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Speaker localization and automatic tracking in a reverberant environment are
challenging and often needed tasks in many audio-based applications includ-
ing hands-free mobile phones, speech recognition, and teleconferencing. In this
chapter, we present signal processing algorithms for reliable location estima-
tion of audio sources. We discuss high-quality techniques based on time-delay
estimation using only two microphones. These algorithms can be used to es-
timate directions of sound waves travelling to a one-dimensional microphone
array. We focus on this basic situation because it frequently occurs in practice.
Furthermore, a precise and robust algorithm for time-delay estimation is fun-
damental to multi-dimensional source localization tasks as well. We present an
automatically steered microphone array for speaker tracking using an adaptive
beamformer in connection with a direction estimation subsystem. This array
is very well suited to adjust the main lobe of the beam pattern to the direction
of a moving speaker while suppressing sounds from other directions. In addi-
tion, the system is capable to track speaker movements or to switch among
speakers in rooms with modest reverberation. The automatically steered mi-
crophone array uses a computationally efficient multi-input FFT filterbank.
MATLAB� programs are available to facilitate algorithm implementation and
testing by interested readers.

4.1 Introduction

Acoustical source localization is a well developed feature of the human audi-
tory system. Using only two sensors, this biological system has a remarkable
precision in resolving the position of speakers and other acoustical sources.
The human ears in conjunction with the brain can accurately localize and
track sources in a sound field around the head except two small ambiguity
regions (cones of confusion) [1]. In addition, noise and reverberation do not
greatly influence the precision of source localization. Achieving such a perfor-
mance using two microphones and digital signal processing is a rather chal-
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lenging task. In this chapter, our primary goal is the presentation of robust
acoustical source localization algorithms which can be used to steer adaptive
microphone arrays. Multiple microphones in array configurations offer many
advantages over systems with a single microphone. Due to miniature piezo-
electric sensors and powerful digital signal processors, microphone arrays can
now be built in a compact and inconspicuous design. This leads to a number of
applications of automatically steered microphone arrays like voice communi-
cations in cars, hands-free mobile phones, speech recognition, and teleconfer-
encing. With these applications in mind, we focus on one-dimensional source
localization since knowledge of the angle of arrival (azimuth in the xy-plane
of a Cartesian coordinate system) is sufficient to adjust one-dimensional mi-
crophone arrays. To determine the position of a speaker in a room, we can
use a multi-dimensional array or separate one-dimensional arrays.

The two-microphone technique of delay estimation is fundamental to all
multi-dimensional source localization algorithms because different delay mea-
surements can be combined by refined procedures to estimate a speaker’s
position and movement. However, extensions to multiple microphones and
localization of multiple sources will not be treated in this chapter. Further
readings on multi-microphone techniques for multi-source localization can be
found in recent books [2–4].

The basic setup using two microphones is sketched in Fig. 4.1. If we assume
far-field conditions (plane wave propagation), the estimation of azimuth Φ can
easily be carried out by measuring the Time Delay Difference (TDD) between
the two microphone signals.

0�r2 �r1

λ Source

�er

�r

Φ

Fig. 4.1. Basic two-microphone layout for source localization (azimuth Φ of arrival
direction, single frequency plane wave with wavelength λ).

Denoting microphone distance d = ‖�r2 − �r1‖, sound velocity vs, and TDD
∆t, we get

Φ = arccos
vs∆t

d
. (4.1)
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Due to the nonlinear relationship, accuracy is poor for Φ near 0° and 180°. In
addition, discrete-time processing of the microphone signals results in quan-
tized TDD estimates. If we estimate azimuth Φ from TDDs with accuracy
±T

2 (sampling interval T = 1/fs), we can expect an error behavior as shown
in Fig. 4.2. Curves plotted in Fig. 4.2 obey the relationship

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

Azimuth F in deg.

M
ax

. e
rr

or
 m

ag
ni

tu
de

 in
 d

eg
.

Microphone distance = 37.50 cm

f
s
 = 32 kHz

f
s
 = 16 kHz

f
s
 = 8 kHz

Fig. 4.2. Maximum azimuth error magnitude as a function of azimuth Φ and sam-
pling frequency fs.

δΦmax(Φ) ≈ min
(
δΦ0,

β

|sinΦ|

)
, (4.2)

with β = vs
2dfs

< 1, and δΦ0 = arccos (1 − β). As a consequence, we must
use oversampling or a two-dimensional array (e.g. a quadratic array layout
with 4 microphones) to reduce errors at Φ ≈ 0° and Φ ≈ 180°. Later in this
chapter, we will present an algorithm which exhibits an improved performance.
It should be noted that Fig. 4.2 only shows the influence of delay quantization.
In addition, errors resulting from TDD estimation must also be taken into
account.

According to (4.2), the azimuth error at a given sampling frequency fs
can be reduced by increasing microphone distance d. For practical reasons,
however, array size is limited in most situations like car cockpits. Additional
problems affecting the performance of source localization algorithms are in-
troduced by the specific nature of speech signals exhibiting speech pauses and
segments with different spectral contents, and by noise and reverberation.

In the next sections, we will discuss algorithms which are rather robust in
regard to these obstacles. We begin with a classical method using the General-
ized Cross-Correlation (GCC) function [5]. The GCC method can efficiently be
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implemented using the Fast Fourier Transform (FFT). Motivated by binaural
signal processing, an algorithm based on Interaural Time Differences (ITD) is
presented next. This method offers an azimuth estimation with high accuracy
but requires more computational load [6]. Afterwards, two source localiza-
tion algorithms involving adaptive filters are described. One technique uses an
adaptive eigenvalue decomposition to estimate TDDs [7]. This promising tech-
nique employes a normalized Least Mean-Square (LMS) adaptive algorithm
suitable for implementation using the FFT. We conclude with a presentation
of an adaptive microphone array comprised of an FFT filterbank beamformer
and a source localization subsystem to automatically steer the beam pattern
towards a moving speaker.

In order to facilitate implementation, algorithm variables and equations
are formulated in a discrete-time framework. We do not use continuous-time
variables, as sometimes found in the literature on TDD estimation. In addi-
tion, MATLAB� programs and test data for all algorithms presented in this
chapter are available at www.nt.tuwien.ac.at/dspgroup/gdobling.html.
Testing and comparison of the algorithms can thus be carried out with mini-
mal effort.

4.2 Source Localization Using the Generalized
Cross-Correlation Function

If we assume an ideal wave propagation model and an array with two mi-
crophones (see Fig. 4.1), then the analog (continuous-time) sensor signals are
given by

xa1(t) = sa(t) + va1(t) (4.3)
xa2(t) = sa(t− τ0) + va2(t), (4.4)

with source signal sa(t) and noise disturbances va1,2(t). In (4.3), (4.4), we have
neglected any signal attenuation and spreading (caused by room acoustics).
The discrete-time representations of the bandlimited sensor signals are

x1(n) = s(n) + v1(n) (4.5)
x2(n) = sa(nT − τ0)︸ ︷︷ ︸

sτ0(n)

+v2(n), (4.6)

with sampling interval T . In general, signal delay τ0 is not an integer multiple
of T . Therefore, sτ0(n) is not simply a delayed version of s(n). Only if τ0 =
n0T , then sτ0(n) = s(n− n0). However, using the reconstruction property of
a bandlimited analog signal

sa(t) =
∞∑

k=−∞
s(k)

sin π
T (t− kT )

π
T (t− kT )

, (4.7)
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we obtain

sτ0(n) = sa(nT − τ0) =
∞∑

k=−∞
s(k) ha

(
(n− k)T − τ0

)
︸ ︷︷ ︸

hτ0(n− k)

, (4.8)

with hτ0(n) = sin π(n−τ0/T )
π(n−τ0/T ) . Thus, the discrete-time representation of the de-

layed microphone signal is an interpolated version of the non-delayed signal.
An ideal lowpass interpolation function with parameter τ0/T is used. If we
determine signal delays in time domain, we have to use a sufficiently high sam-
pling frequency or some kind of signal interpolation. As an alternative, signal
delays can be obtained in the frequency domain from the phase spectrum.
Application of the Fourier Transform to (4.5), (4.6) results in

X1

(
ejΩ

)
= S

(
ejΩ

)
+ V1

(
ejΩ

)
(4.9)

X2

(
ejΩ

)
= S

(
ejΩ

)
e−jΩ

τ0
T + V2

(
ejΩ

)
. (4.10)

Assuming zero-mean uncorrelated noise disturbances, the cross-power spec-
trum is

Sx1x2(Ω) = E
{
X1

(
ejΩ

)
X∗

2

(
ejΩ

)}
= Sss(Ω) ejΩ

τ0
T , (4.11)

where E{·} means expectation and ∗ denotes complex conjugate operation. A
computation of signal delays τ0 from (4.11) requires a robust phase unwrap-
ping algorithm and a least-squares procedure involving phase measurements
at a set of different frequencies. In the context of microphone arrays, robust
phase unwrapping has been proposed in [8, 9]. However, these methods pose
less robustness regarding room reverberation.

An alternative to phase unwrapping is delay estimation from the general-
ized cross-correlation (GCC) Rx1x2(n):

τ0
T

≈ n0 = arg max
n

Rx1x2(n), (4.12)

with

Rx1x2(n) =
1
2π

π∫

−π

ψ12

(
ejΩ

)
Sx1x2(Ω) ejΩndΩ. (4.13)

Non-integer delays τ0/T can only be approximately obtained from (4.12).
To increase accuracy of delay estimation, an interpolation must be applied
to Rx1x2(n) prior to maximum detection. If we omit the weighting function
ψ12

(
ejΩ

)
in (4.13), we obtain the classical cross-correlation between the sensor

signals as the inverse Fourier Transform of the cross-power spectrum.
The benefits of using a weighting function ψ12

(
ejΩ

)
�≡ 1 are discussed

in detail in [5]. The main idea is to create a sharp dominant peak and to
reduce spurious peaks in Rx1x2(n) caused by room reverberation and colored
source signal spectra. A single sharp peak in the GCC function requires a flat
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cross-power spectrum magnitude. As a result, the weighting function must
act as a pre-whitening filter. This leads to the SCOT (Smoothed Coherence
Transform) algorithm with a weighting function

ψ12

(
ejΩ

)
= ψS

(
ejΩ

)
=

1√
Sx1x1(Ω)Sx2x2(Ω)

. (4.14)

Alternatively, we obtain the PHAT (Phase Transform) algorithm with the
weighting function

ψ12

(
ejΩ

)
= ψP

(
ejΩ

)
=

1∣∣∣Sx1x2(Ω)
∣∣∣
. (4.15)

Under ideal conditions as given in (4.11), the PHAT weighting function de-
livers an ideal GCC

Rx1x2(n) =
1
2π

π∫

−π

ejΩ
τ0
T ejΩndΩ =

sinπ(n+ τ0
T )

π(n+ τ0
T )

. (4.16)

The PHAT weighting function has the computational advantage that only
the cross-power spectrum is needed. Both the SCOT-GCC and the PHAT-
GCC algorithm perform very well in practical situations with modest room
reverberation, like medium-size office rooms, and car cabins. Furthermore,
these GCC algorithms are robust against environmental noise and the specific
nature of speech spectra. As shown by a comprehensive statistical analysis
in [10], the PHAT-GCC is optimal among the class of GCC functions when
used in reverberant environments. The GCC principle can be extended to
more than one microphone pair, yielding better precision of source position
estimates, especially in larger rooms [11].

Speech signals require an estimation of power spectra on a short-time basis.
Therefore, the expectation operator in (4.11) will be replaced by a suitable
time-average. Power spectra can be estimated from windowed signal frames
of N samples (e.g. N = 512 at fs = 16 kHz). Frames may overlap by some
extend (typically N/2 to 3N/4 samples). We use an exponential weighting of
past frames resulting in the following cross-power spectrum estimate:

Ŝx1x2(m, k) = αŜx1x2(m− 1, k) + (1 − α)X1(m, k)X∗
2 (m, k), (4.17)

with α = 0.7 . . . 0.8 to accommodate for the short-time stationarity of speech
signals (m is the frame index, k the index of the discrete frequency axis, respec-
tively). The Discrete Fourier Transforms (DFTs) of the windowed microphone
signal frames are

Xi(m, k) =
N−1∑
n=0

xi(mM + n)w(n)e−j 2π
N nk, i = 1, 2 (4.18)
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(frame index m = 0, 1, 2, . . ., frequency index k = 0, 1, . . . , N − 1). The frame
hop size M determines frame overlapping (no overlapping if M ≥ N). A
bell-shaped function w(n) like Hann or Hamming windows may be used for
time-windowing.

By means of the inverse DFT (IDFT), the cross-power spectrum estimate
(4.17) can now be used to estimate the PHAT-GCC of the mth signal frame:

R̂x1x2(m,n) =
1
N

N−1∑
k=0

Ŝx1x2(m, k)∣∣∣Ŝx1x2(m, k)
∣∣∣
ej 2π

N nk, n = 0, 1, . . . , N − 1. (4.19)

Finding the maximum location of R̂x1x2(m,n) in order to determine the TDD
must be done with care. First, TDDs may be positive or negative depending
on the azimuth of the sound wave (see Fig. 4.1). Therefore, indices N−n must
be used instead of −n according to the periodicy of the DFT. Secondly, we do
not need to carry out maximum search over the whole interval n ∈ [0, N − 1]
because the maximum delay τ0max is limited by the microphone distance d
(τ0max = d/vs). Third, and most important: In order to resolve fractional
signal delays, we must use an interpolation of R̂x1x2(m,n) before finding the
maximum location. This can conveniently be done in the frequency domain by
increasing the length (e.g. N ′ = 4N) of the IDFT in combination with proper
zero-padding. Alternatively, GCC interpolation can efficiently be carried out
in the time domain since the relevant GCC length is rather short.

Fig. 4.3 and Fig. 4.4 show a typical example of a PHAT-GCC azimuth es-
timation using a 50 seconds speech record of a moving speaker in a room with
modest reverberation and noise. The initial speaker position is at azimuth 90°.
After 16 seconds, the speaker moves towards 0°, and finally to 180°. Azimuth
estimates are held constant during speech pauses detected by comparing the
maximum of R̂x1x2(m,n) with a threshold value. This speech activity detec-
tion is very robust at virtually no additional cost. Frame size is set to N = 512
samples with a frame hop size M = 128. FFT length is increased by a factor
of 4 when calculating R̂x1x2(m,n) in (4.19). In (4.18), however, an N = 512
point FFT is applied to compute the DFTs of the two microphone signals.

4.3 Source Localization Based on Interaural Time
Differences

As briefly discussed in the introduction, human beings have an astonishing
precise sound localization ability based on interaural differences in time delay
and intensity between sound pressure signals at the two ears. Processing of
these interaural differences is carried out to a great extend in the human
brain. Several binaural models exist to describe numerous experimental data
(see [12] for a detailed review). One of these models is the basis of the source
localization algorithm presented in this section [6]. Basically, we create a set
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Fig. 4.3. PHAT-GCC map of a speaker movement in a medium-size office environ-
ment (Speech pauses are clearly visible as discontinuities).
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Fig. 4.4. Azimuth estimation using maximum search on the PHAT-GCC of Fig. 4.3
(Estimates are held constant during speech pauses).

of all relevant delays between the two microphone signals needed to estimate
azimuth Φ to a given resolution. This set is searched for the optimum delay
value resulting in the best coincidence of the two microphone signals. However,
the matching procedure is implemented in the frequency domain to obtain
fractional delays in an easy way.
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The whole azimuth range Φ ∈ [0, π] is subdivided into an odd number I
of equally spaced sectors. Using the array geometry of Fig. 4.1, each sector
corresponds to a TDD1

τi =
d

2vs
sin

(
i− 1
I − 1

π − π

2

)
, i = 1, 2, . . . , I, (4.20)

with microphone distance d and sound velocity vs. As an example, we need a
set of I = 73 values τi to obtain an azimuth resolution of 2.5°. If we use an
N -point DFT to represent the microphone signals in the frequency domain,
this set of delays corresponds to phase factors

pk(i) = e−j 2π
N kfsτi , k = 0, 1, . . . ,

N

2
, i = 1, 2, . . . , I, (4.21)

with sampling frequency fs and τi from (4.20). The N -point DFTs X1,2(m, k)
of the microphone signals are computed on a frame by frame basis as in
(4.18). To find the optimum delay for each frequency index k, we can use the
system shown in Fig. 4.5. The DFTsX1,2(m, k) are multiplied by phase factors

Fig. 4.5. Delay (phase) matching in frequency domain for each frequency index k
(frame index m).

from (4.21) and compared in the coincidence detection box. Comparison is
performed on each vertically aligned pair only, since the delays of the two
microphone signals are coupled due to the array geometry and phase factors
are properly arranged in Fig. 4.5. The coincidence detection is carried out
according to the simple matching rule

1 Delays τi are measured here with respect to the origin in Fig. 4.1.
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iopt(m, k) = arg min
i
∆i(m, k), k = 0, 1, . . . ,

N

2
(4.22)

∆i(m, k) =
∣∣∣pk(i)X1(m, k) − pk(I − i+ 1)X2(m, k)

∣∣∣
2

, i = 1, 2, . . . , I

(4.23)

(frame index m = 0, 1, 2, . . .). With optimum delay indices from (4.22), opti-
mum delays τi can be found for each frequency point k and frame m according
to (4.20). To obtain the TDD, and thus the azimuth of the sound source from
this set of data, we first build a histogram map Pk(τi,m) by counting τi
values for each frequency point in several consecutive signal frames. τi values
will gather around the actual delay corresponding to the azimuth of the signal
source. In a similar manner as in [6], we use the following histogram averaging
procedure in case of speech signals:

Pk(τi,m) = αPk(τi,m− 1) + δ
(
i− iopt(m, k)

)
,

i = 1, 2, . . . , I

k = 0, 1, . . . ,
N

2
m = 0, 1, 2, . . . ,

(4.24)

where δ(·) is the unit impulse and τi is the set of delays in (4.20). Forgetting
factor α is chosen between 0.85 and 0.95.

An illustrative example of a histogram map is shown in Fig. 4.6 wherein
delay values τi are replaced by corresponding azimuth values. A stationary
broadband noise source emitting from azimuth direction 60° is used. In the
frequency range below 2 kHz, a prominent population of azimuth values along
a vertical line is observed. An additional curved pattern stems from phase
ambiguity. Spatial aliasing occurs for signals with frequency contents above
fmax = vs

2d due to λ
2 < d. With a microphone distance d = 37.5 cm, we get

fmax ≈ 450 Hz.
To reduce the influence of phase ambiguity, we sum up histogram data over

all frequency indices k for each azimuth (or τi, respectively). The optimum
delay is then obtained by searching for the maximal sum. As a result, the
azimuth of the source location is given by

τopt(m) = arg max
τi

N
2∑

k=0

Pk(τi,m), (4.25)

for each signal frame m. Despite the presence of phase ambiguity, the max-
imum in (4.25) is rather sharp. Further improvements, especially in case of
multiple sources, are discussed in [6]. However, a high computationally effort
is needed which is not justified in case of a single speaker or even for multiple
speakers not talking at the same time. Our investigations show that no sig-
nificant improvements by the refinements proposed in [6] are obtained in real
acoustic environments.
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Fig. 4.6. Histogram map of a stationary white noise source, bandlimited between
300Hz and 6400Hz, emitting from azimuth direction Φ = 60°, (FFT length N = 512,
α = 0.9, azimuth resolution 2.5°).

Using the same source signal as in Fig. 4.3, a representative example of a
histogram map summed up over frequency is shown in Fig. 4.7. The result of
azimuth estimation by searching for maxima locations in the ITD histogram
map of Fig. 4.7 is presented in Fig. 4.8. Performance differences between the
PHAT-GCC and ITD algorithm can barely be derived from these example
figures. However, they can be better detected by using artificial broadband
noise from known directions as test signals. The ITD method offers the ad-
vantage that the angular resolution can be selected by choosing the size I of
the delay set in (4.20). In comparison with the PHAT-GCC algorithm, the ac-
curacy is better for azimuths near 0° and 180°. Obviously, this is an advantage
if two microphone pairs are used to find a speaker’s position by calculating
the cross point of the two azimuth estimates. Furthermore, there is no need
for signal oversampling or increasing the FFT size because phase matching is
done in the frequency domain. On the other hand, substantially more search
algorithms are required for minima and maxima detections.

Our experiments with speech signals indicate less robustness against envi-
ronmental noise and reverberation as compared to the PHAT-GCC method.
The increased sensitivity with respect to room acoustics is due to the influence
of sound reflections that smear maxima locations in the ITD histogram map.
In [6] the authors suggest to set Pk(τi,m) to zero for values below a certain
threshold. According to our experience, however, this does not improve the
performance in reverberant rooms. Therefore, application of the ITD algo-
rithm is limited to situations where accurate source localization under mod-
erate environmental noise is needed. For automatic steering of microphone
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Fig. 4.7. ITD histogram map summed over frequency of a moving speaker (same
acoustical environment as in Fig. 4.3, azimuth instead of delay values on vertical
axis).
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Fig. 4.8. Azimuth estimation by maximum search on the ITD histogram map from
Fig. 4.7 (Estimates are held constant during speech pauses).

arrays, we prefer to use the PHAT-GCC method because of its robustness.
Arrays of up to 8 microphones exhibit relatively broad main lobes in their
array patterns. As a consequence, there is no need for an azimuth estimation
accuracy less then 3° . . . 5°.
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4.4 Source Localization Using Adaptive Filters

In the derivations of source localization algorithms, we have assumed an ideal
wave propagation model so far. In such an environment with no sound reflec-
tions, the two microphone signals in Fig. 4.1 are simply delayed versions of
the source signal. Although this model works remarkably well in real acoustic
environments too, a more realistic approach is to find the signal delay from
the actual impulse responses between source and microphones. In this section,
two different adaptive systems for delay estimation are presented. The first
system models the time delay between the two microphones. It is assumed
that the direct path of sound propagation dominates. In the second method,
we estimate the impulse responses by an adaptive eigenvalue decomposition.
This method is more robust if strong reverberation is present. Both algorithms
can efficiently be implemented by frequency-domain adaptive filters.

The first adaptive filtering technique is straight forward and shown in
Fig. 4.9.2 A detailed performance analysis can be found in [13]. We denote

x1(n−∆)

e(n)

FIR filter
Adaptive

w(n)

τ̂(n)

location
Peak

x1(n)

x2(n)

∆
Delay

Fig. 4.9. Time delay estimation using an adaptive FIR filter (length L, coefficient
vector w(n), delay ∆ = �L−1

2
�).

FIR filter state as vector x2(n) and coefficients as vector w(n) according to

x2(n) =
[
x2(n) x2(n− 1) · · · x2(n− L+ 1)

]T (4.26)

w(n) =
[
w0(n) w1(n) · · · wL−1(n)

]T
, (4.27)

(“T” denotes vector transpose). The error signal e(n) is then given by

e(n) = x1(n−∆) − wT(n)x2(n), (4.28)

2 FIR = Finite Impulse Response Duration
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(∆ = �L−1
2 �). The Least Mean-Square (LMS) algorithm can be used to update

the weight vector:

w(n+ 1) = w(n) + µLMS e(n)x2(n). (4.29)

In general, however, a better performance is achieved with the normalized
LMS algorithm

w(n+ 1) = w(n) +
µNLMS

‖x2(n)‖2
e(n)x2(n), (4.30)

with ‖x2(n)‖2 = xT
2 (n)x2(n). In order to improve the convergence behavior,

a pre-emphasis filter with impulse response hpre(n) = δ(n)−0.9δ(n−1) (unit
impulse δ(n)) can be used for simple pre-whitening of speech signals. Such
a pre-filter is not required if we use the following frequency-domain adaptive
filter. Only three FFTs per frame plus one FFT every M samples (M = 2000,
typically) are needed. In addition, convergence is superior in case of speech
signals due to a frequency dependent adaptive filter step size. The algorithm
is based on the fast block LMS adaptive filter as proposed in [14], combined
with a frequency dependent step size as suggested in [15]. To implement the
LMS adaptive filter in the frequency domain by means of the FFT, samples
are grouped into frames and coefficients are held constant till the next frame is
processed. The update of the adaptive filter coefficients in frequency-domain
at each frame index m can be summarized as follows:

X2(m, k) =
N−1∑
n=0

x2(mL+ n)e−j 2π
N nk, k = 0, 1, . . . , N − 1 (4.31)

y(m,n) =
1
N

N−1∑
k=0

W (m, k)X2(m, k)ej 2π
N nk, n = 0, 1, . . . , N − 1

(4.32)

ẽ(m,n) =

{
0 n = 0, 1, . . . , L− 1
x1(mL+ n−∆) − y(m,n) n = L,L+ 1, . . . , N − 1

(4.33)

E(m, k) =
N−1∑
n=0

ẽ(m,n)e−j 2π
N nk, k = 0, 1, . . . , N − 1 (4.34)

Sx2x2(m, k) = αSx2x2(m− 1, k) + (1 − α)|X2(m, k)|2, k = 0, 1, . . . , N − 1
(4.35)

W (m+ 1, k) = W (m, k) +
µ

Sx2x2(m, k) + ε
X∗

2 (m, k)E(m, k)

k = 0, 1, . . . , N − 1. (4.36)

The frame length is N = 2L, with a frame hop size equal to the adaptive
filter length L. An overlap-save method with an N point DFT/IDFT is used
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to perform the linear convolution needed in (4.28). Note that the step size of
the weight update (4.36) is normalized by an estimate of the spectral power
at each frequency point.3 As a consequence, the convergence behavior of the
adaptive algorithm is nearly independent on the signal spectrum.

Delay estimates are computed every M ′ frames (i.e. every M = M ′L
samples) by finding peak locations of the adaptive filter coefficients

w(m′, n) =
1
N

N−1∑
k=0

W (m′, k)ej 2π
N nk, n = 0, 1, . . . , N − 1. (4.37)

Due to the overlap-save method, the last L values of w(m′, n) are the valid
filter coefficients to be searched to find the peak location. In addition, the
search range can be further reduced because peak positions are limited to
[∆ − Nd,∆ + Nd], where Nd = � d

vs
fs� is the maximum delay between the

microphone signals.
A typical example using the same microphone signals as before is shown

in Fig. 4.10 and Fig. 4.11. The proposed frequency-domain adaptive filter is
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Fig. 4.10. Adaptive filter coefficient map of a moving speaker (same acoustical
environment as in Fig. 4.3).

applied with length L = 512, step size µ = 0.2, and α = 0.2. The coefficient
map is updated every M = 2048 samples to allow for sufficient convergence
of the adaptive filter. Delay estimation is performed every M samples too by
maximum detection using the coefficient map. Coefficients are oversampled
by a factor of 4 to determine the peak location with sufficient accuracy.

3 ε avoids division by zero during speech pauses.
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Fig. 4.11. Azimuth estimation by maximum search on the coefficient map from
Fig. 4.10 (Estimates are held constant during speech pauses).

A different adaptive system showing a better performance in environments
with strong reverberation is proposed in [7]. In principle, the impulse responses
between source and microphones are estimated by means of an eigenvalue
decomposition. Denoting h1(n) and h2(n) as impulse response from source to
microphone 1, and microphone 2, respectively, we get the following discrete-
time model:

x1(n) =
∞∑

k=−∞
h1(k)s(n− k) + v1(n) (4.38)

x2(n) =
∞∑

k=−∞
h2(k)s(n− k) + v2(n), (4.39)

(source signal s(n), noise disturbances v1,2(n)). At the moment, we assume a
linear environment with time-invariant impulse responses. Later on, we will
relax the time-invariance property by estimating h1,2(n) on a frame by frame
basis. This allows for adaptation to sufficiently slow changes in the room
acoustics, and for speaker movements. For the estimation of the impulse re-
sponses, we further assume that h1,2(n) can be approximated by filters with
finite impulse response length L. Additionally, the noise signals v1,2(n) are
neglected at first. This leads to the relation

(x1 ∗ h2)(n) = (s ∗ h1 ∗ h2)(n) = (x2 ∗ h1)(n) (4.40)

between the convolutions since the order in which two stable sequences are
convolved is unimportant (see Fig. 4.12). Equation (4.40) is the basis of an
adaptive algorithm to estimate the impulse responses.
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s(n) x1(n)

x2(n)

e(n) ≡ 0

h2(n)

h1(n) h2(n)

h1(n)

Fig. 4.12. Relationship between impulse responses according to (4.40) (signal model
left, perfect estimation of impulse responses right).

If the impulse responses are approximated by length L filters, all data can
be grouped in L× 1 vectors

xi(n) =
[
xi(n) xi(n− 1) · · · xi(n− L+ 1)

]T
, i = 1, 2 (4.41)

hi =
[
hi(0) hi(1) · · · hi(L− 1)

]T
. (4.42)

Equation (4.40) can now be rewritten as

xT
1 (n)h2 = xT

2 (n)h1. (4.43)

Following the derivation outlined in [7], we introduce 2L× 1 vectors

x(n) =
[
xT

1 (n) xT
2 (n)

]T (4.44)

u =
[
hT

2 −hT
1

]T (4.45)

to rewrite (4.40):

xT(n)u = xT
1 (n)h2 − xT

2 (n)h1 = 0. (4.46)

Left multiplying (4.46) by x(n) and taking expectation yields

Rxx(n)u = 0. (4.47)

Rxx(n) = E{x(n)xT(n)} is the 2L × 2L covariance matrix of the two mi-
crophone signals. Note that Rxx(n) contains both temporal and spatial cor-
relations of the microphone signals. Equation (4.47) indicates that u is the
eigenvector of Rxx(n) corresponding to eigenvalue 0. Therefore, both impulse
responses can be found by determining this eigenvector.

If noise signals v1,2(n) are present, u may be estimated by minimizing
uTRxx(n)u with constraint uTu = 1 [7]. Consequently, we get u by com-
puting the normalized eigenvector of Rxx(n) corresponding to the smallest
eigenvalue. There exist several efficient algorithms to find the smallest eigen-
value and the associated eigenvector of a correlation matrix. Since the dimen-
sion of matrix Rxx(n) is quite large, an adaptive algorithm will be used. As
a main advantage, we need only a few iterations because the TDD between
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the microphone signals is of interest. There is no need to estimate the actual
shapes of the impulse responses. According to (4.46) and Fig. 4.12, the error
signal

e(n) = uT(n)x(n) (4.48)

should be zero under ideal conditions. Actually, the cost function

J(n) =
1
2
E

{
e2(n)

}
=

1
2
uT(n)Rxx(n)u(n) (4.49)

can be minimized with the gradient-based adaptive algorithm

u(n+ 1) = u(n) − µLMS ∇uJ(n) = u(n) − µLMS Rxx(n)u(n). (4.50)

∇uJ(n) is the cost function gradient with respect to vector u. With the
approximation Rxx(n) = E{x(n)xT(n)} ≈ x(n)xT(n), we get the LMS al-
gorithm

u(n+ 1) = u(n) − µLMS e(n)x(n). (4.51)

The constraint uTu = 1 can be taken into account by normalization [7]:

v(n) = u(n) − µNLMS e(n)x(n) (4.52)

u(n+ 1) =
v(n)√

vT(n)v(n)
. (4.53)

As mentioned above, only the delay between the two microphone signals is of
interest. If we initialize the elements ui(n) of vector u(n) at n = 0 by

ui(0) =

⎧
⎪⎨
⎪⎩

0 0 ≤ i ≤ �L
2 � − 1

1 i = �L
2 �

0 �L
2 � + 1 ≤ i ≤ 2L− 1

, (4.54)

then a negative peak will evolve in u(n) during adaptation. This peak corre-
sponds to the direct path in the impulse response h1 (see (4.45)). The positive
peak will remain at the initial position i = �L

2 �. The index difference of these
two peaks in u(n) determines the delay between the microphone signals. Since
the position of the positive peak is fixed, we need to find the index of the neg-
ative peak only by searching vector elements ui(n), �L

2 �+1 ≤ i ≤ 2L−1. In a
practical implementation, we will interpolate u(n) before peak position find-
ing. Additionally, in case of a moving speaker we have to reset the adaptive
algorithm periodically to allow tracking. Otherwise, peaks will stick at the
first estimated positions, particularly for small step size values µLMS. Setting
ui(nK) = ui(0) for some period K removes all old negative peaks and allows
the adaptive algorithm to adjust to the new delay position. Period K deter-
mines the tracking speed and is set to some 1000 samples, typically. During
this period, the adaptive algorithm has plenty of time to converge.

The adaptive source localization algorithm can easily be implemented in
the time domain. However, a significantly greater computational efficiency can
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be achieved by using a frequency-domain adaptive filter. As opposed to [7],
an FFT based algorithm can be devised requiring only 4 FFTs per frame
(plus one FFT at every initialization period) instead of 7 FFTs. This saving
is obtained by eliminating the normalization of vector u in (4.53). It is argued
in [7] that the normalization may avoid an error propagation in (4.51) if the
algorithm runs over a long period of time. However, in order to ensure tracking,
we have to periodically reset the adaptive algorithm. Thus, an eventual error
propagation will efficiently be eliminated too.

The algorithm has a similar structure as the fast LMS algorithm (4.31) -
(4.36):

X1(m, k) =
N−1∑
n=0

x1(mL+ n)e−j 2π
N nk, k = 0, 1, . . . , N − 1 (4.55)

X2(m, k) =
N−1∑
n=0

x2(mL+ n)e−j 2π
N nk, k = 0, 1, . . . , N − 1 (4.56)

e(m,n) =
1
N

N−1∑
k=0

[
U1(m, k)X1(m, k) + U2(m, k)X2(m, k)

]
ej 2π

N nk,

n = 0, 1, . . . , N − 1 (4.57)

ẽ(m,n) =

{
0 n = 0, 1, . . . , L− 1
e(m,n) n = L,L+ 1, . . . , N − 1

(4.58)

E(m, k) =
N−1∑
n=0

ẽ(m,n)e−j 2π
N nk, k = 0, 1, . . . , N − 1 (4.59)

Sx1x1(m, k) = αSx1x1(m− 1, k) + (1 − α)|X1(m, k)|2, k = 0, 1, . . . , N − 1
(4.60)

Sx2x2(m, k) = αSx2x2(m− 1, k) + (1 − α)|X2(m, k)|2, k = 0, 1, . . . , N − 1
(4.61)

U1(m+ 1, k) = U1(m, k) −
µ

Sx1x1(m, k) + ε
X∗

1 (m, k)E(m, k)

k = 0, 1, . . . , N − 1 (4.62)

U2(m+ 1, k) = U2(m, k) −
µ

Sx2x2(m, k) + ε
X∗

2 (m, k)E(m, k)

k = 0, 1, . . . , N − 1. (4.63)

Similarly to the fast LMS algorithm, the DFT length is set to N = 2L, with
impulse response length L. Vector u (see (4.45)) is split into two length L sub-
vectors, i.e. u = [uT

1 uT
2 ]T. The updates of these sub-vectors are performed

in the frequency domain. Delay estimates are computed every M ′ frames
(i.e. every M = M ′L samples) by finding the dominant negative peak in u2.
Likewise to (4.37), the elements of u2 are obtained by the IDFT
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u2(m′, n) =
1
N

N−1∑
k=0

U2(m′, k)ej 2π
N nk, n = 0, 1, . . . , N − 1. (4.64)

Nearly the same results as in Fig. 4.10, 4.11 are obtained if we use the
same microphone signals and algorithm parameters L = 512, α = 0.2, and
µ = 0.2.

4.5 Some Remarks on Algorithm Selection

Deciding which algorithm to choose depends on the specific area of appli-
cation. In a car cabin, with no speaker movement, little reverberation, and
heavy disturbing noise, the PHAT-GCC and the frequency-domain adaptive
filter perform best. Both algorithms also exhibit the lowest computational
demand. In situations with modest reverberation, the two adaptive source
localization algorithms show the same performance. However, according to
a detailed experimental comparison of algorithms in [7], the adaptive eigen-
value decomposition offers a better performance in rooms with strong rever-
beration and moderate noise. The best accuracy in azimuth estimation can
be expected by the ITD based algorithm if nearly ideal sound propagation is
present. However, the prize to be payed is the relatively high computational
cost and memory demand.

If we compare the arithmetic operations per frame interval required by
each algorithm, we get the coarse result listed in Tab. 4.1. The FFT length is
equal to frame length N in case of PHAT-GCC and ITD algorithm. All FFTs
use real-valued input data. The fast LMS algorithm (FLMS) and the adaptive
eigenvalue decomposition (AEVD) require length N = 2L FFTs (impulse
response length L). One FFT is needed every M ′ frames only. Oversampling
is not considered in Tab. 4.1. If we apply e.g. an oversampling (factor R)
to find the GCC peak, one FFT must have a length RN . The IDT-algorithm
requires only 2 real-input FFTs and no oversampling. However, the numbers of
additions and multiplications depend on the azimuth resolution ∆Φ ≈ 180°/I.
In addition, N

2 + 1 maximum/minimum search operations are needed.

Table 4.1. Comparison of computational requirements per frame of length N

Algorithm FFT Add. Mult. Div. Sqrt. Search

PHAT 3 5
2
N 8N N

2
N
2

1

ITD 2
(
4I + 1

2

)
N

(
11
2

I + 2
)
N - - N

2
+ 1

FLMS 4 9
2
N 7N N

2
- 1

AEVD 5 9N 14N N - 1
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4.6 Frequency-Domain Adaptive Beamformer with
Speaker Tracking

In this section, we present an adaptive beamformer combined with source
localization. The system automatically adjusts the main lobe of the array
pattern to a speaker and suppresses sounds from all other directions. This
behavior is preserved if the speaker moves. Applications include teleconfer-
encing, hands-free telecommunications in cars, etc. The adaptive beamformer
is based on the Frost constrained LMS algorithm [16]. However, as opposed
to the original Frost beamformer, the adaptive algorithm is formulated in the
frequency domain.

The main advantages of this approach are the possibility to use an efficient
multi-input overlap-add FFT filterbank, the avoidance of variable fractional
delay filters, and the inclusion of more constraints like nulls in the array pat-
tern. In addition, the FFT filterbank beamformer can easily be combined with
an adaptive post-filter for speech enhancement purposes [17–19]. Disadvan-
tages are the signal delay introduced by the FFT block processing and a higher
storage demand as compared with the time domain approach. However, signal
delays are within usual tolerance limits if the frame size is properly chosen
(e.g. 512 at 16 kHz sampling frequency). Additionally, memory requirements
are no limiting factors with modern hardware.

The basic structure of the adaptive beamformer is shown in Fig. 4.13.
Single channel overlap-add FFT filterbanks are used in many audio-based ap-
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Fig. 4.13. Adaptive beamformer with N -channel overlap-add FFT filterbank and
constrained LMS algorithm to compute weights wk(m) (frequency index k, frame
index m).
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plications [20]. Such a multirate filterbank structure is highly efficient and
offers a nearly perfect signal reconstruction property. In our extended fil-
terbank system with multiple input channels, FFT spectra are modified by
complex-valued weights on a frame by frame basis. For each frequency index
k and frame index m the N -dimensional weight vectors wk(m) are updated
according to a constrained LMS algorithm. This algorithm will be derived in
the sequel. Algorithm parameters P k and wck depend on the desired direction
which is supplied by a source localization algorithm. The source localization
algorithm makes use of the already available FFTs of the out-most two mi-
crophone signals of the array.

In the following derivation of the frequency-domain adaptive algorithm,
the frame index m is omitted for clarity. The beamformer optimization prob-
lem to be solved by means of an adaptive algorithm may be defined by the
minimization of a quadratic cost function under linear constraints:

wk = arg min
wk

wH
k Sxkxk

wk, CH
k wk = f (4.65)

(for each frequency index k). Superscript H denotes Hermitian transposition,
i. e. transposition combined with complex conjugation. The minimization of
the quadratic form stems from the desired minimization of the power of Yk

given by
E{Y 2

k } = wH
k E{xkxH

k }wk = wH
k Sxkxk

wk, (4.66)

with wk = [w1,k w2,k · · ·wN,k]T, xk = [X1,k X2,k · · ·XN,k]T. Matrix Sxkxk
is

the N ×N spatio-spectral correlation matrix at frequency index k. This ma-
trix depends on array geometry and sound field, and will be estimated by the
adaptive algorithm. Minimization of E{Y 2

k } has to be done with constraints.
At least, signals from the desired direction must not be attenuated. In ad-
dition, signals from certain other directions may be suppressed by imposing
nulls in the array pattern. These constraints are collected in (4.65) as a set of
equations with matrix Ck. The structure of this matrix is determined by the
wave propagation model. If we assume plane waves and far field conditions,
Ck is composed of steering vectors of the form

dk(Φ) =
[
ejΩkτ1(Φ) ejΩkτ2(Φ) · · · ejΩkτN (Φ)

]T

, (4.67)

with Ωk = 2πfs k
Nf

(sampling frequency fs, FFT lengths Nf ). Microphone
signal delays τi depend on the direction (azimuth Φ) of the impinging wave.
For simplicity, we are using a one-dimensional array with a coordinate system
as shown in Fig. 4.1. This is not a restriction in general because delays τi can
easily be calculated in a 3-dimensional coordinate system. In addition, more
complicated steering vectors can be used if we apply other wave propagation
models like those covering near field conditions. The structure of the opti-
mization problem remains the same. We have to use different steering vectors
only. Actually, knowledge of the sound propagation is very incomplete. There-
fore, the simple steering vectors offer a convenient way to overcome this lag
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of information. However, a better beamformer performance can be achieved
with more realistic steering vectors.

Suppose that the desired speaker direction has azimuth Φd and we want
an array pattern null at azimuth Φs. Then dk(Φd)Hwk = 1 is the beamformer
response in desired direction and dk(Φs)Hwk = 0 is the response in the un-
wanted direction. Therefore, matrix Ck is given by Ck = [dk(Φd)dk(Φs)] and
vector f must be set to f = [1 0]T in order to get the constraints in (4.65). We
can include more array pattern nulls and extend the row dimension of matrix
Ck. To avoid an over-determined set of equations, the number of constraints
must be less than the number N of microphones. In practice, only a few con-
straints should be used to obtain a good beamforming pattern with a strong
main lobe and small side lobes.

We can solve the constrained optimization problem (4.65) with Lagrange
multipliers by defining the cost function

L(wk,λ) =
1
2
wH

k Sxkxk
wk + λH

(
CH

k wk − f
)
. (4.68)

Evaluation of the gradient of this cost function yields

∇wk
L(wk,λ) = Sxkxk

wk + Ckλ. (4.69)

Using the gradient relationship, an iterative solution of the optimization prob-
lem on a frame by frame basis is given by

wk(m+ 1) = wk(m) − µLMS ∇wk
L(wk,λ). (4.70)

Lagrange multiplier λ is obtained from (4.69) and (4.70) combined with the
constraints CH

k wk(m+ 1) = f (see (4.65)) according to

λ =
1

µLMS

(
CH

k Ck

)−1

CH
k wk(m) −

(
CH

k Ck

)−1

CH
k Sxkxk

wk(m)

− 1
µLMS

(
CH

k Ck

)−1

f .

(4.71)

Using this relationship in (4.69), we get from (4.70)

wk(m+ 1) = P k

[
wk(m) − µLMS Sxkxk

wk(m)
]

+ wck, (4.72)

with N ×N matrix

P k = I − Ck

(
CH

k Ck

)−1

CH
k , (4.73)

and N × 1 vector

wck = Ck

(
CH

k Ck

)−1

f . (4.74)

We finally arrive at the constrained LMS algorithm by replacing the unknown
spatio-spectral correlation matrix by the basic estimate S̃xkxk

= xkxH
k and

applying Yk(m) = wH
k (m)xk(m) (see Fig. 4.13):
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wk(m+ 1) = P k

[
wk(m) − µLMS xk(m)Y ∗

k (m)
]

+ wck. (4.75)

Although the constrained LMS algorithm can easily be implemented, the
basic form given by (4.75) exhibits a suppression of the desired signal in real
environments. The constraint dk(Φd)Hwk = 1 can hardly be met in practical
situations due to microphone tolerances, microphone position errors, and most
important, errors of the desired direction. If we modify the adaptive algorithm
in order to achieve a large robustness against these influences, suppression of
the desired signal can be avoided. By modeling the errors as uncorrelated
white noise signals at the microphone inputs, we observe that the variances
of these errors are amplified by wH

k wk. Thus, limiting wH
k wk = ‖wk‖2 will

reduce the influence of these errors. A detailed discussion on making the Frost
beamformer more robust can be found in [21].

The weight vector norm constraint can conveniently be included in the
adaptive algorithm, if we split the weight vector into wk(m) = vk(m) + wck

and recognize P kwck = 0 (see (4.73), (4.74)). With upper bound Bk, the
norm constraint can be expressed as

‖wk(m)‖2 = ‖vk(m)‖2 + ‖wck‖2 ≤ Bk. (4.76)

It follows that the norm of the variable component vk(m) of wk(m) must be
limited by

‖vk(m)‖ ≤
√
Bk − ‖wck‖2 = bk. (4.77)

Parameter bk does not depend on frame index m and can be pre-computed
for every frequency index k. Therefore, we get the final adaptive algorithm:

Initialization: wck = Ck

(
CH

k Ck

)−1

f (4.78)

P k = I − Ck

(
CH

k Ck

)−1

CH
k (4.79)

bk =
√
Bk − ‖wck‖2 (4.80)

vk(0) = 0. (4.81)
For each frame index m: (4.82)

ṽk(m+ 1) = P k

[
vk(m) − µLMS xk(m)Y ∗

k (m)
]

(4.83)

vk(m+ 1) =

⎧
⎨
⎩

ṽk(m+ 1) if ‖ṽk(m+ 1)‖ ≤ bk
bkṽk(m+ 1)
‖ṽk(m+ 1)‖ if ‖ṽk(m+ 1)‖ > bk

(4.84)

wk(m+ 1) = vk(m+ 1) + wck (4.85)
k = 0, 1, . . . , Nf .

In general, this adaptive algorithm requires a substantial amount of mem-
ory due to storage of matrix P k and vector wck for each FFT frequency
index. However, for special cases like broadside arrays (azimuth Φ = 90°),
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all of these vectors and matrices are equal. In addition, memory savings are
also possible in case of symmetries regarding the location of specified nulls
in the array pattern. If no specified null is present, matrix inversion in (4.73)
and (4.74) reduces to scalar division because constraint matrix Ck is equal to
the steering vector dk(Φd). This important case occurs at arrays for speaker
tracking where fixed nulls in the beamformer pattern are not desired.

The step size µLMS of the adaptive algorithm must be selected with some
care. As shown in [16], convergence of the constrained LMS algorithm is en-
sured if

0 < µLMS <
2

3E{xH
k xk}

. (4.86)

Therefore, a proper normalization of the step size µLMS will improve the con-
vergence behavior of the adaptive algorithm. With such a modification, the
convergence speed is independent on the signal magnitudes. In accordance
to the normalized LMS algorithm, the modified weight vector update is then
given by

ṽk(m+ 1) = P k

[
vk(m) − µ

‖xk(m)‖2 + ε
xk(m)Y ∗

k (m)
]
. (4.87)

Typically, the new step size µ should be chosen between 0.001 and 0.02 to
ensure a stable convergence of the adaptive algorithm.

Another important design parameter of the constrained LMS algorithm is
the upper bound Bk. We get a sensitive superdirective array with Bk > 10. On
the other hand, a robust delay-and-sum beamformer is obtained with small
values (Bk < 1). In addition, Bk must be frequency dependent in order to
achieve a flat beamformer frequency response not only in the exact desired
direction but also at small deviations thereof. In principle, the frequency de-
pendency of Bk can be optimized to obtain a flat frequency response. However,
a tolerance analysis of perturbated arrays shows that the following set of limits
works very well at a sampling frequency of fs = 16 kHz [22]:

10 log10Bk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10 dB 0 < f ≤ 250 Hz
8 dB 250 Hz < f ≤ 450 Hz
2 dB 450 Hz < f ≤ 700 Hz
−2 dB 700 Hz < f ≤ 1000 Hz
−4 dB 1000 Hz < f ≤ 2000 Hz
−6 dB 2000 Hz < f ≤ 4000 Hz
−7.5 dB 4000 Hz < f ≤ 8000 Hz.

(4.88)

Note that the frequency index k of the Nf -point FFT is given by k =

round
(
Nf

f
fs

)
.

We can combine the adaptive filterbank beamformer with a source local-
ization subsystem as shown in Fig. 4.14. This augmented system is capable to
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Fig. 4.14. Adaptive FFT filterbank beamformer combined with source localization
to be used for automatic speaker tracking (frame index m).

focus the main lobe of the beam pattern to a moving speaker by re-computing
the parameters P k, wck, bk at multiples of the frame index. With a typi-
cal frame length of 512, frames are processed every 512/4 = 128 samples,
i. e. every 8ms at 16 kHz sampling frequency. This is the minimum time pe-
riod to re-compute P k, wck, bk based on azimuth estimation. It can barely
be used because the adaptive filter typically needs several 100 ms to converge.
The starting solution wk(0) = wck corresponds to a delay-and-sum beam-
former and offers an adequate beam pattern during fast movements of the
speaker. Adaptation will begin after the speaker position has been settled. It
should be noted, however, that there is no need to reset the adaptive filter
weight vectors wk at new azimuth estimates.

For azimuth estimation, all of the previously presented source localization
algorithms can efficiently be implemented in the frequency domain. Therefore,
we can directly use the already available FFTs of the microphone signals (and
not the signals themselves, as shown in Fig. 4.14). We have implemented the
adaptive beamformer using an array of 8 microphones, a sampling frequency of
16 kHz, and an FFT length of 512 with Hann windowing of input frames. With
a frame hop size of 512/4 = 128 samples, we obtain a filterbank oversampling
by a factor of 4. This oversampling factor guarantees that distortions due to
multirate filterbank processing are not audible.

Both uniform and non-uniform array geometries have been investigated.
As an example, the layout of a non-uniform microphone array is sketched in
Fig. 4.15. This configuration requires fewer sensors than a comparable uni-
form array and offers a good tradeoff between main lobe width and side lobe
amplitudes over the whole frequency range. Due to the use of a linear array,
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Fig. 4.15. Microphone array geometry in cm (total size 37.5 cm).

the azimuth range is confined to a 180° field-of-view. If a 360° field-of-view is
required, a circular array geometry should be preferred [23].

To avoid spatial aliasing, the input signal must be bandlimited to 6400 Hz.
There is no need for additional low pass filters in the microphone channels, if
we set the respective frequency bins of the FFTs to zero. This will also reduce
the size of vectors and matrices needed by the adaptive algorithm.

The PHAT-GCC algorithm is used for automatic speaker tracking. To pro-
vide sufficient time for convergence of the adaptive algorithm, parameters P k,
wck are held constant during speech pauses and during speaker movements
with changes in azimuth less than 2°.

In order to visualize the functioning of the adaptive beamformer with
speaker tracking, we show a representative array pattern in Fig. 4.16 and
Fig. 4.17 at a frequency of 1 kHz. We use the same speaker movement as in
the source localization experiments. The speaker’s position starts at broadside

Fig. 4.16. Log-scale array pattern at f = 1 kHz of the adaptive beamformer auto-
matically steered to a moving speaker.
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(Φ = 90°), moves on towards Φ = 0°, and continues to move back to Φ =
90°, and finally Φ = 180°. The main lobe of the array pattern follows this
movement. The estimated azimuth trace is overlayed in the image plots shown
in Fig. 4.17 at a frequency of 1 kHz, and in Fig. 4.18 at 3 kHz, respectively.
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Fig. 4.17. Array pattern at f = 1 kHz of the automatically steered adaptive beam-
former with superimposed estimated azimuth trace of a moving speaker.

The main lobe is clearly visible as a white region following the trace of
the estimated azimuth. The settling period of the adaptive algorithm can be
observed at the beginning where the speaker position remains constant at
Φ = 90°. A sharper main lobe but larger side lobe maxima are present in the
array pattern at f = 3 kHz, as compared with the pattern at f = 1 kHz.
This reflects the behavior of a delay-and-sum beamformer which is used as
the starting solution of the adaptive algorithm. It should be noted that the
beamformer shows a unity gain frequency response in desired direction. Only
main lobe width and side lobe patterns change with frequency. The chopped
texture of the array pattern in Fig. 4.18 is due to the step-like azimuth changes
after hold operations during speech pauses.

The behavior of the adaptive beamformer depends on the input signals.
The array patterns shown in Fig. 4.16, 4.17, 4.18 are computed using a single
moving speaker. If we use a fixed desired direction, i.e. switch off speaker track-
ing, the adaptive algorithm will automatically suppress interfering sounds
from other directions than the desired one. This build-in feature is due to
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Fig. 4.18. Array pattern at f = 3 kHz of the automatically steered adaptive beam-
former with superimposed estimated azimuth trace of a moving speaker.

the adaptive algorithm constraints by which the desired signal is emphasized.
To illustrate this behavior, we show array patterns using random noise band-
limited from 300 Hz to 6400 Hz as a desired source signal. The beamformer
output signal power is calculated as a function of the noise signal direction.
Typical results are shown in Fig. 4.19. Four different desired directions are
given. The steady-state output power is computed after the settling period
of the adaptive beamformer. A sharp main lobe can be observed, especially
at desired direction Φ = 90°. At Φ = 0° the array is less sensitive regard-
ing changes in the desired direction. This behavior is common to broadband
adaptive beamformers based on the constrained LMS algorithm because the
optimization constraint is defined for a single desired direction only. A sharp
main lobe is not a disadvantage of our adaptive beamformer because the de-
sired direction is automatically adjusted using speaker tracking.

The entire system has been simulated using a MATLAB� program which
can be downloaded from the authors home page.4 An implementation written
in the C programming language runs in real-time at 16 kHz sampling fre-
quency on any modern PC equipped with an 8 channel analog input sound sys-
tem (like Terratec� EWS88MT, M-Audio� Delta 1010, or RME� Hammerfall�

DSP). With CPU clock frequencies at 2 GHz, 16 microphone channels can be
processed in real-time at 16 kHz sampling frequency.

4 www.nt.tuwien.ac.at/dspgroup/gdobling.html
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Fig. 4.19. Output signal power vs. azimuth of the adaptive array excited with
random noise bandlimited from 300 Hz to 6400 Hz, and with four different desired
directions.

4.7 Conclusions

We have presented an overview on different source localization techniques
based on time-delay estimation using only two microphones. These algorithms
are well suited for direction (azimuth) estimation and speaker tracking in real
environments with moderate reverberation. The main purpose of source local-
ization covered in this chapter is the application to speaker tracking with au-
tomatically steered microphone arrays. An efficient adaptive beamformer has
been described in detail combining a multi-input overlap-add FFT filterbank,
a constrained LMS algorithm, and a GCC-PHAT based source localization
algorithm.

Acknowledgements

An industrial cooperation with AKG Acoustics Austria triggered my interest
in acoustical beamforming and source localization. It also gave me the op-
portunity to consider both theoretical aspects and real-world problems in the
context of microphone arrays. I particularly thank J. Granser, G. Stöbich,
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