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Abstract

The first part of this chapter gives a detailed introduction to partial order 
ranking and Hasse Diagram Technique (HDT). Thus, the construction of 
Hasse diagrams is elucidated as is the different concepts associated with 
the diagrams. The analysis of Hasse diagrams is disclosed including struc-
tural analysis, dimension analysis and sensitivity analysis. Further the con-
cept of linear extensions is introduced including ranking probability and 
averaged rank. The evaluation of sampling sites is, in the second part of 
the chapter, used as an illustrative example of the advantageous use of par-
tial order ranking and Hasse Diagram Technique.  

When a ranking of some objects (chemicals, geographical sites, river 
sections etc.) by a multicriteria analysis is of concern, it is often difficult to 
find a common scale among the criteria and therefore even the simple sort-
ing process is performed by applying additional constraints, just to get a 
ranking index. However, such additional constraints, often arising from 
normative considerations are controversial. The theory of partially ordered 
sets and its graphical representation (Hasse diagrams) does not need such 
additional information just to sort the objects.  

Here, the approach of using partially ordered sets is described by apply-
ing it to a battery of tests on sediments of the Lake Ontario. In our analysis 
we found: (1) the dimension analysis of partially ordered sets suggests that 
there is a considerable redundancy with respect to ranking. The partial 
ranking of the sediment sites can be visualized within a two-dimensional 
grid. (2) Information, obtained from the structure of the Hasse diagram: 
For example six classes of sediment sites have high priority, each class ex-
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hibits a different pattern of results. (3) The sensitivity analysis identifies 
one test as most important, namely the test for Fecal Coli-
forms/Escherichia coli. This means that the ranking of samples is heavily 
influenced by the results of this specific test.

Introduction

Overview 

In the present chapter an alternative way of analysing objects, which are 
characterized by several quantities is presented. Hence, instead of examin-
ing the variance (for example leading to principal component analysis) or 
the distances among objects (for example leading to cluster analysis), we 
focus on the use of partial ordering in ranking. An important aspect within 
the concept of partial ordering is the visualization by Hasse diagrams.  
More specifically, we study  

the system of comparabilities and incomparabilities between objects 
which arises, if an order relation between them is defined 
how to set priorities and to detect the pattern which identify objects of 
high priority 
how to define logical non-contradictory sequences and 
how the selection of criteria influences the ranking of a set of objects.  

Beyond this we analyse  
the role of the structure of the Hasse diagram, i.e. levels, hierarchies, 
articulation points 
the role of order preserving maps among partial orders and especially 
those order preserving maps whose results are linear orders and  
how we can derive an averaged rank, probability distributions from 
them and how structural properties of the Hasse diagram can be de-
tected in probability distributions. 

Further is discussed, the important concept of 
poset dimension, and 
latent variables are related to partial orders.  
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Partial order rankings may advantageously be visualized through Hasse 
diagrams. The program „WHASSE“ allows the construction of Hasse dia-
grams and provides several tools, which helps to analyse partially ordered 
sets (Brüggemann et al. 1999 a). A historical and personal view about the 
development of the programs around partial order is given by Halfon see p. 
385. A matrix W is introduced, that quantify the importance of the single 
criteria on the eventual ranking. Additional to the contributions in this 
book, several textbooks and monographs and journal's publications are 
recommended to the reader (see reference list: "Introductory references", 
p. 393).  

Partial order 

Introductory remarks 

Hasse diagrams show the relations of partially ordered sets (posets). In the 
following is explained why partial order is a useful concept on ranking. 
Ordering is a logical way to give objects a structure: If for example chemi-
cal substances are characterized by their persistence then these substances 
can be sorted according to the increasing persistence, the sequence of sub-
stances corresponds to one characteristic number, namely the persistence. 
Often however, a single number is not sufficient to characterize objects. 
For example not only the persistence but also the bioaccumulation of a 
chemical substance may be important to explain the environmental behav-
iour of the substance. For further examples see contributions of this book. 

Common to these examples is that each object (geographical sites, 
waste disposal sites, databanks, chemicals, managing options) is character-
ized by more than one quantity. Objects that are characterized by several 
quantities (we call them “attributes“ -see later for details-) often cannot be 
ordered, because there are conflicts between their attributes. Metaphori-
cally we are talking of comparing apples and oranges. 

An example may help to understand this. We may have five objects {A, 
B, C, D, E} characterized by e.g. their environmental persistence „P“ and 
by their ability to bioaccumulate „B“. As often is the case both attributes 
do not behave parallel, i.e. it is not automatically given that a persistent 
substance also is the most bioaccumulating. 
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We can arrange the five substances according to P or B (Fig. 1): 

Fig. 1. "Permutation diagram": Two sequences of objects according to two differ-
ent characteristics. 

The type of diagram in Fig. 1 is called a permutation diagram (Urrutia 
1989). It shows that there are inversions between the two sequences. Some 
objects will mutually exchange their positions in dependence which quan-
tity is used to define the sequence (for example C, E). Some other objects 
do not change their relationships to others, if the sequence defining quan-
tity (here: persistence or bioaccumulation) is changed (For example: A < D 
or E < B independent whether the persistence or the bioaccumulation is se-
lected; other examples can also be found). Obviously some „rest of order“ 
remains, if both quantities are considered at the same time and this fact 
motivate the term „partial order“. Within the given example of five objects 
partial ordering arises because more than one quantity is used to character-
ize the single substances. This is often the case, where the complexity of 
nature prevents the use of a single ranking index (therefore many applica-
tions can be found in biology, ecology, ecotoxicology, and chemistry as 
disclosed through various chapters of this book. Partial order is further a 
typical tool within operation research, many decision support systems are 
based -at least implicitly - on partial order. For example in versions of 
ELECTRE (Roy 1972, 1990) or PROMETHEE (Brans & Vincke 1985, 
Brans et al. 1986, Heinrich, 2001) a partial order is at least an interim step 
(see also chapter by Brüggemann et al., p. 237). An access to recent litera-
ture may also be found in (Colorni et al. 2001, Lerche et al. 2002). 

Obviously, the concept of partially ordered sets appears rather useful in 
environmental sciences. The „usual“ order, namely the order in which each 
object can be compared with each other, can be considered as a special 
case of partial order, i.e., the term "linear" or "total" order is used. 
Permutation diagrams become confusing if many objects are included and 
especially if more than two attributes characterize the objects. In such 
cases a corresponding number of sequences may arise and for each pair of 

B:    A < E  <  B   <   C < D 

P:    A  <  C  < E < B   <  D 
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sequences a permutation diagram can be drawn. Instead of this trouble-
some procedure which leads to m·(m-1)/2 pairs of permutation diagrams 
(m attributes used) the technique of Hasse diagrams provides a useful tool 
for visualization. From the permutation diagram (Fig. 1) it can be con-
cluded that A < C < D and A < E < B < D, respectively, whereas we can-
not say anything concerning the relations between C and E and B, respec-
tively, if both persistence and bioaccumulation are taken into account. 
Thus, the partially ordered set of the five objects (cf. Fig. 1) is visualized 
in a "Hasse diagram" (Fig. 2). 

Fig. 2. The Hasse diagram as an alternative to the permutation diagram shown in 
Fig. 1 

The name "Hasse diagram" becomes popular by the German mathemati-
cian Helmut Hasse, who worked in Marburg, Berlin and Hamburg, see 
also chapter by Halfon, p. 385. Often this kind of diagram is simply called 
"line diagram" or even only "the diagram" (Rival 1985b).

The rationale of using Hasse diagrams 

The concept of partial order is described in the chapter of El-Basil, p. 3. 
Therefore we concentrate ourselves on the specific order relation we are 
using here, which is known as "Hasse Diagram Technique". In this tech-
nique we specifically consider any component of a sequence separately, as 
it bears its own valuable information with respect to the evaluation. Tech-
niques, motivated by the work of Muirhead 1900, 1906 and Karamata, see 
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Beckenbach & Bellmann 1971, or by Young diagrams (Ruch 1975, Ruch 
& Gutman 1979) may be useful too. However, applying these techniques, 
the components of the sequence, i.e. the attributes would loose their indi-
vidual meaning, which often is disadvantageous. (with respect to Young 
diagrams see the chapters by El-Basil, p. 3 and Seitz, p. 367.) 

The basis of the Hasse Diagram Technique (HDT) is that we can per-
form a ranking without the use of a single ordering index (called a "rank-
ing index"), i.e. we rank objects by maintaining all information about 
them. If an ordering index were used to force the object into a linear order, 
then information is lost. For example, an object might be ranked higher ac-
cording to one criterion but lower according to another. Two objects might 
not be ordered unambiguously because their data are "contradictory" to 
each other. This ambiguity is not immediately evident when we use a rank-
ing index, still worse: by using a ranking index the two attribute can com-
pensate each other. That means a "bad" value in one attribute can be com-
pensated by a "good" value in another one. Metaphorically speaking you 
can put one hand in boiling water and one hand in ice water. Discomfort-
ing? Yes! However, on an average basis you should feel quite comfort-
able! Such kinds of potential compensations or conflicts among attributes 
are immediately evident in a Hasse diagram.  

Many problems are governed simply by comparisons, i.e. by the analy-
sis of the order-relation. Typical examples can be found in textbooks of 
chemistry, when concepts like electronegativity, hardness or softness of 
compounds, etc is discussed. Many other problems are reducible to an or-
der - relation. Often for example objects may be characterized by a binary 
bit pattern, representing whether a property is given or not. For example 
existence or non-existence of chemical functional groups lead to a binary 
bit pattern, for which a partial order can be defined (see for an example the 
chapter by Klein & Ivanciuc, p. 35). Partial orders help to analyse Quanti-
tative Structure Activity Relationships (Randi  2002, Brüggemann et al. 
2001), see also chapters by Carlsen, p. 163 and Pavan et al., p. 181 and 
references therein). Other examples are biomarker responses on certain 
stress factors in ecosystems (see for example, Brüggemann et al. 1995a, 
1995b) and the analysis of data sources, see chapter by Voigt and Brügge-
mann, p. 327 and references therein. 

To explain partial order and its visualization by Hasse diagrams, some 
useful theoretical notations are given in the following section. 
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Prerequisites

Criteria comprise both quantitative and qualitative properties. Of-
ten it is useful to define a criteria hierarchy: Starting with a general 
criterion, which is hardly quantifiable, one looks for subcriteria to 
specify the general one, the subcriteria in turn may further speci-
fied, until a set of precise criteria is found, which may be quanti-
fied by attributes. 
Attributes are quantitative, measurable data. We denote these at-
tributes as q1, q2,..., qm. It is useful to define the information basis 
of the evaluation, IB to be the set of these attributes:
IB = {q1,q2,...,qm}. Some authors denote attributes as descriptors or 
possibly parameters. These terms are used synonymously. 
A case is a subset of selected attributes, taken from the ground set 
of attributes, IB. The attributes are specific to the problem. Each 
case corresponds to exactly one Hasse diagram. Thus, a given set 
of attributes induces a Hasse diagram. More definitions will follow 
in the text as the need arises. 
An object is the item of interest that may be characterized by at-
tributes. Examples of objects can be chemical substances, or geo-
graphical sites (see chapter by Myers et al., p. 309), or strategies 
(see chapter by Simon et al., p. 221) etc. Objects are ranked 
graphically by Hasse diagrams (see for example Fig. 2). Generally 
the objects are considered to belong to a set "E". Therefore the ob-
jects are also often called "elements" and E is called a ground set
or object set. The ground set corresponding to the Hasse diagram 
in Fig. 2 is thus E = {A, B, C, D, E} (note: set E but element E). 
We assume that we have n elements of the set E.
Data are the numerical values corresponding to each criterion by 
which a given object is characterized.  
Equivalent objects in Hasse diagrams: Different objects that have 
the same data with respect to a given set of attributes. Equality 
with respect to a given set of attributes defines an equivalence re-
lation, “ ”. Objects having the same values of all their attributes 
form disjoint subsets of E, the equivalence classes. An equivalence 
class with only one object is called a singleton and is called trivial. 
The equivalence classes can be considered as elements of a set, the 
quotient set E/ . Usually the partial order is based on the quotient 
set and -if necessary- the equivalent elements are associated with 
that vertex, where a representative element out of the equivalence 



68      Brüggemann, R. and Carlsen, L. 

class is drawn. Examples will be given below. Further details, see 
Patil & Taillie 2004 or Brüggemann & Bartel 1999. 
The cardinality of a (finite) set is the number of elements of the 
set, denoted by card G for a set G.
Numerical representation of objects: Objects are considered to be 
elements of the object set E. Each object is characterized by attrib-
utes. We can create a table where the rows represent the objects 
and the columns the data of each object corresponding to the col-
umn-defining attribute 
Taken an element of E, the corresponding row consisting of the 
data of q1,...,qm is often called a tuple, and abbreviated by q.  
Attribute profile or pattern: If the order of attributes is fixed then 
the sequence of attribute values for a given object x can be thought 
of as visualized by a bar diagram.  This we have in mind when we 
are speaking of a profile or pattern. 

Further - more specific - terms are explained later. 

Graphs and Hasse diagrams 

The construction of Hasse diagrams:  
A set that has an order relation is called a partially ordered set (poset).

An order for a set, for example for the set E, is denoted by (E, ), the set E
often being called the ground set (of objects). As the application of partial 
order, presented here, is based on attributes, just IB influences the partial 
order. Therefore, we often write (E, IB). If the quotient set is used, then we 
write (E/ , IB).

Partially ordered sets can be visualized through Hasse diagrams, which 
are quite useful if not too many objects are included. Let a and b be two 
elements of the object set E. Each object is characterized by a set of attrib-
utes. The relation ‘ ‘ between a and b is valid, if and only if this relation 
holds for all attributes of a and b. In other words: a  b, if all components 
of the tuple of a are smaller or equal to the corresponding component of 
the tuple of b. With help of the notation qj(i) with i the index for any ele-
ment of E, and j as index for any attribute of IB we give a formula: 

 a, b E: a  b : if and only if qj(a)  qj(b), for all qj IB             (1) 

We call equation (1) the generality principle, because this equation de-
fines dominance of b over a if all properties of b confirm the -relation. 
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To illustrate the above, an example may be useful. Consider three objects 
a, b, c. They are characterized by two attributes, as Table 1 shows.  

Table 1. Fictitious example 

 q1 q2

a 1 1 
b 1 2 
c 2 1 

Obviously a < b and a < c, respectively. With respect to the first attribute:  
a = b and with respect to the second attribute: a < b. Therefore a < b. A 
similar argument holds for the a-c relation. Objects for which the -
relation holds are comparable to each other. Often it is useful to have a 
shorthand notation for comparable objects (without specifying the orienta-
tion). Thus, if a < b, or b < a, we write a  b.  

However, the relation  does not hold for the objects b and c, because 
with respect to attribute q1: b < c, and with respect to attribute q2: b > c. 
Hence, objects that cannot be compared with each other, like b, c are called 
incomparable. A shorthand notation to describe two incomparable objects 
is b || c.  

Cover relation:
If there is no element „x“ of E, for which a  x  b, x  a, b, a  b 

holds, then a is covered by b, or b covers a. Often the cover relation is re-
ferred to by its own symbol < . Obviously in our example a <  b and
a <  c, the corresponding graphical representation is given in Fig. 3. 

Fig. 3. Visualization of the order relation, induced by the data matrix, shown in 
Table 1. 

Partial orders can be visualized in different ways, see also Chapters 
written by El-Basil, p. 3 and Seitz, p. 367. An interesting variant can be 
found in the chapter by Myers et al., p. 309). Other presentations are dis-
cussed in Neggers & Kim 1998. In the present chapter, the construction of 
Hasse diagrams is explained according to the software WHASSE (Brüg-

a

b c 
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gemann et al. 1999 a) and is performed with the help of the cover relation 
as follows: 

1. E may be represented by a configuration of circles and with an 
identifier for the objects within and each circle is located in the 
two-dimensional plane. 

2. Note that the program WHASSE only displays a representative 
within the circle; other objects, having equal data tuples are shown 
in an extra field of the screen.

3. If a cover-relation holds, then a line between the corresponding ob-
ject-pair is drawn. The covering pair is oriented corresponding to 
the -relation.

4. The covered object in the -related pair is located at a lower posi-
tion on the page. (Alternatively we can, instead of the connecting 
line segment, draw an oriented arrow, beginning at the covering 
object and directed towards the covered object; in this case the lo-
cations in the two-dimensional plane of the Hasse diagram can be 
selected arbitrarily. In the practice it is more convenient to select 
the positions in the plane of the figure, according to the cover-
relation.) By this step the lines become an orientation, for example 
“good-bad” or “high-low”. See also in chapter by Helm, p. 291.  

5. Finally, not all line segments for which the - relation holds are to 
be drawn. Because of the logical rule of transitivity (which holds 
by definition for partial orders) lines corresponding to the pair x, z 
with x  y and y  z concluding x  z are omitted. They do not 
present a cover-relation. 

Fig. 4. The Hasse diagram of the example of Fig. 1 and Fig. 2, respectively, drawn 
by the program WHASSE 

In order to introduce further concepts another Hasse diagram is drawn 
(Fig. 5): 
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Fig. 5. Arbitrary Hasse diagram 

Elements, which are not covered by other elements, are called 
maximal elements, or -as done for example in the chapter by Carl-
sen and Walker, p. 153 simply as maximals. In Fig. 5 such ele-
ments are f, g, i. 
Elements that do not cover any other element are called minimal 
element, or simply minimals.
If there is only one maximal element, then this is also called a 
greatest element. In Fig. 5, there is no greatest element, however in 
Fig. 4 element D is a greatest element. 
If there is only one minimal element, then this is also called a least 
element. In Fig. 5, there is no least element, however in Fig. 4 
element A is a least element. 
If in a Hasse diagram there are parts that are not connected then 
these parts are called hierarchies. The suborders ({a, b, c, d, e, f, 
g}, ) and ({h, i}, ) are such hierarchies. 

Details of the construction of Hasse diagrams „by hand“ are explained 
by Halfon et al. 1989. There is a useful "four-point-program" how step-by-
step Hasse diagrams may be constructed (nevertheless quite tedious, if 
done by hand). See for a detailed description, (Voigt and Brüggemann, p. 
327). There are still many ways to draw a Hasse diagram and some mathe-
maticians are thinking about that point as art, Rival 1989. For example the 
program WHASSE would draw the Hasse diagram of Fig. 2 as depicted in 
Fig. 4. In the specific case that a poset can be considered as lattice, i.e. ful-
fils the axioms of lattices, then Freese 2004 gives an advice how to draw 
automatically lattices. 

According to the scientific background the actual diagram may be con-
structed such that the results are presented as clear as possible. If there is 
no such specific background, the Hasse diagram is drawn as symmetric as 
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possible. Incomparable objects are, conservatively located at the same 
height and as high as possible on the page. For example the object C in 
Fig. 4 could be located everywhere between objects D and A without hurt-
ing the order relations. Because of the above-mentioned convention, in-
comparable objects are arranged in levels. Sometimes a compromise be-
tween the symmetry demand and the general clearness of the diagram is to 
be accepted. The concept of levels is further discussed below. 

The concept of order preserving maps plays an important role in appli-
cations of Hasse Diagram Technique (HDT). For an introduction, this con-
cept will be exemplified by the so-called level construction (see Fig.6). 

  (a)            (b)           (c) 
Fig. 6. The Hasse diagram (left side (a)) is mapped onto the Hasse diagram (b). 
All order relations of the domain set, and order relations (left side) are preserved 
in the range of the mapping  (right side). Finally an order-preserving map ': F

F is applied to obtain a linear order (diagram (c)).

Let E be a set of objects and F another set. Let x1, x2, ... be the objects 
of E and y1, y2, ... the objects of F. An assignment f(xi ) = yi is order pre-
serving, if any order relation xi  xj is maintained, i.e. f(xi)  f(xj) or yi  yj.
Thus, if a set {A, B, C, D, E} (Fig. 6a) is assigned to the set {a, b, c, d, e} 
as follows: f(A) = a, f(B) = b, f(C) = c, f(D) = d, f(E) = e then in order to 
obtain an order preserving map one has to demand: a < b, b < d, a < c, c < 
e, c < d as e.g. in Fig. 6b and c. It should be noted that the order C < E is 
maintained. Thus, f(C) < f(E) or c < e. This is not affected by the creation 
of a new order d < e. Indeed: Very often an order-preserving map is asso-
ciated with an enrichment of comparabilities. 

Assignments as  are often called mappings, the mapping relate one set 
(the domain) to another one (the range of a map). Often it is very useful 
that the order of the image is a linear one. Especially in QSAR applications 
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as shown in chapter by El-Basil, p. 3 the quantity of interest, for example a 
toxicity of substances, induces a linear order, whereas information on 
chemicals (say: topological indices or other codes of the chemical struc-
ture) leads to a partial order (for example visualized by Young diagrams). 
Then the art is, to find such topological indices that the partially ordered 
set can be related to the linear order by an order-preserving map.  

There are several possibilities to construct linear orders. Theoretically 
very important is the concept of linear extensions, which is explained later 
(vide infra).

Another concept is that of the "levels". Linear orders by a level con-
struction encompasses in HDT the following steps: 

1. Set i = 1 
2. Consider for the first steps of construction the quotient set E/

(not the set of objects E). The set of the maximal elements, MAX,
is thus the subset of E/ .

3. Identify the maximal elements (in E/ ) and label the set MAX1

4. Reduce the set E/  by the maximal elements MAX1, E/ new = 
E/ old -MAX1

5. Draw the elements of MAX1 in top-position in the drawing plane. 
All elements of MAX1 get the same vertical position. 

6. Add 1 to i. I.e. inew = iold +1.
7. Identify the new maximal elements of (E/  - MAXi-1, IB) . Label 

the new set MAX by i.  
8. Reduce the set E/  by the maximal elements MAXi, E/ new = 

E/ old -MAXi
9. Draw the maximal elements MAXi in the same vertical position. 

Elements of MAXi-1 will located below those of MAXi . 
10.  Repeat the steps 6-9 till E/  is exhausted. The corresponding i is 

Cmax, the number of elements in the maximal chain of (E/ , IB).
11.  Corresponding to the intended application: a) give the top ele-

ments the level no Cmax and the lower levels Cmax -1 , Cmax-2, ... ,1  
or b) keep the i-labelling as level-label. In that case the bottom ele-
ments get the level number Cmax and the top elements 1.

12.  If wanted, the order relations can be added as edges. 
This construction is order preserving. 

A detailed example may be helpful: 
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Fig. 7. Hasse diagram of 12 elements. E = {a, b, c, d, e, f, g, h, i, j, k, l}. Note that 
the Hasse diagram is not drawn following the convention of the program 
WHASSE in order to clarify the construction 

Step 1: i = 1 
Step 2: E can be identified with E/ , because there are only trivial 
equivalence class (i.e. singletons). 
Step 3: MAX1 = {a, c, g, j, l} 
Step 4: E/ new = {a, b, c, d, e, f, g, h, i, j, k, l} - {a, c, g, j, l} = 
 {b, d, e, f, h, i, k} 
Fig. 8 shows the resulting Hasse diagram: 
Step 5: (see Fig. 9) 
Step 6: i = 2 
Step 7: MAX2 = {d, k} (see Fig. 8) 
Step 8: E/ new = {b, d, e, f, h, i, k} - {d, k} = {b, e, f, h, i} 
Step 9: (see Fig. 9) 
Step 6: i = 3 (iteration) 
Step 7: MAX3 = {e, h} (see Fig. 8). 
Step 8: E/ new = {b, e, f, h, i} - {e, h} = {b, f, i} 
Step 9: (see Fig. 9) 
Step 6: i = 4 (iteration) 
Step 7: MAX4 = {f, i} 
Step 8: E/ new = {b}
Step 9: (see Fig. 9) 
Step 6: i=5 
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Step 7: MAX5= {b} 
Step 8: E/ new = 
Step 12: Cmax = 5. We follow the labelling of a). See Fig. 9 left 
side for the level structure and right side for the diagram, supplied 
with the order relations: 

Fig. 8. The resulting poset and its visualization after subtracting the maximal ele-
ments of (E/ , IB) after the start and the first iteration 

Fig. 9. Example to determine the level structure (Left side: Assignment to levels 
Right side: the Hasse diagram redrawn) 

These steps sound difficult, however they are easily understandable, 
just by doing! Here some examples (Fig. 10) 
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Fig. 10. Example, how to assign the levels. If one vertex contains several equiva-
lent objects, than these objects belong all to the same level. The vertical arrow 
symbolizes the order induced by the vertical arrangement of the vertices 

The levels may be considered as a first very crude evaluation: If a high 
level is associated with a high hazard, then the sequence of increasing lev-
els coincides with increasing hazard. 

In the above advices 1-6, the rule 4 needs additional explanations. In 
order to do this, we introduce first the concept of graduation and of the 
rank-function, respectively. If there is a rank function r, then for any ele-
ment of the ground set the levels are uniquely found. Hence, a poset is 
graded or possesses a rank function if: 

a)  x > y implies r(x) > r(y) (order preserving!) and 
b)  for x covering y a unique function r can be found, such that  

r(x) = r(y)+1. 

In the case, shown in Fig. 11 (a) such a rank function exists, whereas in 
Fig. 11 (b) one cannot find a function r. Obviously, for the Hasse diagram 
in Fig. 11 (a) all five objects are located at specific levels, whereas the 
hatched object in the diagram in Fig. 11 (b) may be located either at the 
level of x or the level of y, respectively. However, corresponding to the 
level construction the element u belongs to MAX2. The elements u and z 
have therefore the same vertical position and are below the top element, 
which belongs to MAX1.
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Fig. 11. Graded (a) and non-graded (b) posets (visualized by Hasse diagrams) 
Grey circle, x and z: (see text) 

Posets, which do not have a rank function, give the user of Hasse dia-
grams the additional freedom, for example to introduce further informa-
tion. Locating an element as high as possible obviously is a conservative 
approach. Thus, in, e.g., risk assessment, high values of attributes are asso-
ciated with high risk. Locating an element of a poset as high as possible 
has thus a warning function.  

A useful theorem to find out whether a rank function r exists, is the so-
called Jordan-Dedekind Chain Condition (JDCC) (see also Birkhoff 1984), 
stating that all maximal chains between the same endpoints have the same 
finite length. Thus, if a poset satisfies JDCC, a rank function can be found. 
In Fig. 11 (a) there can be found two maximal chains. Both have the same 
length. In Fig. 11 (b), once again two maximal chains can be found. How-
ever, they differ in their length. Hence the JDCC is hurted in case of the 
poset, visualized in Fig. 11 (b). A generalization of rank functions for lat-
tices is given in Freese (2004). However, as most empirical posets do not 
satisfy the axioms of lattices, we will not deepen this concept here. 

Hasse diagrams as digraphs  
Hasse diagrams can be interpreted as mathematical graphs, i.e. they are 

called digraphs (directed graph), because of the orientation of the lines. 
Following the definitions of order the digraphs are acyclic. Interpreted as 
ordinary graphs, Hasse diagrams are triangle-free: Due to the rule of tran-
sitivity, line segments corresponding to a < c can be omitted if a < b and at 
the same time b < c. A digraph consists of a set E (or E/  if the quotient 
set is to be partially ordered) of vertices (circles in Hasse diagrams) and a 

(a) (b)

x

z
u
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set of oriented edges each connecting two vertices. If the vertices are 
drawn in the diagram according to the above rules (defining the level-
construction) then the arrows can be simply be represented by lines, be-
cause then the element x will be arranged below y, if x < y. Therefore the 
orientation of the line is replaced by the vertical location in the drawing 
plane. The circles are the objects of E, or elements of the set E/ to be 
ranked.

The basic essence is that by the order relation a data matrix is repre-
sented by a mathematical graph with objects as vertices and that the struc-
ture of this graph tells us somewhat about the data structure. As the data 
matrix arises from external studies (experimental work, modelling, empiri-
cal data) the resulting graph is called an "empirical graph", which may 
have (hitherto hidden) regularities. A main task in performing partial order 
as an exploring tool is just to detect (by abstraction, by simplification) 
regularities or structures in the graph. Helpful, however still not yet fully 
developed, is that one can establish an algebra among a set of posets, 
which reveals different kinds of sums, products and exponentiation, see for 
example Jonsson 1982. 

The concepts "hierarchy", "articulation points", "chains" and "anti-
chains" are very basic and simple ones, which direct into the structural 
analysis of digraphs. These concepts will be explained in the next section. 

Simple elements of interpreting a Hasse diagram 

Overview
The basics to consider Hasse diagrams are to check 

1. the system of comparabilities and incomparabilities 
2. the priority elements 
3. pattern of attributes and
4. identifying data structures. 
Almost all these kinds of analyses of Hasse diagrams can be found in 

the different chapters of this book.  

Example
A simple example is given in the following (Table 2 and Fig. 12). 
There are three hierarchies. One of them is a trivial hierarchy as it consists 
of one element only, i.e., element f that is not comparable to any other 
elements. Such elements are also called isolated elements. If only few iso-
lated elements are found, whereas almost all other are comparable, then the 
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isolated elements should be examined carefully as very often specific data 
structures are the reason for their isolation.  

Table 2. A more extended  
example, demonstration of  
isolated hierarchies 
objects\attributes q1 q2 q3

a 2 2 3 
b 1 2 2 
c 2 1 2 
d 4 3 1 
e 4 2 1 
f 0 0 5 

Fig. 12. The partially ordered set of objects of 
Table 2 has a Hasse diagram with three iso-
lated hierarchies, namely ({a, b, c}, {q1, q2,
q3}) , ({d, e},{q1, q2, q3}) and ({f}, {q1, q2, q3})

If, on the other hand, all elements of E (or E/ ) are isolated then the at-
tributes should be checked for the degree of anti-correlation (Spearman 
rank correlation). It depends on the scientific question, whether such a 
trade-off among attributes (a decreasing sequence of values of one attribute 
is always accompanied by an increasing sequence of another attribute) 
should be maintained in the study. There are methods to deal with such 
cases, see the chapter by Simon et al., p. 221 and by Sørensen et al., p. 
259. However, this shall not be further discussed here. The subsets {d, e} 
as well as {a, b, c} form nontrivial hierarchies. Hence, we have three order 
relations: b  a, c  a, and e  d. The fact that the set E can thus be parti-
tioned into three disjoint subsets is always of great interest with respect to 
the data structures. Further structural elements, which are of interest in the 
analysis of Hasse diagrams, are subsequently discussed: 
Chain: Subset of the ground set, where all elements are mutually compara-
ble. An example is the chain ({d, e},{q1, q2, q3}) another: ({b, a},{q1, q2,
q3}) (Fig. 12). Often it is sufficient, simply to write {d, e} is a chain. Any 
other element of the ground set added would led to at least one incompara-
bility and thus hurts the definition. Therefore the chains {b, a}, {c, a}, {e, 
d} are maximal. The identification of chains is of high interest with respect 
to exploring data structures, because the generality principle demands that 
for all attributes of objects of a chain it is valid. Thus, if x < y, x, y being 
elements of a chain, then qi(x) < qi(y) implies qj(x)  qj(y) for all j  i. Fol-

a

b c

d

e

f
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lowing the elements of a chain in one direction (from top to bottom or (ex-
clusively) from bottom to top) the attributes are increasing in a weak mo-
notonous manner. 
Anti-chain: Subset of the ground set, where all elements are mutually in-
comparable. An example is the anti-chain ({f, a, d}, {q1, q2, q3}). Any 
other element of the ground set added to the set {f, a, d} would introduce a 
comparability. Therefore {f, a, d } is a maximal anti-chain. Attribute pro-
files being results of monotonous variations as seen in chains are not con-
sidered as essentially different. Contrary, attribute profiles through anti-
chains are essentially different. Hence the width, Wd(E), of the poset is 
considered as a measure of diversity. 
Maximal elements (often also called simply "maximals"): Elements of the 
ground set E/ , xi, for which no yi E/  can be found with xi  yi.
Maximal elements in the Hasse diagram, shown in Fig. 12 are: f, a, d. 
Minimal elements (often also called simply "minimals"): Elements of the 
ground set E/ , xi, for which no yi E/  can be found with xi  yi. Mini-
mal elements in the Hasse diagram, shown in Fig. 12 are: f, b, c, e. 
Isolated elements: Elements that are both: Minimal and Maximal elements.  
Maximal/Minimal elements which are not isolated, are often called proper 
maximal/minimal elements. An isolated element in the Hasse diagram, 
shown in Fig. 12 is: f. 
Hierarchy: Let E'/  and E''/  be two subsets of E/ . If for all x E'/ ,
and all y E''/  : x||y then (E'/ , IB) and (E''/ ,) are hierarchies. In a 
Hasse diagram they can often be recognized as non connected parts.  
Articulation point: If the elimination of one element of E/  enhances the 
number of hierarchies in the residual poset, then this element is called an 
articulation point. In the Hasse diagram, Fig. 12 the element a is an articu-
lation point. 

Long chains, hierarchies and articulation points indicate specific data 
structures. The role of hierarchies will be explained by a two dimensional 
scheme (Fig. 13): Several objects may be located as points within the two 
rectangles H1 and H2. Comparing one object of H1 with one of H2 will lead 
to q1 (of x H1) > q1 (of y H2), whereas q2 (of x H1) < q2 (of y H2).
Hence no object of H1 is comparable with that of H2. In Neggers & Kim 
1998 a rather nice wording is found for the objects belonging to the field F
and P: These are the future objects relative to the objects in the field P,
which are called the objects in the past.  
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Fig. 13. Role of hierarchies in Hasse diagrams 

Note that by construction of levels any level is to be considered as anti-
chain. However, this anti-chain may not necessarily be a maximal one. The 
evaluation of sampling sites for sediment samples of the Lake Ontario is 
used as a further illustrative example (cf. pp. 94). More details can be 
found in Brüggemann & Halfon (1997) and Brüggemann et al. (2001 b).  

Characterizing a Hasse diagram as a whole 

Characteristic Numbers of Posets  

In the present section a series of simple characterising numbers is intro-
duced. They are useful to give a general overview and impression of the 
poset and the corresponding visualizing graph, the Hasse diagram. It is 
recommended to read the careful discussion by Pavan & Todeschini 2004 
and in this book, chapter by Pavan, p. 181. The Hasse diagram of Lake 
Ontario will exemplify all numbers.  

NECA: Number of equivalence classes with more than one object, 
i.e., the number of nontrivial equivalence classes.  
Wd(E): The width of a Hasse diagram. It is the maximum number 
of elements of E/ , which are found in an anti-chain. In the con-
text of Young diagrams (see Seitz, p. 373) also called a “breadth”. 
L(E): The length of a Hasse diagram: The number of line segments 
in the chain with a maximum number of elements of E/ .

q1

q2

H1

H2
F

P
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H(E): The height of a Hasse diagram = Cmax. H(E)=L(E)+1. H(E)
is the number of objects (of E/ ) in the maximum chain. 
NL, the number of levels = H(E).
NEL, the number of elements (of E/ ) in the level, which contains 
the most elements of E/ ; note that this number is not necessarily 
the same as Wd(E).
NMAX: The number of maximal elements (called: number of 
maximal equivalent classes because this information is related to 
E/ ).
NMIN: The number of minimal elements (notation as for the 
maximal elements). 
Z: Number of all equivalence classes, including singletons, i.e., Z 
= card E/ . Note that Z and NECA differ. If NA is the number of 
elements of E, which are contained in nontrivial equivalence 
classes (NECA) then the following equation holds 
card E = NA + Z - NECA                           (2) 
Some other numbers are also interrelated, for example the relation 
NL = L(E)+1                              (3) 
P(IB): stability of ranking. This quantity is a measure for the effect 
of extending or reducing the set of attributes on the structure of the 
Hasse diagram. It is calculated as the quotient of all incomparabili-
ties, Utotal and Z·(Z-1)/ 2: 

1)(ZZ
U2)P( totalIB                 (4) 

If P(IB) is near 1 or 0, respectively, then extending or reducing, re-
spectively, the set attributes should have a minor effect. 

Linear Extensions

The linear extensions are the basis of the dimension theory of posets. Be-
sides the dimension of posets other characterizations may be derived from 
linear extensions (Carlsen et al. 2002, Lerche et al. 2003, Lerche & Søren-
sen 2003).

Extensions may be explained by the following: Given a poset (E, )
then we can assign another poset (EX(E), ) which

1. supplies some ||-relations of (E, ) by < or > -relations  
2. maintains all comparabilities of E in the correct orientation 
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Extensions are order-preserving maps from the ground set E into the 
ground set E; see Davey & Priestley 1990. Linear extensions (LEX(E), )
are order-preserving maps from E to E, which assign to (E, ) a linear or-
der.
In Fig. 6 (b) an extension is shown (identify A with a, B with b, etc), but 
not a linear one. An additional preserving map leads to a linear order (Fig. 
6 (c)). The diagram in Fig. 6 (c) is a linear extension of that in Fig. 6 (a). 
Given a poset (E, ) then several linear extensions (LEX(E), ) are possible. 
A systematic procedure is described by Atkinson (1989), especially for 
trees a closed formula can be derived Atkinson (1990). A useful formula to 
calculate the number of linear extensions is also given by Stanley (1986). 

Each relation x  y, x, y E is reproduced in LEX(E). However, the re-
verse statement is not true. All in all, any linear extension is an image of an 
order-preserving map. The diagram (Fig. 14) visualizes the concept. All 
comparabilities x < y, x, y E, of (E, ) are reproduced in the first fourteen 
lines of the table, whereas the last sequence (16th row) in the table illus-
trates a non order preserving map. The relation d  e of (E, ) is reversed. 
This sequence therefore is no linear extension of the poset (shown in the 
left side of Fig. 14). If the sequences (1) to (14) are considered as partially 
ordered sets, then they have comparabilities, which are not found in the 
original poset. For example the elements b and e are comparable in the 14 
sequences of Fig. 14, but are incomparable in the original poset. The in-
comparability of b, e is expressed in the linear extensions by the fact that 
there are some, where b > e, and some where the opposite is true.  
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1 a b c e f d  2 
2 a b c e d f  2 
3 a e f b c d  2 
4 a e b f c d  4 
5 a e b c f d  4 
6 a e b c d f  3 
7 e f a b c d  1 
8 e a f b c d  3 
9 e a b f c d  3 
10 e a b c f d  3 
11 e a b c d f  2 
12 a b e f c d  2 
13 a b e c f d  4 
14 a b e c d f  3 
         
 a b c d e f   

Fig. 14. Poset (E, ) (left side) and its 14 linear extensions (LEX(E, )) ((1) to 
(14). 

In Fig. 14 the first column labels the linear extensions, which are repre-
sented as sequences in rows 1 - 14. A sequence a   b   c  ... is to be read as 
a > b > c. Furthermore there is a sequence (last row in the table) which is 
not a linear extension of (E, ). Vertical bold lines indicate jumps (see be-
low). The last column indicates the number of jumps of each single linear 
extension. Consecutive elements in linear extensions (LEX(E), ), which 
have no correspondence in (E, ) are called "jumps" (see Fig. 14, the verti-
cal bold lines indicating jumps). The jump number, jump (LEXi(E, )),
obviously depends on the actual selected linear extension. The jump num-
ber of a poset (E, ), jump (E, ), is just min(jump(LEXi (E, ))), whereby 
the minimum is to be found by checking all linear extensions. Beside the 
jump - number there is also a bump - number. Once again the bump num-
ber is to be referenced to a specific linear extension. A bump is a consecu-
tive pair of elements in a linear extension, which are comparable in the un-
derlying poset. The bump number of a poset is the maximum about all 
bump numbers found for the linear extensions. If a linear extension of n 
elements is formed then n-1 consecutive relations are found in a linear ex-
tension. Therefore  

 jump (LEXi(E, <)) + bump (LEXi(E, <)) = n - 1              (5) 

a

b

c

d

e

f
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Linear extensions of a minimal jump number of specific interest: These 
linear extensions (also called "greedy linear extensions") preserve as much 
as possible the chain-structure of a Hasse diagram (Rival 1983, Rival & 
Zaguia 1986). As one can see in Fig. 14 that linear extension with jump 
number = 1 preserves both chains a > b > c > d and e > f. Consequently, 
the jump number of a poset may be considered as indicator for 
"chainyness": Thus, a low jump number indicates that the poset contains 
subposets, which are long chains. In operation research or queuing plans a 
jump implies often some cost-intensive rearrangements. Therefore linear 
extensions with a small number of jumps are preferred in organisation of 
work. Contrary to that, Patil and Taillie 2004 are discussing in their paper 
that the jump number may also serve to weight linear extension, where the 
linear extension with the largest number of jumps gets the highest weight. 

If a specific element, say x E is selected then its spectrum is of inter-
est (Atkinson 1990). It should be noted that other authors (for example 
Trotter 1991, Schröder 2003) also call the spectrum a projection. However, 
we favour "spectrum" as the more suitable name for the following con-
struction. Thus, let LT be the number of linear extensions of a poset, then 
we can find the rank of an element x in the ith linear extension: rank(i, x). 
Note that this construction should not be confused with the rank function, 
we discussed above. Conventionally, the bottom element of a linear exten-
sion is given the rank 1, thus the top element has the rank n (card E = n). 
However, if appropriate the top element may be assigned the first priority, 
such that bottom elements will get numbers > 1 (see for example chapter 
by Carlsen, p. 163). We call k(x) the frequency, how often x E gets the 
rank k. The spectrum spec(x) is a tuple containing n components ( 1(x),

2(x), ... , n(x)). Thus for example the spectrum of element b in Fig. 14 as 
follows: spec(b) = (0, 0, 3, 6, 5, 0). (i) There is no linear extension, where 
the rank of b is 1, 2 or 6. (ii) There are 3 linear extensions, where the rank 
of b is 3. (iii) There are 6 linear extensions, where the rank of b is 4. (iv) 
There are 5 linear extensions, where the rank of b is 5. Obviously: 

LT = k(..)              k = 1,...,n                (6) 

The set of linear extensions is the basis for probability considerations: 
Dividing k(x) by LT the quantity prob (rk(x) = k) = k(x)/LT can be inter-
preted as (ordinal) probability to get the rank k, sometimes also called “ab-
solute rank”. Hence, an averaged rank, Rkav can be derived by  

 Rkav(x) =  k· k(x)/LT                 (7) 
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and the elements x E can be ordered by their Rkav-values. Therefore a 
total order, however, often including equivalence classes can be derived 
from a poset, without the numerical combination of attributes to one rank-
ing index. This concept is widely used based on the following arguing: If 
the attributes are combined, say by weighted sums or any other positively 
monotonous function, then the result must be (besides ties) one of the lin-
ear extensions, as the set of all linear extensions encompasses all results of 
order preserving maps. However, there are still many open problems due 
to computational difficulties in handling large object sets, advices can be 
found in Lerche et al. 2003 or in Patil & Taillie 2004. If n objects are mu-
tually incomparable, then n! linear orders are possible, corresponding to n! 
permutations. (See also chapter of Sørensen, Lerche, Thomson, p. 259, for 
a discussion of entropy, related to the number of linear extensions). Hence 
a crude upper estimation of the number of linear extensions is n! A ground 
set containing for example 17 elements may have at most ca. 3.5 1014 lin-
ear extensions.

Recently an alternative was discussed, in order to use a local model of 
the partial order, which describes the environment in the directed graph 
around the element of interest. For further discussions two recent publica-
tions should be consulted (Brüggemann et al. 2004, 2005). 

A rather good approximation for an element of interest, x, may be ob-
tained, if the successors (all elements "below" x) and predecessors (all 
elements "above" x), respectively, are organized into a so-called “S-x-P” 
chain, all remaining elements, i.e. those incomparable to x being consid-
ered as isolated. From a combinatorial study follows that the averaged rank 
of an element x can be expressed as 
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which can be transformed (Brüggemann et al. 2004) into 

Rkav= (S+1)·(S+P+U+2)/(S+P+2)                 (9) 
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Since N = S+P+U+1 the averaged rank of an element x may be expressed 
by the following simple relation 1

                            
                   (10) 

with:

S(x): = |{y  E : y < x}| is the number of successors of x 
N the total number of elements and  
U(x): = |{y  E : y || x}| is the number elements incomparable to x.  
P(x): = |{y  E : y > x}| is the number of predecessors. 

The principle is illustrative demonstrated by determining the averaged 
rank of element b in the Hasse diagram depicted in Fig. 15.  

Fig. 15. Example for application of equation 10. The averaged rank of element b 
is to be estimated 

It is immediately seen that N = 5, S(b) = 1 (element c), P(b) = 1 (ele-
ment a), and U(b) = 2 (elements d and e). Hence, according to equation 
(10) the averaged rank of element b is estimated to be Rkav(b) (estimated) 
= (1+1)·(5+1)/(5+1-2) = 3, the exact value - calculated after equation 7 - 
being Rkav(b) (exact) = 2.889. 

Dimension of a poset 

The dimension of a poset is based on the set of linear extensions. A linear 
extension can be considered as a set of ordered pairs. For example the lin-
ear extension no 1 in Fig. 14 (right side): 

1 Counting from bottom to top. 

a

b

c d

e

U(x)1N
1)(N1)(S(x)Rkav(x)
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{(a, a), (b, a), (c, a), (e, a), (f, a), (d, a), (b, b), (c, b), (e, b), (f, b),  
(d, b), (c, c), (e, c), (f, c), (d, c), (e, e), (f, e), (d, e), (f, f), (d, f),  
(d, d)}. Each pair denotes a  -relation. For example (e, b) means that in 
the linear extension no 1 e  b. 
A similar set could be found for any other linear extension, for example no 
2:
{(a, a), (b, a), (c, a), (e, a), (d, a), (f, a), (b, b), (c, b), (e, b), (d, b),  
(f, b), (c, c), (e, c), (d, c), (f, c), (e, e), (d, e), (f, e), (d, d), (f, d),  
(f, f)} 
The intersection of these two sets of pairs leads to: 
{(a, a), (b, a), (c, a), (e, a), (d, a), (f, a), (b, b), (c, b), (e, b), (d, b), (f, b), (c, 
c), (e, c), (d, c), (f, c), (e, e), (d, e), (f, e), (d, d), (f, f)}. 
This intersection does not coincide with the set of ordered pairs of the 
poset itself (Fig. 14 (left side)): 
{(a, a), (b, a), (c, a), (d, a), (b, b), (c, b), (d, b), (c, c), (d, c), (e, e), (f, e), 
(d, e), (f, f), (d, d)} 
Thus this kind of troublesome check has to be repeated until the intersec-
tion of the set of ordered pairs of the linear extensions coincide with that of 
the poset. The lowest number of linear extensions -written as ordered pairs 
as shown above- whose intersection is the actual poset (together with its 
transitive relations), is its dimension. Following the explanation above one 
would have to check 14·13/2 intersections, just to verify that the dimension 
equals 2. If such pair of ordered sets, derived from any two linear exten-
sions is found, one has found a "realizer" of the poset (Trotter 1991).  

Note, it is not a good policy to derive the dimension by finding explic-
itly the realizers. Here five useful theorems are taken from the literature 
(Trotter 1991): 

dim (E, )  Wd(E) (for further on Wd(E), see p. 81)           (11) 
Let (E, ) a poset and (C, ) a chain, C E. Then 
dim(E, )  2 + dim(E-C, )                        (12) 
Let (E, ) a poset, and n:=card E  4, then:
dim (E, )  n/2                       (13) 
Let EA E an anti-chain of a poset (E, ) , then 
dim (E, )  max(2, card(E-EA))                         (14) 
If the Hasse diagram, supplied (if necessary) by a greatest and 
least element can be drawn in the plane without crossing 
of lines, then the dimension of the poset is 2,            (15) 

Let (E, ) be a poset and (E', ) be a subset of E, then 
dim (E, )  dim (E', )                            (16) 
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We apply equation 12 to determine the dimension of the poset shown in 
Fig. 16: 

Step 1: As the poset is not a linear order we conclude: dim (E, ) > 
1
Step 2: We select a chain: C = {c, b, a} 
Step 3: The ground set is now E-C = {d, e}. The poset ({d, e}, )
is a chain. 
Step 4: dim ({d, e}, ) = 1 
Step 5: 1 < dim (E, )  2 + 1. Thus the dimension of (E, ) is ei-
ther 2 or 3. 

Equation 11 would be more useful: As Wd(E) of the poset, shown in 
Fig. 15 is 2, the dimension must be 2. Generally, for the purposes intended 
in this chapter equations (15) and (16) are the most interesting theorems. 

Fig. 16. Hasse diagram of a poset with dimension 3. The Hasse diagram on the left 
side follows not the convention explained earlier! The Hasse diagram on the right 
side is supplied by a greatest ”G” and least element ”L”. 

The poset, whose Hasse diagram is shown in Fig. 16 (left side) has the 
dimension 3. A priori, as obviously there is no crossing of lines, the di-
mension would be expected to be 2. However, this poset must be extended 
by a greatest, G, and a least element, L. Then a crossing of lines within a 
plane is not avoidable. Thus posets having such substructure have at least 
dimension 3. For other examples, compare Trotter 1991. Why is the di-
mension of posets so interesting? Let us assume we got a Hasse diagram 
by using 5 attributes. If now, the dimension of the partial order would be 2 
then we knew in advance that two linear extensions are sufficient to repro-
duce the partial order. As each single linear extension can be considered as 
the linear order induced by an unknown attribute, two attributes are suffi-
cient to obtain the same partial order as by the original five ones. Usually 
these two attributes cannot be found as a subset of the information base. 

G

L
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They are called latent variables. The original five attributes may be (in a 
complex manner) mapped onto 2 latent variables.  

                                                                   

(a)                                (b) 

     

(c)                                                     (d) 

Fig. 17. The partial order of four elements and the concept of dimension 

In Fig. 17 a Hasse diagram (a) and its 5 linear extensions (ordered for in-
creasing values) (b) are shown. Two realizers (grey hatched) are identified 
and are considered as new attributes ("attr. 1"; "attr.5") (c). The objects are 
located in a rectangular grid (d) due to values of attr. 1 and attr. 5. A rota-
tion of the coordinate system around ca 45o would reproduce the original 
Hasse diagram. If the dimension of posets is 2 or 3 then it may be useful, 
to embed the poset into a two- or three-dimensional grid (see Brüggemann 
2001 b). For an example of embedding a poset into a two-dimensional co-
ordinate system, see also the chapter of El-Basil. 

On the other hand, any two-dimensional scatter plots can be interpreted 
as a partial order, if the generality principle is applied to the both coordi-
nates of any point. 

1     2     3    4     attr. 5)

 1) d,c,b,a 
 2) d,b,c,a 
 3) b,d,c,a 
 4) d,b,a,c 
 5) b,d,a,c 

attr.1) attr.5)
a 4 3 
b 3 1 
c 2 4 
d 1 2 

attr. 1) 

4

3

2

1

a
b

d
c

a

b

c

d



Introduction to partial order theory      91 

Sensitivity study 

Mathematical Notation and Background 

Preferably a maximal element should be chosen as a starting point for the 
analysis. This choice, however, is not mandatory. Thus, other elements of 
E or E/  could be chosen too. This selected element is called "key ele-
ment". We may simultaneously select more than one key element even all 
elements (no restrictions apply here). For the sake of convenience all key 
elements are supposed to form a set K (  E).

The analysis of a key element implies a search of all elements located 
lower than that of the key element, i.e. all elements that can be reached 
from the key element by a path, a sequence of connecting edges. (There-
fore the selection of maximal elements rather than other elements is more 
meaningful). These elements together with elements equivalent but not 
identical to the key element are called successors. The set of all successors 
of the key element "k" is denoted as G(k,A), A IB. We include the in-
formation about the actual set of attributes (i.e. the case) by A. Note the 
similar concept of "down-sets" in Davey & Priestley (1990): The order 
ideal (or down set), generated by the key element will be denoted by 
O(k,A). Then it is valid: 

G(k,A) = O(k,A)-{k}

The operation "-" is the set theoretical subtraction. For example: 
{a, b, c, d} - {a, e} = {b, c, d} 

Those elements of the first set, which also are in the second set, are 
eliminated. By definition G(k) does not include the key element itself. The 
successor sets and their cardinalities are the heart of the sensitivity analysis 
shown here. The successor sets found for two Hasse-diagrams resulting 
from two attribute-subsets of IB are used to quantify certain differences. 
The cardinality of successor sets (denoted: card G(k)) and of their set theo-
retical combinations play an important role here. 
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Residual sets

To assess the influence of each attribute on ranking, we compare Hasse 
diagrams that arise from subsets B, C of IB. A straightforward method to 
perform this task is to choose a key element and quantify the effect of each 
attribute set on its successor set. For this purpose the residual set, R, i.e. is 
now introduced. 

R(k, B, C): = (G(k, B) \ G(k, C))                          (17) 

By Venn-Euler diagrams residual sets can easily be understood (see 
Fig. 18): 

Fig. 18. Venn-Euler diagram of the residual set R(k, B, C) = G(k, B) - G(k, C)

In general R(k, B, C) R(k, C, B). Therefore the symmetric difference set 
"W(k, B, C)" of the sets G(k, B) and G(k, C) is introduced:

W(k, B, C): = R(k, B, C) R(k, C, B) =
[G(k, B) - G(k, C)]  [G(k, C) - G(k, B)]              (18) 

If the cardinality of W(k, B, C) is small, i.e. 

W(k, B, C) << min [G(k, B), G(k, C)]) 

then subsets B and C lead to not very different Hasse diagrams. If the dif-
ference is large then the two corresponding Hasse diagrams are dissimilar 
to each other. Those attributes, by which B and C differ, play a key role in 
ranking. This finding motivates the introduction of the matrix W.

 G(k, B)

Residual Set

G(k, C)
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Definition of the matrix W 

Calculating the matrix W
The matrix W(k) assesses the difference of Hasse diagrams induced by 

the two subsets of attributes with respect to a key element k. This matrix, 
which is at the heart of the analysis, is called the "dissimilarity-matrix", 
because the larger the matrix-entries are, the greater is the difference be-
tween the successor sets for the element k and hence between the Hasse 
diagrams (see for more details, below). We define the entry W(k, B, C) of 
matrix W to be: 

 W(k, B, C): = card [R(k, B, C)    R(k, C, B)]                          (19) 

For any key-element k the residual sets R(k, B, C) and R(k, C, B) are 
determined, their elements being counted and summed. The entries of the 
matrix W are subsequently calculated by adding the cardinalities of the R-
sets. To simplify notation, we now write W(k, i, j) for W(k, B, C).

Search for the important attributes 

Several W(k, i, j)'s, k K (K is any set of key elements) can be compared 
to see how a change in attributes affects the partial order with respect to 
the set of several key elements: 

EK
K

k
j)i,,W(k:j)i,,W(                                                               (20) 

W(K) is a symmetrical matrix. W(E) is the total dissimilarity matrix of the 
set of E. Let be n:=card E. Mainly the W(k) and the W(E) matrices are 
useful. The final steps towards a sensitivity are: 

1. If we are interested in comparisons of the full attribute set IB with all 
subsets Ai IB , Ai only one row of the matrix W is of interest. We 
can choose the first one without loss of generalization, thus we are 
left with W(k, 0, 1), W(k, 0, 2), .... , W(k, 0, p), where the index 0 
denotes the full attribute set IB (i.e. A0 IB) and p=2m -1. 

2. To see the influence of single attributes on a Hasse diagram we 
compare the Hasse diagrams induced by IB with those induced by 
those attribute sets Aj IB with only m-1 attributes (Ai = IB - {qi}). 
Therefore the effect of dropping exactly one attribute is given by the 
remaining m entries: W(k, 0, 1), W(k, 0, 2), ...., W(k, 0, m).  
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3. The m entries W(k, 0, 1), W(k, 0, 2), ..,W(k, 0, m) are put together to 
form a "sensitivity tuple" of the key element k, s(k) being [s1 ,..., sm]. 

4. The larger si the larger is the symmetrized difference between  
G(k, IB) and G(k, Ai) and correspondingly the larger the influence of 
attribute qi on the position of key element k within the Hasse diagram 
under IB compared with that under Ai . 

5. The matrix W(k) depends on the selection of the key element k. If 
however, more objects are to be analyzed we generalize according to 
equation (20). 

6. W(E) will be used as a measure of sensitivity. Accordingly we 
quantify the sensitivity by: 

7. (i): = W(E ,IB, Ai ) 1 < i < m                      (21) 
with the enumeration scheme of step 3).  

8. It can be shown that (i) has values between 0 and n·(n-1). Hence a 
measure of attribute's sensitivity, independent of the number of 
objects is: 

9. norm (i) = W(E, IB, Ai )/[n·(n-1)] .  0 norm (i)  1 

Evaluation of Sampling Sites 

Sediment samples of Lake Ontario as object set and the tests 
of the battery as information base 

A battery of tests developed by Dutka et al. 1986 to test the sediments of 
near-shore sites of Lake Ontario (Canadian part) is used to exemplify the 
definitions and some results of HDT. In Lake Ontario 55 sediment samples 
were tested, thus, the set E contains 55 objects. Dutka et al. classified their 
results and used discrete scores instead of the measured (raw) data. For our 
analysis we have adopted their classification. Thus, si denotes the score of 
the i-th test of the battery. Five specific tests form the actual battery: (1) 
Fecal Coliforms „FC“, as an indicator designed to control the health state 
of the sediments, (2) Coprostanol „CP“ and (3) Cholesterol „CH“ both be-
ing indicators of loadings by fecals, (4) Microtox tests „MT“ and (5) 
Genotoxicity tests „GT“ disclosing some kind of acute toxicity and the po-
tential for carcinogenicity, respectively (see Table 3). 
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Table 3. Scores of the 5 test battery results for representatives of the equivalence 
classes of E/

identifier FC CP CH MT GT  identifier FC CP CH MT GT 
1 2 0 0 4 0  17 3 0 0 6 0 
2 1 0 0 2 0  18 1 0 0 2 4 
3 2 0 0 2 0  23 1 0 0 0 4 
4 3 0 0 0 0  25 4 0 0 0 0 
5 3 3 2 0 0  27 5 0 0 0 0 
7 2 0 0 8 0  31 4 5 4 0 0 
9 1 0 0 6 2  32 3 0 0 8 0 
11 1 0 0 0 0  91 2 0 0 0 0 
12 3 0 0 2 0  92 3 0 0 4 0 
14 1 0 0 8 0  95 3 5 2 6 0 

By scoring the data many equivalence classes (in fact 20) arise (vide in-
fra). It is convenient to refer only to these classes by specifying a represen-
tative for each class Thus, besides the sensitivity study we apply the con-
cept of quotient sets. With the equivalence relation  meaning equality in 
all five scores sFC, sCP, sCH, sMT and sGT, the following sediment samples 
appeared as equivalent, (Table 4) the quotient set being denoted as E/ .

Table 4. Nontrivial equivalence classes and their battery of tests pattern. No. of sites 
in bold letters are later used as representatives for the whole equivalence class eci

Equivalence Class (ec) card
(ec)

FC CP CH MT GT 

ec1={2,8} 2 1 0 0 2 0 
ec2={4,6,10,13,19,21,22,29,30,48,94} 11 3 0 0 0 0 
ec3={11,16,40,41,42,43,44,45} 8 1 0 0 0 0 
ec4={15,92} 2 3 0 0 4 0 
ec5={17,35} 2 3 0 0 6 0 
ec6={20,24,26,28,34,37,39,49,50,51,91,93} 12 2 0 0 0 0 
ec7={23,60} 2 1 0 0 0 4 
ec8={27,33,46,47} 4 5 0 0 0 0 

The sites, referred to as site numbers in bold letters are later used as 
representatives for the whole equivalence class. The site numbers are used 
as object identifiers.
The quotient set E/  consists of the 8 equivalent classes {ec1, ec2, ec3, 
ec4, ec5, ec6, ec7, ec8} together with remaining 12 singletons {1}, {3}, 
{5}, {7}, {9}, {12}, {14}, {18}, {25}, {31}, {32}, {95}. 
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Now we apply all the characteristic numbers of Hasse diagrams, intro-
duced earlier in this chapter.

n = card E = 55, Z = card E/  = 20, NECA = 8, NA = 43 
Clearly: card E = NA + SG, SG the number of singletons (here: SG = 

12) and SG = Z - NECA. 
The information base of the battery of tests is: IB: = {sFC, sCP, sCH, sMT,

sGT}. The partial ordering of the samples arises as explained in sections 2 
and 3. The visualization of the partial order by HDT is depicted in Fig. 19. 

27 31 95 32

25 5 17

92

12

4

91

11

2

3

1 14

7

9 18

23

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Fig. 19. The comparative evaluation of samples of the Lake Ontario, as generated by 
the WHASSE software. Hasse diagram of the poset (E/ , ) . 

We check now the items discussed in former sections by some illustrative 
examples. Note, that in the following sections the term sites is used for the 
single objects/elements covered by the ranking exercise, reflecting the actual 
nature of the data material. 

Comparability: 
Taking site 31 as an example it is immediately seen that due to the transi-

tivity (see El-Basil, p. 3) this site is comparable to (and worse than) site 4. 
Thus, 31  4 as we have the sequence 31  5 and 5  4 from which 31  4 
follows logically. Likewise, through a longer chain 32  17  92  1  3  91 

 11 it follows that 32  11. We say that 32 are connected to, or comparable 
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to 11, because there is a path, which can be followed without changing the 
orientation. On the other hand, site 17 is not connected/comparable to site 14, 
because there is no path, which can be followed from 17 to 14 without chang-
ing the orientation: 17  92  1  3  2, however: 2  14. The relation be-
tween the sites 31 and 5, displaying 31  5, is a cover relation, whereas the 
relation between the sites 31 and 4, although 31  4 is not a cover relation, as 
there is an in-between element, i.e., site 5 located between site 31 and site 4. 
What does comparabilities or chains tell us? By identifying chains we know 
that the upper object (e.g. site 32) is in all aspects worse than the lower object 
(e.g. site 3). All attributes increase simultaneously when the path from the 
lower element, i.e., site 3 to the site 32 is followed. In mathematical terms 
this can be described as a weak positive monotonous function, i.e. equal or 
increasing values of all attributes simultaneously following a chain. 

Incomparability and Anti-chain: 
Site 32 is, e.g., incomparable to site 9 as well as to many others. There is 

no path (in the digraph) by which we can start from site 32 and stop at site 9 
without changing the orientation. It should be remembered that in an ordinary 
graph there is a path: 32  7  14  2  9. However, the arrows recall that 
in the digraph we have an orientation, whereas in the ordinary graph we only 
have a line. The set {25, 5, 17, 7, 23} is an example of an anti-chain (cf. Fig. 
19). However, this anti-chain is not of maximum length as site 9 could be 
added without violating the definition of an anti-chain. Large anti-chains in-
dicate a high diversity of attribute profiles. Incomparabilities arise if at least 
one pair of attributes is antagonistic: i.e. a "walk" from an object x to an ob-
ject y is accompanied with increasing of at least one attribute and decreasing 
of at least one other. For an illustration, take the incomparable sites 95 and 
32. As the incomparability arises from the fact that CP, CH increase, FC and 
GT do not change, whereas MT decreases if the path from site 32 to site 95 is 
followed (cf. Table 3 and Fig. 19). 

Priority elements: 
As the sampling sites with high responses of the test-battery are of most 

interest, the maximal elements are taken as priority elements, i.e. the equiva-
lence classes {27, 33, 46, 47}, {31}, {95}, {32}, {9}, {18}. From this we 
conclude that a) the sites 27, 33, 46, 47, 31, 95, 32, 9, 18 are of specific im-
portance, and b) the set of sites {27, 33, 46, 47} has the same profile of 
scores, thus, they may be remedied by the same methods, whereas the attrib-
ute profiles differ among all other priority objects. 
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Characterizing numbers: 
With the Hasse diagram of Fig. 19 at hand it is easy to derive the remain-

ing characterizing numbers discussed in former sections. Hence, we find L(E)
= 6, H(E) = 7, and NL = H(E) =7. These numbers give an impression in 
which detail the steps from a minimal element to a maximal element may be 
disclosed. This informs us here about the maximum possible differentiation 
in the degree of hazards. 

In the present case (cf. Fig. 19) a partitioning of E (or E/ ) into levels of 
increasing hazard prevails. Thus, {ec3} < {ec6, ec1} < {ec2, {3}} < 
{{12},{1},{14}} < {ec4} < {{25}, {5}, ec5, {7}, ec7} < {ec8, {31}, {95}, 
{32}, {9}, {18}}, the "<" sign reflecting that the sets are ordered correspond-
ing to their level number. 

We further find that NEL = 6, which in the present case coincides with 
NMAX = 6. The number of minimal elements NMIN = 1. 

Finally the stability is to be calculated: P(IB) = 0.574 
This means than on one hand the Hasse diagram will change remarkably, if 
an attribute is omitted or if an additional attribute is included, leading to 
new P(IB) values of 0.247 and 0.832, respectively. Hence, omitting an at-
tribute changes the Hasse diagram towards a chain, whereas adding a new 
attribute causes the appearance of several hierarchies, eventually leading to 
an anti-chain. 

See also for another example in chapter by Helm, p. 298. 

Linear extensions: 
As 20 objects (elements) of E/  (= Z) are a rather high number, we would 

have to expect up to 2·1018 linear extensions we restrict our study to the order 
ideal O(95). Its Hasse diagram is shown in Fig. 20.  

For the poset, shown in Fig. 20 a total of 66 different linear extensions are 
possible. In the present context it makes no sense to list them all. For illustra-
tion a random selection of 5 linear extensions is listed below: 

L1: 11 < 2 < 91 < 3 < 1 < 4 < 5 < 12 < 92 < 17 < 95 
L2: 11 < 91 < 2 < 3 < 4 < 1 < 12 < 5 < 92 < 17 < 95 
L3: 11 < 2 < 91 < 4 < 3 < 1 < 12 < 5 < 92 < 17 < 95 
L4: 11 < 91 < 4 < 2 < 3 < 1 < 12 < 92 < 5 < 17 < 95 
L5: 11 < 91 < 2 < 4 < 3 < 1 < 5 < 12 < 92 < 17 < 95 
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Fig. 20. O(95) , the order ideal generated by object (sampling site ) 95. All con-
siderations here are based on E/

The jump-numbers are 3, 6, 4, 3, 5 for L1 to L5, respectively, the jumps 
in, e.g., L1 being found between 2 < 91, 1 < 4 and 5 < 12. 

What kind of information can be derived from this? If we represent a 
poset by a set of linear extensions, then those of major interest are those pre-
serving the chains of the poset as far as possible. It is obvious that L2 is a cor-
rect representation of the partial order. However, the chains that can be iden-
tified (cf. Fig. 20) are separated by many elements, which originally did not 
belong to chains.  

A further use of linear extension is the probability scheme (ranking prob-
abilities) that they provide. Probability plots are depicted for the three sites 1, 
17 and 91 (Fig. 21a) and for site 5 (Fig. 21b), respectively. (See also the con-
tributions, chapters by Voigt and Brüggemann, p. 327; Brüggemann et al., p. 
237; Carlsen, p. 163.  

Remarkable differences can be noted. Thus, in the case of the three sites 1, 
17, and 91 rather sharp maxima are developed, indicating that they can safely 
be assigned to a rank near the maximum of their probability plot. However, 
the sites differ in their individual ranking position. Thus, site 91 takes a lower 
rank site 1 a medium rank and site 17 a rather high rank. Therefore a mutual 
ranking sequence of the sites 1, 17, and 91, i.e., 91 < 1 < 17, can be given 
since the minimum rank of the one site apparently does not overlap signifi-
cantly with the maximum rank of a lower positioned site. 

1

2

3 4

5

11

12

17

91

92

95
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The site 5, on the other hand, differs from the above discussed sites as a 
rather smeared out probability plot is disclosed. Thus, the eventual assign-
ment of a rank for site 5 is uncertain. This can also be seen directly from the 
visualization in the Hasse diagram (Fig’s. 20 and 19). The site 5 is not as 
strongly connected as the other three elements. In more detail the conse-
quences are discussed in Brüggemann et al. (2001b). We can calculate the lo-
cal quantity U(x), i.e. the number of incomparabilities of an element x. The 
larger the values of U(x) the more uncertain the rank of x is. In the case of 
site 5 it turns out that U(5) = 6 , whereas the corresponding values for the site 
91, 1, 17 are U(91) = 1 , U(1) = 2 , and U(17) = 1, respectively. Therefore the 
measure of uncertainty about the ranks is U(91) = U(17) < U(1) << U(5). 

As stated earlier, it is possible to calculate averaged ranks; the full list of 
information is given in Table 5, where the minimum, maximum rank and the 
local incomparabilities are displayed. 

Table 5. Summary of the analysis by linear extensions 

Identifier Min Rkav Max U(x) 
1 5 6.67 8 3 
2 2 2.85 5 3 
3 4 4.70 6 2 
4 3 4.33 6 3 
5 4 7.67 10 6 
11 1 1 1 0 
12 6 6.94 8 2 
17 9 9.82 10 1 
91 2 2.39 3 1 
92 8 8.63 9 1 
95 11 11 11 0 

The analysis by linear extensions is very attractive as it helps to derive a 
linear ranking, without any subjective preferences. The data lead to a poset, 
the poset may be analyzed with respect to its structure, this is a combinatorial 
problem, and finally a ranking probability can be derived. Crucially in this 
procedure is that very different attribute profiles may lead to the same Hasse 
diagram and thus to the same set of linear extensions and therefore finally to 
the same probability characteristics: Thus, the attribute profiles a) (0,0), (1,0), 
(0,1), (1,1) and b) (0,0), (1,0), (0,5), (4,7) lead to identical Hasse diagrams. 

A priori this is fine as the first attribute definitely should compensate the 
second one. However, the sites, which belong to (1,0),(0,1) on the one side 
and (1,0), (0,5) on the other side will get the same averaged rank! Thus, the 
analysis by linear extensions alone should be carried out with appropriate 
care. We continue the analysis of the poset and discuss the attribute profiles. 
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Fig. 21. Probability plots for 4 elements of the poset, shown in Fig. 20 

Up to now, we have a quite good overview about the ranking of sites in 
Lake Ontario. However, does the test battery comprise redundancies? The 
subsequent dimension analysis will disclose this. 

a

b
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Dimension analysis  

We find, applying equation 15 that the poset shown in Figure 19 has dimen-
sion 2. Once the dimension d of a poset is found with d < card IB, then corre-
sponding many new latent ordering variables l1, l2, ... ld may be used to form 
the same Hasse diagrams as found by the original attributes. Hence, the same 
ranking must be possible by a lower number of latent ordering variables and a 
redundancy within the battery appears possible. However, the numerical rela-
tion between the original attributes and the latent ordering variables may be 
rather difficult to derive and, if even then hard to interpret as it is often the 
case, e.g., in principal component analysis. 

Corresponding to the dimension d = 2, the poset shown in Fig. 19 can al-
ternatively be visualized by a two-dimensional grid as is shown in Fig. 22. 
Both visualizations have their advantages. Structures within a Hasse diagram, 
e.g., successor sets, or sets of objects separated from others by incomparabili-
ties, can be more easily disclosed by a representation like that of Fig. 19. In 
multivariate statistics reduction of data is typically performed by principal 
components analysis or by multidimensional scaling. These methods mini-
mize the variance or preserve the distance between objects optimally. When 
order relations are the essential aspect to be preserved in the data analysis, the 
optimal result is a visualization of the sediment sites within a two-
dimensional grid. 

Some scores of the test battery are additionally shown. From them the 
values of the scores of other objects can be estimated or exactly calculated. 
For example, for site 17, FC must have the value 3, because the lower object 
92 and the higher object 95 have sFC = 3. The value of CP must be 0 because 
sCP(32) = 0, which is the lowest value. Similarly sCH(17) = 0 and sGT(17)=0, 
whereas for sMT(17) only the interval 4  sMT(17)  8 can be predicted from 
the knowledge of the neighbours in the Hasse diagram. 

The grid (Fig. 22) can be thought of as being a coordinate system, with 
one axis of a latent order variable l1 and another by l2, according to d = 2. 
By these two latent ordering variables, each element E/  can be charac-
terized by a pair, which represents correctly the order relations (Compare 
Figure 17) that are important for ranking but which is clearly not unique 
with respect to a numerical representation. The interpretation of the latent 
variables l1 and l2 is supported by checking the configurations within the two-
dimensional grid in terms of its a priori content (variables FC, CP, CH, MT, 
GT). A clear correlation can be detected between FC and the latent variable l1
and also between GT and the latent variable l2.
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Fig. 22. Visualization of the ranking result of the sediment samples of Lake Ontario 
after dimension analysis 

Sometimes these variables FC and GT with primary meaning are called 
polar items Shye 1985, Borg & Shye 1995. For further elucidation see also 
the multivariate technique posac (partial order scalogram analysis with coor-
dinates), which is explained in Brüggemann et al. 2003, Voigt & Welzl, 2002 
and for which a tool is provided in the software package Systat (R) 2000. 

The other variables accentuate the possibility of discrimination in a 
nonlinear manner. Therefore, in a qualitative sense, the ranking of the sedi-
ment sites of the Lake Ontario seems to be determined by a hygienic and an 
ecotoxicological component. Some objects could be embedded into the grid 
on alternative ways. However, the order theoretical information, namely the 
comparabilities and incomparabilities are maintained. This can be easily 
proved by verifying that the Hasse diagram induced by five attributes (Fig. 
19) is isomorphic to that, induced by the two latent variables (Fig. 22). If the 
ranking is in mind, then obviously the five tests apparently contain some re-
dundancies, because the decision for "good" or "bad" could also be given on 
the basis of two coordinate values. 
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Sensitivity analysis of the ranking  

For our example the matrix W has the following values (Table 6) 

Table 6. Values of the matrix W for different combinations of attribute 

W case 0 
FC,CP,CH,
MT,GT 

case 1 
CP,CH,M
T,GT

case 2 
FC,CH,M
T,GT

case 3 
FC,CP,
MT,GT 

case 4 
FC,CP,C
H,GT

case 5 
FC,CP,C
H,MT 

case 0 0 795 0 0 360 124 
case 1 - 0 795 795 1155 919 
case 2 - - 0 0 360 124 
case 3 - - - 0 360 124 
case 4 - - - - 0 484 
case 5 - - - - - 0 

It is seen that cases 1 to 5 excludes one after another FC, CP, CH, MT and 
GT, respectively. Thus, comparing these cases to case 0, including all 5 at-
tributes, will disclose the relative importance of the 5 tests comprising the 
battery. Thus, from this matrix the sensitivities are (FC) = 795, (CP) = 

(CH) = 0, (MT) = 360 and (GT) = 124, respectively, unambiguously dis-
closing the test "FC" as the most important within the attribute set containing 
the five tests. The tests CP and CH apparently do not have any influence at all 
on the order theoretical structure of the set of samples, i.e. they do not influ-
ence the prioritization of the sites. Their low sensitivities are also found by 
Dutka et al. 1986, who established a regression model between the two quan-
tities. It is emphasized that this conclusion refers to the classified values of 
the battery of tests. Hence, the result with respect to FC should be carefully 
examined as the high sensitivity may be induced by the scoring process. 

Fig. 23 shows the Hasse diagram (generated by the computational soft-
ware, WHASSE (Brüggemann et al. 1999 a) therefore drawn in its standard 
format: circles, and each object as high as possible in the drawing plane): 
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Fig. 23. 55 samples evaluated with the test battery of Dutka, excluding the FC test. 
Note that many samples are members of non-trivial equivalence classes 

The dramatic changes compared to the original Hasse diagram (Fig. 19) 
are immediately seen. 

Discussion and Conclusion 

The battery of tests approach helps to evaluate sites using different criteria 
simultaneously: The decision of which sites are "good" or "bad", i.e. the sort-
ing process is more difficult the larger the number of samples and especially 
the larger the number of tests, since there is more information that can be 
used to differentiate among the tested objects. This, in turn, leads to difficul-
ties for ranking, because the complexity of a well-designed battery is being 
lost, if in order to compare the tested objects, a ranking index like  

 =  gi·qi                         (22) 

is constructed. The presentation by a Hasse diagram avoids the arbitrariness 
in constructing a ranking index. Applying concepts of partially ordered sets 
must not be performed in isolation. All results depend on the data representa-
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tion used. The present study aimed at demonstrating the HDT using, and ex-
tending the results of Dutka et al. 1986. Therefore we did not need statistical 
analyses. However, generally, the appropriate data representation is of much 
concern, Brüggemann & Welzl 2002. The use of cluster analysis and princi-
pal component analysis may be helpful to obtain a statistical relevant data 
representation and to avoid insignificant numerical differences of the attrib-
utes, which in turn would lead to insignificant comparabilities and incompa-
rabilities and thus to very complex Hasse diagrams.  

A combination of Hasse Diagram Techniques and explorative statistical 
methods could be a very promising approach to future tasks in environ-
mental sciences. Approaches in this respect were followed on the pollution 
of regions in Germany with heavy metals, cf. Brüggemann et al. 1999b) 
and on the contents of environmental databases, cf. Voigt et al. 2004. 

The analysis of empirical datasets may lead to empirical partial orders, 
which do not necessarily fulfill the axioms of lattices. The school around 
Wille (Wille 1987 and Ganter & Wille 1996) has shown how it is possible 
nevertheless to construct a lattice. The resulting lattices and the analysis 
based on them is called "Formal concept analysis". As lattices fulfill more 
axioms than posets generally, one gets a richer theory of them. Especially 
it is possible to generate a set of implications. See chapter by Kerber, p. 
355 for introductory examples. 

The main advantage of a ranking by HDT is that it can be performed 
without any normative constraints. HDT simply sorts the objects without any 
additional information. Beyond sorting, many conclusions may be drawn 
from the Hasse diagrams as they represent a well-defined mathematical struc-
ture. Summarizing the following recommendations can be given:  

If the battery of tests is used to test many objects, perform a cluster 
analysis to get rather numerically robust results. Instead of the meas-
ured results for each object use some characteristic values of the clus-
ter (mean values or some other quantities, describing a cluster cen-
ter).
Apply HDT to look for priority objects, to identify objects or subsets 
with characteristic patterns (in mathematical terminology: find "order 
ideals") or to select sequences (in order theoretical terminology: 
"chains") of objects. 
Perform a dimension analysis to estimate the redundancy of the test 
system and a sensitivity study to identify important or less important 
attributes. The rational for the importance of each attribute cannot be 
drawn from the HDT; here the scientific background is needed: What 
are the characteristics for all the tested objects are there any internal 
correlations among the attributes? 
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If an aggregation is done, as, e.g., by eqn. 22 then note that the 
weights may have an important influence on the ranking results via 
if objects have an high degree of incomparability, i.e. have a large 
value for U(x). 
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