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Summary. Electromyographic signals and spinal forces in trunk muscles during lifting mo-
tion can be used to describe the dynamics of muscular activities. Yet spinal forces can not be
measured directly, and EMG signals are often difficult to measure in industry due to environ-
mental hostilities. EMG waves, however, can be treated and analyzed as responses of a system
that takes kinematics measurements and other auxiliary factors as inputs. By establishing the
kinematics-EMG-force relationship using neural and fuzzy approaches, we propose models
for EMG and spinal force estimation. Key variables affecting EMG and forces in lifting tasks
are identified using fuzzy average with fuzzy cluster distribution method. An EMG signal es-
timation model with a novel structure of feedforward neural network is then built. And the
spinal forces are estimated by a recurrent fuzzy neural network model. The proposed neural
and fuzzy approaches can prune the input variables and estimate EMG and forces effectively.
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1 Introduction

Manual materials handling tasks performed in industry have been related to the onset
of low back disorders [1]. Since electromyography (EMG) response is a direct re-
flection of muscular activity [2], it is important to study the EMG signals generated
during lifting motion of the human body. EMG signals provide useful information
about the levels of physical exertion. Studying the forces applied to the spine is also
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fundamental to the understanding of low back injury [3]. The forces on the spine dur-
ing manual lifting are very useful to estimate whether a given lifting task would be
safe. The clear understanding of the EMG and spinal forces in manual lifting plays
an important role for guiding the reduction of musculoskeletal loading in heavy work
situations [4].

However, the spinal forces can not be measured directly. Thus the low back bio-
mechanical models are often used to estimate the loads on the lumbar spine using
variety of human and environment related variables. Most biomechanical models
rely on the EMG data because the internal behavior of muscles is usually described
with EMG signals. However, the measuring of EMG is often difficult to perform in
industrial environments. Since EMG signals are related to the kinematic character-
istics, evaluating EMG from kinematics measurements and other auxiliary factors
becomes a better choice [5].

In view of the above, the kinematics-EMG-force relationship could be found in
the load evaluation system. The spinal forces are connected with kinematic variables
through EMG signals. So models can be developed to express the relationships and
estimate EMG and forces on lumbar spine [5, 6, 7]. These models do not need the
measuring of EMG signals and the use of biomechanics model.

The information obtained for the evaluation of body stresses in manual lifting
activities is normally uncertain, imprecise, and noisy. The muscle activities are influ-
enced by multiple factors, without much knowledge of their underlying dynamics.
Since the exact relationships between the multiple variables are not clear in many
situations, neural networks and fuzzy logic are appropriate methods in this situation.

The neural and fuzzy approaches have been successfully applied to many com-
plex and uncertain systems. They have played an important role in solving many en-
gineering problems. Neural networks can model the nonlinear relationship between
the input and output by extracting information from examples, while fuzzy systems
provide an approximate human reasoning capability in a fuzzy inference system.
Fuzzy systems are good at dealing with imprecise information and it is clear how
they determine their output. However, it is usually hard to determine the membership
functions in the fuzzy inference system. This problem can be solved by combining
neural network with the fuzzy logic. The neural network can make up membership
functions and extract fuzzy rules from numeric data. This hybrid method combines
the advantages of the neural network and fuzzy logic approaches.

Different neural and fuzzy models can be developed to estimate the EMG signals
and spinal forces due to manual lifting tasks. The input-output relationship of the
EMG and force prediction systems, however, is not well understood. It is important
to find out which variables have significant influence on the forces during the lifting
motion, so that they can be selected as input variables. The kinematic variables such
as velocities, accelerations, and angles affect the spinal forces. Furthermore, the dif-
ferences between subjects also affect the EMG responses. Different people produce
different patterns of EMG even though the kinematics data may be similar in doing
the same task. Subject variables include body weight, height, arm length, etc. From
a lot of input candidates, if we can remove those have little or no influence on the
output and put emphasis on the important variables, a more parsimonious and more
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effective model could be built. So it is important to identify those important input
variables before building the models for EMG and force evaluation.

The modelling of the kinematics-EMG-force dynamics can be divided into three
parts. In the first part the key input variables of the models are identified using a
fuzzy method called Fuzzy Average with Fuzzy Cluster Distribution (FAFCD). In
the second part a neural network model is built to translate kinematics data into
EMG signals under different task conditions. In the third part a hybrid neuro-fuzzy
model is developed to predict the forces on the lumbar spine.

2 Identification of Input Variables using FAFCD

Since we do not know how significantly each input variable affects the output of
the EMG and forces, all the associated kinematic variables and subject variables
are recorded. The twelve kinematic variables are dynamic variables which change
their values during the motion. While the fifteen subject variables are static variables
which are the anthropometric characteristics of the subjects and they are the same
during a motion for a particular subject. If we take all the kinematic variables and
subject variables as input of the model, the dimension of the input space will be very
high. It is important to identify the influence of the variables and select only the key
variables as inputs of the model.

2.1 The Fuzzy Curve Method and Its Improvements

In [8] and [9], Lin et al. proposed their “fuzzy curves” method. There are m sampling
data points obtained for a nonlinear system with one output variable and n associated
input variables. For each input variable xi, the m data points are plotted in the xi −y
space. A fuzzy rule is defined according to each sampling data point (xj

i , y
j) (i =

1, 2, ..., n, j = 1, 2, ...,m) in the following form:

Rj
i : IF xi is µij(xi) THEN y is yj ;

where µij(xi) is a Gaussian membership function of xj
i . From m data points, m

fuzzy rules can be obtained. The fuzzy membership functions for input variable xi

are Gaussian membership functions centered at xj
i :

µij(xi) = exp(−(
xi − xj

i

σ
)2) (1)

where xj
i and σ are the center and width of the membership function, respectively.

The width of the Gaussian membership function is taken as about 20% of the length
of the input interval of xi. A “fuzzy curve” can be produced using defuzzification
method:

Ci(xi) =

∑m
j=1 yjµij(xi)∑m

j=1 µij(xi)
(2)
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The fuzzy curve stands for the xi − y relationship. It can tell us if the output
is changing when xi is changing. The importance of the input variables are ranked
according to the ratio of the range of y covered by the curve to the whole range of
y, which is defined as Influence Rate R. The Influence Rate for variable xi can be
written as

Rxi
=

Ci(xu
i ) − Ci(xl

i)
a

(3)

where Ci(xu
i ) is the highest point on the curve and Ci(xl

i) is the lowest point on the
curve. a is the whole range of y.

This method is easy to understand and to calculate. The result obtained is
straightforward. However the method can not always work well. The distribution
of the sampling data set will affect the result. In other words, the influence of the
input variables obtained from this method may vary from sampling to sampling. The
EMG and force prediction systems are complicated nonlinear systems. It is hard to
control the distribution of the sampling data. Thus we can not apply the fuzzy curves
method directly to the model.

In [10] the limitation of the fuzzy curve method is discussed and improved with
Fuzzy Average with Fuzzy Cluster Distribution (FAFCD). To find out the xi − y re-
lationship using fuzzy average method, each of the input variable (except xi) should
have roughly the same distribution along the axis of xi, respectively. But for many
practical applications, this requirement is normally hard to meet. The sampling data
need to be preprocessed to become a representative data set before being used to
determine the influence of input variables.

To transform the sampling data of force prediction system into the required form,
we use the fuzzy clustering method in [10] to change the distribution of the data set.
First the data points are divided into groups using fuzzy clustering method. The num-
ber of data points in each group (fuzzy cluster) will be different since the distribution
of the original data is uneven. Then one data point (for instance, the fuzzy cluster
center) is used to represent each group to obtain a new data set with the distribution
of fuzzy clusters. Since different number of sampling data in small regions will be
replaced by the same number of cluster center, we will obtain a new data set with
better distribution.

Change the Distribution of the Data Set

Each of the sampling data point (vector) represents a point in the n-dimensional
Euclidean space (n is the input dimension). The purpose of clustering is to partition
the data set into clusters in such a way that data points in each cluster are highly
similar to each other, while data points assigned to different clusters have low degrees
of similarity.

To generate even cluster distribution, we partition the input space using fuzzy
rules. We build a fuzzy rule base for the nonlinear system. Those data points that
can excite a particular fuzzy rule with high firing strength are grouped to the same
partition. The fuzzy rule base is in the form of
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IF x1 is A11 and x2 is A21 and ... and xn is An1 THEN y is y1

IF x1 is A12 and x2 is A22 and ... and xn is An2 THEN y is y2

...
IF x1 is A1m and x2 is A2m and ... and xn is Anm THEN y is ym

where Aij(i = 1, 2, ..., n; j = 1, 2, ...,m) and yj are fuzzy sets of xi and y, respec-
tively.

If the width σ of Gaussian membership functions are the same for all the fuzzy
sets, the fuzzy partition generated by the fuzzy rules is an even partition.

The method is implemented as follows: the first sampling data point is taken as
center of a cluster and a corresponding fuzzy rule is built. The center of the Gaussian
membership function is xj

i = xj
i ; the width σ′ is 1/30 of the normalized range of the

input variable.
For every sampling data point, the firing strength of each existing rule is calcu-

lated:

Gj =
n∏

i=1

(µij(xi)) =
n∏

i=1

exp(−(
xi − xij

σ′ )2) (4)

AND operation is used in (4).
If the firing strength Gj ≥ β, then the sampling data point is similar to the data

points in the partition. Thus it belongs to this partition. β is a predefined threshold
as the least acceptable degree. It decides to what extent the similarity should be in
order to be classified into the partition. If the firing strength is less than the threshold
β, then a new fuzzy rule (a new partition) should be created.

After all the data are partitioned, Fuzzy c-means (FCM) algorithm is used to
cluster data points in each small partition. FCM allows one piece of data to belong to
two or more clusters [11]. It provides a method that group data points in multidimen-
sional space into a specific number of clusters. The same number of clusters are set
for each small partition so that the distribution can be more even. Or, if the partition
is small enough, we can set only one cluster for each partition and find its center
by FCM. We would like to use the centers of the clusters to represent the clusters.
But for real world systems, the corresponding output of the system to the centers are
not available, if the centers are not coincident to the existing data points. So we use
the sampling data point closest to the center of a cluster to represent the cluster. The
closest data point is decided by its Euclidean distance to the center.

There is a loss of information during this process, but we can control the number
of partitions to make sure only redundant data points are removed while keeping
enough data points to represent all the sampling data in the input space. This is done
by adjusting σ′. If σ′ → 0, then each sampling data point is a partition; if σ′ → ∞,
there is only one partition.

The procedure of FAFCD is listed as follows:
1. Normalize the original data set.
2. Cluster the original data.
3. Find cluster centers and use them to form a new data set.
4. Calculate the fuzzy curves of y in each input-output space on the new data set.
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5. Identify key input variables according to their Influence Rate.
Using FAFCD method, the importance of input variables of the force prediction

system can be identified.

2.2 The Key Variables Identified using FAFCD

All the input variables and output variables in the original data set are normalized
to the range of [0, 1]. Then using the fuzzy clustering method described earlier, a
new data set with a different distribution to the original data set was obtained. On
this new data set, the fuzzy average of yj in each xi − yj space was calculated. The
importance of the input variables are indicated by their Influence Rate R. Based on
the Influence Rate, we can identify the key variables.

According to the average Influence Rate to all the muscles, the importance of the
kinematic variables and subject variables are ranked as shown in Table 1 and Table
2 respectively. It is clear that kinematic variables have more influence to forces than
subject variables. Thus these twelve kinematic variables should all be selected as
inputs in modelling. As for subject variables, five variables (standing height, shoul-
der height, lower arm length, spine length, lower leg length) have bigger influence
than the others. These variables should also be taken as inputs in modelling. While
examining the Influence Rates of two variables “standing height” and “shoulder
height”, we found that the Influence Rates of these two variables are very similar,
for all forces. In other words, these two variables are correlated. They are dependent
variables to each other. Therefore one of them can be removed. So at last twelve
kinematic variables and four subject variables were kept. The input dimension is
decreased from 27 to 16.

Table 1. Rank kinematic variables by their Average Influence Rate

Rank Variable Name Average Influence Rate
1 Sagittal Trunk Moment 0.171
2 Lateral Trunk Moment 0.150
3 Axis Trunk Angle 0.144
4 Sagittal Trunk Velocity 0.134
5 Axis Trunk Moment 0.120
6 Sagittal Trunk Angle 0.118
7 Axis Trunk Acceleration 0.117
8 Sagittal Trunk Acceleration 0.105
9 Lateral Trunk Velocity 0.100
10 Axis Trunk Velocity 0.097
11 Lateral Trunk Angle 0.090
12 Lateral Trunk Acceleration 0.088
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Table 2. Rank subject variables by their Average Influence Rate

Rank Variable Name Average Influence Rate
1 Standing Height 0.091
2 Shoulder Height 0.090
3 Lower Arm Length 0.080
4 Spine Length 0.078
5 Lower Leg Length 0.066
6 body weight 0.052
7 Trunk Breadth (xyphoid) 0.050
8 Trunk Circumference 0.041
9 Trunk Depth (xyphoid) 0.033
10 Trunk Breadth (pelvis) 0.032
11 Upper Arm Length 0.030
12 Elbow Height 0.027
13 Upper Leg Length 0.017
14 Trunk Depth (pelvis) 0.012
15 Age 0.002

Knowing the influence of each variable, we can use the identified variables as
inputs, instead of using hypothetically selected variables. This can greatly reduce the
complexity of the model and time of modelling. In building the fuzzy neural model,
less input variables means less free parameters and shorter training time.

3 Prediction of EMG Signals of Trunk Muscles
using a Neural Network Model

Since there is strong relationship between kinematics and EMG activity, we can
build models to simulate such a relationship. Many studies concentrated on predict-
ing torque or kinematics from EMG [12, 13, 14], whereas predicting EMG from
kinematics variables has seldom been done. Here an EMG signal prediction model
is built using neural network. Kinematics variables and subject variables are selected
as inputs of this model. By adding regional connections between the input and the
output, the novel architecture of the neural network can have both global features and
regional features extracted from the input. The global connections put more empha-
sis on the whole picture and determine the global trend of the predicted curve, while
the regional connections concentrate on each point and modify the prediction locally.
Back-propagation algorithm is used in the modeling. A basic structure of neural net-
work designed for this problem is discussed. Then to overcome its drawbacks, a new
structure is proposed.

The objective is to predict EMG magnitude of ten trunk muscles during man-
ual lifting tasks. All the kinematics variables and the first four subject variables are
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selected as inputs (see Section 2). In addition, timing of the motion should also be
considered as one of the input variables [15]. Without timing, the system is modeling
the static states, instead of the process of the dynamic lifting motion.

3.1 A Basic Model

For the problem described above, a basic feedforward neural network model with one
hidden layer can be built. At first, this model has seventeen input variables including
twelve kinematics variables, four subject variables, and one timing variable. The
outputs are normalized EMG magnitudes of ten trunk muscles (Right Latissimus
Dorsi, Left Latissimus Dorsi, Right Erector Spine, Left Erector Spine, Right Rectus
abdominus, Left Rectus Abdominus, Right External Oblique, Left External Oblique,
Right Internal Oblique, and Left Internal Oblique).

As stated before, timing is used as an input variable in order to represent the
process of lifting motion. But if the available measurements of motions are not syn-
chronized, that is to say, the measurements did not capture the motions with the same
starting point and the same ending point, then introducing inaccurate timing into the
model would make the prediction doubtful in view of the fact that most data have not
been synchronized.

In this basic model, we are predicting the EMG signals point by point. Each input
vector consists of twelve kinematics variables of one sampling point of one subject,
as well as the corresponding four subject variables. The timing variable determines
the sampling point of the current input. The kinematics variables are time series,
while the subject variables of each subject are constants. All sampling points of all
subjects in a same motion were used to train the network one by one. As we can see
that, the number of the training examples (training vectors) could be very big. If we
have fifty subjects doing a particular motion and we got 100 sampling points for each
subject, then the number of training examples will be 5000. The network has been
found to often suffer from overtraining. Decreasing the learning rate can be helpful,
but this will make the learning process very slow, and the prediction quality is also
not good.

3.2 The Improved Model

The unsatisfactory performance of the conventional network model stated above
shows that predicting point by point may not be a good idea. After all, we are mod-
eling the whole motion. It might be better for us to predict the entire span of motion
at one time. Therefore, another network with all the sampling points of a subject as
one whole input vector is built. The outputs are EMG magnitudes of ten muscles
of all the 100 sampling points. Thus the input space is composed of 12 (kinematics
variables) * 100 (samplings) + 4 (subject variables) elements. The output space is
composed of 10 (EMGs) * 100 (samplings) elements.

In this model, each training example is the whole motion of a subject. And the
outputs are the EMG signals of the whole motion. This makes the problem very clear
and easy to deal with. The global connections form a fully connected feedforward
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neural network with two hidden layers. To increase the importance of subject vari-
ables, the subject variables are connected directly to the second hidden layer [16].
Additional “regional connections” are added to connect the input neurons and output
neurons which belong to the same sampling data point. The subject variables are also
connected to them.

The simulations show that if proper hidden layers and nodes are selected, the
fully-connected neural network without regional connections is able to capture the
kinematics-EMG characteristics. However, this model has two drawbacks. Firstly,
although no explicit timing variable exists, this model also suffers from asynchro-
nization of the motion. That is because the sampling data points are arranged in time
sequence in the input space. Secondly, this big network is insensitive to subject vari-
ables. The importance of an individual input is decreased because too many inputs
exist. To overcome these limitations, the regional connections are added to the model.
Since they only connect the input neurons and output neurons which belong to the
same sampling point, this model has a better “locality”. When the values in a small
area of the input space changed, it will only influence the output of the corresponding
small area, without interfering values outside this small area.

3.3 Advantages

The first advantage of this model is that it takes the interactions between muscles
into account. The muscle activities are complex in the motion. It is known that the
interactions between muscles will influence the EMG signals. By learning the whole
motion, the new model can take this into account. This is a global feature that can
not be extracted from isolated sampling points. Although the timing is used as one
of the inputs in the previous basic model, the input-output pairs are still independent
points. When the data of one sampling point are fed into the network, the behavior
of the muscles before and after this point is unavailable to the network. But when
the data of the whole motion are fed into the network, such information is included.
The second advantage is that the training time of this model is much shorter than the
training time of the previous one. That is because we are predicting one sampling
point at one time in the previous model. But in this model, we are predicting the
whole motion of one subject.

The improved model has better locality. For the model without regional connec-
tions, although the MAE of the prediction is not bad, the prediction doesn’t fit the
curve very well in the small regions. By extracting the local features and modify-
ing the output regionally, the model with regional connections can produce a better
prediction.

The improved model does not suffer from incorrect timing. As mentioned before,
the network without regional connections suffers from incorrect timing. If the data
used to train the model captured the whole process of the motion, their EMG pattern
normally will be first going up, then going down, ending with a low level of EMG
value. This is typical since during the lifting, the muscle will first contract, and then
begin to relax. If in a lifting motion, the rear part of the motion is missing (which
means the recorded data start from the beginning of the motion, but end before the
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motion is finished), the incomplete motion will not follow such trend. However, in the
basic model, the neural network will take it as complete. This makes the prediction
not so satisfactory. After the regional connections are added, the timing is no longer
a problem. Since these connections are connected “regionally”, local features of each
sampling point are extracted by them.

3.4 Results

The developed model gives good prediction quality in most situations. The MAEs
of females are normally larger than that of males. For different muscles, we found
that four muscles (Right Rectus Abdominus, Left Rectus Abdominus, Right External
Oblique, and Left External Oblique) have smaller MAE than others. That is because
for the manual lifting motion, the EMG signals of these four muscles are more or less
static. Therefore they are easier to predict than others. We also found that the MAEs
of the left muscles were larger than MAEs of the corresponding right muscles.

Simulations also indicate that the more complex the motion is, the more difficult
to predict its EMG signals. In a trial that the weight of the object to be lifted is 15
lbs, the original height is floor, and the destination height is waist, then the overall
MEA of the motion is 7.5%. But if the subject is also requested to turn his body for
60 degrees, the overall MEA increases to more than 10 percent. That is because the
motion is not symmetric.

4 Prediction of Spinal Forces using a Recurrent Fuzzy Neural
Network Model

Neural and fuzzy approaches have been used to improve or replace the biomechanics
model. In [12], Lin et al. predicted the muscle activations from EMG signals using a
four-layer feed-forward neural network model trained by back-propagation learning
algorithm. Luh et al. built a neural network to model the relationship between the
EMG activity and elbow joint torque [17]. Liu et al. useed a neural network to pre-
dict dynamic muscle forces from EMG signals [18]. In [19] and [20], neuro-fuzzy
models were developed for EMG signal classification and prosthesis control. These
findings focus on building the relationship between the EMG signals of muscles and
the forces on the joint. They all require the EMG signals be measured in the labora-
tory, which is time consuming and often impractical in industry.

To predict the dynamic forces on lumbar spine without the measuring of EMG
signals and the use of biomechanics model, a recurrent fuzzy neural network (RFNN)
model is built. The feedback makes it possible to take past information into account.
The output of the model is computed by the current data as well as the preceding
data. Time delay is incorporated in the feedback connections. It serves to preserve
the past information so that the RFNN is able to handle the dynamics. A learning
algorithm is used to modify the RFNN’s both premise parameters and consequent
parameters in order to correctly identify the nonlinear relationship between the input
and output.
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In the spinal load estimation model, EMG signals are used as intermediate out-
put and are fed back to the input layer. By doing that, more information (EMG)
was provided to the model and the feedback of the intermediate output has a physi-
cal meaning (the direct relationship of EMG-force). This reflects the dynamics of the
system in a clear and straightforward way. At the same time, the advantages of recur-
rent property is utilized. The rules generated from the model can be easily interpreted
and can help us understand the muscle activities better. This solves the problem that
the input and output of the system have no direct and explicit physical connection.
At the same time, the advantages of recurrent neural network are utilized.

4.1 Model Construction

The EMG signals of ten trunk muscles are scaled and delayed before they are fed
back to the input layer. The delay of EMG is used to represent the muscle activation
dynamic properties. The interaction between muscles influences the EMG and the
forces on the spine. By presenting the previous EMG to the input, we hope the modle
can take such interaction into account. Direct physical relationships (kinematics data-
EMG and EMG-force) reside in the model. The identified kinematic variables and
subject variables are inputs of the model. Forces on the spine (lateral shear force,
A-P shear force and spinal compression) are outputs of the model. They are not
the forces measured from the experiments since they can not be measured directly.
They are actually the forces obtained from the biomechanics model. After the direct
prediction model is built, the biomechanics model will be no longer needed in future.

The function of each layer is described as follows.
Layer 1 is the input fuzzification layer, which represents linguistic sets in an-

tecedent fuzzy membership functions. Each neuron describes a membership function
and encodes the center and width of membership functions. The output of this layer
is the degree of membership of each input:

y1
j = µij(xi) (5)

For external input, the following Gaussian membership function is used:

µij(xi) = exp(−(
xi − x̄ij

σij
)2) (6)

For the feedback input, the following sigmoid membership function is used:

µij(xi) =
1

1 + exp(−xi)
(7)

Layer 2 computes the firing strength of each fuzzy rule. Nodes in this layer per-
form the product operation. Those links establish the antecedent relation which is an
“AND” association for each fuzzy set combination (both the external input and the
feedback). The output of this layer is the firing strength of each fuzzy rule:

y2
j = Πn

i=1µij(xi) (8)



334 Y. Hou et al.

Layer 3 normalizes the firing strength of each fuzzy rule. The output of the third
layer is the normalized firing strength of each fuzzy rule:

y3
j =

Πn
i=1µij(xi)∑m

j=1 Πn
i=1µij(xi)

(9)

Layer 4 is the defuzzification layer. Center Average defuzzificaiton is used here.
The output of this layer is the overall output using Center Average defuzzification:

y4
j =

m∑

j=1

y3
j Wjk (10)

During the training process, both the consequent and the premise parameters are
tuned simultaneously. The fuzzy rules are discovered from and refined by the given
input/Output data. The forces predicted for time t depend on not only the inputs at
time t, but also the predicted EMG at time t−1, which again depend on the previous
inputs. This is a dynamic approach that can represent the dynamic properties of the
forces better than a feedforward network.

4.2 Simulations and Results

The performance of the proposed recurrent fuzzy neural network is evaluated with
two kinds of data. One is the sagittal symmetric lifting motions, while the other one
includes nonsymmetrical lifting motions. To make the results comparable, similar
task variables and subject variables are selected for these two motions. In both mo-
tions, the weight of the object is 30 lbs, lift height is 30 cm, lift style is stoop, and
both-handed.

In a sagittal symmetric lifting motion, the subject does not turn his body. The mo-
tion is done sagittally. This kind of motion is simpler and easier to model, comparing
to the nonsymmetrical motions. Simulations show that the recurrent fuzzy neural
network can model the kinematics-EMG-force relationship and give an satisfactory
prediction.

If we are predicting the asymmetrical motions, we could expect that the pre-
diction errors will be bigger compared to the sagittal symmetric motions. That is
because the motion is nonsymmetrical, thus more complex than the symmetric mo-
tions. The subjects were required to turn their bodies during the lifting task.

Statistical results are used to evaluate the system performance on different types
of tasks. The overall Mean Absolute Errors (MAEs) of different tasks are shown in
Table 3. The variations of lateral shear force, A-P shear force and the spinal com-
pression are around 300 Newtons, 800 Newtons and 2500 Newtons, respectively.
The MAEs are out of such ranges. From the results we can see that the MAEs of the
predicted sagittal symmetric tasks are much smaller than those of the prediction for
nonsymmetrical tasks. This is reasonable since the muscle activities are much more
complicated in the nonsymmetrical tasks.
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Table 3. Overall MAEs of different types of motions. The values are forces in Newtons (per-
centage errors are in brackets).

Force Names Unsym. Motion Sag. Sym. Motions

LSF 25.5 (8.22%) 20.5 (6.61%)

ASF 80.0 (9.52%) 68.5 (8.15%)

CMP 192.5 (7.86%) 167.0 (6.82%)

5 Conclusions

This chapter discussed the EMG and spinal force evaluation models using neural
and fuzzy approaches. Input variables of the models were identified using a fuzzy
approach, which greatly reduce the dimension of the input space of the models. A
neural network model and a recurrent fuzzy neural network model were built for
EMG evaluation and spinal force evaluation, respectively.

In the neural network model, the global connections provide the model’s basic
prediction reference, while the additional connections enable the model to extract
the relationships among regional inputs. The additional connections can reduce the
adverse influence of the problem of incorrect timing.

In the recurrent fuzzy neural network model, EMG was fed back to the input,
acting as a bridge between the input and the output. The delayed EMG feedback al-
lows for better representation of the muscle activation dynamics. At the same time,
the advantages of recurrent neural network can be utilized. The model predicts forces
directly from kinematics data, avoiding EMG measurements and the use of biome-
chanical model.
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