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Summary. A mathematical model for European/American options with uncer-
tainty is presented. The uncertainty is represented by both randomness and fuzzi-
ness. The randomness and fuzziness are evaluated respectively by probabilistic ex-
pectation and fuzzy expectation defined by a possibility measure from the viewpoint
of decision-maker’s subjective judgment. Prices of European call/put options with
uncertainty are presented, and their valuation and properties are discussed under a
reasonable assumption. The hedging strategies are also considered for marketability
of the European options in portfolio selection. Further, the American options model
with uncertainty is discussed by a numerical approach and is compared with the an-
alytical case of the infinite terminal time. The buyer’s/seller’s rational range of the
optimal expected price in each option is presented and the meaning and properties
of the optimal expected prices are discussed.
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1 Introduction and Notations

Option pricing theory in financial market has been developing together with
financial engineering based on the famous Black-Scholes model. When we sell
or buy stocks in financial market, there sometimes exists a difference between
the actual prices and the theoretical value which derived from Black-Scholes
method. Actually we cannot utilize timely some of fundamental data regarding
the market, and therefore there exists uncertainty which we cannot represent
by only probability theory because the concept of probability is constructed on
mathematical representation whether something occurs or not in the future.
When the market is unstable and changing rapidly, the losses/errors often be-
come bigger between the decision maker’s expected price and the actual price.
Introducing fuzzy logic to the log-normal stochastic processes designed for the
financial market, we present a model with uncertainty of both randomness and
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fuzziness in output, which is a reasonable and natural extension of the original
log-normal stochastic processes in Black-Scholes model. To valuate American
options, we need to deal with an optimal stopping problem in log-normal sto-
chastic processes (Elliott and Kopp [4], Karatzas and Shreve [5], Ross [10]
and so on). We introduce a fuzzy stochastic process by fuzzy random variables
to define prices in American options, and we evaluate the randomness and
fuzziness by probabilistic expectation and fuzzy expectation defined by a pos-
sibility measure from the viewpoint of Yoshida [13]. We discuss the following
themes on the basis of the results in Yoshida [14, 15, 17].

• American put option in a stochastic and fuzzy environment
– The case with an expiration date
– The perpetual option case without expiration dates

• European call/put options in a stochastic and fuzzy environment
– Option pricing formula
– Hedging strategies

In the next section, we introduce a fuzzy stochastic process by fuzzy random
variables to define prices for American put option with uncertainty. We call
the prices fuzzy prices. The randomness and fuzziness in the fuzzy stochastic
process are evaluated by both probabilistic expectation and fuzzy expectation
defined by a possibility measure, taking account of decision-maker’s subjective
judgment (Yoshida [13]). In Section 2, we deal with two models in American
options with uncertainty, the case with an expiration date and the perpetual
option case without expiration dates, and it is shown that the optimal fuzzy
price is a solution of an optimality equation under a reasonable assumption.
In Sections 3 and 4, we consider the optimal expected price in the American
put option and we discuss seller’s permissible range of expected prices, and we
also give an optimal exercise time for the American put option. In Section 5,
we give prices in European call/put options with uncertainty and we discuss
their valuation and properties under a reasonable assumption. Finally, we give
an explicit formula for the fuzzy prices in European options. We consider a
rational expected price of the European options and buyer’s/seller’s permissi-
ble range of expected prices. The meaning and properties of rational expected
prices are discussed in a numerical example. In the last section, we consider
hedging strategies for marketability of the European options.

In the remainder of this section, we describe notations regarding bond
price processes and stock price processes. We consider American put option
in a finance model where there is no arbitrage opportunities ([4, 5]). Let
(Ω,M, P ) be a probability space, where M is a σ-field and P is a non-atomic
probability measure. R denotes the set of all real numbers. For a stock, let µ be
the appreciation rate and let σ be the volatility (µ ∈ R, σ > 0). Let {Bt}t≥0

be a standard Brownian motion on (Ω,M, P ). {Mt}t≥0 denotes a family of
nondecreasing right-continuous complete sub-σ-fields of M such that Mt is
generated by Bs(0 ≤ s ≤ t). We consider two assets, a bond price and a stock
price, where the bond price process {Rt}t≥0 is riskless and the stock price
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process {St}t≥0 is risky. Let r (r ≥ 0) be a instantaneous interest rate, i.e. a
interest factor, on the bond, and the bond price process {Rt}t≥0 is given by
Rt = ert (t ≥ 0). Let the stock price process {St}t≥0 satisfy the following log-
normal stochastic differential equation in Black-Scholes model: S0 is a positive
constant, and

dSt = µSt dt + σSt dBt, (1)

t ≥ 0. It is known ([4]) that there exists an equivalent probability mea-
sure Q. Under Q, Wt := Bt − ((r − µ)/σ)t is a standard Brownian mo-
tion and it holds that dSt = rStdt + σStdWt. By Ito’s formula, we have
St = S0 exp ((r − σ2/2)t + σWt) (t ≥ 0). The present stock price is deter-
mined by the information regarding the market until the previous time, and
the present stock price St contains a certain uncertainty since we cannot uti-
lize some of fundamental data actually at the current time t. The uncertainty
comes from imprecision of information in the present market and is different
from randomness, which is based on whether something occurs or not in the
future. In the next section, we introduce fuzzy random variables to represent
the uncertainty using fuzzy set theory.

2 Fuzzy Stochastic Processes

Fuzzy random variables, which take values in fuzzy numbers, have been stud-
ied by Puri and Ralescu [9] and many authors. It is known that the fuzzy
random variable is one of the successful hybrid notions of randomness and
fuzziness. First we introduce fuzzy numbers. Let I be the set of all non-
empty bounded closed intervals. A fuzzy number is denoted by its member-
ship function ã : R �→ [0, 1] which is normal, upper-semicontinuous, fuzzy
convex and has a compact support (Zadeh [19], Klir and Yuan [6]). We iden-
tify a fuzzy number with its corresponding membership function. R denotes
the set of all fuzzy numbers. The α-cut of a fuzzy number ã(∈ R) is given
by ãα := {x ∈ R | ã(x) ≥ α} (α ∈ (0, 1]) and ã0 := cl{x ∈ R | ã(x) > 0},
where cl denotes the closure of an interval. We write the closed intervals
as ãα := [ã−

α , ã+
α ] for α ∈ [0, 1]. We also use a metric δ∞ on R defined by

δ∞(ã, b̃) = supα∈[0,1] δ(ãα, b̃α) for fuzzy numbers ã, b̃ ∈ R, where δ is the
Hausdorff metric on I. Hence we introduce a partial order �, so called the
fuzzy max order, on fuzzy numbers R([6]): Let ã, b̃ ∈ R be fuzzy numbers.
Then ã � b̃ means that ã−

α ≥ b̃−α and ã+
α ≥ b̃+

α for all α ∈ [0, 1]. Then
(R,�) becomes a lattice ([13]). For fuzzy numbers ã, b̃ ∈ R, we define the
maximum ã ∨ b̃ with respect to the fuzzy max order � by the fuzzy num-
ber whose α-cuts are (ã ∨ b̃)α = [max{ã−

α , b̃−α },max{ã+
α , b̃+

α}] (α ∈ [0, 1]). An
addition, a subtraction and a scalar multiplication for fuzzy numbers are de-
fined as follows: For ã, b̃ ∈ R and λ ≥ 0, the addition and subtraction ã ± b̃
of ã and b̃ and the scalar multiplication λã of λ and ã are fuzzy numbers
given by (ã + b̃)α := [ã−

α + b̃−α , ã+
α + b̃+

α ], (ã − b̃)α := [ã−
α − b̃+

α , ã+
α − b̃−α ] and

(λã)α := [λã−
α , λã+

α ] for α ∈ [0, 1].
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A fuzzy-number-valued map X̃ : Ω �→ R is called a fuzzy random variable
if {(ω, x) ∈ Ω × R | X̃(ω)(x) ≥ α} ∈ M× B for all α ∈ [0, 1], where B is the
Borel σ-field of R. We can find some equivalent conditions in general cases
([9]), however we adopt a simple characterization in the following lemma.

Lemma 1 (Wang and Zhang [12, Theorems 2.1 and 2.2]). For a map X̃ :
Ω �→ R, the following (i) and (ii) are equivalent:

(i) X̃ is a fuzzy random variable.
(ii)The maps ω �→ X̃−

α (ω) and ω �→ X̃+
α (ω) are measurable for all α ∈ [0, 1],

where X̃α(ω) = [X̃−
α (ω), X̃+

α (ω)] := {x ∈ R | X̃(ω)(x) ≥ α}.

From Lemma 1, we obtain the following lemma regarding fuzzy random
variables X̃ and their α-cuts X̃α(ω) = [X̃−

α (ω), X̃+
α (ω)].

Lemma 2.

(i) Let X̃ be a fuzzy random variable. The α-cuts X̃α(ω) = [X̃−
α (ω), X̃+

α (ω)],
ω ∈ Ω, have the following properties (a) — (c):
(a) X̃α(ω) ⊂ X̃α′(ω) for ω ∈ Ω, 0 ≤ α′ < α ≤ 1.
(b) limα′↑α X̃α′(ω) = X̃α(ω) for ω ∈ Ω, α > 0.
(c) The maps ω �→ X̃−

α (ω) and ω �→ X̃+
α (ω) are measurable for α ∈ [0, 1].

(ii)Conversely, suppose that a family of interval-valued maps Xα = [X−
α , X+

α ]
: Ω �→ I (α ∈ [0, 1]) satisfies the above conditions (a) – (c). Then, a
membership function

X̃(ω)(x) := sup
α∈[0,1]

min{α, 1Xα(ω)(x)}, ω ∈ Ω, x ∈ R,

gives a fuzzy random variable and X̃α(ω) = Xα(ω) for ω ∈ Ω and α ∈
[0, 1], where 1{·} denotes the characteristic function of an interval.

Next we need to introduce expectations of fuzzy random variables in order
to describe fuzzy-valued European option models in the next section. A fuzzy
random variable X̃ is called integrably bounded if both ω �→ X̃−

α (ω) and
ω �→ X̃+

α (ω) are integrable for all α ∈ [0, 1]. Let X̃ be an integrally bounded
fuzzy random variable. The expectation E(X̃) of the fuzzy random variable
X̃ is defined by a fuzzy number

E(X̃)(x) := sup
α∈[0,1]

min{α, 1E(X̃)α
(x)}, x ∈ R,

where E(X̃)α := [
∫

Ω
X̃−

α (ω) dP (ω),
∫

Ω
X̃+

α (ω) dP (ω)] (α ∈ [0, 1]).
Now, we consider a continuous-time fuzzy stochastic process by fuzzy ran-

dom variables. Let {X̃t}t≥0 be a family of integrally bounded fuzzy random
variables. We assume that the map t �→ X̃t(ω)(∈ R) is continuous on [0,∞)
for almost all ω ∈ Ω. {Mt}t≥0 is a family of nondecreasing sub-σ-fields of M
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which is right continuous, and fuzzy random variables X̃t are Mt-adapted, i.e.
random variables X̃−

r,α and X̃+
r,α (0 ≤ r ≤ t;α ∈ [0, 1]) are Mt-measurable.

Then (X̃t,Mt)t≥0 is called a fuzzy stochastic process.
We introduce a valuation method of fuzzy prices, taking into account of

decision maker’s subjective judgment. Give a fuzzy goal by a fuzzy set ϕ :
[0,∞) �→ [0, 1] which is a continuous and increasing function with ϕ(0) = 0
and limx→∞ ϕ(x) = 1. Then we note that the α-cut is ϕα = [ϕ−

α ,∞) for
α ∈ (0, 1). For an exercise time T and call/put options with fuzzy values
X̃T = C̃T or X̃T = P̃T , which will be given as fuzzy prices in the next section,
we define a fuzzy expectation of the fuzzy numbers E(X̃T ) by

Ẽ(E(X̃T )) := −
∫

[0,∞)

E(X̃T )(x) dm̃(x) = sup
x∈[0,∞)

min{E(X̃T )(x), ϕ(x)}, (2)

where m̃ is the possibility measure generated by the density ϕ and −
∫

dm̃ de-
notes Sugeno integral ([11]). The fuzzy number E(X̃T ) means a fuzzy price,
and the fuzzy expectation (2) implies the degree of buyer’s/seller’s satisfac-
tion regarding fuzzy prices E(X̃T ). Then the fuzzy goal ϕ(x) means a kind of
utility function for expected prices x in (2), and it represents a buyer’s/seller’s
subjective judgment from the idea of Bellman and Zadeh [1]. Hence, a real
number x∗(∈ [0,∞)) is called a rational expected price if it attains the supre-
mum of the fuzzy expectation (2), i.e.

Ẽ(Ṽ ) = sup
x∈[0,∞)

min{Ṽ (x), ϕ(x)} = min{Ṽ (x∗), ϕ(x∗)}, (3)

where
Ṽ := E(X̃T )

is a fuzzy price of options.
We also consider about an estimation of imprecision regarding fuzzy num-

bers. One of the methods to evaluate the imprecision regarding a fuzzy number
ã is given by Choquet integral ([3, 7]):

(C)
∫

ã(·) dQ̃(·) =
∫ 1

0

Q̃{x ∈ R|ã(x) ≥ α} dα,

where Q̃ is a fuzzy measure on R. We take Q̃ Lebesgue measure, then

(C)
∫

ã(·) dQ̃(·) =
∫ 1

0

(ã+
α − ã−

α ) dα.

Therefore, the estimation of fuzziness regarding a fuzzy random variable X̃t

follows

(C)
∫

X̃t(ω)(·) dQ̃(·) =
∫ 1

0

(X̃+
t,α(ω) − X̃−

t,α(ω)) dα (4)

for t ≥ 0, ω ∈ Ω.
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3 American Put Option in Uncertain Environment

In this section, we introduce American put option with fuzzy prices and we
discuss its properties. Let {at}t≥0 be an Mt-adapted stochastic process such
that the map t �→ at(ω) is continuous on [0,∞) and 0 < at(ω) ≤ St(ω)
for almost all ω ∈ Ω. We give a fuzzy stochastic process of the stock prices
{S̃t}t≥0 by the following fuzzy random variables:

S̃t(ω)(x) := L((x − St(ω))/at(ω))

for t ≥ 0, ω ∈ Ω and x ∈ R, where L(x) := max{1 − |x|, 0} (x ∈ R) is
the triangle-type shape function(Fig. 1) and {St}t≥0 is defined by (1). Then,
from (4), the fuzziness regarding the fuzzy random variables S̃t is estimated
by Choquet integral

(C)
∫

S̃t(ω)(·) dQ̃(·) =
∫ 1

0

(S̃+
t,α(ω) − S̃−

t,α(ω)) dα = at(ω). (5)

Therefore at(ω) means the amount of fuzziness regarding the stock price S̃t(ω)
and is the spread of the triangular fuzzy number in Fig. 1.

0.2

0.4

0.6

0.8

1

x

®

~St(!)(x)

St(!)¡ at(!) St(!) St(!) + at(!)
0

Fig. 1. Fuzzy random variable S̃t(ω)(x).

Let K (K > 0) be a strike price. We define a fuzzy price process by the
following fuzzy stochastic process {P̃t}t≥0:

P̃t(ω) := e−rt(1{K} − S̃t(ω)) ∨ 1{0}

for t ≥ 0, ω ∈ Ω, where ∨ is the maximum by the fuzzy max order, and 1{K}
and 1{0} denote the crisp numbers K and zero respectively. By using stopping
times τ , we consider a problem to maximize fuzzy price process of American
put option. Fix an initial stock price y (y = S0 > 0). Put the optimal fuzzy
price of American put option by
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Ṽ =
∨

τ : stopping times with values in T

E(P̃τ ), (6)

where E(·) denotes the expectation with respect to the equivalent martingale
measure Q, and ∨ means the supremum induced from the fuzzy max order.

We consider a valuation method of fuzzy prices, taking into account of
decision maker’s subjective judgment. From (2), for a stopping time τ , we
define a fuzzy expectation of the fuzzy numbers E(P̃τ ) by

Ẽ(E(P̃τ )) = sup
x∈[0,∞)

min{E(P̃τ )(x), ϕ(x)}, (7)

where ϕ is the seller’s fuzzy goal. In this section, we discuss the following
optimal stopping problem regarding American put option with fuzziness.

Problem P. Find a stopping time τ∗ with values in T such that

Ẽ(E(P̃τ∗)) = Ẽ(Ṽ ),

where Ṽ is given by (6).

Then, τ∗ is called an optimal exercise time and a real number x∗(∈ [0,∞))
is called an optimal expected price under the fuzzy expectation generated by
possibility measures if it attains the supremum of the fuzzy expectation (7),
i.e.

Ẽ(Ṽ ) = min{Ṽ (x∗), ϕ(x∗)}. (8)

The fuzzy random variables Z̃t correspond to Snell’s envelope in probability
theory. Hence, by using dynamic programming approach, we obtain the fol-
lowing optimality characterization for the fuzzy stochastic process regarding
the optimal fuzzy price Ṽ by fuzzy random variables Z̃t. Now we introduce a
reasonable assumption for computation.

Assumption S. The stochastic process {at}t≥0 is represented by

at(ω) := cSt(ω),

t ≥ 0, ω ∈ Ω, where c is a constant satisfying 0 < c < 1.

Since (1) can be written as

d log St = µdt + σ dBt, (9)

t ≥ 0, one of the most difficulties is estimation of the volatility σ of a stock
in actual cases ([10, Sect.7.5.1]). Therefore, Assumption S is reasonable since
at(ω) corresponds to the size of fuzziness from (5) and so it is reasonable that
at(ω) should depend on the fuzziness of the volatility σ and the stock price
St(ω) of the term σSt(ω) in (1). In this model, we represent by c the fuzziness
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Fig. 2. The stochastic process {at}t≥0.

of the volatility σ, and we call c a fuzzy factor of the stock process. From now
on, we suppose that Assumption S holds. By putting b±(α) := 1 ± (1 − α)c
(α ∈ [0, 1]), from Assumption S we have

S̃±
t,α(ω) = b±(α)St(ω),

t ≥ 0, ω ∈ Ω, α ∈ [0, 1], where S̃±
t,α(ω) is the α-cut of S̃±

t (ω).
Define fuzzy price processes by

Ṽ ±
α (y, t) := sup

τ≥t
E(e−r(τ−t) max{K − S̃∓

τ,α, 0} | St = y)

for y > 0 and t ∈ T. Here we consider the following two cases (I) and (II).

Case (I) (American put option with an expiration date T , T = [0, T ]).
Define an operator

L :=
1
2
σ2y2 ∂2

∂y2
+ ry

∂

∂y
+

∂

∂t

on [0,∞) × [0, T ). Then we obtain the following optimality conditions by
dynamic programming([15]).

Theorem 1 (Free boundary problem). The fuzzy price V (y, t) = Ṽ ±
α (y, t)

satisfies the following equations:

L(e−rtV (y, t)) ≤ 0,

L(e−rtV (y, t)) = 0 on D,

V (y, t) ≥ max{K − b∓(α)y, 0},
V (y, T ) = max{K − b∓(α)y, 0},

where D := {(y, t) ∈ [0,∞) × [0, T ) | Ṽ ±
α (y, t) > max{K − b∓(α)y, 0}}. The

corresponding optimal exercise time is

τα(ω) = inf
{

t ∈ T | Ṽ ±
α (St(ω), t) = max{K − b∓(α)St(ω), 0}

}
.
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Case (II) (A perpetual American put option, T = [0,∞)). The both ends
of the α-cuts are

Ṽ ±
α (y, 0) := sup

τ≥0
E(e−rτ max{K − S̃∓

τ,α, 0}1{τ<∞} | S0 = y)

for y > 0. Then we obtain the following results ([15]).

Theorem 2. The fuzzy price Ṽ ±
α (y, 0) is represented by

Ṽ ±
α (y, 0) =

{
K − b∓(α)y if y ≤ s±(α)
(K − b∓(α)s±(α))(y/s±(α))−γ if y > s±(α),

where s±(α) := 2rK/(b∓(α)(2r + σ2)) and γ := 2r/σ2. The optimal exercise
time is

τα(ω) = inf
{

t ≥ 0 | (r − σ2

2
)t + σWt(ω) = log

(
s±(α)

y

)}
.

4 The Optimal Expected Price
and the Optimal Exercise Times

Fix an initial stock price y(> 0). In this section, we discuss the optimal ex-
pected price of American put option Ṽ := Ṽ (y, 0), which is introduced in the
previous section, and we give an optimal exercise time for Problem P. Define
a grade α∗ by

α∗ := sup{α ∈ [0, 1]| ϕ−
α ≤ Ṽ +

α }, (10)

where ϕα = [ϕ−
α ,∞) for α ∈ (0, 1), and the supremum of the empty set is un-

derstood to be 0. The following theorem, which is obtained by a modification
of the proofs in [13, Theorems 3.1 and 3.2], implies that α∗ is the grade of the
fuzzy expectation of American put option price Ṽ (see (8)).

Theorem 3. Under the fuzzy expectation generated by possibility measures
(8), the following (i) – (iii) hold.

(i) The grade of the fuzzy expectation of American put option price Ṽ is given
by

α∗ = Ẽ(Ṽ ) = sup
τ : stopping times with values in T

Ẽ(E(P̃τ )).

(ii)Further, the optimal expected price of American put option is given by

x∗ = ϕ−
α∗ . (11)
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(iii)Define a stopping time

τ∗(ω) := τα∗(ω) = inf{t ∈ T | St(ω) ≤ s+(α∗)}, (12)

where the infimum of the empty set is understood to be sup T. If τ∗ is
finite, then τ∗ is an optimal stopping time for Problem P, and it is the
optimal exercise time.

In Theorem 3, we need the assumption the finiteness of τ∗, only when
T = [0,∞). Since the fuzzy expectation (8) is defined by possibility measures,
(11) gives an upper bound on optimal expected prices of American put option.
Similarly to (10) we can define another grade, which gives a lower bound on
optimal expected prices of American put option as follows:

x∗ = ϕ−
α∗ , (13)

where α∗ is defined by

α∗ := sup{α ∈ [0, 1]| ϕ−
α ≤ Ṽ −

α }.

Then, its corresponding stopping time is given by

τ∗(ω) := τα∗(ω) = inf{t ∈ T | St(ω) ≤ s−(α∗)}.

Hence, from (11) and (13), we can easily check the interval [x∗, x
∗] is written

as
[x∗, x

∗] = {x ∈ R | Ṽ (x) ≥ ϕ(x)},
which is the range of prices x such that the reliability degree of the optimal
expected price, Ṽ (x), is greater than the degree of seller’s satisfaction, ϕ(x).
Therefore, [x∗, x

∗] means seller’s permissible range of expected prices under
his fuzzy goal ϕ.

Example 1. Consider a perpetual American put option (T = [0,∞)). Put a
fuzzy goal

ϕ(x) =
{

1 − e−0.2x, x ≥ 0
0, x < 0.

Then, ϕ−
α = −0.2−1 log(1 − α) for α ∈ (0, 1). Put a volatility σ = 0.25, an

interest factor r = 0.05, a fuzzy factor c = 0.1, an initial stock price y = 20
and a strike price K = 25. We can easily calculate that the optimal grades
are α∗ ≈ 0.700468 and α∗ ≈ 0.73281. From (11) and (13), the permissible
range of expected prices under seller’s fuzzy goal ϕ is (see Fig. 3) [x∗, x

∗] ≈
[6.02767, 6.59897]. The corresponding optimal exercise times are

τ∗(ω) = inf{t ≥ 0 | Wt(ω) − 0.45t = log(s−(α∗)/20)},
τ∗(ω) = inf{t ≥ 0 | Wt(ω) − 0.45t = log(s+(α∗)/20)}

with s−(α∗) ≈ 14.9372 and s+(α∗) ≈ 15.807.
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Fig. 3. Optimal fuzzy price Ṽ (x) and fuzzy goal ϕ(x).

5 European Options in Uncertain Environment

In this section, we introduce European option with fuzzy prices and we discuss
their properties. We define fuzzy stochastic processes of European call/put
options by {C̃t}t≥0 and {P̃t}t≥0:

C̃t(ω) := e−rt(S̃t(ω) − 1{K}) ∨ 1{0},

P̃t(ω) := e−rt(1{K} − S̃t(ω)) ∨ 1{0},

t ≥ 0, ω ∈ Ω. We evaluate these fuzzy stochastic processes by the expecta-
tions introduced in the pervious sections. Then, the fuzzy price processes of
European call/put options are given as follows:

Ṽ C̃(y, t) := ertE(C̃T | St = y)

Ṽ P̃ (y, t) := ertE(P̃T | St = y)

for an initial stock price y (y > 0) and t ∈ [0, T ], where E(·) denotes ex-
pectation with respect to the equivalent martingale measure Q. Their α-cuts
are

Ṽ C̃,±
α (y, t) = E(e−r(T−t) max{S̃±

T,α − K, 0} | St = y);

Ṽ P̃ ,±
α (y, t) = E(e−r(T−t) max{K − S̃∓

T,α, 0} | St = y).

Then we obtain the following formulae to calculate fuzzy price in European
options ([14]).

Theorem 4 (Black-Scholes formula for fuzzy prices). Suppose that Assump-
tion S holds. Let α ∈ [0, 1]. Let an initial stock price y(:= S0 > 0).

(i) The rational fuzzy price of European call option is given by

Ṽ C̃,±
α (y, 0) = b±(α)yΦ(z1) − Ke−rT Φ(z2), (14)
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where Φ(z) = (1/
√

2π)
∫ z

−∞ e−w2/2dw (z ∈ R) is the standard normal
distribution function, and z1 and z2 are given by

z1 =
log b±(α) + log(y/K) + T (r + σ2/2)

σ
√

T
;

z2 =
log b±(α) + log(y/K) + T (r − σ2/2)

σ
√

T
.

(ii)The rational fuzzy price of European put option is given by the following
call-put parity:

Ṽ P̃ ,±
α (y, 0) = Ṽ C̃,∓

α (y, 0) − b∓(α)y + Ke−rT . (15)

Fix an initial stock price y(> 0). Next, we discuss the expected price,
which is introduced in the previous section, of European call/put options
Ṽ = Ṽ C̃(y, 0) or Ṽ = Ṽ P̃ (y, 0). Define a grade αC̃,+ by

αC̃,+ := sup{α ∈ [0, 1]| ϕ−
α ≤ Ṽ C̃,+

α (y, 0)},

where ϕα = [ϕ−
α ,∞) for α ∈ (0, 1), and the supremum of the empty set is

understood to be 0. From the continuity of ϕ and Ṽ C̃ , we can easily check
that the grade αC̃,+ satisfies

ϕ−
αC̃,+ = Ṽ C̃,+

αC̃,+(y, 0). (16)

The following theorem, which is obtained by a modification of the proofs
in [13, Theorems 3.1 and 3.2], implies that αC̃,+ is the grade of the fuzzy
expectation of European call option Ṽ C̃(y, 0).

Theorem 5. Under the fuzzy expectation generated by possibility measures
(2), the following (i) and (ii) hold.

(i) The grade of the fuzzy expectation of European call option price Ṽ C̃ is
given by

αC̃,+ = Ẽ(Ṽ C̃(y, 0)) = Ẽ(E(C̃T )).

(ii)Further, the rational expected price of European call option is given by

xC̃,+ = ϕ−
αC̃,+ . (17)

Since the fuzzy expectation (3) is defined by possibility measures, (17)
gives an upper bound on rational expected prices of European call option.
Similarly to (16) we can define another grade, which gives a lower bound on
rational expected prices of European call option as follows:

xC̃,− = ϕ−
αC̃,− , (18)
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where αC̃,− is defined by

αC̃,− := sup{α ∈ [0, 1]| ϕ−
α ≤ Ṽ C̃,−

α (y, 0)}.

Hence, from (17) and (18), we can easily check the interval [xC̃,−, xC̃,+] is
written as

[xC̃,−, xC̃,+] = {x ∈ R | Ṽ C̃(y, 0)(x) ≥ ϕ(x)},

which is the range of prices x such that the reliability degree of the optimal
expected price, Ṽ C̃(y, 0)(x), is greater than the degree of buyer’s satisfac-
tion, ϕ(x). Therefore, [xC̃,−, xC̃,+] means buyer’s permissible range of expected
prices under his fuzzy goal ϕ. Regarding European put option, similarly we
obtain seller’s permissible range of rational expected prices by [xP̃ ,−, xP̃ ,+],
where xP̃ ,− := ϕ−

αP̃ ,− and xP̃ ,+ := ϕ+

αP̃ ,+ , and the grades αP̃ ,− and αP̃ ,+ are

given by ϕ−
αP̃ ,− = Ṽ P̃ ,−

αP̃ ,−(y, 0) and ϕ−
αP̃ ,+ = Ṽ P̃ ,+

αP̃ ,+(y, 0).

Example 2. Consider a fuzzy goal

ϕ(x) =
{

1 − e−2x, x ≥ 0
0, x < 0.

Then ϕ−
α = −2−1 log(1 − α) for α ∈ (0, 1). Put an exercise time T = 1,

a volatility σ = 0.25, an interest factor r = 0.05, a fuzzy factor c = 0.05,
an initial stock price y = 20 and a strike price K = 25. From Theorem 5,
we can easily calculate that the grades of the fuzzy expectation of the fuzzy
price are αC̃,− ≈ 0.767815 and αC̃,+ ≈ 0.845076. These grades means the
degree of buyer’s satisfaction in pricing. From (17) and (18), the corresponding
permissible range of rational expected prices in European call option under
his fuzzy goal ϕ is [xC̃,−, xC̃,+] ≈ [0.730111, 0.84642]. Consider another fuzzy
goal

ϕ(x) =
{

1 − e−0.5x, x ≥ 0
0, x < 0,

and take the other parameters in the same as the above. Similarly, in European
put option, we can easily calculate the grades, the degree of seller’s satisfac-
tion, and the corresponding permissible range of rational expected prices is
as follows: [xP̃ ,−, xP̃ ,+] ≈ [4.4975, 4.64449]. Buyer/seller should take into ac-
count of the permissible range of rational expected prices under their fuzzy
goal ϕ.

6 Hedging Strategies

Finally, we deal with hedging strategies in European call option. Fix any
α ∈ [0, 1]. A hedging strategy is an Mt-predictable process {(π0,±

t , π1,±
t )}t≥0



242 Y. Yoshida

with values in R × R, where π0,±
t means the amount of the bond and π1,±

t

means the amount of the stock at time t, and it satisfies

V ±
t,α = π0,±

t Rt + π1,±
t S̃±

t,α, t ≥ 0, (19)

where V ±
t,α := ertE(C̃±

T,α|Mt) is called a wealth process. Then, we obtain the
following results ([14]).

Theorem 6. The minimal hedging strategy {(π0,±
t , π1,±

t )}t∈[0,T ] for the fuzzy
price of European call option is given by

π0,±
t = Φ(z0,±

t ) and π1,±
t = − e−rT KΦ(z1,±

t )

for t < T , where

z0,±
t = log b±(α) +

log(St/K) + (T − t)(r + σ2/2)
σ
√

T − t
,

z1,±
t = log b±(α) +

log(St/K) + (T − t)(r − σ2/2)
σ
√

T − t
.

The corresponding wealth process is (19).

7 Concluding Remarks

In this paper, the uncertainty is represented by both randomness and fuzzi-
ness. The fuzziness is evaluated by fuzzy expectation defined by a possibil-
ity measure from the viewpoint of decision-maker’s subjective judgment. We
can find other estimation methods instead of fuzzy expectation. For exam-
ple, mean values by evaluation measures in Yoshida [18] are applicable to this
model in the evaluation of fuzzy numbers with the decision maker’s subjective
judgment.

This paper takes theoretical approach to the option pricing theory under
uncertainty. However, in a fuzzy environment, the other approaches from the
viewpoint of the option pricing for actual stocks are discussed by Carlsson
et al. [2] and Zmeškal [20].
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