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Abstract

The interplay between Quantitative Structure-Activity Relationships 
(QSARs) and partial order ranking appears as an advantageous method to 
assess and prioritize chemical substances, e.g., due to their potential envi-
ronmental hazard taking several parameters simultaneously into account. 
Especially the application of so-called ‘noise-deficient’ descriptors is em-
phasized in order to eliminate the natural fluctuation of experimental as 
well as simple QSAR derived data. Further partial order ranking appears as 
an attractive alternative to conventional QSAR methods that typically rely 
on the application of stochastic methods. The latter use of partial order 
ranking may be applicable both to direct QSARs as well to solving inverse 
QSAR problems. The present chapter summarizes the various types of in-
terplay between of partial order ranking and QSAR modelling. 

Introduction

The number of chemical substances that are in use and constitute a poten-
tial risk to the environment exceeds today 100.000 (EEA 1998). Even with 
the proposed new system for registration, evaluation and authorisation of 
chemicals, REACH, the number of chemicals that will be included in this 
scheme will be approx. 30.000 (COM 2001; COM 2003). It is obvious that 
it is not practically possible experimentally to generate all necessary input 
for the risk assessment of these compounds. Information concerning the 
fate and effects of these substances in the environment is needed and may 
be obtained through modelling, e.g., by comparison with structurally re-
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lated, well-investigated compounds. Thus, within the REACH scheme a 
widespread use of QSAR modelling to retrieve physico-chemical and toxi-
cological data are foreseen.  

A priori the evaluation and prioritization of chemical substances can be 
based on experimental or QSAR generated data alone. This would give 
rise to a classification of the substances based on fulfilment of single crite-
ria only. However, typically it is desirable to include a series of criteria si-
multaneously in the assessment. Thus, to further qualify the assessment the 
substances may be ranked by a simultaneous inclusion of a series of crite-
ria such as, e.g., biodegradation, bioaccumulation and toxicity hereby dis-
closing those substances that on a cumulative basis appear to be the envi-
ronmentally more problematic. In this respect partial order ranking appears 
as a highly attractive tool (Brüggemann et al. 2001b; Carlsen et al. 2001; 
Carlsen et al. 2002; Davey and Priestley 1990). 

To further elucidate the mutual ranking of the substances linear exten-
sions may be brought into play, leading to the most probably linear (abso-
lute) rank of the substances under investigation (Brüggemann et al. 2001a; 
Davey and Priestley 1990; Fishburn 1974; Graham 1982). Further the con-
cept of average rank (Brüggemann et al. 2004) can be applied. 

Partial order techniques may also be applied directly as QSAR method 
as illustrated by the use of the QSAR descriptors as input to the ranking 
(Carlsen et al. 2001; Carlsen et al. 2002). On the other hand partial order 
ranking based on QSAR descriptors may also be applied as “inverse” 
QSARs, i.e. to disclose specific characteristics of new substances to be 
synthesized, e.g., as substitutes for environmentally harmful counterparts 
(Brüggemann et al. 2001b) or simply to give a given chemical compound 
an identity by comparing specific characteristics to those of other, possibly 
less harmful substances (Carlsen 2004). 

Methods

Obviously the successful interplay between QSARs and partial order rank-
ing depends on the single techniques. Thus, in the following QSARs and 
partial order ranking, including linear extensions will be shortly presented. 
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QSARs 

The basic concept of QSARs can in its simplest form be expressed as the 
development of correlations between a given physico-chemical property or 
biological activity (endpoint), P, and a set of parameters (descriptors), Di,
that are inherent characteristics for the compounds under investigation 

P = f(Di)                   (1)

The properties (endpoints), P that has been subjected to QSAR model-
ling comprises physico-chemical properties as well as biological activities.  

In general models that describe/calculate key properties of chemical 
compounds are composed of three types of inherent characteristics of the 
molecule, i.e. structural, electronic and hydrophobic characteristics. De-
pending on the actual model few or many of these descriptors may be 
taken into account. Thus, eqn. 1 can be rewritten as 

P = f(Dstructural, Delectronic, Dhydrophobic, Dx) + e               (2)

The descriptors reflecting structural characteristics may e.g. be element 
of the actual composition and 3-dimensional configuration of the mole-
cule, whereas descriptors reflecting the electronic characteristics may e.g.
be charge densities, dipole moment etc. The descriptors reflecting the hy-
drophobic characteristics are related to the distribution of the compound 
between a biological, hydrophobic phase, and an aqueous phase. The 
fourth type of characteristics, Dx, accounts for possible underlying charac-
teristics that may be known or unknown, such as environmental or experi-
mental parameters as, e.g., temperature, salt content etc. The data may of-
ten be associated with a certain amount of systematic and non-quantifiable 
variability in combination with uncertainties. These unknown variations 
are expressed as "noise". Thus, the parameter, e, account for possible noise 
in the system, i.e., the variation in the property that cannot be explained by 
the model. 

In principle all types of QSAR models can be used to generate descrip-
tors for subsequent use in partial order ranking, i.e. commercially available 
generally applicable QSARs as well as more specialized custom made 
QSARs. However, as partial order ranking due to its inherent nature only 
focusing on the relation “ ” (vide infra) may be hampered by random fluc-
tuations in the descriptors, the so-called ‘noise-deficient’ QSARs (Carlsen 
2004, Carlsen 2005a; Carlsen 2005b) advantageously can be applied. 
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Thus, recent studies on organophosphates appear as an illustrative example 
on the application of ‘noise-deficient’ QSAR-derived endpoints as input 
for a subsequent partial order ranking. The descriptors are generated 
through QSAR modelling, the EPI Suite being the primary tool (Carlsen 
2005a, Carlsen 2005b; Carlsen 2004)1.

Based on the EPI generated values for solubility (log Sol), octanol-water 
partitioning (log KOW), vapour pressure (log VP) and Henry’s Law con-
stants (log HLC) new linear QSAR models are build by estimating the re-
lationships between the EPI generated data and available experimental data 
for up to 65 organophosphor insecticides, the general formula for the de-
scriptors, Di, to be used being 

Di = ai·DEPI + bi                  (3) 

DEPI being the EPI generated descriptor value and ai and bi being con-
stants. The log KOW values generated in this way are subsequently used to 
generate log BCF values according to the Connell formula (Connell and 
Hawker 1988) 

log BCF = 6.9·10-3· (log Kow)4 – 1.85·10-1· (log Kow)3

+ 1.55· (log Kow)2 – 4.18·log Kow + 4.72               (4) 

The model was somewhat modified (Carlsen 2005a, Carlsen 2005b; 
Carlsen 2004). Thus, a linear decrease of log BCF with log KOW was as-
sumed in the range 1 < log KOW < 2.33, the log BCF = 0.5 for log KOW  1, 
the latter value being in accordance with BCFWin (EPI 2000). 

Subsequently, these QSAR generated endpoints may be applied for a 
partial order ranking of the substances using two or more of the endpoints 
as descriptors for the ranking exercise. 

                                                     
1  The EPI Suite is a collection of QSAR models for physical chemical and toxic-

ity endpoint developed by the EPA’s office of Pollution Prevention Toxics and 
Syracuse Research Corporation (EPI 2000). 
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Partial Order Ranking 

The theory of partial order ranking is presented elsewhere (Davey and 
Priestley 1990) and application in relation to QSAR is presented in previ-
ous papers (Carlsen et al. 2001; Brüggemann et al. 2001b; Carlsen et al. 
2002; Carlsen and Walker 2003). In brief, Partial Order Ranking is a sim-
ple principle, which a priori includes “ ” as the only mathematical rela-
tion. If a system is considered, which can be described by a series of de-
scriptors pi, a given compound A, characterized by the descriptors pi(A)
can be compared to another compound B, characterized by the descriptors 
pi(B), through comparison of the single descriptors, respectively. Thus, 
compound A will be ranked higher than compound B, i.e., B  A, if at least 
one descriptor for A is higher than the corresponding descriptor for B and 
no descriptor for A is lower than the corresponding descriptor for B. If, on 
the other hand, pi(A) > pi(B) for descriptor i and pj(A) < pj(B) for descrip-
tor j, A and B will be denoted incomparable. In mathematical terms this 
can be expressed as 

B  A pi(B) pi(A) for all i                (5) 

Obviously, if all descriptors for A are equal to the corresponding de-
scriptors for B, i.e., pi(B) = pi(A) for all i, the two compounds will have 
identical rank and will be considered as equivalent.  It further follows that 
if A  B and B  C then A  C. If no rank can be established between A 
and B these compounds are denoted as incomparable, i.e., they cannot be 
assigned a mutual order. 

In partial order ranking – in contrast to standard multidimensional statis-
tical analysis - neither assumptions about linearity nor any assumptions 
about distribution properties are made. In this way the partial order ranking 
can be considered as a non-parametric method. Thus, there is no prefer-
ence among the descriptors. However, due to the simple mathematics out-
lined above, it is obvious that the method a priori is rather sensitive to 
noise, since even minor fluctuations in the descriptor values may lead to 
non-comparability or reversed ordering. An approach how to handle loss 
of information by using an ordinal in stead of a matrix can also be found in 
the chapter by Pavan et al., see p. 181). 

In partial order ranking – in contrast to standard multidimensional statis-
tical analysis - neither assumptions about linearity nor any assumptions 
about distribution properties are made. Partial order ranking may be con-
sidered as a parameter-free method. Thus, there is no preference among the 
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descriptors. A main point is that all descriptors have to the same designa-
tions, i.e., “high” and “low” (cf. p. 70). This means that some descriptors 
may be multiplied by –1 in order to achieve identical designations. As an 
example bioaccumulation and toxicity can be mentioned. In the case of 
bioaccumulation, the higher the number the more problematic the sub-
stance, whereas in the case of toxicity, the lower the figure the more toxic 
the substance. Thus, in order to secure identical directions of the two de-
scriptors, one of them, e.g., the toxicity figures, has to be multiplied by –1. 
Consequently, both in the case of bioaccumulation and in the case of toxic-
ity higher figures will now correspond to more hazardous compounds. 

The graphical representation of the partial ordering is often given in a 
so-called Hasse diagram (Hasse 1952; Halfon and Reggiani 1986; Brüg-
gemann et al. 2001a; Brüggemann et al. 1995). In practice the partial order 
rankings are done using the WHASSE software (Brüggemann et al. 1995). 

Linear Extensions 

The number of incomparable elements in the partial ordering may obvi-
ously constitute a limitation in the attempt to rank e.g. a series of chemical 
substances based on their potential environmental or human health hazard. 
To a certain extent this problem can be remedied through the application 
of the so-called linear extensions of the partial order ranking (Fishburn, 
1974; Graham 1982). A linear extension is a total order, where all compa-
rabilities of the partial order are reproduced (Davey and Priestley 1990; 
Brüggemann et al. 2001a). Due to the incomparisons in the partial order 
ranking, a number of possible linear extensions corresponds to one partial 
order. If all possible linear extensions are found, a ranking probability (cf. 
p. 99) can be calculated, i.e., based on the linear extensions the probability 
that a certain compound have a certain absolute rank can be derived. If all 
possible linear extensions are found it is possible to calculate the averaged 
ranks (cf. p. 86) of the single elements in a partially ordered set (Winkler 
1982; Winkler 1983). 

Averaged Ranks 

The average rank is simply the average of the ranks in all the linear exten-
sions. On this basis the most probably rank for each element can be ob-
tained leading to the most probably linear rank of the substances studied. 
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The generation of the averaged rank of the single compounds in the 
Hasse diagram is obtained applying the simple relation recently reported 
by Brüggemann et al. (2004) (see also p. 86). The averaged rank of a spe-
cific compound, ci, can be obtained by the simple relation 

Rkav = (N+1) - (S+1)·(N+1)/(N+1-U)               (6) 

where N is the number of elements in the diagram, S the number of succes-
sors to ci and U the number of elements being incomparable to ci (Brüg-
gemann et al. 2004), counting from top to bottom. 

Partial Order based QSARs 

QSAR - Quantitative Structure Activity Relationships - in general terms 
denotes models, which, based on the variation in structural and/or elec-
tronic features in series of selected, molecules, describe variation in a 
given end-point of these molecules. These end-points may be, e.g., bio-
logical effects or physical-chemical parameters, which experimentally can 
be verified. Based on the developed QSAR model end-points of new, 
structurally related compounds, hitherto not being experimentally studied, 
may be predicted. 

Since the variation in, e.g., biological effects or physical-chemical pa-
rameters typically cannot be described by one single descriptor QSAR 
modelling relies heavily on statistical methods. Further, since QSAR mod-
elling may often involve seeking unknown relations between several de-
scriptors and a given end-point, traditional statistical approaches such as 
simple multiple linear regression (MLR) may not be the ideal choice al-
though widely used. Thus, development of QSAR models are often suc-
cessfully based on multivariate projection methods, such as principal com-
ponent analysis (PCA) followed by MLR using the principal components 
as descriptors or, more common, partial least square (PLS) projection, as 
the modelling in many cases can be described by linearization of complex 
unknown relations.  

Partial Order Ranking (Brüggemann et al. 1995), which from a mathe-
matical point of view constitute extremely simple, appears as an attractive 
and operationally simple alternative to the above rather demanding statisti-
cal method. 
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The partial order ranking method allows ranking of series of well inves-
tigated compounds, e.g., octanol-water distribution coefficients based on 
structural and/or electronic parameters of the compounds. The mutual 
ranking of the compounds can then be compared to the ranking based on 
the experimentally derived values for octanol-water distribution coeffi-
cients. If the ranking model resembles the experimental ranking of the pa-
rameters under investigation, the model is validated and other compounds 
not being experimentally investigated, can be assigned a rank in the model 
and hereby obtain an identity based on the known compounds, see how-
ever chapter Klein and Ivanciuc, p. 35. 

Direct QSARs 

An example of the possible applicability of partial order ranking as a tool 
for QSAR modelling has been reported by Carlsen et al. (2002). Thus, a 
series of non-hydrogen bond donor molecules, which have previously been 
studied using statistically based QSAR’s in order to verify the applicability 
of the partial order ranking method to a well-known system were selected. 
Thus, octanol-water distribution coefficients (Kamlet et al. 1988) and 
solubilities (Kamlet et al. 1987) were retrieved for a group of approx. 40 
compounds exhibiting rather different structural and electronic characteris-
tics. The experimental data was closely mimicked through a Linear Solva-
tion Energy Relationship (LSER) approach (Carlsen 1999; Kamlet et al. 
1977; Kamlet et al. 1988), the corresponding statistical approach being 
MLR. Carlsen et al. (2002) successfully applied the same molecular de-
scriptors as the LSER studies, i.e., the molecular volume (Vi/100), the po-
larity ( *) and the hydrogen bond basicity (ß) (Kamlet et al. 1987; Kamlet 
et al., 1988) as demonstrated using the same basis set of compounds. 

Contrary to the method reported by Pavan et al. (see p. 181) giving the 
results as intervals, the approach by Carlsen et al. (2002) suggested spe-
cific values. Thus, the model derived values for a given compound X (Val-
ueX) was obtained by simple arithmetic means between the lowest value of 
the comparable compounds ranked above X (minAbove) and the highest 
value of the comparable compounds ranked below X (maxBelow).

ValueX = (minAbove + maxBelow)/2                (7) 

The predicted values are compared to the corresponding experimentally 
derived values as depicted in Fig. 1. 
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It is immediately noted (Fig. 1) that in the partial order ranking based 
models solubilities reasonably well reproduce the experimentally derived 
values. However, it should be noted that the actual distance between the 
minAbove and maxBelow elements is crucial. Thus, the larger the distance 
between these two values the larger the potential uncertainty in the predic-
tion (Carlsen et al. 2001). 

Fig. 1. Experimental vs. predicted solubilities 

Inverse QSARs 

Quantitative structure-activity relationships are often based on standard 
multidimensional statistical analyses and applying sophisticated local and 
global molecular descriptors, assuming linearity as well as implying nor-
mal distribution behaviour of the latter. Thus, the aim is to develop a tool 
helpful to define a molecule or a class of molecules that fulfils predes-
cribed properties, i.e. an inverse QSAR approach. However, if QSARs 
based on highly sophisticated descriptors are used for this purpose, the 
structure of potential candidates and thus the actual synthetic pathways 
may be hard to derive. On the other hand, descriptors, from which the syn-
thesis recipe can be easily derived, seem appropriate to be included in such 
exercises. Unfortunately, if descriptors simple enough to be useful for de-
fining syntheses recipes of chemicals are used, the accuracy of an arithme-
tic expression may fail. Brüggemann et al. (2001b) suggested a method, 
based on the very simple elements of the theory of partially ordered sets, to 
find a qualitative basis for the relationship between such fairly descriptors 
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on the one side and a series of ecotoxicological properties, on the other 
side. The obvious advantage of the partial order ranking method has to be 
sought for in the fact that this method does not assume neither linearity nor 
normal distribution of the descriptors. 

In the study of Brüggemann et al. (2001b) a series of synthesis specific 
descriptors, i.e. simple structural descriptors such as the number of specific 
atoms and the number of specific bonds were included in the analyses 
along with graph theoretical and quantum chemical descriptors. On this 
basis a 6-step procedure was developed to solve inverse QSAR problems. 

Although the approach a priori appears as an attractive alternative more 
chemicals have to be considered in order further to develop the technique. 
Assuming this lead to more comparabilities and more neighbouring objects 
for a specific chemical, then the property space stretched by the order theo-
retical environment is smaller, which may lead to higher accuracy for es-
timation of toxicity data for a "new" chemical. 

Giving molecules an identity 

The basic idea of using partial order ranking for giving molecules an iden-
tity is illustrated in Fig. 2. Thus, let us assume that a suite of 10 com-
pounds has to be evaluated and that the evaluation should be based on 3 
pre-selected criteria, e.g., persistence, bioaccumulation and toxicity. Let 
the resulting Hasse diagram be the one depicted in Fig. 2A. If we apply the 
3 descriptors representing biodegradation, bioaccumulation and toxicity, 
respectively, so the more persistent, the more bioaccumulating and the 
more toxic a substance would be the higher in the diagram it would be 
found, Fig. 2A discloses that the compounds in the top level, i.e., com-
pounds 1, 3, 4, 7 and 8 on a cumulative basis can be classified as the envi-
ronmentally more problematic of the 10 compounds studied with respect to 
their PBT characteristics, whereas compound 10 that a found in the bottom 
of the diagram is the less hazardous. 

Subsequently we can introduce compounds solely characterized by 
QSAR derived data in order to give this new compound, X, an identity, 
e.g., in an attempt to elucidate the environmental impact of X. Adopting 
the above discussed 10 compounds and the corresponding Hasse diagram 
(Fig. 2A) we introduced the compound X. The revised Hasse diagram, 
now including 11 compounds is visualized in Fig. 2B. It is immediately 
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disclosed that compound X has now obtained an identity in comparison to 
the originally well-characterized compounds, as it is evaluated as less envi-
ronmentally harmful than compounds 4 and 7, but more harmful than 
compound 10. Thus, through the partial order ranking the compound, X, 
has obtained an identity in the scenario with regard to its potential envi-
ronmental impact. 

Fig. 2. Illustrative Hasse diagram of A: 10 compounds using 3 descriptors and B: 
the same 10 compounds plus 1 new compound X 

Hasse diagrams are characterized to the presence of a number of com-
parisons. The actual number of incomparisons is roughly speaking a result 
of interplay between the number of compounds and the number of descrip-
tors (Sørensen et al. 2000). Thus, increasing the number of descriptors 
will, for the same number of compounds, increase the number of incom-
parisons.
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A priori the incomparisons may turn out as an Achilles' heel of the par-
tial order ranking method. However, the adoption of the linear extension 
approach apparently remedies this, at least to a certain extent. 

Turning back to the model diagram (Fig. 2B) it can be noted that e.g. the 
compounds 4 and 7 are incomparable, i.e. looking just for these two com-
pounds it cannot from the Hasse diagram be concluded which of them are 
the more hazardous. However, bringing the linear extensions into play 
gives us the probability for these two compounds to have a certain absolute 
rank. In Fig. 3A the probability distribution for the compounds 4 and 7 for 
the possible absolute ranks is visualized. It is easily seen that the probabil-
ity for finding compound 4 at rank 1 or 2 are higher than for compound 7 
(Rank 1 is equal to top rank). On the other hand, compound 7 is more 
probable to be found at rank 4-7 than compound 4. On this basis we can 
conclude that comparing compounds 4 and 7, the most probable absolute 
ranking will place compound 4 above compound 7. In Fig. 3B the prob-
ability distribution for compound 10 is shown. The probabilities of finding 
compound 10 at rank 11 are approx. 70 % and at rank 10 approx. 30 %. 
The incomparability between compounds 10 and 2 accounts for this since 
compound 2 has an approx. 30 % probability to be occupy rank 11. 

The 'new' compound, X, introduced in the diagram displayed in Fig. 2B 
apparently is comparable only with compound 4, 7 and 10 and thus incom-
parable with the remaining 7 compounds in the scenario. The high number 
of incomparisons immediately indicates the presence of a relative broad 
probability distribution for compound X. This is nicely demonstrated in 
Fig. 4 displaying the probability distribution of compound X for being 
found at specific absolute ranks. 

The probability distribution of compound X in relation to compounds 4, 
7, 10 and X is visualized in Fig. 5. It must in this connection be remem-
bered that although the probability distribution of compound X overlaps 
those of compounds 4, 7 and 10, compound X must be located between 
compounds 4 and 7 and compound 10 (cf. Fig. 2B). 

To further elucidate how the single compounds under investigation can 
be assumed to behave on a combined basis, e.g. taking all descriptors si-
multaneously into account the concept of average rank (Carlsen 2005a; 
Carlsen 2005b; Carlsen 2004; Brüggemann et al. 2004; Lerche et al. 2002) 
can be adopted. In Table 1 the averaged rank calculated according to eqn. 
6 is given. 
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Fig. 3. Probability distribution of A: compounds 4 and 7 and B: compound 10 to 
occupy specific absolute ranks (rank 1 and 11 is top and bottom rank respectively) 

Thus, from the above discussion on the probabilities for specific ranks, 
it was concluded that the new compound X must be located between the 
compounds 4 and 7 and compound 10 (cf. Fig. 2B), which is further sub-
stantiated by the figures in Table 1. Assuming that if the averaged ranks, 
Rkav, of two compounds are close, the two compounds will on an average 
basis display similar characteristics as being determined by the set of de-
scriptors applied, the analysis of average rank discloses, cf. Table 1, that 
compounds X most closely resembles compounds 6 and 9. Consequently, 
compound X has now obtained an identity compared to the basis set of 
compounds, i.e., compounds 1-10. 
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Fig. 4. Probability distribution of compound X to occupy specific absolute ranks 

Fig. 5. Probability distribution of compound X in relation to compounds 4, 7 and 
10 to occupy specific absolute ranks 
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Table 1. Averaged ranks of the 11 compounds included in the Hasse diagram dis-
played in Figure 2B

Compound No. Averaged Rank (Rkav)
1 2.4 
2 9.0 
3 4.0 
4 1.7 
5 6.0 
6 8.0 
7 2.0 
8 2.4 
9 8.0 
10 10.9 
X 7.2 

Conclusions and Outlook 

Partial order ranking and QSAR modelling supplement each other and 
constitute an effective tool in various areas of chemical sciences. Thus, the 
interplay between QSAR and partial order ranking constitute an effective 
decision support tool to assess the chemical substances, e.g. in relation to 
their potential environmental hazard. Thus, the combined application of 
QSAR modelling and partial order ranking offers the possibility to assess a 
large number of chemicals based on several parameters, such as, e.g., per-
sistence, bioaccumulation and toxicity simultaneously and through this ef-
fectively disclose the environmentally more problematic substances that 
requires immediate attention. Thus, this decision support tool may well 
find extended application in connection with the new proposed chemical 
legislation, i.e., REACH, within the European Union. It is in this connec-
tion worthwhile to note that also economic parameters may be included in 
the partial order ranking analyses. 

The QSAR-partial order ranking system further appears as an appropri-
ate tool to give specific molecules an identity in relation to others and thus 
constitute as a support tool in the development of less hazardous substi-
tutes to acknowledged harmful substances. In this connection partial order 
ranking potentially also constitute a rather strong tool to solve inverse 
QSAR problems, e.g., to develop suitable synthetic pathways for new sub-
stances.
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The direct application of partial order ranking as QSAR modelling tool 
provides an attractive alternative to conventional methods, as partial order 
ranking is a parameter free method. The predicting ability of the partial or-
der models is acceptable and the technique may accommodate otherwise 
non-comparable descriptors. However, further improvement of the preci-
sion of the models is desirable (cf. also Pavan et al., p. 181). 
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