
9. Ontologies, Meta-models, and the Model-
Driven Paradigm

Uwe Aßmann and Steffen Zschaler

Technische Universität Dresden, Institut für Software- und Multimedi-
atechnik, Lehrstuhl für Softwaretechnologie, 01062 Dresden
uwe.assmann@tu-dresden.de, steffen.zschaler@tu-dresden.de

Gerd Wagner

Brandenburgisch-Technische Universität Cottbus, Institute of Informatics,
Lehrstuhl Internet-Technologie, Postfach 101344, 03013 Cottbus
g.wagner@tu-cottbus.de

In memory of Emma Larsdotter-Nilsson who, while working on a thesis in bio-
logical modelling [26], died unexpectedly in October 2005

9.1 Introduction

Refinement-based software development centres around the production of
several models, going from abstract to concrete (Fig. 9.1), cumulating in
the implementation as the most refined model [45]. Step by step, con-
structs in abstract models are refined to more concrete model elements.
Roughly speaking, development can be divided into two phases. The
analysis phase constructs a requirement specification describing all fea-
tures the user would like to have, building on a domain model, a business
model, and a context model. Later on, the design phase produces an archi-
tectural design specification and a detailed design specification. In a last
phase, the implementation phase, the design specifications are filled out to
an implementation of the software system.

250 Uwe Aßmann, Steffen Zschaler, Gerd Wagner

Fig. 9.1. Models in a typical object-oriented software development process

Model-driven engineering (MDE) is a variant of this refinement-based
software development in which models are no longer loosely coupled, but
connected in a systematic way [9, 10]. On the one hand, MDE improves on
the software refinement method of the 1970s in the sense that more con-
crete phases are distinguished. On the other hand, every phase derives a
more concrete model not only by manual refinement, but also by semi-
automatic or automatic transformation. To this end, models must be con-
nected; that is, model elements must be traceable from a more abstract
model to a more concrete model and vice versa. This is achieved through
meta-modelling: meta-models define sets of valid models, facilitating their
transformation, serialization, and exchange.

In recent years, model-driven engineering has been popularized by a
specific incarnation, model-driven architecture (MDA). In this process,
one specific type of model information, the platform information, plays an
important role. In MDA, models differ in how much platform information
they contain (Fig. 9.2). For instance, one platform can be the programming
language of the system, another can be the employed libraries or frame-
works, a third can be the binary component model. The designer begins
with a high-level model that abstracts from all kinds of platform issues,
and iteratively transforms the model to more concrete models, introducing
more and more platform-specific information. Hence, all information that

analysis
model

domain
model

use
cases

textual
requirements

(stories)

architectural
design

detailed
design

analysis
model

business
model

requirements
specification

 9. Ontologies, Meta-models, and the Model-Driven Paradigm 251

relates to programming language, frameworks, or component model are
added to the platform-independent model by platform-specific extensions.

Fig. 9.2. Models in model-driven architecture (MDA)

Essentially, in MDA three types of viewpoints on models are distin-
guished [30]. The computationally independent (CI) viewpoint sees the
system from the customer’s point of view, and manifests it in a computa-
tion-independent model (CIM). This model is a typical analysis model,
since it is expressed in terms of the problem domain:

The computation-independent viewpoint focuses on the envi-
ronment of the system, and the requirements for the system;
the details of the structure and processing of the system are
hidden or as yet undetermined. [30]

The CIM contains a domain model, describing the concepts of a domain
and their interrelations, a business model, describing a company’s rules of
business, and, finally, the requirements. The platform-independent (PI)
viewpoint sees the system from the designer’s point of view, abstracts
from all platforms a system may run on, and results in a platform-
independent model (PIM). Roughly speaking, a PIM contains an architec-
tural model, adorned with sufficient detail of platform-generic implemen-

analysis
model

use
cases

textual
requirements

(stories)

platform
independent

model

platform-1
specific model

analysis
model

requirements
specification

platform-(1,..,n)
specific model

domain
model

business
model

......

252 Uwe Aßmann, Steffen Zschaler, Gerd Wagner

tation issues. Finally, the platform-specific viewpoint adds platform-
specific extensions and results in a platform-specific model (PSM). Either
this model can be executed directly, or it is used to generate code.

To arrive at a PSM, the PIM must be extended with platform-specific in-
formation, for which it is merged with several platform-specific extensions
(Fig. 9.3).

Fig. 9.3. The MDA pattern: weaving a platform-specific extension as an aspect
into a PIM as a base

Because the platform-specific extension (PSE) can be regarded as an
aspect that cross-cuts the platform-independent information [24], one can
speak of model weaving. This MDA pattern, weaving PSMs from PIMs
and PSE, can be repeated over several levels. Often, different kinds of
platforms are involved and one would like to vary the system over all
combinations of these platform instantiations; for example, by having a
system with C# and Java, both on the web and GUI-client platforms. The
idea of multi-level MDA is to repeat the model weaving process over sev-
eral levels (Fig. 9.3), so that on every level, a PSM is reinterpreted as a
new PIM for the next platform.

A heretical spectator could remark that MDA (and hence MDE) is not a
new technology, but just refinement-based software development. How-

Model
weaving

Platform-1 specific
model (PSM)

Platform-1 specific
extension (PSE)

Platform independent
model (PIM)

Model
weaving

Platform-2 specific
model (PSM)

Platform-2 specific
extension (PSE)

 9. Ontologies, Meta-models, and the Model-Driven Paradigm 253

ever, since MDA discerns platform-specific information as the main crite-
rion for refinement, the entire process is much more structured than the
“free-style” refinement of the 1970s. Also, in MDA, all models are graph-
based, while standard refinement worked mainly for syntax trees.

Recently, the Semantic Web has popularized another notion of model:
ontologies. Ontologies are formal explicit specifications of a shared con-
ceptualization [18]. They describe the concepts of a domain, similar to the
domain model of a CIM. While they are currently used mainly in the Se-
mantic Web, they could be useful also in general software develop-
ment [1, 8]. But then, the question arises how ontologies should be inte-
grated into MDE, and more specifically, into the process architecture of
MDA. And this is what the rest of the chapter is about. In Sect. 9.2, on-
tologies are compared to general models, resulting in the insight that on-
tologies describe reality while models specify artifacts. Section 9.3 inves-
tigates these relationships in more detail and explains how the
specification relationship instance-of can be used to build up a stack of
models, the so-called IRDS meta-pyramid. Section 9.4 extends the meta-
pyramid with ontologies, distinguishing a descriptive dimension. A com-
parison to related work concludes the chapter.

9.2 Models and Ontologies

In this section, we discuss the fundamental terms ‘model’ and ‘ontology’
and investigate their primary commonalities and differences. We begin by
looking at definitions of ‘model’ and ‘ontology’, go on to discuss a fun-
damental property of models—namely, whether they are descriptive or
prescriptive—and finish by showing how this distinction can be applied to
distinguish between ontologies and other software models.

9.2.1 What’s in a Model?

Models are representations, descriptions, and specifications of things. Pidd
defines:

A model is a representation of reality intended for some defi-
nite purpose. [34]

Hence, models represent reality (in the following denoted by the is-
represented-by relation).

254 Uwe Aßmann, Steffen Zschaler, Gerd Wagner

Models have a causal connection to the modelled part of reality: they
must form true or faithful representations so that queries of the model give
reliable statements about reality, or manipulations of the model result in
reliable adaptations of reality. Pidd characterizes this as follows:

A model is an external and explicit representation of a part of
reality as seen by the people who wish to use that model to
understand, change, manage, and control that part of reality.
[34]

Secondly, while models represent reality faithfully, they may abstract
from irrelevant details. For instance, while models are finite descriptions,
they may well describe an infinite language—that is, an infinite set of
things or systems. Usually, then, abstractions are involved—for example,
about the number of elements in the language.

A model can represent many different kinds of realities, e.g. domains,
languages, or, in particular, systems. Hence, we can distinguish domain
models from system models, models that describe or control a set of sys-
tems:

A model of a system is a description or specification of that
system and its environment for some certain purpose. [31]

where the environment of a system is described by a domain model.
Models can describe structure or behaviour. In the former case, models

describe the concepts of a reality and their interrelation, the static seman-
tics of a domain, its context-free or context-sensitive structure. Well-
formedness rules (integrity constraints) describe valid configurations of
reality.

Example 1. UML class diagrams are frequently used together with an
Object Constraint Language [31]. The OCL integrity constraints describe
valid configurations and interrelationships of classes and objects in a UML
class model.

Secondly, while a structural model contains abstractions and their inter-
relationships, a behavioural model also specifies their behaviour, their dy-
namic semantics. In this case, a model may state assertions on the behav-
iour of things in a domain or of some systems. Models can express such
assertions either in a conceptual or in a transitional way. In the former
case, dynamic features of a system are expressed as concepts and their in-
terrelationships are explained by constraints. In the latter case, dynamic
features and their relationships are expressed in terms of transitions on
state spaces [23] or as modifications of a denotational semantics [42].

 9. Ontologies, Meta-models, and the Model-Driven Paradigm 255

Sometimes, such transitions or modifications can in turn be expressed in
logic. However, as the following example shows, this need not be appro-
priate. If the state space of the dynamic semantics is continuous, the se-
mantics is better expressed by numerical means—for example, through
differential equations.

Example 2. Modelica is a multi-domain modelling language for simula-
tion, visualization, and controlling technical systems. Hence, it is a pre-
scriptive modelling language for the dynamic semantics of technical sys-
tems [13].

9.2.2 What’s in an Ontology?

Recently, the Semantic Web has popularized another notion of model—
ontologies. One of the most-cited definitions is:

Ontologies are “formal explicit specifications of a shared
conceptualization”. [18]

Since concepts are abstractions and play an important role in models, an
ontology is certainly a special kind of model. But what is the exact differ-
ence? To answer this question, we have to introduce some other qualities
of models.

Following the above definition, an ontology is a model shared by a
group of people in a certain domain. This includes ontologies that have
been standardized by international organizations (such as the Dublin Core
ontology [27]), ontologies that are shared by large user groups (such as the
gene ontology [3]), and ontologies that are shared between companies and
their customers (such as the wine ontology [28]). In general, models need
not be shared. For instance, the design model of a product, if it is shared
only between the few developers of a small company, should not be re-
garded as an ontology, but rather as a plain artifact model. Of course,
sharedness is a relative notion: it is often a matter of taste to consider a
user group of a model large enough so that the model can be called an on-
tology of the user group.

An important property of ontologies is the so-called open-world as-
sumption [20]. It states, intuitively, that anything not explicitly expressed
by an ontology is unknown. Hence, ontologies use a form of partial de-
scription or under-specification as an important means of abstraction. In
contrast, most system models underlie the assumption that what has not
been specified is either implicitly disallowed or implicitly allowed

256 Uwe Aßmann, Steffen Zschaler, Gerd Wagner

(closed-world assumption), to restrict arbitrary extensions of the system,
which could introduce inconsistencies.

It is important to distinguish whether models describe or control reality.
If they describe, they monitor reality and form true, or faithful, abstrac-
tions. If they control, they prescribe reality; that is, they specify well-
formedness conditions what reality should be like, once it has been con-
structed. It can also be said that such models are templates or schemas of
reality. Hence, a most fundamental feature of a model is that it can be de-
scriptive or prescriptive [38]. In the former case, the model describes real-
ity, but reality is not constructed from it. In the latter case, the model pre-
scribes the structure or behaviour of reality and reality is constructed
according to the model; that is, the model is a specification of reality.
Favre [11] observes that in a descriptive model truth lies in reality,
whereas in a prescriptive model, truth lies in the model itself. Descriptive
models are, of course, used in analysis and re-engineering, specifications
in design and forward engineering. Since most specifications model sys-
tems, a prescriptive system model is also called a system specification.

Models are abstractions from reality for some purpose [34]. Ontologies
are special models. Most of the models used in software development and
design are of a prescriptive nature in that they form the templates from
which the system is later implemented. In contrast, because of their open-
world assumption, ontologies should be regarded as descriptive models.
This is so, because the open-world assumption does not allow for a com-
plete and final description: Anything that has not been said explicitly is
unknown. Two very different systems may satisfy an ontology, if they dif-
fer in areas not explicitly mentioned in the ontology.

On the other hand, we concede that ontologies can also be—and often
are—used in a prescriptive manner. We argue, however, that then they
should better not be called ontologies, but specification models. When a
model is used as a prescription for systems, it should confine their legal
structure, for which the closed-world assumption is required. At least, at a
certain point in development, the world must be closed; that is, the addi-
tional assumption has to be introduced that everything that has not yet
been specified or cannot be derived is wrong. Such a world closure is not
only hard to comprehend because it changes the semantics of the underly-
ing logic, but may also require the insertion of additional facts in the data-
base or a change in the logic reasoner.

Taking this discussion into account, we define the following:

An ontology is a shared, descriptive, structural model, repre-
senting reality by a set of concepts, their interrelations, and
constraints under the open-world assumption.

 9. Ontologies, Meta-models, and the Model-Driven Paradigm 257

A specification model is a prescriptive model, representing a
set of artifacts by a set of concepts, their interrelations, and
constraints under the closed-world assumption.

These definitions deserve some elucidating remarks. When comparing
hallmark papers, such as [18] and [38], specification models and ontolo-
gies look very similar. Both provide vocabulary for a language and define
validity rules for the elements of the language. Both specification models
and ontologies use integrity constraints to limit the valid instances of the
domain.32

However, there are also differences. Ontologies are shared knowledge;
that is, they must be standardized in a certain group of people. Ontologies
are not specification models, but descriptive models in Seidewitz’s sense.
Ontologies do not describe systems, only domains. Hence, in a software
engineering process, they should play the role of an analysis model, not of
a design or implementation model. With this view we contradict Devedzic,
“Generally, an ontology is a meta-model describing how to build models”
[8], and Gruber, because he maintains that ontologies are specifica-
tions [18]. However, this conceptual distinction creates a natural place for
ontologies in model-driven engineering, as will be seen in Sect. 9.4.

To summarize, we will assume the following: Specification models fo-
cus on the specification, control, and generation of systems, ontologies on
description and conceptualization (structural modelling) of things. Both
kinds of models have in common the qualities of abstraction and causal
connection. So, under these circumstances, how can ontologies and speci-
fication models cohabit in model-driven engineering?

9.3 Similarity Relations and Meta-modelling

The previous arguments make it possible to distinguish two basic notions
of the is-represented-by relation between a model and the corresponding
part of reality (Fig. 9.4). In a descriptive model—for example, an ontol-
ogy—the model describes the world; that is, the world’s objects are in re-
lation is-described-by with concepts of the descriptive model. In a specifi-
cation model, the system’s objects are created from the model; that is, an
object is an instance-of a model element. Both relationships are represen-
tation relations: one is descriptive, the other is prescriptive. Their generali-
zation is-represented-by is a similarity relation, in which a causal connec-

32 Both are structural models in the sense that while they can contain concepts that

model behaviour, they usually do not model dynamic semantics.

258 Uwe Aßmann, Steffen Zschaler, Gerd Wagner

tion—delivering true and faithful statements—is defined between the rep-
resented things and the representing model. Beyond that, more similarity
relations can be defined; for example, two things may share features (often
expressed as is-a, i.e., structural or behavioural inheritance), or they may
be included in a hierarchy of sets (set inclusion, subset-of). In Fig. 9.4, is-a
is defined as a sub-relationship of subset-of, because inheritance usually
has a set-based semantics; namely, that all objects in a subclass are also
members of the superclass. Additionally, is-a is a sub-relationship of is-
described-by, because a superclass also describes all objects in a subclass.
In contrast, is-a cannot be a sub-relationship of instance-of, because a su-
perclass cannot necessarily be regarded as a template, schema, or specifi-
cation for a subclass.

Fig. 9.4. A classification of similarity relations

9.3.1 Meta-models

In MDE, the specification relationship instance-of plays a special role.
When the specification principle is applied repeatedly, models are re-

 9. Ontologies, Meta-models, and the Model-Driven Paradigm 259

garded as the reality or system under study, so that models specifying
models can be defined: namely, meta-models. Meta-models represent and
specify models; that is, they describe about what are the valid ingredients
of a model. More precisely:

A meta-model makes statements about what can be expressed
in the valid models of a certain modelling language. [38]

Hence, a meta-model is a prescriptive model of a modelling lan-
guage [38]. In general, meta-models are language specifications, not only
of modelling, but also of arbitrary languages. In the current stage of MDE,
they are mainly concerned with the static semantics—that is, with context-
sensitive syntax of models, integrity, and well-formedness constraints.
However, modelling languages for dynamic semantics could also be ap-
plied to construct meta-models [42].

A language concept or construct in a meta-model is captured by a meta-
class. While its structure and embedding describe the static semantics of
the language constructs, its methods describe the dynamic behaviour of
the language construct. Usually, meta-classes are assembled in a behav-
ioural meta-model, the meta-object protocol (MOP) [25], a reflective
meta-model that describes an interpreter for the language.

A big incentive for meta-modelling has been the need of CASE (Com-
puter-Aided Software Engineering) tool vendors to exchange models [32].
Since a meta-model describes, rather specifies, valid instances of a model-
ling language—models—it enables control over the structure and validity
of models. If two CASE tools agree on the same meta-model, they impose
the same structure on their models, so that they can easily exchange them.

A language, described by a meta-model, can have a specific purpose or
domain in which it is applied. Such purposes or modelling domains are
called the subject areas of meta-models [12].

Example 3. For instance, the common warehouse meta-model
(CWM) [29] defines a data specification language, a meta-model for data
and information system applications. Work-flow systems are another spe-
cial subject area whose data, functions, and tasks can also be described
with meta-models [36]. Software processes, being specific work flows,
can be meta-modelled [14] and used to construct software environ-
ments [5].

Subject areas can be organized in hierarchies or partial orders. Then,
meta-models in a certain subject area can build on others from lower-level
subject areas, so that complex languages can reuse simpler languages [12].

Example 4. The CASE Data Interchange Format (CDIF) has structured
its meta-model into several subject areas (Fig. 9.5). The Foundation

260 Uwe Aßmann, Steffen Zschaler, Gerd Wagner

module contains information about names and relations; the Common
module defines name aliasing for objects; and the Data module describes
access paths to data and roles of objects. Based on these, data flow can be
defined (Data Flow module). Another module specifies facilities for the
presentation of objects. Finally, the full integrated meta-model uses all
other modules and provides their concepts in an integrated way to the us-
ers.

Fig. 9.5. The subject areas of CDIF and their meta-models in a use relationship

9.3.2 Metameta-models

The specification principle can be applied repeatedly. Metameta-models
represent and specify meta-models; that is, they describe what are the
valid ingredients of a meta-model. They specify languages, and are thus a
form of language specification languages (meta-languages).

In order to model anything useful, such a minimal meta-language
should contain the following concepts [12]:

Foundation
- names

- relations

Common
- aliases

Data Model
- roles

- access paths

Data Flow Model
- processes

- agents

Presentation

Integrated MM

 9. Ontologies, Meta-models, and the Model-Driven Paradigm 261

classes (concepts);
attributes (or properties) of classes, contained in the classes;
binary relations between classes.

Thus, the Entity–Relationship Diagram (ERD) language [6] can be used
as a very simple meta-language. It defines modelling concepts, their at-
tributes, and their relationships. Other meta-languages exist that describe
other forms of languages, or describe specific aspects:

1. Grammar specification languages—for example, EBNF—specify
the concrete or abstract syntax of a text-based language [17].

2. Attribute grammars describe context-sensitive syntax in the form
of attribution rules of syntax trees [7].

3. Natural semantics can be employed for type systems, but are also
able to specify dynamic semantics of systems [23].

4. In SGML [16], mark up languages can be defined. XML [44] is a
variant of SGML, allowing for defining context-free mark up
languages.

5. EXPRESS [37], a modelling language in the spirit of UML, is
frequently used in mechanical engineering.

9.3.3 The Meta-pyramid, the Modelling Architecture of MDE

Based on the meta-principle, a so-called meta-pyramid can be defined,
which displays systematically the mentioned stack of models and meta-
models [22]. In essence, a meta-pyramid is a specification hierarchy linked
by the instance-of relation, in which upper-level meta-models in some way
specify other sets of lower-level models. Since sets of models can be re-
garded as languages, the meta-pyramid is a hierarchy of language specifi-
cations.

In this chapter, we focus on the standard meta-pyramid of OMG, origi-
nally presented in the ISO Information Resource Dictionary System
(IRDS) standard [22] (Fig. 9.6), which contains four levels: M0 level (ob-
jects), M1 level (models), M2 level (meta-model or language level), M3
level (metameta-model or language description level). There are alterna-
tives and a debate is going on whether the IRDS meta-pyramid is precise
enough, because it is one-dimensional, while multi-dimensional model
pyramids exist [2]. However, at the moment, this is the mainstream meta-
pyramid of MDE.

262 Uwe Aßmann, Steffen Zschaler, Gerd Wagner

On level M3, the IRDS/OMG meta-pyramid employs the meta-object
facility (MOF) as metameta-model. Essentially, its concepts are similar to
those of the ERD. The stereotypical models of MDA, CIM, PIM, and PSM
live on level M1. All of them are specified on level M2 by meta-models
(CIM-MM, PIM-MM, PSM-MM), dialects of UML, enriching the UML
core by profiles containing markup for model elements (stereotypes and
tagged values).

Fig. 9.6. The meta-pyramid with the MDA-related model types CIM, PIM, PSM

Each of these meta-models covers different subject areas of a PSM: the
CIM-MM covers the requirements, the PIM-MM covers the platform-
independent concepts, while the PSM-MM adds the platform issues. While
all of these models are prescriptive—that is, using the instance-of re-
lationship—the question remains how ontologies, being models relying on
described-by, can be integrated into the meta-pyramid. This is the
topic of the next section.

9.4 MDE and Ontologies

This section discusses the role of descriptive and structural models, in par-
ticular ontologies, in the model-driven process. First, the different role of
domain and upper-level ontologies is discussed. We postulate that upper-
level ontologies can also be used as language descriptions. Secondly, we
propose an embedding of parts of the CIM as ontologies into the MDA
meta-pyramid (ontology-aware meta-pyramid). In fact, this delivers a first

M0 object level

M1 model level

M2 metamodel
level

M3 metametamodel
level

CIM
PIM

PSM

CIM-MM
PIM-MM

 PSM-MM

Metametamodels

Metamodels
(languages)

Models

System instances

Language specifications

Modelling concepts MOF

Instance specifications

<<instance-of>>

<<instance-of>>

<<instance-of>>

 9. Ontologies, Meta-models, and the Model-Driven Paradigm 263

ontology-aware mega-model of MDE [10], and we discuss its conceptual
advantages. On the one hand, the mega-model suggests an extended, on-
tology-aware software process. On the other hand, the technologies for
tool construction in the MDA and MOF world can be transferred to the on-
tology world.

9.4.1 Domain and Upper-Level Ontologies

The basic idea of the ontology-aware meta-pyramid is that most models in
MDE are specifications, but can integrate ontologies on different meta-
levels as descriptive analysis models. Since ontologies differ from specifi-
cations due to their descriptive nature, the standard M0–M3 meta-pyramid
can be refined from using pure specification models to also using ontolo-
gies.

Depending on the meta-level, an ontology may serve different purposes.
In fact, there are different qualities of ontologies in the literature. First of
all, the word ontology stems from philosophy, where it characterizes Exis-
tence:

Ontology is a systematic account of Existence. [18]

We call such a systematic account of existence a World ontology, a
conceptualization of the world, that is all existing concepts. Usually, a
World ontology is split into an upper-level ontology (concept ontology,
frame ontology), providing basic concepts for classification and descrip-
tion, and several lower-level ontologies, domain ontologies describing
domains of the world [19, 41]. Sowa characterizes domain ontologies as
follows:

The subject of ontology is the study of the categories of things
that exist or may exist in some domain. The product of such a
study, called an ontology, is a catalogue of the types of things
that are assumed to exist in a domain of interest D from the
perspective of a person who uses a language L for the pur-
pose of talking about D. The types in the ontology represent
the predicates, word senses, or concept and relation types of
the language L when used to discuss topics in the domain D.
[40]

In contrast, upper-level ontologies can be defined as follows:

264 Uwe Aßmann, Steffen Zschaler, Gerd Wagner

An upper ontology is limited to concepts that are meta, ge-
neric, abstract and philosophical, and therefore are general
enough to address (at a high level) a broad range of domain
areas. Concepts specific to given domains will not be in-
cluded; however, this standard will provide a structure and a
set of general concepts upon which domain ontologies (e.g.,
medical, financial, engineering, etc.) could be constructed.
[21]

Usually, concepts of the domain ontology inherit from concepts in the
upper-level ontology. For better interoperability and understanding, some
researchers try to create a normalized upper-level ontology, from which all
possible domain ontologies may inherit [33]. If a standardized upper-level
ontology with modelling concepts existed, all domain ontologies could
rely on a standardized concept vocabulary.

9.4.2 Relationship of Ontologies and System Models on
Different Meta-levels

With this terminological distinction, we can relate the different forms of
ontologies to meta-levels in the meta-pyramid. Domain ontologies live on
level M1; they correspond to models. An upper-level ontology, also a
standardized one, should live on level M2, because it provides a language
for ontologies. Figure 9.7 summarizes this insight, showing both dimen-
sions and descriptive and prescriptive models, on different meta-layers.

Interestingly, on the ontology side, inheritance is used as the connecting
relation of M1 and M2, and not instance-of. We believe that this his-
toric choice, which might have been made unconsciously, has a deep se-
mantic reason in the difference between descriptiveness and prescriptive-
ness. A concept in a domain ontology on M1 needs to express its
similarity to a modelling concept of an upper-level ontology (on M2).
For this, the is-a relationship is sufficiently precise (cf. Fig. 9.4), and
therefore it has been selected in the ontology world to connect the meta-
levels. A concept in a specification model, however, has to express that it
has been made from a specification model, which is clearly a more spe-
cific relationship than is-a. And this is the reason why in the IRDS world
the instance-of relationship has been employed.

We argue that on level M3 of the descriptive side of the ontology-aware
meta-pyramid, also a specification meta-language should be employed
(Fig. 9.7). The language that describes or specifies an ontology language
cannot be descriptive, because ontology languages are not something

 9. Ontologies, Meta-models, and the Model-Driven Paradigm 265

given, but artificial languages. Hence, a model to represent them should be
prescriptive. We argue that the same meta-language can be used on the on-
tology as well as on the system model side.

Fig. 9.7. The ontology-aware meta-pyramid

In fact, inheritance is not required in Fig. 9.7. While, usually, concepts
in a domain ontology inherit from a concept in an upper-level frame on-
tology, we suggest that to distinguish them better from concepts in specifi-
cation models, ontology modelling should causally connect ontological
concepts by the described-by relationship. This would introduce a
parallelism to using instance-of on the specification side and retain
the basic ontological modelling principle of descriptiveness. Because of
the parallel structure to the specification dimension, the advantage of such
a meta-pyramid is that connections from ontologies to specifications can
easily be made. In particular, this holds for the application of the meta-
pyramid in the MDE.

9.4.3 Employing Domain Ontologies in the MDA

This version of an ontology-aware meta-pyramid permits us to group the
MDA-based models around ontologies. In particular, the CIM plays a spe-
cial role.

Analysis
Problem Domain

Descriptive

Design
Solution Domain

Prescriptive (Specifications)

Software objects

Domain ontologies

Upper ontologies
(description concepts)

Metametamodels
(specification concepts)

Metamodels
(languages, language

concepts)

Models

Real world objects
<<described-by>>

<<instance-of>>

<<instance-of>>

<<instance-of>><<described-by>>

<<instance-of>>

<<is-a>>

 M0 object
level

M1 model
level

M2 metamodel
level

M3 metameta-
model level

266 Uwe Aßmann, Steffen Zschaler, Gerd Wagner

A CIM contains information about the system from the perspective of
the system user. It is an analysis model. As such, it may contain a domain
model, a business model, and requirements (Fig. 9.1) [30]. The gap be-
tween descriptive and prescriptive models concerns the CIM in particular.
The domain model of a CIM can be selected to be a domain ontology
(CIM-DO in Fig. 9.8). A business model, capturing business rules for a
company that should prevail in all software products, can also be regarded
as a domain ontology, namely that of the rules of the company (i.e. a do-
main ontology for a company, CIM-BO in Fig. 9.8). However, the parts of
the CIM that deal with requirements cannot be grasped by ontologies, be-
cause they specify requirements of a system to-be-made. Hence, this speci-
fication is grouped in CIM-RM in Fig. 9.8 as a specification model. This
difference is also the reason why only for CIM-RM, the specification part
of the CIM, is a meta-model needed. Concepts of CIM-DO or CIM-BO de-
scribe existing things, and may inherit from concepts on the language or
concept ontological level. Concepts in CIM-RM, on the other hand, are in-
stances of a CIM meta-model, because they specify parts of functions of a
system.

Fig. 9.8. A proposal for the role of ontologies in meta-pyramid of MDE and the
MDA

Usually, a CIM is extended towards a PIM by hand, by enriching it with
operational model elements. Hence, at least CIM-DO and CIM-BO play

Analysis
Problem Domain

Descriptive

Design
Solution Domain

Prescriptive (Specifications)

Real world
objects

Domain
ontologies

Upper ontologies

CIM-DO
PIM

PSM

CIM-RM-MM
PIM-MM

PSM-MM

Software objects

Language specifications

CIM-RM
CIM-BO

<<instance-of>>

<<described-by>>

<<described-by>>

<<instance-of>>

<<instance-of>>

<<described-by>>

Metametamodels
(specification concepts)

<<instance-of>>

M2 meta
model level

M1 model
level

M0 object
level

M3 metameta
model level

 9. Ontologies, Meta-models, and the Model-Driven Paradigm 267

the role of standardized analysis models, whose elements can be traced
back from the PIM [1]:

In an MDA specification of a system, CIM requirements
should be traceable to the PIM and PSM constructs that im-
plement them, and vice versa. [30]

Hence, surprisingly, the MDA can benefit from ontologies, because via
the standardized domain and business ontologies, once parts of a CIM,
connection to PIM specifications can be made in a clear and systematic
way.

9.4.4 Conceptual Benefits of an Ontology-Aware Meta-pyramid

The ontology-aware meta-pyramid offers several other benefits. First of
all, it suggests a more concrete model-driven software development proc-
ess. The designer starts from standardized analysis models, ontologies,
which may have been defined long before project start. These domain and
business models are refined towards design models. First, the require-
ments are added to yield a complete CIM. This is refined to a PIM and,
then, conventionally, via several PSMs towards an implementation. Em-
ploying ontologies as analysis models should increase the reliability of
software products, because these models are well engineered, often used,
and hence trustworthy. This avoids the risks of a self-made domain analy-
sis.

Secondly, ontologies as analysis models offer a more common vocabu-
lary for the software architect, customer, and domain expert. This should
improve the understanding of the parties that order and construct software.
Then, the standardization of the ontologies improves the interoperability
of applications, because applications that use the ontology contain a com-
mon core of common vocabulary. Finally, domain and business ontologies
can be reused in many software products. In particular, they may form the
core of a software product line [1], around which many products are
grouped, and from which they reuse domain terminology. Overall, this
improves reuse in the software process.

It is also beneficial to make an explicit distinction between descriptive
and prescriptive models in the MDA. Modelling becomes easier, because
designers and domain experts can always answer the question: where does
the truth lie? In the model or in reality? Specification models have to con-
fine themselves to the modelling of artificial things, things that are made,
while ontologies can focus on the description of real things, things that ex-

268 Uwe Aßmann, Steffen Zschaler, Gerd Wagner

ist. (In particular, this can be seen from the example of the CIM, which in
fact contains descriptive and prescriptive models.)

Finally, the ontology-aware meta-pyramid distinguishes conceptual
from behavioural models. It seems to be convenient to centre software
modelling around the concepts of a domain, or structure of a domain,
while adding behaviour to it step by step. In essence, this supports one of
the central ideas of MDA: refinement.

9.4.5 Tools Based on an Ontology-Aware Meta-pyramid

Ontology-aware meta-pyramids not only deliver a conceptual integration
of the Semantic Web and MDE, but also enable us to compare engineering
practices of both paradigms to derive common tools.

In MDE, type systems are mediated by an interface definition language
(IDL) [39]. Based on the meta-models for two type systems (on level M2),
automatic conversion code (on level M1) between objects typed in type
system 1 and objects typed in type system 2 can be generated. This is the
task of an IDL compiler and facilitates interoperability between compo-
nents and services, because data can easily be serialized and de-serialized
in appropriate forms. At the moment, interoperability between ontology-
based applications is an unsolved problem, but it might be possible to
transfer the IDL tools to ontology languages.

The division of M1 models into platform-aware subject areas (CIM,
PIM, PSM) is a structuring principle that can be applied to the ontology
world. Because the principle has been invented for the reuse of models in
product families (CIM and PIM are reused in many PIMs and PSMs, re-
spectively), it could enable reuse of abstract ontologies in ontology fami-
lies. Domains are not always disjoint, but often overlap. This suggests that
abstract ontologies should be developed that can be shared between do-
mains and are refined towards concrete ontologies by adding the differ-
ences of domains. Whether the notion of platform is the right criterion for
abstraction remains to be seen; however, MDE tools, such as MDE code
generators, could easily be transferred to such ontology families.

The success of ontologies and ontology languages suggests the use of
logic in specification models. This is often the reason why, in practice, on-
tologies are abused in a prescriptive way. However, it would be more
beneficial to reflect the role of open- and closed-world assumptions in on-
tology and specification languages. For a given modelling language, when
is it possible to change the assumption? And how far can tools be reused if
the assumption is orthogonal to the modelling language?

 9. Ontologies, Meta-models, and the Model-Driven Paradigm 269

In the MDE world, the exchange of meta-data has been simplified by
the XMI standard [32]. Essentially, XMI defines meta-model mappings on
level M2 between the UML meta-model, XML schema definitions, and a
programming language—for example, Java. Based on these mappings, se-
rialization of graph-like UML models to tree-shaped XML models can be
automated. Also, Java class models, which use a restricted form of inheri-
tance, can be generated automatically. XMI lays the foundation for meta-
data repositories such as MDR [43] or Eclipse-MDR [15], which seem to
be the basis for future CASE tools and integrated software–development
environments. Based on the ontology-aware meta-pyramid, the XMI tech-
nology could be transferred to ontology repositories.

Figure 9.8 suggests a common meta-language for the ontology and
specification world. It should be clear by now that such a meta-language
should be based on an expressive logic. If this logic is decidable (as in the
case of OWL-DL), decidable tool technology can be built. If the logic is
undecidable, it is more expressive, which might be more useful. Perhaps it
is possible to define a hierarchy of compatible logic languages that com-
bines expressive power with flexibility of use. Such a language hierarchy
would certainly be of great help to build tools in both the descriptive on-
tology as well as the prescriptive specification world.

9.4.6 The mega-Model of Ontology-Aware MDE

The above-presented ontology-aware meta-pyramid can be called a mega-
model of ontology-aware MDE:

A mega-model is a model that describes a meta-pyramid. [11]

A mega-model stands outside of the meta-pyramid and describes all its
levels. It has a global influence on all levels of the meta-pyramid. As such,
the presented mega-model sheds new light on the relation of ontologies
and meta-models in MDE. Systematically, ontologies can be related to
specification models and meta-models in the meta-pyramid. It is important
to distinguish the representation relations is-described-by and in-
stance-of, because then ontologies can be differentiated from specifi-
cation models on all levels. As a whole, we propose that:

1. An ontology-aware MDA should employ domain and business
ontologies as parts of the CIM.

2. An ontology-aware MDE should additionally incorporate a second
dimension of ontologies as descriptive models in the meta-

270 Uwe Aßmann, Steffen Zschaler, Gerd Wagner

pyramid, and maintain interrelations between the descriptive and
prescriptive models on all levels.

9.5 Related Work

One of the works integrating meta-models and ontologies is [35], which
extends software process and measurement ontologies to meta-models
from which software can be built. The work demonstrates the usefulness
of ontologies in a meta-modelling scenario.

The standard aforementioned meta-pyramid is not undebated in the lit-
erature. Other pyramids can be described, in particular if some design
principles for meta-pyramids found in the literature are varied. A central
role is played by the similarity relations: since different notions can be de-
fined, different model hierarchies result.

Favre dissects the instanceOf relation into representationOf
and member-of [9]. A model represents a language, and a system is an
element of that language. This leads to a relative model hierarchy which is
not restricted to four levels, but in which certain composite patterns denote
more complex similarity relations, such as instance-of or de-
scribed-by.

If every element on level n+1 is an instance of exactly one element on
level n, a meta-pyramid is called strict [2]. With strict similarity, meta-
pyramids must be lists or trees and are essentially one-dimensional. Based
on this distinction, [2] defines a non-strict meta-pyramid consisting of two
dimensions arranged in a matrix. One dimension of the matrix is charac-
terized by physical (technical, linguistic) instantiation. The linguistic simi-
larity describes the specification language aspect of modelling: which
language construct is an instance of which language concept. Linguistic
similarity is distinguished from logical (ontological) similarity, which
spans the other dimension, the matrix-like meta-pyramid. Ontological
similarity describes the similarity of real-world concepts, e.g. that a dog is
a mammal, and Fido is a dog. Clearly, this dimension corresponds to our
descriptive, ontological dimension. However, [2] does not distinguish pre-
scriptive vs. descriptive models, nor further different forms of similarity
relations. Future work will combine both approaches; at this time, it seems
unclear whether a two-dimensional matrix-like approach or the presented
approach of parallel descriptive and prescriptive dimensions will prevail.

 9. Ontologies, Meta-models, and the Model-Driven Paradigm 271

9.6 Conclusions

Ontologies are no silver bullet. They can be employed in the software
process as descriptive standardized domain models, domain-specific lan-
guages, and modelling (description) languages. However, they should not
be mingled with specifications of software systems. In MDE, both forms
of models are needed and complement each other. It is time to develop ap-
propriate mega-models that clarify the role of ontologies in MDE. This
chapter has presented one approach; however, this can be only an interme-
diate step, because we restricted ourselves to the standard IRDS meta-
pyramid. Other, more sophisticated meta-pyramids exist and must be ex-
tended to be ontology-aware.

9.7 Acknowledgments

Work partially supported by the European Community under the IST pro-
gramme, contract IST-2003-506779-REWERSE [4].

References

1. Aßmann, U., Reuse in semantic applications. In Norbert Eisinger and Jan
Ma uszynski, editors, Reasoning Web, First International Summer School
2005. Lecture Notes in Computer Science 3564, Springer, Berlin, July 2005.

2. Atkinson, C., and Kühne, T., Model-driven development: A metamodeling
foundation. IEEE Software, 20(5):36–41, 2003.

3. Smith B., Williams, J., and Schulze-Kremer, S., The ontology of the Gene
Ontology. In AMIA 2003 – Annual Symposium of the American Medical In-
formatics Association, 2003.

 http://www.gene-ontology.org
4. Bry, F. et al. Rules in a Semantic Web Environment (REWERSE). EU Pro-

ject 6th framework. IST-2004-506779.
 http://www.rewerse.net
5. Canfora, G., García, F., Piattini, M., Ruiz, F., and Visaggio, C.A., Applying a

framework for the improvement of software process maturity. Software -
Practice and Experience, 36(3): 283–304, March 2005, Wiley, New York.

6. Chen, P.P.-S., The entity-relationship model - towards a unified view of data.
Transactions on Database Systems, 1(1):9–36, 1976.

7. Deransart, P., Jourdan, M., and Lorho, B., Attribute grammars - definitions,
systems and bibliography. Lecture Notes in Computer Science 323, Springer,
Berlin, 1988.

272 Uwe Aßmann, Steffen Zschaler, Gerd Wagner

8. Devedzic, V., Understanding ontological engineering. Communications of
the ACM, 45(4):136–144, 2002.

9. Favre, J.-M., Foundations of model (driven) (reverse) engineering: Models.
Technical Report, vol. 1–3ADELE Team, Laboratoire LSR-IMAG, Univer-
sité Joseph Fourier, Grenoble, France, 2004.

10. Favre, J.-M., Megamodeling and etymology - a story of words: From MED to
MDE via MODEL in five milleniums. In Dagstuhl Seminar on Transforma-
tion Techniques in Software Engineering, no. 05161 in DROPS 04101. IFBI,
2005.

11. Favre, J.-M., and Nguyen, T., Towards a megamodel to model software evo-
lution through transformations. Electronic Notes in Theoretical. Computer
Science 127(3):59–74, 2005.

12. Flatscher, R., Metamodeling in EIA/CDIF - meta-metamodel and metamod-
els. ACM Transactions on Modeling and Computer Simulation, 12(4):322–
342, 2002.

13. Fritzson, P, and Engelson, V., Modelica—A unified object-oriented language
for system modeling and simulation. In Eric Jul, editor, ECOOP ’98 – Object-
Oriented Programming, Lecture Notes in Computer Science 1445 pages 67–
90. Springer, Berlin, 1998.

14. García, F., Ruiz, F., Piattini, M., and Polo, M., Conceptual architecture for the
assessment and improvement of software maintenance. In Mario Piattini and
Joaquim Filipe, editors, Enterprise Information Systems IV (ICEIS), pages
219–226. Kluwer Academic Publishers, Dordrecht, 2002.

15. Geer, D., Eclipse becomes the dominant Java IDE. IEEE Computer,
38(7):16–18, 2005.

16. Goldfarb, S.F., The SGML Handbook. OUP, Oxford, 1990.
17. Goos, G., and Waite, W.M., Compiler Construction. Springer, Berlin, 1984.
18. Gruber, T.R., A translation approach to portable ontology specifications.

Knowledge Acquisition, 5(2):199–220, 1993.
19. Guizzardi, G., Herre, H., and Wagner, G., On the general ontological founda-

tions of conceptual modeling. In S. Spaccapietra, S.T. March, and Y. Kamba-
yashi, editors, 21st International Conference on Conceptual Modeling (ER
2002), Lecture Notes in Computer Science 2503, pages 65–78, Springer, Ber-
lin, 2002.

20. Horrocks, I., Patel-Schneider, P., and van Harmelen, F., From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

21. IEEE. Standard upper ontology knowledge interchange format. Technical
Report, 2003.

 http://suo.ieee.org/suo-kif.html
22. ISO and IEC. Information technology – information resource dictionary sys-

tem (IRDS). International Standard ISO/IEC 10027, 1990.
23. Kahn, G., Natural semantics. Report no. 601, INRIA, February 1987.
24. Kiczales, G., Aspect-oriented programming. ACM Computing Surveys,

28(4), December 1996.

 9. Ontologies, Meta-models, and the Model-Driven Paradigm 273

25. Kiczales, G., des Rivières, J., and Bobrow, D.G., The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, 1991.

26. Larsdotter-Nilsson, E., and Fritzson, P.,. Using Modelica for modeling of dis-
crete, continuous and hybrid biological and biochemical systems. In the 3rd
Conference on Modeling and Simulation in Biology, Medicine and Biomedi-
cal Engineering. The University of Balamand, May 2003.

27. Needleman, M.H., Dublin core metadata element set. Serials Review, 24(3–
4):131–135, Elsevier, 1998.

28. Fridman, N., and Musen, M.A., Ontology versioning in an ontology manage-
ment framework. IEEE Intelligent Systems, 19(4):6–13, 2004.

29. Object Management Group (OMG). Common warehouse metamodel (CWM),
February10, 2000.

30. OMG. MDA Guide, June 2003.
 http://www.omg.org/mda
31. OMG. UML 2.0 Object Constraint Language (OCL) specification, 2003.
 http://www.omg.org/docs/ptc/03-10-14.pdf
32. OMG. XML Metadata Interchange (XMI), January 2002.
 http://www.omg.org/technology/documents/format/xmi.htm
33. Pease, A., Niles, I., and Teknowledge Corporation. Towards a standard upper

ontology. In FOIS, Ogunquit, Maine, ACM, October 2001.
34. Pidd., M., Tools for Thinking - Modeling in Management Science. Wiley,

New York, 2000.
35. Ruiz, F., Vizcaíno, A., Piattini, M., and García, F., An ontology for the man-

agement of software maintenance projects. International Journal of Software
Engineering and Knowledge Engineering, 14(3):323–349, 2004.

36. Scheer, A.-W., ARIS - Business Process Frameworks. Springer, Berlin, 1998.
37. Schenck, D., The express language reference manual. Technical Report ISO

TC184/SC4/WG1 N466 Working Document, ISO, March 1990.
38. Seidewitz, E., What models mean. IEEE Software, 20:26–32, September

2003.
39. Siegel, J., OMG overview: CORBA and the OMA in enterprise computing.

Communications of the ACM, 41(10):37–43, October 1998.
40. Sowa, J.F., Ontologies Website.
 http://www.jfsowa.com/ontology/index.htm
41. Sowa, J.F., Knowledge Representation: Logical, Philosophical, and Computa-

tional Foundations. Brooks Cole Publishing, Belmont, 2000.
42. Stoy, J.E.,, Denotational Sematics: The Scott-Strachey Approach to Pro-

gramming Language Theory. MIT Press, Cambridge, MA, 1977.
43. Surveyer, J., Sun adds to opensource Java IDE roster: A review of NetBeans

Java IDE. Application Development Trends, 11(9):48–48, 2004.
44. W3C. Extensible markup language (XML) 1.0. Technical Report REC-xml-

19980210, February 1998.
45. Wirth, N., Program development by stepwise refinement. Communications of

the ACM, 14(4): 221–227, 1971.

