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Abstract

The basic definitions related to the general topic of ordering are reviewed 
and exemplified including: partial ordering, posets, Hasse diagrams, ma-
jorization of structures and comparable / incomparable structures.  

Young Diagram lattice (of Ruch) and the ordering scheme of tree graphs 
(of Gutman and Randi ) are described and it is shown, how the two 
schemes coincide with each other, i.e. generate identical orders.  

The role of Young diagrams in the ordering of chemical structures is 
explained by their relation to alkane hydrocarbons and unbranched cata-
condensed benzenoid systems. 

The Basic Terms: Examples of Posets, The Hasse 
Diagram

The concept of a partial order appears to be very useful in environmental 
science when evaluation and comparative study of properties are required. 
The object to be studied form an object set and the partially order set (
poset) depends on the  , (greater than- or equal to-) relation (Luther et al. 
(2000). We now introduce some of the popular definitions in an intuitive 
approach, which avoids the “dryness” of mathematical rigor. 
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Partially ordered set (poset) 

It may be helpful to consider the following graph and analyze some parts 
of it: (cf. Fig. 1) 

Fig. 1. A labelled graph, which corresponds to a relation on a set of numbers 

Obviously, the above graph describes some sort of a relation, R, on the 
components of the set of integers: 

S = {1, 2, 3, 4, 6, 8, 12}                                                            (1) 

We consider S as ground set (object set), whose elements are labelled 
vertices of a graph. The relation among the vertices, graphically displayed 
by lines (called "edges") depends on the questions one has. For example: 
One observes that numbers, which divide others are connected, those that 
do not divide each other are not. One, then, says that the above graph 
represents some sort of ordering relation expressed as. 

{(a,b) | a divides b} on S = {1, 2, 3, 4, 6, 8, 12}                                  (2) 

The relations among integers are described as follows:
a) Because every element of S is related to itself, i. e., (a, a)  R ; R 

is said to be reflexive. 
b) While, e.g., 2 divides 4, 4 does not divide 2 and so on. Such a rela-

tion is said to be anti-symmetric. 
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c) The last property may be exemplified on the subset {2, 4, 8}: 2 di-
vides 4; 4 divides 8 hence 2 divides 8, which is true for other com-
ponents, i. e.: if (a, b)  R and (b, c)  R then (a, b, c)  R. 

The above property is called the transitive character of R. A poset may 
then be defined as a relation R, on a set S if R is reflexive, anti-symmetric 
and transitive. 

The graph, which describes a particular poset, is called a Hasse diagram
after the 20th century German mathematician Helmut Hasse (1898-1979) 
(Rosen 1991). See also chapter by Halfon p. 385. 

A word on Hasse diagrams:
Actually the object shown in Fig. 1 is just a graph (not a diagram!): per-
haps the word diagram is associated to it from the way it is used to be 
drawn. In fact all self-evident edges are now removed such as all loops, 
which describe the reflexive relation and also which result from the transi-
tive character, e.g., edges (2, 8), (3, 12) and (1, all other vertices) are re-
moved. Also arrows that indicate relative positions of components are no 
longer indicated, yet the “old name”: diagram, (instead of graph) remained. 

The Hasse diagram can be drawn in different ways maintaining the main 
information, the order relations. Such Hasse diagrams are isomorphic to 
each other. 

Majorization of Structures: Relative Importance 

Sometimes in (partial) ordering problems one may be interested in the rela-
tive importance of the components of a set. This situation reminds us with 
the relation A  B i.e., “A is a descendent of B” or that: “B majorizes A”. 
A popular example is the partial ordering {(A, B) | A  B} on the power 
set S = {a, b, c} where A B means that A is a subset of B. Whenever this 
relation exists one says that B majorizes A. The power set S contains  
23 = 8 elements, viz., {a}, {b}, {a, b}, {a, c}, {b, c}, {a, b, c} and ,
where  is the empty set.  

For this particular case the Hasse diagram is simply a cube, labelled as 
shown in Fig. 2. 
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Fig. 2. The Hasse diagram of S = {a, b, c}. Each subset is attached to its direct off-
spring, so that the descendant (less important components) lies in lower levels 

One observes that {a, b}, {a, c} and {b, c} are subsets of {a, b, c} and 
therefore of lower relative importance and analogously for the single-
component subsets {a}, {b}, {c}. The above example represents one of the 
simplest cases of relative importance ordering problems, which finds 
chemical applications (section ‘Relative importance of Kekulé Structures 
of Benzenoid Hydrocarbons: Chain ordering’). 

Comparable and incomparable elements: Chain and Anti-chain 

The elements a and b of a poset (S,<) are called comparable if either a  b 
or b  a. When a and b are elements of S such that neither a  b nor b  a, a 
and b are called incomparable. For example the subsets {a,c}, {b,c} and 
{a, b} are incomparable with each other: (they are not directly connected 
(= adjacent) to each other, cf. Fig. 2). On the other hand, because {a, b, c} 
majorizes {a, c}, e.g., they are comparable components of S. 

Partial ordering may, then, be viewed as first weakening (  relaxation) 
of the usual total ordering which is required for every pair of elements, 
a,b  S, that it must be a  b or b  a or a = b. Of course the standard total 
ordering is that of “greater than or equal to” on the set of real members. In 
Fig. 2, the subset of vertices, labelled {{a, b, c}, {a, c}, {c}, } is called a 
chain because every two elements of this subset are comparable. On the 

{c}

{a, c} 

{a, b, c} 

{a, b} 

{b}
{a}

{b, c} 
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other hand the subset {{a, b, c}, {b, c}, {a}, }} is called an anti-chain 
because every two elements are incomparable. 

One can immediately see the advantage of mathematical (graph-
theoretical) techniques over quantum-chemical calculations in fields, 
which requires analysis of structure-property relation (such as environ-
mental sciences). We quote the following paragraph from a paper by 
Randi  et al. (1985). 

“Quantum Chemistry appears to be preoccupied with evaluation of the 
wave function and potential surfaces, a worthy goal- but of limited use 
when one considers whole families of molecules and when one is con-
cerned with structure-property relationships”. 
We quote further (Randi  et al. 1985): 

“Graph Theory is concerned with relations, and, in chemistry, the rela-
tionships between molecular structure and molecular properties are of par-
ticular interest”. 

Namely using graph-theoretical techniques, a structure is “replaced”, so-
to-speak, by a collection of its mathematical properties (  graph-
invariants) (Randi  et al. 1985) and whence allows the generation of vari-
ous types of posets as we shall see the next section. 

Some Posets of Chemical Interest 

In this section we show some of the posets produced by researchers in 
mathematical chemistry over the past quarter of a century: 

Relative importance of Kekulé Structures of Benzenoid 
Hydrocarbons: Chain ordering 

Individual formal valence structures of conjugated hydrocarbons are excel-
lent “substrates” for research in chemical graph theory, whereby many of 
the concepts of discrete mathematics and combinatorics may be applied to 
chemical problems. The lecture note published by Cyvin and Gutman (Cy-
vin, Gutman 1988)) outlines the main features of this type of research 
mostly from enumeration viewpoint. In addition to their combinatorial 
properties, chemists were also interested in relative importance of Kekulé 
valence-bond structures of benzenoid hydrocarbons. In fact, as early as 
1973, Graovac et al. (1973) published their Kekulé index, which seems to 
be one of the earliest results on the ordering of Kekulé structures: These 
authors used ideas from molecular orbital theory to calculate their indices 
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but the resulting ordering is not partial: it is a chain-type (also called total 
or linear order). 

Graph-theoretical Ordering of Kekulé structures 

A few years later, Randi  (1977) analyzed a valence-bond Kekulé structure
into conjugated circuits of -electrons: For benzenoid systems Rn implies 
(4n+2) -electrons. Randi , then, parameterized his Rn‘s and ordered them 
as R1 > R2 > R3 >… where he studied both the relative importance of Ke-
kulé structures as well as the stabilities of their benzenoid hydrocarbons 
(compare Fig. 6, section ‘Partial-Ordering of Kekulé Structures’). 

Partial Ordering of Kekulé Structures 

A decade ago El-Basil (1993) generated vertex-transitive graphs (i.e., 2-
cube (  square), 3-cubes (  cube), 4-cube (  tesseract), etc.) using terminal 
R1 circuits in a (sub)-set of Kekulé structures by defining two Kekulé 
structures as “adjacent” if one can be obtained from the other by sextet ro-
tation in only one terminal R1 through 60°. Formally, this is an operation 
on a power set composed of n terminal R1 conjugated circuits (  terminal 
sextets). When n=2 one obtains a square (2-cube, because 22 = 4), n=3 
generates a cube (23 = 8) while a tesseract requires 4 terminal circuits (24 = 
16) and so on. The base 2 originates from the fundamental fact that there 
are only two ways in which the double bonds are arranged in a hexagon, 
viz., proper, (+1) and improper (-1): (Fig. 3) 

+ 1 - 1
Fig. 3. The two orientations of -electrons in a hexagon 

The sextet rotation operation defines our adjacency relation among the 
set of Kekulé structures and the vertex-transitive graphs generated are 
nothing else but posets of Kekulé structures. 
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Coding Kekulé structures of catacondensed benzenoids 
1. Arrange the skeleton of the benzenoid hydrocarbon so that some of 

its edges are vertical 
2. Starting from the top left corner of the benzenoid graph, assign +1 

or -1 to terminal rings according to the orientation of their aro-
matic sextets (Fig. 3). 

3. Two Kekulé structures X, Y are defined to be adjacent (El-Basil 
(1993) if their codes differ in the sign of only one position: A 
skeleton X  Y iff qi(X)  qi(Y) with q being a sequence of +1 and 
-1.

An example is shown in Fig. 4 

+ 1 - 1

+ 1+ 1

(1,-1,+1,+1)
Fig. 4. The code of Kekulé structure of catacondensed benzenoid system contain-
ing 4 terminal hexagons. Compare also Fig. 3 

In Fig. 5 we show the posets (Hasse diagrams), which correspond to hy-
drocarbons containing 3, 4 and 5 terminal hexagons. 
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Fig. 5. 3-, 4- and 5-cubes, which represents posets generated from sets of Kekulé 
structures

Note that in Fig. 5 benzenoid hydrocarbons are shown, having 3, 4 and 
5 terminal hexagons. Codes of Kekulé structures are indicated. For the 5-
cube only places of negative signs of the code are written
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A) The cube poset: 
Fig. 6 shows the cube which results when 8 (out of the 9) structures of 
triphenylene are ordered according to their adjacency relations of their 
codes (El-Basil (1993).  

Fig. 6. The Hasse diagram of ordering 8 (out of 9) Kekulé structures of 
triphenylene 

In Fig. 6 incomparable structures are indicated by solid circles and by 
solid triangles. Dotted lines indicate levels of stability of the Kekulé struc-
tures: 4R1 > 3R1+R2 > 3R1+R3 > 3R1+R4
Counts of conjugated circuits are shown, from which we see several chain 
orders, e.g., one of which leads to the following relative stabilities: 

4R1 > 3R1+R2 > 3 R1+R3 > 3R1+R4                                     (3) 

All the resulting partial orders are consistent with the conjugated-
circuits model of Randi  (1977). 

Kekulé structures, which correspond to identical circuit counts, e.g. ver-
tices labelled by (3R1+R2) and by (3R1+R3) in Fig. 6, are incomparable. 
They represent vertices, which are not connected on the poset. Some Ke-
kulé structures are shown as representative examples along with their con-
jugated - circuit counts. 
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B) The tesseract (The 4-dimensional cube)
This 16 (= 24) vertex-transitive graph may be generated using a catacon-
densed benzenoid system with 4 terminal hexagons. Again, the individual 
Kekulé structures are partially ordered in accord with their conjugated-
circuits counts (Randi  (1977). 

Fig. 7 shows the resulting poset. 

Fig. 7. Four-dimensional cube generated from a benzenoid system containing 4 
terminal hexagons 

In Fig. 7 the conjugated circuits correspond to Kekulé structure-
positions as follows: 1 = (7R1); 2 = (6R1 + R2); 3 = (6R1 + R3); 4 = (6R1 + 
R2); 5 = (5R1 + 2R2); 6 = (5R1 + R2 + R3); 7 = (5R1 + 2R2); 8 = (6R1 + R2);
9 = (5R1 + R2 + R3); 10 = (6R1 + R3); 11 = (5R1 + R2 + R3); 12 = (5R1 + 
2R3); 13 = (5R1 + 2R2); 14 = (5R1 + R2 + R3); 15 = (5R1 + 2R2); 16 = (6R1
+ R2).
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The Young-Diagram Lattice, Ordering of Muirhead and 
generalization of Karamata

Ordering implies a comparison, and instead of actual structures, one nor-
mally compares sequences of numbers characterizing a molecular graph of 
a chemical structure. Frequently the required sequences are derived from 
an enumeration of selected graph invariants. If the selected invariants lead 
to integers, then the ordering theory of Muirhead (1903) is most suited for 
these special cases:  

At the beginning of last century Muirhead (1903) introduced a theory of 
ordering and comparing sequences of integers. Muirhead’s method calls 
for the construction of partial sums derived from integral sequences. If for 
every entry in two such sequences of partial sums, members of one struc-
ture are larger or equal (but not smaller) than the corresponding entries in 
other sequence, the structures can be ordered with the first structure pre-
ceding the second. If these conditions are not satisfied, the structures are 
not comparable leading to a partial ordering. 

(a1  a2  …  an > 0) and (b1  b2  …  bn >0)              (4) 

Be two sequences of integers. Then, Muirhead’s method states that:  
(a1, a2, …  an) majorizes (b1, b2, …  bn), if a series of statement holds: 
(Table 1): 

Table 1. Muirhead's method (Muirhead (1903) 

(a1,a2,…,an) majorizes (b1,b2,…,bn) if 
a1  b1
a1+a2  b1+b2
…  …  
a1+a2+…+an  b1+b2+…+bn

Restrictions to integral entries have subsequently been removed and for 
these more general situations, Karamata (Beckenbach, Bellmann 1961) de-
rived an important theorem, which allows definite conclusions to be drawn 
from properties of the structures to be studied, if graph invariants are not 
integral quantities. 

More recently Ruch (1975) used ideas of Muirhead in connection with 
representations of the symmetric group and generated a partial ordering of 
partitions of integers. For each partition one associates a row of an equal 
number of dots or boxes so that the rows are arranged in a non-increasing 
order. For example there are 5 partitions of 4, represented in Fig. 8. 
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Fig. 8. Partitions of 4 and the corresponding Ferrers graphs and Young diagrams. 
Both to be read horizontally 

Sometimes, the diagrams of dots are referred to as Ferrers graphs (Cole-
man 1968), after the English mathematician of the latter part of the nine-
teenth century. However, Young, employed similar devices now known as 
Young diagrams where he replaces dots with small squares. We let: 

a = a1 + a2 + … + an , 
b = b1 + b2 + … + bn                                                                             (5) 

be two partitions of the same integer (i.e., aa + a2 + … + an = b1 + b2 + … + 
bn). Then a is said to dominate or majorize b if equation (4) is satisfied, 
otherwise, the two partitions (or the corresponding graphs) are not compa-
rable. As an illustration, we form the partial sums of the partitions of 4: 

4                (4, 0, 0, 0)  (4, 4, 4, 4) 
3+1            (3, 1, 0, 0)  (3, 4, 4, 4) 
2+2            (2, 2, 0, 0)  (2, 4, 4, 4) 
2+1+1  (2, 1, 1, 0)  (2, 3, 4, 4) 

(3,1)  3+1 

(22)  2+2 

(2,12) 2+1+1 

(14)  1+1+1+1 

(4)  4 
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1+1+1+1  (1, 1, 1, 1)  (1, 2, 3, 4)                                      (6) 
Muirhead’s ordering conditions in the above case are a chain on five verti-
ces because all successive sequences (  graphs) are comparable.  

For n = 5 there are 7 partitions, the ordering of which also leads to a 
chain. But starting with n = 6, one observes two pairs of non-comparable 
graphs (leading to two bifurcations). (This poset is shown in Fig. 10 (sec-
tion ‘The Young-Diagram Lattice, Ordering of Muirhead and generaliza-
tion of Karamata’)). 

The first bifurcation is generated at 4 = 4 + 1 + 1 and 5 = 3 + 3, which 
correspond to the partial sums: 

(4, 5, 6, 6, 6, 6)         ,          (3, 6, 6, 6, 6, 6)                                          (7) 

We observe that the first component of the first sequence is greater than 
that of the second sequence, but the reverse order for the second compo-
nents, i.e. 4 > 3 but 5 < 6. Hence the sequences (7) are an incomparable 
pair. Both 4 and 5 are comparable with 3 = 4 + 2 whose partial sum is 
(4, 6, 6, 6, 6, 6) which majorizes both partial sums shown in eqn. (7). 

Ordering of Tree graphs  

In Gutman and Randi  (1977) published their work on the algebraic char-
acterization of skeletal branching of tree graphs (cf. Harary (1972). (A 
graph is viewed as an abstract representation of a molecule where vertices 
replace atoms and edges replace chemical bonds. The degree of a vertex 
equals the valence of the corresponding atom. Often in hydrocarbons a H-
suppressed graph is useful, where the hydrogen atoms are neglected.) The 
steps involved in the scheme of Gutman and Randi  are outlined as fol-
lows:

a) List the valences of a tree graph in a non-increasing way. 
b) Form the partial sums of the above sequence. 
c) Order a set of partial sums according to eqn. (4). 

Remarkably the poset obtained (by Ruch) for Young diagrams were also 
obtained (by Gutman and Randi ) for the trees! In fact a set of Young dia-
gram containing n vertices is isomorphic with a set of trees containing (n + 
2) vertices. As an illustration we show how a set of Young diagrams on 6 
boxes and a set of trees on 8 vertices generate the same poset (Fig. 9). 



16      El-Basil, S. 

Fig. 9. A set of trees {T1, T2, T3} and the corresponding set of Young diagrams {Y 
(T1), Y (T2), Y (T3)}, their valence sums and partial sums leading to a poset with 
one bifurcation which defines a non-comparable pair {T2, T3}, cf. eqn. (5) 

The valences of these trees are listed in a non-increasing way together 
with the corresponding partial sums. When rules of Muirhead (eqn. 4) are 
applied to these partial sums one obtains the poset shown in Fig. 10. We 
observe that T1 majorizes (i.e., more important than  dominates) T2 and 
T3 but T2 and T3 cannot be ordered: Muirhead’s theory describes T2 and T3
(or their corresponding Young diagrams) as being incomparable. Pairs of 
incomparable objects generate sites of bifurcations. 

In Fig. 10 we show the ordering of the set of Young diagrams on 6 
boxes according to the rules of Ruch (1975). The corresponding tree 
graphs are also shown (see also chapter by Seitz p. 367, where a set of 
Young diagrams with 10 boxes is represented and discussed with respect 
to complexity measures).  

 T1   T2   T3
4,4,1,1,1,1,1,1     4,2,2,2,1,1,1          3,3,3,1,1,1,1,1 

 Y(T1)   Y(T2)   Y(T3)

T1 Y(T1)

T2 Y(T2) T3 Y(T3)



Partial Ordering of Properties: The Young Diagram Lattice      17 

Fig. 10. Ordering of the set of Young diagrams containing 6 boxes. The corre-
sponding tree graphs are shown. Underlined graphs are non-caterpillar trees 

The Fig. 10 illustrates how the ordering theory of Ruch (1975) coincides 
with that of Gutman and Randi  (1977) (See also Fig. 12). 

The overlap between the ordering schemes of Ruch and that of 
Gutman & Randi

These two ordering schemes may be made to overlap (i.e., generate the 
same poset) for a set of trees containing (n = 2) vertices and a set of Young 
diagrams containing n boxes as follows: 

a) Suppress information on terminal vertices (of valence = 1) 
b) Reduce valence of each vertex by one 
c) The resulting sequence of integers (from left to right) represents 

rows of boxes from top to bottom. 
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Example:
T2 (Fig. 9) generates the following sequence of integers representing va-
lences of vertices arranged in a non-descending order: 

4,2,2,2,1,1,1                                                               (8) 

We adopt steps a-c: 

a) Suppressing information of terminal vertices leads to the sequence: 

4,2,2,2                                                                                (9) 

b) Reduction of valence of each vertex by one leads to: 

3,1,1,1                                                                 (10) 

c) The above sequence corresponds to the following Young diagram Fig. 
11.

Fig. 11. A specific Young diagram, corresponding to the sequence 3,1,1,1 

Correlation of Young Diagrams with Alkanes and benzenoid 
Hydrocarbons 

A remarkable type of tree graph is called a Caterpillar El-Basil (1987) (or a 
caterpillar tree): Pj (m1, m2, … , mj) which is obtained by the addition of 
m1 monovalent vertices to the first vertex 1 of path Pj , m2 monovalent 
vertices to 2 of Pj and so on. The three tree graphs shown in Fig. 10 are all 
caterpillar trees and may be designated respectively as: 

= Y(T2)
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P2 (3,3) ; P4 (3,0,0,1) ; P3 (2,1,2) 

An example of a non-caterpillar tree is shown in Fig. 12. 

Fig. 12. An unbranched benzenoid hydrocarbon, the corresponding caterpillar tree 
T, alkane hydrocarbon skeleton and Young diagram. T' is a non-caterpillar tree 

Caterpillar trees are related to other combinatorial objects of chemistry 
and physics (such as rook boards, Clar graphs, and King polyomino 
graphs) (El-Basil, Randi  (1992) but most importantly, caterpillar trees 
represent in fact unbranched catacondensed benzenoid hydrocarbons (El-
Basil 1987), El-Basil, Randi  1992). To envisage this important connec-
tion we distinguish two types of annellation of hexagons (Cyvin, Gutman 
(1988), viz., linear, L, and angular, A, modes (Fig. 13): 
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Fig. 13. Linear and angular modes of annelating hexagons 
An unbranched benzenoid may thus be “coded” by its LA – sequence 

written, say, from left to right, as LA – units, viz. 

jmm LAALL ....21

The corresponding caterpillar tree is composed by the addition of m1
monovalent vertices to 1, m2 monovalent vertices to 2 , … , j monovalent 
vertices to jth vertex of path Pj (on j vertices). 

In Fig. 12 we illustrate these concepts. 

Ordering of Unbranched Benzenoid Hydrocarbons  

We have seen in the previous section (cf. Fig. 12) that a caterpillar tree can 
be made to overlap with an unbranched catacondensed benzenoid hydro-
carbon. I.e., the modes of hexagon annellation are, in fact, “stored” so-to-
speak in the distribution of the terminal vertices of a caterpillar tree. One 
is, then, tempted to go back to posets such as the one shown in Fig. 10 and 
replaces the caterpillar trees by their corresponding benzenoids. In this 
way a set of benzenoid hydrocarbons has been partially ordered according 
to the theory of Ruch (1975), using Muirhead’s rules (Muirhead (1903) 
(eqn. 4) or equivalently according to the scheme of Gutman and Randi
(1978) using valences of vertices of tree graphs as input for eqn. (4). The 
question now becomes: does the resulting (purely structural) partial order-
ing reflect the (chemical) properties of benzenoids? The answer is quite 
encouraging: In Fig. 12 the corresponding benzenoids are represented as 
their respective LA-sequences and their stabilities are measured by the set 
of Herndon’s permutation integrals (Herndorn, Ellzey Jr (1974) ( 1, 2, 3,

4) where i involves permutation of (4i+2) -electrons. Observing that 
twice these integrals are numbers of conjugated circuits (cf. Randi  (1977), 

L A 

L A
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listed, respectively, as (R1, R2, R3, R4), we can use this poset to order a set 
of hydrocarbons according to their stability.  

Fig. 14. Partial ordering of the set of unbranched benzenoids containing 7 hexa-
gons. Each benzenoid is coded by its L-A sequence of hexagon annelations 

In Figure 14, numbers in parentheses are permutation integrals (Hern-
dorn, Ellzey Jr (1974). The poset is isomorphic with the one shown in Fig. 
10. Chemical stability goes up as one goes down along the poset. 

In the present case, stability increases as one goes down the edges of the 
poset. The limits are defined as {L7} and {LA5L} representing a linear 
acene (heptacene) and a single zigzag chain, all- benzenoid, system. Linear 
acenes are known to be coloured unstable hydrocarbons while angular an-
nellations of hexagons leads to colourless stable systems (Clar 1972). In 
Fig. 15 this situation is illustrated with a few examples of unbranched ben-
zenoids for which UV data are available (Clar 1972), which serves to illus-
trate general features. 
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Fig. 15. Limits of stability of a set of catacondensed benzenoids 

In Fig. 15 the linear acene represents the most unstable system while the 
all-kinked acene being the most stable. These limits may be modelled re-
spectively with a star tree (or a row of boxes) and a path (or a column of 
boxes). The para bands of UV spectra are indicated for some cases for 
which data are available (Clar (1972). It is interesting to observe that se-
quences of numbers which represent ( 1, 2, 3, 4) lead to bifurcations (i.e. 
incomparable pairs) when the sequences, which correspond to Young dia-
grams, are also incomparable! For example at the first bifurcation (Fig.’s 
10, 12) one finds the following pair of sequences of ’s. 

(25, 18, 11, 4) , (25, 17, 10, 7),                                                            (11) 

which leads to the following non-comparable partial sums: 

(25, 43, 54, 58) , (25, 42, 52, 59)                                                         (12) 
i.e., 54 > 52 while 58 < 59 leading to a bifurcation! 
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An observation regarding Young diagrams and tree graphs
While there is a unique Young diagram for every tree graph, the opposite 
is not true, viz., several trees may occupy the same position characterizing 
a single Young diagram on a given poset. Namely, several trees lead to the 
same partition of vertex-valences and whence the same Young diagram. 
As an illustration one may observe in Fig. 10, that each of position 4, 6, 7, 
9, 10 of the poset shown characterizes a single Young diagram but several 
tree graphs! Take, e.g. the sequence of vertex-degree 3,3,2,2,1,1,1,1, then, 
the ordering rules of Gutman and Randi  (1977) lead to rows of boxes 
(from top to bottom) of lengths 2,2,1,1 which define a unique Young dia-
gram, but the vertex-degrees in this case generate four caterpillar and one 
non-caterpillar trees. (position 9 of the poset shown in Fig. 10). 

Grid Graphs Based on Molecular Path Codes of Lengths 2 
and 3: Relation to Ordering of Young Diagrams 

In a series of publications Randi  et al. (Randi , Wilkins (1979) generated 
grid graphs of molecular graphs of classes of compounds based on their 
path codes of lengths 2 and 3. Such periodic tables are reminiscent of the 
Hasse diagrams of partial orderings and may be viewed as multiposets, the 
nodes of which represent the partial ordering of a given property. Several 
properties were studied, which include enthalpies, heat capacities, critical 
volumes, index of refraction, entropy changes and several others. 

Here, we observe how these grids are related to Young diagrams. As an 
example we consider in Fig. 14, the diagram that shows positions of the set 
of octane isomers in the coordinate system (P2, P3). We also indicate the 
corresponding Young diagrams associated with the tree graphs represent-
ing the octanes. Interestingly the resulting grid successfully orders subsets 
of Young diagrams in accord with rules of Ruch (1975) as well as the 
scheme of Gutman and Randi .
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Example (Fig. 16): 

Fig. 16. The diagram showing positions of various octane isomers in the coordi-
nate system (P2, P3)

In Fig. 16 the corresponding Young diagrams are correctly ordered in 
horizontal lines (dashed arrows) in accord with rules of Ruch (1975) as 
well as Gutman and Randi  (1977). 
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