
2. Using Ontologies in Software Engineering and
Technology

Francisco Ruiz

ALARCOS Research Group. Dept. of Information Technologies and Sys-
tems, Escuela Superior de Informática, University of Castilla-La Mancha,
Spain,
francisco.ruizg@uclm.es

José R. Hilera

Computer Science Department, University of Alcalá, Spain,
jose.hilera@uah.es

2.1 Introduction

In this chapter, the state of the art on the use of ontologies in software en-
gineering and technology (SET) is presented. The chapter is organized into
four parts. In the second and third sections, serving as a supplement to
Chap. 1,29 a wide review of the distinct kinds of ontologies and their pro-
posed uses is presented respectively. In the fourth section, we offer a tax-
onomy for classifying ontologies in SET, in which two main categories are
distinguished: (1) SET domain ontologies, created to represent and com-
municate agreed knowledge within some subdomain of SET, and (2) on-
tologies as software artifacts, with proposals in which ontologies play the
role of an additional type of artifact in software processes. On the one
hand, the former category is subdivided into those ontologies included in
software engineering and those referring to other software technologies.

29 Readers can find a more detailed study on the ontology notion in the books

“Ontological Engineering” by Gómez-Pérez et al. [38] and “Ontologies: A Sil-
ver Bullet for Knowledge Management and Electronic Commerce” by Fensel
[30].

50 Francisco Ruiz, José R. Hilera

On the other hand, the latter category is subdivided into development time
and run time proposals according to the moment when ontologies are used.
Then, in the last section, we analyze and classify (based on our taxonomy)
a large number of recently published works. We also comment on and
classify works which will be presented in later chapters of this book.

2.2 Kinds of Ontologies

Although the term “ontology” was introduced in the eighteenth century to
refer to the general science of being (“onto” in ancient Greek), Ontology
as a discipline has been practiced by philosophers since the dawn of his-
tory (previously a part of metaphysics). Etymologists may define ontol-
ogy as the knowledge of beings, that is, all that relates to being. Just as we
call those who study “students”, we use the term “entity” to describe all
things which “are”. From this point of view, stones, animals or people are
“entities”. Mathematical objects, even those that are merely imagined, are
also considered beings (be they fictitious or unreal).

All sciences and knowledges refer to or examine a type of entity: some
are physical, as in the physical sciences, others abstract or mental, as in
mathematics and the vast majority of the computational sciences, and still
others living, as in biology.

In the scope of the computational sciences and technologies (computer
science, software engineering, information systems, etc.), ontology has
boomed as a field of research and application since the latter part of the
twentieth century. Perhaps the principal cause of this boom has been the key
role that it plays in the new generation of the advanced Web (Semantic
Web).

Focusing exclusively on the scope of this publication, that is, SET, the first
known proposals were presented by Gruber [40, 41], whereby ontologies are
“an explicit specification of a conceptualization”. Conceptualization is un-
derstood to be an abstract and simplified version of the world to be repre-
sented: a representation of knowledge based on objects, concepts and enti-
ties existing within the studied area, as well as the relationships existing
among them. By “explicit” we mean that the concepts used and the restric-
tions applied to them are clearly defined. Later authors have considered it
important to add to this definition two new requirements: that the said speci-
fication be (1) formalized and (2) shared. By “formalized” it is meant that a
machine can process it. By “shared” it is understood that the knowledge ac-
quired is the consensus of a community of experts [38]. In regards to this last
requirement, common ontologies are used to describe ontological commit-

2. Using Ontologies in Software Engineering and Technology 51

ments for a set of agents (people or artificial systems) so that they can com-
municate and interact with a domain of discourse. Additionally, an agent
commits to an ontology if its observable actions are consistent with the defi-
nitions of the ontology. This idea of ontological commitments was proposed
by Newell [68] from a knowledge-level point of view.

Some SET researchers view ontologies as “a vocabulary” for a specific
domain representing conceptual elements and the relationships existing be-
tween them. However, the ontology is not the vocabulary itself, but what the
vocabulary represents, since the translation of this vocabulary into another
language will not change the ontology [16].

Other researchers defend the need for ontologies to be viewed as a “the-
ory”, that is, a formal vocabulary with a set of defining axioms. These axi-
oms express new relationships between concepts and limit the possible inter-
pretations [75, 98]. However, many experts have concluded that ontologies
of the software systems application domain, or of its design and construction
processes, are of great assistance in avoiding problems and errors at all stages
of the software product life cycle: from the initial requirements analysis (fa-
cilitating the analyst–client interaction), through the development and con-
struction phase, and finaly with the maintenance stage (assuring greater un-
derstanding of the modification requests, better understanding of the
maintained system, etc.).

Additionally, numerous authors have viewed ontologies from distinct van-
tage points. Therefore it is not surprising that in the literature we find diverse
classifications of ontologies with different focuses.

According to the generality level, Guarino considers that the following on-
tology types exist [43]:

High–level ontologies: Describe general concepts such as space, time,
material, object. They are independent of a specific domain or problem.
Their purpose is to unify criteria between large communities of users.
Domain ontologies: Describe the vocabulary related to a generic
domain (for example, information systems or medicine), by means of
the specialization of the introduced concepts of high–level ontologies.
Task ontologies: Describe the vocabulary related to a generic task or
activity (for example, development or sales), by means of specialization
of the introduced concepts of high–level ontologies.
Application ontologies: Describe concepts belonging simultaneously to
a domain and a task, by means of specialization of the concepts of
domain ontologies and task ontologies. They generally correspond to
roles played by the domain entities when executing an activity.

52 Francisco Ruiz, José R. Hilera

On the other hand, Fensel [30] established the following alternative classi-
fication:

Generic or common-sense ontologies: Capture general knowledge of
the world. They provide basic notions and concepts for space, time,
state, events, etc, and are valid for a variety of domains.
Representational ontologies: Do not belong to any particular domain.
They offer entities without establishing what they might represent.
Therefore, they define concepts which express knowledge in an object-
or framework- oriented approach.
Domain ontologies: Capture the knowledge valid for a particular type of
domain (for example, electronics, medicine, etc.).
Method and task ontologies: The former offer terminology specific to
problem resolution methods, while the latter provide terms for specific
tasks. Both offer a reasonable point of view as to the knowledge of the
domain.

In our opinion, the two previous authors’ classifications may be aligned
according to the following model as shown in Fig. 2.1.

Fig. 2.1. Kinds of ontologies according to the generality level

In accordance with the type of conceptualization structure, Van Heijst and
colleagues established the following kinds [94]:

Terminological ontologies: Specify terms to be used to represent the
knowledge of a studied domain. Then try to obtain a unified language

2. Using Ontologies in Software Engineering and Technology 53

related to a specified field. An example of this type would be the
ULMS (Universal Medical Language System).
Information ontologies: Specify the structure of database records,
determining a framework for the standardized storage of information.
An example is the framework for modeling medical patient clinic
records.
Knowledge representation ontologies: Specify knowledge concep-
tualizations with an internal structure that exceeds those of the previous
ones. They tend to be focused on a description of a particular
knowledge use.

Another possible way of classifying ontologies is according to the nature
of the real-world issue that is to be modeled. In this manner, Jurisica et al.
have identified the following classes [55]:

Static ontologies: Describe things that exist, their attributes and the
relationships existing between them. This classification assumes that the
world is made up of entities which are gifted with a unique and
unchangeable identity. In these, we use terms such as entity, attribute,
or relationship.
Dynamic ontologies: Describe the aspects of the modeled world which
can change with time. To model these it may be necessary to use finite
state machines, Petri nets, etc. Process, state, or state transition are
examples of terminology commonly included in this category.
Intentional ontologies: Describe the aspects of the world of motivations,
intentions, goals, beliefs, alternatives and elections of the involved
agents. Some typical terms in these types of ontologies are aspect,
object, agent, or support.
Social ontologies: Describe social aspects such as organizational
structures, nets or interdependences. For this reason they include terms
such as actor, position, role, authority, responsibility or commitment.

Some authors believe that this linear way of classifying ontologies based
on only a sole criterion does not allow for adequate reflection of the prob-
lem’s complexity. Along these lines, Gómez-Pérez et al. [38] suggest a bi-
dimensional classification, taking into account two criteria: the richness of
the internal structure, and the subject of the conceptualization. The former
criterion is based on a proposal of Lassila and McGuinness [59]. The latter
proposes an extension of the Van Heijst et al. [94] classification previously
described.

54 Francisco Ruiz, José R. Hilera

In this bi-dimensional proposal, every ontology belongs to one of the fol-
lowing categories, based on the level of richness of its internal structure:

Controlled vocabularies: Formed by a finite list of terms.
Glossaries: Lists of terms with their definitions offered in natural
language.
Thesauruses: Differentiated from the previous categories in that they
offer semantic additions to the terms, including synonyms.
Informal hierarchies: Hierarchies of terms which do not correspond to a
strict subclass. For example, the terms “rental vehicle” and “hotel”
could be modeled informally under the hierarchy “travel” as they are
considered key parts of traveling.
Formal hierarchies: In this case, a strict “is-a” relationship exists
between instances of a class and of its corresponding superclass. For
example, a teacher “is-a” people. Its objective is to exploit the
inheritance concept.
Frames: Ontologies which include such classes as properties, which can
be inherited by other classes in lower levels of a formal “is-a”
taxonomy.
Ontologies with value constraints: Include value constraints. The most
typical case is that of constraints dependent on the data type of a
property (for example, a day of the month must be lower than 32).
Ontologies with generic logical constraints: These are the most
expressive ontologies which permit specific constraints between the
terms of the ontology using first-order logic.

Simultaneously, depending on the subject of the conceptualization, an on-
tology falls into one of the following types:

Knowledge representation ontologies: Capture representation primitives
used to formalize knowledge under a concrete paradigm of knowledge
representation.
Common or generic ontologies: Represent common-sense knowledge
reusable in distinct domains, for example, vocabulary related to things,
events, time, space, etc.
High-level ontologies: Describe very general concepts and notions by
which they can be related to root terms of all ontologies. An unresolved
problem is that many of these high-level ontologies differ in their way
of classifying general concepts. This makes it difficult to integrate and
exchange ontologies.

2. Using Ontologies in Software Engineering and Technology 55

Domain ontologies: Reusable ontologies of a particular domain (for
example, medicine, engineering, etc.). They offer a vocabulary for
concepts related to the domain and its relationships.
Task ontologies: Describe the vocabulary related to some generic
activity. They provide a systematic vocabulary of terms used to solve
problems that may or may not belong to the same domain.
Domain task ontologies: Unlike the previous ontologies, these are
reusable in a given domain, but not among different domains.
Method ontologies: Provide definitions of relevant concepts and their
relationships. They are applicable to a reasoning process specifically
designed to carry out a particular task.
Application ontologies: Are dependent on the applications. Often, they
extend and specialize the vocabulary of one domain ontology or task
ontology for a particular application.

In the bibliography of ontologies, the adjectives formal, informal and
semi-formal are also used. In this case, the formality of the language used to
represent the ontologies is being indicated. This way, the ontologies ex-
pressed using natural language are considered to be totally informal, whereas
those represented using first-order logic are formal [92]. In an intermediate
situation, there is the ontology represented using UML class diagrams, as
UML is considered semi-formal. In this case, the level of formality may be
raised using OCL to model constraints. In relation to languages and tech-
niques used to represent ontologies, SET experts may be interested in reading
“Modeling ontologies with software engineering techniques” and “Modeling
ontologies with database techniques”, both of which are sections included in
the first chapter of the book by Gómez-Pérez et al. [38].

These numerous and varying ways of thinking about ontologies have been
clarified by some researchers who have looked for an integral definition
which would serve for the different fields of application (knowledge engi-
neering, databases, software engineering, etc.), and so as to be understood by
non-experts. In this manner, Uschold and Jasper elaborated the following
characterization (not definition) [92]:

An ontology may take a variety of forms, but necessarily it
will include a vocabulary of terms, and some specification of
their meaning. This includes definitions and an indication of
how concepts are interrelated which collectively impose a
structure on the domain and constrain the possible interpre-
tations of terms.

56 Francisco Ruiz, José R. Hilera

With the same goal, Gómez-Pérez et al. [38] conclude that “ontologies
aim to capture consensual knowledge in a generic way, and that they may be
reused and shared across software applications and by groups of people”.

2.2.1 Heavyweight Versus Lightweight Ontologies

In the ontological engineering community it is common to hear of light-
and heavyweight ontologies. This distinction is a simplification of the
classification based on the level of richness of their internal structure (as
previously commented), whereby lightweight ontologies will be princi-
pally taxonomies, while heavyweight ontologies are those which model a
certain knowledge “in a deeper way and provide more restrictions on do-
main semantics” [38]. The former include concepts, concept taxonomies,
relationships between concepts, and properties that describe these con-
cepts. The latter add axioms and constraints, in order to clarify the mean-
ing of the terms.

In Fig. 2.2 we have represented linearly the continuum from lightweight to
heavyweight ontologies. In the upper part of the line, we find the lightweight
ontologies which include controlled vocabularies, glossaries, and thesau-
ruses; while at the bottom we find the heavyweight ontologies with value
constraints and general logic constraints. In between are the informal hierar-
chies, formal hierarchies and frames. These intermediates have some of the
characteristics of the heavyweight ontologies but not all authors consider
them to fall within this general category.

Fig. 2.2. A continuum from lightweight to heavyweight ontologies

2. Using Ontologies in Software Engineering and Technology 57

This continuum from lightweight to heavyweight can be viewed as the
two arms of a balance. The first has the advantage of being simple and the
second, of being powerful. It is not possible to possess both advantages at the
same time, and there is no way of determining which is better than the other,
lightweight or heavyweight. It all depends on one’s goals and necessities
based on the particular case at hand. For example, the lightweight ontologies
are more useful when the objective is, simply, to share knowledge of one
domain between people. On the other hand, if it is necessary to execute some
sort of logical inference or automatic calculation, it will be necessary to util-
ize the heavyweight ontologies. In any case, the following advice might
serve the SET stakeholders: “use the lightest ontologies possible which can
serve the necessities of the project at hand”.

2.3 A Review of the Uses in SET

Of the utilities of ontologies in any field of human activity, we recognize
the following to be principal:

Clarify the knowledge structure: During the ontological analysis the
domain concepts and relationships between them are defined in such a
way that the adequate execution of this step eases the clear specification
of the nature of the concepts and terms being used, with respect to the
body of knowledge that is to be constructed [15].
Reduce conceptual and terminological ambiguity: Ontological analysis
provides a framework for the unification between people (and/or
agents-systems) with differing necessities and/or points of view,
depending on their particular context [91].
Allow the sharing of knowledge: By means of an appropriate
ontological analysis, it is possible to achieve a set of conceptualizations
of a specific domain, and the set of terms which support it. With an
adequate syntax, these conceptualizations and the relationships between
them are expressed and codified in an ontology, which can be shared
with any agent (person or system) having similar needs for the same
domain [59].
Focusing exclusively on the scope of this book, many authors have studied

and categorized the possible uses of ontologies in the software engineering
and information systems disciplines. In these fields, it is possible to use on-
tologies of varying levels of generality. For example, the domain-level on-
tologies are especially useful for the development of reusable, high-quality
software, as they provide a unambiguous terminology which can be shared

58 Francisco Ruiz, José R. Hilera

by all the development processes. Furthermore, thanks to ontologies, the elic-
iting and modeling of the requirements phase can be carried out in two steps
[35]: in the first, general knowledge of the domain is elicited and specified in
one or more ontologies. In the second step the obtained ontologies are used
as inputs to develop the specified applications. The constructed ontology
also serves as the basic vocabulary to speak about the domain and is a base
for the development of the specific conceptualizations for the applications
that are to be constructed.

Next we will summarize the results of some of the best known surveys.
For Pisanelli et al. the most important characteristics that ontologies offer

the field of software engineering are [75]:

1) an explicit semantic and taxonomy;
2) a clear link between concepts, their relationships, and generic

theories;
3) lack of polysemy within a formal context;
4) context modularization;
5) minimal axiomatization to pinpoint differences between similar

concepts;
6) a good politic of name choice; and
7) a rich documentation.

Uschold, Gruninger and Jasper identified the following functions [91, 92]:

Communication: Ontologies allow for the reduction of conceptual and
terminological ambiguity, as they provide us with a framework for unifica-
tion. They allow us to share knowledge and facilitate the communication be-
tween people and/or systems as even those having differing necessities and
viewpoints, a function of their contexts and particular interests. Furthermore,
in any organization, there is implicit knowledge (for example, the normative
models and the network of relationships between people) that can be made
explicit through ontological means. Ontologies also permit an increased con-
sistency, eliminating ambiguity and integrating distinct user viewpoints. For
person-to-person communication, an informal, unambiguous ontology may
be sufficient.

Interoperability: When different users or systems need to exchange data or
when different software tools are used, the concept of interoperability has
some important repercussions. In this sense, the ontologies can act as an “in-
terlingua”, that is, they can be used to support the translation between differ-
ent languages and representations, as it is more efficient to have a translator
for each part involved (with an exchange ontology) than to design a transla-

2. Using Ontologies in Software Engineering and Technology 59

tor for each pair of involved parts (languages or representations). A paradigm
case would be the use of ontologies in the Semantic Web to look for irrele-
vant language factors, that is, to obtain the same results when using the term
“author” or “autor” (in Spanish).

System/software engineering: The application of ontologies to support the
design and development of systems, specifically software, may have the fol-
lowing objectives:

Specification: The role that ontologies play in specification depends on
the level of formality and automization within the methodology of the
system design. From an informal perspective, ontologies assist in the
requirements identification process and in the understanding of the
relationships between components. This is particularly important when
there are different sets of designers working in different domains. From
a formal perspective, an ontology offers a declarative specification of a
system, allowing designers to argue over “why” the system is being
designed instead of “how” to support its functionality.
Confidence: The informal ontologies can improve the confidence of the
system by serving as a basis for the manual checking of the design,
while the formal ontologies allow for the semi-automized consistency
check of a software system with respect to the declarative specification
that the ontology presumes.
Reusability: To increase its usefulness, an ontology should be able to
support the import and export of modules (parts of the ontology). By
characterizing the domain classes and tasks within these subdomains,
the ontologies can provide a framework to determine the aspects of the
ontology that can be reused between different domains and tasks. The
objective is, therefore, to achieve libraries of ontologies that are
reusable and adaptable to different classes of problems and
environments.
Search: An ontology can be used as metadata, serving as an index for a
repository of information.
Reliability: The consistency checking may be (semi-)automatic if a
formal representation of knowledge exists.
Maintenance: One of the main efforts made during the software
system’s maintenance phase is the studying of the system. For this
reason, using ontologies allows an improvement of the documentation
and a reduction in maintenance costs. Maintenance effort is also
reduced if an ontology is used as a neutral authoring language because

60 Francisco Ruiz, José R. Hilera

it only has to be maintained in one site instead of in multiple places, one
for each target language.
Knowledge acquisition: In the process of building knowledge-based
systems, speed and reliability may be increased when an existing
ontology is used as the starting point and guide for the knowledge
acquisition.

Several years after its publication, a study was re-performed by Gruninger
and Lee. Greatly abbreviating, the results were the following [42]:

Communication:
Between computer systems, for example, in the exchange of data be-
tween distinct software tools.
Between humans, for example, for the acquisition of a vocabulary that
unifies concepts of a specific domain.
Between humans and computer systems, for example, an ontology may
be deployed in a window so that the user can use it to better and more
easily understand the vocabulary used in the application.
Computational inference:
For the internal representation and management of plans and planning
information.
For analysis of internal structures, algorithms, system inputs and out-
puts, in conceptual and theoretic terms.
Knowledge reuse and organization:
For the structuring and organization of libraries or repositories of plans,
and planning and domain information.

In addition to these previous possible uses of ontologies, Uschold and Jas-
per [92] have described scenarios for applying ontologies. These scenarios
are abstractions of specific applications of ontologies following the same
idea of Jacobson’s use cases. Each scenario includes an overview with the
intended purpose of the ontology, the role of the ontology, the main actors
and the supporting technologies. These authors have established four catego-
ries which include all of the identified scenarios:

Neutral authoring: An information artifact is authored in a single
language and is converted into a different form for use in multiple target
systems. Knowledge reuse, improved maintainability and long-term
knowledge retention are the main benefits of this scenario.
Specification: An ontology is created and/or used as a basis for
specification and possibly also for the development of some software.

2. Using Ontologies in Software Engineering and Technology 61

Benefits of this scenario include documentation, maintenance,
reliability and knowledge reuse.
Common access to information: When information is required by one or
more persons or systems, but is expressed using unfamiliar vocabulary
or in an inaccessible format, an ontology can help to render the
information intelligible by providing a shared understanding of the
terms, or by mapping between sets of terms. Interoperability and more
effective use and reuse of knowledge resources are the main benefits of
this scenario.
Search: An ontology is used for searching an information repository for
desired resources (for example, documents, Web pages, names of
experts). The chief benefit of this scenario is faster access to needed
information resources. The technology of the Semantic Web has this
same goal, using the entire Web as a repository. Because of this,
ontologies play a key role in this new technology.

Other authors have studied the impact of ontologies on information sys-
tems (ISs). For example, Guarino identified two dimensions that should be
considered [43]:

a temporal dimension, concerning whether an ontology is used at
development or at run time (that is “for” an information system or
“within” an information system), and
a structural dimension, concerning the particular way an ontology can
affect the main IS components.

With respect to the moment in which they are utilized, the use of the on-
tologies can take place during the development stage or during run time. On
the one hand, when the ontology is used by the IS at run time, it is referred to
as an “ontology-driven information system” proper. On the other hand, when
it is used during development time, it is referred to as an “ontology-driven
development of the information system”.

By using ontologies at development time, two situations might occur: (1)
that we have a set of reusable ontologies organized in libraries of domain or
task ontologies; or (2) that we have a generic ontology (with less detailed dis-
tinctions at a domain level between the basic entities, and meta-level distinc-
tions as for class and relationships types), with a more limited reusability
grade. In the first case, the semantic content of the ontologies can be con-
verted into a system component, reducing the cost of analysis and assuring
the ontological system correctness (given that the ontology is correct). In the
second scenario, which is more realistic, the quantity of ontological knowl-

62 Francisco Ruiz, José R. Hilera

edge available is more limited, but its quality may assist the designer in the
conceptual analysis task.

When using an ontology at run time, one must distinguish between an
“ontology-aware information system” and an “ontology-driven information
system”. In the first case, a system component has knowledge of the exis-
tence of a potential ontology and may make use of it with a specific proposal,
while in the second case, the ontology is an additional component (generally,
local to the system) which cooperates at run time in order to achieve the sys-
tem’s goals and functionality. One reason why ontologies are used at run
time is to ease the communication between software agents, which commu-
nicate by means of messages containing expressions elaborated in accor-
dance with the ontology.

With respect to the structural dimension, the three principal component
types analyzed by Guarino for their impact are [43]:

Components of database: To use an ontology at development time for
the database component seems to be the most obvious use, because, in
practice, an ontology has a great likeness to a database schema. In fact,
some authors have created proposals whereby the ontologies play a key
role during the phases of analysis and conceptual modeling [94]. The
resulting conceptual model can be represented in a format understood
by a computer and from there be projected to a concrete platform.
During run time, there are various ways in which ontologies and
databases can work together. For example, the explicit ontologies’
availability as an information resource is basic in the mediation-based
focus of information integration.
Components of user interface: In this type, the ontologies have been
used successfully in order to generate interfaces based on forms that
perform data control by means of type violation constraints. Another
example of use, in this case during run time, consists of deploying an
ontology in a help window so that the user may use it as part of the
system, for example, to understand the given vocabulary.
Components of application program: The application programs tend to
have much implicit knowledge about the domain, for example, in the
type or class declarations, in regards to business rules or policies, etc.
At development time, it is possible to generate the static part of a
program with the help of an ontology. Further, ontologies which are
integrated with linguistic resources may be used to assist in the
development of object-oriented software, as expressed with the
databases. At run time, it is possible to represent in explicit form (with
an ontology) the knowledge that the program holds implicitly,

2. Using Ontologies in Software Engineering and Technology 63

converting the program into a knowledge-based system. This could
improve the maintenance, the extensibility and the flexibility of the
system.

In the following sections of this chapter, we present a state of the art re-
view in which the reader can find the most developed examples of these and
other ways to use ontologies in SET.

2.3.1 Ontology Versus Conceptual Model

In the SE and IS communities, perhaps due to the historical importance of
conceptual modeling, there is frequent confusion between ontology and
conceptual models. In some sense, an ontology has a similar function to a
database schema because the first provides meta-information that de-
scribes the semantics of the terms or data, but there are several important
differences between these concepts [44, 63]:

Languages for defining and representing ontologies (OWL, etc.) are
syntactically and semantically richer than common approaches for
databases (SQL, etc.).
The knowledge that is described by an ontology consists of semi-
structured information (that is, texts in natural language) as opposed to
the very structured data of the database (tables, classes of objects, etc.).
An ontology must be a shared and consensual conceptualization
because it is used for information sharing and exchange. Identifiers in a
database schema are used specifically for a concrete system and do not
have the need to make an effort to reach the equivalent of ontological
agreements.
An ontology provides a domain theory and not the structure of a data
container.

With didactic intention, Mylopoulos [67] explains with samples that an
ontology is not a conceptual schema. This researcher uses the following
sample situation. On one hand, there may be a university ontology defining
and associating concepts such as student, course, lectures, etc. On the other
hand, a conceptual schema, say, for the scholarship IS at the University of the
World, may use these concepts but they are specialized in meaning. For ex-
ample, the student concept may be meant to have as instances only 2005–
2006 University of the World students. An ontology is meant to be reusable,
whereas a conceptual schema is less so.

64 Francisco Ruiz, José R. Hilera

Spyns et al. [86] establish that the main difference between the data mod-
els and ontologies is that while the former are task specific and implementa-
tion oriented, the latter should be as much generic and task independent as
possible. In this manner, to the benefits of reusability and reliability men-
tioned by Ushold and King [93] when ontologies are used in software and
system engineering, we can also add shareability, portability and interopera-
bility. These characteristics are identified as the common notion of “generic-
ity”.

2.3.2 Ontology Versus Metamodel

There also exists some confusion between ontologies and metamodels,
which in our opinion is motivated principally because of the fact that both
are frequently represented by the same languages, although their charac-
teristics and goals are different.

Bertrand and Bezivin [7] have analyzed the relationship between low-level
ontologies and metamodels, and have arrived at the conclusion that while
metamodels look to improve the rigor of similar but different models, an on-
tology does the same but for knowledge models. Devedzic [24] noted an-
other difference: without an ontology, different knowledge representations of
the same domain can be incompatible even when using the same metamodel
for their implementation.

The existing confusion is also generated due to the lack of agreement as to
the definition of both terms. In the case of ontologies, we have already com-
mented sufficiently on this fact. Similarly, for metamodels there exists no
other universal consensus than the mere etymological description that a
metamodel is a “model of models”.

In our opinion, if one uses the definition of ontology proposed by Gruber
[40] and the Object Management Group definition of metamodel, proposed
in the “Model-driven Architecture” [71], the clearest distinction between
them is that of intention: while an ontology is descriptive and belongs to the
domain of the problem, a metamodel is prescriptive and belongs to the do-
main of the solution.

In Chap. 9 of this book, the reader is provided with a detailed proposal of
the different roles played by ontologies and metamodels in the framework of
a model-driven engineering paradigm. Also, a new idea, that of the mega-
model, is introduced.

2. Using Ontologies in Software Engineering and Technology 65

2.3.3 Ontologies in Software Engineering Environments

Other application fields for ontologies are the SEE (SEEs), which integrate
diverse types of tools in order to assist the engineers in completing the
software engineering processes. To begin with, in the SEE, knowledge is
embedded in one or various tools or assistants but this makes it virtually
impossible to be shared or reused.

The exchange of knowledge between humans is one of the major prob-
lems in software engineering projects. It has been shown that this is due in
great part to the fact that the project participants have distinct domains of
problem knowledge and/or use different languages, both problems which
could be mitigated by using ontologies. This is why some authors have pro-
posed the use of ontologies as the backbone of the tools and SEE [22]. For
the same reason, there exist proposals of SEE architectures based on ontolo-
gies [28].

Two of these proposals will be commented on in the following sub-
sections.

2.3.3.1 MANTIS Environment

An MANTIS is “eXtended Software Engineering Environment” for the
management of software maintenance projects. By using the nomenclature
“extended SEE” the intention is to emphasize the idea of integrating and
widen the concepts of methodology and SEE [79]. All the MANTIS com-
ponents are considered as tools of three different categories: conceptual,
methodological and technical (CASE tools). A summary of the compo-
nents that make up the MANTIS environment is shown in Fig. 2.3.

Conceptual tools are used in MANTIS to represent and to manage the in-
herent complexity of software maintenance projects. A level-based concep-
tual architecture is necessary to be able to work with different abstract levels.
A software life cycle process framework is useful for knowing which are the
other software processes related to the maintenance process. To make sure
that all the concepts are correctly defined, used and represented, a set of on-
tologies was defined. The Maintenance Ontology represents the static as-
pects. They describe the concepts related to maintenance and consist of a
subontology for products, another for activities, a third for processes and the
fourth for describing the different agents involved in the maintenance process
[79]. The intentional and social aspects are considered within the same
subontology, Agents, since they are closely related. The dynamic part is rep-
resented by an ontology called Workflow Ontology, where three relevant as-
pects of the maintenance process are defined: decomposition of activities,
temporal constraints between activities, and control of the execution of ac-

66 Francisco Ruiz, José R. Hilera

tivities and projects during the process enactment. A third ontology called a
Measure Ontology represents both static and dynamic aspects related to the
software measurement. This ontology was included because of the impor-
tance of measurement within the software process.

Fig. 2.3. Ontologies as conceptual tools in the MANTIS environment

The uses of the ontologies proposed in the MANTIS environment are two
of the three identified by Gruninger and Lee [42]: communication (especially
between humans participating in maintenance projects, and between humans
and the software system of the MANTIS environment), and knowledge reuse
and organization. On the other hand, the computational inference has not

2. Using Ontologies in Software Engineering and Technology 67

been included in this SEE. The importance of ontologies’ use as a support for
maintenance activities (particularly for the sharing and reuse of knowledge
about the product and its characteristics) has been recognized by other au-
thors as well [21].

In MANTIS the ontologies have been represented using an adaptation of
the REFSENO method (see later section).

2.3.3.2 TABA Workstation

TABA Workstation is a meta-SEE, capable of generating, by means of in-
stancing, specific SEEs adequate for the particularities of a software proc-
ess, of an application domain or of a specific project [28]. Given that the
meta-Environment, the created SEE instance and the tools in the TABA
Workstation need to handle knowledge of the software development proc-
ess, this system includes an ontology whose end is “to support the acquisi-
tion, organization, reuse, and sharing of Software Process knowledge”.
This software development process ontology consists of various subon-
tologies: of activities, of procedures and of resources.

For the graphic representation of these ontologies, GLEO (Graphical
Language for Expressing Ontologies) is used along with a set of axioms
defined in first-order logic. Also, for each ontology, the vocabulary used is
defined in a table created by two columns, one with the concept name, the
other with descriptions of its function and relationship with other con-
cepts.

2.3.4 Representing Ontologies Using Software Engineering
Techniques

There are many languages, techniques and tools for the representation, de-
sign and construction of ontologies (see Chap. 1). But the great majority of
these have been created for and by the knowledge engineering community.
Because of this, the use of ontologies by SET professionals and research-
ers can be seen as an additional learning experience, and in some cases, of
considerably great effort.
To avoid this problem, UML has been proposed and analyzed as a lan-
guage of ontological representation in software engineering [97]. Further,
the ontological fundamentals of this option have been studied by Guiz-
zardi et al. [45]. Other potential advantages of this choice is that the exten-
sion possibilities of UML can be used: descriptive or restrictive stereo-
types, and regular or restrictive extensions of the UML metamodel [82].

68 Francisco Ruiz, José R. Hilera

For more detail regarding the use of UML as a representation language of
ontologies, the reader may refer to “Modelling ontologies with software en-
gineering techniques” in Chapt. 1 of the book “Ontological Engineering”
[38].

2.3.4.1 REFSENO

Some SET researchers have made an effort to approximate previous pro-
posals in the area of artificial intelligence, to the software engineering
community. A significant case of this type is that of REFSENO (Represen-
tation Formalism for Software Engineering Ontologies) [90], a proposal
created by the Fraunhofer Institute for Experimental Software Engineering
(IESE) in Germany, which includes a methodology in order to develop the
ontologies, together with a guide for their representation, through tables
and diagrams.

REFSENO provides constructs (primitives) to describe concepts where
each concept represents a class of experience items. Besides concepts, its
properties (named terminal attributes) and relationships (non-terminal at-
tributes) are represented. One relevant feature of REFSENO is that it en-
ables us to describe similarity functions, which are used for similarity-
based retrieval. In this way, the implementation of retrieval components is
facilitated. This similarity extends the formalism of Ostertag et al. [73] by
additional integrity rules and by clearly separating the schema definition
and characterization. On the other hand, REFSENO also incorporates in-
tegrity rules such as cardinalities and value ranges for attributes, assertions
and preconditions.

In the hope of better adapting the characteristics and interests of soft-
ware engineers, and in contrast with the usual codified knowledge in
knowledge-based systems, REFSENO represents the knowledge in the
form of documents having a set of templates of tables and diagrams. This
election is based on the studies of Althoff et al. [1] in which an important
reduction in learning effort is achieved by the storage of experiences in the
form of documents.

The methodology proposed by REFSENO is an improved adaptation of
METHONTOLOGY [29, 37], which imitates the software life cycle proposed
by the IEEE 1074 standard. Consequentially, the main steps are:

1. Planning.
2. Specification of the ontology requirements.
3. Conceptualization. This stage is similar to the phase of design in a

software system, so it is not the ontology itself.

2. Using Ontologies in Software Engineering and Technology 69

4. Implementation. This refers to the representation and storage of
the previous conceptualization through use of computer tools.

REFSENO has been used for the creation and representation of diverse
ontologies. For example, in [80] an ontology for software maintenance
projects management, developed by a group of software engineers and re-
searchers, is represented using REFSENO, changing specific diagrams for
UML class diagrams and with other minor adjustments. According to the
authors, they chose REFSENO for the following reasons:

It allows for the modeling of software engineering knowledge in a
precise and complete manner, by using alternate representations. The
ontologies specified using REFSENO are precise, since the semantic
relationships are defined and are complete, in the sense that all
conceptual knowledge necessary to instantiate an experience base are
provided.
It has a clear terminology, differentiating between conceptual and
context-specific knowledge, thus enabling the management of
knowledge from different contexts.
It guarantees a consistent ontology since consistency criteria must be
fulfilled.

2.3.5 Experiences and Lessons Learned in Software
Engineering Research

In this section we present some lessons learned about the usefulness of the
ontologies in software engineering research. In these, we have reflected on
the experience of the Alarcos Research Group (University of Castilla-La
Mancha, Spain), which has been achieved through the development of
various research and development (R&D) projects. In our opinion, these
conclusions and commentaries can be extended to ISs and database re-
search, and in part to the professional work of the software engineer.

At the origin of the use of these conceptual tools were two challenges
encountered in the research projects: the integration of knowledge and the
automation-oriented approach by means of software tools.

The first challenge arose from the common daily difficulties in human
relationships (between memberships of our group, other groups and other
stakeholders), causing a waste of time and energy, due to lack of explicit
or tacit shared knowledge. The second challenge arose because the great
majority of projects confronted involved the design of advanced support

70 Francisco Ruiz, José R. Hilera

tools for software engineering activities, which should offer the greater
functionality that is possible at lower development cost.

In facing these challenges, the following two questions arose:

1. How can we achieve proposals, methods, or tools which offer more
general solutions, that is, more useful for all, in research problems?

2. How can we more easily share knowledge of the different partici-
pants (researchers, groups, clients, users, managers, etc.)?

The conceptual architectures including meta-metamodels and ontologies
have been the two conceptual tools best answering these questions.

The second question had the best solution when using ontologies. Of the
many applications of ontologies that are identified in the bibliography [42],
and that have already been commented on, for our software engineering
R&D project they have been especially useful in:

1. Sharing problem domain knowledge and allowing the use of com-
mon terminology between all stakeholders (and not just the re-
searchers).

2. The “filtering” of knowledge upon defining the models and meta-
models.

This first use is evident, but its importance was considerable in the prob-
lems faced. This importance arose due to the need for communication as a
main activity (in duration and importance) in R&D projects (as well as in any
other type of work in software engineering or computer science) and because
the ambiguity of the natural language implies errors, misunderstandings and
unproductive efforts. It has been shown that this is due in great part to the
project participants having differing knowledge of the domain of the prob-
lem, as well as the use of different languages, both problems which an ontol-
ogy can mitigate.

The second more important use that we have found with ontologies is the
filtering of knowledge (Fig. 2.4). The models and metamodels (models of
models) are representations or images of reality that, by definition, only in-
clude a part of this reality. However, this is not a problem, but an assistance,
as this precise factor allows for the filtering capability of undesired character-
istics. In this sense, an ontology is also of assistance in deciding what should
be taken out of the real systems in order to construct the model(s) of a system
(correspondents at the M1 level in a conceptual architecture such as that de-
fined in MDA-MOF [71]), or what should be taken into account in order to
define metamodels (level M2 of MDA-MOF).

2. Using Ontologies in Software Engineering and Technology 71

Although a formal and implemented ontology in a computer-adapted
format may serve for knowledge inference, the characteristics of our R&D
projects (with software engineering and not knowledge engineering goals)
have led us to limit the use of ontologies to those of knowledge sharing
and filtration. Therefore, the decision to use lightweight and non-formal
(or semi-formal) ontologies has been due to the scope of projects which
have been undertaken until today.

O
ontology

M
model

S

real-world
system

is based on is a representationof

O
ontology

O
ontology

O
ontology

O
ontology

M
model

M
model

S

real-world
system

S

real-world
system

is based on is a representationof

O
ontology

O
ontology

Fig. 2.4. Ontologies as filters of knowledge when defining models and metamod-
els

2.3.5.1 Examples

In the Alarcos Research Group we have carried out several R&D projects
for software maintenance. For example, several years ago, we developed,
in collaboration with the international company Atos ODS (previously
Sligos), the MANTEMA methodology [76], specifically for the mainte-
nance of software. In these projects, it was very useful to define an ontol-
ogy for “managing project maintenance” [80] that solved previous misun-
derstanding and discussions due to, for example, not all participants
(researchers, clients, maintainers) having equal understanding of the
“modification request” concept.

On the other hand, in 2003, various groups from Spain and diverse coun-
tries of America held a meeting in order to define a metamodel which would
permit the representation and implementation or any type of software meas-
ure. After several days of debating, it was evident to all that there did not
even exist any agreement on the concepts and terms that the different re-
searchers or groups used. Without this prior step, it was very difficult to con-

72 Francisco Ruiz, José R. Hilera

tinue advancing. For this reason, a work group was created in order to elabo-
rate a “Software Measurement Ontology” [34]. Thanks to this ontology, the
diverse groups have available a conceptual “filtering” tool to help them to
create specific metamodels and models for their research. Further, it has been
possible to more easily debate and truly center oneself in the reasonable dif-
ferences due to distinct points of view or work philosophies. As a continua-
tion of this work, a study was undertaken of the different standards and inter-
national norms, and it has been discovered that we are far from reaching this
explicit and shared conceptualization (ontology). Even for the core concepts
of “metric”, “measure” and “indicator” there is no international consensus
(aggravated by the inconsistencies and lack of the ISO and IEEE official
standards) [33].

This absence of a prior ontology is a very common problem in software
engineering and in computer science in general. Therefore, when trying to
work with the new proposal of the SQL:2003 standard (14 parts and ap-
proximately 2000 pages), the Alarcos Group had major misunderstandings,
because the metamodel indicated in part 11 “SQL/Schemata” [51], repre-
sented in the form of relational schemas, is illegible and has inconsistencies
with other parts of the standard. These problems can be solved, or at least
considerably reduced, if all the parts and thousands of pages of this standard
are based on a previous ontology which makes clear the concepts and their
relationships, independent of syntax and implementation aspects.

With this goal, we have begun to construct an SQL:2003 ontology, al-
though due to this great challenge, we have opted to divide this task into
various stages. Firstly, we have elaborated the ontology of the object-
relational features [14] that we have represented by means of UML 2.0 class
diagrams and texts organized in the form of tables. Additionally, in order to
increase the level of formality, we have used OCL well-formedness rules.
The ontology has been checked by mean of instantiation of an example in
which most of the new object-relational features of the SQL:2003 standard
are presented. It is of interest to remark that during the development process
of the ontology, some inconsistencies were detected in the SQL:2003 stan-
dard.

In addition to improving didactics and easing the understanding and learn-
ing that this ontology has provided, it also has allowed us to start exploring
some new research tracks the first of these being the ontology-based formal-
ization of a set of complexity measures for object-relational schemas [5].

To conclude, in our experience with ontologies in reference to standards,
we believe that ease of reading and understanding the standards would be
greatly improved if the typical lists of terminology were substituted with an
ontology containing the relationships between there terms (if possible, using
some type of ontological diagram), its most significant properties and the

2. Using Ontologies in Software Engineering and Technology 73

main semantic constraints. Furthermore, ontology would be a tool of great
use for the verification and validation of standards.

2.4 A Proposal of Taxonomy

In previous parts of this chapter, we have examined distinct types of on-
tologies and the possible ways of employing them. In this section, we pre-
sent a taxonomy especially oriented to assist SET professionals and re-
searchers. Although we use the previously described classification ideas,
we believe that SET community viewpoints and interests require a new
and specific taxonomy. Concretely, we claim, without being experts in
subjects such as ontological engineering, the Semantic Web, or knowledge
engineering, that this taxonomy will assist in answering the following
questions:

What ontologies exist to better understand the knowledge
of a determined SET issue or subdomain?

Why and how can we use ontologies in software develop-
ment or maintenance projects?

What proposals of new methodologies or previous adapta-
tions exist for the construction of ontology-driven soft-
ware?

What types of software artifacts can be formed by or in-
clude ontologies?

When attempting to establish a relationship between ontologies and SET,
the former are typically considered to be another technique or artifact to be
applied in the software life cycle processes; however, although less typical, it
is also possible to use this type of conceptual tool for the representation of
SET domain knowledge. This should not be forgotten when establishing a
taxonomy or classification of the possible combinations between both fields.
Thus, at a basic level, we propose that the ontology taxonomy for SET be
formed by the following two generic categories:

Ontologies of domain: Describe knowledge of the SET domain.
Ontologies as software artifacts: Used as artifacts of diverse types, in
some software process.

74 Francisco Ruiz, José R. Hilera

Following a description of the fundamental characteristics of ontologies
belonging to these categories, and also the subcategories that we propose in
both cases, is presented.

2.4.1 Ontologies of Domain

This generic category refers to the ontologies whose main goal is to repre-
sent (at least partially) knowledge of a certain subdomain within SET mat-
ter. The existence of a universal ontology to fully conceptualize this do-
main of knowledge would assist in the resource annotation and
localization, for example, in the Semantic Web, and would avoid the am-
biguities and inconsistencies which are commonly produced when com-
puter science academics, researchers and professionals use varying terms
and concepts.

As previously indicated, there are various forms of classifying the ontolo-
gies of a domain of knowledge; however, with SET ontologies, we believe
that the classification should be based on norms, recommendations and stan-
dards published by prestigious organizations and associations (such as the
IEEE or ACM), having been accepted and very well known by the interna-
tional community dedicated to this discipline. In order to establish the hierar-
chy of subcategories, we have adopted the following:

Firstly, to distinguish software engineering from software technology,
as established in the “Overview Report” of the Computing Curricula
2005 [3].
Within software engineering, to distinguish between the generic
proposals that include the complete scope of this discipline and the
specifics focused on some part of it.
For these last ontologies, to employ the classification in 10 knowledge
areas defined in the 2004 version of the “Software Engineering Body of
Knowledge” (SWEBOK) [49].
Within the field of software technology, to use the extended taxonomy
of the “ACM Computing Classification System” [50] to identify the
subcategories with two breakdown levels.

The ACM taxonomy categories and subcategories that have been consid-
ered are those whose content refers to the field of software technology. That
is to say, those identified by the letters D (software, but without software en-
gineering because this topic corresponds to the previous category), E (data in

2. Using Ontologies in Software Engineering and Technology 75

general) and H (information technologies and systems, especially databases
and Web systems).

In this chapter and book, we do not consider “Artificial Intelligence”
within the umbrella of “Software Engineering and Technology”. For this rea-
son, in our proposed taxonomy, ACM category “1.2 Artificial Intelligence”
(under the generic category of “I. Computing Methodologies”) is not in-
cluded, despite the fact that it includes such topics as “Ontology Design” and
“Ontology Languages” within subcategory “1.2.12 Intelligent Web Services
and Semantic Web”.

Taking these factors into consideration, the taxonomy of the “ontologies
of domain” is as follows:

Software Engineering (SE)
Generic (all-domain)
Specific (sub-domain)

Software Requirements
Software Design
Software Construction
Software Testing
Software Maintenance
Software Configuration Management
Software Quality
Software Engineering Tools & Methods
Software Engineering Process
Software Engineering Management

Software Technology (ST)
Software

Programming Techniques
Programming Languages
Operating Systems

Data
Data Structures
Data Storage Representations
Data Encryption
Coding and Information Theory
Files

Information Technology and Systems
Models and Principles
Database Management
Information Storage and Retrieval
Information Technology and Systems Applications

76 Francisco Ruiz, José R. Hilera

Information Interfaces and Representation (HCI)

In order to simplify, in the SWEBOK-based discussion, only one level
(knowledge areas) has been described, and in the ACM taxonomy section,
we only detail two levels (generic categories and categories).

“Software Engineering generic ontologies”, also denominated as “Soft-
ware Engineering all-domain ontologies”, has the ambitious objective of
modeling the complete software engineering body of knowledge. Therefore,
it can be based on three different source types: (1) glossaries (of the IEEE, for
example), (2) body of knowledge guides (as SWEBOK), and (3) books of
reference in the matter (Pressman [77], etc.). On the other hand, “Software
Engineering specific ontologies” only attempts to conceptualize one part
(subdomain) of this discipline, of interest for a determined goal, collective, or
moment. As might be expected, there are many more proposals in this cate-
gory than in the previous one.

On the other hand, some ontologies of SET subdomains are elaborated,
taking into account the possibility of their integration with others, in order to
extend the knowledge that is represented in a common way. This can be a
good idea, as it follows the well-known strategy of synthesis to design com-
plex systems. Taking this to the extreme, the combination of ontologies of all
subdomains included in the proposed taxonomy would result in an ontology
of the complete SET domain. Unfortunately, the reality is that this goal is ex-
tremely laborious, not only due to its size but also due to the numerous prob-
lems of ontology integration and merging (for example, overlapping of con-
cepts) and, as yet, satisfactory solutions do not exist for them. Although
similarities are found with the problem of database views integration, the on-
tology literature states that the merging ontology process is more difficult,
labor intensive and error prone [87]. In the literature, we find the experiences
of SET community members, not being experts in knowledge engineering–
ontology, commenting on their problems in carrying out the merging of on-
tologies [96].

2.4.2 Ontologies as Software Artifacts

In addition to the ontologies that conceptualize the knowledge of SET
(sub)domains, there are other types of proposals that use ontologies as arti-
facts, with varying characteristics and functionalities, during the construc-
tion or functioning of software systems. Many authors have researched the
usefulness of using ontologies in this way, even basing the software de-
velopment process on this technology, and giving way to what Guarino
[43] has termed “Ontology-driven Information System development”. Au-

2. Using Ontologies in Software Engineering and Technology 77

thors such as Pisanelli et al. [75] have assured that in the future, software
will not be designed without using an ontological approach, given the
shown effectiveness of this choice, particularly when adequate tools are
available. And, as already presented in prior sections, there exists a great
potential in the use of ontologies as knowledge’s artifacts, for facilitating
communication among project stakeholders and for avoiding the ambigui-
ties of natural language, as well as for filtering knowledge when defining
models and metamodels of systems to be developed [80, 96]. A pending
task which may prove very interesting is the comparative study of the
paradigm “Ontology-driven development” proposed by Guarino [43] and
the new paradigm “Model-Driven Engineering” (MDE) [83].

Among these uses of ontologies, the World Wide Web Consortium
(W3C), a main precursor in the use of ontology for the Semantic Web, also
endorses the use of ontologies for software development, having recently
created a work group to evaluate, among other possibilities, the potential for
“Ontology Driven Software Engineering”, “Ontology Driven Architectures”
(ODAs) and the crossover between ontology engineering and software engi-
neering [99].

When it comes to proposing a taxonomy or classification of the ontologies
that have been used as software artifacts in recent years, it seems reasonable
to do so as a function of the ontology’s use as an artifact (requirements speci-
fication, system conceptual modeling, etc.). Given that the software artifacts
can be employed either at development or at run time, we have opted for the
first-level classification proposed by Guarino [43], where analyzing the use-
fulness of ontologies in the IS field distinguished between those artifacts
used at system development and those used during system execution.

The first of these categories, that is, “Ontologies as software artifacts at
development time”, has been divided based on function of the software life
cycle processes in which it is principally used. The process groups that we
have used are defined in the ISO/IEC 15504-2 [53] and ISO/IEC 12207 [52]
standards. To simplify, we have covered only two breakdown levels (process
groups and process categories), without achieving a bottom level of individ-
ual processes. Basically, the distinction consists of taking into account
whether the ontologies are used as artifacts in the strictly engineering proc-
esses (software development and maintenance) or in other complementary
processes: support activities, project management, knowledge reuse, etc. The
reference model of these standards groups the processes into three life cycle
groupings which contain five categories. Table 2.1 summarizes this informa-
tion.

In the case of the category referred to as “Ontologies as software arti-
facts at run time”, following the same reasoning as Guarino [43], we have
determined two different situations:

78 Francisco Ruiz, José R. Hilera

1. Ontologies as architectural artifacts: When ontologies are part of the
system software architecture, as an additional component,
,cooperating with the rest of the system at run time to attain the
software objective (ontology-driven software).

2. Ontologies as (information) resources: Are used by the software
during run time for a specific purpose, as an information resource,
normally remote, upon which the software operates (ontology-aware
software), carrying out, for example, specific queries.

Table 2.1. Groups and categories of processes in ISO/IEC 15504-2 [53]
Group Category Description of included processes

Customer–
Supplier

Directly impacts the customer, support development and transi-
tion of the software to the customer, and provides for the correct
operation and use of the software product and/or service.

Primary

Engineering
Directly specifies, implements, or maintains the software prod-
uct, its relationship to the system and its customer documenta-
tion.

Supporting Support May be employed by any of the other processes (including other
supporting processes) at various points in the software life cycle.

Management
Contains practices of a generic nature which may be used by
anyone who manages any type of project or process within a
software life cycle.

Organizational

Organization

Establishes the business goals of the organization and develop-
ment process, product, and resource assets which, when used by
the projects in the organization, will help the organization
achieve its business goals.

Taking into account all of the prior considerations, the taxonomy of “On-
tologies as software artifacts” that we propose is the following:

At Development Time
For Engineering Processes

Development process
Maintenance process

For Other Processes
Customer-Supplier processes
Support processes
Management processes
Organization processes

At Run Time
As Architectural Artifacts

2. Using Ontologies in Software Engineering and Technology 79

As (Information) Resources

At development time and for engineering processes, the ontologies may be
used as artifacts for requirements specification, conceptual modeling, pro-
gramming, database design, or automatic generation of code. Use cases of
ontological artifacts in other complementary processes are communication,
software process management, configuration management, reuse, quality as-
surance, documentation, etc.

Examples of scenarios in which ontologies at run time can be used as ar-
chitectural artifacts are ontology-driven software architecture, software agent
architecture, Web service architecture, Web server architecture. On the other
hand, ontologies as information resources at run time could be used in sce-
narios such as ontology-aware systems, ontology databases, software agents
communication, Web services use, search engines or workflow execution.

2.5 Review and Classification of Proposals in the
Literature

In this last section of the chapter, we present a summary of a large collec-
tion of SET ontology proposals. Each reference is briefly commented upon
and situated within the taxonomy previously presented.

When classifying each analyzed work, its main contribution was taken
into account. For instance, for the proposals using ontologies at run time of
an application, it is evident that this ontology could have been created at de-
velopment time. However, it has been just considered and classified in the
first category, due to its great interest.

In a few cases, the proposal’s characteristics have led us to make the deci-
sion to include it in more than one taxonomy category. The most typical
cases of this type, although not the only ones, are proposals included both in
the general category of ontologies of domain and in the ontologies as soft-
ware artifacts. This happens when, for example, in Ruiz et al. [80], the same
proposal includes an ontology as artifact as well as an ontology of software
engineering or software technology domain, which complements the first.

2.5.1 Proposals of Ontologies of Domain

Since the late 1990s, different proposals have been published in order to
elaborate ontologies of a part or of a complete knowledge domain of SET.
In Tables 2.2 and 2.3 below, some of the most well known of these are
presented along with their authors and taxonomy category (and subcate-

80 Francisco Ruiz, José R. Hilera

gory) classification, according to the conceptualized knowledge domain of
the ontology.

The majority of the ontologies included in this subsection have not been
developed with the sole objective of representing a conceptualization of a
SET domain, but, rather, they have been created by their authors to obtain or
to be part of systems based on semantic technology.

2.5.1.1 Software Engineering Ontologies

Based on the SWEBOK guide, prototypes of ontologies for the representa-
tion of the complete software engineering domain have been created [49].
This includes those of Mendes and Abran [64], consisting of an almost lit-
eral transcription of the SWEBOK text, with over 4000 concepts. Another
proposal included is that of Sicilia et al. [85], which established an ontol-
ogy structure based on a description part, to characterize artifacts and ac-
tivities as created and enacted by current software engineering practice, as
well as a prescriptive part, dealing with a different aspect of reality, which
comprises the approaches or rules to concrete practical activities that are
“commonly accepted” as considered in the SWEBOK. In Chap. 3 of this
book, the authors of both works summarize the different approaches to de-
velop an ontology of the SWEBOK.

Another less ambitious ontology, but one that also conceptualizes the en-
tire software engineering domain, is OntoGLOSE, created and based on the
“Glossary of Software Engineering Terminology” published by the IEEE
[48]. It basically deals with a terminological ontology including over 1500
concepts, corresponding to 1300 glossary terms with their differing meanings
[47].

The remaining ontologies presented in Table 2.2 are partial representa-
tions of the software engineering domain. Falbo et al. [28] and Larburu et
al.[58], for example, have proposed ontologies to model the knowledge re-
lated to the software process, including concepts such as Life Cycle
Model, Software Process, Activity, Procedure, Task, Role, or Artifact,
among others.

In the second case, the ontology referred to as SPOnt and its authors
have reused concepts included in other ontologies related to decision sup-
port systems, establishing links to concepts such as Problem (of the MCDA
ontology) or Guideline (from the GLIF ontology).

2. Using Ontologies in Software Engineering and Technology 81

Table 2.2. Proposals of ontologies of domain (software engineering subdomain)
Category /
subcategory Proposal Author(s) and refer-

ence
Issues in the development of an ontology for an
emerging engineering discipline Mendes and Abran [64]

The evaluation of ontological representation of the
SWEBOK as a revision tool Sicilia et al. [85] Generic

OntoGLOSE: a light weight software engineering
Ontology Hilera et al. [47]

Conceptual design model-based requirements
analysis in the Win–Win framework for concurrent
requirements engineering

Bose [9]

A generic ontology for the specification of domain
models Girardi and Faria [35]

An ontology about ontologies and models: a con-
ceptual discussion Sánchez et al. [81]

Specific /
Software Re-
quirements

OpenCyc.org: formalized common knowledge Cyc [19]
An ontology about ontologies and models: a con-
ceptual discussion Sánchez et al. [81]

OpenCyc.org: formalized common knowledge Cyc [19]
Specific /
Software De-
sign

XCM: a component ontology Tansalarak and Clay-
pool [89]

A concept-oriented approach to support software
maintenance and reuse activities Deridder [21]

Organizing the knowledge used in software Main-
tenance Dias et al. [25]

An ontology for the management of software main-
tenance projects Ruiz et al. [80]

Merging software maintenance ontologies: our ex-
perience Vizcaino et al. [96]

Specific /
Software
Maintenance

Towards an ontology of software maintenance Kitchenham et al. [56]

Identifying quality requirements conflicts Boehm and In [8] Specific /
Software Qual-
ity An ontological approach to domain engineering Falbo et al. [27]

Using ontologies to improve knowledge integration
in software engineering environments Falbo et al. [28]

Towards the implementation of a tool for support-
ing the software development process (in Spanish) Larburu et al. [58]

An ontology for software development methodolo-
gies and endeavours

González-Pérez and
Henderson-Sellers [39]

Specific / SE
Process

Building a knowledge base of IEEE/EAI 12207
and CMMI with ontology Lin et al. [60]

Towards a consistent terminology for software
measurement García et al. [33]

Specific / SE
Management REFSENO: a representation formalism for soft-

ware engineering ontologies Tautz and Greese [90]

In Chap. 4 of this book, a software development methodology ontology is
described, as proposed by González-Pérez and Henderson-sellers [39], which

82 Francisco Ruiz, José R. Hilera

includes a comprehensive metamodel plus a three-domain architecture that
can be used to specify methodologies and then apply them to real endeavors.

Related to the knowledge domain of software process, Lin et al. [60] have
realized initiatives for the creation of ontologies for the IEEE 12207 standard
[76] that provides a guide for software life cycle processes, and CMMI [84]
that can be applied in an organization to inspect and improve the capability
of software process maturity. The goal of these authors is to combine these
two ontologies in order to integrate the two knowledges (in the case of
CMMI, only that relative to the maturity level 3) into a knowledge base ca-
pable of being applied by an organization in order to develop software more
efficiently and correctly.

Ontologies of knowledge associated with the software maintenance
process, having different focuses, such as the proposal by Deridder [21] or
Dias et al. [25], have also been developed. In the latter case, the authors or-
ganized the ontology into five subontologies, in order to represent the knowl-
edge related with the software systems in general, with the necessary skills
required for software maintainers, with the activities of the maintenance
process, with the organizational issues of the maintenance, and with the con-
cepts and tasks that constitute any application domain. In Chap. 5 of this
book there is a detailed description of the latest version of this ontology.

The ontology created by Ruiz et al. [80] is also structured in sub-
ontologies, although in this case, there are four: subontology of the products,
of the activities, of the process organization, and of the agents. There is also
an ontology created by Vizcaíno et al. [96] based on a combination of the
previous ones. All these ontologies are based on the earlier work of Kitchen-
ham et al. [56].

As for software quality, one of the first known ontologies was that used
by Boehm and In [8] which included concepts related to the quality attributes
of software systems, and information about the influence of software archi-
tectures and the development processes on these attributes. For example, the
ontology includes relationships among the concepts of portability, layered
system architecture and prototyping, in order to represent the following
knowledge: “the portability quality attribute can be achieved when using a
layered system architecture and a prototyping-based development”. Falbo et
al. [27] also proposed an ontology for the quality linked to concepts related
to the software process, which were previously modeled in the form of a dif-
ferent, previously mentioned ontology [28].

Regarding the domain of software measurement, García et al. [33, 34]
have created an ontology which attempts to establish a well-defined termi-
nology for this field, with 21 interrelated terms that are based on four funda-
mental concepts: measurement approach, measurement, measure and meas-
urement results. In Chap. 6, the principal characteristics and elements of this

2. Using Ontologies in Software Engineering and Technology 83

ontology are presented. Similarly, Tautz and Wangenheim [90] have devel-
oped a highly detailed ontology of the GQM paradigm (Goal Question Met-
ric), exemplifying the use of the REFSENO notation to represent SET on-
tologies (to model the knowledge of the software measurement planning
domain). In Table 2.2, these ontologies appear classified within the sub-
category of “Software Engineering Management”, as the SWEBOK break-
down of this area suggests.

Related to the domain of requirements engineering, there have also been
proposed ontologies, such as that of Win–Win [9], carried out by Bose in or-
der to represent the knowledge gained from the model of the same name (es-
tablished by Boehm in order to manage the necessary collaboration and ne-
gotiation produced by those involved in this software life cycle stage).

There also exist ontologies which attempt to conceptualize knowledge
with respect to system modeling, from a software engineering point of view.
Sánchez et al. [81] created an ontology to reflect upon the different meanings
of the term model, through the incorporation of different concepts related
with this term, in their ontology, such as: model as concept and model as
original. In Table 2.2 this proposal is found within the subcategory of “Soft-
ware Requirements”, as based on the SWEBOK breakdown which includes
in this knowledge area the topic “Requirements Analysis” and within this,
the subtopic “Conceptual Modeling”.

The subontology of UML, integrated in the upper ontology OpenCyc [19],
is more thorough than the previous ones, as it includes over 100 concepts and
their definitions, and over 50 relationships, as well as some 30 instances, in
order to represent the knowledge associated with this modeling technique.
Some of the concepts included in OpenCyc are: UMLModelElement,
UMLClassifier, UMLClass and UMLStateMachine. In Table 2.2 this ontol-
ogy appears classified within the subcategory “Software Requirements”, for
the same reason as mentioned previously. But it also falls under the subcate-
gory of “Software Design” as the SWEBOK breakdown includes the knowl-
edge area topic “Software Design Notations”.

Another proposal related to the domain of software requirements is
ONTODM, an ontology created by Girari and Faria [35] for the construction
of domain models to be reused in the development of multi-agent applica-
tions. ONTODM represents the knowledge of techniques for the specification
of the requirements of a family of multi-agent systems in an application do-
main. It is being used as a CASE tool to assist in the elicitation and specifica-
tion of domain models.

With respect to component-based software engineering, there exists an
ontology known as XCM, created by Tansalarak and Claypool [89], with its
purpose being “to provide a standard for the definition of components that
crosscuts the different component models and unifies the variances between

84 Francisco Ruiz, José R. Hilera

the different models”. This ontology includes concepts such as Component,
Method, Even, UndelayingComponent or Aggregation-basedComposition. In
Table 2.2, this proposal appears classified in the sub-category “Software De-
sign” according to the SWEBOK breakdown, as this knowledge area includes
the topic “Software Design Strategies and Methods” and, within this, the
subtopic “Component-based Design”.

2.5.1.2 Software Technology Ontologies

Among the software technologies that have been conceptualized through
ontologies, we find the technologies related to the programming lan-
guages. For example, as part of the SIMILE project (Semantic Interopera-
bility of Metadata and Information in unLike Environments) of MIT, for
the creation of a collection of public ontologies [66], we find a very sim-
plistic ontology of the Java language, which represents structural depend-
encies between the concepts of Class and Package of this language. Also
related to Java is the proposal of Liu and Lo [61] who created an ontology
based on the software architecture on which the J2EE technology is im-
plemented.

Other interesting work linking ontologies and programming languages is
that of Zimmer and Rauschmayer [101], who used a generic ontology of
source code, with concepts such as Code, Identifier or CodeAssociation, in
order to create programs as instances of these concepts (for example, a Java
class would be an instance of the Code concept).

In the scope of Web engineering, very detailed ontologies have been de-
veloped for Web technologies, such as Web services, of which the OWL-S
ontology stands out, being created in order to describe the properties and ca-
pabilities of Web services in an unambiguous, computer-interpretable form
[62]. More recently, there is the WSMO ontology (Web Service Modeling
Ontology), expressed in a more specialized language than the OWL, and re-
ferred to as WSML [78]. These two, previously mentioned, are characterized
by their high level of detail; however, there are other ontology-oriented pro-
posals about Web services that are more limited, such as that of Pahl [74],
focused on the representation of conceptual elements necessary in order to
consider Web services as a type of software component.

Also there are software agents technology ontologies, such as that of
Brandão et al. [10], denominated as MAS (Multi-Agent System), that define
the concepts and properties that can be used to represent dynamic models of
applications based on software agents.

Other computer application types that have been the object of conceptuali-
zation are the ubiquitous and pervasive applications, which seamlessly in-
tegrate into the life of everyday users, providing them with services and in-

2. Using Ontologies in Software Engineering and Technology 85

formation in an “anywhere, anytime” fashion. In this knowledge domain,
Chen et al. [17] have proposed SOUPA (Standard Ontology for Ubiquitous
and Pervasive Applications), which offers developers a shared ontology that
combines many useful vocabularies from different consensus ontologies.
Their objective is to assist the ubiquitous and pervasive applications devel-
opers who are inexperienced in knowledge representation, to quickly begin
to building ontology-driven applications. SOUPA includes concepts such as
Agent (to represent human users, with properties such as Believes, Desires, or
Intends), Action, Time, Device, or Location.

All of the previous ontologies appear in Table 2.3 classified, according to
the established taxonomy, in the category of “Software”; the first are under
the subcategory “Programming Languages” and those related to Web tech-
nology and ubiquitous computing are found in the “Programming Tech-
niques” category.

Table 2.3. Proposals of ontologies of domain (software technology subdomain)

Category /
subcategory Proposal Author(s) and

reference

OWL-based Web service ontology Martin [62]

Web Service Modeling Ontology (WSMO) Roman et al.
[78]

Ontology-based description and reasoning for com-
ponent-based development on the Web Pahl [74]

Ontologies as specifications for the verification of
multi-agent systems design

Brandão et al.
[10]

Software / Programming
Techniques

SOUPA: Standard Ontology for Ubiquitous and
Pervasive Applications Chen et al. [17]

RDF ontology collection. SIMILE project MIT [66]
The study on ontology integrating and applying the
ontologies of IEEE/EIA 12207, CMMI, Workflow
and J2EE to Web service development environment

Liu and Lo
[61] Software / Programming

Languages
Tuna: ontology-based source code navigation and
annotation

Zimmer and
Rauschmayer
[101]

Data / Data Encryption Security mechanisms ontology Denker [20]

Information Technology
and Systems / Database
Management

An ontological approach to the SQL:2003 Calero and
Piattini [13]

An ontology based method for universal design of
user interfaces

Furtado et al.
[31] Information Technology

and Systems / Informa-
tion Interfaces (HCI)

A proposal of a knowledge model aimed at the use
of questionnaires in the usability evaluation (in
Spanish)

García [32]

86 Francisco Ruiz, José R. Hilera

Among the proposals that are found in the “Data” category of the taxon-
omy are those related to the data encryption techniques, such as the ontol-
ogy of Denker [20], whose objective is to provide notations that will allow
interfacing among the various standards for security and trust. This ontology
includes concepts such as SecurityMechanism, KeyFormat, Encryption, Sig-
nature, Protocol, or KeyProtocol.

In the category “Information Technology and Systems”, there are, among
others, the proposals of different database technologies, such as those pre-
sented in detail in Chap. 7 of this book, related to the object-relational fea-
tures of the SQL:2003 standard [13].

Within this category, but forming part of the subcategory “Information In-
terfaces and Representation”, are the ontology proposals about technology
related to Human Computer Interaction (HCI) and, particularly, within the
domain of user interface. The proposal of Furtado et al. [31] of an ontology-
driven interface design, includes the definition of ontologies at three levels:
conceptual, logical and physical. On the other hand, García [32] has devel-
oped a detailed ontology of this domain which, in addition to the representa-
tion of general concepts of user interface design, also incorporates others re-
lated to the usability of the interfaces and their evaluation.

2.5.2 Proposals of Ontologies as Software Artifacts

The proposals for ontology use as software artifacts that can be found in
the literature are more abundant than those oriented towards the conceptu-
alization of the SET knowledge domain previously described. The impor-
tance of this new approach in software development shows how, recently,
special events were being established in order to present such proposals, as
in the case of the Workshop on Ontologies as Software Engineering Arti-
facts, hosted in 2004 as a specific event within the International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA). The majority of the works presented at this event are
described in this section.

In Tables 2.4 and 2.5 we present the analyzed proposals, organizeda and
based on the taxonomy presented in Sect. 2.2.4, that is, as a function of on-
tologies as artifacts used: (1) at software development time (for the realiza-
tion of the stated engineering processes or for other auxiliary processes); or
(2) at software run time, as architectural artifacts (ontology-driven software)
or as information resources (ontology-aware software).

2. Using Ontologies in Software Engineering and Technology 87

Table 2.4. Proposals of ontologies as software artifacts at development time
Category /
subcategory Detail Proposal Author(s) and

reference

All phases
Ontology-driven software development
in the context of the semantic web: an
example scenario with Protegé/OWL

Knublauch [57]

Analysis, design,
coding

The role of ontologies in schema-based
program synthesis. Bures et al. [12]

Analysis, design,
coding

Building ontologies in a domain ori-
ented software engineering environ-
ment

Mian and Falbo
[65]

Analysis, design,
coding

Use of ontologies in software develop-
ment environments

Oliveira et al.
[72]

Analysis, design,
coding

An ontology based method for univer-
sal design of user interfaces

Furtado et al.
[31]

Analysis, design Data modelling versus ontology engi-
neering Spyns et al. [86]

Analysis, design
Ontology-based description and reason-
ing for component-based development
on the Web

Pahl [74]

Analysis The use of ontologies as a backbone for
use case management

Wouters et al.
[100]

Analysis
Simplifying the software development
value chain through ontology-driven
software artifact generation

Jenz [54]

Analysis

Conceptual design model based re-
quirements analysis in the Win–Win
framework for concurrent requirements
engineering

Bose [9]

Analysis Ontologies, metamodels and model-
driven paradigm

Assmann et al.
[2]

Analysis Improving analysis patterns reuse: an
ontological approach Hamza [46]

Design, coding Ontology-oriented programming: static
typing for the inconsistent programmer Goldman [36]

Engineering /
Development
process

Coding Tuna: ontology-based source code
navigation and annotation

Zimmer and
Rauschmayer
[101]

Engineering /
Maintenance
process

An ontology for the management of
software maintenance projects Ruiz et al. [80]

Quality assurance ODE: Ontology-based software Devel-
opment Environment Falbo et al. [26]

Verification,
validation

The use of ontologies as a backbone for
software engineering tools

Deridder and
Wouters [22]

Non-
engineering /
Support proc-
esses

Documentation
The use of an ontology to support a
coupling between software models and
implementation

Deridder et al.
[23]

88 Francisco Ruiz, José R. Hilera

Table 2.4. (continued)
Category /
subcategory Detail Proposal Author(s) and

reference
Ontology-based retrieval of software
process experiences Nour et al. [69]

Toward the implementation of a tool
for supporting the software devel-
opment process (in Spanish)

Larburu et al.
[58]

Non-
engineering /
Management
processes

ODE: Ontology-based software De-
velopment Environment Falbo et al. [26]

2.5.2.1 Ontologies as Software Artifacts at Development Time

For Engineering Processes

Among the proposals found in this category is that of Knublauch [57],
who defined a complete ontology-driven software development methodol-
ogy oriented to Semantic Web applications, in which ontologies are used
throughout the life cycle of an application, from development through
execution.

The rest of the proposals for using ontologies at development time do not
establish their use throughout the development process, but, rather, are lim-
ited to certain phases such as requirements analysis, design, or coding. The
majority of the proposed works apply a domain-oriented software develop-
ment to the software projects, based on the use of application domain knowl-
edge to guide software developers across the several phases of the software
process, facilitating the understanding of the problem during development.
Authors such as Bures et al. [12], Mian and Falbo [65] and Oliveira et al.
[72] propose to carry out the domain analysis through the creation of an on-
tology which, shortly, will be mapped in design models to be ultimately used
to generate code in a determined programming language. This approach as-
sumes the integration of ontology editors in the Domain-Oriented Software
Development Environments (DOSDEs).

Bures et al. [12] proposed the automatic generation of code directly
through a high-level specification, formed by models constructed from con-
cepts of a given ontology that help to assure the consistency of the generated
code.

On the other hand, Furtado et al. [31] established a design method for a
user interface at three levels of abstraction, beginning with the creation of an
ontology of the domain of discourse (conceptual level), and the subsequent
elaboration of models (logical level) that capture instantiations of concepts
identified in this ontology for producing multiple user interfaces for one de-
sign situation, and that exhibit different presentation styles, dialogues and

2. Using Ontologies in Software Engineering and Technology 89

structure. These models are subsequently transformed into code for their
execution in a determined technological platform (physical level).

Spyns et al. [86] used ontologies as an alternative to traditional data mod-
eling for database design, defining a method called “DOGMA ontology en-
gineering” (and using the DogmaModeler tool), which adopts a classical da-
tabase model-theoretic view, in which conceptual relations are separated
from domain rules; but in this case, through an ontological approach, by
means of an “ontology base”, which contains multiple intuitive conceptuali-
zations of a domain, and “ontological commitments”, where each commit-
ment contains a set of domain rules.

Other authors have established analysis and design methods, based on on-
tologies, for the development of component-oriented software. In this way,
Pahl’s proposal [74] established the convenience of using ontologies not only
for modeling the domain knowledge that corresponds to the components, but
also for modeling the software-related knowledge, referred to the behavior of
operations or services offered by the components to be developed. In this last
case, the ontological concepts would represent descriptions of service proper-
ties, while the properties or roles would be the services themselves. WSMO
[78] is another ontology thought for suitable this type of development, but
oriented towards components implemented in the form of Semantic Web
services.

The following group of proposals shown in Table 2.4 is formed by those
which refer to the use of ontologies only during requirements analysis. In
this way, Wouters et al. [100] established a method of requirements specifi-
cation based on case models represented in UML, but complemented by an
annotation mechanism based on an ontology of the application domain, in
order to facilitate the management of large sets of use case, improving its
browseability, maintainability and scalability. Jenz [54] suggested the crea-
tion of a business process ontology with concepts such as BusinessActivity,
BusinessRule, or BusinessDocument, having two principal goals: to allow the
sharing of knowledge between domain experts and people engaged in soft-
ware development, and to serve as a requirements specification from which a
number of software artifacts can be automatically generated, for example,
UML class diagrams.

Another proposal is that of Bose [9], using an ontology of the Win–Win
technique domain (previously commented), and with the objective of facili-
tating the semi-automatic transition of the system requirements, according to
the mentioned technique, to the corresponding abstract design model. The
author proposes the expansion of this ontology by including the conceptuali-
zation of the elements that constitute these high-level design models, creating
a mapping between these and the elements used in the Win–Win require-
ments model.

90 Francisco Ruiz, José R. Hilera

Also within this group we find the proposal of Assmann et al. [2] for using
ontologies in the case of model-driven development, to describe the domain
of a system (see Chap. 9 of this publication). And that of Hamza [46], who
affirms that ontologies can assist in the reuse of high-level generic solutions
in determined problems (that is, analysis patterns, in analogy with the known
design patterns), that avoid facing the analysis phase of a project from
scratch. The proposed method has four phases: (1) Knowledge extraction,
where a collection of existing patterns of another knowledge source are ana-
lyzed. (2) Ontology development, where an ontology that captures the ex-
tracted knowledge is developed. (3) Knowledge reuse, where the knowledge
included in the ontology is converted into a knowledge asset that can be re-
used to construct analysis models. (4) Knowledge augmentation, whose ob-
jective is to discover new knowledge, upon developing an application, in or-
der to incorporate it into the ontology.

The rest of the proposals of ontologies as software artifacts at develop-
ment time for the development process included in Table 2.4 refer to the use
in activities at a lower level: design and coding. For instance, Goldman [36]
proposes a development method called “ontology oriented programming” in
which the specification of a problem’s solution is expressed in the form of an
ontology, with its annotations, that is compiled to produce an ontology-
specific library, which is linked with other libraries and code to produce an
application. Annotations allow for trade-offs between the flexibility of the
generated library and its performance. This is a programming paradigm of a
higher abstraction level than object-oriented programming (“concepts” ver-
sus “objects”), but which finally, through the indicated compiler, makes it
possible to generate object-oriented code.

Related to programming, Zimmer and Rauschmayer [101], with the goal
of enriching the source code of applications constructed by applying the
well-known agile methodology “Extreme Programming” (when “the code is
the model”), propose a generic ontology for the source code and a tool with
which they write annotations that can be added externally without changing
the source code, and that offers the possibility of making queries or navigat-
ing through the (semantic) content of the programs created.

All of these described proposals have referred to the use of ontologies in
the process of software development; however, works have also been pub-
lished in relation to their use in the maintenance process, included in the
taxonomy, along with development, in the engineering processes category.
In the work of Ruiz et al. [80], an ontology to assist in the management of
software maintenance projects is presented. Also, it includes some elements
such as product, activity, process, agent, measure and some dynamic aspects
such as workflow. This ontology has been the basis of the development of an
“extended software engineering environment” to manage maintenance pro-

2. Using Ontologies in Software Engineering and Technology 91

jects (called the MANTIS environment), previously presented in this chapter,
and also has been used for the construction of a knowledge management sys-
tem (KM-MANTIS) for improving and supporting the management mainte-
nance projects.

For Non-engineering Processes

There have been some proposals for the use of ontologies in other proc-
esses than pure software engineering, development and maintenance, al-
though fewer than those previously described. These include ontologies
for the processes of management, quality assurance, verification, valida-
tion or documentation.

In the case of management processes, Nour et al. [69] developed ontol-
ogy-based techniques and tools that allow recovery of the acquired experi-
ence in previous software projects to be applied to new projects. In order to
achieve this, three different ontologies for annotating knowledge stored in an
“experience base” were created: (1) Skill Ontology, that describes skills and
qualifications required for performing specific task types (ex. Java program-
ming). (2) Process Ontology, that allows the definition of process structures.
(3) Project Ontology, allowing the representation of information of a project
context. The objective is, for a project manager, to be able to query this ex-
perience base in order to obtain the information needed to plan the current
project.

On the other hand, Larburu et al. [58] created a prototype of a decision
support system to assist in the deployment of software development proc-
esses, which permit the modeling and execution of software processes previ-
ously defined based on a set of four linked ontologies. This prototype has a
descriptive capability sufficient for defining roles, tasks, artifacts and deci-
sion problems as class instances (concepts) defined by the mentioned ontolo-
gies. The four ontologies used are SPont (of the domain of software process),
GLIF (of the Guidelines Interchange Format), MCDA (of the domain of
multi-criteria decision analysis) and PROAFTN (of a fuzzy classification
methodology).

The proposal by Falbo et al. [26] is related to the subcategory of manage-
ment processes, but also to the quality assurance process, which belongs to
the subcategory of support processes. These authors present a process-
centered SET, called ODE (Ontology-based software Development Envi-
ronment), whose goal is to facilitate the partial automation of the software
process. This environment is made up of several integrated tools, oriented
towards the process definition, software projects monitoring and software
quality control. A main element of the environment is an ontology, resulting
from the combination of others created by the same authors, related to the

92 Francisco Ruiz, José R. Hilera

knowledge domains of software process, quality and software metrics [27].
The use of ODE to define processes in real-world projects assumes the in-
stantiation of the elements previewed, including, for example: Activity, Arti-
fact, or Resource.

In the scope of support processes, Deridder and Wouters [22] propose the
use of ontologies to improve the creation, verification and validation of soft-
ware artifacts created during the software development life cycle, through the
integration of ontological engines into CASE tools. These authors classify the
ontological engines into two kinds according to how they use the ontological
data: (1) “ontology-driven engines” that retrieve data from the ontology
within a given context, and use them to guide to software engineers in the
performance of their tasks (for example, transforming ontological data into
UML diagrams); and (2) “ontology-based engines” that utilize the ontology
as a passive component, only needing to verify and look up data. The authors
have created ontological engines of both kinds and have integrated them into
the Rational Rose CASE tool.

The final work included in Table 2.4 refers to a proposal of Deridder et al.
[23] for utilizing ontologies in the documentation process. It involves apply-
ing a structured approach to document a system by linking artifacts from the
documentation and the implementation, using an ontology and obtaining
what is referred to as “meta-documentation”, which provides a coupling be-
tween the results of the analysis and design phases to the results of the im-
plementation. The goal is to facilitate the software maintenance activities,
avoiding wasted time in searching for “missing links” among artifacts it dif-
ferent levels of abstraction. For this, the ontology is a necessary element to
establish the implicit links between related artifacts or between artifacts that
represent the same concept in different languages.

2.5.2.2 Ontologies as Software Artifacts at Run Time

As Architectural Artifacts (Ontology-Driven Software)

In the proposals that were included in this taxonomy category (see Table
2.5), the software architecture is characterized by the use of one or more
ontologies as central elements of the proposed system. The knowledge-
based system (KBS) has an architecture that consists mainly of a knowl-
edge repository that is formed by an ontology and an inference engine act-
ing on this repository. There are numerous proposals of this type of system
that could be referred to in this section. However, it is not necessary to de-
scribe all of them, as they share, in most cases, similar architecture, vary-
ing in each case just the application domain of the system. Therefore, we
only refer to three proposals.

2. Using Ontologies in Software Engineering and Technology 93

The first is that of Vieira and Casanova [95], who proposed the develop-
ment of a Workflow Management System to integrate an ontology for rep-
resenting the semantic relationships among elements such as Workflow, Re-
source, or User. This ontology indicates which resources and users are
required to execute each workflow, and guides the discovery of possible al-
ternatives when the execution of a workflow instance fails to proceed. This
ontology is complemented by semantic rules dictating the way that alterna-
tives can be found to allow workflow execution to continue.

Table 2.5. Proposals of ontologies as software artifacts at run time

Category Proposal Author(s) and ref-
erence

Flexible workflow execution through an ontology-
based approach

Vieira and Casanova
[95]

An ontology-based context management and rea-
soning process for UbiComp applications

Chistopoulou et al.
[18]

Architectural Arti-
facts
(Ontology-driven
software) Developing and managing software components in

an ontology-based application server Oberle et al. [70]

Swoogle: Semantic Web search UMBC [88]

Upgrade and publication of legacy data Barrasa [6]

Information Re-
sources
(Ontology-aware
software) Using ontologies as artifacts to enable databases

interoperability Brauner et al. [11]

Another example is the work of Cristopoulou et al. [18], who present an
architecture for ubiquitous computing applications. These applications op-
erate within an extremely dynamic and heterogeneous environment, and have
to dynamically adapt to changes in their environment as a result of users’ or
other actors’ activities. Therefore, context definition, representation, man-
agement and use are important factors affecting their operation. The authors
propose the integration in the architecture of these context-aware systems, an
ontology and an inference engine. The basic goal of the ontology is to sup-
port a context management process based on a set of rules which determine
how a decision should be made and how it must be applied on existing
knowledge represented by this ontology.

The third proposal of ontology-driven software included in Table 2.5 is
that of Oberle et al. [70], who presented an ontology-based application
server; this server, in addition to the habitual installed software components,
includes an inference engine in which an ontology is loaded, with which an
explicit and executable conceptual model for the administering the applica-
tion server is represented. The server is implemented with J2EE technology,
and the ontology conceptualizes key elements related to this technological
platform, such as Realm, User, Group or Roles. It also includes concepts on

94 Francisco Ruiz, José R. Hilera

security mechanisms such as Resource, Method, ResourceGroup, Acces-
Right, Invocation or RequestContext; from these, the elements utilized are in-
stantiated in order to control the server security. At run time, the server man-
ages information in the form of semantic metadata (generated from
configuration files), which are processed by the inference engine along with
the content of the ontology.

The specification of the described systems and, in general, of any ontol-
ogy-driven software, requires modeling techniques that can be used for the
specification of the ontology integrated into the system, or for the inference
engine, or for the rest of the system components. UML is an adequate nota-
tion for this purpose, having UML extension proposals such as that of Ba-
clawski et al. [4], in order to model ontologies that can later be implemented
into a language such as OWL. We must emphasize the Object Management
Group (OMG) initiative to create a standard “Ontology Development Meta-
model” (ODM) using the OMG’s Meta Object Facility (MOF), to ease the
development of ontologies with an engineering approach, more than ade-
quate in the development of ontology-driven software. This initiative is com-
prehensively described in Chap. 8 of this book.

As Information Resources (Ontology-Aware Software)

Within this category are those proposals which deal with software systems
that use one or more ontologies at run time in order to, for example, use
their content in operations of information searching. Such is the case of
Web searchers for the Semantic Web, such as Swoogle [88], which ac-
cess over 10,000 ontologies to execute semantic searches.

Other applications framed inside this category are those that use ontolo-
gies as database substitutes, for information storage. Proposals exist to
convert pre-existing databases into ontologies, assuming that the applica-
tions which previously accessed the original database now should access
the ontology, constituting what has been named by us, following Guarino
[43], ontology-aware software.

Among the proposals for transforming databases into ontologies is that of
Barrasa [6], described in detail in Chap. 11 of this book, who has defined a
language known as R2O for mapping relational databases into ontologies, us-
ing a mapping processor called ODEMapster, both for generating the ontol-
ogy (also called the “semantic repository of data”) as well as for the execu-
tion of queries on the ontology. This facilitates the transformation of the
applications that use a relational database to allow semantic access to the
content available in the database.

Other work similar to that previously discussed is that of Brauner et al.
[11], who have gone further, applying a mechanism of transformation to sev-

2. Using Ontologies in Software Engineering and Technology 95

eral databases, in order to create an ontology-based catalogue which serves
as a mediator to federated databases, and which offers centralized access to
the data.

Although no proposal of this sort has been presented in Table 2.5, to con-
clude we will mention the applications that are being developed for the Se-
mantic Web, considered in the category of “ontology-aware software”, as
the use of ontologies is and will be common place in the future development
of these application types. And if we have “Service-oriented Architectures”
(SOAs), with the use of Semantic Web services in the form of uncoupled,
self-contained, self-described and semantically annotated software compo-
nents, the ontologies will be used to describe not only the domain knowledge
of these services, but also the interaction process of applications with these
services, in such a way that eases the discovery, composition and execution
of these services, thereby offering more complex functionality. For all this, it
is fundamental that ontologies are used for Web services modeling, such as
WSMO [78], not only by the creators of such services, in order to semanti-
cally annotate them, but also by the consumers, for discovery and use of the
services.

References

1. Althoff, K.-D., Birk, A., Hartkopf, S., Mülle, W.: Managing Software Engi-
neering Experience for Comprehensive Reuse. Eleventh International Con-
ference on Software Engineering and Knowledge Engineering (SEKE),
Kaiserslautern, Germany, 1999.

2. Assmann, U., Wagner, G.: Ontologies, metamodels and model-driven para-
digm. In Ontologies for Software Engineering and Technology, Springer-
Verlag, Berlin, chapter 9 (2006).

3. Association for Computing Machinery: Computing Curricula 2005 – The
Overview Report. 30 September 2005. ACM, AIS, IEEE-CS. Available in:

 http://info.acm.org/education/curricula.html
4. Baclawski, K., Kokar, M.K., Kogut, P.A., Hart, L., Smith, J., Holmes, W.S.,

Letkowski, J., Aronson, M.L., Emery, P.: Extending the Unified Modeling
Language for Ontology Development. International Journal of Software and
Systems Modeling (SoSyM), 1(2): 142–156, 2002.

5. Baroni, A., Calero, C., Brito e Abreu. F. and Piattini, M. (2006) Object-
Relational Database metrics formalization. Sixth International Conference
on Quality Software (QSIC 2006). Beijig (China). To be published.

6. Barrasa, J.: Semantic Upgrade and Publication of Legacy Data. In Ontolo-
gies for Software Engineering and Technology, Springer-Verlag, Berlin,
chapter 11 (2006).

96 Francisco Ruiz, José R. Hilera

7. Bertrand, T., Bézivin, J.: Ontological Support for Business Process Im-
provement. In D. Bustard, P. Kawalek, M.Norris (eds.), Systems Modeling
for Business Process Improvement. Artech House Publishers, London, pp.
313–331 (2000).

8. Boehm, B., In, H.: Identifying Quality Requirements Conflicts. IEEE Soft-
ware, March: 25–35, 1996.

9. Bose, P.: Conceptual design model based requirements analysis in the Win-
Win framework for concurrrent requirements engineering. IEEE Workshop
on Software Specification and Design (IWSSD), 1995.

10. Brandão, A.F., Torres, V., De Lucena, C.: Ontologies as Specifications for
the Verification of Multi-Agent Systems Design. In Workshop on Ontolo-
gies as Software Engineering Artifacts (OOPSLA), Vancouver, Canada, 24–
28 October 2004.

11. Brauner, D.F., Casanova, M.A., De Lucena, C.J.P.: Using ontologies as arti-
facts to enable databases interoperability. Workshop on Ontologies as Soft-
ware Engineering Artifacts (OOPSLA), Vancouver, Canada, 24–28 October
2004.

12. Bures, T., Denney, E., Fischer, B., Nistor, E.C.: The role of ontologies in
schema-based program synthesis. Workshop on Ontologies as Software En-
gineering Artifacts (OOPSLA), Vancouver, Canada, 24–28 October 2004.

13. Calero, C., Piattini, M.: An ontological approach to the SQL:2003. In On-
tologies for Software Engineering and Technology, Springer-Verlag, Berlín,
chapter 7 (2006).

14. Calero, C., Ruiz, F., Baroni, A.L., Brito e Abreu, F., Piattini, M.: An Onto-
logical Approach to Describe the SQL:2003 Object-Relational Features.
Computer Standards & Interfaces. Available online December 2, 2005 in:

 http://www.sciencedirect.com/science/journal/09205489
15. Chandrasekaran, B., Josephson, J.R., Benjamins, V.: Ontology of Tasks and

Methods. In Proceedings of KAW'98, Banff, Alberta, Canada, 1998.
16. Chandrasekaran, B., Josephson, J.R., Benjamins, V.: What Are Ontologies,

and Why Do We Need Them?. IEEE Intelligent Systems, 14 (1) 20–26,
1999.

17. Chen, H., Perich, F., Finin, T., Joshi, A.: SOUPA: Standard Ontology for
Ubiquitous and Pervasive Applications. International Conference on Mobile
and Ubiquitous Systems: Networking and Services, Boston, USAs, 22–25
August 2004, pp. 258–267.

18. Chistopoulou, E., Goumopoulos, C., Kameas, A.: An ontology-based con-
text management and reasoning process for UbiComp applications. In Pro-
ceedings of the 2005 Joint Conference on Smart Objects and Ambient Intel-
ligence: innovative context-aware services: usages and technologies,
Grenoble, France, October 2005, pp. 265–270.

19. Cyc: OpenCyc.org: Formalized Common Knowledge. Cycorp, USA. Avail-
able in;

 http://www.opencyc.org68
20. Denker, G.: Security Mechanisms Ontology. Computer Science Laboratory,

SRI International, 2002. Available in:

2. Using Ontologies in Software Engineering and Technology 97

 http://www.csl.sri.com/~denker/owl-sec/security.owl
21. Deridder, D.: A Concept-Oriented Approach to Support Software Mainte-

nance and Reuse Activities. 5th Joint Conference on Knowledge-Based
Software Engineering (JCKBSE), Maribor, Slovenia, September 2002.

22. Deridder, D., Wouters, B.: The Use of Ontologies as a Backbone for Soft-
ware Engineering Tools. Fourth Australian Knowledge Acquisition Work-
shop (AKAW), Sydney, Australia, December 1999.

23. Deridder, D., Wouters, B., Lybaert, W.: The use of an ontology to support a
coupling between software models and implementation. International Work-
shop on Model Engineering, 14th European Conference on Object-Oriented
Programming (ECOOP), Sophia Antipolis and Cannes, France, 2000.

24. Devedzíc, V.: Understanding Ontological Engineering. Communications of
the ACM, 45(4): 136–144, 2002.

25. Dias, M.G., Anquetil, N., De Oliveira, K.M.: Organizing the Knowledge
Used in Software Maintenance. Journal of Universal Computer Science,
9(7): 641–658, 2003.

26. Falbo, R.A., Cruz, A.C., Mian, P.G., Bertollo, G., Borges, F.: ODE:
Ontology-based software Development Environment. IX Argentine Con-
gress on Computer Science (CACIC), La Plata, Argentina, 6–7 October
2003.

27. Falbo, R.A., Guizzardi, G., Duarte, K.C.: An Ontological Approach to Do-
main Engineering. In Procedings of 14th International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE), Ischia, Italy, July
1992, pp. 351–358.

28. Falbo, R., Menezes, C., Rocha, A.: Using Ontologies to Improve Knowledge
Integration in Software Engineering Environments. 4th International Con-
ference on Information Systems Analysis and Synthesis (ISAS), Orlando,
USA, 1998.

29. Fernández, M., Gómez-Pérez, A., Juristo, N.: METHONTOLOGY: From
Ontological Art Towards Ontological Engineering. AAAI Spring Sympo-
sium, University of Stanford, Palo Alto, California (USA), pp. 33–40, 1997.

30. Fensel, D: Ontologies: A Silver Bullet for Knowledge Management and
Electronic Commerce. Second Edition, Springer-Verlag, Berlin, Heidelberg
(2004).

31. Furtado, E., Vasco, J., Bezerra, W., Tavares, D., Da Silva, L., Limbourg, Q.,
Vander-Donckt, J.: An ontology based method for universal design of user
interfaces. Workshop on Multiple User Interfaces over the Internet, British
Human Computer Interaction Group Conference (HCI/IHM), 2001.

32. García, E.: A proposal of a knowledge model aimed at the use of question-
naires in the usability evaluation (in Spanish). PhD Thesis, University of Al-
calá, Spain, 2004.

33. García, F., Bertoa, M.F., Calero, C., Vallecillo, A., Ruíz, F., Piattini, M.,
Genero, M.: Towards a consistent terminology for software measurement.
Information and Software Technology. Available online August 22, 2005 in:

 http://www.sciencedirect.com/science/journal/09505849

98 Francisco Ruiz, José R. Hilera

34. García, F., Ruiz, F., Bertoa, M.F., Calero, C., Genero, M., Olsina, L.A.,
Martín, M.A., Quer, C., Condori, N., Abrahao, S., Vallecillo, A., Piattini,
M.: Una Ontología de la Medición del Software (in Spanish). Technical Re-
port DIAB-04-02-2, Dept. of Computer Science, University of Castilla-La
Mancha. Available in:

 http://www.info-ab.uclm.es/trep.php
35. Girardi, R., Faria, C.: A Generic Ontology for the Specification of Domain

Models. In Proceedings of 1st International Workshop on Component Engi-
neering Methodology (WCEM’03) at Second International Conference on
Generative Programming and Component Engineering, Erfurt, Germany,
2003.

36. Goldman, N.M.: Ontology-oriented programming: static typing for the in-
consistent programmer. In International Semantic Web Conference
(ISWC’2003), LNCS Vol. 2870, Sprinter-Verlag, Berlin, pp. 850–865
(2003).

37. Gómez-Pérez, A.: Knowledge sharing and reuse. In Jay Liebowitz (ed.), The
Handbook of Applied Expert Systems. CRC Press, Boca Raton, Florida,
1998.

38. Gómez Pérez, A., Fernández López, M. Corcho, O.: Ontological Enginee-
ring. Springer-Verlag, London (2004).

39. González-Pérez, C., Henderson-Sellers, B.: An Ontology for Software De-
velopment Methodologies and Endeavours. In Ontologies for Software En-
gineering and Technology, Springer-Verlag, Berlin, chapter 4 (2006).

40. Gruber, T.R.: A translation approach to portable ontologies. Knowledge Ac-
quisition, 5(2): 199–220, 1993.

41. Gruber, T.: Towards Principles for the Design of Ontologies used for
Knowledge Sharing. International Journal of Human-Computer Studies,
43(5/6): 907–928, 1995.

42. Gruninger, M., Lee, J.: (2002): Ontology Applications and Design. Commu-
nications of the ACM, 45(2): 39–41, 2002.

43. Guarino, N.: Formal Ontology in Information Systems. In Proceedings of
FOIS’98, Trento, Italy. IOS Press, Amsterdam (1998).

44. Guarino, N., Schneider, L.: Ontology-Driven Conceptual Modelling: Ad-
vanced Concepts. ER 2002. Pre-Conference Tutorials. Available in:
http://www.loa-cnr.it/odcm.html

45. Guizzardi, G., Herre, H., Wagner, G.: On the General Ontological Founda-
tions of Conceptual Modeling. 21st International Conference on Conceptual
Modeling (ER), Tampere, Finland, October 2002.

46. Hamza, H.S.: Improving Analysis Patterns Reuse: An Ontological Ap-
proach. Workshop on Ontologies as Software Engineering Artifacts
(OOPSLA), Vancouver, Canada, 24–28 October 2004.

47. Hilera, J.R., Sánchez-Alonso, S., García, E., Del Molino, C.J..: On-
toGLOSE: A Light-weight Software Engineering Ontology. 1st Workshop
on Ontology, Conceptualizations and Epistemology for Software and Sys-
tems Engineering (ONTOSE), Alcalá de Henares, Spain, 9–10 June 2005.

2. Using Ontologies in Software Engineering and Technology 99

48. IEEE: IEEE Std 610.12-1990(R2002): IEEE Standard Glossary of Software
Engineering Terminology (Reaffirmed 2002), IEEE, New York, USA.

49. IEEE: SWEBOK - Guide to the Software Engineering Body of Knowledge
2004 version. IEEE Computer Society. Available in: http://www.swebok.org

50. IEEE: Top-Level Categories for the ACM Taxonomy (extended version of
the ACM Computing Classification System 2002). Available in:
www.computer.org/mc/keywords/keywords.htm

51. ISO/IEC 9075-11:2003 Information technology – Database languages –
SQL – Part 11: Information and Definition Schemas (SQL/Schemata). Inter-
national Organization for Standardization, Genova.

52. ISO/IEC 12207:1995. Information Technology – Software Life Cycle Proc-
esses. ISO/IEC 1995.

53. ISO/IEC 15504-2:1998. Information Technology – Software Process As-
sessment – Part 2: A Reference Model for Processes and Process Capability.
ISO/IEC 1998.

54. Jenz, D.E.: Simplifying the software development value chain through on-
tology-driven software artifact generation. Jenz and Partner GmbH Strategic
White Paper, 2003. Available in:

 http://www.bpiresearch.com/WP_BPMOntology.pdf
55. Jurisica, I., Mylopoulos, J., Yu, E.: Using ontologies for knowledge man-

agement: an information systems perspective. In Proceedings of 62nd An-
nual Meeting of the American Society for Information Science (ASIS99),
1999, pp. 482–496.

56. Kitchenham, B.A., Travassos, G.H., Mayrhauser, A., Niessink, F.,
Schneidewind, N.F., Singer, J., Takada, S., Vehvilainen, R., Yang, H.:
Towards an Ontology of Software Maintenance. Journal of Software
Maintenance: Research and Practice, 11(6): 365–389, 1999.

57. Knublauch, H.: Ontology-driven software development in the context of the
semantic web: an example scenario with protegé/OWL. First International
Workshop on the Model-Driven Semantic Web (MDSW), 2004.

58. Larburu, I.U., Pikatza, J.M., Sobrado, F.J., García, J.J., López, D.: Hacia la
implementación de una herramienta de soporte al proceso de desarrollo de
software. Workshop in Artifificial Intelligence Applications to Engineering
(AIAI), San Sebastián, Spain, 2003.

59. Lassila, O., McGuinness, D.: The Role of Frame-Based Representation on
the Semantic Web. KSL Techical Report No. KSL-01-02, Jan-2001. Avail-
able in:

 http://www.ksl.stanford.edu/people/dlm/etai/lassila-mcguinness-fbr-sw. html
60. Lin, S., Liu, F., Loe, S.: Building A Knowledge Base of IEEE/EAI 12207

and CMMI with Ontology. Sixth International Protégé Workshop, Manches-
ter, England, 7–9 July 2003.

61. Liu, F., Lo, S.: The Study on Ontology Integrating and Applying the On-
tologies of IEEE/EIA 12207, CMMI, Workflow and J2EE to Web Service
Development Environment. Sixth International Protégé Workshop, Man-
chester, England, 7-9 July 2003.

100 Francisco Ruiz, José R. Hilera

62. Martin, D. (ed.): OWL-based Web Service Ontology. OWL-S Coalition,
2004. Available in:

 http://www.daml.org/services/owl-s
63. Meersman, R.A.: The Use of Lexicons and Other Computer-Linguistic

Tools in Semantics Design and Cooperation of Database Systems. In Y.
Zhang (ed.), CODAS Conference Proceedings, Springer-Verlag, Berlin
(2000).

64. Mendes, O., Abran, A.: Issues in the development of an ontology for an
emerging engineering discipline. First Workshop on Ontology, Conceptuali-
zations and Epistemology for Software and Systems Engineering
(ONTOSE), Alcalá de Henares, Spain, 9–10 June 2005.

65. Mian, P.G., Falbo, R.A.: Building ontologies in a domain oriented software
engineering environment. IX Argentine Congress on Computer Science
(CACIC), La Plata, Argentina 6–7 October 2003.

66. MIT: RDF Ontology Collection. Simile Project, Massachusetts Institute of
Technology, USA, 2004. Available in:

 http://simile.mit.edu/repository/ontologies/java
67. Mylopoulos, J.: Ontologies. Visited on January 4, 2006 in:

http://www.cs.toronto.edu/~jm/2507S/Notes04/Ontologies.pdf
68. Newell, A.: The Knowledge Level. Artificial Intelligence, 18: 87–127, 1982.
69. Nour, P., Holz, H., Maurer, F.: Ontology-based retrieval of software process

experiences. ICSE Workshop on Software Engineering over the Internet,
2000.

70. Oberle, D., Eberhart, A., Staab, S., Volz, R.: Developing and Managing
Software Components in an Ontology-based Application Server. 5th
International Middleware Conference, Toronto, Canada, 18–22 October
2004.

71. Object Management Group: Meta Object Facility (MOF) Specification; ver-
sion 1.4, April 2002.

72. Oliveira, K.M., Villela, K., Rocha, A.R., Horta, G.: Use of Ontologies in
Software Development Environments. In Ontologies for Software Engineer-
ing and Technology, Springer-Verlag, Berlin, chapter 10 (2006).

73. Ostertag, E., Hendler, J., Prieto-Díaz, R., Braun, C.: Computing similarity in
a reuse library system: an AI-based approach. ACM Transactions on Soft-
ware Engineering and Methodology, 1(3): 205–228, 1992.

74. Pahl, C.: Ontology-based description and reasoning for component-based
development on the Web. In Procedings of ESEC/FSE Workshop on Speci-
fication and Verification of Component-based Systems (SAVCBS’03), Hel-
sinki, Finland, September 2003, pp. 84–87.

75. Pisanelli, D.M., Gangemi, A., Steve, G.: Ontologies and Information Sys-
tems: the Marriage of the Century?. In Proceedings of LYEE Workshop,
Paris, 2002.

76. Polo, M., Piattini, M., Ruiz, F., Calero, C.: MANTEMA: A Software Main-
tenance Methodology based on the ISO/IEC 12207 Standard. 4th IEEE In-
ternational Software Engineering Standards Symposium (ISESS), Curitiba,
Brazil. IEEE Computer Society, pp. 76–81, 1999.

2. Using Ontologies in Software Engineering and Technology 101

77. Pressman, R.S.: Software Engineering: A Practitioner's Approach. Sixth
Edition. McGraw-Hill, New York, 2004.

78. Roman, D., Lausen, H., Keller, U. (eds.): Web Service Modeling Ontology
(WSMO), SDK WSMO Working Group, 2005. Available in:

 http://www.wsmo.org
79. Ruiz, F., García, F., Piattini, M., Polo, M.: Environment for Managing Soft-

ware Maintenance Projects. In “Advances in Software Maintenance Man-
agement: Technologies and Solutions”. Idea Group Publication (USA),
chapter X, pp. 255–290, 2002.

80. Ruiz, F., Vizcaíno, A., Piattini, M., García, F.: An Ontology for the Man-
agement of Software Maintenance Projects. International Journal of Soft-
ware Engineering and Knowledge Engineering, 14(3): 323–349, 2004.

81. Sánchez, D.M., Cavero, J.M., Marcos, E.: An ontology about ontologies and
models: a conceptual discussion. First Workshop on Ontology, Conceptuali-
zations and Epistemology for Software and Systems Engineering
(ONTOSE), Alcalá de Henares, Spain, 9–10 June 2005.

82. Schleicher, A., Westfechtel, B.: Beyond Stereotyping: Metamodeling Ap-
proaches for the UML. 34th Hawaii International Conference on System
Sciences (HICSS), Maui, Hawaii (USA), January 2001.

83. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer, special issue on
model-driven software development, 39(2): 25–31, February 2006.

84. SEI: Capability Maturity Model Integration (CMMI), Software Engineering
Institute, 2002. Available in:

 http://www.sei.cmu.edu/cmmi/
85. Sicilia, M.A.., Cuadrado, J.J., García, E., Rodríguez, D., Hilera, J.R..: The

evaluation of ontological representation of the SWEBOK as a revision tool.
In 29th Annual International Computer Software and Application Confer-
ence (COMPSAC), Edinburgh, UK, 26–28 July 2005.

86. Spyns, P., Meersman, R., Jarrar, M.: Data Modelling versus Ontology Engi-
neering. SIGMOD Record 31(4): 12–7, 2002.

87. Stumme, G., Maedche, A.: FCA-MERGE: Bottom-Up Merging of Ontolo-
gies. Seventeenth International Joint Conference on Artificial Intelligence
(IJCAI), Seattle, Washington, 2001.

88. Swoogle: Semantic Web Search. University of Maryland Baltimore County
(UMBC), 2006. Available in:

 http://swoogle.umbc.edu
89. Tansalarak, N., Claypool, K.T.: XCM: A Component Ontology. Workshop

on Ontologies as Software Engineering Artifacts (OOPSLA), Vancouver,
Canada, 24–28 October 2004.

90. Tautz, C., Von Wangenheim, C.: REFSENO: A Representation Formalism
for Software Engineering Ontologies. Fraunhofer IESE-Report No.
015.98/E, version 1.1, October 20, 1998.

91. Uschold, M., Gruninger, M.: Ontologies: Principles, Methods and Applica-
tions. Knowledge Engineering Review, 11(2): 93–15, 1996.

102 Francisco Ruiz, José R. Hilera

92. Uschold, M., Jasper, R.: A Framework for Understanding and Classifying
Ontology Applications. In Proceedings of IJCAI Workshop on Ontologies
and Problem-Solving Methods, August 1999. Visited on January 8, 2006 in:

 http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-18/
93. Uschold, M., King, M.: Towards a Methodology for Building Ontologies. In

Proceedings of the Workshop on Basic Issues in Knowledge Sharing (hosts
within IJCAI), 1995.

94. Van Heijst, G., Schereiber, A.T., Wielinga, B.J.: Using Explicit Ontologies
in KBS Development. International Journal of Human and Computer Stud-
ies, 46(2/3), 1997, pp. 293–310.

95. Vieira, T.A., Casanova, M.A.: Flexible Workflow Execution through an On-
tology-based Approach. Workshop on Ontologies as Software Engineering
Artifacts (OOPSLA), Vancouver, Canada, 24–28 October 2004.

96. Vizcaíno, A., Anquetil, N., Oliveira, K., Ruiz, F., Piattini, M.: Merging
Software Maintenance Ontologies: Our Experience. First Workshop on On-
tology, Conceptualizations and Epistemology for Software and Systems En-
gineering (ONTOSE), Alcala de Henares, Spain, 9–10 June 2005.

97. Wang, X., Chan, C.W.: Ontology Modeling Using UML. 7th International
Conference on Object Oriented Information Systems (OOIS), Calgary, Can-
ada, pp. 59–68, 2001.

98. Wang, X., Chan, C., Hamilton, H.: Design of knowledge-based systems with
the ontology-domain-system approach. In Proceedings of SEKE 2002, pp.
233–236.

99. World Wide Web Consortium (W3C): Ontology Driven Architectures and
Potential Uses of the Semantic Web in Systems and Software Engineering.
Draft 2006/02/11. Available in:

 http://www.w3.org/2001/sw/BestPractices/SE/ODA/
100. Wouters, B., Deridder, D., Van Paesschen, E.: The use of ontologies as a

backbone for use case management. European Conference on Object-
Oriented Programming (ECOOP), 2000.

101. Zimmer, C., Rauschmayer, A.: Tuna: Ontology-Based Source Code Naviga-
tion and Annotation. Workshop on Ontologies as Software Engineering Ar-
tifacts (OOPSLA), Vancouver, Canada, 24–28 October 2004.

