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While standard approaches for acoustic echo cancellation in telecommunica-
tion systems assume that the echo path to be identified can be modeled by
a linear system, in practice, many loudspeaker systems involve non-negligible
nonlinearities, e.g., caused by overloaded amplifiers due to low battery volt-
age of mobile communication receivers, or nonlinearities in the electroacoustic
transduction as common with low-cost loudspeakers driven at high volume.
Above a certain degree of nonlinear distortion, purely linear approaches are
not able to provide a sufficient echo attenuation and nonlinear echo cancellers
become desirable. Based on a nonlinear discrete-time model for the acoustic
echo path we discuss different nonlinear adaptive structures for nonlinear
acoustic echo cancellation and verify their effectiveness by measurements in
real-world environments. While the frequency-dependent nonlinear behaviour
of common electrodynamic loudspeakers can be modeled by Volterra filters,
power filters are well suited to compensate memoryless saturation-type non-
linearities as they occur with overloaded amplifiers and miniaturized loud-
speakers, e.g., in mobile phones.

7.1 Introduction

Linear adaptive filtering plays an important role in statistical signal processing
and respective theoretical and practical results are well established [14]. In
practice, however, nonlinear adaptive filtering often becomes desirable if the
considered systems exhibit nonlinear behaviour. Acoustic echo cancellation
represents an important example for such situations.

Standard approaches for the cancellation of acoustic echoes rely on the
assumption that the echo path can be modeled by a linear system [5]. Ac-
cordingly, the acoustic echo canceller (AEC) is implemented as a linear filter.
Since the echo path is unknown and, moreover, can change during operation
of the echo canceller, the linear filter has to be realized adaptively. Unfortu-
nately, the simple assumption of a linear echo path does not always hold in
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practice, as it does not include the behaviour of nonlinear audio hardware.
The nonlinearly distorted components of the echo signal can not be captured
by a linear AEC and, thus, are transmitted back to the far-end speaker who
perceives an annoying copy of his own voice. Consequently, any non-negligible
nonlinear distortion of the echo signal leads to a reduction of the echo atten-
uation achievable by purely linear approaches and, thus, impairs the quality
of speech communication systems.

Possible sources for nonlinear distortion in the echo path are, e.g., small
loudspeakers driven at high volume or overloaded amplifiers [32, 42, 43]. The
problem of nonlinearly distorted echoes is especially common in mobile com-
munication devices where high sound levels are desired with only low bat-
tery voltage available. For instance, in case of mobile phones operated in
their hands-free mode, consumers usually prefer a nonlinear distortion of the
loudspeaker signal over reduced output levels. Nonlinear echoes also occur
in hands-free teleconferencing systems that include small-sized loudspeakers.
If the consumer sets the loudspeaker system to its maximum volume, linear
behaviour of small and/or cheap loudspeakers can not be expected anymore.
The listening tests presented in [41] show that the accepted level of nonlinear
distortion of speech is sufficiently high to cause annoying nonlinear echoes
which can not be compensated by linear AECs.

To surpass echo cancellation performance of purely linear approaches, non-
linear methods have to be taken into consideration, where basically two ap-
proaches can be applied:

• nonlinear preprocessing of the loudspeaker signal,
• nonlinear adaptive filtering in the AEC.

The first approach aims at a linearization of the audio hardware components
via nonlinear preprocessing of the received far-end signal. Then, the overall
echo path to be modeled by the AEC consists of the acoustic echo path which is
extended by the nonlinear preprocessing stage. In case of an ideal preprocess-
ing of the loudspeaker signal, this overall echo path is linear and, thus, the
AEC can also be realized as a linear filter. This approach can include meth-
ods known from the linearization of loudspeakers [8] and/or techniques that
are used to compensate for the nonlinear distortion introduced by overloaded
power amplifiers in digital communication systems [24]. Another method is to
intentionally limit the excitation signal of the loudspeaker in order to avoid
nonlinear behaviour of the loudspeaker and its amplifier. Note that in this
case, the linear AEC has to be adapted with respect to the preprocessed sig-
nal. A major drawback imposed by these approaches is the required exact a
priori knowledge of the nonlinearities of the loudspeaker system. This, how-
ever, implies that the nonlinear preprocessor of the echo cancellation unit
can be designed only if the audio components of the loudspeaker system are
accessible.

Here, we consider the more general approach of nonlinear adaptive filter-
ing in the AEC in order to be more independent of the actual hardware in the
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loudspeaker system. It turns out that then only the type of nonlinearity in the
acoustic echo path has to be known but not its exact properties, i.e., its pa-
rameter values. Here, we distinguish between two different types of nonlinear
behaviour:

• nonlinearities with memory, as in case of a small loudspeaker driven at
high volume,

• memoryless nonlinearities such as the saturation characteristic of over-
loaded amplifiers.

In the following, we apply certain polynomial filters [28] such as Volterra fil-
ters, truncated Taylor series expansions, and linear filters in order to model
the behaviour of each of these nonlinearities. Based on these models, corre-
sponding nonlinear filters can be developed which sufficiently model the over-
all nonlinear acoustic echo path. The goal is then to derive suitable adaptive
algorithms for these nonlinear filters in order to provide a satisfying echo can-
cellation performance for the case that nonlinear audio hardware is included
in telecommunication systems.

This chapter is organized as follows: In Sec. 7.2, we consider the properties
of acoustic echo paths. After a discussion of nonlinear audio components, we
introduce a discrete-time model of the acoustic echo path based on a non-
linear cascaded structure. The discussion of suitable adaptive approaches is
divided into the following two sections. On the one hand, adaptive Volterra
filters are considered in Sec. 7.3 and address nonlinearities with memory [28].
On the other hand, Sec. 7.4 focusses on the situations where the nonlinearity
in the echo path can be considered as memoryless. It turns out that so-called
power filters are more suitable than Volterra filters in this case [21]. The ef-
fectiveness of the discussed approaches in nonlinear acoustic echo cancellation
is confirmed by experiments using real hardware.

7.2 Nonlinear Acoustic Echo Paths

For the design of nonlinear acoustic echo cancellers, it is essential to have
sufficient knowledge about the properties of the underlying physical echo path.
Therefore, we initially investigate the main components of typical acoustic
echo paths. These results can then be used to obtain suitable nonlinear models
for the identification of real echo paths.

The general structure of an acoustic echo path is illustrated in Fig. 7.1
and is common for hands-free telephone sets or mobile phones. The respective
signal path is a cascade of digital-to-analog (D/A) converter, amplifier, loud-
speaker, microphone, microphone preamplifier, and analog-to-digital (A/D)
converter. Additionally, it comprises the acoustic propagation path of the
speech signal between loudspeaker and microphone.

In general, the propagation path between loudspeaker and microphone can
be considered as a linear system. It is commonly modeled by a linear FIR filter
representing the room impulse response [5].
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Fig. 7.1. Block diagram of the general structure of an acoustic echo path.

The microphone signals that are common with hands-free and mobile tele-
phony have only moderate excitation levels. Thus, it is reasonable to assume
a linear behaviour for the microphone and its preamplifier which is in accor-
dance with the observations reported in [42].

From a system theoretical point of view, an ideal D/A converter can be
described by an impulse response of a linear filter [34]. In practice, non-ideal
hardware components can lead to a nonlinear mapping of the digital input
signal to the analog output of the D/A converter [1, 34]. The same applies
to A/D converters which, in addition, imply quantization of analog signals
due to finite word lengths used for representation of digital signals. Early
publications [1,6] address the problem of nonlinear network echo cancellation
resulting from nonlinear D/A and A/D converters, respectively. With the
modern, high-resolution converters used in todays telecommunication systems,
it is mostly acceptable to neglect both, quantization errors, and any other
nonlinear mapping characteristic caused by non-ideal signal conversion.

In this chapter we consider two sources for nonlinear distortion: the loud-
speaker and its amplifier. The properties of these nonlinear system compo-
nents are discussed next.

Amplifier nonlinearities are especially present in mobile communication de-
vices. There, the dilemma arises to provide high signal levels while having only
low battery voltage available. The consumers usually prefer an overloading of
the amplifier over a reduction of the sound volume. The nonlinear behaviour
of amplifiers can therefore be described as saturation characteristic with a
soft clipping of large amplitude values [42]. Due to the limited bandwidth of
telephone signals, amplifiers applied to audio applications can in general be
considered as memoryless.

Many research efforts aimed at the characterization of the nonlinearities of
electrodynamic loudspeakers [16, 37]. Summarizingly, one can distinguish be-
tween three different parts of the loudspeaker which may introduce nonlinear
distortion: the acoustical part, the electromagnetic part, and the mechanical
part. Nonlinearities in the acoustical part, such as nonlinear wave propaga-
tion play an important role in the modeling and linearization of horn loud-
speakers [17]. However, as this type of loudspeaker is generally used in public
announcement systems only, any nonlinearities caused by sound radiation are
not considered here.
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The nonlinearities in the electromagnetic part (also referred to as motor
part) are mainly caused by the asymmetries of the magnetic flux, and its
decay outside the air gap of the motor. Thus, the driving force on the voice
coil is a nonlinear function of its position. Additionally, the self-inductance of
the voice coil depends on its displacement, too.

In the mechanical part, the nonlinear dependency of the stiffness of the
spider and the outer rim on the position of the voice coil has to be taken into
account. It is worth mentioning that the characteristic of this nonlinearity is
slowly time-varying, as the mechanical properties of the spider and the rim
are changing in time due to changes in temperature and aging effects of the
used materials.

A common approach to incorporate the above-mentioned nonlinearities
into a loudspeaker model is to approximate the various nonlinear characteris-
tics by a truncated Taylor series expansion for the decisive parameters. Then,
the approximated parameters are introduced into the differential equations
that describe the behaviour of the loudspeaker [16, 37]. However, such a rep-
resentation of the loudspeaker is out of scope of this chapter, as this is not
suited for adaptive realizations as required for the echo cancellation applica-
tion. Consequently, we exploit the main result of [16, 37], i.e., the nonlinear
behaviour of loudspeakers will be modeled by an appropriate Volterra filter.
More precisely, we consider the loudspeaker as a black box, the input/output
relation of which can sufficiently well be approximated by a second-order
Volterra filter. On the other hand, the results presented in [23] indicate that
for acoustic echo cancellation in mobile phones, a saturation-type behaviour of
the miniaturized loudspeakers can be expected. In this case, specialized third-
order polynomial filters with less memory support represent a more suitable
choice.

Other sources for nonlinear distortion in loudspeaker systems are given
by rattling and vibration effects caused by a strong physical coupling be-
tween loudspeaker, microphone, and their enclosure, as, e.g., common in mo-
bile phones. However, this distortion can hardly be modeled or predicted,
as it is of chaotic nature [3]. It should rather be considered as uncorrelated
noise (analogously to any background noise) and, thus, be processed accord-
ingly. The problem of vibrating system components is, however, not further
considered here.

Furthermore, mechanical clipping can be observed in the loudspeaker for
very high excitation levels if the available displacement range for the voice
coil is not sufficiently large [37,40]. This problem, however, is also not further
considered here.

Discrete-Time Model for the Echo Path

As a result of the above discussion, we are now able to derive a discrete-time
model for the acoustic echo path that is common in acoustic echo cancella-
tion. Such a model can consist of the cascade of different linear and nonlinear



210 F. Küch, W. Kellermann

components as illustrated by the block diagram Fig. 7.2. Obviously, the cas-
caded structure is a direct consequence of the cascade of the different system
components shown in Fig. 7.1.

hc,k he,kSVF

Fig. 7.2. Block diagram of the nonlinear model of the acoustic echo path.

The first block in Fig. 7.2 is the linear FIR filter hc,k representing the
combination of all linear filtering steps involved in the D/A-conversion. Fol-
lowing [42], we assume that the loudspeaker amplifier can be regarded as
memoryless soft clipping and, thus, be approximated by a truncated Tay-
lor series expansion. Although a seventh-order Taylor series has been applied
in [42] to model the behaviour of the amplifier, simulation results have shown
that a third-order polynomial can sufficiently reproduce the influence of the
amplifier nonlinearity. The corresponding block in Fig. 7.2 illustrates the soft
clipping by showing a corresponding mapping characteristic. Note that for
mobile phones, the level of nonlinear distortion introduced by the amplifier
may depend on the charge level of the battery that provides the power supply.
Thus, the parameters of the polynomial representing the amplifier have to be
at least slowly time-variant.

The third block in Fig. 7.2 represents a second-order Volterra filter (SVF)
that is used to simulate the loudspeaker nonlinearities. As already mentioned,
the mechanical contribution to the nonlinear distortion is not constant over
time due to fatigue of material. Consequently, the coefficients of the Volterra
filter should also be at least slowly time-variant. In case of mobile phones,
the nonlinear behaviour of miniaturized loudspeakers exhibit a memoryless
saturation characteristic [23]. Then, the Volterra filter can be replaced by a
Taylor series expansion. The cascade of the loudspeaker and its amplifier can
thus be modeled by using only a single truncated Taylor series expansion, i.e.,
by discarding the third block in Fig. 7.2.

The last block comprises three cascaded linear models, representing the
sound propagation path between loudspeaker and microphone, the micro-
phone characteristic (including its preamplifier), and the A/D converter, re-
spectively. As the linear FIR filter he,k includes the room impulse response,
it may be rapidly time-variant.

It can be shown that every parallel/cascaded combination of linear filters,
truncated Taylor series expansions, and Volterra filters can be replaced by a
corresponding Volterra filter exhibiting the same input/output relation. It is
straightforward to verify that for the above model of the nonlinear echo path,
this results in a fifth-order Volterra filter if the amplifier is represented by
a third-order polynomial and a second-order Volterra filter is used as loud-
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speaker model. This approach, however, is not practicable due to the enormous
number of required coefficients for higher-order Volterra filters [28].

Simplifications of the general model of the echo path according to Fig. 7.2
can be achieved if any a priori knowledge about the properties of the system
to be identified can be exploited. In the following we assume that at least
one of the nonlinear components in Fig. 7.2 can be neglected: In Sec. 7.3 we
look at the case where solely the second-order Volterra filter is included in the
actual model of the acoustic echo path, whereas in Sec. 7.4 the Taylor series
expansion is considered as the only nonlinear component. Furthermore, the
cascaded nature of the echo path can be taken into account for deriving more
efficient overall models of the nonlinear echo path.

7.3 Volterra Filters

For the case that the small-sized loudspeaker of a hands-free telecommuni-
cation device represents the main source for nonlinear distortion in the echo
path, it has to be modeled by a second-order Volterra filter. In this section
we therefore discuss Volterra filters and corresponding adaptive realizations
in both, time domain and frequency domain. The basic concepts of adaptive
Volterra filtering are presented for the general case of P -th order Volterra
filters. In more specific parts such as the control of the adaptation or the
evaluation of the presented algorithms, we explicitly refer to the acoustic echo
cancellation application and limit ourselves to second-order Volterra filters.

The output d(n) of a P -th order Volterra filter is composed of the sum of
the outputs of all kernels up to order P :

d(n) =
P∑

p=1

dp(n). (7.1)

Most commonly, the input/output relation of the p-th order kernel is expressed
by [28]

dp(n) =
Np−1∑
kp,1=0

Np−1∑
kp,2=kp,1

· · ·
Np−1∑

kp,p=kp,p−1

hkp

p∏
i=1

x(n− kp,i), (7.2)

where the memory lengths Np of the Volterra kernels can in general be differ-
ent for each order p. In Eq. 7.9, the index vector

kp = [kp,1, kp,2, . . . , kp,p] (7.3)

can be interpreted as reference to a certain coefficient hkp
of the p-th order

Volterra kernel in a p-dimensional Cartesian coordinate system. Thus, Eq. 7.2
is referred to as Cartesian coordinate representation (CCR) of Volterra fil-
ters [35]. As can be noticed from Eq. 7.2, there is a strong relation between
multidimensional linear filtering and Volterra filters in CCR [28].
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In the following we consider an alternative representation of Volterra filters
which turns out to be more useful in the nonlinear echo cancellation context
featuring nonlinear cascaded structures. Regarding [35], we apply the following
change of coordinates:

kp,1 = k, 0 ≤ k ≤ Np − 1, (7.4)
kp,i = rp,i−1 + k, 2 ≤ i ≤ p. (7.5)

For interpreting the above coordinate transform, we recall that the set of
indices kp,1, kp,2, . . . , kp,p can be considered as Cartesian coordinates which
corresponds to the p-dimensional sampled hypercube representing the p-th
order Volterra kernel. The combination of the indices rp,1, rp,2, . . . , rp,p−1,
and k can then be understood as reference to the kernel coefficients lying
on a straight line which is parallel to the main diagonal of the Cartesian
coordinate system. Following [35], we refer to these straight lines as diagonals,
where the main diagonal is defined by setting kp,1 = kp,2 = . . . = kp,p which
implies rp,1 = rp,2 = . . . = rp,p−1 = 0. Based on these interpretations, we
consider the new set of indices rp,1, rp,2, . . . , rp,p−1, and k as coordinates of
the so-called diagonal coordinate system. The relation between the CCR and
the diagonal coordinate representation (DCR) is illustrated in Fig. 7.3 for
the quadratic Volterra kernel. As an example, the diagonal corresponding to

Fig. 7.3. Illustration of the relation between the CCR and DCR for a quadratic
Volterra kernel (p = 2). Each • corresponds to a kernel coefficient.

r2,1 = 2 is highlighted in both figures. Additionally, the dark quadrangles
mark the indices (k2,1, k2,2) = (5, 7) and (r2,1, k) = (2, 5), respectively, which
reference the same kernel coefficient.

Analogously to the coefficient index vector kp in Eq. 7.3, we introduce the
two coefficient vectors
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rp = [rp,1, rp,2, . . . , rp,p−1], (7.6)
rp,k = [k, rp,1 + k, . . . , rp,p−1 + k], (7.7)

where for the linear kernel r1 = [ ] and r1,k = k. The diagonal index vector rp

references a certain diagonal, whereas the corresponding coefficient index vec-
tor rp,k references a certain kernel coefficient on that diagonal. Note that rp

has the length p−1, while rp,k consists of p elements. The diagonal index vec-
tor associated with the main diagonal is obviously given by rp = 0. Thus, the
index vector elements rp,i of rp determine the distance of that diagonal from
the main diagonal of the p-th order Cartesian coordinate system. It should
be pointed out that with the definition of the coefficient index vector rp,k in
Eq. 7.7, the notation of the kernel coefficients have been kept unchanged, i.e.,

hrp,k
= hkp

, if rp,k = kp. (7.8)

The desired form of the input/output relation of the p-th order kernel is
obtained by introducing the new index vectors rp and rp,k into Eq. 7.2 and
by additionally changing the order of summation:

dp(n) =
Np−1∑
rp,1=0

· · ·
Np−1∑

rp,p−1=rp,p−2

Lrp
−1∑

k=0

hrp,k
x(n− k)

p−1∏
i=1

x(n− rp,i − k), (7.9)

where
Lrp

= Np − rp,p−1, (7.10)

obviously depends on both, the kernel order p, and the actual value of rp,p−1.
For the linear kernel (p = 1) we have Lr1

= N1. As proposed in [35], we
refer to Volterra filters featuring the above form for computing the output
of the p-th order Volterra kernel as Volterra filters in diagonal coordinate
representation (DCR).

In the following we examine the relation between Volterra filters in DCR
and multichannel linear filtering. For a deeper insight into the internal multi-
channel structure of the DCR, we introduce the input signal of the diagonal
rp according to

xrp
(n) = x(n)

p−1∏
i=1

x(n− rp,i), (7.11)

where xr1
(n) = x(n). The corresponding output drp

(n) of the diagonal with
index rp is then given by

drp
(n) =

Lrp
−1∑

k=0

hrp,k
xrp

(n− k). (7.12)

Obviously, drp
(n) can be considered as the output of the linear FIR filter

hrp,k
of length Lrp

with input xrp
(n). In other words, drp

(n) results from the
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convolution of xrp
(n) with the linear filter hrp,k

and can therefore be expressed
by

drp
(n) = hrp,n

∗ xrp
(n), (7.13)

where ∗ denotes convolution. The above definitions are used to rewrite the
output dp(n) of the p-th order kernel according to Eq. 7.9:

dp(n) =
Np−1∑
rp,1=0

· · ·
Np−1∑

rp,p−1=rp,p−2

drp
(n). (7.14)

From the specific form of Eq. 7.14 we notice that dp(n) can be interpreted as
the output of a linear multiple input/single output (MISO) system, where each
diagonal with index vector rp corresponds to one linear channel with input
xrp

(n). Extending this interpretation to the computation of the output of the
Volterra filter according to Eq. 7.1, d(n) can be considered as the output of a
special MISO system featuring a combination of P multichannel structures,
where each channel corresponds to one particular diagonal of the DCR.

Aiming at a compact vector notation for the computation of dp(n), we
introduce the input signal vectors xp(n) associated to the p-th order kernel
vector hp according to

xp(n) =

[
. . . , x(n)

p−1∏
i=1

x(n− rp,i), . . .

]T

, (7.15)

hp =
[
. . . , hrp,k

, . . .
]T
. (7.16)

The
(
Np+p−1

p

)
elements of xp(n) and hp can in principle be arranged arbitrar-

ily according to any given preferences. Of course, the elements in xp(n) and
hp have to be arranged consistently such that

dp(n) = hT
p xp(n). (7.17)

With the definitions of the vectors

xVF(n) =
[
xT

1 (n), xT
2 (n), . . . , xT

P (n)
]T
, (7.18)

hVF =
[
hT

1 , hT
2 , . . . , hT

P

]T

, (7.19)

we can finally extend the vector notation also to the computation of the overall
Volterra filter output d(n):

d(n) = hT
VF xVF(n). (7.20)

We notice that Eq. 7.20 reflects the linearity of the output d(n) with respect
to the Volterra filter coefficients which are summarized in hVF. This formal
analogy to linear filtering can be exploited in order to straightforwardly extend
adaptive algorithms known from linear adaptive filtering to Volterra filters.
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7.3.1 Application to Cascaded Structures

In the following, we look at the configuration according to Fig. 7.4 in more
detail which consists of the cascade of a Volterra filter hrp,k

followed by a
linear filter ck.

Fig. 7.4. Cascaded structure consisting of a second-order Volterra filter hr p,k fol-
lowed by a linear FIR filter ck.

First, we recall the assumption that the model of the echo path Fig. 7.2
can be simplified to the cascade of a linear filter, a second-order Volterra filter,
and another linear filter. The cascade of a linear filter followed by a Volterra
filter can be represented by a corresponding Volterra filter of the same order
but with increased memory length. Thus, the assumed simplified model of
the acoustic echo path represents a special case of the configuration shown in
Fig. 7.4.

From an efficiency point of view, one might tend to directly use an adaptive
implementation of the two cascaded units for realizing the nonlinear acoustic
echo canceller. This approach has already been proposed in [11] for acoustic
echo cancellation including nonlinearly distorting loudspeakers. However, it
is challenging to assure convergence to the optimum solution or even assure
a stable adaptation behaviour for cascaded structures. This problem has also
been observed by the authors of [11]. As a remedy, they suggest to adapt
the Volterra filter only after the linear postfilter has ’sufficiently’ converged.
In order to circumvent any sophisticated adaptation control as required for
the adaptation of cascades, we consider an equivalent Volterra model as a
parallelized realization of the cascaded structure instead. It turns out that the
DCR provides an elegant representation of such equivalent Volterra models.

As the convolution is a linear operation, the computation of the output of
thecascaded structure directly follows from Eqs. 7.1, 7.13, 7.14:

z(n) =
P∑

p=1

zp(n), (7.21)

zp(n) =
Np−1∑
rp,1=0

Np−1∑
rp,2=rp,1

· · ·
Np−1∑

rp,p−1=rp,p−2

zrp
(n), (7.22)

where the outputs zrp
(n) of the respective DCR-channel read

zrp
(n) = cn ∗ hrp,n

∗ xrp
(n)

= grp,n
∗ xrp

(n). (7.23)



216 F. Küch, W. Kellermann

We note from Eqs. 7.22, 7.23 that zp(n) can be considered as the output of
a special p-th order Volterra kernel grp,k

with input x(n), where the number
and the position of the diagonals are not changed compared to the Volterra
kernel hrp,k

. However, the length of the filter in each DCR-channel with index
vector rp is increased according to

L̃rp
= Lrp

+Nc − 1, (7.24)

where Nc denotes the length of the linear filter ck. Obviously, the correspond-
ing CCR of the kernel grp,k

has the overall memory length Np +Nc−1, where
only a corridor with respect to the main diagonal of width Np has non-zero
coefficients. The resulting region of support of the Volterra kernels, i.e., the
non-zero coefficients, is illustrated in Fig. 7.5 for the quadratic kernel and the
special case N2 = 4 and Nc = 16. Comparing Fig. 7.5 with Fig. 7.3(b), the

Fig. 7.5. Illustration of the quadratic Volterra kernel corresponding to the cascaded
structure according to Fig. 7.4 for the special case N2 = 4 and Nc = 16. Each •
corresponds to a non-zero kernel coefficient.

specific shape of the region of support becomes clear.
The reduced region of support as required for Volterra models of cascaded

structures according to Fig. 7.4, can easily be taken into account by appro-
priately modifying Eq. 7.14:

dp(n) =
Rp−1∑
rp,1=0

Rp−1∑
rp,2=rp,1

· · ·
Rp−1∑

rp,p−1=rp,p−2

drp
(n). (7.25)

The parameter Rp is used here to specify the maximum distance of a diagonal
with respect to the main diagonal. Introducing Eq. 7.12 into Eq. 7.25 yields

dp(n) =
Rp−1∑
rp,1=0

Rp−1∑
rp,2=rp,1

· · ·
Rp−1∑

rp,p−1=rp,p−2

Lrp
−1∑

k=0

hrp,k
xrp

(n− k). (7.26)

The output drp
(n) of the diagonal with index vector rp is still computed

according to Eq. 7.12, implying that the linear filter of the corresponding
channel has the memory length Lrp

= Np − rp,p−1. Choosing Rp < Np yields
the desired reduced region of support compared to the case Rp = Np (as



7 Nonlinear Acoustic Echo Cancellation 217

imposed by Eq. 7.14). The possibility to reduce the width R2 of the quadratic
kernel without impairing the echo cancellation performance of an adaptive
second-order Volterra filter is exemplified in Sec. 7.3.4 for a real acoustic echo
path.

Throughout the rest of this chapter, we always refer to the extended defin-
ition Eq. 7.26 when considering Volterra filters in DCR. Moreover, we restrict
ourselves to the case Rp ≤ Np. Then, Np still represents the memory length1

of the p-th order kernel, whereas Rp is referred to as its width. It should be em-
phasized that the distinction between Rp and Np does not imply an additional
degree of freedom for the design of Volterra filters: We only explicitly exclude
certain coefficients of the corresponding CCR which are a priori assumed to
be zero.

The number of diagonals Ndiag,p included in the p-th order kernel with
width Rp is given by

Ndiag,p =
(
Rp + p− 2
p− 1

)
. (7.27)

Note that only for p ≤ 2, i.e., for the linear and the quadratic kernel, the
width Rp equals to the number of diagonals. For the linear kernel R1 obviously
always equals one. The number of coefficients Ncoeff,p of the p-th order kernel
with memory length Np and width Rp is obtained as

Ncoeff,p =
(
Rp + p− 1

p

)
+ (Np −Rp)Ndiag,p (7.28)

with Ndiag,p according to Eq. 7.27.

7.3.2 Time-domain Adaptive Volterra Filters

The fundamental problem of adaptive Volterra filtering in acoustic echo can-
cellation is illustrated in Fig. 7.6. From Fig. 7.6 we notice that the require-

Fig. 7.6. General configuration for adaptive Volterra filtering in acoustic echo can-
cellation.

1 Strictly speaking, the memory length is Np − 1.
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ments for adaptive Volterra filtering are basically equivalent to the task of
a linear adaptive filtering in the echo cancellation context: The coefficients
ĥrp,k

(n) of the adaptive Volterra filter have to be determined such that d̂(n)
matches the output of the unknown system d(n). As already indicated in
Fig. 7.6, we assume in the following that the unknown system (i.e., the acoustic
echo path) can can be characterized by the Volterra filter coefficients hrp,k

(n).
Using the notation of Fig. 7.6, the error e(n) is defined as

e(n) = y(n) − d̂(n), (7.29)

where the output of the P -th order adaptive Volterra filter reads

d̂(n) = ĥ
T

VF(n)xVF(n). (7.30)

The coefficient vector ĥVF(n) is defined analogously to Eqs. 7.16, 7.19, but
contains the kernel coefficients ĥrp,k

(n) of the adaptive Volterra filter instead
of hrp,k

(n). The output d(n) of the unknown system is given by Eqs. 7.1,
7.26, i.e., we assume that it can be completely modeled by a P -th order
Volterra filter. In the following we additionally assume that the order P and
the memory lengths Np are equal for both, the adaptive Volterra filter, and
the unknown system.

The observed microphone signal y(n) is given by

y(n) = d(n) + b(n) + s(n), (7.31)

where d(n) represents the actual echo signal. The external distortions b(n)
and s(n) represent background noise and local speech, respectively, and are
summarized to

n(n) = b(n) + s(n). (7.32)

The residual echo ε(n) is given by

ε(n) = d(n) − d̂(n). (7.33)

Similarly to linear adaptive filtering, the LMS algorithm represents the
most commonly used adaptation algorithm for Volterra filters [27,28] mainly
because of its simplicity and robustness. This is especially important since
Volterra filters imply a huge number of coefficients to be adapted, as can be
noticed from Eq. 7.28. The update equation for the coefficient vector ĥVF(n),
applying the LMS algorithm, is given by [27]

ĥVF(n+ 1) = ĥVF(n) + µLMS(n) e(n)xVF(n). (7.34)

The step size control parameter µLMS(n) can be chosen to vary for different
coefficients, as discussed later in this section.

The standard NLMS algorithm for Volterra filters is obtained by normal-
izing the step size parameter µLMS(n) according to
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µLMS(n) =
αNLMS(n)

xT
VF(n)xVF(n)

, 0 < αNLMS(n) < 2. (7.35)

The given range for the step size αNLMS(n) indicates the range where stable
convergence can be expected [27].

Although the above normalization formally yields the NLMS algorithm for
Volterra filters, it might not always be useful in practice. From the definition
of xVF(n) in Eq. 7.18 it follows that the denominator of Eq. 7.35 is composed
of the sum over different moments of x(n), up to order 2P . In general, the
orders of magnitude of these moments significantly differ and, thus, the joint
normalization of all Volterra kernels according to Eq. 7.35 is not suitable for
higher-order Volterra filters. Considering

xT
p (n)xp(n) � max

i

{
xT

i (n)xi(n)
}
, (7.36)

we realize that the adaptation of the coefficients of the p-th order kernel almost
freezes for a joint normalization of the step size αNLMS(n).

There exist also more sophisticated algorithms for the adaptation of
Volterra filters which can be used to circumvent the inherent slow conver-
gence of the LMS algorithm. Prominent examples are the Affine Projection
Algorithm (APA) [7] or the RLS algorithm [27] which are also well known in
linear adaptive filtering [9]. Note that due to the huge number of coefficients
that are associated with higher-order Volterra filters, the APA and the RLS
algorithm are usually not realizable in practice.

There is another major difference between the matrix representation of
linear filters and the matrix representation of Volterra filters: The input vector
xVF(n) does not exhibit the tapped delay line structure of the input vector
x(n) = x1(n) as used in linear filtering. Assuming stationary input x(n), the
autocorrelation matrix

Rxx = E
{

x(n)xT(n)
}
, (7.37)

associated with the input vector x(n) for linear filters, features a Toeplitz
form, whereas this is not true for the autocorrelation matrix

RxVF xVF
= E

{
xVF(n)xT

VF(n)
}
, (7.38)

corresponding to the input vector xVF(n) of Volterra filters. Unfortunately,
computationally efficient versions of the RLS and the APA for linear adaptive
filters explicitly exploit the Toeplitz structure of Rxx [9]. Therefore, these
methods cannot be applied to adaptive Volterra filters in a straightforward
manner. Nevertheless, there are still structural features in the input vector
xVF(n) on which fast versions of the RLS algorithm for Volterra filters can
be based on, as has been shown in [25] for the second-order case.
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Adaptation Control for Second-order Volterra Filters

The performance of an adaptive algorithm strongly depends on the control
of the adaptation. This is especially true for the LMS algorithm, as it im-
plies rather slow convergence for correlated input signals. In the following,
we therefore present a coefficient-dependent adaptation control for the LMS
algorithm for second-order Volterra filters that corresponds to the approach
proposed in [20].

Since we are aiming at a coefficient-dependent step size, we consider the
LMS update equation for a single coefficient ĥrp,k

(n). From Eq. 7.34 we obtain

ĥrp,k
(n+ 1) = ĥrp,k

(n) + µrp,k
(n) e(n)xrp

(n− k). (7.39)

For the following discussion, we assume that the input x(n) is an independent,
identically distributed (IID) random process, where the probability density
function (PDF) of the amplitudes of x(n) is an even function. Additionally,
we assume that the coefficients of the adaptive Volterra filter are indepen-
dent of the input signal. The assumed properties of x(n) imply that the in-
put of the linear kernel and the output of the quadratic kernel of both, the
adaptive Volterra filter, and the unknown Volterra filter are orthogonal, i.e.,
E { y2(k)x(n− k) } = E { ŷ2(k)x(n− k) } = 0. It can be shown that then,
the optimum filter coefficients of the linear adaptive kernel ĥr1,k

(n) are equal
to the corresponding filter coefficients hr1,k

(n). Correspondingly, it can be
shown that the optimum coefficients for the quadratic kernel ĥr2,k

(n) are
given by hr2,k

(n). Thus, we introduce the coefficient errors of the linear and
the quadratic kernels according to

mrp,k
(n) = hrp,k

(n) − ĥrp,k
(n), p ∈ {1, 2}. (7.40)

Following [20], the optimality criterion for determining the optimum coefficient-
dependent step size µopt,rp,k

(n) is chosen as the mean squared error between
the actual coefficient error and the corresponding LMS update term:

Jµrp,k
(n) = E

{ [
mrp,k

(n) − µrp,k
(n) e(n)xrp

(n− k)
]2 }

, p ∈ {1, 2}.
(7.41)

As shown in [20], the optimum step size, which minimizes the cost function
Eq 7.41, is obtained as

µopt,rp,k
(n) =

E
{
mr

2
p,k

(n)
}

E
{
ε2(n) + b2(n) + s2(n)

} , p ∈ {1, 2}, (7.42)

where it has been assumed that the input x(n), the background noise b(n),
and the speech signal of the near-end talker s(n) are mutually statistically
independent processes. Interestingly, the form of the optimum step size is
identical for both kernels, which results from the linearity of the output with
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respect to the coefficients of any kernel. Considering that the error signal can
be expressed as

e(n) = ε(n) + b(n) + s(n), (7.43)

we notice that the denominator in Eq. 7.42 can be identified as the second-
order moment of the error signal e(n). Since e(n) is observable, its second-order
moment can in general be estimated reliably. However, the mean squared coef-
ficient errors E

{
mr

2
p,k

(n)
}

are not observable in practice, making a straight-
forward realization of the optimum step size impossible. Therefore, we apply
the approach proposed in [20] in order to obtain models for the estimation of
the unknown statistical terms.

For the following discussion it will be useful to distinguish between the
residual echoes associated to each single Volterra kernel, and define

εp(n) = dp(n) − d̂p(n). (7.44)

The overall residual echo for second-order Volterra filters can then be ex-
pressed by

ε(n) = ε1(n) + ε2(n). (7.45)

Note that for the assumed input signal x(n), the residual echoes of the different
Volterra kernels are orthogonal, and, thus,

E
{
ε2(n)

}
= E

{
ε21(n)

}
+ E

{
ε22(n)

}
. (7.46)

As the residual echoes εp(n) result from the misadjustment of the correspond-
ing kernel coefficients, we rewrite Eq. 7.44 for the linear and the quadratic
kernel in terms of the coefficient errors:

ε1(n) =
N1−1∑
k=0

mr1,k
(n)x(n− k), (7.47)

ε2(n) =
R2−1∑
r2,1=0

Lr2
−1∑

k=0

mr2,k
(n)xr2(n− k). (7.48)

For the considered zero-mean IID input x(n), the mean squared residual echo
of the linear kernel can then be expressed by

E
{
ε21(n)

}
=

N1−1∑
k=0

E
{
mr

2
1,k

(n)
}

E
{
x2(n− k)

}
. (7.49)

As discussed in [20], in the echo cancellation context it is reasonable to ap-
ply a corresponding approximation of the mean squared residual echo of the
quadratic kernel:

E
{
ε22(n)

}
≈

R2−1∑
r2,1=0

Lr2
−1∑

k=0

E
{
mr

2
2,k

(n)
}

E
{
xr

2
2
(n− k)

}
. (7.50)
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For a better understanding of the optimum step size, we follow [20] and in-
troduce the kernel-independent auxiliary step-size factors

αdt(n) =
E
{
ε2(n) + b2(n)

}

E
{
ε2(n) + n2(n) + s2(n)

} , (7.51)

αbn(n) =
E
{
ε2(n)

}

E
{
ε2(n) + b2(n)

} . (7.52)

Note that for the definition of αdt(n) and αbn(n), the mutual statistical inde-
pendence of the input signal, the background noise, and the near-end speech
has been used. Additionally, we introduce the kernel-dependent auxiliary step-
size factors

αεp
(n) =

E
{
ε2p(n)

}

E
{
ε21(n)

}
+ E

{
ε22(n)

} , p ∈ {1, 2}, (7.53)

where the orthogonality property according to Eq. 7.46 has been exploited.
Furthermore, we define coefficient-dependent step-size factors

αr1,k
(n) =

E
{
mr

2
1,k

(n)
}

N1−1∑
l=0

E
{
mr

2
1,l

(n)
}

E
{
x2(n− l)

} (7.54)

for the adaptation of the linear kernel. The corresponding step sizes for the
coefficients of the quadratic kernel are given by

αr2,k
(n) =

E
{
mr

2
2,k

(n)
}

R2−1∑
r2,1=0

Lr2
−1∑

l=0

E
{
mr

2
2,l

(n)
}

E
{
xr

2
2
(n− l)

}
. (7.55)

Note that the auxiliary step-size factors αr1,k
(n) and αr2,k

(n) are based on
Eq. 7.49 and the approximation in Eq. 7.50, respectively.

With the above auxiliary step sizes, the optimum step size according to
Eq. 7.42 can be approximated by a factorized version [20]:

µopt,rp,k
(n) ≈ αdt(n)αbn(n)αεp

(n)αrp,k
(n), p ∈ {1, 2}. (7.56)

The influence of the different step-size parameters on the control of the adap-
tation is discussed next.

According to its definition αdt(n) accounts for double-talk (dt) situations,
where s(n) �= 0. In the echo cancellation context it is reasonable to implement
αdt(n) as an on/off switch in combination with a double-talk detector [2], i.e.,
αdt(n) = 0 if a near-end talker is active, in order to avoid divergence of the
adaptive filter coefficients, and αdt(n) = 1, otherwise.
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The step-size factor αbn(n) controls the adaptation of the acoustic echo
canceller with respect to the distortion introduced by background noise (bn)
b(n). Methods for the estimation of the product αdt(n)αbn(n) have been thor-
oughly discussed in [26] and are not further considered here.

For an interpretation of αεp
(n) we note that the error introduced by a

misadjusted linear kernel acts as an interference for the adaptation of the
quadratic kernel, and vice versa. Hence, the step-size factors αεp

(n) can be
regarded as an adaptation control with respect to interferences caused by the
misadjusted Volterra kernels. As follows from Eq. 7.53, the computation of
αεp

(n) requires knowledge of at least the ratio of the second-order moments
of εp(n) and ε(n) which is in general not accessible. Therefore, a model for
estimating the respective second-order moments is required. More precisely,
we assume that the second-order moment of the residual echo of the linear
kernel, i.e., ε1(n), is proportionate to the output of the adaptive linear kernel,
i.e., d̂1(n). Analogously, the second-order moment of ε2(n) is assumed to be
proportionate to d̂2(n):

E
{
ε2p(n)

}
≈ γε(n)

[
δεp

+
∣∣∣d̂p(n)

∣∣∣
]
, p ∈ {1, 2}, (7.57)

where
∣∣∣d̂p(n)

∣∣∣ denotes a smoothed version of the magnitude of d̂p(n). This
estimation model can be regarded as the first term of a Taylor series expansion
of the mean squared residual echoes with respect to the magnitude of the
output of the corresponding kernel. The smoothing of the output is used to
avoid significant variations of the estimates due to strongly varying amplitudes
of the output signal. The offset term δεp

can be used in Eq. 7.57 to manipulate
the dependency of the kernel-dependent step size αεp

(n) on the corresponding
kernel output d̂p(n). Note that δεp

is required especially in the beginning of
the adaptation, where d̂p(n) = 0 if the Volterra coefficients were initialized
with zero. The proportionality factor γε(n) represents the general convergence
properties of the Volterra kernels, i.e., γε(n) decreases for a stable adaptation.
However, the actual values γε(n) are not required explicitly, as the fraction
appearing in the definition of αεp

(n) can be reduced correspondingly.
The coefficient-dependent step size αrp,k

(n) can be used to speed-up the
adaptation of coefficients that cause large coefficient errors. However, the coef-
ficient errors are not known and, therefore, we have to use models for estimat-
ing the respective second-order moments. A common assumption is that large
coefficient magnitudes also cause large error magnitudes [36]. Consequently,
we assume that the second-order moment of a certain coefficient error is pro-
portionate to the magnitude of the corresponding adaptive coefficient:

E
{
mr

2
p,k

(n)
}
≈ γm,p(n)

[
βm,p(n) +

∣∣∣ĥrp,k
(n)

∣∣∣
]
, p ∈ {1, 2}. (7.58)
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This estimation model can be considered as the first term of a Taylor series ex-
pansion of the mean squared coefficient error with respect to the magnitude of
the corresponding coefficient of the adaptive Volterra filter. The time-variant
proportionality factor γm,p(n) reflects the reduction of the magnitude of the
coefficient errors during the convergence of the adaptive filter. The actual
value of γm,p(n) does not have to be specified explicitly, as the fractions in
Eq. 7.54 and Eq. 7.55 can be reduced respectively. The parameter βm,p(n) can
be used to adjust the influence which the coefficients of the adaptive Volterra
filter have on their associated LMS update term. Note that βm,p(n) should
not equal zero in the beginning of the adaptation if all coefficients were ini-
tialized with zeroes. Otherwise, the coefficients remain at their initial values.
For the computation of Eq. 7.54 and Eq. 7.55, we additionally replace the
expectations with respect to the input by the corresponding instantaneous
values.

It should be mentioned that there is a strong link between the coefficient-
dependent step size presented above and the proportionate NLMS (PNLMS)
for second-order Volterra filters proposed in [18]: If the parameters βm,p(n)
are chosen according to

βm,1(n) =
βc,1

N1

N1−1∑
k=0

∣∣∣ĥr1,k
(n)

∣∣∣ , (7.59)

βm,2(n) =
βc,2

Ncoeff,p

R2−1∑
r2,1=0

Lr2−1∑
k=0

∣∣∣ĥr2,k
(n)

∣∣∣ , (7.60)

the PNLMS according to [18] results.

Simulations

To evaluate the performance of the step size control algorithm presented
above, we present simulation results obtained for a second-order adaptive
Volterra filter. In the experiment, the input has been wide-sense stationary
coloured noise with a power spectral density (PSD) corresponding to the long-
term PSD of speech. The nonlinear echo path has been modeled by a second-
order Volterra filter in DCR, where the memory length of the linear kernel has
been N1 = 320. To account for the cascaded nature of nonlinear acoustic echo
paths, the memory length of the quadratic kernel has been N2 = 64, while its
width is only R2 = 20. The same region of support has also been chosen for
the second-order adaptive Volterra filter. As double-talk detection algorithms
are outside the scope of this chapter, we set s(n) = 0 in the following which
implies αdt = 1. An SNR of 30 dB has been preset with respect to b(n) and
d(n). Since we are mainly interested in the improvements resulting from the
kernel-dependent and the coefficient-dependent step size parameters, a fixed
value αbn = 0.3 has been used. The performance is measured using the Echo
Return Loss Enhancement (ERLE) which is defined by
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ERLE = 10 log10

E
{
d2(n)

}
E {ε2(n)} [dB]. (7.61)

The level of nonlinear distortion has been preset such that the maximum
achievable ERLE of a purely linear approach is limited to approximately
20 dB.

In Fig. 7.7, the ERLE graphs obtained for a second-order adaptive Volterra
Filter (VF) applying two different realizations of its step size are compared to
a purely linear approach. Here, we look at the case where the step size para-

0 0.5 1 1.5 2 2.5 3
-5

0

5

10

15

20

25

30

35

E
R

LE
 in

 d
B

Iterations/10000

EOS with CA
EOS without CA
Not orthogonalized

Fig. 7.7. ERLE obtained for a second-order adaptive Volterra filter (VF) apply-
ing the LMS algorithm with the proposed coefficient-dependent step size, and the
kernel-independent NLMS, together with a linear approach for wide-sense stationary
coloured noise input.

meters αεp
(n) and αrp,k

(n) are estimated by means of the models Eq. 7.57 and
Eq. 7.58. The constant parameter δεp

of the model for the residual errors have
been chosen to δεp

= 0.001 for both kernels. For the model of the coefficient er-
rors, Eqs. 7.59 and 7.60 has been used, where βc,1 = βc,2 = 1. Note that this
choice implies the practically realizable PNLMS algorithm for second-order
Volterra filters [18]. Furthermore, Fig. 7.7 shows the ERLE-graph obtained
for the kernel-independent NLMS with a fixed step size αNLMS(n) = 0.3.
Fig. 7.7 additionally depicts the ERLE of a linear adaptive filter which has
been implemented analogously to the linear kernel of the adaptive Volterra
filter with coefficient-dependent step-size control.

As can be seen, the second-order Volterra filter with coefficient-dependent
step size clearly outperforms the corresponding Volterra filter applying a
kernel-independent NLMS algorithm. We also notice from Fig. 7.7 that the
achievable echo attenuation of the purely linear approach is limited due to the
nonlinear distortion in the echo path.
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7.3.3 Multidelay Adaptive Volterra Filters

DFT-domain approaches are very popular in linear adaptive filtering, as they
allow for an increased convergence speed, while at the same time reducing
the computational complexity [30, 38]. Corresponding DFT-domain methods
which exploit fast convolution techniques via block processing are therefore
desirable in adaptive Volterra filtering, too. For the derivation of such al-
gorithms, we can basically distinguish between two different approaches for
exploiting fast convolution methods. They are based on

• linear multidimensional filtering,
• linear multichannel filtering.

The first approach exploits the relation between linear multidimensional sys-
tems and Volterra filters in CCR [15,22]. These methods are most efficient if
the entire region of support of the Volterra kernels (i.e., Rp = Np) has to be
included. The second approach bases on the interpretation of Volterra filters
in DCR as special linear MISO systems [19, 29], as already discussed above.
The linear multidelay filter [30] applies partitioned block techniques which
can be exploited to allow for different memory lengths for each kernel in the
corresponding generalization to Volterra filters. This is especially attractive
with acoustic echo cancellation for nonlinear loudspeaker systems, where it
has been observed that the required memory length for the linear kernel is
larger than that of the quadratic kernel [43]. Therefore, the restriction to a
uniform DFT length for all Volterra kernels, as imposed in the DFT-domain
approaches according to [15, 29], leads to inefficient system configurations,
making the approaches [19,22] more attractive for the acoustic echo cancella-
tion application.

The DFT-domain algorithm presented in this section corresponds to [19]
and represents an extension of the linear adaptive multidelay filter according
to [30] to Volterra filters in DCR. An advantage of the resulting multidelay
Volterra filter is that it preserves the flexibility with respect to choosing a
desired region of support, as featured by the DCR.

Following the linear approach [30], a block-partitioned version of Eq. 7.13
is obtained by partitioning the linear filter hrp,k

into Brp
blocks of length

N . In the following we assume that the memory lengths Np of all Volterra
kernels are integer multiples of the partition length N . From the definition of
Lrp

in Eq. 7.10 we recall that the memory lengths of the filters in different
channels are in general not uniform but can take on any value in the range
Np − Rp < Lrp

< Np. Consequently, the number of partitions Brp
has to be

chosen depending on the memory length Lrp
of the corresponding diagonal

such that (
Brp

− 1
)
N < Lrp

≤ Brp
N, Brp

, N ∈ N. (7.62)

Aiming at a partitioned block version of the overlap/save method, we intro-
duce zero-padded partitions of memory length M = 2N according to
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hrp,b,l
=

{
hrp,bN+l

, 0 ≤ l < N ∧ 0 ≤ b < Brp
,

0, N ≤ l < M ∧ 0 ≤ b < Brp
.

(7.63)

It is important to note that in addition to the explicit zero-padding for N ≤
l < M , the definition Eq. 7.63 also includes an implicit zero-padding in case
of Lrp

< Brp
N . For the last partition with index b = Brp

−1, we additionally
have to regard that

hrp,bN+l

∣∣
b=Brp

−1
= 0, for l ≥ Lrp

− (Brp
− 1)N. (7.64)

The partitioning and the zero-padding of the channel filters hrp,k
according to

Eq. 7.63 is illustrated in Fig. 7.8 for Brp
= 6, where hrp,b,l

is shown for b = 1
and b = 5. Note that only the shaded areas contain nonzero coefficients. To

Fig. 7.8. Illustration of the partitioning according to Eq. 7.63 for Brp = 6 and
Lrp

≤ Brp
N . The implicit zero-padding according to Eq. 7.64 occurs for b = 5.

exemplify the implicit zero-padding for b = Brp
−1 according to Eq. 7.64, the

memory length Lrp
has been chosen smaller than Brp

N .
The input signal of each partition hrp,b,l

is defined as

xrp,b(n) = xrp
(n− bN). (7.65)

Introducing the definitions Eq. 7.63, Eq. 7.65 into Eq. 7.13 yields a block-
partitioned version for computing the output of the channel rp:

drp
(n) =

Brp
−1∑

b=0

hrp,b,n
∗ xrp,b(n). (7.66)

Furthermore, we introduce a block-time index ν and signal blocks of length
M = 2N for the input signals of each partition according to

xrp,b(ν, κ) = xrp,b(νL+ κ−N), for 0 ≤ κ < M, (7.67)

in order to account for the block processing of the overlap/save method. Fol-
lowing [30], the block time shift L, representing the number of new samples
of successive signal blocks, is defined using an overlap factor ρ, so that
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L =
N

ρ
, L ∈ N. (7.68)

Introducing the block time index ν into Eq. 7.66 yields

drp
(ν, κ) =

Brp
−1∑

b=0

hrp,b,κ
∗ xrp,b(ν, κ), (7.69)

where the convolution is performed with respect to κ. The DFT-domain cor-
respondence of Eq. 7.69 is given by

Drp
(ν,m) =

Brp
−1∑

b=0

Hrp,b,m
Xrp,b(ν,m), (7.70)

whereHrp,b,m
andXrp,b(ν,m) denote the M-point DFT of hrp,b,l

and xrp,b(ν, κ),
respectively. Analogously to the time domain, the computation of the DFT-
domain output D(ν,m) of the Volterra filter is performed according to

Dp(ν,m) =
Rp−1∑
rp,1=0

Rp−1∑
rp,2=rp,1

· · ·
Rp−1∑

rp,p−1=rp,p−2

Drp
(ν,m), (7.71)

D(ν,m) =
P∑

p=1

Dp(ν,m). (7.72)

Let d̆(ν, κ) represent the M -point inverse DFT of Dp(ν,m), i.e.,

d̆(ν, κ) = F−1
M

{
D(ν,m)

}
, (7.73)

where F−1
M {·} denotes the M -point inverse DFT. Taking the relation between

circular and linear convolution into account [34], we notice that the first N
elements of d̆(ν, κ) are corrupted by time-domain aliasing, while the last N
elements of d̆(ν, κ) are equal to the desired output signal block of the P -th
order Volterra filter at block time index ν. The output sequence d(n) is finally
obtained by applying the overlap/save method [34], i.e., by discarding the first
N elements of d̆(ν, κ) and setting

d(n) = d̆(ν, n− νL+N), νL ≤ n < νL+N , (7.74)

for the last N elements of d̆(ν, κ). Note that for an overlapping factor ρ > 1,
only the last L elements represent new values of d(n), whereas the remaining
N − L elements have already been computed in previous block time steps.
However, choosing ρ > 1 is beneficial for the adaptive implementation of the
Volterra filter, as then, the adaptation of the kernel coefficients is performed
ρ times more frequently, resulting in an increased convergence speed of the
adaptive algorithm.
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It should be mentioned that for the special case that all kernels have
the same memory length (i.e., Ni = Nj) and no partitioning is applied (i.e.,
Brp

= 1), the above algorithm reduces to the approach presented in [29].
The following discussion of the adaptation of the multidelay Volterra filter

is based on the notation according to Fig. 7.6. The DFT-domain output of the
adaptive Volterra filter ĥrp,k

(n) is computed analogously to Eqs. 7.70–7.72:

D̂rp
(ν,m) =

Brp
−1∑

b=0

Ĥrp,b,m
(ν)Xrp,b(ν,m), (7.75)

D̂p(ν,m) =
Rp−1∑
rp,1=0

Rp−1∑
rp,2=rp,1

· · ·
Rp−1∑

rp,p−1=rp,p−2

D̂rp
(ν,m), (7.76)

D̂(ν,m) =
P∑

p=1

D̂p(ν,m), (7.77)

where Ĥrp,b,m
(ν) denotes the DFT-domain correspondence of the adaptive

Volterra filter coefficients ĥrp,k
(n). Furthermore, we define the DFT-domain

error signal
Ĕ(ν,m) = D(ν,m) − D̂(ν,m). (7.78)

As indicated by the symbol ,̆ Ĕ(ν,m) results from using the output of the
Volterra filter based on the circular convolution according to Eq. 7.73, in-
stead of the output based on linear convolution. Therefore, we introduce the
windowed time-domain error signal according to [30]

e(ν, κ) =
{

0, 0 ≤ κ < N,
ĕ(ν, κ), N ≤ κ < M,

(7.79)

where ĕ(ν, κ) denotes the M -point inverse DFT of Ĕ(ν,m). The adaptation
of the DFT-domain coefficients Ĥrp,b,m

(ν) is then based on the DFT-domain
correspondence of e(ν, κ), i.e.,

E(ν,m) = FM

{
e(ν, κ)

}
. (7.80)

Regarding [19], the LMS-type update equation for the DFT-domain adaptive
coefficients Ĥrp,b,m

(ν) is given by

Ĥrp,b,m
(ν+1) = Ĥrp,b,m

(ν)+µp(ν,m)FM

{
wrp,b,l

F−1
M

{
E(ν,m)Xr

∗
p,b(ν,m)

}}
.

(7.81)
The time-domain window function wrp,b,l

is used to explicitly enforce the zero-
padding of the time-domain partitions according to Eq. 7.63. For the definition
of wrp,b,l

we have to distinguish between different values of the partition index
b. In case of b < Brp

− 1, the window function wrp,b,l
is defined by
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wrp,b,l
=

{
1, 0 ≤ l < N ∧ b < Brp

− 1,
0, N ≤ l < M ∧ b < Brp

− 1, (7.82)

whereas in case of b = Brp
− 1 we use the definition according to

wrp,b,l
=

{
1, 0 ≤ l < Lrp

∧ b = Brp
− 1,

0, Lrp
≤ l < M ∧ b = Brp

− 1. (7.83)

The differences in the definition of wrp,b,l
in dependence on the partition index

b is due to the implicit zero-padding of ĥrp,b,l
(ν) resulting from Eq. 7.64. Due

to the these time-domain constraints included in the update equation, Eq. 7.81
is commonly referred to as constrained adaptation algorithm.

For an implementation of the adaptive multidelay Volterra filter, the re-
quired distinction with respect to the definition of the time-domain window
function wrp,b,l

is rather inconvenient. Therefore, it is beneficial to quantize
the filter lengths Lrp

to integer multiples of the partition length N . In this
case, wrp,b,l

can be replaced by the single window function

wl =
{

1, 0 ≤ l < N,
0, N ≤ l < M,

(7.84)

which is then used for the adaptation of all partitions of each channel.

Step-size Normalization and Control for Second-Order Volterra Filters

A major advantage of linear DFT-domain adaptive filtering is the possibility
to apply a frequency-dependent normalization of the step size [30, 38]. This
approach is motivated by the approximate orthogonality property of the DFT,
implying

E
{
Xr

∗
1,b(ν, i)Xr1,b(ν, j)

}
≈ 0, for i �= j, (7.85)

if the DFT length M is sufficiently large [10]. In the following we assume that
the corresponding orthogonality property also holds for the input of both,
linear and nonlinear channels:

E
{
Xr

∗
p,a(ν, i)Xsq,b(ν, j)

}
≈ 0, for i �= j, ∀ rp, sq, a, b, (7.86)

where rp and sq denote index vectors of certain diagonals of the Volterra filter
and a and b denote a certain partition of these diagonals. It then directly
follows from Eq. 7.86 that the normalization of the step size can be performed
DFT bin-wise in case of adaptive multidelay Volterra filters, too. In the echo
cancellation context it is reasonable to assume that the input signal of the
linear kernel and the input signals of the diagonals of the quadratic kernel are
orthogonal, implying

E
{
Xr

∗
1,a(ν,m)Xr2,b(ν,m)

}
= 0, ∀ a, b. (7.87)
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It can be shown that this orthogonality property is always fulfilled if the
input signal x(n) is a so-called spherically invariant random process (SIRP).
Since SIRPs represent a realistic model for bandlimited speech [4], Eq. 7.87
in general holds in the echo cancellation application. Thus, the normalization
of the step size µp(ν,m) in Eq. 7.81 can be performed frequency- and kernel-
dependently:

µp(ν,m) =
αp(ν,m)
SX,p(ν,m)

, p ∈ {1, 2} (7.88)

Following the linear approach [39], the normalization factor SX,1(ν,m) of the
linear kernel partitions is computed recursively according

SX,1(ν,m) = λSX,1(ν,m) + (1 − λ)
Br1

−1∑
b=0

∣∣Xr1,b(ν,m)
∣∣2 , (7.89)

with the forgetting factor λ in the range 0 ≤ λ < 1. The normalization factor
SX,2(ν,m) used for the adaptation of the quadratic kernel is given by

SX,2(ν,m) = λSX,2(ν,m) + (1 − λ)
R2−1∑
r2,1=0

Br2
−1∑

b=0

∣∣Xr2,b(ν,m)
∣∣2 . (7.90)

The step-size normalization according to Eq. 7.88 implies that αp(ν,m)
has to control the adaptation with respect to the local distortions such as
double-talk and background noise. Additionally, it has to take the interaction
between different Volterra kernels into account, as a misadjusted linear kernel
affects the adaptation of the quadratic kernel and vice versa. As in the time
domain, we apply the factorization method for implementing αp(ν,m) and
introduce

αp(ν,m) = αdt(νL) αbn(ν,m) αEp
(ν,m). (7.91)

As in the time domain, step-size factor αdt(n) accounts for double-talk situ-
ations and has already been defined in Eq. 7.51. It should be mentioned that
the double-talk detection used to implement αdt(νL) as an on/off switch, can
also be performed in the DFT domain [2].

If b(n) represents coloured noise, the level of distortion introduced by the
background noise is in general different for each DFT bin. In this case it is ad-
vantageous to implement αbn(ν,m) individually for each DFT bin. Regarding
the derivation for linear DFT-domain adaptive filters in [31], the DFT-domain
correspondence of Eq. 7.51 is given by

αbn(ν,m) =
E
{ ∣∣∣E(ν,m)

∣∣∣
2
}

E
{ ∣∣∣E(ν,m)

∣∣∣
2
}

+ E
{ ∣∣∣B(ν,m)

∣∣∣
2
} , (7.92)
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where B(ν,m) denotes the DFT-domain representation of the background
noise b(n) at block time index ν, and E(ν,m) is the DFT-domain correspon-
dence of the residual echo ε(n). Methods for estimating the statistical terms
required for computing αbn(ν,m) are also presented in [31] and, thus, are not
further considered here.

Analogously to its time-domain counterpart Eq. 7.53, the kernel-dependent
auxiliary step size αEp

(ν,m) is given by

αEp
(ν,m) =

E
{ ∣∣∣Ep(ν,m)

∣∣∣
2
}

E
{ ∣∣∣E1(ν,m)

∣∣∣
2
}

+ E
{ ∣∣∣E2(ν,m)

∣∣∣
2
} , p ∈ {1, 2}. (7.93)

For estimating the mean squared magnitude of the DFT-domain residual echos
Ep(ν,m), it is possible to use the proportionality model according to Eq. 7.57
in its DFT-domain version:

E
{ ∣∣∣Ep(ν,m)

∣∣∣
2
}

≈ γE(ν,m)
[
δEp

+
∣∣∣D̂p(ν,m)

∣∣∣
]
, p ∈ {1, 2}, (7.94)

where |D̂p(ν,m)| represents a smoothed version of the magnitude of D̂p(ν,m).
The meaning of the remaining parameters in Eq. 7.94 is equivalent to the cor-
responding parameters of the time-domain model Eq. 7.57. Simulation results
indicate that in general the even simpler assumption of uniform mean squared
residual echos, i.e,

E
{ ∣∣∣E1(ν,m)

∣∣∣
2
}

≈ E
{ ∣∣∣E2(ν,m)

∣∣∣
2
}

(7.95)

can be used without loss in performance. Then, Eq. 7.94 reduces to a kernel-
independent factor

αEp
(ν,m) ≈ 1

2
, p ∈ {1, 2}, (7.96)

implying a kernel-independent step size αp(ν,m).
It should finally be mentioned that applying a coefficient-dependent DFT-

domain step-size control does not further improve the performance of the
adaptive multidelay Volterra filter. This results from the fact that the DFT
already yields a sufficient decoupling of the adaptation of the kernel coeffi-
cients for different DFT bins.

Simulations

In the following we present simulation results in order to evaluate the perfor-
mance of adaptive multidelay Volterra filters in the acoustic echo cancellation
context. The nonlinear echo path has been modeled by a second-order Volterra
filter in DCR with a memory length of N1 = 320 taps for the linear kernel
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and a memory length of N2 = 64 taps for the quadratic kernel. The width of
the quadratic kernel has been set to R2 = 20. The input signal has been wide-
sense stationary coloured Gaussian noise. There has been no active near-end
talker, i.e., s(n) = 0, and the variance of the additive white noise signal b(n)
has been chosen such that an SNR of 30 dB is obtained with respect to the
variance of the echo signal d(n).

The adaptive multidelay Volterra filter (MDVF) has been implemented
with a partition length of N = 64 and an overlap factor ρ = 4. The number
of partitions of the linear kernel has been Br1

= 5, implying N1 = 320. In
accordance with the echo path model, the memory length and the width of the
quadratic kernel have been chosen to N2 = 64 and R2 = 20, respectively. Since
the block length N matches the memory length of the quadratic kernel, no
partitioning is applied to any diagonal of the quadratic kernel (implyingBr2

=
1). The adaptation of the multidelay Volterra filter has been performed using
the kernel-dependent normalization of the step size according to Eq. 7.88,
where the fixed, kernel-independent value αp(ν,m) = 0.3 has been used for
both kernels.

Additionally, we consider a time-domain adaptive second-order Volterra
filter that has the same region of support as the multidelay Volterra filter
described above. The adaptation has been controlled applying the coefficient-
dependent step size as already used for the simulations shown in Fig. 7.7.

The echo cancellation performance of the different approaches is illus-
trated in Fig. 7.9, where the ERLE obtained for a linear adaptive multidelay
filter (MDF) that corresponds to the linear kernel of the adaptive multide-
lay Volterra filter is shown, too2. As can be clearly noticed, the convergence
speed of the DFT-domain Volterra filter is significantly faster compared to
the corresponding time-domain approach. This result shows the capability
of DFT-domain methods to improve the convergence behaviour of adaptive
Volterra filters. It can also be seen from Fig. 7.9 that the performance of the
linear approach is clearly limited due to the nonlinear distortion in the echo
path.

7.3.4 Application to Real Systems

Second-order Volterra filters have been introduced as a model for the nonlinear
behaviour of loudspeakers. In the following we examine the suitability of this
Volterra filter model when applied to real acoustic echo paths.

The experimental approach is divided into two parts, i.e., signal acquisition
followed by simulations with recorded data: First, the echo signal is recorded
in a room with low reverberation that also exhibits a low level of background
noise. The actual experiments with respect to acoustic echo cancellation are
then performed using the stored audio files of the input signal and the cor-
responding recording of the microphone signal. To provide an increased level
2 Note that due to the definition of the ERLE in Eq. 7.61, the ERLE-values can

be larger than the SNR with respect to the echo signal and the noise signal.
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Fig. 7.9. ERLE obtained for a second-order adaptive multidelay Volterra filter
(MDVF), a time-domain second-order adaptive Volterra filter, and a linear adaptive
multidelay filter (MDF) for wide-sense stationary coloured noise input.

of background noise, an artificial noise signal is added to the recording of the
microphone signal.

The loudspeaker used in the following experiments is a small electro-
dynamic loudspeaker with a diameter of 3.5 centimeters that is mounted in a
closed box with a volume of about one liter. During the measurements it has
been assured that the amplifier of the loudspeaker does not introduce signifi-
cant nonlinear distortion. This allows for the desired isolated analysis of the
nonlinear behaviour of the loudspeaker.

The coefficients of the linear and the quadratic kernels of the adaptive
Volterra filters obtained from measurements of the considered loudspeaker
with white Gaussian noise input are shown in Fig. 7.10. For illustrative rea-
sons, we have used the Cartesian coordinate representation of the quadratic
kernel, here. The zero-coefficients of the quadratic kernel corresponding to the
indices k2,2 < k2,1 result from the triangular representation of the Volterra fil-
ter according to Eq. 7.2. Note that the zero-valued coefficients for small values
of k2,1 correspond to the initial delay of the linear kernel. This initial delay
results from the propagation of the echo signal on the direct path from the
loudspeaker to the microphone. We further notice that the magnitudes of the
quadratic kernel coefficients decay rapidly for increasing values of the coeffi-
cient indices k2,1 and k2,2. Nevertheless, the coefficients of the quadratic kernel
have nonnegligible amplitudes within a large region in the (k2,1, k2,2)-plane
which confirms that the loudspeaker nonlinearities can not be considered as
memoryless.

For the experimental results shown in Fig. 7.11, a speech signal sampled
at 8 kHz has been used as input. The nonlinear echo canceller has been imple-
mented as a second-order adaptive MDVF with memory lengths N1 = 320 for
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Fig. 7.10. Coefficients of the linear and quadratic Volterra kernels in Cartesian
coordinate representation obtained from measurements in a room with low rever-
beration.

the linear kernel and N2 = 64 for the quadratic kernel. The DFT length has
been chosen to M = 128, implying that no partitioning has been applied to
the quadratic kernel, whereas the linear kernel has been divided into B1 = 5
partitions. To achieve faster convergence, an overlap factor of ρ = 4 has been
used. The adaptation is performed according to Eq. 7.81, where the kernel-
dependent normalization is applied. For both kernels, the normalized step size
has been fixed to αp(ν,m) = 0.3. For the simulation, a white Gaussian noise
signal has been added to the recording of the microphone signal. The vari-
ance of the noise has been adjusted to provide an SNR of 30 dB relative to the
microphone signal. The ERLE values obtained for the different kernel widths
R2 = N2 = 64 and R2 = 15 are shown in Fig. 7.11. For comparison, the
result of a linear DFT-domain adaptive filter that corresponds to the linear
kernel of the Volterra filters is given, too. As can be seen from Fig. 7.11, the
performance of the purely linear approach is severely affected by the nonlin-
ear distortion caused by the small-sized loudspeaker. We further notice that
a remarkable increase of the echo attenuation can be achieved by both im-
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Fig. 7.11. ERLE obtained for second-order adaptive MDVFs with different width
of the quadratic kernel together with the speech input. For comparison, the ERLE
of a corresponding linear approach is shown, too.

plementations of the second-order Volterra filter. Especially during periods of
high excitation levels, the adaptive MDVFs are able to improve the ERLE by
5 to 10 dB.

The DCR of Volterra filters has been motivated by its suitability to ef-
ficiently represent the cascaded structure that has been used as a simplified
model for the acoustic echo path in case of nonlinearly distorting loudspeak-
ers. The possibility to reduce the region of support of the adaptive Volterra
filter without impairing the performance of the echo canceller is also shown
in Fig. 7.11: The width of the quadratic kernel can be reduced to R2 = 15
without any significant loss in achievable echo attenuation. The reduction of
R2 implies that the number of coefficients of the quadratic kernel is consid-
erably decreased from Ncoeff,2 = 2080 to Ncoeff,2 = 855 in case of using only
R2 = 15 diagonals instead of R2 = 64. Accordingly, the MDVF with reduced
region of support increases the computational complexity compared to the
linear approach only by a factor of four, whereas in case of R2 = 64 a factor
of thirteen results. Although not shown here, a further decrease of the width
of the quadratic kernel yields a significant reduction of the achievable echo
attenuation.

The experimental results according to Fig. 7.11 confirm the capability
of second-order adaptive Volterra filters to cope with nonlinearly distorting
loudspeakers. Furthermore, they illustrate that the advantageous structural
features of the DCR allow for an efficient representation of the corresponding
nonlinear acoustic echo path and according computational savings.



7 Nonlinear Acoustic Echo Cancellation 237

7.4 Power Filters

The nonlinear filters considered in this section are called power filters. They
differ from general Volterra filters as they do not include nonlinear combina-
tions of input samples taken at different time instances, while still representing
a nonlinear system with memory. As shown later in this section, power filters
represent a parallelized approximation of the echo path model according to
Fig. 7.2 if the Volterra filter (SVF) is discarded. In other words, power filters
represent a suitable approximation of the acoustic echo path if the nonlinear
audio components can be considered as memoryless.

The block diagram shown in Fig. 7.12 illustrates the multichannel structure
of a P -th order power filter. The input signal x(n) is passed into P different

Fig. 7.12. Block diagram of a P -th order power filter.

channels. In the p-th channel, the input sample x(n) is taken to the p-th power,
and then passed through a linear filter h(p)

k . The overall output d(n) of the
power filter is obtained by the summation over all channel outputs d(p)(n):

d(n) =
P∑

p=1

d(p)(n). (7.97)

The output of the p-th channel results from the linear convolution of xp(n)
with the filter coefficients h(p)

k , i.e.,

d(p)(n) =
Np−1∑
k=0

h
(p)
k xp(n− k). (7.98)

Obviously, power filters can be interpreted as linear MISO systems, where
the input of the p-th channel is given by the p-th power of x(n). Comparing
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Eq. 7.98 with Eq. 7.26, we notice that there is a strong relation between
power filters and Volterra filters in diagonal coordinate representation: The
p-th channel of a power filter corresponds to the main diagonal of a p-th order
Volterra kernel in DCR. Thus, power filters can be considered as a special
type of Volterra filters in DCR, where all kernels have width Rp = 1. Setting

h
(p)
k = hrp,k

∣∣∣
rp,k

=[k,k,...,k]T
(7.99)

shows the equivalency of Eq. 7.98 and Eq. 7.26 in case of Rp = 1.
For compactness, we rewrite Eq. 7.98 in vector notation:

d(p)(n) = h(p)Tx(p)(n), (7.100)

where the input vector x(p)(n) and the coefficient vector h(p) are defined by

x(p)(n) = [xp(n), xp(n− 1), . . . , xp(n−Np + 1)]T , (7.101)

h(p) =
[
h

(p)
0 , h

(p)
1 , . . . , h

(p)
Np−1

]T

. (7.102)

The DFT-domain implementation of power filters can in principle be ob-
tained from Section 7.3.3 for the special case Rp = 1. For presentational
convenience in upcoming sections, we assume in the following that no parti-
tioning is applied to the channel filters h(p)

k . The block length N is then chosen
according to the maximum memory length of all channels, i.e.,

N = max
p

Np. (7.103)

The length of the DFT is M = 2N . The DFT-domain input vector

X(p)(ν) =
[
X(p)(ν, 0), X(p)(ν, 1), . . . , X(p)(ν,M − 1)

]T

(7.104)

corresponding to the time-domain input vector xp(n) of the p-th channel is
obtained from

X(p)(ν) = F M×M [xp(νL−N), xp(νL−N + 1), . . . , xp(νL+N − 1)]T ,
(7.105)

where ν represents the block time index n = νL. In Eq. 7.105, F M×M is
defined as the M×M DFT matrix which has elements of the form e−j2πκm/M .
The block time shift L = N/ρ has been introduced in Eq. 7.68. The DFT-
domain coefficient vector corresponding to the p-th channel is given by

H(p) = F M×M

[
h(p)T 0T

(M−Np)×1

]T

. (7.106)

The DFT-domain representation for the output D(p)(ν) of the p-th channel
is given by
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D(p)(ν) = diag
{

H(p)
}

X(p)(ν). (7.107)

As in the time domain, the overall DFT-domain output vector D(ν) is finally
obtained by the summation over all channel outputs:

D(ν) =
P∑

p=1

D(p)(ν). (7.108)

The relation between the DFT-domain output vector D(ν) (of length M) and
the corresponding time-domain output block

d(ν) = [d(νL), d(νL+ 1), . . . , d(νL+N − 1)]T (7.109)

of length N results from the overlap/save method and reads

d(ν) =
[
0N×N IN×N

]
F−1

M×M D(ν). (7.110)

Here, 0N×N represents the N ×N zero matrix and IN×N denotes the N ×N
identity matrix. Note that the matrix notation Eq. 7.110 corresponds to the
element-wise notation of the overlap/save method according to Eqs. 7.73 and
7.74.

The discussion of power filters in the sequel is organized as follows: The
application of adaptive power filters to nonlinear acoustic echo cancellation is
motivated in Section 7.4.1 by showing that for certain applications the nonlin-
ear echo path can be approximated by power filters. Orthogonalized versions
of power filters in both, time domain and frequency domain are introduced in
Section 7.4.2 in order to provide better performance of corresponding adaptive
implementations. In Section 7.4.3, we apply adaptive orthogonalized power fil-
ters to real audio systems, including a nonlinear amplifier and the nonlinear
loudspeaker of a mobile phone.

7.4.1 Application to Cascaded Structures

In the following we consider the cascaded structure shown in Fig. 7.13. It

Fig. 7.13. Block diagram of the considered nonlinear cascaded structure.

consists of the cascade of a linear filter wk, a memoryless nonlinearity, and
a second linear filter ck. Comparing Fig. 7.13 with the model of the acoustic
echo path according to Fig. 7.2, we notice that these two cascaded structures
are equivalent if the Volterra filter (SVF) representing the nonlinear behaviour
of the loudspeaker is discarded in Fig. 7.2. In practice, there are two cases,
where Fig. 7.13 in fact models the nonlinear acoustic echo path well:
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• Loudspeakers can be regarded as almost linear if the required output sound
level is well below the maximum output level. Then, the only source of
nonlinear distortion is given by the amplifier, and the model of the acoustic
echo path reduces to Fig. 7.13.

• The nonlinear behaviour of miniaturized loudspeakers operating close to
the maximum level can be modeled sufficiently well by a memoryless satu-
ration characteristic [23]. If both, the nonlinearity of the amplifier and the
nonlinear characteristic of the loudspeaker are approximated by a trun-
cated Taylor series expansion, their cascade can be modeled by a single
Taylor series expansion, too. Again, the simplified model of the echo path
according Fig. 7.13 results.

Note that the model according to Fig. 7.13 basically coincides with the model
for the nonlinear echo path proposed in [32]. However, in [32] the authors use
a continuously differentiable saturation characteristic based on a parametric
function as an alternative model for the Taylor series expansion used here.

Using the notation given in Fig. 7.13, the output v(n) of the memoryless
nonlinearity yields

v(n) =
P∑

p=1

ap u
p(n), (7.111)

where ap denote the coefficients of the truncated Taylor series expansion of the
nonlinearity. The overall output z(n) of the nonlinear cascade is then given
by

z(n) =
P∑

p=1

Nc−1∑
k=0

apck u
p(n− k), (7.112)

where Nc denotes the filter length of ck. Comparing Eq. 7.112 with Eq. 7.97
and Eq. 7.98 shows that z(n) can be considered as the output of a P -th
order power filter, having u(n) as input. The coefficients of the linear filter
associated to the p-th channel are obviously given by c

(p)
k = apck. Thus, we

can rewrite Eq. 7.112 using the power filter model:

z(n) =
P∑

p=1

z(p)(n), (7.113)

z(p)(n) =
Nc−1∑
k=0

c
(p)
k up(n− k). (7.114)

Note that this interpretation of the computation of z(n) corresponds to [23],
where power filters are considered as parallelized implementation of the cas-
cade of a memoryless nonlinearity and a linear filter.

Let us now consider the computation of the terms up(n) which are re-
quired for computing z(p)(n). As u(n) is the output of the linear filter wk

with memory length Nw, we obtain
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up(n) =
Nw−1∑
k1=0

Nw−1∑
k2=0

· · ·
Nw−1∑
kp=0

p∏
i=1

wki
x(n− ki). (7.115)

Due to the commutativity of the product terms in
∏p

i=1 wki
x(n− ki), we can

rewrite Eq. 7.115 by changing the lower limits on its right hand side:

up(n) =
Nw−1∑
k1=0

Nw−1∑
k2=k1

· · ·
Nw−1∑

kp=kp−1

Γ (k1, k2, . . . , kp)
p∏

i=1

wki
x(n− ki), (7.116)

where Γ (k1, k2, . . . , kp) denotes the number of possible distinct permutations
of the indices k1, k2, . . . , kp. Comparing Eq. 7.116 with Eq. 7.2 we notice that
up(n) can be considered as the output of a specific p-th order Volterra kernel.
The coefficients wkp

of the corresponding Volterra kernel are obtained by
equating wkp

= Γ (k1, k2, . . . , kp)
∏p

i=1 wni
. From the results in Section 7.3.1 it

follows that the configuration according to Fig. 7.13 can exactly be represented
by an appropriately chosen P -th order Volterra filter in DCR having memory
length of Nw + Nc − 1 and width Nw. Note that the illustration in Fig. 7.5
can also serve as an example for the region of support of the corresponding
quadratic kernel if we set Nw = 4 and Nc = 16. In general, such a Volterra
model for acoustic echo paths is not practicable due to the enormously large
required region of support of higher order kernels as can be noticed from
Eq. 7.28. Thus, we look for an approximation of the equivalent Volterra filter
by a corresponding power filter. For illustrative reasons, we decompose up(n)
into two parts:

up(n) = u(p)(n) + ures,p(n), (7.117)

where, the first term on the right hand side of Eq. 7.117 is defined by

u(p)(n) =
Nw−1∑
k=0

wp
k x

p(n− k), (7.118)

i.e., it results from linear filtering of xp(n) with the coefficients wp
k. Note that

u(p)(n) represents the output of the main diagonal of the p-th order Volterra
kernel corresponding to Eq. 7.116. Discarding the residual term ures,p(n) in
Eq. 7.117 yields an approximation for the computation of z(p)(n) according
to

z(p)(n) ≈
Nc−1∑
k=0

c
(p)
k u(p)(n− k). (7.119)

The approximation underlying Eq. 7.119 is illustrated in Fig. 7.14. As can be
seen, the cascade of the linear filter wk and a p-th order potentiator is replaced
by the cascade of the potentiator followed by a linear filter with coefficients wp

k.
Using Fig. 7.5, this approximation can be illustrated for p = 2: All coefficients
of the quadratic Volterra kernel are discarded expect for those lying on the
main diagonal r2,1 = 0. Note that the approximation according to Fig. 7.14
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Fig. 7.14. Illustration of the approximation applied in Eq. 7.119.

represents an equality if the prefilter wk is only a single delay. In this case,
the model of the echo path according to Fig. 7.13 can be simplified to a
corresponding cascade of a memoryless nonlinearity followed by a linear filter
as proposed in [42]. Obviously, Eq. 7.119 exactly holds for the linear channel.

In case of the approximation Eq. 7.119, z(p)(n) can be interpreted as the
output of the cascade of the linear filters c(p)

k and wp
k, having xp(n) as input.

If we finally introduce Eq. 7.118 in Eq. 7.119, we obtain the desired approxi-
mation of the nonlinear cascaded structure by a corresponding power filter:

z(p)(n) ≈
Ng−1∑
k=0

g
(p)
k xp(n− k), (7.120)

where the coefficients g(p)
k of the power filter are given by

g
(p)
k =

Nc−1∑
l=0

c
(p)
l wp

k−l. (7.121)

The memory length of g(p)
k is Ng = Nc +Nw − 1.

The approximation of the nonlinear echo path model according to Fig. 7.13
using power filters can be regarded as a compromise between model accuracy
and convergence behaviour of a corresponding adaptive implementation: The
authors of [32] propose to realize the echo canceller by applying the same
cascaded structure as used for the echo path model. However, it is challenging
to assure convergence to the optimum solution or even assure stable adap-
tation behaviour for cascaded structures. This is especially true for the case
that multiple linear filters are involved. The improvements with respect to
convergence properties which should result from the inherent parallel nature
of power filters are only achieved if a mutual orthogonalization of the channel
inputs xp(n) is applied.

The approximation of Fig. 7.13 by power filters also represents a compro-
mise between an exact model of the echo path and the approximation proposed
in [42]. While [42] completely discards the prefilter, the power filter model in-
cludes part of the influence of wk on the echo signal, as implied by Eq. 7.121.
Experimental results indicate, however, that this increase in model accuracy
does not improve the performance of corresponding adaptive implementations
with respect to achievable echo attenuation.

Note that power filters realize the linear component of the echo path with
only one single linear filter, whereas the approach [32] implicitly uses the
cascade of two. This is an important property, since acoustic echo paths are
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usually only weakly nonlinear, i.e., the major contribution to the echo sig-
nal results from linear filtering of the input. Adaptive power filters therefore
circumvent convergence problems that can not be excluded with adaptive
structures that consist of the cascade of multiple linear filters.

7.4.2 Adaptive Orthogonalized Power Filters

The actual goal of the considerations presented in this section is the derivation
of efficient adaptive implementations of power filters for their application to
acoustic echo cancellation. The main obstacle to this is here that the input
signals of the different channels of power filters, i.e., x(n), x2(n), . . . , xP (n)
are not mutually orthogonal. Therefore, a direct adaptive implementation of
the power filter structure according to Fig. 7.12 suffers from slow convergence
as the adaptation of different channels interacts. To improve the performance
of adaptive power filters, we discuss corresponding orthogonalized versions in
the following.

Orthogonalization of the Input Signals

Following [23], we introduce a new set of mutually orthogonal input signals
x

(p)
o (n) according to

x(1)
o (n) = x(n), (7.122)

x(p)
o (n) = xp(n) +

p−1∑
i=1

qp,i x
i(n), 1 < p ≤ P. (7.123)

The orthogonalization coefficients qp,i are chosen such that

E
{
x(i)

o (n)x(j)
o (n)

}
= 0, for i �= j. (7.124)

A well-known approach for determining the orthogonalization coefficients qp,i

is given by the Gram-Schmidt orthogonalization method [33]. The p− 1 coef-
ficients qp,i which are required for orthogonalizing the input of the p-th order
channel can be obtained by solving

⎡
⎢⎢⎢⎢⎣

m
(2)
x m

(3)
x . . . m

(p)
x

m
(3)
x m

(4)
x . . . m

(p+1)
x

...
...

. . .
...

m
(p)
x m

(p+1)
x . . . m

(2p−2)
x

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

qp,1

qp,2

...
qp,p−1

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎣

m
(p+1)
x

m
(p+2)
x

...
m

(2p−1)
x

⎤
⎥⎥⎥⎥⎦
, (7.125)

where m(k)
x denotes the k-th order moment of x(n), i.e.,

m(k)
x = E

{
xk(n)

}
. (7.126)
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If x(n) is a stationary process and its statistics are a priori known, the or-
thogonalization coefficients qp,i are constant in time and can be calculated in
advance. In practice, however, m(k)

x has to be replaced by corresponding time-
variant estimates m̂(k)

x (n), especially if x(n) is non-stationary. The estimation
of m(k)

x can be performed, e.g., by applying the first order recursion

m̂(k)
x (n) = λm̂(k)

x (n− 1) + (1 − λ)xk(n). (7.127)

The forgetting factor λ is in the range 0 ≤ λ < 1 and can be adjusted in order
to adapt the estimation to the statistics of the input signal x(n). Obviously,
the orthogonalization coefficients qp,i(n) always depend on time if they are
determined from Eq. 7.125 but based on time-variant estimates m̂(k)

x (n) of
m

(k)
x .
For presentational convenience we assume in the following that all channels

of the power filter have uniform memory length, i.e., Np = N . The matrix
representation for a block of N input samples corresponding to Eq. 7.122 and
Eq. 7.123 reads

x(1)
o (n) = x(1)(n), (7.128)

x(p)
o (n) = x(p)(n) +

p−1∑
i=1

Qp,i(n)x(i)(n), 1 < p ≤ P. (7.129)

The orthogonalized signal vectors x
(p)
o (n) are defined analogously to Eq. 7.101,

i.e.,

x(p)
o (n) =

[
x(p)

o (n), x(p)
o (n− 1), . . . , x(p)

o (n−N + 1)
]T

. (7.130)

In Eq. 7.129, Qp,i(n) represents the diagonal orthogonalization matrix

Qp,i(n) = diag
{[
qp,i(n), qp,i(n− 1), . . . , qp,i(n−N + 1)

]}
. (7.131)

The definition of Qp,i(n) already includes the possible time-variance of its
elements qp,i(n). Note that the orthogonalization Eq. 7.123 is performed in a
sample-based manner: The coefficients qp,i(n) are determined such that the
instantaneous orthogonality property Eq. 7.124 holds. The vectors x

(p)
o (n),

however, are in general mutually orthogonal, i.e.,

E
{

x(i)
o (n)x(j)T

o (n)
}

= 0, for i �= j, (7.132)

only if x(n) is an IID random process. In case of correlated input, Eq. 7.132 is
generally not satisfied. Nevertheless, we assume for the following that in prac-
tice Eq. 7.132 is met sufficiently well. For illustration we consider a zero-mean,
first-order stationary Laplacian Markov process x(n) with an autocorrelation
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function E {x(n)x(n− k) } = 0.9|k|. The corresponding normalized crosscor-
relation function

c1,3(k) =
E
{
x(n)x3(n− k)

}
√

E
{
x2(n)

}
E
{
x6(n)

} (7.133)

between x(n) and x3(n) is shown in Fig. 7.15 together with the normalized
crosscorrelation function

co,1,3(k) =
E
{
x(1)

o (n)x(3)
o (n− k)

}
√

E
{(

x(1)
o (n)

)2
}

E
{(

x(3)
o (n)

)2
} (7.134)

between the orthogonalized signals x
(1)
o (n) and x

(3)
o (n). As indicated by

Fig. 7.15. Normalized crosscorrelation functions c1,3(k) and co,1,3(k) between x(n),

x3(n) and x
(1)
o (n), x

(3)
o (n), respectively.

Fig. 7.15, the orthogonality property Eq. 7.132 is valid for the considered
example. Thus, it is also reasonable to assume that Eq. 7.132 is sufficiently
satisfied for speech input, since long-term properties of speech are commonly
modeled by a Laplacian process [4].

Note that, for correlated input, the orthogonalization according to Eq. 7.129
does not orthogonalize (’whiten’) the samples within each input vector x(p)

o (n):
Although the input vector of different channels are mutually orthogonal, in
general

E
{
x(p)

o (n)x(p)
o (n− k)

}
�= 0, 0 ≤ k < Np, (7.135)

holds as an immediate consequence of the (auto-)correlation of x(n). A quasi-
complete orthogonalization can be achieved by considering the asymptotic
orthogonalization property of the DFT for large transform lengths [10].

The DFT-domain correspondence of Eq. 7.128 and Eq. 7.129 yields
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X(1)
o (ν) = X(1)(ν), (7.136)

X(p)
o (ν) = X(p)(ν) +

p−1∑
i=1

Φp,i(ν)X(i)(ν), 1 < p ≤ P. (7.137)

Regarding the definition of the DFT-domain input vectors X(p)(ν) in Eq. 7.105,
the DFT-domain orthogonalization matrices Φp,i(ν) are given by

Φp,i(ν) = F M×M diag
{[
qp,i(νL−N), . . . , qp,i(νL+N − 1)

]}
F−1

M×M .

(7.138)
It is important to note that in contrast to the time-domain orthogonalization
matrices Qp,i(n), their DFT-domain counterparts Φp,i(ν) are in general not
diagonal. With the DFT-domain vectors X(p)

o (ν) we achieve a quasi-complete
orthogonalization of power filters: On the one hand, the above discussion of
Eq. 7.132 with respect to correlated input implies

E
{

X(i)
o (ν)X(j)H

o (ν)
}

= 0, for i �= j. (7.139)

On the other hand, the asymptotic orthogonalization property of the DFT
additionally implies orthogonality of the DFT-domain input vector elements
within each channel:

E
{
X(p)

o (ν, k)X(p)
o

∗
(ν,m)

}
≈ 0, for k �= m, (7.140)

if the DFT length M is sufficiently large.

Equivalent Orthogonalized Structure

When using the orthogonalized channel inputs x(p)
o (n) for computing the out-

put of power filters, the coefficients of the corresponding orthogonalized ver-
sions have to be adjusted accordingly. In the following we show the relation
between the coefficients of the original power filter and their orthogonalized
counterparts. Furthermore, we discuss how a time-variant orthogonalization
of the input affects the coefficients of the equivalent orthogonalized structure
of power filters.

The output d(n) of a P -th order power filter can be computed by using
the orthogonalized input vectors x

(p)
o (n), i.e.,

d(n) =
P∑

p=1

d(p)
o (n), (7.141)

d(p)
o (n) = h(p)T

o x(p)
o (n). (7.142)

Obviously, d(n) can equivalently be expressed by either using combinations
of h(p) and x(p)(n), or using the corresponding pairs of vectors h(p)

o (n) and
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x
(p)
o (n). Following [23], we refer to the combination of the orthogonalized

input vectors x
(p)
o (n) and the corresponding filter coefficient vectors h(p)

o (n)
as equivalent orthogonalized structure (EOS) of power filters. For determining
the coefficients of the EOS, we notice that the right hand sides of Eq. 7.97
and Eq. 7.141 have to be equal, implying

P∑
p=1

h(p)Tx(p)(n) =
P∑

p=1

h(p)T
o x(p)

o (n). (7.143)

Introducing the definition of the orthogonalized input vectors Eq. 7.128 and
Eq. 7.129 into Eq. 7.143 and solving for h(p)

o (n) for each p (starting with
p = P ) leads to the relation between the original filter coefficients h(p) and
the coefficients of the corresponding EOS:

h(P )
o = h(P ), (7.144)

h(p)
o (n) = h(p) −

P∑
i=p+1

Qi,p(n)h(i)
o (n), 1 ≤ p < P. (7.145)

We notice that due to the orthogonalization of the input vectors, all channels
of order i > p contribute to the p-th channel of the corresponding EOS.
Note that Eq. 7.145 implies that for time-varying orthogonalization matrices
Qi,p(n) the coefficients of the EOS h(p)

o (n) will generally be time-variant,
although the coefficients h(p) may be constant in time.

For the discussion of the DFT-domain EOS of power filters we introduce
the diagonal matrix

H
(p)
diag = diag

{
H(p)

}
. (7.146)

Then, Eq. 7.107 can be rewritten according to

D(p)(ν) = H
(p)
diag X(p)(ν). (7.147)

Analogously to Eq. 7.108 and Eq. 7.147, the computation of the DFT-domain
output vector D(ν) can alternatively be expressed by using the orthogonalized
input vectors X(p)

o (ν):

D(ν) =
P∑

p=1

D(p)
o (ν), (7.148)

D(p)
o (ν) = H

(p)
diag,o X(p)

o (ν). (7.149)

The matrices H
(p)
diag,o represent the DFT-domain EOS of the corresponding

power filter. The relation between the coefficient matrices H
(p)
diag,o of the EOS

and the original coefficient matrices H
(p)
diag is given by
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H
(P )
diag,o = H

(P )
diag, (7.150)

H
(p)
diag,o(ν) = H

(p)
diag −

P∑
i=p+1

Φi,p(ν)H
(i)
diag,o(ν), 1 ≤ p < P. (7.151)

In accordance to the time-domain EOS, the DFT-domain EOS has to be
time-variant due to time-variant orthogonalization matrices Φi,p(ν).

Since the orthogonalization matrices Φi,p(ν) are in general not diagonal,
it follows from Eq. 7.151 that this is also true for the DFT-domain coefficient
matrices H

(p)
diag,o(ν). Thus, the DFT-domain EOS of a power filter requires a

set of M ×M coefficient matrices, although it can be completely described
by the original M × 1 DFT-domain coefficient vectors H(p). Obviously, this
DFT-domain EOS of power filters constitutes a very inefficient way to rep-
resent power filters. This problem can be circumvented by performing the
orthogonalization of the DFT-domain input vectors in a ’block time’-based
manner. Thereby, the orthogonalization coefficients qi,p(n) are updated only
once per block time index ν. Note that this implies the assumption of a short
time stationary input x(n). The desired diagonal orthogonalization matrices
are then obtained by modifying their definition Eq. 7.138 according to

Φp,i(ν) = F M×M diag
{[
qp,i(νL), . . . , qp,i(νL)

]}
F−1

M×M

= qp,i(νL) IM×M . (7.152)

With these diagonal orthogonalization matrices, we can simplify Eq. 7.150 and
Eq. 7.151 to a vector-based representation. The coefficient vectors of the DFT-
domain EOS corresponding to the original vectors H(p) are finally obtained
as

H(P )
o = H(P ), (7.153)

H(p)
o (ν) = H(p) −

P∑
i=p+1

qi,p(νL)H(i)
o (ν), 1 ≤ p < P. (7.154)

Obviously, the introduction of the block time index for determining the orthog-
onalization matrices is not only suggested by the inherent block processing of
DFT-domain approaches, but it also leads to a more efficient implementation.
Therefore, we restrict ourselves to diagonal orthogonalization matrices Φp,i(ν)
according to Eq. 7.152 throughout the rest of this chapter.

Accounting for the block processing of DFT-domain power filters, the esti-
mation of the k-th order moments m(k)

x can be performed via block averaging,
i.e.,

m̂(k)
x (νL+ l) =

1
M

M−1∑
i=0

xk(νL−N + i), for 0 ≤ l < L. (7.155)
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The estimates m̂(k)
x (νL+ l) are then introduced into Eq. 7.125 for computing

the orthogonalization coefficients qi,p(νL).
Let us now look at the inevitable adjustment of the filter coefficients of the

EOS arising from the time-varying input orthogonalization. For the derivation
of the required adjustment, we solve Eq. 7.145 for the time instant n− 1 with
respect to the original coefficient vector h(p):

h(p) = h(p)
o (n− 1) +

P∑
i=p+1

Qi,p(n− 1)h(i)
o (n− 1). (7.156)

Let us now consider the changes in Eq. 7.156 that occur for the next time in-
stant. Due to the time-variance of the EOS for time-variant orthogonalization
matrices, Eq. 7.156 becomes

h(p) = h(p)
o (n) +

P∑
i=p+1

Qi,p(n)h(i)
o (n). (7.157)

Assuming that the original coefficients of the power filter are constant in time,
we can replace h(p) in Eq. 7.156 by the right hand side of Eq. 7.157. Solving for
h(p)

o (n) finally leads to the required coefficient adjustment: After each change
of the orthogonalization matrices Qi,p(n), the coefficients vectors h(p)

o (n) are
recursively recomputed according to

h(p)
o (n) = h(p)

o (n− 1) +
P∑

i=p+1

[
Qi,p(n− 1)h(i)

o (n− 1) − Qi,p(n)h(i)
o (n)

]
,

(7.158)
starting with p = P − 1. From Eq. 7.144 we notice that no adjustment is
required for the P -th order channel, i.e., h(P )

o (n) = h(P )
o (n− 1).

The necessity of this coefficient adjustment becomes obvious when regard-
ing that each set of orthogonalization matrices Qi,p(n) yields a corresponding
EOS. This implies that after each change of the orthogonalization matrices
both, a new set of input vectors and a new set of associated coefficient vectors
have to be determined.

The above time-domain result can directly be used to obtain a correspond-
ing adjustment for the DFT-domain EOS. With the definition of the simplified
DFT-domain EOS according to Eq. 7.153 and Eq. 7.154, the DFT-domain
counterpart to Eq. 7.158 is given by

H(p)
o (ν) = H(p)

o (ν − 1) +
P∑

i=p+1

[
qi,p(νL− L)H(i)

o (ν − 1) − qi,p(νL)H(i)
o (ν)

]
,

(7.159)
where we start with p = P − 1. As in the time domain, no adjustment is
required for the channel with the highest order, i.e., H(P )

o (ν) = H(P )
o (ν − 1).
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Adaptation of Orthogonalized Power Filters

Since we consider the adaptation of orthogonalized power filters we express the
output d̂(n) of the adaptive power filter according to Eq. 7.141 and Eq. 7.142:

d̂(n) =
P∑

p=1

d̂(p)
o (n), (7.160)

d̂(p)
o (n) = ĥ

(p)T

o (n)x(p)
o (n). (7.161)

In the following we use the same notation for the signals as introduced in
Fig. 7.6, i.e., the observed signal y(n) is composed of the echo signal d(n), back-
ground noise b(n), and local speech s(n). The error signal e(n) = y(n)− d̂(n)
is the difference between the observed signal and the output of the adaptive
power filter. The LMS update equation for the coefficients of the adaptive
EOS is then given by

ĥ
(p)
o,k(n+ 1) = ĥ

(p)
o,k(n) + µ

(p)
o,k(n) e(n)x(p)

o (n− k). (7.162)

The control of the adaptation by appropriately choosing the step size µ(p)
o,k(n)

is discussed later in this section.
Note that the coefficient adjustment according to Eq. 7.158 is carried out

first, and then the coefficients of the EOS are adapted subsequently by apply-
ing Eq. 7.162.

For deriving a DFT-domain adaptation of power filters we recall that they
can be considered as linear multichannel system. This interpretation obviously
also applies for the EOS of power filters. Thus, we can directly use the results
of Section 7.3.3 that have been obtained for DFT-domain Volterra filters in
DCR. Assuming diagonal orthogonalization matrices, the DFT-domain output
D̂(ν,m) of the adaptive power filter is given by

D̂(ν,m) =
P∑

p=1

D̂(p)
o (ν,m), (7.163)

D̂(p)
o (ν,m) = Ĥ(p)

o (ν,m)X(p)
o (ν,m). (7.164)

The adaptation algorithm for power filters immediately follows from the cor-
responding update equation Eq. 7.81 for multidelay Volterra filters:

Ĥ(p)
o (ν+1,m) = Ĥ(p)

o (ν,m)+µ(p)
o (ν,m)FM

{
wl F−1

M

{
E(ν,m)X(p)

o

∗
(ν,m)

}}
.

(7.165)
The time-domain window function wl is introduced to assure the zero-padding
of the time-domain coefficient vectors according to Eq. 7.106 and has been
defined in Eq. 7.84. Since we have assumed uniform memory length Np = N
for all channels, the same window function can be applied for each order p.
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Adaptation Control

First, we look at the control of the step size parameter µ(p)
o,n(n) of the time-

domain LMS algorithm according to Eq. 7.162 which corresponds to the
coefficient-dependent step size for P -th order Volterra filters presented in
Section 7.3.2. Due to the mutual orthogonality of all channel inputs of the
EOS, the reasoning applied in Section 7.3.2 for second-order Volterra filters
can correspondingly be applied for the derivation of an optimum coefficient-
dependent step size for the adaptive EOS of P -th order power filters.

The coefficient error m
(p)
o,n(k) with respect to the time-domain EOS of

power filters is defined by

m(p)
o,n(n) = h

(p)
o,k(n) − ĥ

(p)
o,k(n). (7.166)

Analogously to Section 7.3.2, we use the mean squared error between the
actual coefficient error and the corresponding LMS update term as optimality
criterion for determining the optimum value of the step size µ(p)

o,k(n), i.e.,

J
µ

(p)
o,k

(n) = E
{[

m
(p)
o,k(n) − µ

(p)
o,k(n)e(n)x(p)

o (n− k)
]2

}
. (7.167)

As in Section 7.3.2, we assume that the input x(n) is an IID random process
with an even PDF, i.e., the orthogonality property Eq. 7.132 holds. We further
assume that the adaptive coefficients ĥ(p)

o,k(n) are statistically independent of
the input. Applying the same reasoning as in [20] for Volterra filters, it is
straightforward to show that Eq. 7.42 correspondingly holds for orthogonal-
ized power filters:

µ
(p)
opt,o,k(n) =

E
{[

m
(p)
o,k(n)

]2
}

E
{
ε2(n) + b2(n) + s2(n)

} . (7.168)

Aiming at a factorized version of Eq. 7.168, we introduce the residual echo
ε
(p)
o (n) of the p-th channel of the EOS according to

ε(p)
o (n) = d(p)

o (n) − d̂(p)
o (n). (7.169)

The overall residual echo ε(n) = d(n) − d̂(n) can then be written as

ε(n) =
P∑

p=1

ε(p)
o (n). (7.170)

Since the orthogonality property Eq. 7.132 holds for the assumed input, we
can express the mean square of the residual echo by

E
{
ε2(n)

}
=

P∑
p=1

E
{[

ε(p)
o (n)

]2
}
. (7.171)
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The expression Eq. 7.171 for computing the mean squared residual echo can
be exploited to derive a factorized version of Eq. 7.168. The desired factorized
version of Eq. 7.168 is obtained as

µ
(p)
opt,o,k(n) = αdt(n)αbn(n)α(p)

εo
(n)α(p)

o,k(n). (7.172)

The auxiliary step sizes αdt(n) and αbn(n) have been defined in Eq. 7.51 and
Eq. 7.52, respectively, and account for double-talk and background noise. The
channel-dependent step size parameter α(p)

εo (n) is used to control the adap-
tation with respect to mutual interferences caused by misadjusted channel
filters. Analogously to Eq. 7.53, it is defined by

α(p)
εo

(n) =
E
{[

ε(p)
o (n)

]2
}

P∑
i=1

E
{[

ε(i)o (n)
]2

} . (7.173)

The coefficient-dependent step size parameter α(p)
o,k(n) is finally given by

α
(p)
o,k(n) =

E
{[

m
(p)
o,k(n)

]2
}

Np−1∑
l=0

E
{[

m
(p)
o,l (n)

]2
}

E
{[

x(p)
o (n− l)

]2
} , (7.174)

which obviously corresponds to the coefficient-dependent step size for second-
order Volterra filters according to Eqs. 7.54 and 7.55, respectively.

Analogously to Eq. 7.57, the second-order moments of the residual echoes
ε
(p)
o (n) can be estimated using the model

E
{[

ε(p)
o (n)

]2
}

≈ γε(n)
[
δεp

+
∣∣∣d̂(p)

o (n)
∣∣∣
]
. (7.175)

For realizing the coefficient-dependent step size α
(p)
o,k(n), we apply the pro-

portionality model Eq. 7.58 for estimating the mean square of the coefficient
errors, i.e.,

E
{[

m
(p)
o,k(n)

]2
}

≈ γm,p(n)
[
βm,p(n) +

∣∣∣ĥ(p)
o,k(n)

∣∣∣
]
. (7.176)

The meaning of the parameters appearing in the estimation models Eq. 7.175
and Eq. 7.176 have already been discussed in Section 7.3.2.

The derivation of a step-size control for the DFT-domain EOS of power
filters follows the kernel-dependent approach for DFT-domain Volterra fil-
ters according to Section 7.3.3. Thus, we first introduce a channel-dependent
normalization of µ(p)

o (ν,m) according to
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µ(p)
o (ν,m) =

α
(p)
o (ν,m)

Ŝ
(p)
o,X(ν,m)

. (7.177)

The normalization factor Ŝ(p)
o,X(ν,m) represents an estimate of

S
(p)
o,X(ν,m) = E

{ ∣∣∣X(p)
o (ν,m)

∣∣∣
2
}
, (7.178)

i.e., of the PSD of the input signal of the p-th channel of the EOS. Ŝ(p)
o,X(ν,m)

can be obtained, e.g., analogously to Eq. 7.89.
The normalized step size α(p)

o (ν,m) is implemented by using a correspond-
ing factorized version according to

α(p)
o (ν,m) = αdt(νL) αbn(ν,m) α(p)

Eo
(ν,m). (7.179)

The auxiliary step-size parameters αdt(νL) and αbn(ν,m) have already been
discussed in Section 7.3.3 and are not further considered here.

The channel-dependent step size α
(p)
Eo

(ν,m) represents the DFT-domain

correspondence of α(p)
εo (n). Regarding Eq. 7.139, it is obvious that the orthog-

onality property Eq. 7.171 also holds in the DFT-domain. The mean squared
magnitude of the DFT-domain residual echo can then be written as

E
{
|E(ν,m)|2

}
=

P∑
i=1

E
{ ∣∣∣E(i)

o (ν,m)
∣∣∣
2
}
. (7.180)

Here, E(p)
o (ν,m) represents the DFT-domain correspondence of the time-

domain residual echo ε
(p)
o (n). Consequently, the channel-dependent step size

α
(p)
Eo

(ν,m) can be defined correspondingly to Eq. 7.173:

α
(p)
Eo

(ν,m) =
E
{ ∣∣∣E(p)

o (ν,m)
∣∣∣
2
}

P∑
i=1

E
{ ∣∣∣E(i)

o (ν,m)
∣∣∣
2
} . (7.181)

As in case of DFT-domain Volterra filters, the assumption of uniform mean
squared magnitudes of the residual echoes for all p yields a good performance
for DFT-domain adaptive power filter, too. Then, Eq. 7.181 simplifies to

α
(p)
Eo

(ν,m) ≈ 1
P
, (7.182)

i.e., to its channel-independent form.
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Simulations

The following simulations illustrate the effect of time-variant orthogonaliza-
tion of adaptive power filters on their performance and show the necessity of
an appropriate adjustment of the coefficients of the EOS.

For the simulations, the echo path has been modeled by the cascade of a
third-order memoryless polynomial and a linear filter of length Nc = 200, i.e.,
it can exactly be represented by a third-order power filter. The input signal
has been a zero-mean, uncorrelated, non-stationary Laplacian process [4]. A
white noise signal b(n) has been added to the echo signal d(n), where the noise
variance yields an SNR of 30 dB with respect to the variance of d(n).

The echo canceller has been realized as a third-order time-domain power
filter, where the memory length of each channel has also been chosen to
Np = 200. Fig. 7.16 shows the ERLE graphs obtained for the EOS of the
power filter with coefficient adjustment (CA) according to Eq. 7.158, the EOS
without CA, and the corresponding non-orthogonalized power filter. The or-

Fig. 7.16. ERLE obtained for different implementations of third-order adaptive
power filters together with the uncorrelated, non-stationary input signal.

thogonalization of the input has been performed signal-adaptively, using the
recursive estimation of the moments according to Eq. 7.127 with a forgetting
factor λ = 0.97. The step-size control has been realized according to Eq. 7.172
with a fixed value of αdt(n)αbn(n) = 0.3. The models Eqs. 7.175, 7.176 have
been applied to approximate the channel-dependent step size α

(p)
εo (n) and

the coefficient-dependent step size α(p)
o,k(n), respectively. The model parame-

ter δεp
for estimating the mean squared residual echoes has been chosen to

δεp
= 0.001 for all channels. The model for the coefficient-dependent auxil-

iary step sizes has been realized analogously to Eq. 7.59 and Eq. 7.60, where
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βc,1 = βc,2 = 1. To allow for a fair comparison of all approaches, the same
adaptation control has been applied to all algorithms. It should, however be
kept in mind that in case of non-orthogonalized power filters, this choice does
not assure stable convergence, although it is advantageous with respect to
convergence speed.

The limitation of achievable echo attenuation of the adaptive EOS without
coefficient adjustment can clearly be seen in Fig. 7.16. This result confirms
the importance of the coefficient adjustment required for time-variant orthog-
onalization matrices. We further notice from Fig. 7.16 that the EOS with
coefficient adjustment outperforms the non-orthogonalized version in both,
convergence speed and achievable echo attenuation.

7.4.3 Application to Real Systems

Power filters have been introduced as an approximation of the nonlinear cas-
caded model of the acoustic echo path according to Fig. 7.13. In this model, a
Taylor series expansion has been used to approximate the nonlinear behaviour
of the amplifier and the loudspeaker of a mobile phone, respectively. In this
section we examine the suitability of these approximations when modeling
real acoustic echo paths. Thereby, we look at the case of nonlinear distortion
introduced by the amplifier and also consider the influence of the nonlinear
behaviour of the loudspeaker of a mobile phone.

Nonlinear Amplifier

The experimental setup used for the following experiments consists of a com-
mercial one-chip amplifier connected to an electro-dynamic loudspeaker with
a diameter of six centimeters which has been placed in a room with low rever-
beration and a low background noise level. The power supply of the amplifier
has been adjusted such that for high input levels the amplifier causes nonlinear
distortion. Throughout the experiments, the nonlinear distortion introduced
by the loudspeaker is negligible at the considered excitation levels.

The nonlinear echo canceller has been implemented as the adaptive EOS
of a third-order power filter. The memory length of the linear kernel has been
N1 = 256 (implying a DFT length M = 512), whereas N2 = N3 = 100 has
been chosen for the quadratic and the cubic channel. The orthogonalization of
the channel inputs is performed block time-based, where the required moments
of the input are estimated via block averaging according to Eq. 7.155. The
DFT-domain EOS has been adapted applying using the fixed normalized step
size α

(p)
o, (ν,m) = 0.1 for all channels. The input has been a speech signal

sampled at 8 kHz. To simulate a higher level of background noise, a white
Gaussian noise signal has been added to the recording of the real echo signal.
The noise variance has been adjusted to give an SNR of 30 dB with respect
to the measured microphone signal.
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In Fig. 7.17, the ERLE obtained for the third-order adaptive EOS is com-
pared to a linear approach which corresponds to the linear channel of the
power filter. Except for the initial convergence phase, the adaptive power filter

Fig. 7.17. ERLE obtained for the adaptive EOS of a third-order power filter and
a linear approach together with the speech input.

continuously provides an improvement of the echo cancellation performance,
especially during periods of high excitation levels. Thereby, a gain of about
6 dB compared to the linear approach is well possible. Note that the applied
third-order power filter increases the required number of multiplications only
by a factor of 2.5 compared to the linear approach.

Nonlinear Loudspeaker of a Mobile Phone

The nonlinear behaviour of a moderately-sized electro-dynamic loudspeaker
has successfully been modeled by second-order Volterra filters. In this section
we examine the very small electro-dynamic loudspeaker of a mobile phone.
Due to its limited dimensions, the nonlinear behaviour of this type of loud-
speakers is different from that used in Section 7.3.4 [23].

For the recordings, the loudspeaker has been mounted in the handset,
while the microphone has been separated from it to avoid undesired vibration
effects due to physical coupling of the loudspeaker and the microphone. During
the measurements it has been assured that there is no nonlinear distortion
introduced by overloading of the amplifier, i.e., the nonlinearity in the acoustic
echo path is solely caused by the loudspeaker. The echo signal used for the
simulations has been recorded in a room with low reverberation. The input
has been a speech segment sampled at 8 kHz. A white Gaussian noise signal
has been added to the recording of the microphone signal in order to simulate
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a background noise level corresponding to an SNR of 30 dB with respect to
the acoustic echo. Since an algorithmic delay is not desirable in mobile phones,
we consider the time-domain implementation of the EOS, where the memory
length N1 = 250 for the linear channel. Here, the memory lengths N2 = N3 =
100 for both, the quadratic and cubic channel are already sufficient. The
orthogonalization of the channel inputs has been performed signal-adaptively,
where the moments are estimated recursively according to Eq. 7.127 with a
forgetting factor λ = 0.97.

In Fig. 7.18, the echo cancellation performance of the adaptive EOS of the
third-order power filter is compared to a linear approach which corresponds
to the linear channel of the power filter. As can be noticed, the performance

Fig. 7.18. ERLE obtained for the adaptive EOS of a third-order power filter and
a corresponding linear approach for speech input.

of the linear adaptive filter is clearly inferior due to the nonlinear distor-
tion introduced by the loudspeaker. The third-order power filter succeeds in
improving the level of echo attenuation during almost the whole simulation
period. Especially for speech segments that exhibit high excitation levels the
increase of the ERLE is significant. Note that due to the short filters in the
nonlinear channels, the computational complexity of the considered orthogo-
nalized power filter is only two times higher than that of the linear filter.

7.5 Conclusions

In todays telecommunication devices often cheap audio hardware is included
which introduces non-negligible nonlinear distortion into the loudspeaker sig-
nal. In case of hands-free telephone systems or mobile communication devices,
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these nonlinear audio components cause nonlinearly distorted acoustic echoes
that can not be sufficiently attenuated by purely linear AECs. In this chapter,
we have focused on special types of adaptive nonlinear filters which require
only little a priori knowledge about the audio hardware actually included in
the telecommunication device, i.e., Volterra filters and power filters.

If moderately-sized loudspeakers represent the only source of nonlinear dis-
tortion, second-order Volterra filters have been used to model the nonlinear
acoustic echo path. Due to the assumption that only the loudspeaker intro-
duces nonlinear distortion, the model of the acoustic echo path simplifies to a
cascade of a second-order Volterra filter followed by a linear filter. It has been
shown in Section 7.3 that the overall model of this cascade can be represented
by a corresponding second-order Volterra filter that has a reduced region of
support for the quadratic kernel. The DCR of Volterra filters allows for an
elegant way to exploit this a priori knowledge about the acoustic echo path:
The width of the quadratic kernel is simply chosen smaller than its memory
length. By doing so, coefficients that are known (or assumed) to be zero can
be explicitly excluded and inefficient system configurations can be avoided.

The DCR has also led to the interpretation of Volterra filters as a spe-
cial type of linear multichannel systems. Based on that, efficient DFT-domain
methods known from linear adaptive filtering could straightforwardly be ex-
tended to adaptive Volterra filters, too. The proposed MDVF does not affect
the multichannel structure of the DCR and, therefore, preserves its advanta-
geous features.

Experimental results obtained for a real loudspeaker system have been
presented in order to verify the suitability of adaptive Volterra filters. In a
realistic acoustic echo cancellation scenario, the echo attenuation has been
improved by about 5 up to 10 dB compared to a linear approach. Due to the
reduced width of the quadratic kernel, the computational complexity has only
been increased by a factor of approximately four compared to the linear ap-
proach. Thus, second-order Volterra filters can be considered as a well suited
approach to cope with nonlinear loudspeakers in hands-free telecommunica-
tion systems.

In Section 7.4 we have considered the case that only the amplifier or the
miniaturized loudspeaker of a mobile phone cause the nonlinear distortion in
the echo path. For this scenario, the model of the acoustic echo path simplifies
to the cascade of a linear filter, a memoryless nonlinearity (modeled by a Tay-
lor series expansion), and a second linear filter. It has been shown that power
filters represent an efficient parallelized approximation of this overall model
of the echo path. Since the saturation characteristics imply power filters of or-
ders higher than two, the input signals of different channels are not mutually
orthogonal anymore. In order to improve the performance of corresponding
adaptive implementations, a method to signal-adaptively orthogonalize the
inputs of the different channels of the power filter has been discussed.

Experimental results based on measurements with an overloaded amplifier
have shown that the considered adaptive third-order power filter has been able
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to improve the echo attenuation of a purely linear AEC by about 6 dB. For the
case that the loudspeaker of a mobile phone causes the nonlinear distortion
in the echo path, third-order power filters are able to increase the achievable
echo attenuation of a linear approach by approximately 5 dB.

Although the proposed nonlinear approaches provide significant improve-
ments over purely linear adaptive filters, the achieved level of echo attenuation
might not be sufficient in some applications. A common method in linear echo
cancellation is to further suppress the residual echo that remains after the
echo cancellation step. Usually, such methods apply postfiltering of the resid-
ual echo based on Wiener filtering techniques [12,13] which, however, have to
be appropriately extended to account for nonlinear acoustic echo paths.
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K. Koivuniemi: Modeling and real-time auralization of electrodynamic
loudspeaker non-linearities, Proc. ICASSP ’04, 4, 17–21, Montreal,
Canada, May 2004.

[41] A. Stenger:Kompensation akustischer Echos unter Einfluss von nichtlin-
earen Audiokomponenten, Aachen, Germany: Shaker, 2001 (in German).

[42] A. Stenger, W. Kellermann: Adaptation of a memoryless preprocessor for
nonlinear acoustic echo cancelling, Signal Processing, 80(9), 1741–1760,
Sept. 2000.

[43] A. Stenger, R. Rabenstein: Adaptive Volterra filters for acoustic echo
cancellation, Proc. NSIP ’99, 2, 679–683, Antalya, Turkey, June 1999.




