
6. An Ontology for Software Measurement

Manuel F. Bertoa and Antonio Vallecillo

University of Malaga, Dept. Lenguajes y Ciencias de la Computación,
Málaga, Spain,
bertoa@lcc.uma.es, av@lcc.uma.es

Félix García

ALARCOS Research Group. Dept. of Information Technologies and Sys-
tems, Escuela Superior de Informática, University of Castilla-La Mancha,
Spain,
Felix.Garcia@uclm.es

6.1 Introduction

Software measurement has evolved in such a way that it is no longer a
marginal or atypical activity within the software development process and
has become a key activity for software project managers. All successful
software organizations use measurement as part of their day-to-day man-
agement and technical activities. Measurement provides organizations
with the objective information they need to make informed decisions that
positively impact their business and engineering performance [17]. As a
matter of fact, CMMI (Capability Maturity Model Integration) includes
software measurement as one of its requisites for reaching higher maturity
levels and it helps organizations to institutionalize their measurement and
analysis activities, rather than addressing measurement as a secondary
function. Other initiatives such as ISO/IEC 15504 [11], SW-CMM (Capa-
bility Maturity Model for Software) and the ISO/IEC 90003:2004 standard
[12] also consider measurement to be an important element in the man-
agement and quality of software. In all these initiatives measurement plays
a fundamental role as a means for assessing and institutionalizing software
process improvement programs.

176 Manuel F. Bertoa, Antonio Vallecillo, Félix García

However, as with any relatively young discipline, software measure-
ment has some problems. When we approach software measurement and
compare diverse proposals or international standards, it becomes apparent
that the terminology used is not always the same or the same term may re-
fer to different concepts. Terms such as “metrics”, “attribute”, or “meas-
ure” need to have a single definition accepted by all the researchers and
practitioners who work in software measurement. The most serious point
is when inconsistencies appear between different measurement proposals
or standards.

Standards provide organizations with agreed and well-recognized prac-
tices and technologies, which assist them to interoperate and to work using
engineering methods, reinforcing software engineering as an “engineer-
ing” discipline, instead of a “craft”. Furthermore, the Internet is changing
how business is done nowadays, promoting cooperation and interoperation
among individual organizations, which need to compete in a global market
and economy, and share information and resources. Standardization is one
of the driving forces to achieve this interoperability, with the provision of
agreed domain conventions, terminologies and practices. However, there
is no single standard which embraces the whole area of software meas-
urement in its totality, but rather there are diverse standards orientated to-
wards specific areas such as the measurement process or function points.
Without an overall reference framework managing these standards, incon-
sistencies arise in the measurement terminology. This issue has been rec-
ognized by ISO/IEC, which has created a work group for the harmoniza-
tion of systems engineering standards within its Joint Technical
Committee 1 (JTC1: “Information Technology”, www.jtc1.org), and is try-
ing to explicitly include in its directives the procedures which guarantee
consistency and coherency among its standards. Furthermore, there has
been an agreement in place since the year 2002 between the IEEE Com-
puter Society and ISOJTC1-SC7 to harmonize their standards, which in-
cludes the terminology on measurement.

In spite of these efforts, the problem of terminology harmonization still
needs to be resolved in our opinion. The objective of this chapter is to pre-
sent a coherent software measurement terminology which has been agreed
upon by consensus, i.e., without contradictions or disparities in the defini-
tions, and a terminology which is widely accepted. The terminology pre-
sented in this chapter has been obtained as a result of an exhaustive analy-
sis of the concepts and terms used in the field of software measurement.
First of all, similarities, discrepancies, shortcomings and weaknesses in the
terminology used in the main standards and proposals have been identi-
fied, including ISO International Vocabulary of Basic and General Terms
in Metrology (VIM) [13] in the comparison [5]. The result has been a

6. An Ontology for Software Measurement 177

software measurement ontology that provides a set of coherent concepts,
with the relations between these concepts well defined, and which we
hope helps to create a unified framework of software measurement termi-
nology.

This chapter is organized as follows. After this introduction, Sect. 6.2
guies a brief analysis of the current situation. Section 6.3 presents the
Software Measurement Ontology proposal; the concepts of the ontology
and relationships among them are presented in detail grouped according to
the sub-ontology to which they belong. A running example based on a real
case study is used to illustrate the ontology. Finally, Sect. 6.4 draws some
conclusions, proposes some suggestions for harmonization, and identifies
future research work.

6.2 Previous Analysis

We selected sources from the existing international standards and research
proposals that deal with software measurement concepts and terminology.
From IEEE we took IEEE Std. 610.12: “Standard Glossary of Software
Engineering Terminology” [7] and IEEE Std. 1061-1998: “IEEE Standard
for a Software Quality Metrics Methodology” [8]. From ISO and IEC we
selected the ISO/IEC 14598 series “Software engineering – Product
evaluation” [9], the ISO VIM: “International Vocabulary of Basic and
General Terms in Metrology” [13] and the International Standard ISO/IEC
15939: “Software engineering – Software measurement process” [10]. We
also included other relevant research proposals related to software meas-
urement, such as the ones by Lionel Briand et al. [3] and by Barbara
Kitchenham et al. [16]. The general enterprise ontology proposed by
Henry Kim [15] was also considered in the analysis, since it contains a
sub-ontology for measurement concepts and terms. Other proposals that
make use of measurement terminology (sometimes adapted to their par-
ticular domains) were also analyzed, although they were not included in
the comparative study because they were either too specific, or clearly in-
fluenced by other major proposals already considered.

Once the sources were identified the next step was to collect from them
all the definitions of terms related to software measurement. As a result of
this, the first thing we realized was that the different standards and pro-
posals could be basically organized around three main groups, depending
on the particular measurement topics they focused on: software measures,
measurement processes, and targets-and-goals. The first group of con-
cepts, software measures, deals with the main elements involved in the

178 Manuel F. Bertoa, Antonio Vallecillo, Félix García

definition of software measures, including terms such as measure, scale,
unit of measurement, etc. The second group, processes, is related with the
actions of measuring software products and processes, including the defi-
nition of terms like measurement, measurement result, measurement
method, etc. Finally, the third group, target-and-goals, gathers the con-
cepts required to establish the scope and objectives of the software meas-
urement process, e.g., quality model, measurable entity, attribute, informa-
tion need, etc. It is worth noting that no single proposal from the set of
analyzed sources covers all three groups. Moreover, the set of concepts
covered by each source is not homogeneous, even for those sources focus-
ing on the same group. There is a tendency in the sources, however, to
converge around these three topic groups as they evolve over time.

However, once the ontology was created we discovered that it was not
fully aligned with the VIM and with the new harmonization efforts taking
place at ISO. Therefore, it was decided to adapt it in order to make it con-
verge with these efforts, and the ontology presented here was subsequently
created. The resulting software measurement ontology is therefore based
mainly on the ISO VIM and ISO/IEC 15939 standards. It also includes
some terms which are missing from these two documents (e.g., “quality
model”) that we think are essential in software measurement, and presents
some discrepancies with ISO/IEC 15939, e.g., the treatment of indicators.

6.3 A Running Example

To illustrate the ontology, let us use an example based on a real case of
software measurement which uses all of the concepts and terms of the on-
tology. It occurs in the context of a component-based development process
of an industrial application, which needs to select a set of commercial off-
the-shelf (COTS) software components to be integrated into the system.

More precisely, the software architect has decided not to develop a
software component to provide the “print and preview” facilities of the
application, but to obtain it from an external source, i.e., go to a software
component repository (e.g., ComponentSource) and buy or license a
commercial product. There seem to be some candidate components in the
repository that provide similar functionality, from different vendors, and
that could be used. Of course, the software architect wants to select the
“best” component, i.e., the one that best suits the requirements and prefer-
ences. Therefore, he/she needs to evaluate the candidate components, i.e.,
measure them in order to rank them according to such requirements. To

6. An Ontology for Software Measurement 179

simplify the example, let us suppose that the software architect is only in-
terested in evaluating the Usability of the candidate components.

In this example we will also suppose that the organization counts on a
set of analysis tools to facilitate the selection of COTS software. The ma-
jor problem encountered when COTS software is assessed is the lack of
source code. COTS components are developed and licensed by a third
company, so their evaluation must be done without access to their code
and internals. The organization has developed some tools to asses the
component from two standpoints: its documentation (manuals, demos,
marketing information, etc.), and its design. For the first, the organization
uses an analysis tool for manuals in electronic format (as they are com-
monly provided). The software design is assessed by a tool that uses re-
flection techniques to interrogate and evaluate the COTS software. Thus,
the tool can load a Java .jar file and then count the number of classes,
methods, arguments, fields, etc., and also get their names and types.

This is the setting that we will use to illustrate the concepts of the on-
tology presented here.

6.4 The Proposal of Software Measurement Ontology

In this section we present the Software Measurement Ontology (SMO)
proposal which we have developed to facilitate harmonization efforts in
software measurement terminology. This ontology is based on an initial
proposal [4], which had been created to address the lack of consensus on
Spanish software measurement terms, based on the most representative
measurement standards and proposals. Once the Spanish ontology was de-
fined, it was translated into English. Finding the correct translation of each
Spanish term became a rather difficult task and was done by comparing
the different proposals again, and selecting the most appropriate terms in
each case.

6.4.1 The SMO

With our comparison analysis we pursued the following goals: to locate
and identify synonyms, homonyms, gaps and conflicts; to generalize the
different approaches to measuring attributes; and to provide a smooth in-
tegration of the concepts from the three groups, so that measurement proc-
esses can be built using clearly defined measures, while quality models
identify the targets and goals of the measurement processes.

180 Manuel F. Bertoa, Antonio Vallecillo, Félix García

A natural approach to achieving these goals was to use a common soft-
ware measurement ontology, able to identify all concepts, provide precise
definitions for all the terms, and clarify the relationships between them.
Such an ontology also served as the basis for comparing the different stan-
dards and proposals, thus helping to achieve the required harmonization
and convergence process for all of them. Another important requirement
for the SMO was that its terms should try to conform to general terminol-
ogy accepted in other fields, including measurement—which is a quite
mature field with a very rich set of terms.

The SMO was developed with these goals in mind. The main features
and characteristics of the SMO (shown in Fig. 6.1) are the following:

It uses the term “measure" instead of “metric". This issue is one of the
most controversial ones amongst software measurement experts
nowadays. Although the term metric is widely used and accepted by
many practitioners and researchers, this term has many detractors who
argue the following reasons against its use. First, formally speaking a
metric is a function that measures the distance between two entities—
and therefore it is defined with the precise mathematical properties of a
distance. Secondly, the definition of metric provided by both general
and technical dictionaries does not reflect the meaning with which it is
informally used in software measurement. Furthermore, metric is a term
that is not present in the measurement terminology of any other
engineering disciplines, at least with the meaning commonly used in
software measurement. Therefore, the use of the term “software metric”
seem to be imprecise, while the term “software measure” seems to be
more appropriate to represent this concept. As a matter of fact, all new
harmonization efforts at ISO/IEC and IEEE are trying to avoid the use of
the term metric in order to fall into line with the other measurement
disciplines, which normally use the vocabulary defined in metrology. In
our proposal we finally decided to avoid the use of the term metric,
using the term “measure” instead.
It differentiates between “measure”, “measurement” and “measurement
result”. These terms are used with different meanings in the different
proposals (one of the reasons is that “measure” can be used as both a
noun and a verb, and therefore it can be used to name both an action (to
measure) and the result of the action). In our proposal the action is
called “measurement”; the result is called “measurement result”; while
the term “measure” defines the measurement approach that needs to be
used to perform the measurement, and the scale in which the result is
expressed.

6. An Ontology for Software Measurement 181

It distinguishes between base measures, derived measures and
indicators, but considers them all as measures, generalizing their
respective measurement approaches (measurement method,
measurement function and analysis model).
It integrates the software measures with the quality model that defines
the information needs that drive the measurement process.

Software Measures

Measurement

Characterization and Objectives

Measurement Approaches

Measurement Method
(from Measurement Approaches)

Base Measure
(fro m So ftwar e Measur es)

1 .. *

1

1 .. *

1

uses

Measurement Function
(from Measurement Approaches)

0..*

0..*

0..*

0..*

uses

Derived Measure
(from Software Measures)

0..*

0..*

0..*

0..*

calculated with

0..*

0 .. *

0..*

0 .. *

uses

Quality Model

kind
(from C haracteriz atio n and Objectives)

Measurement Result

value
(from Measurement)

Measurement Approach
(from Measurement)

Type of Scale
(from Software Measures)

Entity Class
(from C haracteriz atio n and Objectives)

0..* 0..*0..*

includes

0..*

1

*

1

*

defined for

Measurable Concept
(fro m Characteriz ation and Objectives)

1..* 1..*1..* 1..*

evaluates

0 .. *

0..*

0 .. *

includes
0..*

Measurement

LocationInTime
(fro m Measu rement)

1

1

1

1
produces

1

*

1

*

performs

Unit of Measurement
(from Software Measures)

Scale
(from Software Measures)

1..*

1

1..*

1
belongs to

Attribute
(fro m Characteriz ation and Objectives)

1 1..*1 1..*

has

*

1

*

1

Is performed on

1..*

1..*

1..*

1..*

relates

Information Need
(from Characterization and Objectives)

1

1..*

1

1..*is associated with

Measure
(from Software Measures)

*

1

*

1

uses

0..* 0..*0..*

transform ation

0..* 1..*

0..1

1..*

0..1

expressed in

1.. *

1

1.. *

1

has

0..*1..* 0..*1..* defined for

Indicator
(from Software Measures)

1..*

0..*

1..*

0..*

satisfies

Decision Criteria
(from Measurement Approaches)

Analysis Model
(fro m Measu rement Approaches)

1..*

0..*

1..*

0..*

uses

1..*

1

1..*

1

calculated with

1 ..*

1..*

1 ..*

1..*

uses

Entity
(from C haracteriz atio n and Objectives)

1..*

0..*

1..*

0..*

belongs to

*1 *1

Is performed on

0..*0..*

composed of

Fig. 6.1. The SMO

Figure 6.1 shows the terms of the SMO and their relationships, using the
UML (Unified Modeling Language) notation. As can seen, the SMO has
been organized around four main sub-ontologies: Software Measurement
Characterization and Objectives, to establish the context and goals of
the measurement; Software Measures, to clarify the terminology in-

182 Manuel F. Bertoa, Antonio Vallecillo, Félix García

volved in the measures definition; Measurement Approaches, to describe
the different ways of obtaining the measurement results for the measures;
and Measurement, which includes the concepts related to performing the
measurement process. These four sub-ontologies are closely related to the
three main groups of concepts identified above. Thus, the first sub-
ontology corresponds to the target-and-goals group. The software meas-
ures sub-ontology corresponds to the measures group. The last two sub-
ontologies together cover the measurement process group.

To represent the SMO we have chosen REFSENO (Representation For-
malism for Software Engineering Ontologies) [18]. REFSENO provides
constructs to describe concepts (each concept represents a class of experi-
ence items), their attributes and relationships. Three tables are used to rep-
resent these elements: one with the glossary of concepts, one table of at-
tributes, and one table with the relationships. REFSENO also allows the
description of similarity-based retrievals, and incorporates integrity rules
such as cardinalities and value ranges for attributes, and assertions and
preconditions on the elements’ instances. Several main reasons moved us
to use REFSENO for defining our ontology. First, REFSENO was specifi-
cally designed for software engineering, and allows several representa-
tions for software engineering knowledge whilst other approaches, e.g. [6,
19, 20], only allow representations which are less intuitive for people not
familiar with first-order predicate (or similar) logics. In addition,
REFSENO has a clear terminology, differentiating between conceptual and
context-specific knowledge, and thus enabling the management of knowl-
edge from different contexts. REFSENO also helps the building of consis-
tent ontologies thanks to the use of consistency criteria. Unlike other ap-
proaches, REFSENO uses constructs known from case-based reasoning
(CBR). Finally, REFSENO stores experience in the form of documents,
and not as codified knowledge. This results in an important reduction of
the learning effort required, something typically associated with knowl-
edge-based systems [1].

The SMO was defined following the process suggested by REFSENO.
More precisely, we used the following steps:

1. Define the concept glossary from the knowledge sources mentioned
above.

2. Define the semantic relationships among the concepts by represent-
ing them in the UML notation, and create the relationship class ta-
bles.

3. Analyze the concepts which have some kind of relationship in order
to identify the commonalities among two or more concepts. Then, we
need to decide whether these commonalities are concepts (inserted

6. An Ontology for Software Measurement 183

for modeling reasons) and, if so, to include them in the glossary of
concepts.

4. Identify the terminal attributes of all the concepts and include them in
the UML diagrams. Each time a new attribute type is identified, it
must be included in the table of types.

5. Complete the attributes concept tables by including the non-terminal
attributes.

6. Check the completeness of all the attribute tables.

The REFSENO representation of the SMO is presented in the following
subsections. For simplicity, we describe only the terms and relationships
for each sub-ontology.

6.4.1.1 “Software Measurement Characterization and Objectives”
Subontology

The “Software Measurement Characterization and Objectives” sub-
ontology includes the concepts required to establish the scope and objec-
tives of the software measurement process. The main goal of a software
measurement process is to satisfy certain information needs by identifying
the entities (which belong to entity classes) and the attributes of these enti-
ties (which are the focus of the measurement process). Attributes and in-
formation needs are related through measurable concepts (which belong to
a quality model). Figure 6.2 shows the concepts and relationships of the
sub-ontology “Software Measurement Characterization and Objectives”
expressed in a UML diagram. The terms of this sub-ontology are given in
Table 6.1. The first two columns show the term being described and its
super-concept in the ontology, respectively. The third column contains the
definition of the term in the SMO. The final column shows the source
(standard or proposal) where the term has been adopted from. Possible
values in the fifth column can be:

a reference to a source (e.g., 15939, VIM, 14598), meaning that the term
and its definition have been adopted from that source without any
changes;
“Adapted from (source)”, if the term has been borrowed from a source,
but its definition has been slightly changed for completeness or
consistency reasons;
“Adapted from (source) (other term)”, if the definition of the term has
been borrowed from a source, but that term is known differently in the
source; or

184 Manuel F. Bertoa, Antonio Vallecillo, Félix García

new, if the term has been coined for the SMO, or has a new meaning in
this proposal.

Fig. 6.2. “Software Measurement Characterization and Objectives” Sub-Ontology

Table 6.1. Concepts table of the sub-ontology characterization and objectives

Term Super-
concept

Definition Source

Information
Need

Concept Insight necessary to manage objectives,
goals, risks and problems

15939

Measurable
Concept

Concept Abstract relationship between attributes of
entities and information needs

15939

Entity Concept Object that is to be characterized by measur-
ing its attributes

15939

Entity Class Concept The collection of all entities that satisfy a
given predicate

New

Attribute Concept A measurable physical or abstract property
of an entity that is shared by all the entities
of an entity class

Adapted
from
14598

Quality Model Concept The set of measurable concepts and the rela-
tionships between them which provide the
basis for specifying quality requirements and
evaluating the quality of the entities of a
given entity class

Adapted
from
14598

6. An Ontology for Software Measurement 185

Table 6.2 describes the relationships defined in the sub-ontology.

Table 6.2. Relationships table of the sub-ontology characterization and objectives

Name Concepts Description
Includes Entity Class –Entity

Class
An entity class may include several other en-
tity classes
An entity class may be included in several
other entity classes

Defined for Quality Model–
Entity Class

A quality model is defined for a certain entity
class. An entity class may have several quality
models associated

Evaluates Quality Model–
Measurable Concept

A quality model evaluates one or more meas-
urable concepts. A measurable concept is
evaluated by one or more quality models

Belongs to Entity–Entity Class An entity belongs to one or more entity classes.
An entity class may characterize several enti-
ties

Relates Measurable
Concept–Attribute

A measurable concept relates one or more at-
tributes

Is associated
with

Measurable
Concept–
Information Need

A measurable concept is associated with one
or more information needs. An information
need is related to one measurable concept

Includes Measurable
Concept–
Measurable Concept

A measurable concept may include several
measurable concepts. A measurable concept
may be included in several other measurable
concepts

Composed of Entity–Entity An entity may be composed of several other
entities

Has Entity Class–
Attribute

An entity class has one or more attributes. An
attribute can only belong to one entity class

6.4.1.2 Examples

In our example, the Entity Class is the “COTS components which provide
services of print and preview”, and an Entity is the component “C005 Ele-
gantJ Printer V1.1 developed by Elegant MicroWeb”. We use a Quality
Model which is the one proposed in the norm ISO/IEC 9126 or we can
adapt this generic model to the DSBC context and use our own quality
model (for instance, we could use one specific quality model defined for
software components, such as the COTS-QM quality model [2]).

Quality software is a complex and broad topic so we focus on only one
quality characteristic, the Usability. We will try to assess COTS Usability
measuring three sub-characteristics: Understandability, Learnability and
Operability. Our goal will be to look for indicators for them.

Therefore, our Information Need is “to evaluate the Usability of a set of
‘print and preview’ COTS components that are candidates to be integrated

186 Manuel F. Bertoa, Antonio Vallecillo, Félix García

into a software application, in order to select the best among them”. These
sub-characteristics which we wish to measure are related, to a greater or
lesser degree, to two Measurable Concepts: “Quality of Documentation”
and “Complexity of Design”.

Each measurable concept is related to one or more Attributes, so the
Quality of Documentation is related to the attribute “Manual Size” and the
Complexity of the Design is related to the “Customizability” among other
attributes

6.4.1.3 “Software Measures” Sub-ontology

This sub-ontology aims at establishing and clarifying the key elements in
the definition of a software measure. A measure relates a defined meas-
urement approach and a measurement scale (which belongs to a type of
scale). Most measures may or may not be expressed in a unit of measure-
ment (e.g., nominal measures cannot be expressed in units of measure-
ment), and can be defined for more than one attribute. Three kinds of
measures are distinguished: base measures, derived measures and indica-
tors. Figure 6.3 shows the concepts and relationships of the “Software
Measures” sub-ontology.

Fig. 6.3. “Software Measures” sub-ontology

Tables 6.3 and 6.4 show the terms and relationships of this sub-
ontology, respectively.

6. An Ontology for Software Measurement 187

Table 6.3. Concepts table of the sub-ontology software measures

Term Super-
concept

Definition Source

Measure Concept The defined measurement approach and the
measurement scale. (A measurement approach
is a measurement method, a measurement func-
tion or an analysis model)

Adapted
from
14598
“metric”

Scale Concept A set of values with defined properties 14598
Type of Scale Concept The nature of the relationship between values

on the scale
Unit of Measure-
ment

Concept Particular quantity, defined and adopted by
convention, with which other quantities of the
same kind are compared in order to express
their magnitude relative to that quantity

VIM

Base Measure Measure A measure of an attribute that does not depend
upon any other measure, and whose measure-
ment approach is a measurement method

Adapted
from
14598
“direct
metric”

Derived Measure Measure A measure that is derived from other base or
derived measures, using a measurement func-
tion as measurement approach

Adapted
from 14598
“indirect
metric”

Indicator Measure A measure that is derived from other measures
using an analysis model as measurement ap-
proach

New

Table 6.4. Relationships table of the sub-ontology software measures

Name Concepts Description
Belongs to Scale–Type of Scale Every scale belongs to a type of scale. A type of scale

may characterize several scales
Defined for Measure–Attribute A measure is defined for one or more attributes. An

attribute may have several associated measures
Transformation Measure–Measure Two measures can be related by a transformation

function; the kind of function will depend on the scale
types of the scales

Expressed in Measure–Unit of
Measurement

A measure can be expressed in one unit of measure-
ment (only for measures whose type is interval or ra-
tio). A unit of measurement is used to express one or
more measures of interval or ratio types

Has Measure–Scale Every measure has a scale. A scale may serve to
define more than one measure

6.4.1.4 Examples

Let us define measures to measure each attribute. These measures are
more complex at each step. The first step is to define a set of Base Meas-
ures, then Derived Measures and, if possible, Indicators. Each Measure,
according to its type, has its corresponding Measuring Approach and
Scale.

188 Manuel F. Bertoa, Antonio Vallecillo, Félix García

Thus, a Base Measure could be the “Number of Words of Manuals” (re-
lated to quality of documentation) or the “Number of Public Methods”
provided by the component (related to complexity of design). For the first
measure, its scale is “integers between 0 and + ”, its type of scale is “Ra-
tio” and its units are “Kilo-words”. The scale of the second measure is “in-
tegers between 1 and + ”, its type of scale is “Ratio” and its units are
“Methods”. Other base measures that we need to use to calculate the indi-
cator presented below are “Number of Classes”, “Number of Configurable
Parameters” and “Number of Methods without Arguments”.

We obtain derived measures using one or more base measures. Now,
we want to calculate the Derived Measures “Ratio of Words per Func-
tional Element”. We have designated functional element (FE) to the ag-
gregation of Classes, Methods and Configurable Parameters. Therefore, to
calculate this derived measure we must know and calculate the base meas-
ures “Number of Words of Manuals”, “Number of Classes”, “Number of
Methods” and “Number of Configurable Parameters”. Its Scale is “real
numbers from 0 to + ” and its units are “Kilo-words/FE” with a ratio type
of scale.

We wish to calculate the “percentage of methods without arguments”
which is another example of a Derived Measure. We need to know the
“Number of Methods without Arguments” and the “Number of Methods”.
In this case, the scale is “real numbers between 0 and 1” without units be-
ing a relative value (percentage) and with a “Ratio” type of scale.

Now, we could define an Indicator using some derived (or base) meas-
ures and defining an analysis model. For instance, we want to asseshs the
Understandability inside the proposed quality model. We have an indica-
tor named C_UND whose analysis model uses the ratio of words per FE
(WpFE) and the percentage of methods without arguments (MwoA), by
aggregating these two derived measures. After using its analysis model
(i.e., its aggregation function) to calculate the indicator, the result can be
given as a numerical value (e.g., 1.5) or a category value (e.g., Accept-
able). In this example, the understandability indicator (C_UND) type of
scale is “Ordinal” and it takes the values Acceptable, Marginal or Unac-
ceptable, where Acceptable is better than Marginal and this is better than
Unacceptable.

6.4.1.5 “Measurement Approaches” Sub-ontology

The “Measurement Approaches” sub-ontology introduces the concept of
measurement approach to generalize the different “approaches" used by
the three kinds of measures for obtaining their respective measurement re-
sults. A base measure applies a measurement method. A derived measure

6. An Ontology for Software Measurement 189

uses a measurement function (which rests upon other base and/or derived
measures). Finally, an indicator uses an analysis model (based on a deci-
sion criterion) to obtain a measurement result that satisfies an information
need. Figure 6.4 shows the concepts and relationships of this sub-
ontology, and Tables 6.5 and 6.6 show the terms and relationships of this
sub-ontology.

Fig. 6.4. “Measurement Approaches” sub-ontology

190 Manuel F. Bertoa, Antonio Vallecillo, Félix García

Table 6.5. Concepts table of the sub-ontology measurement approaches

Term Super-
concept

Definition Source

Measurement
Method

Measurement
Approach

Logical sequence of operations, described gen-
erically, used in quantifying an attribute with re-
spect to a specified scale. (A measurement
method is the measurement approach that defines
a base measure)

Adapted
from
ISO
15939

Measurement
Function

Measurement
Approach

An algorithm or calculation performed to com-
bine two or more base or derived measures. (A
measurement function is the measurement ap-
proach that defines a derived measure)

Adapted
from
ISO
15939

Analysis Model Measurement
Approach

Algorithm or calculation combining one or more
measures with associated decision criteria. (An
analysis model is the measurement approach that
defines an indicator)

Adapted
from
ISO
15939

Decision Crite-
ria

Concept Thresholds, targets or patterns used to determine
the need for action or further investigation, or to
describe the level of confidence in a given result

15939

Table 6.6. Relationships table of the sub-ontology measurement approaches

Name Concepts Description
Uses Base Measure–

Measurement
Method

Every base measure uses one measurement method
Every measurement method defines one or more base
measures

Calculated With Indicator–Analysis
Model

Every indicator is calculated with one analysis
model.
Every analysis model may define one or more indica-
tors

Calculated With Derived Measure–
Measurement Func-
tion

Every derived measure is calculated with one meas-
urement function. Every measurement function may
define one or more derived measures

Satisfies Indicator–
Information Need

An indicator may satisfy several information needs.
Every information need is satisfied by one or more
indicators

Uses Measurement Func-
tion–Base Measure

A measurement function may use several base meas-
ures. A base measure may be used in several meas-
urement functions

Uses Measurement Func-
tion–Derived Meas-
ure

A measurement function may use several derived
measures. A derived measure may be used in several
measurement functions

Uses Analysis Model–
Measure

An analysis model uses one or more measures. A
measure may be used in several analysis models

Uses Analysis Model–
Decision Criteria

An analysis model uses one or more decision criteria.
Every decision criterion is used in one or more analy-
sis models

6.4.1.6 Examples

Let us look at some examples of measurement approaches for the meas-
ures proposed in previous sections. We have base measures, derived

6. An Ontology for Software Measurement 191

measures and indicators. All of them have their own measurement ap-
proach but, depending on the type of measure, they have a measurement
method, measurement function or analysis model, respectively.

“Number of Words of Manuals” is a base measure and, therefore, its
measurement approach is a Measurement Method. In this case, it is com-
posed of the following steps:

1. Run the software application for automatic evaluation of electronic
manuals.

2. Load the executable component files (e.g., C005.jar).
3. Load the files of the component manuals

a. If it is a HTML manual, indicating the path of the index file
(index.htm).

b. If it is a “.chm” file, selecting the file or files which com-
pose the manual.

4. Select the function which counts words from the manual (e.g., se-
lect the “manual” drop-down flap and click on the “manual info”
button).

5. Finally, read the obtained result from the screen or save it in a text
file for later use.

The rest of the base measures have a similar measurement method de-
scribing the steps for calculating them using other options or different
software tools if available.

The derived measure “Ratio of words per FE (WpFE)” has a measure-
ment approach which is a Measurement Function. This Measurement
Function uses some (previously calculated) base measure and its formula
is the following:

nfigParamNumberOfCothodsNumberOfMeassesNumberOfCl
rdsNumberOfWo 1000

The other derived measure “Percentage of Methods without Arguments
(MwoA)” has the following Measurement Function:

100*
thodsNumberOfMe

sutArgumentthodsWithoNumberOfMe

We use these two derived measures to evaluate the understandability
indicator C_UND. We have a small Analysis Model that gives us a nu-
merical value using a formula. Using this numerical value, we have Deci-

192 Manuel F. Bertoa, Antonio Vallecillo, Félix García

sion Criteria to obtain a final result. Therefore, its Analysis Model in-
cludes the following formula:

6.14.12.0_ MwoAWpFEUNDC

Subsequently, we analyze the resulting values using the following Deci-
sion Criteria:

If 2.1_UNDC then the component is ACCEPTABLE;
 If 8.0_UNDC then the component is UNACCEPTABLE;
 Otherwise, the component is MARGINAL

6.4.1.7 Sub-ontology “Measurement”

This sub-ontology establishes the terminology related to the act of measur-
ing software. A measurement (which is an action) is a set of operations
having the object of determining the value of a measurement result, for a
given attribute of an entity, using a measurement approach. Measurement
results are obtained as the result of performing measurements (actions).
Figure 6.5 shows the concepts and relationships of the sub-ontology.

Tables 6.7 and 6.8 show the terms and relationships of this sub-
ontology.

Fig. 6.5. “Measurement” sub-ontology

6. An Ontology for Software Measurement 193

Table 6.7. Concepts table of the sub-ontology measurement

Term Super-
concept.

Definition Source

Measurement
Approach

Concept Sequence of operations aimed at determining
the value of a measurement result. (A meas-
urement approach is a measurement method, a
measurement function or an analysis model)

New

Measurement Concept A set of operations having the object of deter-
mining the value of a measurement result, for a
given attribute of an entity, using a measure-
ment approach

Adapted
from VIM

Measurement Re-
sult

Concept The number or category assigned to an attrib-
ute of an entity by making a measurement

Adapted
from
ISO 14598
“Measure”

Table 6.8. Relationships table of the sub-ontology measurement

Name Concepts Description
Performs Measurement–

Measurement Ap-
proach

A measurement is the action of performing a meas-
urement approach (the kind of measurement approach
will be dictated by the kind of measure used for per-
forming the measurement). A measurement approach
may be used for performing several measurements

Produces Measurement–
Measurement Result

Every measurement produces one measurement result.
Every measurement result is the result of one measure-
ment

Is Performed
on

Measurement–
Attribute

Every measurement is performed on one attribute of an
entity (the attribute should be defined for the entity
class of the entity)

Is Performed
on

Measurement–Entity Every measurement is performed on an entity, through
one of its attributes (the attribute should be defined for
the entity class of the entity)

Uses Measurement–
Measure

Every measurement uses one measure. One measure
may be used in several measurements

6.4.1.8 Examples

A Measurement of the component understandability incorporates all the
operations mentioned in previous points, using software tools and calculat-
ing base and derived measures and indicators. In the end, we obtain as a
Measurement Result that the understandability of the component is “Ac-
ceptable” since its C_UND value is 1.5. Another Measurement for the
component C012 could give us “Unacceptable” as a measurement result
because C_UND has a value of 0.6.

Examples of Measurement Results are the following: “135,423 words”,
“243 methods”, “34 classes”, “22 Configurable Parameters”, “0.41 kilo-
words/FE”, “73%”, or “Acceptable”.

194 Manuel F. Bertoa, Antonio Vallecillo, Félix García

6.5 Conclusions

In the current (and not mature enough) software measurement field, the
lack of a common terminology and inconsistencies between the different
standards may seriously jeopardize the usefulness and potential benefits of
these standardization efforts. Measurement terms have often been defined
in unique and inconsistent ways from organization to organization. This
has led to confusion and difficulty in widespread measurement implemen-
tation. In many cases, decision makers were unsure of what the measure-
ment results actually represented [14].

In this chapter, a software measurement ontology has been presented,
which aims to contribute to the harmonization of the different software
measurement proposals and standards, by providing a coherent set of
common concepts used in software measurement. The ontology is aligned
with the most representative standards and proposals in the references and
also with the metrology vocabulary used in other more mature measure-
ment engineering disciplines. The common vocabulary provided by this
common ontology has been used to resolve the problems of completeness
and consistency identified in several international standards and research
proposals and the ontology has been used as the basis for a comparative
analysis of the terminology related to measurement [5].

The definition of the measurement terms to an adequate level of detail
provides everyone with a common understanding of what is being meas-
ured, and how this relates to the measurement goals or information needs.
Most of the problems in collecting data on a measurement process are
mainly due to a poor definition of the software measures being applied.
Therefore, it is important not only to gather the values pertaining to the
measurement process, but also to appropriately represent the metadata as-
sociated to this data [16]. In this sense, the ontology provides the compa-
nies with the necessary conceptual basis for carrying out the measurement
process and storing their results in an integrated and consistent way based
on a rigorously defined set of measurement concepts and their relation-
ships. Based on the ontology, companies can develop metamodels and
languages to define their models for process and product measurement in a
homogeneous and consistent way which can facilitate the integration and
communication of their measurement process-related data and metadata.
Consequently, a consistent software measurement terminology may also
provide an important communication vehicle to companies when inter-
operating with others.

On the other hand, the proposed ontology can serve as a basis for dis-
cussion from where the software measurement community can start pav-

6. An Ontology for Software Measurement 195

ing the way to future agreements. Without these agreements, all the stan-
dardization and research efforts may be wasted, and the potential benefits
that they may bring to all users (software developers, ICT suppliers, tools
vendors, etc.) may never materialize.

As a result, this proposal tries to address the needs of two main audi-
ences: first, software measurement practitioners, who may be confused by
the terminology differences and conflicts in the existing standards and
proposals; and, second, software measurement researchers and standards
developers (e.g., international standardization bodies and committees),
who do not currently have at their disposal a cohesive core set of concepts
and terms over which their existing standards could be integrated, or new
ones built.

Our future plans include the extension of the ontology to account for
most of the concepts in the forthcoming version of the VIM, in order to
provide a complete ontology for software measurement, and fully aligned
with the VIM beyond the core concepts contemplated in this proposal.

References

1. Althoff, K., Birk, A., Hartkopf, S. and Müller, W. (1999). Managing software
engineering experience for comprehensive reuse. In Procedings of ICSE’99,
Kaiserslautern, Germany,

2. Bertoa, M.F. and Vallecillo, A.(2002). Quality Attributes for COTS Compo-
nents. I+D Computación, 1(2):128–144.

3. Briand, L., Morasca, S. and Basili, V. (2002). An operational process for
goal-driven definition of measures. IEEE Transactions on Software Engineer-
ing, 28(12):1106–1125.

4. García, F., Ruiz, F., Bertoa, M., Calero, C., Genero, M., Olsina, L.A., Martín,
M.A., Quer, C., Condori, N., Abrahao, S., Vallecillo, A. and Piattini M.
(2004). An ontology for software measurement. Technical Report UCLM
DIAB-04-02-2, Computer Science Department, University of Castilla-La
Mancha, Spain, (in Spanish)

 http://www.info-ab.uclm.es/descargas/thecnicalreports/DIAB-04-02-
2/UCLMDIAB-04-02-2.pdf

5. García, F., Bertoa, M., Calero, C., Vallecillo, A., Ruiz, F., Piattini, M. and
Genero, M. (2006). Towards a consistent terminology for software measure-
ment. Information and Software Technology, 48(8),. Elsevier 631–644.

6. Gómez-Pérez, A. (1998). Knowledge Sharing and Reuse. CRC Press, Boca
Raton, FL.

7. IEEE (1990). STD 610.12-1990. Standard Glossary of Software Engineering
Terminology.

 http://standars.ieee.org/reading/ieee/std_public/description/se/610.12-
1990_desc.html

196 Manuel F. Bertoa, Antonio Vallecillo, Félix García

8. IEEE (1998). IEEE Std 1061-1998 IEEE Standard for a Software Quality
Metrics Methodology – Description.

 http://standards.ieee.org/reading/ieee/std_public/description/se/1061-
1998_desc.html

9. ISO/IEC (1999). ISO 14598: 1999-2001. Information Technology – Software
Product Evaluation – Parts 1–6.

10. ISO/IEC (2002). ISO 15939: Software Engineering – Software Measurement
Process.

11. ISO/IEC (2004a). ISO/IEC 15504-1:2003, Information technology – Process
assessment – Part 1: Concepts and vocabulary.

12. ISO/IEC (2004b). ISO/IEC 90003, Software and Systems Engineering –
Guidelines for the Application of ISO/IEC 9001:2000 to Computer Software.

13. ISO (1993). International Vocabulary of Basic and General Terms in Metrol-
ogy (ISO VIM). International Organization for Standardization, Geneva,
Switzerland, 2nd edition.

14. Jones, C. (2003). Making Measurement Work. CROSSTALK The Journal of
Defense Software Engineering, pp. 15-19.

15. Kim, H. (1999). Representing and Reasoning about Quality using Enterprise
Models. PhD thesis, Dept. Mechanical and Industrial Engineering, University
of Toronto, Canada.

16. Kitchenham, B., Hughes, R. and Linkman, S. (2001). Modeling software
measurement data. IEEE Transactions on Software Engineering, 27(9):788–
804.

17. McGarry, J., Card, D., Jones, C., Layman, B., Clark, E., Dean, J. and Hall, F.
(2002). Practical Software Measurement. Objective Information for Decision
Makers. Addison-Wesley, Reading, MA.

18. Tautz, C. and Von Wangenheim, C. (1998). REFSENO: A representation
formalism for software engineering ontologies. Technical Report No.
015.98/E, version 1.1, Fraunhofer IESE, October.

19. Staab, S., Schnurr, H. and Sure, Y. (2001). Knowledge processes and ontolo-
gies. IEEE Intelligent Systems, 16(1):26–34.

20. Uschold, M. and Gruninger, M. (1996). Ontologies: Principles, methods, and
applications. The Knowledge Engineering Review, 11(2):93–196.

