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Summary. Capital budgeting is based on the analysis of some financial parameters
of considered investment projects. It is clear that estimation of investment efficiency,
as well as any forecasting, is rather an uncertain problem. In a case of stock invest-
ment one can to some extent predict future profits using stock history and statistical
methods, but only in a short time horizon. In the capital investment one usually
deals with a business-plan which takes a long time — as a rule, some years — for
its realization. In such cases, a description of uncertainty within a framework of tra-
ditional probability methods usually is impossible due to the absence of objective
information about probabilities of future events. This is a reason for the growing
for the last two decades interest in applications of interval and fuzzy methods in
budgeting. In this paper a technique for fuzzy-interval evaluation of financial para-
meters is presented. The results of technique application in a form of fuzzy-interval
and weighted non-fuzzy values for main financial parameters NPV and IRR as
well as the quantitative estimation of risk of an investment are presented.Another
problem is that one usually must consider a set of different local criteria based on
financial parameters of investments. As its possible solution, a numerical method for
optimization of future cash-flows based on the generalized project’s quality criterion
in a form of compromise between local criteria of profit maximisation and financial
risk minimisation is proposed.

Keywords: Capital budgeting; investment project optimisation, fuzzy-interval
evaluation; risk minimisation, profit maximisation.
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1 Introduction

Consider common non-fuzzy approaches to a capital budgeting problem.
There are a lot of financial parameters proposed in literature [1, 2, 3, 4] for
budgeting.The main are: Net Present Value (NPV ), Internal Rate of Return
(IRR), Payback Period (PB), Profitability Index (PI). These parameters
are usually used for a project quality estimation, but in practice they have
different importance. It is earnestly shown in [5] that the most important
parameters are NPV and IRR.

Therefore, further consideration will be based only on the analysis of the
NPV and IRR. Good review of other useful financial parameters can be found
in [6]. Net Present Value is usually calculated as follows:

NPV =
T∑

t=tn

Pt

(1 + d)t
−

tc∑

t=0

KVt

(1 + d)t
, (1)

where d - discount rate, tn - first year of production, tc - last year of invest-
ments, KVt - capital investment in year t, Pt - income in year t, T - duration
of an investment project in years. Usually, the discount rate is taken equal
to an average bank interest rate in a country of investment or other value
corresponding to a profit rate of alternate capital investments. An economic
nature of the Internal Rate of Return (IRR) can be explained as follows.
As an alternative to analyzed project, the deposit under some bank interest
distributed in time the same way as analyzed investments is considered. All
earned profits are also deposited with the same interest rate. If the discount
rate is equal IRR, an investment in the project will give the same total in-
come as in a case of the deposit. Thus, both alternatives are economically
equivalent. If the actual bank discount rate is less then IRR, the investment
into the project is more preferable. Therefore IRR is a threshold discount rate
dividing effective and ineffective investment projects. The value of IRR is a
solution of a non-linear equation with respect to d:

T∑

t=tn

Pt

(1 + d)t
−

tc∑

t=0

KVt

(1 + d)t
= 0. (2)

An estimation of IRR is frequently used as a first step of the financial analysis.
Only projects with IRR not below of some accepted threshold value, e.g., 15–
20%, can be chosen for further consideration.

There are two conjoint discussable points in the budgeting realm. The first
is the multiple roots of Eq. (2), i.e., so called multiple IRR problem. The sec-
ond is the negative NPV problem. The problem of multiple roots of Eq. (2)
rises when the negative cash flows take place after starting investment. In
practice, an appearance of some negative cash flow after initial investment
is usually treated as a local ”force majeur” or even a total project’s failure.
That is why, on the stage of planning, investors try to avoid situations when
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Fig. 1. Two stage investment project.

such negative cash flows are possible, except the cases when they are deal-
ing with long-term projects consist of some phases. Let us see to the Fig. 1.
This is a typical two-phase project: after initial investment the project brings
considerable profits and at the time τ1 a part of accumulated earnings and,
perhaps, an additional banking credit are invested once again. Factually, an
investor buys new production equipment and buildings (in fact creating the
new enterprise) and from his/her point of view a quite new project is started.
It is easy to see that investor’s creditors which are interested in repayment of
a credit always analyze phases τ < τ1 and τ > τ1 separately. It worth not-
ing that what we describe is only an investment planning routine, not some
theoretical considerations we can find in finansial books. On the other hand,
a separate assessment of different projects’ phases reflects economic sense of
capital investment better. Indeed, if we consider a two phase project as a
whole, we often get the IRRs performed by two roots so different that it is
impossible to make any decision. For example, we can obtain IRR1 =4% and
IRR2 =120%. It is clear that average IRR= (4+120)/2=62% seems as rather
fantastic estimation, whereas when considering the two phases of project sep-
arately we usually get quite acceptable values, e.g., for the first phase IRR1

=20% and for the second phase IRR2 =25%. So we can say that the problem
of ”multiple IRR values” exists only in some finansial textbooks, not in the
practice of capital investment. Therefore, only the case when Eq. (2) has a
single root will be analyzed in the current paper. Similarly, the negative NPV
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problem seems as a rather artificial one. Obviously, any investment project
with negative NPV should be rejected at the planning stage. On the other
hand, all possible undesirable events leading to the financial losses or even
to the failure of the projects should be taken into account too. In the frame-
work of probabilistic approach, e.g., when using the Monte-Carlo method,
there may be local results of calculations with negative NPV and the prob-
lem of their interpretation in terms of risk management or in other context
arises. The different situation we meet when future cash flows are presented
by fuzzy numbers. It is clear the full body of uncertainty is involved in such
a description. So if the decision maker find some negative part in predicted
cash flow he/she consider such a case as a source of risk and try to improve
the project to avoid this risk. As the result in a fuzzy budgeting the negative
cash flows and especially NPV , seem rather as the exotics. Nevertheless, the
probabilistic approach to interval and fuzzy value comparison we describe in
Section 2, makes it possible to deal with such situation as well, i.e., to compare
NPV comprising negative part with some real or fuzzy number representing
acceptable risk associated with future NPV .

The focus of current paper is that nowadays traditional approach to the
evaluation of NPV , IRR and other financial parameters is subjected to quite
deserved criticism, since the future incomes Pt, capital investments KVt and
rates d are rather uncertain parameters. Uncertainties which one meets in
capital budgeting differ from those in a case of share prices forecasting and
cannot be adequately described in terms of the probability theory. In a capital
investment one usually deals with a business-plan that takes a long time —
as a rule, some years — for its realization. In such cases, the description of
uncertainty within a framework of traditional probability methods usually is
impossible due to the absence of objective information about probabilities of
future events. Thus, what really is available in such cases are some expert
estimates. In real-world situations, investors or experts involved are able to
predict confidently only intervals of possible values Pt, KVt and d and some-
times the most expected values inside these intervals. Therefore, during last
two decades the growing interest in applications of interval arithmetic [7] and
fuzzy sets theory methods [8] in budgeting was observing.

After pioneer works of T.L.Ward [9] and J.U. Buckley [10], some other
authors contributed to the development of the fuzzy capital budgeting theory
[11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. It is safe to say that
almost all problems of the fuzzy NPV estimation are solved now, but an in-
teresting and important problem of project risk assessment using fuzzy NPV
gets higher priority.

An unsolved problem is a fuzzy estimation of the IRR. Ward [9] considers
Eq. (2) and states that such an expression cannot be applied to fuzzy case
because the left side of Eq. (2) is fuzzy, 0 is crisp and an equality is impossible.
Hence, the Eq. (2) is senseless from fuzzy viewpoint.

In [23], a method for the fuzzy IRR estimation is proposed where α-cut
representation of fuzzy numbers [26] is used. The method is based on an
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assumption (see [23, p. 380]) that a set of equations for IRR determination
on each α-level may be presented as (in our notation)

(CFα
0 )1 +

n∑

i=1

(CFα
i )1

(1 + IRRα
1 )i

= 0, (CFα
0 )2 +

n∑

i=1

(CFα
i )2

(1 + IRRα
2 )i

= 0, (3)

where CFα
i = [(CFα

i )1, (CFα
i )2], i = 0 to n, are crisp interval representations

of fuzzy cash flows on α-levels. Of course, from Eqs. (3) all crisp intervals
IRRα = [IRRα

1 , IRRα
2 ] expressing the fuzzy valued IRR may be obtained.

Regrettable, there is a little mistake in (3). Taking into account the con-
ventional interval arithmetic rules, the right crisp interval representation of
Eq. (2) on α-levels must be written as

(CFα
0 )1 +

n∑

i=1

(CFα
i )1

(1 + IRRα
2 )i

= 0, (CFα
0 )2 +

n∑

i=1

(CFα
i )2

(1 + IRRα
1 )i

= 0. (4)

There is no way to get intervals IRRα from (4), but the crisp ones may be
obtained (see Section 3, below). Another problem not presented in literature
is an optimization of cash flows. The rest of the paper is set out as follows.
In Section 2, a method for a fuzzy estimation of NPV is presented and possi-
ble approaches to the risk estimation are considered. In Section 3, a method
for crisp solving of Eq. (2) for a case of fuzzy cash flows is described. As an
outcome of the method a set of useful crisp parameters is proposed and ana-
lyzed. In Section 4, a numerical method of an optimization of cash flows as a
compromise between local criteria of a profit maximisation and financial risk
minimisation is proposed.

2 Fuzzy NPV and Risk Assessment

The technique is based on the fuzzy extension principle [8]. According to it,
the values of uncertain parameters Pt, KVt and d are substituted for corre-
sponding fuzzy intervals. In practice it means that an expert sets lower —
Pt1 (pessimistic value) and upper — Pt4 (optimistic value) boundaries of the
intervals and internal intervals of the most expected values [Pt2, Pt3] for an-
alyzed parameters (see Fig. 2). The function µ(Pt) is usually interpreted as
a membership function, i.e., a degree to which values of a parameter belong
to an interval (in this case [Pt1, Pt4]). A membership function changes con-
tinuously from 0 (an area out of the interval) up to maximum value 1 in an
area of the most possible values. It is obvious that a membership function is
a generalization of a characteristic function of usual set, which equals 1 for all
values inside a set and 0 in all other cases.

The linear character of the function is not obligatory, but such a mode is
most used and it allows to represent the fuzzy intervals in a convenient form
of a quadruple Pt = {Pt1, Pt2, Pt3, Pt4}. Then all necessary calculations are
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Fig. 2. Fuzzy interval of the uncertain parameter Pt and its membership function
µ(Pt)

carried out using special fuzzy-interval arithmetic rules. Consider some basic
principles of the fuzzy arithmetic [26]. In general, for an arbitrary form of a
membership function the technique of fuzzy-interval calculations is based on
representation of initial fuzzy intervals in a form of so-called α-cuts (Fig. 2)
which are, in fact, crisp intervals associated with corresponding degrees of the
membership. All further calculations are made with those α-cuts according
to well known crisp interval-arithmetic rules and resulting fuzzy intervals are
obtained as disjunction of corresponding final α-cuts.

Thus, if A is a fuzzy number then A =
⋃
α

αAα, where Aα is a crisp interval

{x : µA(x) ≥ α}, αAα is a fuzzy interval {(x, α) : x ∈ Aα}. So if A,B,Z are
fuzzy numbers (intervals) and @ is an operation from {+,−, ∗, /} then

Z = A@B =
⋃

α

(A@B)α =
⋃

α

Aα@Bα. (5)
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Since in a case of α-cut representation the fuzzy arithmetic is based on
crisp interval arithmetic rules, basic definitions of applied interval analysis
also must be presented. There are several definitions of interval arithmetic
(see [7, 27]), but in practical applications so-called “naive” form proved to
be the best one. According to it, if A = [a1, a2] and B = [b1, b2] are crisp
intervals, then

Z = A@B = {z = x@y,∀x ∈ A,∀y ∈ B}. (6)

As a direct outcome of the basic definition (6) following expressions were
obtained:

A + B = [a1 + b1, b2 + b2],
A − B = [a1 − b2, a2 − b1],
A ∗ B = [min(a1b1, a2b2, a1b2, a2b1),max(a1b1, a2b2, a1b2, a2b1)],
A/B = [a1, a2] ∗ [1/b2, 1/b1]

Of course, there are many internal problems within applied interval analysis,
for example, a division by zero-containing interval, but in general, it can be
considered as a good mathematical tool for modelling under conditions of
uncertainty.

To illustrate, consider an investment project, in which building phase pro-
ceeds two years with investments KV0 and KV1 accordingly. Profits are ex-
pected only after the end of the building phase and will be obtained during
two years (P2 and P3). It is suggested that the fuzzy interval for the discount d
remains stable during the time of project realisation. The sample trapezoidal
initial fuzzy intervals are presented in Table 1.

Table 1. Parameters of sample project

KV0 {2, 2.8, 3.5, 4} P0 {0, 0, 0, 0}
KV1 {0, 0.88, 1.50, 2} P1 {0, 0, 0, 0}
KV2 {0, 0, 0, 0} P2 {6.5, 7.5, 8.0, 8.5}
KV3 {0, 0, 0, 0} P3 {5.5, 6.5, 7.0, 7.5}

It was assumed that d = {0.08, 0.13, 0.22, 0.35}. Resulting fuzzy interval
NPV calculated using fuzzy extension of Eq. (1) is presented in Fig. 3.

Obtained fuzzy interval allows to estimate the boundaries of possible values
of predicted NPV , the interval of the most expected values, and also — that
is very important — to evaluate a degree of financial risk of investment. There
may be different ways to define the measure of financial risk in the framework
of fuzzy sets based methodology. Therefore we consider here only the three,
in our opinion, most interesting and scientifically grounded approaches.
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Fig. 3. Resulting fuzzy interval NPV

1. To estimate the financial risk, the following inherent property of fuzzy sets
was taken into account. Let A be some fuzzy subset of X, being described
by a membership function µ(A). Then complementary fuzzy subset Ā has
a membership function µ(Ā) = 1−µ(A). The principal difference between
fuzzy subset and usual precise one is that an intersection of fuzzy A and
Ā is not empty, that is A ∩ Ā = B, where B is also not an empty fuzzy
subset. It is clear that the closer A to Ā, the more power of set B and
more A differs from ordinary sets.

Using this circumstance R. Yager [30] proposed a set of grades of non-
fuzziness of fuzzy subsets

Dp(A, Ā) =
1
n

∣∣∣∣∣

n∑

i=1

|µA(xi) − µĀ(xi)|p
∣∣∣∣∣

1
p

, p = 1, 2, . . . ,∞. (7)

Hence, the grade of fuzziness may be defined as

ddp(A, Ā) = 1 − Dp(A, Ā). (8)
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The definition (8) is in compliance with obvious requests to a grade of
fuzziness. If A is a fuzzy subset on X, µ(A) is its membership function
and dd is a corresponding grade of fuzziness, then following properties
should be observed:
a) dd(A) = 0, if A is a crisp subset.
b) dd(A) has a maximum value if µ(A) = 1/2 for x ∈ X.
c) dd(A1) > dd(A) if µ(x) < µ(y)(x ∈ A1, y ∈ A).

It is proved that introduced measure is similar to the Shannon entropy
measure [30].

In the most useful case (p = 1), expression (8) is transformed to

dd = 1 − 1
n

n∑

i=1

|2µA(xi) − 1| . (9)

It is clear (see Eq. (9)) that the grade of fuzziness is rising from 0 when
µ(A) = 1 (crisp subset) up to 1 when µ(A) = 1/2 (maximum degree of
fuzziness).

With respect to considering problem the grade of nonfuzziness of a fuzzy
interval NPV can linguistically be interpreted as a risk or uncertainty of
obtaining the Net Present Value in interval [NPV1, NPV4]. Really, the
more precise, (more “rectangular”) interval obtained, the more a degree
of uncertainty and risk. At first glance, this assertion seems to be para-
doxical. However, any precise (crisp) interval contains no additional infor-
mation about relative preference of values placed inside it. Therefore, it
contains less useful information than any fuzzy interval being constructed
on its basis. In the later case an additional information reducing uncer-
tainty is derived from a membership function of considered fuzzy interval.

2. The second approach is based on the α-cut representation of fuzzy value
and the measure of its fuzziness. Let A be fuzzy value and Ar be rectan-
gular fuzzy value defined on the support of A and represented by char-
acteristic function ηA(x) = 1, x ∈ A; ηA(x) = 0, x /∈ A . Obviously, such
rectangular value is not a fuzzy value at all, but it is asymptotic limit (ob-
ject) we obtain when fuzziness of A tends to zero. Hence, it seems quite
natural to define a measure of fuzziness of A as its distinction from Ar.
To do this we define primarily the measure of non fuzziness as

MNF (A) =

1∫

0

f(α)((Aα2 − Aα1)/(A02 − A01))dα,

where f(α) is some function of α , e.g, f(α) = 1 or f(α) = α . Of course,
last expression makes sense only for the fuzzy or interval values, i.e., only
for non zero width of support A02 −A01 . It is easy to see that if A → Ar

then MNF (A) → 1. Obviously, the measure of fuzziness can be defined
as MF (A) = 1 − MNF (A).
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We can say that rectangular value Ar defined on the support of A is a more
uncertain object than A . Really, only what we know about Ar is that all
x ∈ A belong to Ar with equal degrees, whereas the membership function,
0 ≤ µ(x) ≤ 1, characterizing the fuzzy value A, brings more information
to the description and as a consequence, represents a more certain ob-
ject. Therefore, we can treat the measure of non fuzziness, MNF , as the
uncertainty measure. Hence, if some decision is made concerning fuzzy
NPV , the uncertainty and, consequently, the risk of such decision can be
calculated as MNF (MPV ) .

3. The authors of [29] proposed approach that can be treated as fuzzy ana-
logue of the sound V AR method [28]. According to this approach the risk
associated with fuzzy NPV can presented as

Risk = Prob(NPV < G),

where G is the fuzzy, interval or real valued effectiveness constrain [29],
in other words, G in the low bound on acceptable values of NPV . It is
clear the focus of this approach is the method for interval and fuzzy value
comparison. In [29], such method based on the geometrical reasoning has
been proposed which leads to the resulting formulas nearly the same as
earlier were obtained in [31]with a help of probabilistic approach to fuzzy
value comparison. In [33] [34], we have presented an overview of existing
methods for fuzzy value comparison based on probabilistic approach. It
is shown in [33] [34] that analyzed methods have a common drawback-
the lack of separate equality relations- leading to the absurd results in the
asymptotical cases and some others inconsistencies. The same can be said
about of non- probabilistic method proposed in [29]. To solve the problem,
in [33] [34] a new method based on the probabilistic approach has been
elaborated which generates the complete set of probabilistic interval and
fuzzy value relations involving separated equality and inequality relations,
comparisons of real numbers with interval or fuzzy values. Let us recall
briefly the basics of this approach. There are only two nontrivial situation
of intervals setting: the overlapping and inclusion cases (see Fig. 4) are
deserved to be considered.

Let A = [a1, a2] and B = [b1,b2] be independent intervals and a ∈
[a1, a2], b ∈ [b1, b2] be random values distributed on these intervals. As
we are dealing with crisp (nonfuzzy) intervals, the natural assumption is
that the random values a and b are distributed uniformly. There are some
subintervals, which play an important role in our analysis. For example
see Fig. 4), falling of random variables a ∈ [a1, a2], b ∈ [b1, b2] in the
subintervals [a1, b1], [b1, a2], [a2, b2] may be treated as a set of indepen-
dent random events. Let us define the events Hk : a ∈ Ai, b ∈ Bj , for
k = 1 to n, where Ai and Bj are subintervals formed by the boundaries
of compared intervals A and B such that A =

⋃
i

Ai, B =
⋃
j

Bj . It is easy

to see that events Hk form the complete group of events, which describes
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�
a1 a2b1 b2

A

B

overlapping case

�
b1 a2a1 b2

A

B

inclusion case

Fig. 4. Examples of interval relations

all the cases of falling random values a and b in the various subintervals
Ai and Bj , respectively.

Let P (Hk) be the probability of event Hk, and P (B > A/Hk) be the
conditional probability of B > A given Hk. Hence, the composite proba-
bility may be expressed as follows:

P (B > A) =
n∑

k=1

P (Hk)P (B > A/Hk)

As we are dealing with uniform distributions of the random values a and
b in the given subintervals, the probabilities P (Hk) can be easily obtained
by simple geometric reasoning. These basic assumptions make it possi-
ble to infer the complete set of probabilistic interval relations involving
separated equality and inequality relations and comparisons of real num-
bers and intervals. The complete set of expressions for interval relations
is shown in Table 2, obvious cases (without overlapping and inclusion)
are omitted. In Table 2, only half of cases that may be realized when
considering interval overlapping and including are presented since other
three cases, e.q., b2 > a2 for overlapping and so on, can be easily obtained
by changing letter a through b and otherwise in the expressions for the
probabilities.



216 P. Sevastjanov et al.

Table 2. The probabilistic interval relations

P (B > A) P (B < A) P (B = A)

1. b1 > a1 ∧ b1 < a2 ∧ b1 = b2

�
a1 a2b1 = b2

B

A

b1 − a1

a2 − a1

a2 − b1

a2 − a1
0

2. b1 ≥ a1 ∧ b2 ≤ a2

�
b1 b2a1 a2

B

A

b1 − a1

a2 − a1

a2 − b2

a2 − a1

b2 − b1

a2 − a1

3. a1 ≥ b1 ∧ a2 ≥ b2 ∧ a1 ≤ b2

�
b1 b2a1 a2

B

A

0 1 − (b2 − a1)
2

(a2 − a1)(b2 − b1)

(b2 − a1)
2

(a2 − a1)(b2 − b1)

It easy to see that in all cases P (A < B)+P (A = B)+P (A > B) = 1. Of
course, we can state that B > A if P (B > A) > max(P (A > B), P (A =
B)), B = A if P (A = B) > max(P (A > B), P (A < B)) and B < A
if P (A > B) > max(P (A < B), P (A = B)). We think that treating an
interval equality as an identity (A = B only if a1 = b1,a2 = b2 ) will not
bring good solutions to some practical problems, e.g., when dealing with
interval extension of optimization task under equality type restrictions.
Obviously, there may be a lot of real-world situations when, from common
sense, the intervals A = [0, 1000.1] and B = [0, 1000.2] will be considered
as somewhat equal ones. In our approach, equality is not equivalent to
identity, since P (A = B) ≤ 1.
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Let Ã and B̃ be fuzzy numbers on X with corresponding membership
functions µA(x), µB(x) : X → [0, 1]. We can represent Ã and B̃ by the
sets of α-levels: Ã =

⋃
α

Aα, B̃ =
⋃
α

Bα, where Aα = {x ∈ X : µA(x) ≥

α}, Bα = {x ∈ X : µB(x) ≥ α} are crisp intervals. Then all fuzzy number
relations ÃrelB̃, rel = {<,=, >}, may be presented by sets of α-cut
relations

ÃrelB̃ =
⋃

α

Aα rel Bα.

Since Aα and Bα are crisp intervals, the probability Pα(Bα > Aα) for
each pair Aα and Bα can be calculated in the way described above. The
set of the probabilities Pα(α ∈ (0, 1]) may be treated as the support of
the fuzzy subset

P (B̃ > Ã) = {α/Pα(Bα > Aα)},

where the values of α may be considered as grades of membership to fuzzy
interval P (B̃ > Ã). In this way, the fuzzy subset P (B̃ = Ã) may also be
easily created.

Obtained results are simple enough and reflect in some sense the na-
ture of fuzzy arithmetic. The resulting “fuzzy probabilities” can be used
directly. For instance, let Ã, B̃, C̃ be fuzzy intervals and P (Ã > B̃), P (Ã >
C̃) be fuzzy intervals expressing the probabilities A > B̃ and Ã > C̃, re-
spectively. Hence the probability P (P (Ã > B̃) > P (Ã > C̃)) has a sense
of probability’s comparison and is expressed in the form of fuzzy interval
as well. Such fuzzy calculations may be useful at the intermediate stages
of analysis, since they preserve the fuzzy information available. Indeed, it
can be shown that in any case P (B̃ > Ã)+P (B̃ = Ã)+P (B̃ < Ã) =“near
1”, where “near 1” is a symmetrical relative to 1 fuzzy number. It is worth
noting here that the main properties of probability are remained in the
introduced operations, but in a fuzzy sense. However, a detailed discussion
of these questions is out of the scope of this paper.

Nevertheless, in practice, the real-valued number indices are needed for
fuzzy interval ordering. For this purpose, some characteristic numbers of
fuzzy sets could be used. But it seems more natural to use the defuzzifi-
cation, which for a discrete set of α-cuts takes the form:

P (B̃ > Ã) =
∑

α

αPα(Bα > Aα)/
∑

α

α.

Last expression indicates that the contribution of α- level to the overall
probability estimation is rising along with the rise in its number. Some
typical cases of fuzzy interval comparison are represented in the Fig. 5.

It is easy to see that the resulting quantitative estimations are in a good
accordance with our intuition. Obviously, the other approaches to the risk
assessment in budgeting can be proposed and can be relevant in the specific
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Fig. 5. The typical cases of fuzzy interval ordering.

situations. It is clear they should lead to the different results of investment
projects estimation or optimization tasks as they reflect the different decision
maker’s attitudes to the risk and its importance to the concrete problem
considered. Therefore, we think for methodical purposes it is quite enough to
consider only one of above approaches. So in further analysis the first model
of risk, based on the Exp. (9) will be used. It is important that all considered
approaches based on an evaluation of fuzzy NPV inevitably generate two
criteria for the estimation of future profits: the fuzzy interval NPV and the
degree of its uncertainty (degree of risk).

Therefore, a problem of evaluation of investment efficiency on a base of
NPV becomes two-criteria and requires special approach and an appropriate
technique. Recently, authors proposed such a technique [32], [14] based on the
fuzzy set theory; however, its detailed consideration is out of scope of this
paper.

3 The Set of Crisp IRR Estimations Based
on Fuzzy Cash Flows

In general, the problem of the Internal Rate of Return (IRR) evaluation looks
as a fuzzy interval solution of the Eq. (2) with respect to d.
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It is proved that a solution of equations with fuzzy parameters (in this
case, Pt , KVt and d) is possible using representation of fuzzy parameters in
a form of sets of corresponding α-cuts. For the evaluating IRR, a system of
non-linear crisp-interval equations can be obtained:

T∑

t=tn

[Pt]α
(1 + [d]α)t

−
tc∑

t=0

[KVt]α
(1 + [d]α)t

= [0, 0], (10)

where [Pt]α, [KVt]α and [d]α are crisp intervals on corresponding α-cuts.
Of course, it can be claimed that naive assumption, that the degenerated

zero interval [0, 0] should be placed in the right side of Eq. (10), does not
ensure obtaining of adequate outcomes since a non-degenerated interval ex-
pression is in the left side of Eq. (10), but this situation needs more thorough
consideration.

As the simplest example consider a two-year project when all investments
are finished in the first year and all revenues are obtained in the second year.
Then each of the equations for α-cuts (10) should be divided on two:

P11

1 + d2
− KV02 = 0,

P12

1 + d1
− KV01 = 0. (11)

The formal solution Eq. (11) with respect to d1 and d2 is trivial:

d1 =
P12

KV01
− 1; d2 =

P11

KV02
− 1,

however it is senseless, as the right boundary of the interval [d1, d2] always
appears to be less than the left one. This absurd, on a first glance, result is
easy to explain from common methodological positions. Really, the rules of the
interval mathematics are constructed in such a manner that any arithmetical
operation with intervals results in an interval as well. These rules fully coinside
with well known common viewpoint stating that any arithmetical operation
with uncertainties must increase total uncertainty and the entropy of a system.
Therefore, placing the degenerated zero interval in right sides of (10) and (11)
is equivalent to the request of reducing uncertainty of the left sides down to
zero, which is possible only in case of inverse character of the interval [d1, d2],
which is in turn can be interpreted as a request to introduce negative entropy
into the system.

Thus, the presence of the degenerated zero interval in right sides of inter-
val equations is incorrect. More acceptable approach to solving this problem
has been constructed with a help of following reasons. When analysing ex-
pressions (11) it is easy to see that for any value d1 the minimal width of the
interval NPV is reached when d2 = d1. This is in accordance with a common
viewpoint: the minimum uncertainty of an outcome (NPV ) is reached when
uncertainty of all system parameters is minimal. It is clear (see Fig. 6) that
the most reasonable decision of “zero” problem is a request for a middle of
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Fig. 6. Interval NPV for different real valued discounts, d, for the case when
the investments in the first year is KV0 = [1, 2], the income in the second year is
P1 = [2, 3], D(NPV ) is a width of the interval NPV .

the interval NPV to be placed on a zero point (request of symmetry of the
interval against zero). An obvious, on a first glance, intention to minimise
the length of interval NPV results in deriving positive or negative intervals
of minimum width, but not containing zero point, that does not correspond
to a natural definition of zero containing interval. Besides, it can be easily
proved that only the request of symmetry of zero containing interval ensures
an asymptotically valid outcome when contracting boundaries of all consid-
ered intervals to their centres. Thus, the problem is reduced to a search of
exact (non-interval) values d that will provide a symmetry of zero resulting
intervals NPV on each α-cut in the equations (10), i.e. would guarantee ful-
filment of the request (NPV1 + NPV2) = 0, for each a = 0, 0.1, 0.2 . . . , 1.

Obviously, the problem is solved using numerical methods. To illustrate
previous theoretical considerations, compare two investment pro-jects of 4
years duration. Fuzzy cash flows Kt = Pt − KVt are defined with a help of
the four-reference point form described above (see Table 3). It is worth noting
that data of the first project are more certain.

The results of calculations for two investment projects with different fuzzy
cash flows are also presented in Table 3. It is seen that values of IRRα obtained
for each α-cut can increase or decrease with growth of α. As a result the set of
possible crisp values of IRR is obtained for each project. Thus, a problem of
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Table 3. The results of IRRα calculation

Project 1 Project 2

Year Cash flow Year Cash flow

1 {−6.95,−6, 95,−7, 05,−8.00} 1 {−6.00,−6.95,−7.50,−8.00}
2 {4.95, 4.95, 5.05, 6.00} 2 {4.00, 4.95, 5.50, 6.00}
3 {3.95, 3.95, 4.05, 5.00} 3 {3.00, 3.95, 4.50, 5.00}
4 {1.95, 1.95, 2.05, 3.00} 4 {1.00, 1.95, 2.50, 3.00}
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the results interpretation rises. To solve this problem it is proposed to reduce
the sets of IRRα obtained on each α-cut to a small set of parameters which
can be easily interpreted. The first elementary parameter — average value
IRRm — is certainly convenient, however it does not take into account that
with growth of α the reliability of an outcome increases as well, i.e., IRRα,
obtained on higher α-cuts are more expected than those obtained on lower
α-cuts according to the α-cut definition. On the other hand, the width of the
crisp interval [NPV1, NPV2]α corresponding to the IRRα can be considered
as, in some sense, a measure of uncertainty for the obtained crisp value IRRα,
since such width quantitatively characterises the difference of the left side of
Eq. (10) from the degenerated zero interval [0, 0]. This allows to introduce two
weighted estimations of IRR on a set IRRα: least expected (least reliable)
IRRmin and most expected (most reliable) IRRmax:

IRRmin =

n−1∑
i=0

IRRi (NPV2i − NPV1i)

n−1∑
i=0

(NPV2i − NPV1i)
, (12)

IRRmax =

n−1∑
i=0

IRRiαi

n−1∑
i=0

αi

, (13)

where n is a number of α-cuts.
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In a decision making practice it is worth to use all three proposed parame-
ters IRRm, IRRmin, IRRmax when choosing the best project. An interpreta-
tion of length of [NPV1, NPV2]α as an indexes of uncertainty of IRRα allows
to propose a quantitative, expressed in monetary units essessment of finan-
cial risk of a project (the degree of uncertainty of the values IRRm, IRRmin,
IRRmax derived from uncertainty of initial data):

Rr =

n−1∑
i=0

(NPV2i − NPV1i)

n
, (14)

Parameter Rr can play a key role in project efficiency estimation. THe val-
ues of introduced derivative paramters for the considered sample projects are
presented in Table 4.

Table 4. The derivative (based on IRR)parameter of sample projects.

Project# IRRmin IRRmax IRRm Rr

1 0.34 0.327 0.335 1.56
2 0.322 0.329 0.325 3.52

It is seen, the projects have rather the close values of IRRm, IRRmin,
IRRmax. At the same time, the risk Rr for the second project is considerably
higher than risk of the first one. Hence, the first project is the best one. In addi-
tion, some other useful paramters have been proposed: IRRmr — most reliable
value of IRRα — derived from the minimum interval [NPV1, NPV2]mr among
all [NPV1, NPV2]α and IRRlr — the least reliable value of IRRα — derived
from the maximum interval [NPV1, NPV2]lr among all [NPV1, NPV2]α. It
is clear, that [NPV1, NPV2]mr and [NPV1, NPV2]lr are the risk estimations
for the considering IRRmr and IRRlr. It should be noted (see Table 3) that
the difference between values IRRmr for the projects is rather small, but the
difference in risk estimations is considerable.

4 A Method for a Numerical Solution
of the Project Optimization Problem

Proposed here approach to the optimization problem solving is based on con-
sideration of all initial fuzzy intervals Pt and KVt as the restrictions on con-
trolled input data, as well as on assumption that dt is a random parameter
describing external, in relation to a considered project, uncertainty. The fact
that some preferences for an interval of possible values of d may be expressed
by certain membership function µd(d), is also taken into account. Thus, while
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describing the discount factor one deals with uncertainties of both random
and fuzzy nature. The problem is solved in two steps. At first, according to
the fuzzy extension principle all parameters Pt , KVt and dt in Eq. (1) are sub-
stituted for corresponding fuzzy-intervals. As a result the fuzzy-interval NPV
is obtained. On the next step, obtained fuzzy-interval NPV is considered as a
restriction on a profit when building a local criterion for NPV maximisation.
For a mathematical description of local criteria, so-called desirability functions
are used. In essence, they can be described as a special interpretation of usual
membership functions. Briefly, the desirability function rises from 0 (in area
of unacceptable values of its argument) up to 1 (in area of the most prefer-
able values). Thus, a construction of desirability function for NPV is rather
obvious: the desirability function µNPV (NPV ) can be considered only on the
interval of possible values restricted by the interval [NPV1, NPV4]. Hence,the
more value of the NPV , the more degree of desirability (see Fig. 7).
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Fig. 7. Connection between the restriction and the local criterion: 1 - the intitial
fuzzy interval of NPV (fuzzy restriction); 2 - the desirability function µNPV (NPV ).
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The initial fuzzy intervals Pt and KVt are also considered as desirabil-
ity functions µP1 , µP2 , . . . , µKV1 , µKV2 , . . . describing restrictions on controlled
input variables. It is clear that initial intervals were already constructed in
such a way that when they are interpreted as desirability functions the more
preferable values in intervals of Pt and KVt appear to be those more realisable
(possible). Since these desirability functions are connected with a possibility
of realisation of corresponding values of variables Pt and KVt, they implicitly
describe financial risk of the project.

As the result, the general criterion based on the set of all desirability
functions has been defined as

D (Pt,KVt, dt) = µα1
NPV (NPV (Pt,KVt, dt)) ∧

(µP1 ∧ µP2 ∧ . . . ∧ µKV1 , µKV2 ∧ . . .)α2 , (15)

where α1 and α2 are ranks characterising the relative importance of local
criteria of profit maximisation and risk minimisation, ∧ is min operator,
µNPV (NPV (Pt,KVt, dt)) is a desirability function of NPV .

Many different forms of the general criterion are in use. As emphasised
in [35],the choice of particular aggregating operator, usually called t-norm,
is rather an application dependent problem. However, the choice of min
operator in Eq. (15) is the most straightforward approach, when a com-
pensation of small values of some criteria by the great values of others
is not permited [32], [14]. The problem is reduced to a search for crisp
values of PP1, PP2, . . . , KKV1,KKV2, . . . on corresponding fuzzy intervals
P1, P2, . . . , KV1,KV2, . . ., maximising the general criterion (15).

The problem is complicated by the fact that the discount d is a random
parameter, distributed in a specific interval. The solution was carried out as
follows.

Firstly, from interval of possible values a fixed value of discount di is se-
lected randomly. Further, with a help of the Nollaw-Furst random method an
optimum solution is obtained as the best compromise between uncertainty of
basic data and intention to maximise profit, i.e., the optimisation problem
reduces to maximisation of the general criterion (15). Obtained optimal val-
ues PP d

t and KKV d
t present the local optimum solution for given discount

value. Above procedure is repeated with random discount values until the
statistically representative sample of optimum solutions for various di is ob-
tained. Final optimum values PP 0

t , KKV 0
t are calculated by weighting with

degrees of possibility of di, which are defined by initial fuzzy interval d with
a membership function µd(di):

PP 0
t =

m∑
i=1

PP d
t (di)µd(di)

m∑
i=1

µd(di)
, (16)

where m is a number of random discount values used for the solution of a
problem. Similarly, all KKV 0

t can be calculated.
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It is also possible to take into account the values of the general criterion
in optimum points:

PP 0
t =

m∑
i=1

(
PP d

t (di)
(
µβ1

d (di) ∧ Dβ2(di)
))

m∑
i=1

(
µβ1

d (di) ∧ Dβ2(di)
) , (17)

where β1, β2 are corresponding weights.
The similar expression can be constructed for KKV 0

t . It is worth noting
that last expression gives an ability to take into account, apart from reliability
of the values di, the degree of compatibility (in other words, the degree of
consensus) for each of selected values of discount.

Obtained optimal PP 0
t and KK0

t may be used for a final project’s quality
estimation. The results of calculation for the first example from the previous
Section (Table 3, project 1) are presented in Table 5.

Table 5. The results of optimization

Expression (16) Expression (17)
Years PP 0

t KK0
t PP 0

t KK0
t

0 0.00 2.49 0.00 2.50
1 0.00 0.83 0.00 0.79
2 8.05 0.00 8.04 0.00
3 7.12 0.00 7.09 0.00

Further, with substituting PP 0
t , KK0

t and fuzzy interval d in the expres-
sion (1) an optimal fuzzy value of NPV was obtained.

For considered example we get the following results:
NPV16 = {4.057293, 6.110165, 8.073906, 9.454419} using (16)
and
NPV17 = {4.065489, 6.109793, 8.064094, 9.436519} using (17).

It is clear that there is no great deference between the results obtained
using expressions (16) and (17) in this case.

In Fig. 8, the fuzzy NPV16 obtained with PP 0
t and KK0

t is compared with
the initial one, obtained with the initial fuzzy values Pt and KVt, without
optimisation. It is obvious that in the optimal case the mean value of fuzzy
interval NPV is greater.

Using optimal PP 0
t and KK0

t and applying the method described in Sec-
tion 2, the degree of project risk may be also estimated. This risk can be
considered as financial risk of a project as a whole.

For the needs of common accounting practice it is possible to calculate an
average weighted value of NPV using following expression:
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Fig. 8. Comparison of the initial and optimal fuzzy intervals NPV : 1 - initial NPV ;
2 - optimal NPV .

NPV =

m∑
i=1

NPVi ∗ µNPVi

m∑
i=1

µNPVi

, (18)

For the considered example NPV16 = 6.8931 and NPV17 = 6.8942 were
obtained.

5 Conclusion

The problems of calculation of NPV and IRR and investment project risk
assessment i a fuzzy setting are considered. It is shown that the straightfor-
ward way of project risk assessment is to consider this risk as a degree of
fuzziness of the fuzzy Net Present Value, NPV . Nevertheless, other method
for risk astimation on the probability approach to interval and fuzzy value
comparison can be relevant in the fuzzy budgeting as well. It is shown that
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although it is impossible to obtain fuzzy Internal Rate of Return, IRR, the
crisp IRR may be obtained as a solution of a fuzzy equation and a set of
new useful derivative parameters characterising uncertainty of the problem
may be obtained as an additional result.The problem of the multiobjective
optimization of a project in a mixed fuzzy and random enviroment is formu-
lated in a form of compromise between local criteria of profit maximisation
and risk minimisation. Numerical method for the problem solving is described
and tested.
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