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1 Introduction

In these notes we discuss Markov processes, in particular stochastic differential equa-
tions (SDE) and develop some tools to analyze their long-time behavior. There are
several ways to analyze such properties, and our point of view will be to use system-
atically Liapunov functions which allow a nice characterization of the ergodic prop-
erties. In this we follow, at least in spirit, the excellent book of Meyn and Tweedie [7].
In general a Liapunov function W is a positive function which grows at infinity
and satisfies an inequality involving the generator of the Markov process L: roughly
speaking we have the implications (α and β are positive constants)

1. LW ≤ α + βW implies existence of solutions for all times.
2. LW ≤ −α implies the existence of an invariant measure.
3. LW ≤ α − βW implies exponential convergence to the invariant. measure
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For (2) and (3), one should assume in addition, for example smoothness of the tran-
sition probabilities (i.e the semigroup etL is smoothing) and irreducibility of the
process (ergodicity of the motion). The smoothing property for generator of SDE’s
is naturally linked with hypoellipticity of L and the irreducibility is naturally ex-
pressed in terms of control theory.

In sufficiently simple situations one might just guess a Liapunov function. For in-
teresting problems, however, proving the existence of a Liapunov functions requires
both a good guess and a quite substantial understanding of the dynamics. In these
notes we will discuss simple examples only and in the companion lecture [11] we
will apply these techniques to a model of heat conduction in anharmonic lattices. A
simple set of equations that the reader should keep in mind here are the Langevin
equations

dq = pdt ,

dp = (−∇V (q) − λp)dt +
√

2λTdBt ,

where, p, q ∈ Rn, V (q) is a smooth potential growing at infinity, and Bt is Brown-
ian motion. This equation is a model a particle with Hamiltonian p2/2 + V (q) in
contact with a thermal reservoir at temperature T . In our lectures on open classical
systems [11] we will show how to derive similar and more general equations from
Hamiltonian dynamics. This simple model already has the feature that the noise is
degenerate by which we mean that the noise is acting only on the p variable. Degen-
eracy (usually even worse than in these equations) is the rule and not the exception
in mechanical systems interacting with reservoirs.

The notes served as a crash course in stochastic differential equations for an
audience consisting mostly of mathematical physicists. Our goal was to provide the
reader with a short guide to the theory of stochastic differential equations with an
emphasis long-time (ergodic) properties. Some proofs are given here, which will, we
hope, give a flavor of the subject, but many important results are simply mentioned
without proof.

Our list of references is brief and does not do justice to the very large body of
literature on the subject, but simply reflects some ideas we have tried to conveyed in
these lectures. For Brownian motion, stochastic calculus and Markov processes we
recommend the book of Oksendal [10], Kunita [15], Karatzas and Shreve [3] and the
lecture notes of Varadhan [13, 14]. For Liapunov function we recommend the books
of Has’minskii [2] and Meyn and Tweedie [7]. For hypoellipticity and control theory
we recommend the articles of Kliemann [4], Kunita [6], Norris [8], and Stroock and
Varadhan [12] and the book of Hörmander [1].

2 Stochastic Processes

A stochastic process is a parametrized collection of random variables

{xt(ω)}t∈T (1)
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defined on a probability space (Ω̃,B,P). In these notes we will take T = R+ or T =
R. To fix the ideas we will assume that xt takes value in X = Rn equipped with the
Borel σ-algebra, but much of what we will say has a straightforward generalization
to more general state space. For a fixed ω ∈ Ω̃ the map

t �→ xt(ω) (2)

is a path or a realization of the stochastic process, i.e. a random function from T into
Rn. For fixed t ∈ T

ω �→ xt(ω) (3)

is a random variable (“the state of the system at time t”). We can also think of xt(ω)
as a function of two variables (t, ω) and it is natural to assume that xt(ω) is jointly
measurable in (t, ω). We may identify each ω with the corresponding path t �→ xt(ω)
and so we can always think of Ω̃ as a subset of the set Ω = (Rn)T of all functions
from T into Rn. The σ-algebra B will then contain the σ-algebra F generated by
sets of the form

{ω ; xt1(ω) ∈ F1, · · · , xtn
(ω) ∈ Fn} , (4)

where Fi are Borel sets of Rn. The σ-algebra F is simply the Borel σ-algebra on
Ω equipped with the product topology. From now on we take the point of view that
a stochastic process is a probability measure on the measurable (function) space
(Ω,F).

One can seldom describe explicitly the full probability measure describing a sto-
chastic process. Usually one gives the finite-dimensional distributions of the process
xt which are probability measures µt1,··· ,tk

on Rnk defined by

µt1,··· ,tk
(F1 × · · · × Fk) = P {xt1 ∈ F1 , · · · , xtk

∈ Fk} , (5)

where t1, · · · , tk ∈ T and the Fi are Borel sets of Rn.
A useful fact, known as Kolmogorov Consistency Theorem, allows us to con-

struct a stochastic process given a family of compatible finite-dimensional distribu-
tions.

Theorem 2.1. (Kolmogorov Consistency Theorem) For t1, · · · , tk ∈ T and k ∈ N
let µt1,··· ,tk

be probability measures on Rnk such that

1. For all permutations σ of {1, · · · , k}

µtσ(1),··· ,tσ(k)(F1 × · · · × Fk) = µt1,··· ,tk
(Fσ−1(1) × · · · × Fσ−1(k)) . (6)

2. For all m ∈ N

µt1,··· ,tk
(F1×· · ·×Fk) = µt1,··· ,tk+m

(F1×· · ·×Fk ×Rn ×· · ·×Rn) . (7)

Then there exists a probability space (Ω,F ,P) and a stochastic process xt on Ω
such that

µt1,··· ,tk
(F1 × · · · × Fk) = P {xt1 ∈ F1 , · · · , xtk

∈ Fk} , (8)

for all ti ∈ T and all Borel sets Fi ⊂ Rn.
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3 Markov Processes and Ergodic Theory

3.1 Transition probabilities and generators

A Markov process is a stochastic process which satisfies the condition that the future
depends only on the present and not on the past, i.e., for any s1 ≤ · · · ≤ sk ≤ t and
any measurable sets F1, · · · , Fk, and F

P{xt(ω) ∈ F |xs1(ω) ∈ F1, · · · , xsk
(ω) ∈ Fk} = P{xt(ω) ∈ F |xsk

(ω) ∈ Fk} .
(9)

More formally let Fs
t be the subalgebra of F generated by all events of the form

{xu(ω) ∈ F} where F is a Borel set and s ≤ u ≤ t. A stochastic process xt is a
Markov process if for all Borel sets F , and all 0 ≤ s ≤ t we have almost surely

P{xt(ω) ∈ F | F0
s } = P{xt(ω) ∈ F | Fs

s } = P{xt(ω) ∈ F |x(s, ω)} . (10)

We will use later an equivalent way of describing the Markov property. Let us con-
sider 3 subsequent times t1 < t2 < t3. The Markov property means that for any g
bounded measurable

E[g(xt3)|F t2
t2 ×F t1

t1 ] = E[g(xt3)|F t2
t2 ] . (11)

The time reversed Markov property that for any bounded measurable function f

E[f(xt1)|F t3
t3 ×F t2

t2 ] = E[f(xt1)|F t2
t2 ] , (12)

which says that the past depends only on the present and not on the future. These two
properties are in fact equivalent, since we will show that they are both equivalent to
the symmetric condition

E[g(xt3)f(xt1)|F t2
t2 ] = E[g(xt3)|F t2

t2 ]E[f(xt1)F t2
t2 ] , (13)

which asserts that given the present, past and future are conditionally independent.
By symmetry it is enough to prove

Lemma 3.1. The relations (11) and (13) are equivalent.

Proof. Let us fix f and g and let us set xti
= xi and F ti

ti
≡ Fi, for i = 1, 2, 3. Let

us assume that Eq. (11) holds and denote by ĝ(x2) the common value of (11). Then
we have

E[g(x3)f(x1)|F2] = E [E[g(x3)f(x1)|F2 ×F1] | F2]

= E [f(x1)E[g(x3)|F2 ×F1] | F2] = E [f(x1)ĝ(x2) | F2]

= E [f(x1) | F2] ĝ(x2) = E [f(x1) | F2]E[g(x3)|F2] , (14)

which is Eq. (13). Conversely let us assume that Eq. (13) holds and let us denote
by g(x1, x2) and by ĝ(x2) the left side and the right side of (11). Let h(x2) be any
bounded measurable function. We have
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E [f(x1)h(x2)g(x1, x2)] = E [f(x1)h(x2)E[g(x3)|F2 ×F1]]

= E [f(x1)h(x2)g(x3)] = E [h(x2)E[f(x1)g(x3) | F2]]

= E [h(x2) (E[g(x3) | F2]) (E[f(x1) | F2])]

= E [h(x2)ĝ(x2)E[f(x1) | F2]] = E [f(x1)h(x2)ĝ(x2)] . (15)

Since f and h are arbitrary this implies that g(x1, x2) = ĝ(x2) a.s. 
�

A natural way to construct a Markov process is via a transition probability func-
tion

Pt(x, F ) , t ∈ T , x ∈ Rn , F a Borel set , (16)

where (t, x) �→ Pt(x, F ) is a measurable function for any Borel set F and F �→
Pt(x, F ) is a probability measure on Rn for all (t, x). One defines

P{xt(ω) ∈ F | F0
s } = P{xt(ω) ∈ F |xs(ω)} = Pt−s(xs(ω), F ) . (17)

The finite dimensional distribution for a Markov process starting at x at time 0 are
then given by

P{xt1 ∈ F} = Pt1(x, F1) ,

P{xt1 ∈ F1, xt2 ∈ F2) =
∫

F1

Pt1(x, dx1)Pt2−t1(x1, F2) , (18)

...

P{xt1 ∈ F1, ··, xtk
∈ Fk} =

∫

F1

· · ·
∫

Fk−1

Pt1(x, dx1) · ·Ptk−tk−1(xk−1, Fk) .

By the Kolmogorov Consistency Theorem this defines a stochastic process xt for
which P{x0 = x} = 1. We denote Px and Ex the corresponding probability distri-
bution and expectation.

One can also give an initial distribution π, where π is a probability measure on
Rn which describe the initial state of the system at t = 0. In this case the finite
dimensional probability distributions have the form
∫

Rn

∫

F1

· · ·
∫

Fk−1

π(dx)Pt(x, dx1)Pt2−t1(x1, dx2) · · ·Ptk−tk−1(xk−1, Fk) , (19)

and we denote Pπ and Eπ the corresponding probability distribution expectation.

Remark 3.2. We have considered here only time homogeneous process, i.e., processes
for which Px{xt(ω) ∈ F |xs(ω)} depends only on t − s. This can generalized this
by considering transition functions P (t, s, x,A).

The following property is a immediate consequence of the fact that the future de-
pends only on the present and not on the past.
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Lemma 3.3. (Chapman-Kolmogorov equation) For 0 ≤ s ≤ t we have

Pt(x,A) =
∫

Rn

Ps(x, dy)Pt−s(y,A) . (20)

Proof. : We have

Pt(x,A) = P{x0 = x, xt ∈ A} = P{x0 = x, xs ∈ Rn , xt ∈ A}

=
∫

Rn

Ps(x, dy)Pt−s(y,A) . (21)


�

For a measurable function f(x), x ∈ Rn, we have

Ex[f(xt)] =
∫

Rn

Pt(x, dy)f(y) . (22)

and we can associate to a transition probability a linear operator acting on measurable
function by

Ttf(x) =
∫

Rn

Pt(x, dy)f(y) = Ex[f(xt)] . (23)

From the Chapman-Kolmogorov equation it follows immediately that Tt is a semi-
group: for all s, t ≥ 0 we have

Tt+s = TtTs . (24)

We have also a dual semigroup acting on σ-finite measures on Rn:

Stµ(A) =
∫

Rn

µ(dx)Pt(x,A) . (25)

The semigroup Tt has the following properties which are easy to verify.

1. Tt preserves the constant, if 1(x) denotes the constant function then

Tt1(x) = 1(x) . (26)

2. Tt is positive in the sense that

Ttf(x) ≥ 0 if f(x) ≥ 0 . (27)

3. Tt is a contraction semigroup on L∞(dx), the set of bounded measurable func-
tions equipped with the sup-norm ‖ · ‖∞.

‖Ttf‖∞ = sup
x

|
∫

Rn

Pt(x, dy)f(y)|

≤ sup
y

|f(y)| sup
x

∫
)RnPt(x, dy) = ‖f‖∞ . (28)
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The spectral properties of the semigroup Tt are important to analyze the long-
time (ergodic) properties of the Markov process xt. In order to use method from
functional analysis one needs to define these semigroups on function spaces which
are more amenable to analysis than the space of measurable functions.

We say that the semigroup Tt is weak-Feller if it maps the set of bounded con-
tinuous function Cb(Rn) into itself. If the transition probabilities Pt(x,A) are sto-
chastically continuous, i.e., if limt→0 Pt(x,Bε(x)) = 1 for any ε > 0 (Bε(x) is
the ε-neighborhood of x) then it is not difficult to show that limt→0 TtF (x) = f(x)
for any f(x) ∈ Cb(Rn) (details are left to th reader) and then Tt is a contraction
semigroup on Cb(Rn).

We say that the semigroup Tt is strong-Feller if it maps bounded measurable
function into continuous function. This reflects the fact that T t has a “smoothing
effect”. A way to show the strong-Feller property is to establish that the transition
probabilities Pt(x,A) have a density

Pt(x, dy) = pt(x, y)dy , (29)

where pt(x, y) is a sufficiently regular (e.g. continuous or differentiable) function of
x, y and maybe also of t. We will discuss some tools to prove such properties in
Section 7.

If Tt is weak-feller we define the generator L of Tt by

Lf(x) = lim
t→0

Ttf(x) − f(x)
t

. (30)

The domain of definition of L is set of all f for which the limit (30) exists for all x.

3.2 Stationary Markov processes and Ergodic Theory

We say that a stochastic process is stationary if the finite dimensional distributions

P{xt1+h ∈ F1, · · · , xtk+h ∈ Fk} (31)

are independent of h, for all t1 < · · · < tk and all measurable Fi. If the process is
Markovian with initial distribution π(dx) then (take k = 1)

∫

Rn

π(dx)Pt(x, F ) = Stπ(F ) (32)

must be independent of t for any measurable F , i.e., we must have

Stπ = π , (33)

for all t ≥ 0. The condition (33) alone implies stationarity since it implies that

Pπ{xt1+h ∈ F1, · · · , xtk+h ∈ Fk}

=
∫

Rn

∫

F1

· · ·
∫

Fk−1

π(dx)Pt1+h(x, dx1) · · ·Ptk−tk−1(xk−1, Fk) ,

=
∫

F1

· · ·
∫

Fk−1

π(dx)Pt1(x, dx1) · · ·Ptk−tk−1(xk−1, Fk) , (34)
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which is independent of h.
Intuitively stationary distribution describe the long-time behavior of xt. Indeed

let us suppose that the distribution of xt with initial distribution µ converges in some
sense to a distribution γ = γµ (a priori γ may depend on the initial distribution µ),
i.e.,

lim
t→∞

Pµ{xt ∈ F} = γµ(F ) , (35)

for all measurable F . Then we have, formally,

γµ(F ) = lim
t→∞

∫

Rn

µ(dx)Pt(x, F )

= lim
t→∞

∫

Rn

µ(dx)
∫

Rn

Pt−s(x, dy)Ps(y, F )

=
∫

γµ(dy)
∫

Ps(y, F ) = Ssγµ(F ) , (36)

i.e., γµ is a stationary distribution.
In order to make this more precise we recall some concepts and results from

ergodic theory. Let (X,F , µ) be a probability space and φt, t ∈ R a group of mea-
surable transformations of X . We say that φt is measure preserving if µ(φ−t(A)) =
µ(A) for all t ∈ R and all A ∈ F . We also say that µ is an invariant measure for φt.
A basic result in ergodic theory is the pointwise Birkhoff ergodic theorem.

Theorem 3.4. (Birkhoff Ergodic Theorem) Let φt be a group of measure preserv-
ing transformations of (X,F , µ). Then for any f ∈ L1(µ) the limit

lim
t→∞

1
t

∫ t

0

f(φs(x)) ds = f∗(x) (37)

exists µ-a.s. The limit f∗(x) is φt invariant, f(φt(x)) = f(x) for all t ∈ R, and∫
X

f dµ =
∫

X
f∗ dµ.

The group of transformation φt is said to be ergodic if f∗(x) is constant µ-a.s.
and in that case f∗(x) =

∫
f dµ, µ-a.s. Ergodicity can be also expressed in terms

of the σ-field of invariant subsets. Let G ⊂ F be the σ-field given by G = {A ∈
F : φ−t(A) = A for all t}. Then in Theorem 3.4 f∗(x) is given by the conditional
expectation

f∗(x) = E[f |G] . (38)

The ergodicity of φt is equivalent to the statement that G is the trivial σ-field, i.e., if
A ∈ G then µ(A) = 0 or 1.

Given a measurable group of transformation φt of a measurable space, let us
denote by M the set of invariant measure. It is easy to see that M is a convex set
and we have

Proposition 3.5. The probability measure µ is an extreme point of M if and only if
µ is ergodic.
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Proof. Let us suppose that µ is not extremal. Then there exists µ1, µ2 ∈ M with
µ1 �= µ2 and 0 < a < 1 such that µ = aµ1 + (1 − a)µ2. We claim that µ is not
ergodic. It µ were ergodic then µ(A) = 0 or 1 for all A ∈ G. If µ(A) = 0 or 1,
then µ1(A) = µ2(A) = 0 or µ1(A) = µ2(A) = 1. Therefore µ1 and µ2 agree on
the σ-field G. Let now f be a bounded measurable function and let us consider the
function

f∗(x) = lim
t→∞

1
t

∫ t

0

f(φsx) ds , (39)

which is defined on the set E where the limit exists. By the ergodic theorem µ1(E) =
µ2(E) = 1 and f∗ is measurable with respect to G. We have

∫

E

fdµi =
∫

E

f∗dµi , i = 1, 2 . (40)

Since µ1 = µ2 on G, f∗ is G-measurable, and µi(E) = 1 for i = 1, 2, we see that
∫

X

fdµ1 =
∫

X

fdµ2 . (41)

Since f is arbitrary this implies that µ1 = µ2 and this is a contradiction.
Conversely if µ is not ergodic, then there exists A ∈ G with 0 < µ(A) < 1. Let

us define

µ1(B) =
µ(A ∩ B)

µ(A)
, µ2(B) =

µ(Ac ∩ B)
µ(Ac)

. (42)

Since A ∈ G, it follows that µi are invariant and that µ = µ(A)µ1 + µ(Ac)µ2. Thus
µ is not an extreme point. 
�

A stronger property than ergodicity is the property of mixing . In order to formu-
late it we first note that we have

Lemma 3.6. µ is ergodic if and only if

lim
t→∞

1
t

∫ t

0

µ(φ−s(A) ∩ B) = µ(A)µ(B) , (43)

for all A, B ∈ F

Proof. If µ is ergodic, let f = χA be the characteristic function of A in the er-
godic theorem, multiply by the characteristic function of B and use the bounded
convergence theorem to show that Eq. (43) holds. Conversely let E ∈ G and set
A = B = E in Eq. (43). This shows that µ(E) = µ(E)2 and therefore µ(E) = 0
or 1. 
�

We say that an invariant measure µ is mixing if we have

lim
t→∞

µ(φ−t(A) ∩ B) = µ(A)µ(B) (44)
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for all A, B ∈ F , i.e., we have convergence in Eq. (44) instead of convergence in the
sense of Cesaro in Eq. (43).

Mixing can also be expressed in terms of the triviality of a suitable σ-algebra.
We define the remote future σ-field, denoted F∞, by

F∞ =
⋃

t≥0

φ−t(F) . (45)

Notice that a set A ∈ F∞ if and only if for every t there exists a set At ∈ F such
that A = φ−tAt. Therefore the σ-field of invariant subsets G is a sub- σ-field of F∞.
We have

Lemma 3.7. µ is mixing if and only if the σ-field F∞ is trivial.

Proof. Let us assume first that F∞ is not trivial. There exists a set A ∈ F∞ with
0 < µ(A) < 1 or µ(A)2 �= µ(A) and for any t there exists a set At such that
A = φ−t(At). If µ were mixing we would have limt→∞ µ(φ−t(A) ∩ A) = µ(A)2.
On the other hand

µ(φ−t(A) ∩ A) = µ(φ−t(A) ∩ φ−t(At)) = µ(A ∩ At) (46)

and this converge to µ(A) as t → ∞. This is a contradiction.
Let us assume that F∞ is trivial. We have

µ(φ−t(A) ∩ B) − µ(A)µ(B) = µ(B |φ−t(A))µ(φ−t(A)) − µ(A)µ(B)

= (µ(B |φ−t(A)) − µ(B)) µ(A) (47)

The triviality of F∞ implies that limt→∞ µ(B |φ−t(A)) = µ(B). 
�

Given a stationary Markov process with a stationary distribution π one con-
structs a stationary Markov process with probability measure Pπ . We can extend
this process in a natural way on −∞ < t < ∞. The marginal of Pπ at any time t is
π. Let Θs denote the shift transformation on Ω given by Θs(xt(ω)) = xt+s(ω). The
stationarity of the Markov process means that Θs is a measure preserving transfor-
mation of (Ω,F ,Pπ).

In general given transition probabilities Pt(x, dy) we can have several station-
ary distributions π and several corresponding stationary Markov processes. Let M̃
denote the set of stationary distributions for Pt(x, dy), i.e.,

M̃ = {π : Stπ = π} . (48)

Clearly M̃ is a convex set of probability measures. We have

Theorem 3.8. A stationary distribution π for the Markov process with transition
probabilities Pt(x, dy) is an extremal point of M̃ if and only if Pπ is ergodic , i.e.,
an extremal point in the set of all invariant measures for the shift Θt.
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Proof. If Pπ is ergodic then, by the linearity of the map π �→ Pπ, π must be an
extreme point of M̃.

To prove the converse let E be a nontrivial set in the σ-field of invariant subsets.
Let F∞ denote the far remote future σ-field and F−∞ the far remote past σ-field
which is defined similarly. Let also F0

0 be the σ-field generated by x0 (this is the
present). An invariant set is both in the remote future F∞ as well as in the remote
past F∞. By Lemma 3.1 the past and the future are conditionally independent given
the present. Therefore

Pπ[E | F0
0 ] = Pπ[E ∩ E | F0

0 ] = Pπ[E | F0
0 ]Pπ[E | F0

0 ] . (49)

and therefore it must be equal either to 0 or 1. This implies that for any invariant set E
there exists a measurable set A ⊂ Rn such that E = {ω : xt(ω) ∈ A for all t ∈ R}
up to a set of Pπ measure 0. If the Markov process start in A or Ac it does not ever
leaves it. This means that 0 < π(A) < 1 and Pt(x,Ac) = 0 for π a.e. x ∈ A and
Pt(x,A) = 0 for π a.e. x ∈ Ac. This implies that π is not extremal.

Remark 3.9. Theorem 3.8 describes completely the structure of the σ-field of invari-
ant subsets for a stationary Markov process with transition probabilities Pt(x, dy)
and stationary distribution π. Suppose that the state space can be partitioned non
trivially, i.e., there exists a set A with 0 < π(A) < 1 such that Pt(x,A) = 1 for π
almost every x ∈ A and for any t > 0 and Pt(x,Ac) = 1 for π almost every x ∈ Ac

and for any t > 0. Then the event

E = {ω ; xt(ω) ∈ A for all t ∈ R} (50)

is a nontrivial set in the invariant σ-field. What we have proved is just the converse
the statement.

We can therefore look at the extremal points of the sets of all stationary distribu-
tion, Stπ = π. Since they correspond to ergodic stationary processes, it is natural to
call them ergodic stationary distributions. If π is ergodic then, by the ergodic theorem
we have

lim
t→∞

1
t

∫ t

0

F (θs(x·(ω)) ds = Eπ [F (x·(ω))] . (51)

for Pπ almost all ω. If F (x·) = f(x0) depends only on the state at time 0 and is
bounded and measurable then we have

lim
t→∞

1
t

∫ t

0

f(xs(ω)) ds =
∫

f(x)dπ(x) . (52)

for π almost all x and almost all ω. Integrating over ω gives that

lim
t→∞

1
t

∫ t

0

Tsf(x) ds =
∫

f(x)dπ(x) . (53)

for π almost all x.
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The property of mixing is implied by the convergence of the probability measure
Pt(x, dy) to µ(dy). In which sense we have convergence depends on the problem
under consideration, and various topologies can be used. We consider here the total
variation norm (and variants of it later): let µ be a signed measure on Rn, the total
variation norm ‖µ‖ is defined as

‖µ‖ = sup
|f |≤1

|µ(f)| = sup
A

µ(A) − inf
A

µ(A) . (54)

Clearly convergence in total variation norm implies weak convergence.
Let us assume that there exists a stationary distribution π for the Markov process

with transition probabilities Pt(x, dy) and that

lim
t→∞

‖Pt(x, ·) − π‖ = 0 , (55)

for all x. The condition (55) implies mixing. By a simple density argument it is
enough to show mixing for E ∈ F−∞

s and F ∈ F t
∞. Since Θ−t(F−∞

s ) = F−∞
s−t we

simply have to show that as k = t−s goes to ∞, µ(E∩F ) converges to µ(E)µ(F ).
We have

µ(E)µ(F ) =
∫

E

(∫

Rn

Px(Θ−t1F )dπ(x)
)

dPπ(ω) ,

µ(E ∩ F ) =
∫

E

(∫

Rn

Px(Θ−t1F )Pk(xs2(ω), dx)
)

dPπ , (56)

and therefore

µ(E ∩ F ) − µ(E)µ(F )

=
∫

E

(∫

Rn

Px(Θ−t1F ) (Pk(xs2(ω), dx) − π(dx))
)

dPπ , (57)

from which we conclude mixing.

4 Brownian Motion

An important example of a Markov process is the Brownian motion. We will take as
a initial distribution the delta mass at x, i.e., the process starts at x. The transition
probability function of the process has the density pt(x, y) given by

pt(x, y) =
1

(2πt)n/2
exp

(
− (x − y)2

2t

)
. (58)

Then for 0 ≤ t1 < t2 < · · · < tk and for Borel sets Fi we define the finite dimen-
sional distributions by

νt1,...,tx
(F1 × · · · × Fx)

=
∫

pt1(x, x1)pt2−t1(x1, x2) · · · ptx−tx−1(xx−1, xx)dx1 · · · dxx , (59)
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with the convention
p0(x, x1) = δx(x1) . (60)

By Kolmogorov Consistency Theorem this defines a stochastic process which we
denote by Bt with probability distribution Px and expectation Ex. This process is
the Brownian motion starting at x.

We list now some properties of the Brownian motion. Most proofs are left as
exercises (use your knowledge of Gaussian random variables).

(a) The Brownian motion is a Gaussian process, i.e., for any k ≥ 1, the random
variable Z ≡ (Bt1 , · · · , Btk

) is a Rnk-valued normal random variable. This is clear
since the density of the finite dimensional distribution (59) is a product of Gaussian
(the initial distribution is a degenerate Gaussian). To compute the mean and variance
consider the characteristic function which is given for α ∈ Rnk by

Ex

[
exp(iαT Z)

]
= exp

(
−1

2
αT Cα + iαT M

)
, (61)

where
M = Ex[Z] = (x, · · · , x) , (62)

is the mean of Z and the covariance matrix Cij = Ex[ZiZj ] is given by

C =

⎛

⎜⎜⎜⎝

t1In t1In · · · t1In
t1In t2In · · · t2In

...
... · · ·

...
t1In t2In · · · tkIn

⎞

⎟⎟⎟⎠ , (63)

where In is n by n identity matrix. We thus find

Ex[Bt] = x , (64)

Ex[(Bt − x)(Bs − x)] = nmin(t, s) , (65)

Ex[(Bt − Bs)2] = n|t − s| , (66)

(b) If Bt = (B(1)
t , · · · , B

(n)
t ) is a m-dimensional Brownian motion, B

(j)
t are inde-

pendent one-dimensional Brownian motions.

(c) The Brownian motion Bt has independent increments , i.e., for 0 ≤ t1 < t2 <
· · · < tk the random variables Bt1 , Bt2 − Bt1 , · · ·Btk

− Btk−1 are independent.
This easy to verify since for Gaussian random variables it is enough to show that the
correlation Ex[(Bti

− Bti−1)(Btj
− Btj−1)] vanishes.

(d) The Brownian motion has stationary increments , i.e., Bt+h − Bt has a distrib-
ution which is independent of t. Since it is Gaussian it suffices to check Ex[Bt+h −
Bt] = 0 and Ex[(Bt+h − Bt)2] is independent of t.

(d) A stochastic process x̃t is called a modification of xt if P {xt = x̃t} holds for all
t. Usually one does not distinguish between a stochastic process and its modification.



14 Luc Rey-Bellet

However the properties of the paths can depend on the choice of the modification,
and for us it is appropriate to choose a modification with particular properties, i.e.,
the paths are continuous functions of t. A criterion which allows us to do this is given
by (another) famous theorem from Kolmogorov

Theorem 4.1. (Kolmogorov Continuity Theorem) Suppose that there exists posi-
tive constants α, β, and C such that

E[|xt − xs|α] ≤ C|t − s|1+β . (67)

Then there exists a modification of xt such that t �→ xt is continuous a.s.

In the case of Brownian motion it is not hard to verify (use the characteristic function)
that we have

E[|Bt − Bs|4] = 3|t − s|2 , (68)

so that the Brownian motion has a continuous version, i.e. we may (and will) assume
that xt(ω) ∈ C([0,∞);Rn) and will consider the measure Px as a measure on the
function space C([0,∞);Rn) (this is a complete topological space when equipped
with uniform convergence on compact sets). This version of Brownian motion is
called the canonical Brownian motion.

5 Stochastic Differential Equations

We start with a few purely formal remarks. From the properties of Brownian motion
it follows, formally, that its time derivative ξt = Ḃt satisfies E[ξt] = 0, E[(ξt)2] =
∞, and E[ξtξs] = 0 if t �= s, so that we have formally, E[ξtξs] = δ(t − s). So,
intuitively, ξ(t) models an time-uncorrelated random noise. It is a fact however that
the paths of Bt are a.s. nowhere differentiable so that ξt cannot be defined as a
random process on (Rn)T (it can be defined if we allow the paths to be distributions
instead of functions, but we will not discuss this here). But let us consider anyway
an equation of the form

ẋt = b(xt) + σ(xt)Ḃt , (69)

where, x ∈ Rn, b(x) is a vector field, σ(x) a n×m matrix, and Bt a m-dimensional
Brownian motion. We rewrite it as integral equation we have

xt(ω) = x0(ω) +
∫ t

0

b(xs(ω)ds +
∫ t

0

σ(xs(ω))Ḃsds . (70)

Since Ḃu is uncorrelated xt(ω) will depend on the present, x0(ω), but not on the
past and the solution of such equation should be a Markov process. The goal of this
chapter is to make sense of such differential equation and derive its properties. We
rewrite (69) with the help of differentials as

dxt = b(xt)dt + σ(xt)dBt , (71)
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by which one really means a solution to the integral equation

xt − x0 =
∫ t

0

b(xs)ds +
∫ t

0

σ(xs)dBs . (72)

The first step to make sense of this integral equation is to define Ito integrals or
stochastic integrals, i.e., integrals of the form

∫ t

0

f(s, ω)dBs(ω) , (73)

for a suitable class of functions. Since, as mentioned before Bt is nowhere differ-
entiable, it is not of bounded variation and thus Eq. (73) cannot be defined as an
ordinary Riemann-Stieljes integral.

We will consider the class of functions f(t, ω) which satisfy the following three
conditions

1. The map (s, ω) �→ f(s, ω) is measurable for 0 ≤ s ≤ t.
2. For 0 ≤ s ≤ t, the function f(s, ω) depends only upon the history of Bs up to

time s, i.e., f(s, ω) is measurable with respect to the σ-algebra N 0
s generated by

sets of the form {Bt1(ω) ∈ F1, · · · , Btk
(ω) ∈ Fk} with 0 ≤ t1 < · · · < tk ≤ s.

3. E
[∫ t

0
f(s, ω)2ds

]
< ∞.

The set of functions f(s, ω) which satisfy these three conditions is denoted by V[0, t].
It is natural, in a theory of integration, to start with elementary functions of the

form
f(t, ω) =

∑

j

f(t∗j , ω)1[tj ,tj+1)(t) , (74)

where t∗j ∈ [tj , tj+1]. In order to satisfy Condition 2. one chooses the right-end point
t∗j = tj and we then write

f(t, ω) =
∑

j

ej(ω)1[tj ,tj+1)(t) , (75)

and ej(ω) is Ntj
measurable. We define the stochastic integral to be

∫ t

0

f(s, ω)dBs(ω) =
∑

j

ej(ω)(Btj+1 − Btj
) . (76)

This is the Ito integral. To extend this integral from elementary functions to general
functions, one uses Condition 3. together with the so called Ito isometry

Lemma 5.1. (Ito isometry) If φ(s, ω) is bounded and elementary

E

[(∫ t

0

φ(s, ω)dBs(ω)
)2
]

= E
[∫ t

0

f(s, ω)2ds

]
. (77)



16 Luc Rey-Bellet

Proof. Set ∆Bj = Btj+1 − Btj
. Then we have

E [eiej∆Bi∆Bj ] =
{

0 i �= j
E[e2

j ](tj+1 − tj) i = j
, (78)

using that ejei∆Bi is independent of ∆Bj for j > i and that ej is independent of
Bj by Condition 2. We have then

E

[(∫ t

0

φ(s, ω)dBs(ω)
)2
]

=
∑

i,j

E [eiej∆Bi∆Bj ]

=
∑

j

E
[
e2

j

]
(tj+1 − tj)

= E
[∫ t

0

f(s, ω)2dt

]
. (79)


�

Using the Ito isometry one extends the Ito integral to functions which satisfy
conditions (a)-(c). One first shows that one can approximate such a function by ele-
mentary bounded functions, i.e., there exists a sequence {φn} of elementary bounded
such that

E
[∫ t

0

(f(s, ω) − φn(s, ω))2 ds

]
→ 0 . (80)

This is a standard argument, approximate first f by a bounded, and then by a bounded
continuous function. The details are left to the reader. Then one defines the stochastic
integral by ∫ t

0

f(s, ω)dBs(ω) = lim
n→∞

∫ t

0

φn(s, ω)dBs(ω) , (81)

where the limit is the L2(P )-sense. The Ito isometry shows that the integral does not
depend on the sequence of approximating elementary functions. It easy to verify that
the Ito integral satisfy the usual properties of integrals and that

E
[∫ t

0

fdBs

]
= 0 . (82)

Next we discuss Ito formula which is a generalization of the chain rule. Let
v(t, ω) ∈ V[0, t] for all t > 0 and let u(t, ω) be a measurable function with re-
spect to N 0

t for all t > 0 and such that
∫ t

0
|u(s, ω)| ds is a.s. finite. Then the Ito

process xt is the stochastic integral with differential

dxt(ω) = u(t, ω)dt + v(t, ω)dBt(ω) . (83)

Theorem 5.2. (Ito Formula) Let xt be an one-dimensional Ito process of the form
(83). Let g(x) ∈ C2(R) be bounded with bounded first and second derivatives. Then
yt = g(xt) is again an Ito process with differential
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dyt(ω) =
(

dg

dx
(xt)u(t, ω)dt +

1
2

d2g

dx2
(xt)v2(t, ω)

)
dt +

dg

dx
(xt)v(t, ω)dBt(ω) .

Proof. We can assume that u and v are elementary functions. We use the notations
∆tj = tj+1 − tj , ∆xj = xj+1 − xj , and ∆g(xj) = g(xj+1)− g(xj). Since g is C2

we use a Taylor expansion

g(xt) = g(x0) +
∑

j

∆g(xj)

= g(x0) +
∑

j

dg

dx
(xtj

)∆xj +
1
2

∑

j

d2g

d2x
(xtj

)(∆xj)2 + Rj , (84)

where Rj = o((∆xj)2). For the second term on the r.h.s. of Eq. (84) we have

lim
∆tj→0

∑

j

dg

dx
(xtj

)∆xj =
∫

dg

dx
(xs)dxs

=
∫

dg

dx
(xs)u(s, ω)ds +

∫
dg

dx
(xs)v(s, ω)dBs . (85)

We can rewrite the third term on the r.h.s. of Eq. (84) as

∑

j

d2g

d2x
(∆xj)2 =

∑

j

d2g

d2x

(
u2

j (∆tj)2 + 2ujvj∆tj∆Bj + v2
j (∆B)2j

)
. (86)

The first two terms on the r.h.s. of Eq. (86) go to zero as ∆tj → 0. For the first it is
obvious while for the second one uses

E

[(
d2g

d2x
(xtj

)ujvj∆tj∆Bj

)2
]

= E

[(
d2g

d2x
(xtj

)ujvj

)2
]

(∆tj)3 → 0 , (87)

as ∆tj → 0. We claim that the third term on the r.h.s. of Eq. (86) converges to

∫ t

0

d2g

d2x
(xs)v2ds , (88)

in L2(P ) as ∆tj → 0. To prove this let us set a(t) = d2g
d2x (xt)v2(t, ω) and ai = a(ti).

We have

E

⎡

⎢⎣

⎛

⎝
∑

j

aj((∆Bj)2 − ∆tj)

⎞

⎠
2
⎤

⎥⎦ =
∑

i,j

E
[
aiaj((∆Bi)2 − ∆ti)((∆Bj)2 − ∆tj)

]

(89)
If i < j, aiaj((∆Bi)2−∆ti) is independent of ((∆Bj)2−∆tj). So we are left with
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∑

j

E
[
a2

j ((∆Bj)2 − ∆tj)2
]

=
∑

j

E[a2
j ]E[(∆Bj)4 − 2(∆Bj)2∆tj + (∆tj)2]

=
∑

j

E[a2
j ](3(∆tj)2 − 2(∆tj)2 + (∆tj)2] = 2

∑

j

E[a2
j ]∆t2j , (90)

and this goes to zero as ∆tj goes to zero. 
�

Remark 5.3. Using an approximation argument, one can prove that it is enough to
assume that g ∈ C2 without boundedness assumptions.

In dimension n > 1 one proceeds similarly. Let Bt be a m-dimensional Brown-
ian motion, u(t, ω) ∈ Rn, and v(t, ω) an n × m matrix and let us consider the Ito
differential

dxt(ω) = u(t, ω)dt + v(t, ω)dBt(ω) (91)

then yt = g(xt) is a one dimensional Ito process with differential

dyt(ω) =
∑

j

⎛

⎝ ∂g

∂xj
(xt)uj(t, ω) +

1
2

∑

i,j

∂2g

∂xi∂xj
(xt)(vvT )ij(t, ω)

⎞

⎠ dt

+
∑

ij

∂g

∂xj
(xt)vij(t, ω)dB

(i)
t . (92)

We can apply this to a stochastic differential equation

dxt(ω) = b(xt(ω))dt + σ(xt(ω))dBt(ω) , (93)

with
u(t, ω) = b(xt(ω)) , v(t, ω) = σ(xt(ω)) , (94)

provided we can show that existence and uniqueness of the integral equation

xt(ω) = x0 +
∫ t

0

b(xs(ω))ds +
∫ t

0

σ(xt(ω))dBs(ω) . (95)

As for ordinary ODE’s, if b and σ are locally Lipschitz one obtains uniqueness and
existence of local solutions. If if one requires, in addition, that b and σ are linearly
bounded

|b(x)| + |σ(x)| ≤ C(1 + |x|) , (96)

one obtains global in time solutions. This is proved using Picard iteration, and one
obtains a solution xt with continuous paths, each component of which belongs to
V[0, T ], in particular xt is measurable with respect to N 0

t .
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Let us now introduce the probability distribution Qx of the solution xt = xx
t of

(93) with initial condition x0 = x. Let F be the σ-algebra generated by the random
variables xt(ω). We define Qx by

Qx [xt1 ∈ F1, · · · , xtn
∈ Fn] = P [ω ; xt1 ∈ F1, · · · , xtn

∈ Fn] (97)

where P is the probability law of the Brownian motion (where the Brownian motion
starts is irrelevant since only increments matter for xt). Recall that N 0

t is the σ-
algebra generated by {Bs, 0 ≤ s ≤ t}. Similarly we let F0

t the σ-algebra generated
by {xs, 0 ≤ s ≤ t}. The existence and uniqueness theorem for SDE’s proves in fact
that xt is measurable with respect to Nt so that we have Ft ⊂ Nt.

We show that the solution of a stochastic differential equation is a Markov
process.

Proposition 5.4. (Markov property) Let f be a bounded measurable function from
Rn to R. Then, for t, h ≥ 0

Ex [f(xt+h) | Nt] = Ext(ω) [f(xh)] . (98)

Here Ex denote the expectation w.r.t to Qx, that is Ey [f(xh)] means E [f(xy
h)]

where E denotes the expectation w.r.t to the Brownian motion measure P.

Proof. Let us write xs,x
t the solution a stochastic differential equation with initial

condition xs = x. Because of the uniqueness of solutions we have

x0,x
t+h = xt,xt

t+h . (99)

Since xt,xt

t+h depends only xt, it is measurable with respect to F0
t . The increments of

the Brownian paths over the time interval [t, t + h] are independent of F0
t , and the b

and σ do not depend on t. Therefore

P
[
xt+h ∈ F | F0

t

]
= P

[
xt,xt

t+h ∈ F | F0
t

]

= P
[
xt,y

t+h ∈ F
]
|y=xt(ω)

= P
[
x0,y

h ∈ F
]
|y=xt(ω) . (100)

and this proves the claim. 
�

Since N 0
t ⊂ F0

t we have

Corollary 5.5. Let f be a bounded measurable function from Rn to R. Then, for
t, h ≥ 0

Ex

[
f(xt+h) | F0

t

]
= Ext(ω) [f(xh)] | , (101)

i.e. xt is a Markov process.
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Proof. Since F0
t ⊂ N 0

t we have

Ex

[
f(xt+h) | F0

t

]
= Ex

[
Ex

[
f(xt+h) | N 0

t

]
| F0

t

]

= Ex

[
Ext

[f(xh)] | F0
t

]

= Ext
[f(xh)] . (102)


�

Let f ∈ C2
0 (i.e. twice differentiable with compact support) and let L be the

second order differential operator given by

Lf =
∑

j

bj(x)
∂f

∂xj
(xt) +

1
2

∑

i,j

aij(x)
∂2f

∂xi∂xj
(x) , (103)

with aij(x) = (σ(x)σ(x)T )ij . Applying Ito formula to the solution of an SDE with
x0 = x, i.e. with u(t, ω) = b(xt(ω)) and v(t, ω) = σ(xt, ω), we find

Ex[f(xt)] − f(x) = Ex

⎡

⎣
∫ t

0

Lf(xs)ds +
∑

ij

∂f

∂xj
(xs)σji(xs)dB(i)

s

⎤

⎦

=
∫ t

0

Ex [Lf(xs)ds] . (104)

Therefore

Lf(x) = lim
t→0

Ex [f(xt)] − f(x)
t

, (105)

i.e., L is the generator of the diffusion xt. By the semigroup property we also have

d

dt
Ttf(x) = LTf (x) , (106)

so that L is the generator of the semigroup Tt and its domain contains C2
0 .

Example 5.6. Let p, q ∈ Rn and let V (q) : Rn → R be a C2 function and let Bt be
a n-dimensional Brownian motion. The SDE

dq = p dt ,

dp =
(
−∇V (q) − λ2p

)
dt + λ

√
2TdBt , (107)

has unique local solutions, and has global solutions if ‖∇V (q)‖ ≤ C(1 + ‖q‖). The
generator is given by the partial differential operator

L = λ(T∇p · ∇p − p · ∇p) + p · ∇q − (∇qV (q)) · ∇p . (108)

We now introduce a strengthening of the Markov property, the strong Markov
property. It says that the Markov property still holds provided we replace the time t
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by a random time τ(ω) in a class called stopping times. Given an increasing family
of σ-algebra Mt, a function τ : Ω → [0,∞] is called a stopping time w.r.t to Mt if

{ω : τ(ω) ≤ t} ∈ Mt, for all t ≥ 0 . (109)

This means that one should be able to decide whether or not τ ≤ t has occurred
based on the knowledge of Mt.

A typical example is the first exit time of a set U for the solution of an SDE: Let
U be an open set and

σU = inf{t > 0 ; xt /∈ U} (110)

Then σU is a stopping time w.r.t to either N 0
t or F0

t .
The Markov property and Ito’s formula can be generalized to stopping times. We

state here the results without proof.

Proposition 5.7. (Strong Markov property) Let f be a bounded measurable func-
tion from Rn to R and let τ be a stopping time with respect to F0

t , τ < ∞ a.s.
Then

Ex

[
f(xτ+h) | F0

τ

]
= Exτ

[f(xh)] , (111)

for all h ≥ 0.

The Ito’s formula with stopping time is called Dynkin’s formula.

Theorem 5.8. (Dynkin’s formula) Let f be C2 with compact support. Let τ be a
stopping time with Ex [τ ] < ∞. Then we have

Ex [f(xτ )] = f(x) + Ex

[∫ τ

0

LF (xs) ds

]
. (112)

As a first application of stopping time we show a method to extend local solutions
to global solutions for problems where the coefficients of the equation are locally
Lipschitz, but not linearly bounded. We call a function W (x) a Liapunov function if
W (x) ≥ 1 and

lim
|x|→∞

W (x) = ∞ (113)

i.e., W has compact level sets.

Theorem 5.9. Let us consider a SDE

dxt = b(xt)dt + σ(xt)dBt , x0 = x , (114)

with locally Lipschitz coefficients. Let us assume that there exists a Liapunov function
W which satisfies

LW ≤ cW , (115)

for some constant c. Then the solution of Eq. (114) is defined for all time and satisfies

E [W (xt)] ≤ W (x)ect . (116)
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Proof. Since b and σ are locally Lipschitz we have a local solution xt(ω) which is
defined at least for small time. We define

τn(ω) = inf{t > 0,W (xt) ≥ n} , (117)

i.e. τn is the first time exits the compact set {W ≤ n}. It is easy to see that τn is a
stopping time. We define

τn(t) = inf{τn, t} . (118)

We now consider a new process

x̃t = xτn(t) , (119)

We have x̃t = xτn
for all t > τn, i.e., x̃t is stopped when it reaches the boundary of

{W ≤ n}. Since τn is a stopping time, by Proposition 5.7 and Theorem 5.8, x̃t is a
Markov process which is defined for all t > 0. Its Ito differential is given by

dx̃t = 1{τn>t}b(x̃t)dt + 1{τn>t}σ(x̃t)dBt . (120)

From Eq. (115) we have

(
∂

∂t
+ L)We−ct ≤ 0 , (121)

and thus

E
[
W (xτn(t))e−cτn(t)

]
− W (x) = E

[∫ τn(t)

0

(
∂

∂s
+ L)W (xs)e−csds

]
≤ 0 .

(122)
Since τn(t) ≤ t, we obtain

E
[
W (xτn(t))

]
≤ W (x)ect . (123)

On the other hand we have

E
[
W (xτn(t))

]
≥ E

[
W (xτn(t))1τn<t

]
= nPx{τn < t} (124)

so that we obtain

Px{τn < t} ≤ ectW (x)
n

→ 0 , (125)

as n → ∞. This implies that the paths of the process almost surely do not reach
infinity in a finite time, if τ = limn→∞ τn then

Px{τ = ∞} = 1 . (126)

Taking the limit n → ∞ in Eq. (123) and using Fatou’s lemma gives Eq. (116). 
�
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Example 5.10. Consider the SDE of Example (5.6). If V (q) is of class C2 and
lim‖q‖→∞ V (q) = ∞, then the Hamiltonian H(p, q) = p2/2 + V (q) satisfy

LH(p, q) = λ(n − p2) ≤ λn . (127)

Since H is bounded below we can take H+c as a Liapunov function, and by Theorem
115 the solutions exists for all time.

Finally we mention two important results of Ito calculus (without proof). The first
result is a simple consequence of Ito’s formula and give a probabilistic description
of the semigroup L − q where q is the multiplication operator by a function q(x)
and L is the generator of a Markov process xt. The proof is not very hard and is an
application of Ito’s formula.

Theorem 5.11. (Feynman-Kac formula) Let xt is a solution of a SDE with gen-
erator L. If f is C2 with bounded derivatives and if g is continuous and bounded.
Put

v(t, x) = Ex

[
e
−
∫ t

0
q(xs)ds

f(xt)
]

. (128)

Then, for t > 0,
∂v

∂t
= Lv − qv , v(0, x) = f(x) . (129)

The second result describe the change of the probability distribution when the
drift in an SDE is modified. The proof is more involved.

Theorem 5.12. (Girsanov formula) Let xt be the solution of the SDE

dxt = b(xt)dt + σ(xt)dBt , x0 = x , (130)

and let yt be the solution of the SDE

dyt = a(yt)dt + σ(xt)dBt , y0 = x . (131)

Suppose that there exist a function u such that

σ(x)u(x) = b(x) − a(x) , (132)

and u satisfy Novikov Condition

E
[
exp

(
1
2

∫ t

0

u2(yt(ω)) ds

)]
< ∞ . (133)

Then on the interval [0, t] the probability distribution Q[0,t]
x of yt is absolutely contin-

uous with respect to the probability distribution P[0,t]
x of xt with a Radon-Nikodym

derivative given by

dQ[0,t]
x (ω) = e

−
∫ t

0
u(ys)dBs− 1

2

∫ t

0
u2(ys)ds

dP[0,t]
x (ω) . (134)
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6 Control Theory and Irreducibility

To study the ergodic properties of Markov process one needs to establish which sets
can be reached from x in time t, i.e. to determine when Pt(x,A) > 0.

For solutions of stochastic differential equations there are useful tools which
from control theory. For the SDE

dxt = b(xt)dt + σ(xt)dBt , x0 = x (135)

let us replace the Brownian motion Bt by a piecewise polygonal approximation

B
(N)
t = Bk/N + N(t − k

N
)(B(k+1)/N − Bk/N ) ,

k

N
≤ t ≤ k + 1

N
. (136)

Then its time derivative Ḃ
(N)
t is piecewise constant. One can show that the solutions

of
dx

(N)
t = b(x(N)

t )dt + σ(x(N)
t )dB

(N)
t , x0 = x (137)

converge almost surely to xt uniformly on any compact interval [t1, t2] to the solution
of

dxt = b(xt) + σσ′(xt)dt + σ(xt)dBt , (138)

The supplementary term in (138) is absent if σ(x) = σ is independent of x and is
related to Stratonovich integrals. Eq. (137) has the form

ẋ = b(xt) + σut , x0 = x , (139)

where t �→ u(t) = (u1(t), · · · , um(t)) is a piecewise constant function. This is an
ordinary (non-autonomous) differential equation. The function u is called a control
and Eq. (139) a control system. The support theorem of Stroock and Varadhan shows
that several properties of the SDE Eq. (135) (or (138)) can be studied and expressed
in terms of the control system Eq. (139). The control system has the advantage of
being a system of ordinary diffential equations.

Let us denote by S [0,t]
x the support of the diffusion xt, i.e., Sx is the smallest

closed (in the uniform topology) subset of {f ∈ C([0, t],Rn) , f(0) = x} such that

P
{

xs(ω) ∈ S [0,t]
x

}
= 1 . (140)

Note that Girsanov formula, Theorem 5.12 implies that the supports of (135) and
(138) are identical.

A typical question of control theory is to determine for example the set of all
possible points which can be reached in time t by choosing an appropriate control
in a given class. For our purpose we will denote by U the set of all locally constant
functions u. We will say a point y is accessible from x in time t if there exists a
control u ∈ U such that the solution x

(u)
t of the equation Eq. (139) satisfies x(u)(0) =

x and x(u)(t) = y. We denote by At(x) the set of accessible points from x in time t.
Further we define C

[0,t]
x (U) to be the subset of all solutions of Eq. (139) as u varies

in U . This is a subset of {f ∈ C([0, t],Rn) , f(0) = x}.
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Theorem 6.1. (Stroock-Varadhan Support Theorem)

S [0,t]
x = C [0,t](U) (141)

where the bar indicates the closure in the uniform topology.

As an immediate consequence if we denote suppµ the support of a measure µ
on Rn we obtain

Corollary 6.2.
suppPt(x, · ) = At(x) . (142)

For example if can show that all (or a dense subset) of the points in a set F are
accessible in time t, then we have

Pt(x, F ) > 0 , (143)

that is the probability to reach F from x in the time t is positive.

Example 6.3. Let us consider the SDE

dxt = b(xt) dt + σdBt , (144)

where b is such that there is a unique solution for all times. Assume further that
σ : Rn → Rn is invertible. For any t > 0 and any x ∈ Rn, the support of the
diffusion S [0,t]

x = {f ∈ C([0, t],Rn) , f(0) = x} and, for all open set F , we have
Pt(x, F ) > 0. To see this, let φt be a C1 path in Rn such that φ0 = x and define

define the (smooth) control ut = σ−1
(
φ̇t − b(φt)

)
. Clearly φt is a solution for the

control system ẋt = b(xt) + σut. A simple approximation argument shows that any
continuous paths can be approximated by a smooth one and then any smooth path
can be approximated by replacing the smooth control by a piecewise constant one.

Example 6.4. Consider the SDE

dq = p dt ,

dp =
(
−∇V (q) − λ2p

)
dt + λ

√
2TdBt , (145)

under the same assumptions as in Example (6.4). Given t > 0 and two pair of points
(q0, p0) and (qt, pt), let φ(s) be any C2 path in Rn which satisfy φ(0) = q0, φ(t) =
qt, φ′(0) = p0 and φ′(t) = pt. Consider the control u given by

ut =
1

λ
√

2T

(
φ̈t + ∇V (φt) + λ2φ̇t

)
. (146)

By definition (φt, φ̇t) is a solution of the control system with control ut, so that ut

drives the system from (q0, p0) to (qt, pt). This implies that At(x, F ) = Rn, for all
t > 0 and all x ∈ Rn. From the support theorem we conclude that Pt(x, F ) > 0 for
all t > 0, all x ∈ Rn, and all open set F .
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7 Hypoellipticity and Strong-Feller Property

Let xt denote the solution of the SDE

dxt = b(xt)dt + σ(xt)dBt , (147)

and we assume here that b(x) and σ(x) are C∞ and such that the equation has global
solutions.

The generator of the semigroup Tt is given, on sufficiently smooth function, by
the second-order differential operator

L =
∑

i

bi(x)
∂

∂xi
+

1
2

∑

ij

aij(x)
∂2

∂xi∂xj
, (148)

where
aij(x) = (σ(x)σT (x))ij . (149)

The matrix A(x) = (aij(x)) is non-negative definite for all x, A(x) ≥ 0. The adjoint
(in L2(dx)) operator L∗ is given by

L∗ =
∑

i

∂

∂xi
bi(x) +

1
2

∑

ij

∂2

∂xi∂xj
aij(x) . (150)

It is called the Fokker-Planck operator. We have

Ttf(x) = E [f(xt)] =
∫

Rn

Pt(x, dy)f(y) , (151)

and we write
Pt(x, dy) = pt(x, y) dy . (152)

Although, in general, the probability measure Pt(x, dy) does not necessarily have a
density with respect to the Lebesgue measure, we can always interpret Eq. (152) in
the sense of distributions. Since L is the generator of the semigroup L we have, in
the sense of distributions,

∂

∂t
pt(x, ·) = Lpt(x, ·) . (153)

The dual St of Tt acts on probability measure and if we write, in the sense of distri-
butions, dπ(x) = ρ(x) dx we have

d(Stπ)(x) = T ∗
t ρ(x) dx , (154)

so that
∂

∂t
pt(·, y) = L∗pt(·, y) . (155)

In particular if π is an invariant measure Stπ = π and we obtain the equation



Ergodic Properties of Markov Processes 27

L∗ρ(x) = 0 . (156)

If A(x) is positive definite, A(x) ≥ c(x)1, c(x) > 0, we say that L is elliptic.
There is an well-known elliptic regularity result: Let H loc

s denote the local Sobolev
space of index s. If A is elliptic then we have

Lf = g and g ∈ H loc
s =⇒ f ∈ H loc

s+2 . (157)

If L is elliptic then L∗ is also elliptic. It follows, in particular that all eigenvectors of
L and L∗ are C∞.

Let Xi =
∑

j Xj
i (x) ∂

∂xj
, i = 0, · · · ,M be C∞ vectorfields. We denote by X∗

i

its formal adjoint (on L2). Let f(x) be a C∞ function. Let us consider operators K
of the form

K =
M∑

j=1

X∗
j (x)Xj(x) + X0(x) + f(x) . (158)

Note that L, L∗, ∂
∂t − L, and ∂

∂t − L∗ have this form.
In many interesting physical applications, the generator fails to be elliptic. There

is a theorem due to Hörmander which gives a very useful criterion to obtain the
regularity of pt(x, y). We say that the family of vector fields {Xj} satisfy Hörmander
condition if the Lie algebra generated by the family

{Xi}M
i=0 , {[Xi,Xj ]}M

i,j=0 , {[Xi,Xj ],Xk]}M
i,j,k=0 , · · · , (159)

has maximal rank at every point x.

Theorem 7.1. (Hörmander theorem) If the family of vector fields {Xj} satisfy
Hörmander condition then there exists ε > 0 such that

Kf = g and g ∈ H loc
s =⇒ f ∈ H loc

s+ε . (160)

We call an operator which satisfies (160) an hypoelliptic operator. An analytic proof
of Theorem 7.1 is given in [1], there are also probabilistic proofs which use Malliavin
calculus, see [8] for a simple exposition.

As a consequence we have

Corollary 7.2. Let L =
∑

j Yj(x)∗Yj(x) + Y0(x) be the generator of the diffusion
xt and let us assume that assume that (note that Y0 is omitted!)

{Yi}M
i=1 , {[Yi, Yj ]}M

i,j=0 , {[Yi, Yj ], Yk]}M
i,j,k=0 , · · · , (161)

has rank n at every point x. Then L, L∗, ∂
∂t − L, and ∂

∂t − L∗ are hypoelliptic. The
transition probabilities Pt(x, y) have densities pt(x, y) which are C∞ functions of
(t, x, y) and the semigroup Tt is strong-Feller. The invariant measures, if they exist,
have a C∞ density ρ(x).
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Example 7.3. Consider the SDE

dq = p dt ,

dp =
(
−∇V (q) − λ2p

)
dt + λ

√
2TdBt , (162)

with generator

L = λ(T∇p · ∇p − p · ∇p) + p · ∇q − (∇qV (q)) · ∇p . (163)

In order to put in the form (158) we set

Xj(p, q) = λ
√

T
∂

∂pj
, j = 1, 2, · · · , n ,

X0(p, q) = −λp · ∇p + p · ∇q − (∇qV (q)) · ∇p , (164)

so that L = −
∑n

j=1 X∗
j Xj + X0. The operator L is not elliptic since the matrix

aij has only rank n. But L satisfies condition (161) since we have

[Xj , X0] = −λ2
√

T
∂

∂pj
+ λ

√
T

∂

∂qj
, (165)

and so the set {Xj , [Xj , X0]}j=1,n has rank 2n at every point (p, q). This implies
that L and L∗ are hypoelliptic. The operator ∂

∂t −L, and ∂
∂t −L∗ are also hypoelliptic

by considering the same set of vector fields together with X0.
Therefore the transition probabilities Pt(x, dy) have smooth densities pt(x, y).

For that particular example it is easy to check that

ρ(x) = Z−1e
− 1

T

(
p2

2 +V (q)

)

Z =
∫

R2n

e
− 1

T

(
p2

2 +V (q)

)

dpdq . (166)

is the smooth density of an invariant measure, since it satisfies L∗ρ = 0. In general
the explicit form of an invariant measure is not known and Theorem 7.1 implies that
an invariant measure must have a smooth density, provided it exists.

8 Liapunov Functions and Ergodic Properties

In this section we will make the following standing assumptions

• (H1) The Markov process is irreducible aperiodic, i.e., there exists t0 > 0 such
that

Pt0(x,A) > 0 , (167)

for all x ∈ Rn and all open sets A.
• (H2) The transition probability function Pt(x, dy) has a density pt(x, y) which

is a smooth function of (x, y). In particular Tt is strong-Feller, it maps bounded
measurable functions into bounded continuous functions.
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We are not optimal here and both condition H1 can certainly be weakened. Note
also that H1 together with Chapman-Kolmogorov equations imply that (167) holds
in fact for all t > t0. We have discussed in Sections 6 and 7 some useful tools to
establish H1 and H2.

Proposition 8.1. If conditions H1 and H2 are satisfied then the Markov process xt

has at most one stationary distribution. The stationary distribution, if it exists, has a
smooth everywhere positive density.

Proof. By H2 the dual semigroup St acting on measures maps measures into mea-
sures with a smooth density with respect to Lebesgue measure: Stπ(dx) = ρt(x)dx
for some smooth function ρt(x). If we assume there is a stationary distribution

Stπ(dx) = π(dx) , (168)

then clearly π(dx) = ρ(x)dx must have a smooth density. Suppose that the invariant
measure is not unique, then we might assume that π is not ergodic and thus, by
Theorem 3.8 and Remark 3.9, there exists a nontrivial set A such that if the Markov
process starts in A or Ac it never leaves it. Since π has a smooth density, we can
assume that A is an open set and this contradicts (H1).

If π is the stationary distribution then by invariance

π(A) =
∫

π(dx)Pt(x,A) , (169)

and so π(A) > 0 for all open sets A. Therefore the density of π, denoted by ρ, is
almost everywhere positive. Let us assume that for some y, ρ(y) = 0 then

ρ(y) =
∫

ρ(x)pt(x, y) dx . (170)

This implies that pt(x, y) = 0 for almost all x and thus since it is smooth the func-
tion pt(·, y) is identically 0 for all t > 0. On the other hand pt(x, y) → δ(x − y) as
t → 0 and this is a contradiction. So we have shown that ρ(x) > 0 for all x. 
�

Condition H1 and H2 do not imply in general the existence of a stationary dis-
tribution. For example Brownian motion obviously satisfies both conditions, but has
no finite invariant distribution.

Remark 8.2. If the Markov process xt has a compact phase space X instead of Rn,
then xt always has a stationary distribution. To see this choose an arbitrary x0 and
set

πt(dy) =
1
t

∫ t

0

Ps(x0, dy) ds . (171)

The sequence of measures πt has accumulation points in the weak topology. (Use
Riesz representation Theorem to identify Borel measure as linear functional on C(X)
and use the fact that the set of positive normalized linear functional on C(x) is weak-
∗ compact if X is compact). Furthermore the accumulation points are invariants. The
details are left to the reader.
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If the phase is not compact as in many interesting physical problems we need
to find conditions which ensure the existence of stationary distributions. The basic
idea is to show the existence of a compact set on which the Markov process spends
“most of his time” except for rare excursions outside. On can express these properties
systematically in terms of hitting times and Liapunov functions.

Recall that a Liapunov function is, by definition a positive function W ≥ 1 with
compact level sets (lim|x|→∞ W (x) = +∞).

Our first results gives a condition which ensure the existence of an invariant mea-
sure. If K is a subset of Rn we denote by τK = τK(ω) = inf{t, xt(ω) ∈ K} the
first time the process xt enters the set K, τK is a stopping time.

Theorem 8.3. Let xt be a Markov process with generator L which satisfies condition
H1 and H2. Let us assume that there exists positive constant b and c, a compact set
K, and a Liapunov function W such that

LW ≤ −c + b1Kx . (172)

Then we have
Ex[τK ] < ∞ . (173)

for all x ∈ Rn and the exists a unique stationary distribution π.

Remark 8.4. One can show the converse statement that the finiteness of the expected
hitting time do imply the existence of a Liapunov function which satisfies Eq. (172).

Remark 8.5. It turns out that sometimes it is more convenient to show the existence
of a Liapunov function expressed in terms of the semigroup Tt0 for a fixed time
t0 rather than in terms of the generator L. If we assume that there exists constants
positive b, c, a compact set K, and a Liapunov function W which satisfies

Tt0W − W ≤ −c + b1Kx . (174)

then the conclusion of the theorem still hold true.

Proof. We first prove the assertion on the hitting time. If x ∈ K then clearly
Ex[τK ] = 0. So let us assume that x /∈ K. Let us choose n so large that W (x) < n.
Now let us set

τK,n = inf{t , xt ∈ K ∪ {W (x) ≥ n}} , τK,n(t) = inf{τK,n, t} . (175)

Obviously τK,n and τK,n(t) are stopping time and using Ito formula with stopping
time we have

Ex

[
W (xτK,n(t))

]
− W (x) = Ex

[∫ τK,n(t)

0

LW (xs) ds

]

≤ Ex

[∫ τK,n(t)

0

−c + b1K(x) ds

]

≤ Ex

[∫ τK,n(t)

0

−c

]

≤ −cEx [τK,n(t)] . (176)
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Since W ≥ 1 we obtain

Ex [τK,n(t)] ≤ 1
c

(
W (x) − Ex

[
W (xτK,n(t))

])
≤ 1

c
W (x) . (177)

Proceeding as in Theorem 5.9, using Fatou’s lemma, we first take the limit n → ∞
and, since limn→∞ τK,n(t) = τK(t) we obtain

Ex [τK(t)] ≤ W (x)
c

. (178)

Then we take the limit t → ∞ and, since limt→∞ τK(t) = τK , we obtain

Ex [τK ] ≤ W (x)
c

. (179)

We show next the existence of an invariant measure. The construction goes via
an embedded (discrete-time) Markov chain. Let us choose a compact set K̃ with K
contained in the interior of K̃. We assume they have smooth boundaries which we
denote by Γ and Γ̃ respectively. We divide now an arbitrary path xt into cycles in
the following way. Let τ0 = 0, let τ ′

1 be the first time after τ0 at which xt reaches
Γ̃ , τ1 is the first time after τ ′

1 at which xt reaches Γ and so on. It is not difficult to
see that, under our assumptions, τj and τ ′

j are almost surely finite. We define now a

discrete-time Markov chain by X0 = x ∈ Γ and Xi = xτi
. We denote by P̃ (x, dy)

the one-step transition probability of Xn. We note that the Markov chain Xn has a
compact phase space and so it possess a stationary distribution µ(dx) on Γ , by the
same argument as the one sketched in Remark (8.2).

We construct now the invariant measure for xt in the following way. Let A ⊂ Rn

be a measurable set. We denote σA the time spent in A by xt during the first cycle
between 0 and τ1. We define an unnormalized measure π by

π(A) =
∫

Γ

µ(dx)Ex[σA] . (180)

Then for any bounded continuous function we have
∫

Rn

f(x)π(dx) =
∫

Γ

µ(dx)Ex

[∫ τ1

0

f(xs)ds

]
. (181)

In order to show that π is stationary we need to show that, for any bounded continu-
ous f , ∫

Rn

Ttf(x)π(dx) =
∫

Rn

f(x)π(dx) , (182)

i.e., using our definition of π

∫

Γ

µ(dx)Ex

[∫ τ1

0

Exs
[f(xt)]ds

]
=

∫

Γ

µ(dx)Ex

[∫ τ1

0

f(x(s))ds

]
. (183)

For any measurable continuous function we have
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Ex

[∫ τ1

0

f(xt+s) ds

]
= Ex

[∫ ∞

0

Ex[1s<τ1f(xt+s)] ds

]

= Ex

[∫ ∞

0

1s<τ1Exs
[f(x(t))] ds

]

= Ex

[∫ τ1

0

Exs
[f(xt)] ds

]
. (184)

Thus we have, using Eqs. (182), (183), and (184),
∫

Rn

Ttf(x)π(dx) =
∫

Γ

µ(dx)Ex

[∫ τ1

0

Exs
f(xt) ds

]

=
∫

Γ

µ(dx)Ex

[∫ τ1

0

f(xt+s)ds

]
=
∫

Γ

µ(dx)Ex

[∫ τ1+t

t

f(xu) du

]
(185)

=
∫

Γ

µ(dx)Ex

[∫ τ1

0

f(xu) du +
∫ t+τ1

t

f(xu) du −
∫ t

0

f(xu) du

]
.

Since µ is a stationary distribution for Xn, for any bounded measurable function on
Γ ∫

Γ

µ(dx)Ex[g(X1)] =
∫

Γ

µ(dx)g(X) , (186)

and so
∫

Γ

µ(dx)Ex

[∫ t+τ1

t

f(xu) du

]
=

∫

Γ

µ(dx)Ex

[
EX1

[∫ t

0

f(xu) du

]]

=
∫

Γ

µ(dx)Ex

[∫ t

0

f(xu) du

]
. (187)

Combining Eqs. (185) and (187) we obtain that
∫

Rn

Ttf(x)π(dx) =
∫

Rn

f(x)π(dx) . (188)

This shows that the measure π satisfies Stπ = π. Finally we note that

π(Rn) =
∫

Γ

µ(dx)Ex[τK ] < ∞ . (189)

and so π can be normalized to a probability measure. 
�

Remark 8.6. One can also show (see e.g. [15] or [7]) that that under the same condi-
tions one has convergence to the stationary state: for any x we have

lim
t→∞

‖Pt(x, ·) − π(·)‖ = 0 , (190)

where ‖µ‖ = sup‖f‖≤1

∣∣∫ f(x)µ(dx)
∣∣ is the total variation norm of a signed mea-

sure µ. Thus the measure π is also mixing. We don’t prove this here, but we will
prove an exponential convergence result using a stronger condition than (172).
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It is often useful to to quantify the rate of convergence at which an initial distri-
bution converges to the stationary distribution and we prove two such results in that
direction which provide exponential convergence. We mention here that polynomial
rate of convergence can be also expressed in terms of Liapunov functions, and this
makes these functions a particularly versatile tool.

We introduce some notations and definitions. If W is a Liapunov function and µ
a signed measure we introduce a weighted total variation norm given by

‖µ‖W = sup
|f |≤W

|
∫

f(x)µ(dx)| , (191)

and a norm on functions ‖ · ‖W given by

‖f‖W = sup
x∈Rn

|f(x)|
W (x)

, (192)

and a corresponding Banach space HW given by

HW = {f , ‖f‖W < ∞} . (193)

Theorem 8.7. (Quasicompactness) Suppose that the conditions H1 and H2 hold.
Let K be a compact set and let W be a Liapunov function W . Assume that either of
the following conditions hold

1. There exists constants a > 0 and b < ∞ such that

LW (x) ≤ −aW (x) + b1K(x) . (194)

2. We have LW ≤ cW for some c > 0 and there exists constants κ < 1 and
b < ∞, and a time t0 > 0 such that

Tt0W (x) ≤ κW (x) + b1K(x) . (195)

Then for δ small enough
Ex

[
eδτK

]
< ∞ , (196)

for all x ∈ Rn. The Markov process has a stationary distribution xt and there exists
a constants C > 0 and γ > 0 such that

‖Pt(x, dy) − π(dy)‖W ≤ CW (x)e−γt , (197)

or equivalently
‖Tt − π‖W ≤ Ce−γt . (198)

Remark 8.8. In Theorem 8.7 one can replace HW by any of the space

HW,p =
{

f ,
|f |
W

∈ Lp(dx)
}

, (199)

with 1 < p < ∞.
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Proof. We will prove here only the part of the argument which is different from
the proof of Theorem 8.9. We recall that a bounded operator T acting on a Banach
space B is quasi compact if its spectral radius is M and its essential spectral radius
is θ < M . By definition, it means that outside the disk of radius θ, the spectrum of T
consists of isolated eigenvalues of finite multiplicity. The following formula for the
essential spectral radius θ is proved in [9]

θ = lim
n→∞

(inf {‖Tn − C‖ |C compact})1/n
. (200)

Let us assume that Condition 2. holds. If ‖f‖ ∈ HW then, by definition, we have
|f(x)| ≤ ‖f‖W W (x) and, since Tt is positive, we have

|Ttf(x)| ≤ ‖f‖W TtW (x) . (201)

We consider a fixed t > t0. We note that the Liapunov condition implies the bound

TtW (x) ≤ κW (x) + b . (202)

Iterating this bound and using that Tt1 = 1 we have, for all n ≥ 1, the bounds

TntW (x) ≤ κnW (x) +
b

1 − κ
. (203)

Let K be any compact set, we have the bound

|1Kc(x)Tntf(x)| ≤ W (x) sup
y∈Kc

|Tntf(y)|
W (y)

≤ W (x)‖f‖W sup
y∈Kc

TntW (y)
W (y)

≤ W (x)‖f‖W

(
κn +

b

1 − κ
sup

y∈Kc

1
W (x)

)
. (204)

Since lim‖x‖→∞ W (x) = ∞, given ε > 0 and n > 1 we can choose a compact set
Kn such that

‖1Kc
n
Tnt‖W ≤ (κ + ε)n . (205)

On the other hand since Tt has a smooth kernel the set, for any compact K, the set

{1K(x)Ttf(x) | ‖f‖W = 1}

is compact by Arzelà-Ascoli. Therefore we have

inf {‖Tnt − C‖ |C compact} ≤ ‖Tnt − 1Kn
Tnt‖ ≤ (κ + ε)n . (206)

and therefore the essential spectral radius of Tt is less than κ. In order to obtain the
exponential convergence from this one must prove that there is no other eigenvalue
than 1 on the unit disk (or our outside the unit disk) and prove that 1 is a simple
eigenvalue. We will prove this in Theorem 8.9 and the same argument apply here.
Also the assertion on hitting times is proved as in Theorem 8.9. 
�
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Theorem 8.9. (Compactness) Suppose that the conditions H1 and H2 hold. Let
{Kn} be a sequence of compact sets and let W be a Liapunov function. Assume
that either of the following conditions hold

1. There exists constants an > 0 with limn→∞an = ∞ and constants bn < ∞
such that

LW (x) ≤ −anW (x) + bn1Kn
(x) . (207)

2. There exists a constant c such that LW ≤ cW and there exists constants κn < 1
with limn→∞ κn = 0, constants bn < ∞, and a time t0 > 0 such that

Tt0W (x) ≤ κnW (x) + bn1Kn
(x) . (208)

Then for any (arbitrarily large) δ there exists a compact set C = C(δ) such that

Ex

[
eδτC

]
< ∞ , (209)

for all x ∈ Rn. The Markov process xt has a unique stationary distribution π. The
semigroup Tt acting on HW is a compact semigroup for t > t0 and there exists a
constants C > 0 and γ > 0 such that

‖Pt(x, dy) − π(dy)‖ ≤ CW (x)e−γt . (210)

or equivalently
‖Tt − π‖W ≤ Ce−γt . (211)

Proof. We will assume that conditions 2. holds. Let us prove the assertion on hitting
times. Let Xn be the Markov chain defined by X0 = and Xn = xnt0 and for a set K
let NK be the least integer such that XNK

∈ K. We have NK ≤ τK so it is sufficient
to prove that Ex[eδNK ] < ∞.

Let Kn be the compact set given in Eq. (208). We can assume, by increasing Kn

is necessary that Kn is a level set of W , i.e. Kn = {W (x) ≤ Wn}
Using the Liapunov condition and Chebyshev inequality we obtain the following

tail estimate
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Px {NKn
> j}

= Px {W (Xj) > Wn , Xi ∈ Kc
n , 0 ≤ i ≤ j}

= Px

{
j∏

i=i

W (Xi)
W (xi−1)

>
Wn

W (x)
, Xi ∈ KC

n

}

≤ W (x)
Wn

Ex

[
j∏

i=i

W (Xi)
W (xi−1)

, Xi ∈ KC
n

]

≤ W (x)
Wn

Ex

[
j−1∏

i=i

W (Xi)
W (xi−1)

EXj−1

[
WXj

WXj−1

]
, Xi ∈ KC

n

]

≤ W (x)
Wn

sup
y∈KC

n

Ey

[
W (x1)
W (y)

]
Ex

[
j−1∏

i=i

W (Xi)
W (xi−1)

, Xi ∈ KC
n

]

≤ · · · ≤ W (x)
Wn

(
sup

y∈KC
n

Ey

[
W (x1)
W (y)

])j

≤ W (x)
Wn

(κn)j . (212)

We thus have geometric decay of P>j ≡ P{Nkn
> j} in j. Summing by parts we

obtain

Ex

[
eδNkn

]
=

∞∑

j=1

eδjPx{NKn
= j}

= lim
M→∞

⎛

⎝
M∑

j=1

P>j(eδ(j+1) − eδj) + eδP>0 − eδ(M+1)P>M

⎞

⎠

≤ eδ +
W (x)
Wn

(eδ − 1)
∞∑

j=1

κj
nejδ

≤ eδ +
W (x)
Wn

(eδ − 1)
κneδ

1 − κneδ
, (213)

provided δ < ln(κ−1
n ). Since we can choose κn arbitrarily small, this proves the

claim about the hitting time.
If ‖f‖ ∈ HW then by definition we have |f(x)| ≤ ‖f‖W W (x) and thus

|Ttf(x)| ≤ ‖f‖W TtW (x).
The compactness of Tt is a consequence of the following estimate. Using the

Liapunov condition we have for t > t0
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∣∣1Kc
n
(x)Ttf(x)

∣∣ ≤ W (x) sup
y∈Kc

n

|Ttf(y)|
W (y)

≤ W (x)‖f‖W sup
y∈Kc

n

TtW (y)
W (y)

≤ κnW (x)‖f‖W , (214)

or
‖1KC

n
Tt‖W ≤ κn . (215)

We have thus
lim

n→∞
‖1KC

n
Tt‖W = 0 , (216)

i.e., 1KC
n

Tt converges to 0 in norm. On the other hand since Tt has a smooth kernel
and Kn is compact, the operator

1Kn
Tt1Kn

(217)

is a compact operator by Arzela-Ascoli Theorem. We obtain

Tt =
(
1Kn

+ 1KC
n

)
Tt−ε (1Kn

+ 1Kn
) Tε

= lim
n→∞

1Kn
Tt−ε1Kn

Tε . (218)

So Tt is the limit in norm of compact operators, hence it is compact. Its spectrum
consists of 0 and eigenvalues with finite multiplicity.

We show that there no eigenvalues of modulus bigger than one. Assume the con-
trary. Then there is f and λ with |λ| > 1 such that Ttf = λf . Since Tt is positive
we have

|λ||f | = |Ttf | ≤ Tt|f | , (219)

and therefore
Tt|f | − |f | ≥ (|λ| − 1)|f | . (220)

Integrating with the strictly positive stationary distribution we have
∫

Tt|f |π(dx) −
∫

|f |π(dx) ≥ (|λ| − 1)
∫

|f |π(dx) > 0 . (221)

This is a contradiction since, by stationarity
∫

Tt|f |π(dx) =
∫
|f |π(dx), and so the

r.h.s. of Eq. (221) is 0.
Next we show that 1 is a simple eigenvalue with eigenfunction given by the

constant function. Clearly 1 is algebraically simple, if there is another eigenfunction
with eigenvalue one, the stationary distribution is not unique. We show that 1 is also
geometrically simple. Assume the contrary, then by Jordan decomposition there is a
function g such that Ttg = 1 + g, so Ttg − g = 1. Integrating with respect to the
stationary distribution gives a contradiction.

Finally we show that there no other eigenvalues on the unit disk. Assume there
exists f , f �= 1 such that Ttf = λf with |λ| = 1. By the semigroup property Tt
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is compact for all t > t0 and Ttf = eiαtf , with α ∈ R, α �= 0. If we choose
t = 2nπ/α we obtain T2nπ/αf = f and so f = 1 which is a contradiction.

Using now the spectral decomposition of compact operators we find that there
exists γ > 0 such that

‖Tt − π‖ ≤ Ce−γt . (222)

This concludes the proof of Theorem 8.9 
�

To conclude we show that the correlations in the stationary distribution decay
exponentially (exponential mixing).

Corollary 8.10. Under the assumptions of Theorem 8.7 or 8.9, the stationary distri-
bution π is exponentially mixing: for all f , g such that f2, g2 ∈ HW we have

|
∫

f(x)Ttg(x)π(dx) −
∫

f(x)π(dx)
∫

g(x)π(dx)|C‖f2‖1/2
W ‖g2‖1/2

W e−γt .

(223)

Proof. If f2 ∈ HW , then we have

|f(x)| ≤ ‖f2‖1/2
W W 1/2 . (224)

Further if we have
Tt0W (x) ≤ κnW (x) + bn1Kn

(x) , (225)

then, using Jensen inequality, the inequality
√

1 + y ≤ 1 + y/2 and W ≥ 1 we have

Tt0

√
W (x) ≤

√
Tt0W (x)

≤
√

κnW (x) + bn1Kn
(x)

≤ √
κn

√
W (x) +

bn1Kn
(x)

2κn
. (226)

So we have
Tt0

√
W (x) ≤ κ′

n

√
W (x) + b′n1Kn

(x) , (227)

with κ′
n =

√
κn and b′n = bn/2κn. Applying Theorem 8.9 or 8.7 with the Liapunov

function
√

W there exist constants C > 0 and γ > 0 such that
∣∣∣∣Ttg(x) −

∫
g(x)π(dx)

∣∣∣∣ ≤ C
√

W (x)‖g2‖1/2
W e−γt . (228)

Therefore combining Eqs. (224) and (228) we obtain
∣∣∣∣
∫

f(x)Ttg(x)π(dx) −
∫

f(x)π(dx)
∫

g(x)π(dx)
∣∣∣∣

≤
∫

|f(x)|
∣∣∣∣Ttg(x) −

∫
g(x)π(dx)

∣∣∣∣π(dx)

≤ C

∫
W (x)π(dx)‖f2‖1/2‖g2‖1/2e−γt . (229)
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Finally since π is the solution of Stπ = π we have
∫

W (x)π(dx) ≤ ‖π‖W < ∞ (230)

and this concludes the proof of Corollary 8.10. 
�
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