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Summary. Even if the given data are crisp, there exists uncertainty in decision
making process and inconsistency based on human judgements. The purpose of this
paper is to obtain the evaluations which reflect such an uncertainty and inconsis-
tency of the given information. Based on the idea that intervals are more suitable
than crisp values to represent evaluations in uncertain situations, we introduce this
interval analysis concept into two well-known decision making models, DEA and
AHP. In the conventional DEA, the relative efficiency values are measured and in
the proposed interval DEA, the efficiency values are defined as intervals considering
various viewpoints of evaluations. In the conventional AHP, the priority weights of
alternatives are obtained and in the proposed interval AHP, the priority weights are
also defined as intervals reflecting the inconsistency among the given judgements.

Key words: Decision making, Uncertain information, Efficiency interval, Interval
priority weight

1 Introduction

In the decision making problem involving human judgements, usually the in-
formation is uncertain, even if the data are given as crisp values. Through
most of the conventional decision making models, the results such as evalua-
tions from the given data are obtained as crisp values. However, there exists
uncertainty in the decision making process involved in different viewpoints,
human intuitive judgements and fuzzy environments. It seems to be suitable
to obtain the evaluations as intervals in order to reflect various uncertainty
in the given data and evaluating process. In this viewpoint, the concept of
interval analysis is introduced into DEA(Data Envelopment Analysis) and
AHP(Analytic Hierarchy Process), which are well-known evaluation models.
DEA is relative evaluation model to measure the efficiency of DMUs (Decision
Making Units) with common input and output terms. In Section 2, we propose
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Interval DEA, where the efficiency value calculated from various viewpoints
for each DMU are considered and efficiency intervals are obtained. AHP is
the useful method to obtain the priority weight of each item in multiple crite-
ria decision making problems. In Section 3, we propose Interval AHP, where
inconsistency based on human intuition in the given pairwise comparisons
are considered and interval weights are obtained. In this paper, evaluations
as results with crisp data through models are obtained as intervals reflecting
the uncertainty of the given data and the decision making process. Interval
evaluations are more useful information for decision making and helpful for
decision makers than crisp evaluations, since the former can consider various
viewpoints and inconsistency in the given data.

2 Interval DEA

2.1 Efficiency Value by Conventional DEA

DEA (Data Envelopment Analysis) is a non-parametric technique for measur-
ing the efficiency of DMUs (Decision Making Units) with common input and
output terms [1, 2]. In DEA, the efficiency for DMUo which is the analyzed
object is evaluated by the following basic fractional model.

θE
o
∗ = max

u,v

utyo

vtxo

s.t.
utyj

vtxj
≤ 1 ∀j

u ≥ 0
v ≥ 0

(1)

where the decision variables are the weight vectors u and v, xj ≥ 0 and
yj ≥ 0 are the given input and output vectors for DMUj and the numbers of
inputs, outputs and DMUs are m, k and n, respectively.

The efficiency is obtained by maximizing the ratio of weighted sum of
outputs to that of inputs for DMUo under the condition that the ratios for all
DMUs are less than or equal to one. To deal with many inputs and outputs, the
weighted sum of inputs and that of outputs are considered as a hypothetical
input and a hypothetical output, respectively. The maximum ratio of this
output to this input is assumed as the efficiency which is calculated from the
optimistic viewpoint for each DMU. The efficiency for DMUo is evaluated
relatively by the other DMUs.

This fractional programming problem is replaced with the following lin-
ear programming (LP) problem, which is the basic DEA model called CCR
(Charnes Cooper Rhodes) model, by fixing the denominator of the objective
function to one.
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θE
o
∗ = max

u,v
utyo

s.t. vtxo = 1
utyj − vtxj ≤ 0 ∀j
u ≥ 0
v ≥ 0

(2)

θE
o
∗ is obtained with the superior inputs and outputs of DMUo by max-

imizing the objective function in (2) with respect to the weight variables.
Therefore, it can be said that it is the evaluation from the optimistic view-
point for DMUo.

When the optimal value of objective function is equal to one, DMUo is
rated as efficient and otherwise it is not rated as efficient. Precisely speaking,
the word “efficient” which we use in this paper is called “weak efficient”. In
this model the production possibility set is assumed as follows.

P = {(x,y)|x ≥ Xλ,y ≤ Y λ,λ ≥ 0} (3)

where X ∈ �m×n is an input matrix consisting of all input vectors, Y ∈ �k×n

is an output matrix consisting of all output vectors. (3) means that the more
inputs, smaller outputs or both than those of given data can be productive.

On the other hand, the inefficiency measure has defined by using inverse
relation to the ratio defined in DEA in [3], that is the ratio of weighted sum
of inputs to that of outputs. Thus, the inefficiency model is called “Inverted
DEA”. However the ratios considered in DEA and Inverted DEA are different
each other so that there is no mathematical relation between the efficiency
by DEA and the inefficiency by Inverted DEA. In the literature [4], the max-
imum and minimum efficiency values for a new DMU have been proposed
using the benchmarks obtained by DEA. This approach is called DEA-based
benchmarking model and it is an effective measure as an interval for a new
DMU, considering a set of the benchmark frontier by DEA. In this paper, the
proposed minimum efficiency for each DMU has been defined by using all the
given DMUs. We propose Interval DEA [5], where the efficiency intervals are
obtained so as to reflect uncertainty in evaluating viewpoints. The following
points should be noted: 1) the proposed approach has the same mathematical
structures for the maximum and minimum efficiency values, and 2) efficiency
interval is obtained by all the given DMUs. These are different from Inverted
DEA [3] and DEA-based benchmarking model [4].

2.2 Efficiency Interval

The relative efficiency can be obtained from various viewpoints. In this sec-
tion, we propose Interval DEA model to obtain the efficiency interval [5]. The
efficiency interval is denoted as its upper and lower bounds. Then, they are
obtained by solving two optimization problems such that the relative ratio of
the analyzed DMU to the others is maximized and minimized with respect
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to input and output weights, respectively. In both models the same ratios are
considered to be maximized and minimized respectively. The upper and lower
bounds of efficiency interval denote the evaluations from the optimistic and
pessimistic viewpoints, respectively.

Since the conventional DEA can be regarded as the evaluation from the
optimistic viewpoint, the upper bound of efficiency interval for DMUo can be
obtained by the conventional CCR model in [1, 8]. Considering the original
CCR model formulated as a fractional programming problem (1), the problem
to obtain the upper bound of efficiency interval is formulated as follows.

θE
o
∗ = max

u,v

utyo

vtxo

max
j

utyj

vtxj

s.t. u ≥ 0
v ≥ 0

(4)

It should be noted that the denominator in (4) plays an important role of
normalizing efficiency value. The ratio of the weighted sum of outputs to that
of inputs for DMUo is compared to the maximum ratio of all DMUs. In (1),
the ratios of the weighted sum of outputs to that of inputs for all DMUs are
constrained to be less than one for normalization. Furthermore, formulating
the upper bound of efficiency interval as (4) is very useful for defining the
lower bound of efficiency interval.

When the denominator of the objective function is fixed to one, (4) can
be reduced to the following problem.

θE
o
∗ = max

u,v

utyo

vtxo

s.t. max
j

utyj

vtxj
= 1

u ≥ 0
v ≥ 0

(5)

Comparing with (5) and (1), the conditions of (5) is stricter than that
of (1). However, the optimization problem (5) is equal to (2), which is the
original CCR model described as LP problem (see [5]).

On the other hand, by minimizing the objective function in (4) with respect
to the weight variables, the lower bound of efficiency interval is obtained by
the following problem.

θE
o ∗ = min

u,v

utyo

vtxo

maxj
utyj

vtxj

s.t. u ≥ 0
v ≥ 0

(6)
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θE
o ∗ is obtained with inferior inputs and outputs of DMUo. Therefore, it

can be said that it is the evaluation from the pessimistic viewpoint considering
all DMUs. The optimization problem (6) can be reduced to the following
problem (see [5]).

θE
o ∗ = min

p,r

yop

xor

max
j

yjp

xjr

(7)

where the rth element of input weight vector v and the pth element of output
vector u are one and the other elements are all zero in (6). Only the rth input
and pth output are used to determine the lower bound of efficiency interval.
These are inferior input and output of DMUo relatively to the others.

The efficiency interval denoted as [θE
o∗, θ

E∗
o ] illustrates all the possible eval-

uations for DMUo from various viewpoints. Thus, Interval DEA gives a deci-
sion maker all the possible efficiency values that reflect different perspectives.
The efficiency intervals are important and useful information to a decision
maker in a sense of perspectives.

In order to improve the efficiency, in the conventional DEA the efficiency
value is obtained as a real value and the inputs and outputs are adjusted
to make the efficiency value be one. Several approaches to improvement for
the conventional efficiency value by adjusting inputs and outputs have been
proposed in [4, 6, 7, 8, 9] On the contrary, in Interval DEA the efficiency is
obtained as an interval. The given inputs and outputs are adjusted so that the
efficiency interval with the adjusted ones become larger than one before the
improvement. The approach to improve the efficiency interval can be described
in [10]. It is done with the following way: the upper bound of efficiency interval
becomes one and the lower one becomes as large as possible. It can be said
that the superior inputs and outputs are shown as a target for each improved
DMU.

2.3 Numerical Example

We calculate the efficiency interval by using one-input and two-output data in
Table 1. Efficiency intervals determined by (2) and (7) are shown in Table 1
and Fig. 1. The conventional efficiency value and the upper bound of efficiency
intervals are the same, since both of them are obtained from the optimistic
viewpoint by (2).

Although the upper bounds of efficiency intervals for A and J are equal to
1, their lower bounds are small. Their ranges of efficiency intervals are large,
therefore, they are called as peculiar. Peculiar DMUs have some inferior data
so that the interval ranges are large, while the upper bounds are one.

The interval order relation is defined as follows in [11].

Definition 1. Interval order relation
A = [a, a] � B = [b, b] holds if and only if b ≤ a and b ≤ a.



296 T. Entani et al.

Using Definition 1, the relations between DMUs by the efficiency intervals
are illustrated in Fig. 2. By the obtained efficiency intervals, E and G do not
have any DMUs whose efficiency intervals are greater than those of them.
Then they are picked out as non-dominated DMUs and rated as efficient in
Interval DEA. Peculiar DMUs such as A and J are not rated as efficient. Con-
sidering all the possible viewpoints of evaluations by Interval DEA, the partial
order relation of DMUs is obtained. Efficiency intervals reflect uncertainty on
perspectives of evaluations so that they are similar to our natural evaluation
and give more useful information than crisp efficiency values do.

Table 1. Given crisp data and efficiency intervals

DMU input output1 output2 efficiency interval

A 1 1 8 [0.143,1.000]
B 1 2 3 [0.286,0.522]
C 1 2 6 [0.286,0.824]
D 1 3 3 [0.375,0.652]
E 1 3 7 [0.428,1.000]
F 1 4 2 [0.250,0.696]
G 1 4 5 [0.571,0.957]
H 1 5 2 [0.250,0.826]
I 1 6 2 [0.250,0.957]
J 1 7 1 [0.125,1.000]

Fig. 1. Efficiency intervals

3 Interval AHP

3.1 Crisp Weights by Conventional AHP

AHP (Analytic Hierarchy Process) is useful in multi-criteria decision making
problems. AHP is a method to deal with the priority weights with respect
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Fig. 2. Partial order of DMUs by efficiency intervals

to many items and proposed to determine the priority weight of each item
[12]. When there are n items, a decision maker compares a pair of items for
all possible pairs then we can obtain a comparison matrix A as follows. The
elements of the matrix called pairwise comparisons are relative measurements
and given by a decision maker.

A = [aij ] =




1 · · · a1n

... aij

...
an1 · · · 1





where aij shows the priority ratio of item i comparing to item j.
The elements of pairwise comparison matrix satisfy the following relations.

The decision maker gives n(n− 1)/2 pairwise comparisons in case of n items.

Diagonal elements aii = 1
Reciprocal elements aij = 1/aji

(8)

From the given comparison matrix, the priority weights w∗
i are obtained

by the well-known eigenvector method. The eigenvector problem is as follows.

Aw = λw (9)

where λ is an eigenvalue and w is a corresponding eigenvector. By (9), the
eigenvector w∗ = (w∗

1 , . . . , w∗
n)t corresponding to the principal eigenvalue

λmax is obtained as the weight vector. It is noted that the sum of the ob-
tained weights w∗

i is normalized to be one;
∑

i w∗
i = 1. The obtained weights

from the given comparison matrix can reflect his/her attitude in the actual
decision problem.

The weights obtained by the conventional AHP lead to a linear order of
items. Uncertainty of an order of items in AHP is discussed in [13]. However,
there exists a problem that pairwise comparisons might be inconsistent with
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each other because they are based on human intuition. The approach for
dealing with interval comparisons has been proposed in [14]. It is easier for
a decision maker to give interval comparisons than crisp ones. This approach
is rather complex comparing to our approach shown in this paper in view of
solving problems on all vertices for obtaining interval weights. In the similar
setting to [14], the approaches for dealing with decision maker’s preference
statements instead of pairwise comparisons have been described in [15]. This
seems to be very practical, but obtaining the upper and lower bounds of
interval weights has been proposed without defining the interval weights. We
propose Interval AHP where interval weights are obtained so as to reflect
inconsistency among the given crisp comparisons.

3.2 Interval Priority Weight

It is assumed that the estimated weights are intervals to reflect inconsistency
of pairwise comparisons. Since the decision maker’s judgements are usually in-
consistent [16, 17]. We obtain the interval weights so as to include all the given
pairwise comparisons and minimize the widths. We formulate the approach for
obtaining interval weights as a LP problem, instead of the eigenvector prob-
lem in the conventional AHP. This concept is similar to interval regression
analysis [18]. The width of the obtained interval weight represents inconsis-
tency of the pairwise comparisons. A decision maker always gives inconsistent
information since his/her judgements on each item’s weight are uncertain.
Then, such inconsistency in the item’s weight can be denoted as the widths
of interval weights. The given pairwise comparison aij is approximated by the
ratio of priority weights, wi and wj , symbolically written as follows.

aij ≈ wi/wj

It is noted that the consistent comparison matrix satisfy the following
relations.

aij = aikakj ∀(i, j, k) (10)

In usual cases such that comparisons are based on the decision maker’s
intuitive judgements, the relation (10) is not satisfied. Therefore, there is
some inconsistency in the given matrix.

Assuming the priority weight as an interval Wi, the interval priority
weights are denoted as Wi = [wi, wi]. Then, the approximated pairwise com-
parison with the interval weights is defined as the following interval.

Wi

Wj
=
[

wi

wj
,
wi

wj

]

where the upper and lower bounds of the approximated comparison are defined
as the maximum range considering all the possible values.
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Interval Weights Normalization

While the sum of weights obtained by AHP is normalized to be one, interval
probability proposed in [19] can be regarded as a normalization of interval
weights. The normalization for interval weights is defined as follows.

Definition 2. Interval normalization
Interval weights (W1, ...,Wn) are called interval probability if and only if

∑
i�=j wi + wj ≥ 1 ∀j∑
i�=j wi + wj ≤ 1 ∀j

(11)

where Wi = [wi, wi].

It can be said that the conventional normalization is extended to the inter-
val normalization by using the above conditions. In order to explain interval
normalization, we use the following example intervals which do not satisfy the
conditions (11),

W1 = [0.3, 0.6], W2 = [0.2, 0.4], W3 = [0.1, 0.2].

Assuming the value w∗
1 = 0.3 in W1, there do not exist the values, w∗

2 and
w∗

3 , in W2 and W3 whose sum is one, w∗
1 +w∗

2 +w∗
3 = 1. Transforming W1 into

W ′
1 = [0.5, 0.6], these intervals satisfy the conditions for interval normalization

(11) and the sum of values in the intervals can be one. Definition 2 is effective
to reduce redundancy under the condition that the sum of crisp weights in
the interval weights is equal to one.

Approximation of Crisp Pairwise Comparison Matrix

The model to obtain the interval weights is determined so as to include the
given interval comparisons [16]. The obtained interval weights satisfy the fol-
lowing inclusion relations.

aij ∈ Wi

Wj
=
[

wi

wj
,
wi

wj

]
∀(i, j)

It is denoted as the following two inequalities.

wi

wj
≤ aij ≤ wi

wj

⇔
{

wi ≤ aijwj ∀(i, j)
wi ≥ aijwj ∀(i, j) (12)

The interval weights include the given inconsistent comparisons. In order to
obtain the least interval weights, the width of each weight must be minimized.
The problem for obtaining interval weights is formulated as the following LP
problem.
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min
∑

i

(wi − wi)

s.t. wi ≤ aijwj ∀(i, j)
wi ≥ aijwj ∀(i, j)∑

i�=j wi + wj ≥ 1 ∀j∑
i�=j wi + wj ≤ 1 ∀j

wi ≥ wi ≥ ε ∀i

(13)

where ε is a small positive value and the first two and the next two conditions
show the inclusion relations (12) and interval normalization (11), respectively.

The width of the interval weight represents uncertainty of each weight and
the least uncertain weights are obtained by this model (13). When a decision
maker has some information over uncertainties of the items’ priority weights,
he/she gives them as the uncertainty weights pi∀i. Then, the weighted sum
of widths

∑
i pi(wi − wi) can be minimized. However, it is not easy for a

decision maker to give the weight of each width. Simply the sum of widths of
all weights is minimized as in (13) without information over uncertainties of
items.

Since the proposed Interval AHP is the ratio model, its concept is similar to
interval regression analysis in view of the least approximation. The proposed
model (13) is formulated as LP problem, the following inequality should be
satisfied.

n(n − 1)
2

≥ 2n (14)

where n is the number of items. (14) requires that the number of given com-
parison data should be larger than that of decision variables.

If (14) is satisfied, whatever the given comparison matrix is, there exist an
optimal solution that minimizes the objective function in (13). If the optimal
value of the objective function is equal to zero;

∑
i(w

∗
i − w∗

i ) = 0, it can be
said that the given comparison matrix is perfectly consistent. The weights are
obtained as crisp values and they are the same as those by the conventional
eigenvector method (9). In the conventional AHP, the consistency index is
defined considering the eigenvector corresponding to the principal eigenvalue
of the given matrix. If it is equal to 0, the elements of the matrix satisfy the
relations (10), that is, the matrix is perfectly consistent. Experimentally it can
seem to be consistent in case where the index is less than 0.1. In the proposed
LP method, the consistency of the matrix is represented as the optimal value
of the objective function that is the sum of widths of the obtained interval
weights. The optimal value becomes small for consistent matrix.

The decision problem in AHP is structured hierarchically as criteria
(C1, ..., Ck) and alternatives (A1, ..., An) as in Fig.3. In Fig. 3 the criteria
are at one layer, however, it is possible to construct several layers of criteria.

The criterion weights and alternative scores with respect to the criteria are
obtained from the corresponding pairwise comparison matrices. Concerning
all criteria, the overall priority of each alternative is obtained as the sum of
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Fig. 3. Structure of decision problem in AHP

the products of criterion weights and corresponding alternative scores. By the
proposed model, the criterion weights and alternative scores are obtained as
intervals. Then, by interval arithmetic the overall priority is also obtained as
an interval.

3.3 Numerical Example

The following pairwise comparison matrix with five items is given by a decision
maker. The decision maker gives 10 comparisons marked ∗ and the other
elements are filled by (8).

A = [aij ] =





1 2∗ 3∗ 5∗ 7∗

1/2 1 2∗ 2∗ 4∗

1/3 1/2 1 1∗ 1∗

1/5 1/2 1 1 1∗

1/7 1/4 1 1 1





The crisp weights obtained by conventional eigenvector method (9) are
shown in the right column of Table 2. The linear order relation of items is
1 > 2 > 3 > 4 > 5. The elements of this comparison matrix satisfy aik ≥ ajk

for all k and such a comparison matrix is in row dominance relation. In case of
row dominance relation, it is assured that the obtained weights by eigenvector
method satisfy the order relation wi ≥ wj . It can be seen from the results of
this example.

The interval weights obtained by the proposed model (13) is shown in Ta-
ble 2 and Fig. 4. With the obtained interval weights, by Definition 1, the order
relation of items is 1�2�3�4�5. Although the linear order relation is obtained
in this example, it is noted that the partial order relation is often obtained
because of interval weights. The obtained weights of items 1 and 2 are crisp
values and items 3, 4 and 5 are intervals. From the given comparison matrix,
it is estimated that item 1 is prior to item 2 and both of them are apparently
prior to items 3, 4 and 5. However, the relations among items 3, 4 and 5 are
not easily estimated, since the comparisons over them are contradicted each



302 T. Entani et al.

other. The obtained interval weights, W3,W4 and W5, by the proposed Inter-
val AHP reflect inconsistency among the given crisp comparisons. Since the
decision maker gives comparisons of all pairs of items intuitively, it is natural
to consider that the obtained weights are intervals reflecting the uncertainty.

Table 2. Interval weights with crisp comparison matrix

item interval weights (13) width eigenvector (9)

1 0.453 0.000 0.464
2 0.226 0.000 0.241
3 [0.104, 0.151] 0.047 0.112
4 [0.091, 0.113] 0.023 0.100
5 [0.057, 0.104] 0.047 0.083

Fig. 4. Interval weights

4 Conclusion

The decision problems usually include uncertainty since humans are involved
in the process. The given information and evaluations based on human intu-
itive judgements might be from various viewpoints and inconsistent. In order
to deal with the uncertainty in the given information, interval evaluations
have been introduced. Reflecting the uncertainty of the given data and evalu-
ating process, the results obtained by the proposed interval evaluation models
are intervals even in case of crisp given data. Interval evaluations are more
suitable for our natural judgements than crisp evaluations.

By the proposed Interval DEA, the efficiency interval is obtained so as
to include all the possible efficiency values from various viewpoints. By the
proposed Interval AHP, the interval weights are obtained so as to include
inconsistency among the given comparisons. The proposed interval evaluation
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models deal with the uncertainty by human judgements. In view of considering
all the possibility of data and perspectives of evaluations, the proposed interval
models are a kind of possibility analysis [18]. They can give useful and helpful
information for decision makers, since various viewpoints and inconsistency
in the given data are considered.
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