of the fine root biomass
from the forest floor organic and mineral horizon.

At first, fine root biomass dispersion was modelled without considering interac-
tion, i.e. inter- and intra-specific aggregations were carried out as additive sums of
the contributions of the trees. The allometry parameters β1 and β2 were taken con-
stant with value 2. Assuming a lognormal model, see (11), this leads to the following
estimates
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m̂1 = 3.32 ·106, µ̂1 = 2.45, σ̂1 = 1.11 (20)

m̂2 = 1.64 ·106, µ̂2 = 1.85, σ̂2 = 1.2

with S2
M = 2365, S2

M,1 = 1809 for species 1 (beech) and S2
M,2 = 1126 for species

2 (spruce), see (18) and (19). The empirical standard deviation of the root mass of
species 1 s1 is equal to 73.04. For species 2 s2 = 64.88 holds. We denote

ri :=

√

S2
M,i

si
(21)

and obtain r1 = 0.58 and r2 = 0.52. From statistical point of view these values are not
very good with respect to model fitting. But let us refer to some problems connected
with fine root data. Fine roots are characterized by a high spatial and temporal vari-
ability depending for example on the changing availability of resources. Therefore,
discussing investigations based on one spatio-temporal sample we have to accept
some remaining variability of the residuals.

Now, interaction effects are considered applying an OWA operator with one-
parametric fuzzy measures from the Yager family, see (8). The number of model
parameters increases to 9. We obtain the following estimates:

m̂1 = 4.67 ·106, µ̂1 = 2.73, σ̂1 = 1.3, q̂1 = 0.74 (22)

m̂2 = 9.27 ·105, µ̂2 = 1.71, σ̂2 = 0.94, q̂2 = 1.37; q̂12 = 1.38

with S2
M = 1903, S2

M,1 = 1328 and S2
M,2 = 951. This leads to r1 = 0.54 and r2 = 0.47,

see (21). Considering interactions results in visible improvement of the mean squared
error of both species and the total root mass. To sum it up it can be said that the two
species suppress each other, whereas fine root dispersal of the beeches is charac-
terized by positive synergy. Considering that the study site comprises more spruces
than beeches the supposition that positive synergy between the beeches enables their
survival against the superiority of spruces is quite logical in ecological sense. In con-
trast to this the spruces are able to develop without intra-specific support or even with
intra-specific suppression.

If the inter-specific interaction is modelled by an OWA operator, it is not possible
to decide which species the other suppresses. This can be seen regarding the interac-
tion index from (3). We obtain Φspruce = Φbeech = 0,5. In ecological sense it is not
satisfactory that the effect of suppression is equally distributed over the two species.
Therefore, if we want to model that spruces suppress beeches we need a discrete Cho-
quet integral as introduced in (17). Fortunately, it is easy to define a non-symmetric
fuzzy measure for a set of two criteria. For negative synergy a sub-additive fuzzy
measure is necessary. By

ν({spruce,beech}) = 1,ν({beech}) = w1,ν({spruce}) = w2,ν( /0) = 0 (23)

with w1,w2 ≤ 1 and w1 +w2 > 1 such a fuzzy measure is given. In this case

Φspruce =
1
2

+
1
2

(w1 −w2) and , Φbeech =
1
2

+
1
2

(w2 −w1)
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with I12 = 1−w1 −w2 < 0 holds.
Now, the discrete Choquet integral (17) can be evaluated. Model fitting leads to

m̂1 = 1.04 ·107, µ̂1 = 2.33, σ̂1 = 1.15, q̂1 = 0.73

m̂2 = 1.40 ·106, µ̂2 = 2.18, σ̂2 = 1.21, q̂2 = 1.82 (24)

ŵ1 = 0.42, ŵ2 = 0.8

with S2 = 2050,S2
M,1 = 1345 , S2

M,2 = 997, r1 = 0.54,r2 = 0.49 and

I12(ν) = −0.22,Φbeech = 0.31,Φspruce = 0.69.

Obviously, negative synergy is given for inter-specific interactions. Further, the
spruces are more important than the beeches with respect to fine root biomass dis-
persal, i.e. the spruces suppress the beeches. Analogously to the OWA case (22) the
beeches support each other whereas interaction within the spruces is shaped by neg-
ative synergy.

5 Conclusions

The paper presents only some first results and shows that modelling of interaction ef-
fects by fuzzy measures leads to ecologically meaningful results. In a future project,
we will analyze further ecologically interesting parameters, e.g. humus thickness
and quality or the shape of the tree-tops, and we expect much more clear interaction
effects.
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Summary. We present a method for evaluating the discriminative power of compact feature
combinations (blocks) using the distance-based scoring measure, yielding an algorithm for
selecting feature blocks that significantly contribute to the outcome variation. To estimate
classification performance with subset selection in a high dimensional framework we jointly
evaluate both stages of the process: selection of significantly relevant blocks and classification.
Classification power and performance properties of the classifier with the proposed subset
selection technique has been studied on several simulation models and confirms the benefit of
this approach.

1 Introduction

There has been a recent explosion in the use of techniques for collecting and statis-
tically analysing very high-dimensional data. A typical example is microarray gene
expressions data: these allow the measurements of thousands of genes simultane-
ously and each observation is usually equipped with an additional categorical class
variable, e.g. indicating tissue type. An important problem with statistical analysis
of this type of data is to study the relationship between gene expression and tissue
type, and to develop classification techniques that show good performance proper-
ties in these high dimension low sample size situations. Such problems can partly be
reduced by the identification of strongly related functional subsets of genes whose
expression levels are highly discriminative for specified tissue types. The genes can
be merged into a single abstract subset (block) thereby reducing the problem of di-
mensionality in statistical estimation and generating some biological insights into
gene co-regulation processes.

In light of this biologically motivation, we focus on the high-dimensional sta-
tistical model for supervised classification where the covariance structure of class-
conditional distributions is sparse. This means that only a few underlying feature
variables, or feature blocks are strongly associated with a class variable and account
for nearly all of its variation - that is, determine the class membership. Several ap-
proaches have been considered to identify these blocks, e.g. unsupervised clustering
(see [1] and references therein) and the self organizing maps technique [2], where the

T. Pavlenko and H. Fridén: Scoring Feature Subsets for Separation Power in Supervised Bayes Clas-
sification, Advances in Soft Computing 6, 383–391 (2006)
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sets of feature variables with similar behavior across the observed data were identi-
fied. However, there are two important drawbacks in these approaches: on one hand,
they identify thousands of blocks in a tree-like structure which makes them very
difficult to interpret; secondly, the variables, which are blocked by similarities only,
usually fail to reveal the discriminative ability in the classification problem since no
information about the response variable was used.

We focus here on the multivariate approach suggested in [3] and [4] where the
identification of highly relevant blocks is controlled by the information about the
response variable and thereby reveal the blocks that are of special interest for class
separation. We present a technique for measuring the block separation score which
relies on calculating the cross-entropy distance between classes. We then explore
the asymptotic distribution of the separation score in a high-dimensional framework,
which in turn makes it possible to quantify the significance of each block and per-
form the subset selection by an appropriately specified threshold. Further, we com-
bine the suggested subset selection technique with partial least squares (PLS) pro-
cedure which also directly incorporates the prior knowledge of class identity into a
predictive model.

Finally, we illustrate the power and utility of our technique with experimental re-
sults using the Toeplitz matrix of order one to describe the within-block dependence
structure of the class-conditional densities.

2 Supervised Bayes Classification Model

2.1 Problem Formalization

We focus here on a supervised classification model, given a training set of contin-
uous feature variables x = (x1, . . . ,xp) as well as their associated class membership
variable Y = 1, . . . ,C . The task is to build a rule for assessing the class membership
of an observed vector x0.

Let the class conditional probability densities at feature vector x be f (x,θ j),
where θ j specifies a parametric model FΘ j , j = 1, . . . ,C . According to Bayes deci-
sion theory, we use the following rule

Y = j if Pr(Y = j|x) = max
k

Pr(Y = k|x), (1)

where Pr(Y = j|x) ∝ π j f (x;θ j) is a discriminant score that indicates to which the
degree x belongs to the class j. Pr(Y = j) = π j are class prior probabilities, j =
1, . . . ,C and ∝ denotes proportionality. This approach can be combined with plug-
in estimation of f (x,θ j) and is straightforward in the cases when the number of
observations is greater than that of the dimensionality, i.e. when n > p and p remains
fixed. However, it becomes a serious challenge with very high dimensional data,
where nl p and a plug-in classifier will be far from optimal.

To describe the high-dimensional framework asymptotically, we allow the di-
mension p to go to infinity together with n subject to the following constraints:
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limn→∞ p/n = c, where c ∈ (0,∞) and the case when c is above one, i.e. p > n makes
standard classification methods degenerate. To overcome this problem, we assume
that the true dependence among the features has a sparse structure such that not all
p feature variables independently, but rather a few functional subsets of features, or
blocks of features, are strongly associative with the response variable Y. The nat-
ural goal in high-dimensional classification is to identify these blocks and thereby
reduce the dimensionality by selecting the most informative blocks. More precisely,
we aim to find M whose transpose maps an p-dimensional data vector x to a vec-
tor in q-dimensional space: M : Rp×1 → Rq×1 such that such (x1, . . . ,xq) with ql p
are independent functional blocks, which constitute a disjoint and complete partition
of the initial set of variables: {∪q

i=1xi} ⊆ {x1, . . . ,xp} and xi ∪ x j = /0 for any i �= j.
Since we seek a transform that optimally preserves class structure of the data in the
reduced dimension space it natural to apply a searching technique which directly
incorporates the response variable Y into the blocking process.

There are several ways to find M and determine the blocks of variables having
high discriminatory power for a given class structure. We in this paper restrict the
class conditional distributions to parametric models FΘ and adapt the supervised
feature merging method (see [3] and [4]), which identifies the desirable blocks as-
suming that a block is highly discriminative if it is tightly clustered given Y , but
well separated from the other blocks. Using this approach, we obtain q disjoint, non-
empty independent mq-dimensional blocks so that p =

∑q
i=1 mi with mil p. Observe

that the asymptotics within the block is standard, meaning that n goes to infinity
while m remains fixed.

The block structure of x reflects the notion of sparsity for high-dimensional data,
meaning that each feature variable is expected to have a small number of direct neigh-
bors. These blocks then can be considered as potential explanatory feature variables
for a classification model revealing simultaneously those blocks which contain most
relevant information about class separability.

2.2 Separation Score

Our method of revealing highly discriminative blocks for a given transform M , relies
on the distance-based separation score. To introduce this measure in classification
framework, we first notice that given M , each class conditional density can be fac-
torized into a product of local interaction models as f j(x;θi) =

∏p
i=1 f j

i (xi;θ),where

the local m-dimensional density f j
i (xi;θ j

i ) belongs to a specific parametric fam-
ily FM ,Θ j

which depends on a finite set of parameters θ j
i ∈ Θ j, i = 1, . . . ,q,

j = 1, . . . ,C .
We define the ith block separation score as a cross-entropy distance between two

local probability densities given by

D
( j,k)
i = E

[

ln
f (xi;θ j

i )
f (xi;θ k

i )

∣
∣
∣ f (x;θ j)

]

−E
[

ln
f (xi;θ j

i )
f (xi;θ k

i )

∣
∣
∣ f (x;θ k)

]

(2)

which is a linear combination of Kullback-Leibler divergences (relative entropies)
for i-the block, i = 1, . . . ,q, j,k = 1, . . . ,C . This distance has also been known as
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entropy loss in a Bayesian framework. It is clear that the cross-entropy distance is a
measure of discrepancy between two densities and this distance is minimized if we
set f (x;θ j) = f (x;θ k) for all x. For the detailed properties of this distance see [5].

To give a theoretical justification of this definition in supervised classification,
we relate the cross-entropy distance to the Bayesian misclassification risk. Since the
primary role of the feature evaluation and selection is to improve the classification
performance, the Bayesian risk is a natural measure of the block relevance. We turn
to the special case of C = 2, so that the response variable Y is binary and notice that
typically, C -class classification rule tends to be easier to construct and investigate for
C = 2 than for C > 2 since only one decision boundary is analysed given that the new
observations fit in the model validity domain. A generalization of the classification
rule to the multiclass case can be given by so-called “max-wins” rule: solve each of
the two-class problems and then, for an observed vector x0 combine all the pairwise
classifiers to form a C -classification rule; see details of this approach in [6]. This
rule is quite intuitive: we assign to the class that wins the most pairwise comparison.
Based on this pairwise classification criterion, we can then generalize the two-class
distance based separation score to the multiclass case.

First, we observe that from the block independence it immediately follows
that the classifier (1) allows factorization Pr(Y = j|x) ∝ π j

∏q
i=1 f j

i (xi;θ), j =
1, . . . ,C . Furthermore, using plug-in estimates f j

i (xi; θ̂) we get a block additive
Bayesian classifier of the form

G M (x; θ̂ j, θ̂ k) =
q
∑

i=1

G M
i (xi; θ̂ j

i , θ̂ 2
k ) =

q
∑

i=1

ln
fi(xi; θ̂ j

i )
fi(xi; θ̂ k

i )
≶ ln

πk

π j
, (3)

where estimates θ̂i satisfies the standard set of “good” properties such as asymptotic
unbiasedness and efficiency, uniformly in i as n → ∞, i = 1, . . . ,q, π j = Pr(Y = j)
and j,k = 1,2; see details in [7]. Classifier (3), given in terms of the decision bound-
ary preserves the ordering of class posterior probabilities equivalent to the classifier
(1). Furthermore, given that the dimensionality of xi is fixed to mi and miln, so that
q → ∞, we can get a closed form expression for asymptotic Bayesian misclassifica-
tion risk RG M (x;θ̂ j ,θ̂ k) which is the average value of the misclassification probabili-

ties of the classifier G M (x; θ̂ j, θ̂ k). Indeed, by the growing dimensions asymptotic
assumption the classifier (3) can be seen as a sum of growing number of independent
random variables and asymptotic normality of this sum an be stated under proper
regularity conditions imposed on the family FM ,Θ . This in turn gives

RG M (x;θ̂ j ,θ̂ k) = Φ
(

− 1
2

[

D ( j,k)
]1/2[

1+
2mρ
D ( j,k)

]−1/2)

, (4)

whereΦ(x)= 1√
2π

∫ x
−∞ exp(−z2/2)dz, D ( j,k) =

∑q
i=1 D

( j,k)
i is the total cross-entropy

distance between classes j and k and ρ = limn→∞
q
n ; see detailed proof of the normal

convergency in [7].
The message of the result (4) is that, the relevance of the ith block about classi-

fication can be estimated by its input towards the total cross-entropy distance D ( j,k),
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since the Bayesian misclassification risk is proved to be a monotone, strictly decreas-
ing function of this distance.

3 Asymptotic Distributions and Significance Analysis

Numerical values of the separation score attached to each block mean a lot more if
they come with statistical significance figures. In fact, comparison across blocks and
selection of the most informative ones are essentially impossible without a uniform
figure of merit or a selection threshold.

To give a suitable technique for comparing block scores and thresholds we es-

tablish the limiting distribution of D̂
( j,k)
i , i = 1, . . . ,q. First, we notice for each i

and a fixed block dimension m, the block score allows the representation D̂
( j,k)
i =

(θ̂ j
i − θ̂ k

i )′I(θi)(θ̂ j
i − θ̂ k

i ) + O(n−3/2), where I(θi) jk =
∫ ∂�(x,θ j)

∂θ j
i

∂�(x,θ j)
∂θ j

k

f (x,θ j)dx

is the ith block’s information matrix, �i(xi;θ j
i ) := ln fi(xi;θ j

i ), θi = θ j
i +θ k

i
2 and

n j = nk = n. Furthermore,

(θ̂ j
i − θ̂ k

i )′I(θi)(θ̂ j
i − θ̂ k

i ) = n−1〈(ωi +T j
i −T k

i ),(ωi +T j
i −T k

i )〉 (5)

where 〈·, ·〉 denotes the scalar product,ωi =
√

n[I1/2(θi)]′(θ j
i −θ k

i ) and T j
i = n1/2(θ̂ j

i −
θ j

i )′I1/2(θi) represents the standardized bias of the estimate θ̂ j
i . According to the

property of asymptotic efficiency of θ̂ j
i , we assume that uniformly in i, T j

i converges
to m-dimensional standard normal distribution Nm(0, I) as n →∞, i = 1, . . . ,q, j,k =
1,2.

Observe that the distribution of the random variable
T j

i −T k
i√

2
also approaches

Nm(0, I) uniformly with respect to i since T j
i and T k

i are independent random vec-
tors, whose distributions are asymptotically normal. Therefore the distribution of

〈ωi + T j
i −T k

i ,ωi + T j
i −T k

i 〉, as well as nĴi(n)
2 , approaches non-central χ2 distribu-

tion with m degrees of freedom and non-centrality parameter ωi/
√

2, i = 1, . . . ,q.
The asymptotic distribution of the normalized separation score gives us means to

compute the selection threshold. We compute the plug-in separation score for the ith

block using the observations from classes j and k and, viewing the score D̂
( j,k)
i as χ2-

distributed test statistics order then blocks according to their potential significance
for the class separation.

Another way to select significantly informative blocks is to test them against ran-
dom data. More precisely: we test the hypothesis of whether and how many blocks
achieve high separation score by chance only. We do this by performing permutation-
based empirical analysis and estimate the probability of a block scoring better than
some fixed threshold τ in randomly labeled data. This probability is the P-value, or
the significance level corresponding to the scoring technique and the given threshold
τP. Blocks with the separation score exceeding the threshold τP have low P-values
and therefore contain the most useful information for classification. These blocks
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will be selected as the potential input feature variables for the reduced/pruned clas-
sification model. This selection technique will be studied in Section 4.

4 Empirical Study

In this section we evaluated utility of the distance based scoring technique by esti-
mating the discriminative potential of the selected blocks. An easy to implement is a
PLS model which in a supervised way constructs a weighted linear combination of
feature variables that have maximal covariance with the response variable Y and can
be used as a classifier.

We generated two populations as p-dimensional normal distributions Np(µ j,Σ j),
where Σ j = (σ2

ls)
p
l,s=1 had the the block diagonal form reflecting the sparse structure

of the data specified by M in Section 2, j = 0,1. Assuming that the block size m is
the same for both classes, we modeled Σ j so that each diagonal element Σ j

i repre-
sented the m×m covariance matrix of the ith block with Toeplitz structure of order
one, having the same covariances σ2 on the both upper and lower mid-off diagonals.
In this case the cross-entropy distance D for ithe block could be written as

D
(0,1)
i =

1
2

Tr(Σ−1
0i
Σ1i +Σ−1

1i
Σ0i −2Im)+

1
2
(µ0

i −µ1
i )′(Σ−1

0i
+Σ−1

1i
)(µ0

i −µ1
i ). (6)

A normally distributed population was generated by N = 20,000 observations with
q = 16, m = 3 and covariance structure specified by σ2 = 0.3 (for the first data set),
and σ2 = 0.5 (for the second data set), on the both mid-off diagonals, representing
different dependence strength within the block. Variable average vectors µ j for each
block were simulated from independent normal distributions without mean shift for
the first two blocks, but with a mean shift of 0.5 and 0.75 for the last two blocks and
with the shift of 0.1 and 0.05 for the variables in between these blocks. All variables
were autoscaled as the first step in the modelling and the binary response variable
Y = {0,1} was added to each data set to be used then in the class prediction phase.

Parameters µ i
j and Σi j where estimated for each j, by randomly drawing n = 50

observations with known Y from the population and were subsequently plugged into
(6), showing considerably higher score values for the last two blocks: D̂15 = 2.0562,
D̂16 = 2.9711 for σ2 = 0.3 and D̂15 = 1.8886, D̂16 = 2.7609 for σ2 = 0.5. These
blocks therefore could be selected as the most informative. To judge whether the in-
formative blocks selected from the original data set were of better quality than we
would get by chance, we investigated the empirical distribution of D̂i. We applied
the bootstrap technique, generated r = 500 resampled data sets from both popula-
tions and estimated the ith block distance score for each sample. The results are
summarized in Figure 1 (two upper plots of the left and right panels), clearly indi-
cating top score values for the last two blocks for both data sets. Further, to spec-
ify more precisely the selection threshold and evaluate the statistical significance of
our results, we explored the empirical distribution of the distance scores from the
permuted data. We let (y1, . . . ,yn) be the original set of responses specified by out
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Fig. 1. Histograms displaying the original and permuted distributions for the block separation
scores. The x-axis represents sample-based block scores and frequencies are on the y-axis. The
two upper parts of the left and right panels summarize the bootstrap distributions (r = 500)
of the block scores for q = 16 and mi = 3 with σ2 = 0.3 and σ2 = 0.5 respectively. The two
lower parts of both panels represent the permuted distributions (r = 500), where numbers on
the top of each plot indicate the score values estimated by the original data sets. Values in the
range of the score of the last two blocks estimated by the original data were never achieved
with any of the permuted data.

training samples and supposed that (ỹr
1, . . . , ỹ

r
n) was a permuted set of responses con-

structed from the original set by a random permutation for each r = 1, . . . ,500. We
then assigned the element of the permuted response to each of the observation x
from the training sample, which gave a set of pairs {(x1, ỹr

1), . . . ,(xn, ỹr
n)} for each

r = 1, . . . ,500 and calculated the D̂
(0,1)
i using permuted data. The histogram in Fig-

ure 1 (the two lower plots of both panels) displays the permuted distributions for
both data sets, showing that the scores of the two top blocks estimated by the origi-
nal data set considerably exceeded the 99% quantile of each of the permuted scores
of the other blocks, reaching very high significance level. This meant that the 99%
quantile, τ0.99 averaged over permuted block distributions for j = 1, . . . ,14 could be
used as the selection threshold. Moreover, these results confirmed that it was quite
unlikely that the blocks we selected had such a high separation score by chance. To
evaluate the discriminative potential of the selected blocks we applied the PLS tech-
nique and contrasted the classification results for the full PLS model to the reduced
one, which was based on the selected blocks only. We varied the initial population
parameters µ j

i and σ2, drew new samples and classified them by both PLS models
assuming the same sample size and using the decision boundary of 0.5. The results
are demonstrated in Figure 2 showing quite satisfactory predictive accuracy of the
reduced model. The estimator Ŷ = Ŷ(x1, . . . ,xq̃) based on q̃ selected blocks is the
predicted value of the class membership of the observed vector x. The left hand side
of both panels show a slight increase in false positives and false negatives when clas-
sifying by the selected blocks only. The percentage of false positives by Ŷ increased
from 10% to 14% for the model with µ1

i = 0.75 and µ0
i = 0.1 (uppper plot of the

left panel) and from 0% to 8% for the model with µ1
i = 0.5 and µ0

i = 0.05 (upper
plot of the right panel). This increase was due to the considerable dimensionality re-
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Fig. 2. Comparison of the predictive potential of the full and reduced PLS classifiers. Parame-
ters µ i

j and σ2 were set as in Figure 1. The two upper parts of the left and right panels indicate
the percentage of false positives and the distance to the model when using all q = 16 blocks.
The two lower parts of both panels correspond to the reduced classifier. The dashed lines cor-
respond to the decision boundary of 0.5 in the graphs, summarizing prediction potential, and
to the 95% confidence limit indicating the consistency of the classified observation x with the
training data set.

duction: instead of two highly informative blocks we had eight times as many single
feature variables in the non-reduced PLS classifier. So far, we can conclude that the
suggested distance-based scoring and selection technique really identified the blocks
which had high discriminative ability.

The stability of our predictive results of the reduced PLS classifier is an important
issue. To validate the output of the PLS classifier given in Figure 2, we tested if it
remained unchanged for similar input data. 500 new samples were generated and
classified by the reduced PLS model with subsequent comparison of the original
class membership and the percentage of false positives and false negatives. False
positive and false negative rates showed larger ranges for smaller distances (see left
panel of Figure 3), indicating better effect of subset selection when classes were close
to one another. However we conjecture that the reduced PLS model discriminates
classes with a small number of variables only and the prediction ability of this model
was just about 5% lower than for the full model.
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Fig. 3. Histograms showing the empirical distribution (r = 500) of the fraction of false posi-
tives and false negatives for the full PLS model (four plots on the left panel) and reduced PLS
model (four plots on the right panel).

Conclusion

In summary, this paper presents the distance-based scoring measure for evaluating
the separation power of the feature variables and is especially designed for the sparse
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data structure in a high-dimensional framework. The idea behind the distance-based
criterion is theoretically justified by the straightforward relationship between the
classification accuracy and the cross-entropy distance. We propose two approaches
that allow a significance measure to be attached to the separation power: one is based
on the asymptotic distribution of the sample-based block score which is shown to
approach the non-central χ2 distribution; the other is based on the permutation test
and empirically evaluates a potential selection threshold. We also apply our scoring
technique to randomly permuted data which justifies that the blocks showing high
discriminative power are more than just an artifact. To examine the predictive prop-
erties of selected blocks, we embed the selection technique into the PLS classifier
and show empirically that our approach makes it possible to reduce immensely the
dimensionality while just slightly decreasing the predictive accuracy of the classifier.
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1 Introduction

The theory of interval random variables has been introduced by the authors in [12].
Up to now, it has been used in a few applications connected with Internet servers
admission control and queueing systems.

The theory may be considered to be remotely related to the p–bound (i.e. “prob-
ability bound”) concept (see e.g. [2], [4]), using bounds on the CDF of a random
variable. For example, [13] and [15] consider some links between these theories.

Likewise, the approach based on the Evidence Theory (e.g. [7]) exhibits several
similarities.

Actually, the interval random variables theory may also be considered to be the
antitype of all approaches using set–valued probabilities – it operates on events hav-
ing certain, non–interval probabilities. Nevertheless, values of random variables, as-
signed to these events are uncertain.

Earlier papers, e.g. [12], concentrated on an application connected with the es-
timation of uncertain parameters. Suitable notions and propositions, including the
analog of Kolmogorov’s theorem were introduced.

This paper is devoted to another problem, for which the developed theory is use-
ful – numerical computation of the Laplace transform of random variable’s PDF,
which is useful e.g. in queueing theory with long–tailed distributions of service (or
interarrival) times, e.g. [5], [18].

2 Basic Notions of Probability Theory

One of the most fundamental notions is the random variable.

B.J. Kubica and K. Malinowski: Interval Random Variables and Their Application in Queueing Sys-
tems with Long–Tailed Service Times, Advances in Soft Computing 6, 393–403 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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Definition 1. Let the probability space (Ω , S, P) be given, where Ω is the set of
elementary events, S – the σ -field of events and P : S → [0,1] – the (σ -additive)
probability measure.

A mapping X : Ω → R is called a (real) random variable, if the inverse
images of Borel subsets of R are events (i.e. the elements of S).

This condition is necessary to define a probability distribution of the variable.
By the probability distribution we mean a function PX (X0) = P

(
{ω : X(ω) ∈

X0}
)

where X0 is a Borel subset of R.
Several important (and well–known) notions of the probability theory (like the

expected value of a random variable) are beyond the scope of this paper. What we
have to mention is the Laplace transform of the PDF.

For continuous random variables, with the PDF f (x), the Laplace transform of
the PDF may be defined as follows (see e.g. [5], [18]):

f̃ (s) =
∫ ∞

0
e−sx f (x)dx . (1)

Equation (1) may be transformed to the form of the integral w.r.t. (with respect to)
the measure P(·). Then, in the case when the random variable is non–negative, it
takes the form:

f̃ (s) =
∫

Ω
e−sX(ω) dP(ω) . (2)

3 Basics of Interval Computations

To define the notion of interval random variable, we need to have some basic notions
of intervals and their arithmetic. We follow a wide literature, like the article [8] or
books [6], [9], [17], to name just a few.

We define the (closed) interval [x,x] as a set {x ∈ R | x ≤ x ≤ x}. We denote all
intervals by brackets; open ones will be denoted as ]x,x[ and partially open as: [x,x[,
]x,x]. (We prefer this notation than using the parenthesis that are used also to denote
sequences, vectors, etc.)

We also use boldface lowercase letters to denote interval variables, e.g. x, y, z.
Following [10], IR denotes the set of all real intervals and ICrect – the set of “rectan-
gular” complex intervals (i.e. pairs of intervals for real and imaginary part).

We design arithmetic operations on intervals so that the following condition was
fulfilled: if * ∈ {+,−, ·,/}, a ∈ a, b ∈ b, then a * b ∈ a * b. We omit the actual
formulae for arithmetic operations; they can be found in a wide literature e.g. ([6],
[8], [9], [17]).

Now, we define a notion to set links between real and interval functions.

Definition 2. A function f : IR → IR is an inclusion function of f : R → R, if
for all intervals x within the domain of f the following condition is satisfied:

{ f (x) | x ∈ x} ⊆ f(x) . (3)

The definition is analogous for functions f : R
n → R

m.
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Remark 1. There is a confusion in interval community; some researchers use terms
“interval enclosure” or “interval extension” instead of “interval inclusion function”.
We also use the term “interval enclosure” below, but in a slightly different case: a
function assigning intervals to non–interval arguments (see Definition 4).

4 The Notion of an Interval Random Variable

Now, we define a “random variable” that maps the events not to real numbers, but
rather to intervals of real numbers.

Definition 3. Let the probability space (Ω , S, P) be given (as in Definition 1).
Let us define a partition of Ω into sets A(x) of the form:

AX (x) = {ω ∈Ω | X(ω) = x} , where x ∈ IX . (4)

Any mapping X : Ω → IX ⊆ ∗
IR, satisfying the condition that for each

x ∈ IX the set AX (x) is an event, is called an interval random variable.

According to [10], ∗
IR denotes the set of intervals, the endpoints of which may

be not only finite real numbers, but also −∞ or +∞.
The definition of an interval random variable differs from the definition of a real

random variable not only in the set of values. We omit here the condition about the
reverse images of the Borel sets, replacing it by a simpler one. Why ? To formulate
a relevant condition it would be necessary to define a reverse image first. And this
notion is not explicitly defined.

There are several possible definitions of a reverse image of an interval valued
function (see e.g. [11] and Section 4.1). In this paper we consider (and so we do in
the earlier works, e.g. [12], [13], [15]) only those random variables that have a finite
set IX of intervals as its possible values. This assumption allows us to define the
probability function only for interval arguments from the set IX :

PX (x) = P
(

AX (x)
)

,

for any interval x ∈ IX .
Papers [12], [13], [15] consider also several other notions (e.g. the expected value

of an interval random variable) that may be important in many applications, but are
of no importance for the considered problem.

Now, we define some notions that will allow to associate interval variables with
real variables, namely an interval enclosure and an interval discretization of a
real random variable.

Definition 4. Suppose, we have a real random variable X .
The interval random variable X that fulfills the condition:

X(ω) ∈ X(ω) ∀ω ∈Ω , (5)

will be called an interval enclosure of the random variable X .
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Definition 5. Suppose, we have a real random variable X . Let the values of X
be contained in the interval [a, b], where a ∈ R∪{−∞} and b ∈ R∪{+∞}.

Let us divide the interval [a, b] into n subintervals. We denote their end-
points by xi. We obtain the sequence (xi)n

i=0, where:

a = x0 < x1 < .. . < xn−1 < xn = b .

The interval random variable X will be called an interval discretization of
the random variable X , if the following conditions are fulfilled:

• X is an interval enclosure of X ,
• the set of values of X is equal to IX =

{

[xi−1, xi] i = 1, . . . ,n
}

.

Remark 2. In recent papers (e.g. [12], [13], [15]) a less restrictive condition was
used in the definition of an interval discretization. The interval discretization was
supposed to take the value xi = [xi−1, xi] with probability:

pi =
∫ xi

xi−1

f (x)dx = F(xi)−F(xi−1) ,

for each i = 1, . . . ,n.
Defining the interval discretization by the sets of elementary events instead of the

values of probability measure seems more appropriate.

Property 1. If X is an interval discretization of X , then:

P
(
{X ∈ x}

)
= P
(

AX (x)
)

∀x ∈ IX .

This property does not hold for interval enclosures that are not interval discretiza-
tions.

Remark 3. Precisely, Property 1 is fulfilled for interval discretizations of continuous
random variables. Nevertheless, it can be generalized for the case of discrete random
variables, relatively simply.

Namely, we have to consider only disjoint intervals, which means we cannot use
closed ones only. If the probability that a random variable X takes a single value x1

is nonzero, then computing probabilities: P
({

X ∈ [x0,x1]
})

and P
({

X ∈ [x1,x2]
})

,

we add P
(

{X = x1}
)

to both these quantities. We have to use either intervals [x0,x1[
and [x1,x2] or [x0,x1] and ]x1,x2].

It is well known that the distribution does not determine the random variable
uniquely. Different random variables may have exactly the same distribution, but
associate different values with different elementary events.

Obviously, the same holds for interval–valued random variables. We shall intro-
duce now a notion to represent the distribution of an interval random variable.

Definition 6. Consider a finite subset of IR, IX = {x1, . . . ,xn}.
A generalized histogram is a mapping P : IX → R+ ∪{0}, such that:

∑n

i=1
P(xi) = 1 .



Interval random variables and their application . . . 397

Remark 4. What is the difference between a generalized histogram and an ordinary
one ? Only such that the intervals xi, i = 1, . . . ,n do not have to be pairwise disjoint.

Obviously, each interval random variable defines a generalized histogram of the
form:

P(x) = P
(

AX (x)
)

x ∈ IX .

Remark 5. In many cases we are more interested in the distribution of a random
variable than in the assignment of values to specific elementary events. Hence, re-
searchers sometimes do not distinguish between the random variable and its distrib-
ution when it is not important. Also, we shall use notions “interval random variable”
and “generalized histogram” alternately, when elementary events are not explicitly
considered.

4.1 Interval Random Variables or Random Sets ?

Yet one more important question has to be answered: what is the relation between
the theory of interval random variables and the more general theory of set–valued
random variables, also known as random sets (e.g. [11], [16]).

A random set is a measurable mapping from the space Ω of elementary events to
some family of sets. Measurable means that all sets {ω : X(ω)∩ x �= /0} are events.

Though the interval random variables’ theory was developed independently from
the theory of random sets ([12]), it is obvious that interval random variables are a
particular case of set–valued random variables.

Nevertheless, they are an important specific case, because they are computation-
ally far more tractable and their theory is simpler. It is especially worth noting, that
for interval–valued random variables it is reasonably simple to consider unbounded
random variables (which we actually do in this paper), while papers on set–valued
random variables usually assume, they are bounded and compact (see e.g. [16].

5 TAM – Transform Approximation Method

The L –transform is well–defined and finite for the PDF of each random variable.
Unfortunately, for some probability distribution functions the Laplace transform does
not have an analytic form. According to e.g. [18], this is the case for all power–tailed
distributions (e.g. Pareto distribution) and most other long–tailed ones (including
lognormal and Weibull distributions).

The Laplace transforms, useful e.g. in M/GI/1 and GI/M/1 queueing systems
analysis (see e.g. [1]), have to be approximated somehow. Below, we present a pop-
ular method to approximate such transforms.

5.1 Transform Approximation Method

TAM (Transform Approximation Method) is described e.g. in [5], [18].
Let us consider a random variable X with the PDF f (x) and CDF F(x).
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The essence of TAM is very simple: we discretize the domain of the random
variable X (at least the set [0, +∞[), obtaining n points: x1 < x2 < .. . < xn.

Let us denote the CDF’s values in these points in the following way:

yi = F(xi) i = 1, . . . ,n .

We associate some probability masses with these points:

p1 =
y1 + y2

2
,

pn = 1− yn−1 + yn

2
, (6)

pi =
yi+1 − yi−1

2
i = 2, . . . ,n−1 .

Then we can approximate the L –transform f̃ (s) of the PDF of X by a finite sum:

f̆ (s) =
n∑

i=1

pi · e−s·xi . (7)

The above description does not specify how to choose points xi (or yi). There are
a few approaches to do it (see below), but how to do it optimally remains an open
problem.

Possible parameterizations.

The method was first developed in 1998 by Gross and Harris. The formula f̆ (s) =
1
n ·
∑n

i=1 e−s·xi , where xi = F−1
(

i
n+1

)
was used there. Such an approach is called

uniform–TAM, or shortly UTAM.
Currently, more widely used is the GTAM (geometric–TAM ), which sets: yi =

1−qi (for some q such that 0 < q < 1) and xi = F−1(yi).

6 Interval Transform Approximation Method

To introduce the interval analog of TAM, let us consider a real–valued random vari-
able X with the PDF fX (x) and CDF FX (x). Consider an interval discretization X of
X .

We can formulate the interval inclusion function for the Laplace transform of the
PDF of X . It is the function f̆X : ICrect → ICrect of the form:

f̆X (s) =
n∑

i=1

pi · e−s·xi ,

where xi = [xi−1,xi] and s =
[
s,s
]

is an interval complex variable, i.e. s and s are
complex numbers.
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We want to use this approximation for Laplace transforms of the PDFs of services
time in queueing systems. It should be especially useful when the distribution of
service time is long–tailed. In such a case (and actually each case when the time is
unbounded) one of the intervals [xi,xi+1] will be of the form: [xn−1,+∞].

So, the interval extension of the L –transform will be finite only for values of the
argument s, satisfying Res > 0.

Now, let us prove that f̆X (s) is indeed an inclusion function of f̃X (s).

Theorem 1. Let an interval random variable X be interval enclosure of a real
random variable X .

Then, for each complex s such that s ∈ s, the following condition is fulfilled:

f̃X (s) ∈ f̆X (s) .

The theorem is holds specifically for s = [s,s].

Proof.
According to (2), we obtain:

f̃X (s) =
∫

Ω
e−s·X(ω) dP(ω) .

Using the partition of Ω into sets A(xi), defined by equation (4), we can reformulate
the above integral into the form of the following sum:

f̃X (s) =
n∑

i=1

∫

A(xi)
e−s·X(ω) dP(ω) . (8)

From the definition of an interval enclosure we have that X(ω) ∈ X(ω). The rules of
interval computations (e.g. [6], [8], [9], [17]) imply that for each x ∈ xi and s ∈ s we
have: e−s·x ∈ e−s·xi .

Hence, we obtain:
( ∫

A(xi)

e−s·X(ω) dP(ω)
)

∈
(

e−s·xi

∫

A(xi)

dP(ω)
)

.

The right side simply reduces to the form:

e−s·xi · pi .

So:
( n∑

i=1

∫

A(xi)
e−sX(ω) dP(ω)

)

∈
( n∑

i=1

e−s·xi · pi

)

. (9)

Then, from (8) and (9) we obtain:

f̃X (s) ∈
n∑

i=1

e−s·xi · pi = f̆X (s) .

QED
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The Essence of the Method

Let us now refer to TAM, described in Section 5.
Having defined the notion of interval discretization and the interval inclusion of

L –transform of a random variable, it was simple to develop an interval analog of
TAM. We may call it “Interval TAM” or ITAM for short.

This approach is similar to classical TAM, except for using interval discretization
instead of a traditional one and computing the interval inclusion of the L –transform
basing on this interval discretization.

The advantages of such approach in comparison with the traditional TAM are
obvious:

• we use correct probabilities associated with the intervals, not probability masses
quite arbitrarily associated with chosen points, as in (6),

• we can naturally bound the discretization error and truncation error,
• as in other interval methods, we can bound the numerical error (see e.g. [6], [8],

[9], [17]).

7 Laplace Transform for Queueing Systems

In case of M/GI/1 systems the L –transform of the sojourn time is given by the
so–called Pollaczek–Khinchin formula (see e.g. [1]):

w̃(s) =
(1−ρ) · b̃(s) · s

s+λ ·
(
b̃(s)−1

) , (10)

where b̃(s) is the L –transform of PDF of the service time B, λ is the arrival rate and
ρ = λ ·EB.

Assume the service time to be Pareto–distributed; this is a typical power–tailed
distribution, commonly used to model various levels of computer network traffic.
The most commonly encountered form uses two parameters: the shaping parameter
α > 0 and the location parameter β > 0. A Pareto–distributed variable X has the

CDF FX (x) = 1 −
(
β
x

)α
(for x ≥ β ; otherwise FX (x) = 0) and PDF fX (x) = βα

xα+1

(also for x ≥ β ).
As it was mentioned before, PDF of a Pareto–distributed random variable posses

an L –transform (as PDFs of all random variables do), but that transform does not
have a closed analytical form. Hence, some approximation of b̃(s) has to be used, in
particular in formula (10), to get an approximation w̆(s) of w̃(s).

So, we can now approximate the Laplace transform of the sojourn time. Where
can we use such an approximation ? Obviously, we can invert it numerically, to obtain
the distribution of the sojourn time. But the next subsection describes a different
application.
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7.1 Optimization

Consider the following problem: we want to find the arrival and service rate of a
queueing system, to optimize some performance measure for users waiting for the
completion of their tasks. It can be set as the following optimization problem:

max
λ ,µ

(

Q = V (λ )−λ ·G(λ ,µ)−C(µ)
)

s.t.

0 ≤ λ ≤Λ ,

λ −µ ≤ −ε .

The meaning of the above notions is as follows:

• V (λ ) – increasing, concave and strictly differentiable is the aggregated utility of
the users,

• G(λ ,µ) – is the delay cost of the user,
• C(µ) – is the capacity cost (usually a linear structure is assumed C(µ) = c ·µ ,
• ε is a small positive number used to avoid a strict inequality λ < µ .

What about the delay cost G ? In [3] a few measures are proposed: linear cost,
polynomial cost, etc. However in the case of a Pareto–distributed service time (with
α < 2) most of them are useless: they are infinite regardless the values of parameters
λ and µ (proof given in [15], Subsection 4.1.4). The only useful measure of the delay
cost is the exponential one (see [3]), expressed as:

G =
v
k
·
(
1− w̃(k)

)
,

where v > 0 and k > 0 are some real–valued parameters, estimation of which is
beyond our interest (interval random variables might be useful there too, though;
[12].

So, L –transform of the sojourn time is explicitly used here to measure perfor-
mance of the queueing system. More details may be found in [15].

Numerical Experiments

The lack of space makes the authors to present only a limited number of experiments.
They are presented in Tables 1, 2 and 3.

Table 1 presents the results for Erlang distribution. Obviously, this is not a long–
tailed distribution and TAM does not have to be used here. We present it, however,
to show the failure of traditional real–valued TAM, which provides incorrect values
there. Intervals computed by ITAM are somewhat wide, but correct.

Table 2 presents the results for Pareto distribution. We do not know the actual
values of the L –transform, so we can only use some kind of TAM.

Finally, Table 3 shows the performance of an interval optimization algorithm,
setting the parameters of a queueing system with the Pareto service time (i.e. solving
the problem from Subsection 7.1).
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Table 1. Approximate values of the Laplace transform of the Erlang–distributed random vari-
able’s PDF (r = 2, µ = 100.000000); TAM with 100 points

s L –transform real–valued TAM ITAM

( 5.000000, -3.000000) ( 0.951203, 0.027846) ( 0.789720, 0.089621) ([ 0.579440, 1.000000],[4.705679E-009, 0.295521])
( 5.000000, -2.000000) ( 0.951543, 0.018568) ( 0.797220, 0.060250) ([ 0.594440, 1.000000],[3.163486E-009, 0.198670])
( 5.000000, -1.000000) ( 0.951746, 0.009286) ( 0.801750, 0.030276) ([ 0.603500, 1.000000],[1.589685E-009, 0.099834])
( 5.000000, 0.000000) ( 0.951814, 0.000000) ( 0.803265, 0.000000) ([ 0.606530, 1.000000],[ -0.000000, 0.000000])
( 5.000000, 1.000000) ( 0.951746, -0.009286) ( 0.801750, -0.030276) ([ 0.603500, 1.000000],[ -0.099834,-1.589685E-009])
( 5.000000, 2.000000) ( 0.951543, -0.018568) ( 0.797220, -0.060250) ([ 0.594440, 1.000000],[ -0.198670,-3.163486E-009])
( 5.000000, 3.000000) ( 0.951203, -0.027846) ( 0.789720, -0.089621) ([ 0.579440, 1.000000],[ -0.295521,-4.705679E-009])

Table 2. Approximate values of the Laplace transform of the Pareto–distributed random vari-
able’s PDF (α = 1.1, β = 1.0; TAM with 1000 discretization points

s real–valued TAM ITAM

( 0.100000, 0.000000) ( 0.733017, 0.000000) ([ 0.732661, 0.757252],[ 0.000000, 0.000000])
( 0.200000, 0.000000) ( 0.593593, 0.000000) ([ 0.593003, 0.602140],[ 0.000000, 0.000000])
( 0.500000, 0.000000) ( 0.343648, 0.000000) ([ 0.342789, 0.344802],[ 0.000000, 0.000000])
( 1.000000, 0.000000) ( 0.157934, 0.000000) ([ 0.157144, 0.158725],[ 0.000000, 0.000000])
( 2.000000, 0.000000) ( 0.040318, 0.000000) ([ 0.039914, 0.040722],[ 0.000000, 0.000000])
( 5.000000, 0.000000) ( 0.001082, 0.000000) ([ 0.001054, 0.001109],[ 0.000000, 0.000000])

( 10.000000, 0.000000) (4.183039E-006, 0.000000) ([3.974061E-006,4.392017E-006],[ 0.000000, 0.000000])

Table 3. Results of the interval branch–and–bound for the single M/P/1 queue, capacity
cost c = 1.0 and exponential delay cost with different values of v and k; ITAM with 100
discretization points

v k execution time function evaluations number of boxes that can contain a solution

10 10 0.66 sec. 73 7
10 2 25.94 sec. 3491 121
5 2 2.78 sec. 374 68

0.1 0.4 1.7 sec. 290 16

8 Conclusions

The proposed ITAM is an efficient way to approximate the Laplace transform of
PDFs of random variables. Its computation may be a bit more costly than in the case
of traditional, real–valued TAM, but it is significantly more precise and safe. It seems
to be another useful application of the presented interval random variables theory.
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Summary. Many complex systems have characteristics which vary over time. Consider for
example, the problem of modelling a river as the seasons change or adjusting the setup of
a machine as it ages, to enable it to stay within predefined tolerances. In such cases offline
learning limits the capability of an algorithm to accurately capture a dynamic system, since
it can only base predictions on events that were encountered during the learning process.
Model updating is therefore required to allow the model to change over time and to adapt
to previously unseen events. In the sequel we introduce an extended version of the fuzzy
Bayesian prediction algorithm [6] which learns models incorporating both uncertainty and
fuzziness. This extension allows an initial model to be updated as new data becomes available.
The potential of this approach will be demonstrated on a real-time flood prediction problem
for the River Severn in the UK.

1 Introduction

Many data modelling approaches in Artificial Intelligence (AI) rely on an offline
learning strategy where a static model is learned from historical data. This type of
modelling is appropriate if the underlying dynamics of the system under considera-
tion does not change over time. However, often this is not the case as the behaviour of
a system varies and evolves over time. In this situation an offline learning approach
cannot account for these changes unless the model is completely re-learned.

2 Fuzzy Bayesian Methods

The fuzzy Bayesian learning algorithm proposed in Randon and Lawry [5] allows for
the induction of prediction models that incorporate both uncertainty and fuzziness
within an integrated framework. In the following we give a brief exposition of this
approach.

Consider the following formalization of a prediction problem: Given variables
x1, . . . ,xn+1 with universes Ω1, . . . ,Ωn+1, each corresponding to a compact interval

N.J. Randon et al.: Online Learning for Fuzzy Bayesian Prediction, Advances in Soft Computing 6, 405–
412 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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L1 L2 L3 L4 L5 Ln

Fig. 1. Trapezoidal fuzzy sets discretizing a continuous universe

of R, suppose that xn+1 is dependent on x1, . . . ,xn according to some functional map-
ping g : Ω1 × ·· ·×Ωn → Ωn+1 (i.e. xn+1 = g(x1, . . . ,xn)). In fuzzy Bayesian algo-
rithms fuzzy labels are used to partition both input and output and probability values
are then estimated for the corresponding imprecise regions of attribute space. Figure
1 illustrates how trapezoidal fuzzy sets can be used to discretize a continuous uni-
verse. Such a discretization can be generated from a crisp partition where we now
identify a fuzzy label Li with each partition interval (i.e. a bin) such that Li applies to
those elements in the interval to degree 1 and also applies to some points in neigh-
bouring intervals to a non-zero degree. Examples of labels include small, medium,
large, tall, high etc. and in the fuzzy Bayesian model the membership of x in L is
interpreted as the probability that L is a valid or appropriate label given value x. i.e.

∀x ∈Ω µL(x) = P(L|x)

Now unlike crisp partitions the labels Li overlap so that more than one label may
be appropriate to describe a particular x value, and hence we cannot directly define
probability distributions on the set LA = {L1, . . . ,Ln}. Instead, we must base our
analysis on the set of atoms generated from LA = {L1, . . . ,Ln}, each identifying a
possible state of the world and taking the form:

α =
n∧

i=1

±Li where +Li = Li and −Li = ¬Li

For example, in the case that we have only two labels L1 and L2 then there are 4
atoms; α1 = L1 ∧L2, α2 = L1 ∧¬L2, α3 = ¬L1 ∧L2 and α4 = ¬L1 ∧¬L2. In general,
if we have n labels then there are 2n atoms, however, if as in figure 1 at most two
labels can be applied to any x then only 2n−1 atoms can have non-zero probability.
For example, the atoms generated by the fuzzy labels in figure 1 are shown in figure
2. Let A denote the set of atoms with non-zero probability for at least some x ∈Ω .

For a given x ∈ Ω the distribution on atoms P(α|x) : α ∈ A can be represented
by a mass assignment mx : 2LA → [0,1] on the power set of LA as follows:

∀T ⊆ LA P(αT |x) = mx (T ) where αT =

(
∧

L∈T

L

)

∧
(
∧

L/∈T

¬L

)

For example, if LA = {L1, . . . ,Ln} then:
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α1 α2 α3 α2n−2 α2n−1

Fig. 2. Probability functions P(α |x) for atoms α ∈ A where α1 = L1 ∧¬L2 ∧¬L3 ∧· · ·∧¬Ln,
α2 = L1 ∧L2 ∧¬L3 ∧·· ·∧¬Ln, α3 = ¬L1 ∧L2 ∧¬L3 ∧·· ·∧¬Ln etc

P

(

L1 ∧L2 ∧
n∧

i=3

¬Li|x
)

= mx ({L1,L2})

Intuitively mx (T ) is the probability that the set of all labels appropriate to describe
x is T . A consequence of this translation process is that the current algorithm can be
embedded in the label semantics framework as proposed by Lawry ([2] and [3]). Now
under certain circumstances label semantics can be functional, allowing a mapping
from the fuzzy label definitions µL (x) : L ∈ LA to the conditional probabilities on
atoms P(α|x) : α ∈ A . One such possibility, as discussed in Lawry [2], is that for
each x there is a natural ordering on the appropriateness of labels and that the values
of mx are evaluate so as to be consistent with this ordering. This means that the mass
assignment mx is consonant or nested and consequently can be determined from
µL (x) : L ∈ LA as follows: If µL1 (x) ≥ µL2 (x) ≥ . . . ≥ µLn (x) then:

P





n∧

j=1

L j|x



= mx ({L1, . . . ,Ln}) = µLn (x)

P





i∧

j=1

L j ∧
n∧

j=i+1

¬L j|x



= mx ({L1, . . .Li})

= µLi (x)−µLi+1 (x) : i = 1, . . . ,n−1

P





n∧

j=1

¬L j|x



= mx ( /0) = 1−µL1 (x)

and P(α|x) = 0 for all other atoms α .
In the case where for any x ∈Ω at most two labels have non-zero probability (as

in figure 1) then the above consonant mapping is simplified further so that if for a
given x ∈ Ω µLi(x) ≥ µL j(x) > 0 and µLk(x) = 0 : k �∈ {i, j} (for the labels in figure
1 either j = i +1 or j = i−1) then only two atoms have non-zero probability given
by:
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P



Li ∧L j ∧
∧

k �∈{i, j}
¬Lk|x



= mx
({

Li,L j
})

= µL j(x)

and P



Li ∧
∧

k �=i

¬Lk|x



= mx ({Li}) = µLi(x)−µL j(x)

For the membership functions shown in figure 1 the probability functions on
atoms inferred in this way are shown in figure 2 across all values of x.

In the fuzzy naïve Bayes algorithm each input universe is partitioned using trape-
zoidal fuzzy sets (as in figure 1) and the probability function for the atoms generated
as in figure 2. Let Ai denote the atoms generated for variable xi where i = 1, . . . ,n.
Then for output atom αn+1 ∈ An+1 and input atom α j ∈ A j we infer the conditional
probability P(α j|αn+1) from the training database DB = {〈x1(i), . . . ,xn(i),xn+1(i)〉 :
i = 1, . . . ,N} as follows:

P(α j|αn+1) =
∑

i∈DB P(α j|x j(i))P(αn+1|xn+1(i))
∑

i∈DB P(αn+1|xn+1(i))

From this we can use Jeffrey’s rule [1] (an extension of the theorem of total proba-
bility) to infer a marginal density conditional on αn+1 such that:

f (x j|αn+1) =
∑

α j∈A j

P(α j|αn+1) f (x j|α j)

Where assuming a noninformative uniform prior distribution on the input uni-
verse Ω j, from Bayes’ theorem we have:

∀x j ∈Ω j, α j ∈ A j f (x j|α j) =
P(α j|x j)

∫

Ω j
P(α j|x j) dx j

From this we can apply Bayes’ theorem together with the naïve Bayes condi-
tional independence assumption as in the standard Bayesian model [4] to obtain the
conditional probability P(αn+1|x1, . . . ,xn) of each output atom given a vector of input
values, as follows:

P(αn+1|x1, . . . ,xn) =
P(αn+1)

∏n
j=1 f (x j|αn+1)

∑

αn+1∈An+1
P(αn+1)

∏n
j=1 f (x j|αn+1)

Hence, given an input 〈x1, . . . ,xn〉 we can now obtain a density function on output
values using Jeffrey’s rule as follows:

f (xn+1|x1, . . . ,xn) =
∑

αn+1∈An+1

P(αn+1|x1, . . . ,xn) f (xn+1|αn+1)

A single output prediction can then be obtained by taking the expected value so that:

x̂n+1 =
∫

Ωn+1

xn+1 f (xn+1|x1, . . . ,xn)dxn+1
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3 Online Updating

In a dynamically changing prediction problem the functional mapping gt :Ω1 × . . .×
Ωn → Ωn+1 from input to output variables is time dependent. In this section we
introduce a version of the fuzzy naïve Bayes algorithm which learns incrementally
in an online manner, updating the prediction model at each step.

Suppose we now receive the data as a series where our current data index is
i−1. Given a new training example x(i) = 〈x1(i), . . . ,xn (i) ,xn+1 (i)〉 we update the
conditional probabilities for each output atom as follows:

P′ (α j|αn+1) =
|αn+1|P(α j|αn+1)+wP(α j|x j(i))P(αn+1|xn+1(i))

|αn+1|+wP(αn+1|xn+1(i))

Here P(α j|αn+1) is the current probability estimate obtained through updating on
the first i−1 examples and P′(α j|αn+1) denotes the updated probability taking into
account example i .|αn+1| indicates the degree to which output atom αn+1 has been
previously encountered during learning given by:

|αn+1| =
i−1∑

k=1

P(αn+1|xn+1(k))

w is a learning parameter controlling the updating impact of a new training example
and is typically assumed to be a decreasing function of |αn+1| with limit 1 (see figure
3). For example, one possibility is w(|αn+1|) = c

|αn+1| +1 where c is a constant con-
trolling the level of initial updating. Note that if c = 0 then after updating on all N
training examples the conditional probabilities are identical to those obtained using
the offline algorithm as described in section 2. In the absense of any data concerning
the atom αn+1 conditional probabilities are a priori assumed to be uniform so that:

P(α j|αn+1) =
1

|A j|
: α j ∈ A j

20
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Fig. 3. Weight function w = 100
|αn+1| +1
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Fig. 4. Fuzzy Bayesian model using offline learning to predict flow at Buildwas 33 hours in
advance from upstream flow measurements at Abermule

4 River Flow Modelling

The River Severn is situated in the west of the U.K. and is about 350km long. The
source of the river is in the Cambrian Mountains in Wales and its mouth is in the
the Bristol Channel. In this paper we look at one section of the River called The
Upper Severn which runs from Abermule near Powys, a small village in mid Wales,
to Buildwas in Shropshire. The data used in this experiment was taken from flow
gauges situated upstream at Abermule which has a catchment area of 580 km2, and
downstream at Buildwas which has a catchment area of 3717 km2. The flow data
for these gauges was obtained from level measurements by applying the rating curve
conversion. See [7] for a more detailed description of this catchment.

The offline version of fuzzy naïve Bayes was trained on 1 hourly data consisting
of 13119 examples between 01/01/1998 and 01/07/1999. The aim of the learning
process was to infer a model to predict flow levels 33 hours ahead 3 at Buildwas from
earlier flow data both at Buildwas and upstream at Abermule. Hence, the functional
mapping was assumed to take the form xB

t+33 = g(xA
t ,xB

t ) where xA
t and xB

t denote
the flow levels at time t for Abermule and Buildwas respectively. The offline model
was then tested on 1 hourly data between 07/09/2000 and 30/12/2000. As well
as the actual flow values at Buildwas, figure 4 shows the predicted value for xB

t+33

3 A 33 hour lead time was selected so as to be consistent with the study reported in [7]
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taken as the expected value of the conditional output distribution f
(
xB

t+33|xA
t ,xB

t

)
.

Also shown is a region of uncertainty associated with each prediction corresponding
to one standard deviation on either side of the mean.

The three large peaks in flow during this period resulted in a major flood event
and are not representative of peak flow in the training data. This results in relatively
poor performance of the offline algorithm at these peak values. The online algorithm
was then applied directly to the year 2000 data, with learning parameter c = 100 so
that the updating weight function corresponded to w = 100

|αn+1| +1 as shown in figure
3. The results for the online learning algorithm on the year 2000 data are then shown
in figure 5. Clearly, the overall performance is significantly improved from that of the
offline approach, with the first and the third peak being captured, albeit with some
time delay. Notice, however, that the second peak is still being significantly under-
estimated. This may be due to the influence of an upstream tributary not included in
the model, but further research is required to resolve this issue.
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Fig. 5. Fuzzy Bayesian model using online learning to predict flow at Buildwas 33 hours in
advance from upstream flow measurements at Abermule
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5 Conclusion

An online updating version of the fuzzy naïve Bayes algorithm [5] has been intro-
duced to model systems, the characteristics of which change over time. The potential
of this approach has been demonstrated on a river flow modelling problem for the
River Severn U.K.
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