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1 Introduction 

Boolean network theory, proposed by Stuart A. Kauffman about 3 decades 
ago, is more general than the cellular automata theory of von Neumann. 
This theory has many potential applications, and one especially significant 
application is in the modeling of genetic networking behavior. In order to 
understand the genomic regulations of a living cell, one must investigate 
the chaotic phenomena of some simple Boolean networks. 

This chapter studies a very basic and simple 3-genes regulation network. 
Different combinations of the three basic logic elements: AND, OR and 
COMPLEMENT results in different logic functions. We study the influ-
ence of these logic functions on steady states behavior of the attractors and 
limit cycle patterns of cells.

In evaluating the degrees of gene expression using Boolean network the-
ory, it is necessary to quantize the expression levels to “1” and “0”. “1” in-
dicates that the gene is expressed and a protein is formed; “0” indicates 
that the gene is not expressed at all. However, gene expression occurs in 
many stages, and it is not uncommon for the expression of a gene to cease 
in one of the intermediate steps. Thus, there is a need for the development 
of a model to represent the varying degrees of gene expression. We used 
Fuzzy Logic Networking to circumvent the information loss associated 
with quantization.

Hopefully, a complete dictionary of the classification or taxonomy, of 
all possible chaotic patterns can be established, as it is useful in the sense 
that more complex chaotic behavior resulted from gene regulation can be 
derived from the basic patterns in it. It is highly possible that the “reverse 
engineering” problem can be completely solved theoretically for the 3-
gene networks. 
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2 Biological Background 

Deoxyribonucleic acid (DNA) was discovered in 1869 by a Swiss bio-
chemist, Johann Freidrich Miescher when he prepared a pure sample of 
nucleic acid from salmon sperm [2]. As various biologists such as Freder-
ick Griffith [3], Hershey and Chase [4], and Oswald Avery et al [5] con-
firmed that DNA composes the genetic material in all cells (eukaryotic and 
prokaryotic), DNA has become the focus of many biological studies. Of 
these studies, Watson and Crick’s elucidation of the DNA structure [6] re-
mains the most important and famous. Today, DNA transcription, transla-
tion and mutation, and gene expression and regulation are enigma no more 
in the scientific community.

The human genome is a term used to describe the total genetic informa-
tion (DNA content) in human cells, and is composed of the nuclear ge-
nome and mitochondrial genome. The nuclear genome accounts for 
99.9995% of the total genetic information, the bulk of which codes for pro-
tein synthesis on cytoplasmic ribosomes, while mitochondrial genome ac-
counts for the remaining 0.0005%. [7] The starting product of genome ex-
pression is the transcriptome, which is a term used to represent the 
agglomeration of ribonucleic acid (RNA) molecules synthesized from pro-
tein-coding genes [2]. The end product of genome expression is the pro-
teome, which is the collection of proteins that subsequently contribute to 
the functioning of the cell [2]. In order to understand gene expression and 
regulation, knowledge of the processes from genome to proteome is requi-
site.

The gene is a part of the genome that codes for a particular protein, and 
composes of a sequence of nucleotides. The flow of genetic information 
from gene to protein is largely one-way: from DNA to RNA to protein. [7] 
However, the intricate details of protein synthesis are far from simple. An 
outline of the important reactions follows. 

An enzyme, RNA polymerase, carries out transcription of RNA from 
DNA. In cells, DNA is packaged tightly into chromatin, which is in turn 
attached to various proteins that must be displaced so that RNA poly-
merase can contact the genes. Before transcription, the unnecessary pro-
teins are removed and chromatin is unwound to expose the DNA. RNA po-
lymerase and its various accessory proteins then assemble to form the 
transcription initiation complex. This complex binds to promoter elements 
on the exposed part of the DNA to signal that RNA synthesis is about to 
begin. As transcription begins, RNA polymerase dissociates from the tran-
scription initiation complex and begins to catalyze the synthesis of RNA 
[2].



A Study of 3-gene Regulation Networks      121 

In most eukaryotic cells, the RNA transcript undergoes a series of proc-
essing reactions. This largely involves splicing and capping. During splic-
ing, non-coding regions (introns) of RNA are removed and coding regions 
(exons) are ligated to create a continuous sequence of information. During 
capping, a nucleotide linkage is added to the 5’ end of the RNA, and ade-
nylate (AMP) residues are sequentially added to the 3’ end to form a poly 
(A) tail. The cap and poly (A) tail serve to facilitate movement of the RNA 
molecule from the nucleus to the cytoplasm [7]. 

In the cytoplasm, information encoded on the RNA molecule is trans-
lated into proteins via the ribosomes. Ribosomes are RNA-protein com-
plexes that help thread various amino acids in the order defined by the 
RNA sequence. Proteins formed from the ribosome then undergo post-
translational modification where specific chemical groups are added or 
removed. These chemical groups tag the different proteins for different 
functions [7]. 

Gene regulation occurs at every stage of the cascade leading from ge-
nome to proteome. Proteins that make up the transcription initiation com-
plex bind to promoter regions of the DNA to activate transcription. De-
pending on the nature of the binding, different amounts of RNA transcripts 
are produced. The proteins would thus be known as transcriptional activa-
tors. Transcriptional repressors are also found in the cell, and as the name 
suggests, they suppress the production of RNA transcripts. Together with 
post-transcriptional and post-translational regulators, transcriptional regu-
lators coordinate the production of active protein in response to cell cycle 
changes and environmental stimulants.

Most of the above-mentioned regulators are proteins, products from the 
expression of other genes. Thus it is conceivable that the expression of one 
gene influences another. With the estimated 30,000 to 35,000 genes in hu-
man cells [8], the interrelation between genes sets up a convoluted net-
work. Using location analysis and expression data, Simon et al [9] found 
that transcriptional activators responsible for one stage of the yeast cell cy-
cle regulate transcriptional activators responsible for the next stage, setting 
up a complex regulatory network. 

3 Regulatory Networks 

The advent of DNA microarray technology and oligonucleotide chips [10-
14] has presented much data regarding gene expression and activity pro-
files. The employment of gene expression data has enabled the classifica-
tion of breast cancer [15], leukemias [16], and blue-cell cancers [17].
Recently, many studies have applied this data to reverse engineering. In 
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reverse engineering, researchers strive to evaluate a single set of regulatory 
interactions from samples of expression data by Schmulevich et al [18]. 
The ability to evaluate regulatory networks from expression data is pro-
jected to facilitate the identification of drug targets. Various models and 
algorithms were studied in an attempt to elucidate genetic regulatory net-
works, some of which include synchronous and asynchronous Boolean 
models [18-20], probabilistic Boolean models [18], cellular automata 
[21,22], Bayesian networks [23,24], Artificial Neural networks [25], 
(quasi) linear [26] and linear [27] networks, Petri Nets [28], Mjolsness 
models [29], ordinary differential equations [30], genetic programming 
[31], fuzzy logic [32], qualitative reasoning [33], S-systems [33], cluster-
ing [34] and yet more other approaches. 

Clustering is often coupled with other algorithms and models to provide 
an integrative regulatory genetic network. Genes with similar expression 
profiles are likely to be regulated by the same processes. Clustering allows 
for identification of such groups of genes and further elucidation of their 
individual regulation. However, they fail to provide a holistic topography 
of the genetic regulatory network, so that various other algorithms and 
models have to fill the void [34]. 

Of all the models, Boolean models pioneered by Kauffman [35] – [36] 
are still the most studied. The model considers each gene symbolically as 
either ON/1 (expressed) or OFF/0 (not expressed), so that the continuous 
data obtained from microarray technology has to be quantized to these two 
levels. States of genes in time ‘t’ regulate the states of genes in time ‘t+1’ 
via logic functions consisting of AND, OR and COMPLEMENT connec-
tors. As regulation proceeds among genes in a parallel manner, a synchro-
nized genetic regulatory network evolves. An NK-Boolean network is set 
up by the evolution of N genes with K connectivity, where N refers to the 
total number of genes in the network, and K refers to the maximum num-
ber of genes that regulate some single gene. The number of possible states 
for such a network and the amount of data necessary for its elucidation is 
2N (Please refer to Table I). Assuming a network with maximum connec-
tivity (K=N) like those studied by Wang et al [37-40], there are

NN

222 (1)

possible logic functions to realize a typical gene regulatory network. 
Thus it may be concluded that the Boolean network model results in an 

uninformative discrete representation of gene expression and activity pro-
files, and lead to an intractable solution.
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In addressing the above concerns, it was found that real regulatory net-
works typically have low connectivity, which translates into low K values 
[41]. Only a small fraction of the 2N possible gene expression states are 
fulfilled where unfulfilled states represent unstable states. A low K con-
nectivity results in a tractable solution with a smaller number of possible 
logic functions. Working from the hypothesis that if the quantized expres-
sion and activity profiles do not provide sufficient information to separate 
classes of tumors, the Boolean network model is an unrealistic representa-
tion of genetic networks, Shmulevich and Zhang set out to evaluate the 
credibility of the Boolean network model [42]. In that study, Shmulevich 
and Zhang found that the Boolean network model was able to provide a 
clear separation between different classes of sarcomas and different sub-
classes of gliomas, indicating that the Boolean network model retains suf-
ficient biological information to realistically model genetic regulatory net-
works [42]. Intuitively, the Boolean network model is a suitable represen-
tation of genetic networks because genetic manipulation often involves 
either over-expression or deletion of a gene [20].

Table 1. from [34] 

Model Data needed 

Boolean, fully connected 2N

Boolean, connectivity K 2K ( K + log(N) ) 

Boolean, connectivity K, linearly separable K log(N/K) 

Continuous, fully connected, additive N+1 

Continuous, connectivity K, additive K log (N/K)   (*) 

Pairwise correlation comparisons (clustering) log(N) 

Fully connected is where each gene can receive regulatory inputs from all other 
genes. Connectivity K: at most K regulatory inputs per gene. Additive, linearly 
separable: regulation can be modeled using a weighted sum. Pairwise correlation: 
significance level for pairwise comparisons based on correlation must decrease in-
versely proportional to number of variables. (*) conjecture. 

As a Boolean network evolves in time, a sequence of states results and 
converges to limit cycles or attractors eventually. Information from the ini-
tial states are no longer as important and only a small number of all the 
possible configurations actually occur [43], composing the limit cycle or 
attractor.
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1. Attractor: An attractor is a set of states, invariant under the dynamically 
progrssion, towards which the neighboring states in a given basin of at-
traction asymptotically approach in the course of dynamic evolution. An 
attractor is defined as the smallest unit which cannot be itself decom-
posed into two or more attractors with distinct basins of attraction. [44] 

2. Basin of attraction: The set of points in the state vector space of system 
state variables such that initial conditions chosen in this set dynamically 
evolve to a particular attractor. [45] 

3. Limit cycle: An attracting set of state vectors to which orbits or trajecto-
ries converge and upon which trajectories are periodic. [46] 

4. Length of a limit cycle: In the above sense, the length of a limit cycle 
represents its fundamental period and is equal to the number of states 
contained within the cycle.

5. Basin number: The basin number is the number of reachable states to a 
limit cycle or attractor.

Attractors and limit cycles of the Boolean network model can be inter-
preted in two ways. First, they can be seen to represent stable phenotypes 
of differentiated cells- muscle vs. nerve cells, or healthy vs. sick cells [35] 
[47]. In a non-chaotic network, Kauffman indicates that the number of at-
tractors and limit cycles corresponds to the number of biological cell types 
[35]. Second, attractors and limit cycles can be regarded as cellular states- 
differentiation, apoptosis and cell cycle [20]. Both interpretations capture 
the concept of homeostasis perfectly. Homeostasis occurs when cells main-
tain their state despite minor disturbances in their environmental and inter-
nal stimuli. These perturbations can be interpreted as changes in state con-
figurations of the cell, but as long as they reside within the same basin of 
attraction, the same attractors or limit cycles will be reached. Thus attrac-
tor or limit cycle stability increases with the size of the basin of attraction.

Regarding attractors and limit cycles as cellular states, cancer can be 
represented as a shift from the usually stable “differentiation” state to the 
“growth” state. Mutations might have reduced the size of the basin of at-
traction leading to the “differentiation” state, thus rendering it less stable 
and more susceptible to perturbations. Cancer drugs should then strive to 
push the cell from its “growth” state back into “differentiation” state. [20] 

4 Investigation of 3-gene Boolean Network

The Boolean network model is realistic in its representation of genetic 
networks, capturing the essence of cell development and leading to a trac-
table solution. Here in this paper, we consider the Boolean network, which 
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are special cases of NK-networks, where each site takes on binary values 
of either 0 or 1, and represents gene expression states.

6. Cellular Automata: Cellular automata are simple mathematical idealiza-
tions of natural systems. They consist of a lattice of discrete sites, each 
site taking on a finite set of, say, integer values. The values of the sites 
evolve in discrete time steps according to deterministic rules that specify 
the value of each site in terms of the values of the neighboring sites. [43] 

However, the cellular automata model is not a realistic model for bio-
logical natural systems.

In this study, we attempt to evaluate the evolution pattern of a NK-
Boolean network whose evolution depends only on its two neighboring 
sites and itself. In addition, we assume N (total number of genes in the 
network) =3 and K (connectivity) =3, so that there are 2N = 8 possible 
states and

064,387,16222
NN (2)

possible combinations of logic function. As we believe that networks with 
larger N’s may be broken down into networks of N = 2 or 3, we studied 
NK-Boolean network of the 3-gene network.  (A study on the 2-gene net-
work can be found in [38]). Of the 16,387,064 possible logic functions, 
about 150 examples were evaluated by hand, resulting in diagrams similar 
to Figure 1 and 2. A’, B’, C’ represent genes at time ‘t+1’ and A, B, C, 
represent genes at time ‘t’. Figure 1 illustrates two limit cycles, one with 
length 2 (L2) and the other with length 6 (L6). Both limit cycles have a ba-
sin number of 0. Figure 2 illustrates two attractors, one with basin number 
0 (B0) and the other with basin number 6 (B6). In the syntax of this study, 
logic functions that involve no logic connectors are termed “PLAIN”. 
Conversely, logic functions that involve AND, OR, COMPLEMENT con-
nectors are termed “AND”, “OR” and “NOT” respectively.
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Fig. 1. An example of a 3-gene network with two limit cycles 
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BAA

'

'

'

Fig. 2.  An example of a 3-gene network with two attractors 

5 Evolutionary Patterns 

We evaluated and grouped the evolution patterns resulting from different 
types of logic functions. Several general rules that govern the evolution of 
NK-Boolean network patterns were discovered. To better summarize and 
compare these NK-Boolean network patterns, the logic functions and their 
corresponding evolution patterns are grouped into tables as follow. Figures 
are attached in a separate appendix for easy reference. A comprehensive 
dictionary is also appended as a classification of the logic functions and the 
evolution patterns.

Since “Reverse Engineering” has been identified by biologists as an ex-
tremely important problem, we chose to explore the possibility of solving 
this problem via a dictionary approach. Because it may be possible to de-
velop some effective algorithms via heuristic arguments, having some in-
sight about this issue is very important, even if currently far from solving 
the real biological problem. Many algorithms have been discovered based 
on biologically inspired problems. 
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Table 2.  NK-Boolean Network patterns of PLAIN Functions 

Logic

Function

Logic Description Network Description 

A’  A 

B’  B 

C’  C 

3 self regulations 8 B0 attractors i 

A’  B 

B’  C 

C’  A 

No self regulation 

No repeated regulation 

2 L3, B0 limit cycles 

2 B0 attractors 

ii

A’  B

B’  A

C’  C

1 self regulation

No repeated regulation 

2 L2, B0 limit cycles 

4 B0 attractors 

iii

A’  B 

B’  A 

C’  A 

No self regulation 

1 repeated regulation 

1 L2, B2 limit cycles 

2 B1 attractors 

iv

A’  A 

B’  A 

C’  B 

1 self regulation and it is 

repeated

0 limit cycle 

2 B3 attractors 

v

A’  A 

B’  B 

C’  A 

2 self regulation 

1 repeated regulation 

0 limit cycle 

4 B1 attractors 

vi

A’  A 

B’  A 

C’  A

1 self regulation 

2 repeated regulation 

0 limit cycle 

2 B3 attractors 

vii

Logic functions represent one example only. 

Observations of PLAIN functions: 

1. Attractors always include “000” and “111”. 

Table 3.  NK-Boolean Network Patterns of NOT Functions 

Logic

Function

Logic Description Network Description Fig 

A’ B

B’  C 

C’  A 

1 NOT 

No self regulation 

No repeated regulation 

1 L6, B0 limit cycle 

1 L2, B0 limit cycle

0 attractor 

viii

A’ C

B’  B 

C’  A 

1 NOT 

1 self regulation  NOT 

No repeated regulation 

2 L4, B0 limit cycles 

0 attractor 

ix

Fig
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A’ A

B’  C 

C’  B 

1 NOT 

1 self regulation = NOT

No repeated regulation

4 L2, B0 limit cycles 

0 attractor 

x

A’ C

B’ A

C’  B 

2 NOTs 

No self regulation 

No repeated regulation

2 L3, B0 limit cycles

2 B0 attractors 

ii

A’  A

B’ C

C’ B

2 NOTs 

1 self regulation  NOT 

No repeated regulation

2 L2, B0 limit cycles 

4 B0 attractors 

iii

A’ B

B’  A 

C’ C

2 NOTs 

1 self regulation = NOT 

No repeated regulation

2 L4, B0 limit cycles 

0 attractor 

ix

A’ C

B’ A

C’ B

3 NOTs 

No self regulation 

No repeated regulation

1 L6, B0 limit cycle 

1 L2, B0 limit cycle

0 attractor 

viii

A’ C

B’ B

C’ A

3 NOTs 

1 self regulation = NOT 

No repeated regulation

4 L2, B0 limit cycles 

0 attractor 

x

A’  f(A) 

B’  f(B) 

C’  f(C) 

1/2/3 NOTs

3 self regulation

No repeated regulation

4 L2, B0 limit cycles 

0 attractor 

x

A’ A

B’ A

C’ C

1 repeated regulation, 

regardless self or not 

Basin number = Length eg. iv 

Logic functions represent one example only. 

Observations of NOT functions: 

1. NOT functions always lead to at least 1 limit cycle. 
2. If there is repeated regulation, a NK-Boolean network pattern will result 

where the basin number is equal to the length of the limit cycle. 
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Table 4. NK-Boolean Network Patterns of AND Function 

Logic Function Logic Description Network  

Description

Fig

A’  A B

B’  B C

C’  A C

3 (AND 2)s 

No repeated regulation 

1 B6 attractor 

1 B0 attractor 

xi

A’  A C

B’  B C

C’  B C

3 (AND 2)s 

1 or 2 repeated regulation

No. of branches 

leading to attractor 

=3 + No. of re-

peated regulation

eg.

xii

A’ A B C

B’  A 

C’  B 

1 (AND 3)s No general pattern 

observed

eg.

xiv

A’  A B C

B’  C 

C’  A B C

2 (AND 3)s 

un-AND gene is not self 

regulated

1 B6 attractor 

1 B0 attractor 

xvi

A’  A B C

B’  B 

C’  A B C

2 (AND 3)s 

un-AND gene is self regu-

lated

1 B3 attractor 

1 B2 attractor 

1 B0 attractor 

xvii

A’  A B C

B’  A B C

C’  A B C

3 (AND 3)s 1 B6 attractor 

1 B0 attractor 

xviii

Logic functions represent one example only 

Observations of AND functions

1. AND functions always lead to attractors of “000” and “111” 
2. “000” is always the dominant attractor with a greater basin number, 

while “111” is the least dominant attractor with the smallest basin num-
ber

Table 5.  NK-Boolean Network Patterns of OR Functions 

Logic

Function

Logic Description Network  

Description

Fig

A’  A B

B’  B C

C’  A C

3 (OR 2)s 

No repeated regulation 

1 B6 attractor 

1 B0 attractor 

xi

A’  A B

B’  A B

C’  A C

3 (OR 2)s 

1 or 2 repeated regulation

No. of branches 

leading to attractor 

= 3+ No. of re-

peated regulation

eg.

xix
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A’  A B C

B’  A 

C’  B 

1 (OR 3)s No general pattern 

observed

eg.

xx

A’  A B C

B’  C 

C’  A B C

2 (OR 3)s 

un-OR gene is not self 

regulated

1 B6 attractor 

1 B0 attractor 

xvi

A’  A B C

B’  B 

C’  A B C

2 (OR 3)s 

un-OR gene is self regu-

lated

1 B3 attractor 

1 B2 attractor 

1 B0 attractor 

xvii

A’  A B C

B’  A B C

C’  A B C

3 (OR 3)s 1 B6 attractor 

1 B0 attractor 

xviii

Logic Functions represent one example only. 

Observations of OR functions

1. OR functions always lead to attractors of “000” and “111” 
2. “111” is always the dominant attractor with a greater basin number, 

while “000” is the least dominant attractor with the smallest basin num-
ber

More complicated functions that involve combination of logic connec-
tors like those shown in Figure 3 and 4 were also evaluated, but no general 
evolution pattern was discovered for any of these functions. 

CC

BB

CBA

'

'

'

Fig. 3.  An example of a complicated 3-gene network 

000 010 100 110

001 111 101 011
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BC

AB

BAA

'

'

'

Fig. 4.  An example of a complicated 3-gene network 

6. Results 

The concept of a “dictionary-like” solution to the “reverse-engineering” 
problem of a (N, K) = (3, 3) Boolean network yields a total possible com-

binations of logic functions of (22N-2) N = (223-2) 3 = 16,387,064 seem hope-
lessly complex. The theoretical solution, to say the least, is insurmountable 
complex. On the optimistic side, the situation is much better than one 
would think. Based upon the results presented in this paper, we have de-
veloped many heuristic rules via induction-deduction methods. Further-
more, the objective of a dictionary-like solution is attractive and feasible 
because the problem itself is tractable in some way if one sets up the prob-
lem as a patterns classification problem.

To begin with, one may designate a pattern vector space with 
16,387,064 vector elements. In this pattern space, we may define the fol-
lowing features in the feature vectors space.

x a

i = 1,2, ……, 8, with i = 8 as maximum = number of attractors 
x a

i (B(i)) = x a

1 (B(1)), x a

2 (B(2)), … …, x a

8 (B(8)), with x a

8 (B(8)) = 0 as 
limit = number of attractors basin 
x l

j = 1,2,3,4, with j = 4 as maximum = number of limit cycles 
x l

j (B(j)) = x l

1 (B(1)), x l

2 (B(2)), x l

3 (B(3)), x l

4 (B(4)), with x l

4 (B(4)) = 0 
as limit 
x l

j (L(j)) = x l

1 (L(1)), x l

2 (L(2)), x l

3 (L(3)), x l

4 (L(4)), with x l

4 (L(4)) = 2 
as limit = the length of limit cycle 

011

100

000 001

010

111110

101
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To illustrate an example, say for the case of Figure (xii). 

x a

3 = 3 
x a

1 (B(1)) = 5, 
x a

2 (B(2)) = 0, 
x a

3 (B(3)) = 0, 
x l

1 = 0, 
x l

1 (L(1)) = 0 

With the above specific feature vector, the significant question to be an-
swered now would be, what is the logic functions for this output observa-
tions?

It is more interesting to observe that strictly speaking, this dictionary-
like solution really is not a pattern recognition problem. Usually, the re-
verse problem for pattern recognition problem is not one-to-one (or unique 
inverse mapping). This approach nevertheless is very interesting in that the 
problem resembles the mathematical linguistic pattern recognition prob-
lem.

Close observation of the above tables leads to a number of general rules 
that govern the evolution of NK-Boolean network patterns. These links be-
tween logic functions and NK-Boolean network evolution patterns will aid 
efforts in “reverse engineering”. We list our observations as below  

Rule 1: NOT functions produce at least 1 limit cycle. Conversely, pure 
AND and OR functions only produce attractors 
Rule 2: For NOT functions, the below function is a special case where 4 
limit cycles with length 2 always result. 

A’  f(A) 

B’  f(B) 

C’  f(C) 

Rule 3: For NOT functions, the presence of repeated regulation will re-
sult in a NK-Boolean network pattern with length equal to its basin 
number.
Rule 4: For AND and OR functions, attractors of “000” and “111” are 
always present. 
Rule 5: For AND functions, the dominant attractor is “000”, and the 
least dominant attractor is “111”. 
Rule 6: For OR functions, the dominant attractor is “111”, and the least 
dominant attractor is “000”. 
Rule 7: For 3 (AND 2) functions such as the below, the number of 
branches leading to the attractor is 3+number of repetitions. Therefore, 
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the range of branches leading to the attractors is between 3 and 5 (since 
there can be at most 2 repetitions) 

A’  A B

B’  B C

C’  A C

In summary, we view the results of this study fructified, insightful and 
satisfactory.

7  Problems of the Boolean Network 

Whilst the Boolean network provides a suitable and tractable solution in 
modeling gene regulatory networks, it fails to address several inherent 
characteristics of real biological genetic networks.

First, the Boolean network is deterministic and real genetic regulatory 
networks are stochastic [48]. A deterministic network consists of gene ex-
pression states with only one output, but a stochastic network consists of 
gene expression states with two or more outputs. With the same inputs and 
the same initial gene expression state, a stochastic network may produce a 
different output at one time and another output at a later time. This prob-
lem could be addressed by probabilistic Boolean networks that take into 
account the probability of each output occurrence [18].

Second, the Boolean network does not accommodate noise introduced 
by microarray and measurement techniques [18]. However, this property 
of real genetic regulatory networks is considered in the algorithm by 
Akutsu et al [33] in their evaluation of Boolean genetic networks with 
noise.

Third, the absolute binary values of Boolean network does not account 
for the varying degrees at which regulators affect gene expression. By 
placing weights on certain regulators, neural networks attempt to model 
the real genetic regulatory networks more realistically [25].

Fourth, negative feedback with a moderate feedback gain is often used 
in real genetic regulatory networks to stabilize the system, but negative 
feedbacks in Boolean networks only serve to destabilize the system [34].

Fifth, the Boolean network operates synchronously as each gene expres-
sion state gets updated in time-steps, but real genetic networks operate 
asynchronously.
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8  Investigation of Fuzzy Logic Networking 

In addressing the problem of representing varying degrees of gene expres-
sion, we study Fuzzy Logic Networking as a tool. Here, X represents the 
set of expressed genes and µx represents a function that maps elements 
from the universal set U to X. X connotes the idea of “expressed” genes, 
and µx corresponds to the degree of expression of each gene. µx is known as 
the membership function and X(u) is degree of membership of u in the 
fuzzy subset of X [49]. 

Table 6. Five Fuzzy Logics from [50] 

  x or y x and y 
Logic 1 CFMQVS min(1,x+y) x*y 
Logic 2 max/min max(x, y) min(x,y) 
Logic 3 probabilistic x+y-x*y x*y 
Logic 4 MV min(1,x+y) max(0,x+y-1) 
Logic 5 gcd/lcm gcd(x,y) lcm(x,y) 

In the case of fuzzy subsets, we employ the same operations used in the 
Boolean representation i.e. AND, OR and COMPLEMENT. Due to the 
range of membership values, there is no one way of carrying out the AND, 
OR and COMPLEMENT operations on the fuzzy subsets. Table 6 presents 
five logics that were discussed by Reiter [50]. As observed by Reiter, each 
of the logic has different characteristics that are worth noting. Logic 2 is a 
common operation based on maximum and minimum replacing, and it 
used in both [49] and [51]. Reiter observed that Logic 1 has a fairly high-
valued “OR” and a fairly low-valued “AND”; Logic 3 has the same 
“AND” as Logic 1 but the “OR” values are sometimes lower; Logic 4 has 
the same “OR” as Logic 1 but there are more 0 values present in “AND”. 
Based on the operation on two fuzzy subsets X and Y, we generated fig-
ures that showed the differences amongst these. The plots compare only 
Logic 1 to Logic 4 as Logic 5 does not map back to the interval of [0,1]. 
Figure 5 shows that Logic 2 gives higher “AND” values than Logic 3, and 
Logic 3 in turn gives higher “AND” values than Logic 1 and 4. Figure 6 
shows that Logic 4 gives higher “OR” values than Logic 1 and 3, and 
Logic 1 and 3 gives higher “OR” values than Logic 2. From the plots, the 
logic functions are approximately similar. 
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Fig. 5. Comparison of “AND” values. Logic 1 is same as logic 3. 

Fig. 6. Comparison of “OR” values. Logic 1 is same as logic 4.

9 Fuzzy Study of Regulation Networks

A preliminary study of 3-gene regulation networks using fuzzy sets was 
carried out. About 150 examples were evaluated by hand. We observed 
that different (i) logic operations (Logic1, 2, 3 or 4), (ii) logic functions, 
and (iii) initial membership values led to different attractor and limit cycles 
for the 3-gene regulation network. Compared to the study of 3-gene regula-
tion networks using NK-Boolean network, (i) and (iii) are additional pa-
rameters in the evolution pattern of the 3-gene network.

Evolution patterns of 3-gene networks governed by PLAIN or NOT 
functions are unaffected by parameter (i). Assuming different membership 
values at time ‘t0’, 3-gene regulation networks governed by PLAIN or 
NOT functions generally evolve to limit cycles, as long as self-regulation 
does not take place. 3-gene regulation networks governed by AND or OR 
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functions generally evolve to attractors. We note the similarity between 
fuzzy analysis and NK-Boolean analysis of 3-gene regulation networks. 

In order to meaningfully evaluate the attractor and limit cycle patterns, 
we made two assumptions. 1.) A, B, C have different initial membership 
values and 2.) Logic 2 is used to the AND and OR operations. Assumption 
1 is intuitively reasonable as it is unlikely that two genes will have exactly 
the same extent of expression.
We grouped the logic functions and their corresponding evolution patterns 
into tables as below and observed a number of general rules that govern 
the evolution of Fuzzy Logic network patterns. We list our observations 
below after Table 7-10.

Table 7. Fuzzy Logic Network Patterns of PLAIN Functions 

Logic

Function

Logic Description Network  

Description

Reason

A’  A 

B’  B 

C’  C 

3 self regulations B0 attractors   

A’  B

B’  C 

C’  A

No self regulation 

No repeated regula-

tion

L3 limit cycle  Exchange of re-

sults- requires 3 

steps to repeat 

A’  B

B’  A

C’  C

1 self regulation

No repeated regula-

tion

L2 limit cycle Toggling of values 

between 2 non-self 

regulated gene 

A’  B 

B’  A 

C’  A

No self regulation 

1 repeated regulation 

L2 limit cycle  Toggling between 

2 sets of values 

A’  A 

B’  A 

C’  B 

1 self regulation and 

it is repeated 

B2 attractors to 

value of re-

peated gene 

Requires 2 steps 

before all follows 

repeated gene 

A’  A

B’  B 

C’  A 

2 self regulation 

1 repeated regulation 

B1 attractor Since 2 genes are 

self-regulated, re-

quires only step to 

force non-self 

regulated gene

A’  A 

B’  A

C’  A

1 self regulation 

2 repeated regulation 

B1 attractor   
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Table 8. Fuzzy Logic Network Patterns of NOT functions 

Logic

Function

Logic Description Network  

Description

Reason

A’ B

B’  C 

C’  A 

1 NOT 

No self regulation 

No repeated regulation 

L6 limit cycle  

A’ C

B’  B 

C’  A 

1 NOT 

1 self regulation  NOT 

No repeated regulation 

L4 limit cycle NOT adds dou-

ble the steps 

A’ A

B’  C 

C’  B 

1 NOT 

1 self regulation = NOT

No repeated regulation

L2 limit cycle  

A’ C

B’ A

C’  B 

2 NOTs 

No self regulation 

No repeated regulation

L3 limit cycle  

A’  A

B’ C

C’ B

2 NOTs 

1 self regulation  NOT 

No repeated regulation

L2 limit cycle Two non-self 

regulated genes 

are negated, 

takes two steps 

to revert back 

A’ B

B’  A 

C’ C

2 NOTs 

1 self regulation = NOT 

No repeated regulation

L4 limit cycle  

A’ C

B’ B

C’ A

3 NOTs 

No self regulation 

No repeated regulation

L6 limit cycle NOT adds dou-

ble the steps 

A’  f(A) 

B’  f(B) 

C’  f(C) 

1/2/3 NOTs

3 self regulation

No repeated regulation

L2 limit cycle Self regulation 

and NOT ensures 

only a toggle of 

2 values 
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Table 9. Fuzzy Logic Network patterns of AND Functions 

Logic Function Logic Description Network De-

scription

Reason

A’  A B

B’  B C

C’  A C

3 (AND 2)s 

No repeated 

regulation

B2 attractor Need two steps 

to pick the mini-

mum of 3 genes 

A’  C

B’  A B

C’  B C

un-AND gene is 

not self regulated 

B3 attractor    

A’  A B

B’  B 

C’  B C

2 (AND 2)s 

un-AND gene is 

self regulated 

If un-AND 

gene holds 

highest value: 

B0 attractor 

If un-AND 

gene holds 

middle value: 

B1 attractor 

If un-AND 

gene holds 

middle value: 

B2 attractor 

A’  A B C

B’  C 

C’  A B C

2 (AND 3)s 

un-AND gene is 

not self regulated

B2 attractor Since un-AND 

gene is not self 

regulated, re-

quire 2 steps to 

achieve mini-

mum of 3 

A’  A B C

B’  B 

C’  A B C

2 (AND 3)s 

un-AND gene is 

self regulated 

B1 attractor Since un-AND 

gene is self regu-

lated, require 1 

step to achieve 

minimum of 3 

A’  A B C

B’  A B C

C’  A B C

3 (AND 3)s B1 attractor  
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Table 10. Fuzzy Logic Network Patterns of OR Functions

Logic Function Logic Description Network  

Description

Reason

A’  A B

B’  B C

C’  A C

3 (OR 2)s 

No repeated 

regulation

B2 attractor Need two steps 

to pick the 

maximum of 3 

genes

A’  C

B’  A B

C’  B C

un-OR gene is not 

self regulated 

B3 attractor    

A’  A B

B’  B 

C’  B C

2 (OR 2)s 

un-OR gene is self 

regulated

If un-OR gene 

holds highest 

value: B2 at-

tractor

If un-OR gene 

holds middle 

value: B1 at-

tractor

If un-OR gene 

holds middle 

value: B0 at-

tractor

A’  A B C

B’  C 

C’  A B C

2 (OR 3)s 

un-OR gene is not 

self regulated 

B2 attractor Since un-OR 

gene is not self 

regulated, re-

quire 2 steps to 

achieve maxi-

mum of 3 

A’  A B C

B’  B 

C’  A B C

2 (OR 3)s 

un-OR gene is self 

regulated

B1 attractor Since un-OR 

gene is self 

regulated, re-

quire 1 step to 

achieve maxi-

mum of 3 

A’  A B C

B’  A B C

C’  A B C

3 (OR 3)s B1 attractor  
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We observed the following general rules 

Rule 1: NOT functions produce limit cycles.
Rule 2: 

Table 11. Table for Rule 2 

Example Logic Description Rules 

A’  A B

B’  B 

C’  B C

2 (AND 2)s 

un-AND gene is self 

regulated

If un-AND gene holds 

highest value: B0 attractor 

If un-AND gene holds 

middle value: B1 attractor 

If un-AND gene holds 

middle value: B2 attractor 

Rule 3:

Table 12. Table for Rule 3

Example Logic Description Rules 

A’  A B

B’  B 

C’  B C

2 (OR 2)s 

un-OR gene is self 

regulated

If un-OR gene holds high-

est value: B2 attractor 

If un-OR gene holds mid-

dle value: B1 attractor 

If un-OR gene holds mid-

dle value: B0 attractor 

Rule 4: 

Table 13. Table for Rule 4 

Example Logic Description Rules 

A’  A B

B’  B C

C’  A C

3 (AND 2)s 

No repeated regula-

tion

B2 attractor results as two 

steps are needed to pick the 

minimum of 3 genes 

Rule 5:

Table 14. Table for Rule 5 

Example Logic Description Rules 

A’  A B

B’  B C

C’  A C

3 (OR 2)s 

No repeated regula-

tion

B2 attractor as two steps 

are needed to pick the 

maximum of 3 genes 
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10 Conclusion 

As the cell ages and undergoes irreversible changes, it either goes into an 
invariant state or progresses through a periodic cycle. The irreversible evo-
lution of the NK-Boolean network and Fuzzy Logic network mimics such 
changes very well. Future work would build on the basic connectors stud-
ied in this paper, and include computer simulations of more complicated 
functions involving combinations of logic connectors. 

The most significant result obtained from this study is a fundamental 
understanding of the stochastic behavior of a cell with simple assumption 
of a simple three-gene network. It is affirmative that a “reverse-
engineering” problem can be solved, at least theoretically via induction 
and reduction approach. In general, the realistic biological behavior is so 
complicated that it can be seen to be at the edge-of-the-chaotics. Usually, a 
theoretical and mathematical derivation is very difficult. Nevertheless, a 
simplified analysis based upon a simple model would definitely provide a 
much needed visualization of the biological behavior and associated phe-
nomenon. It is only through mathematical analysis would there be a better 
chance in understanding the complex phenomenon. This is partially true 
when the simplified model can be viewed as the basic building blocks of a 
complicated situation. Only then would there be some hope for some pro-
gress.

Appendix of Figures 

Fig.  (i).

000 001 010 011

100 101 110 111
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Fig. (ii).

Fig. (iii).

Fig. (iv). 

Fig. (v).
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Fig. (vi).

Fig. (vii). 

Fig. (viii).

Fig. (ix). 

Fig. (x).
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Fig. (xi) 

Fig. (xii). 

Fig. (xiii).

Appendix of Dictionary 

Pure Limit Cycles 

1 limit cycle: 

2 limit cycle: 

(a) 1 NOT (1 self regulation  NOT, no repeats) = L4/L4 

eg.

A’ C

B’  B 

C’  A 
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(b) 1 NOT (no self regulation, no repeats) = L6/L2

eg.

A’ B

B’  C 

C’  A 

(c) 2 NOTs (1 self regulation = NOT, no repeats) = L4/L4 

eg.

A’ B

B’  A 

C’ C

(d) 3 NOTS (no self regulation, no repeats) = L6/L2 

eg.

A’ C

B’ A

C’ B

3 limit cycles: 

4 limit cycles: 

(a) 1 NOT (1 self regulation = NOT, no repeats) = 

L2/L2/L2/L2

eg.

A’ A

B’  C 

C’  B  

(b) 3 NOTs (1 self regulation = NOT, no repeats) = 

L2/L2/L2/L2

eg.

A’  f(A) 

B’  f(B) 

C’  f(C) 

Pure Attractors 

1 attractor: 

2 attractor:

(a) 2(AND 3) (un-AND gene is not self-regulated) = 

B6/B0
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eg.

A’  A B C

B’  C 

C’  A B C

(b) 3(AND 3) = B6/B0 

eg.

 A’  A B C

 B’  A B C

 C’  A B C

(c) 2(OR 3) (un-OR gene is not self regulated) = B6/B0 

eg.

 A’  A B C

 B’  C 

 C’  A B C

(d) 3(OR 3)  = B6/B0 

eg.

 A’  A B C

 B’  A B C

 C’  A B C

3 attractor: 

(a) 2(AND 3)(un-AND gene is self regulated)= B3/B2/B0 

eg.

 A’  A B C

 B’  B 

 C’  A B C

(b) 2(OR 3) (un-OR gene is self regulated) = B3/B2/B0 

eg.

 A’  A B C

 B’  B 

 C’  A B C

4 attractor: 

(a) Plain (2 self regulation, 1 repeat) = B1/B1/B1/B1 

A’  A       A       A       B        A       C 

B’  B  or  A  or  B  or B   or  C  or  B 

C’  A       C        B       C       C        C 

5 attractor: 

6 attractor: 
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7 attractor: 

8 attractor: 

(a) Plain(3 self regulations) = B0/B0/B0/B0/B0/B0/B0/B0 

 A’  A 

 B’  B 

 C’  C 

Mixture

2 limit cycles and 4 attractors 

(a) Plain (1 self regulation, no repeats) = 4 B0 attractors, 2 

L2 limit cycles 

 A’  B        A        C 

  B’  A  or   C  or  B 

 C’  C        B        A 

(b) 2 NOTs (1 self regulation  NOT, no repeats) = 4 B0 

attractors, 2 L2 limit cycles 

eg.

 A’  A

B’ C

C’ B

2 limit cycles and 2 attractors 

(a) Plain (no self regulation, no repeats) =  2 B0 attrac-

tors, 2 L3 limit cycles 

 A’  B       C

 B’  C  or  A 

C’  A       B  



148      T. Kok and P. Wang

(b) 2 NOTs (no self regulation, no repeats) = 2 B0 attrac-

tors, 2 L3 limit cycles 

eg.

 A’  Cc

 B’ A

 C’  B 
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